2 * Copyright (c) 2004-2006 The DragonFly Project. All rights reserved.
4 * This code is derived from software contributed to The DragonFly Project
5 * by Matthew Dillon <dillon@backplane.com>
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following conditions
11 * 1. Redistributions of source code must retain the above copyright
12 * notice, this list of conditions and the following disclaimer.
13 * 2. Redistributions in binary form must reproduce the above copyright
14 * notice, this list of conditions and the following disclaimer in
15 * the documentation and/or other materials provided with the
17 * 3. Neither the name of The DragonFly Project nor the names of its
18 * contributors may be used to endorse or promote products derived
19 * from this software without specific, prior written permission.
21 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
22 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
23 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
24 * FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
25 * COPYRIGHT HOLDERS OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
26 * INCIDENTAL, SPECIAL, EXEMPLARY OR CONSEQUENTIAL DAMAGES (INCLUDING,
27 * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
28 * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
29 * AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
30 * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT
31 * OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
34 * $DragonFly: src/sys/kern/vfs_journal.c,v 1.33 2007/05/09 00:53:34 dillon Exp $
37 * The journaling protocol is intended to evolve into a two-way stream
38 * whereby transaction IDs can be acknowledged by the journaling target
39 * when the data has been committed to hard storage. Both implicit and
40 * explicit acknowledgement schemes will be supported, depending on the
41 * sophistication of the journaling stream, plus resynchronization and
42 * restart when a journaling stream is interrupted. This information will
43 * also be made available to journaling-aware filesystems to allow better
44 * management of their own physical storage synchronization mechanisms as
45 * well as to allow such filesystems to take direct advantage of the kernel's
46 * journaling layer so they don't have to roll their own.
48 * In addition, the worker thread will have access to much larger
49 * spooling areas then the memory buffer is able to provide by e.g.
50 * reserving swap space, in order to absorb potentially long interruptions
51 * of off-site journaling streams, and to prevent 'slow' off-site linkages
52 * from radically slowing down local filesystem operations.
54 * Because of the non-trivial algorithms the journaling system will be
55 * required to support, use of a worker thread is mandatory. Efficiencies
56 * are maintained by utilitizing the memory FIFO to batch transactions when
57 * possible, reducing the number of gratuitous thread switches and taking
58 * advantage of cpu caches through the use of shorter batched code paths
59 * rather then trying to do everything in the context of the process
60 * originating the filesystem op. In the future the memory FIFO can be
61 * made per-cpu to remove BGL or other locking requirements.
63 #include <sys/param.h>
64 #include <sys/systm.h>
67 #include <sys/kernel.h>
68 #include <sys/queue.h>
70 #include <sys/malloc.h>
71 #include <sys/mount.h>
72 #include <sys/unistd.h>
73 #include <sys/vnode.h>
75 #include <sys/mountctl.h>
76 #include <sys/journal.h>
79 #include <sys/msfbuf.h>
80 #include <sys/socket.h>
81 #include <sys/socketvar.h>
83 #include <machine/limits.h>
86 #include <vm/vm_object.h>
87 #include <vm/vm_page.h>
88 #include <vm/vm_pager.h>
89 #include <vm/vnode_pager.h>
91 #include <sys/file2.h>
92 #include <sys/thread2.h>
94 static void journal_wthread(void *info
);
95 static void journal_rthread(void *info
);
97 static void *journal_reserve(struct journal
*jo
,
98 struct journal_rawrecbeg
**rawpp
,
99 int16_t streamid
, int bytes
);
100 static void *journal_extend(struct journal
*jo
,
101 struct journal_rawrecbeg
**rawpp
,
102 int truncbytes
, int bytes
, int *newstreamrecp
);
103 static void journal_abort(struct journal
*jo
,
104 struct journal_rawrecbeg
**rawpp
);
105 static void journal_commit(struct journal
*jo
,
106 struct journal_rawrecbeg
**rawpp
,
107 int bytes
, int closeout
);
110 MALLOC_DEFINE(M_JOURNAL
, "journal", "Journaling structures");
111 MALLOC_DEFINE(M_JFIFO
, "journal-fifo", "Journal FIFO");
114 journal_create_threads(struct journal
*jo
)
116 jo
->flags
&= ~(MC_JOURNAL_STOP_REQ
| MC_JOURNAL_STOP_IMM
);
117 jo
->flags
|= MC_JOURNAL_WACTIVE
;
118 lwkt_create(journal_wthread
, jo
, NULL
, &jo
->wthread
,
119 TDF_STOPREQ
, -1, "journal w:%.*s", JIDMAX
, jo
->id
);
120 lwkt_setpri(&jo
->wthread
, TDPRI_KERN_DAEMON
);
121 lwkt_schedule(&jo
->wthread
);
123 if (jo
->flags
& MC_JOURNAL_WANT_FULLDUPLEX
) {
124 jo
->flags
|= MC_JOURNAL_RACTIVE
;
125 lwkt_create(journal_rthread
, jo
, NULL
, &jo
->rthread
,
126 TDF_STOPREQ
, -1, "journal r:%.*s", JIDMAX
, jo
->id
);
127 lwkt_setpri(&jo
->rthread
, TDPRI_KERN_DAEMON
);
128 lwkt_schedule(&jo
->rthread
);
133 journal_destroy_threads(struct journal
*jo
, int flags
)
137 jo
->flags
|= MC_JOURNAL_STOP_REQ
| (flags
& MC_JOURNAL_STOP_IMM
);
140 while (jo
->flags
& (MC_JOURNAL_WACTIVE
| MC_JOURNAL_RACTIVE
)) {
141 tsleep(jo
, 0, "jwait", hz
);
142 if (++wcount
% 10 == 0) {
143 kprintf("Warning: journal %s waiting for descriptors to close\n",
149 * XXX SMP - threads should move to cpu requesting the restart or
150 * termination before finishing up to properly interlock.
152 tsleep(jo
, 0, "jwait", hz
);
153 lwkt_free_thread(&jo
->wthread
);
154 if (jo
->flags
& MC_JOURNAL_WANT_FULLDUPLEX
)
155 lwkt_free_thread(&jo
->rthread
);
159 * The per-journal worker thread is responsible for writing out the
160 * journal's FIFO to the target stream.
163 journal_wthread(void *info
)
165 struct journal
*jo
= info
;
166 struct journal_rawrecbeg
*rawp
;
174 * Calculate the number of bytes available to write. This buffer
175 * area may contain reserved records so we can't just write it out
176 * without further checks.
178 bytes
= jo
->fifo
.windex
- jo
->fifo
.rindex
;
181 * sleep if no bytes are available or if an incomplete record is
182 * encountered (it needs to be filled in before we can write it
183 * out), and skip any pad records that we encounter.
186 if (jo
->flags
& MC_JOURNAL_STOP_REQ
)
188 tsleep(&jo
->fifo
, 0, "jfifo", hz
);
193 * Sleep if we can not go any further due to hitting an incomplete
194 * record. This case should occur rarely but may have to be better
197 rawp
= (void *)(jo
->fifo
.membase
+ (jo
->fifo
.rindex
& jo
->fifo
.mask
));
198 if (rawp
->begmagic
== JREC_INCOMPLETEMAGIC
) {
199 tsleep(&jo
->fifo
, 0, "jpad", hz
);
204 * Skip any pad records. We do not write out pad records if we can
207 if (rawp
->streamid
== JREC_STREAMID_PAD
) {
208 if ((jo
->flags
& MC_JOURNAL_WANT_FULLDUPLEX
) == 0) {
209 if (jo
->fifo
.rindex
== jo
->fifo
.xindex
) {
210 jo
->fifo
.xindex
+= (rawp
->recsize
+ 15) & ~15;
211 jo
->total_acked
+= (rawp
->recsize
+ 15) & ~15;
214 jo
->fifo
.rindex
+= (rawp
->recsize
+ 15) & ~15;
215 jo
->total_acked
+= bytes
;
216 KKASSERT(jo
->fifo
.windex
- jo
->fifo
.rindex
>= 0);
221 * 'bytes' is the amount of data that can potentially be written out.
222 * Calculate 'res', the amount of data that can actually be written
223 * out. res is bounded either by hitting the end of the physical
224 * memory buffer or by hitting an incomplete record. Incomplete
225 * records often occur due to the way the space reservation model
229 avail
= jo
->fifo
.size
- (jo
->fifo
.rindex
& jo
->fifo
.mask
);
230 while (res
< bytes
&& rawp
->begmagic
== JREC_BEGMAGIC
) {
231 res
+= (rawp
->recsize
+ 15) & ~15;
233 KKASSERT(res
== avail
);
236 rawp
= (void *)((char *)rawp
+ ((rawp
->recsize
+ 15) & ~15));
240 * Issue the write and deal with any errors or other conditions.
241 * For now assume blocking I/O. Since we are record-aware the
242 * code cannot yet handle partial writes.
244 * We bump rindex prior to issuing the write to avoid racing
245 * the acknowledgement coming back (which could prevent the ack
246 * from bumping xindex). Restarts are always based on xindex so
247 * we do not try to undo the rindex if an error occurs.
249 * XXX EWOULDBLOCK/NBIO
250 * XXX notification on failure
251 * XXX permanent verses temporary failures
252 * XXX two-way acknowledgement stream in the return direction / xindex
255 jo
->fifo
.rindex
+= bytes
;
256 error
= fp_write(jo
->fp
,
258 ((jo
->fifo
.rindex
- bytes
) & jo
->fifo
.mask
),
259 bytes
, &res
, UIO_SYSSPACE
);
261 kprintf("journal_thread(%s) write, error %d\n", jo
->id
, error
);
264 KKASSERT(res
== bytes
);
268 * Advance rindex. If the journal stream is not full duplex we also
269 * advance xindex, otherwise the rjournal thread is responsible for
272 if ((jo
->flags
& MC_JOURNAL_WANT_FULLDUPLEX
) == 0) {
273 jo
->fifo
.xindex
+= bytes
;
274 jo
->total_acked
+= bytes
;
276 KKASSERT(jo
->fifo
.windex
- jo
->fifo
.rindex
>= 0);
277 if ((jo
->flags
& MC_JOURNAL_WANT_FULLDUPLEX
) == 0) {
278 if (jo
->flags
& MC_JOURNAL_WWAIT
) {
279 jo
->flags
&= ~MC_JOURNAL_WWAIT
; /* XXX hysteresis */
280 wakeup(&jo
->fifo
.windex
);
284 fp_shutdown(jo
->fp
, SHUT_WR
);
285 jo
->flags
&= ~MC_JOURNAL_WACTIVE
;
287 wakeup(&jo
->fifo
.windex
);
291 * A second per-journal worker thread is created for two-way journaling
292 * streams to deal with the return acknowledgement stream.
295 journal_rthread(void *info
)
297 struct journal_rawrecbeg
*rawp
;
298 struct journal_ackrecord ack
;
299 struct journal
*jo
= info
;
310 * We have been asked to stop
312 if (jo
->flags
& MC_JOURNAL_STOP_REQ
)
316 * If we have no active transaction id, get one from the return
320 error
= fp_read(jo
->fp
, &ack
, sizeof(ack
), &count
,
323 kprintf("fp_read ack error %d count %d\n", error
, count
);
325 if (error
|| count
!= sizeof(ack
))
328 kprintf("read error %d on receive stream\n", error
);
331 if (ack
.rbeg
.begmagic
!= JREC_BEGMAGIC
||
332 ack
.rend
.endmagic
!= JREC_ENDMAGIC
334 kprintf("bad begmagic or endmagic on receive stream\n");
337 transid
= ack
.rbeg
.transid
;
341 * Calculate the number of unacknowledged bytes. If there are no
342 * unacknowledged bytes then unsent data was acknowledged, report,
343 * sleep a bit, and loop in that case. This should not happen
344 * normally. The ack record is thrown away.
346 bytes
= jo
->fifo
.rindex
- jo
->fifo
.xindex
;
349 kprintf("warning: unsent data acknowledged transid %08llx\n",
351 tsleep(&jo
->fifo
.xindex
, 0, "jrseq", hz
);
357 * Since rindex has advanced, the record pointed to by xindex
358 * must be a valid record.
360 rawp
= (void *)(jo
->fifo
.membase
+ (jo
->fifo
.xindex
& jo
->fifo
.mask
));
361 KKASSERT(rawp
->begmagic
== JREC_BEGMAGIC
);
362 KKASSERT(rawp
->recsize
<= bytes
);
365 * The target can acknowledge several records at once.
367 if (rawp
->transid
< transid
) {
369 kprintf("ackskip %08llx/%08llx\n",
370 (long long)rawp
->transid
,
373 jo
->fifo
.xindex
+= (rawp
->recsize
+ 15) & ~15;
374 jo
->total_acked
+= (rawp
->recsize
+ 15) & ~15;
375 if (jo
->flags
& MC_JOURNAL_WWAIT
) {
376 jo
->flags
&= ~MC_JOURNAL_WWAIT
; /* XXX hysteresis */
377 wakeup(&jo
->fifo
.windex
);
381 if (rawp
->transid
== transid
) {
383 kprintf("ackskip %08llx/%08llx\n",
384 (long long)rawp
->transid
,
387 jo
->fifo
.xindex
+= (rawp
->recsize
+ 15) & ~15;
388 jo
->total_acked
+= (rawp
->recsize
+ 15) & ~15;
389 if (jo
->flags
& MC_JOURNAL_WWAIT
) {
390 jo
->flags
&= ~MC_JOURNAL_WWAIT
; /* XXX hysteresis */
391 wakeup(&jo
->fifo
.windex
);
396 kprintf("warning: unsent data(2) acknowledged transid %08llx\n",
400 jo
->flags
&= ~MC_JOURNAL_RACTIVE
;
402 wakeup(&jo
->fifo
.windex
);
406 * This builds a pad record which the journaling thread will skip over. Pad
407 * records are required when we are unable to reserve sufficient stream space
408 * due to insufficient space at the end of the physical memory fifo.
410 * Even though the record is not transmitted, a normal transid must be
411 * assigned to it so link recovery operations after a failure work properly.
415 journal_build_pad(struct journal_rawrecbeg
*rawp
, int recsize
, int64_t transid
)
417 struct journal_rawrecend
*rendp
;
419 KKASSERT((recsize
& 15) == 0 && recsize
>= 16);
421 rawp
->streamid
= JREC_STREAMID_PAD
;
422 rawp
->recsize
= recsize
; /* must be 16-byte aligned */
423 rawp
->transid
= transid
;
425 * WARNING, rendp may overlap rawp->transid. This is necessary to
426 * allow PAD records to fit in 16 bytes. Use cpu_ccfence() to
427 * hopefully cause the compiler to not make any assumptions.
429 rendp
= (void *)((char *)rawp
+ rawp
->recsize
- sizeof(*rendp
));
430 rendp
->endmagic
= JREC_ENDMAGIC
;
432 rendp
->recsize
= rawp
->recsize
;
435 * Set the begin magic last. This is what will allow the journal
436 * thread to write the record out. Use a store fence to prevent
437 * compiler and cpu reordering of the writes.
440 rawp
->begmagic
= JREC_BEGMAGIC
;
444 * Wake up the worker thread if the FIFO is more then half full or if
445 * someone is waiting for space to be freed up. Otherwise let the
446 * heartbeat deal with it. Being able to avoid waking up the worker
447 * is the key to the journal's cpu performance.
451 journal_commit_wakeup(struct journal
*jo
)
455 avail
= jo
->fifo
.size
- (jo
->fifo
.windex
- jo
->fifo
.xindex
);
456 KKASSERT(avail
>= 0);
457 if ((avail
< (jo
->fifo
.size
>> 1)) || (jo
->flags
& MC_JOURNAL_WWAIT
))
462 * Create a new BEGIN stream record with the specified streamid and the
463 * specified amount of payload space. *rawpp will be set to point to the
464 * base of the new stream record and a pointer to the base of the payload
465 * space will be returned. *rawpp does not need to be pre-NULLd prior to
466 * making this call. The raw record header will be partially initialized.
468 * A stream can be extended, aborted, or committed by other API calls
469 * below. This may result in a sequence of potentially disconnected
470 * stream records to be output to the journaling target. The first record
471 * (the one created by this function) will be marked JREC_STREAMCTL_BEGIN,
472 * while the last record on commit or abort will be marked JREC_STREAMCTL_END
473 * (and possibly also JREC_STREAMCTL_ABORTED). The last record could wind
474 * up being the same as the first, in which case the bits are all set in
477 * The stream record is created in an incomplete state by setting the begin
478 * magic to JREC_INCOMPLETEMAGIC. This prevents the worker thread from
479 * flushing the fifo past our record until we have finished populating it.
480 * Other threads can reserve and operate on their own space without stalling
481 * but the stream output will stall until we have completed operations. The
482 * memory FIFO is intended to be large enough to absorb such situations
483 * without stalling out other threads.
487 journal_reserve(struct journal
*jo
, struct journal_rawrecbeg
**rawpp
,
488 int16_t streamid
, int bytes
)
490 struct journal_rawrecbeg
*rawp
;
496 * Add header and trailer overheads to the passed payload. Note that
497 * the passed payload size need not be aligned in any way.
499 bytes
+= sizeof(struct journal_rawrecbeg
);
500 bytes
+= sizeof(struct journal_rawrecend
);
504 * First, check boundary conditions. If the request would wrap around
505 * we have to skip past the ending block and return to the beginning
506 * of the FIFO's buffer. Calculate 'req' which is the actual number
507 * of bytes being reserved, including wrap-around dead space.
509 * Neither 'bytes' or 'req' are aligned.
511 * Note that availtoend is not truncated to avail and so cannot be
512 * used to determine whether the reservation is possible by itself.
513 * Also, since all fifo ops are 16-byte aligned, we can check
514 * the size before calculating the aligned size.
516 availtoend
= jo
->fifo
.size
- (jo
->fifo
.windex
& jo
->fifo
.mask
);
517 KKASSERT((availtoend
& 15) == 0);
518 if (bytes
> availtoend
)
519 req
= bytes
+ availtoend
; /* add pad to end */
524 * Next calculate the total available space and see if it is
525 * sufficient. We cannot overwrite previously buffered data
526 * past xindex because otherwise we would not be able to restart
527 * a broken link at the target's last point of commit.
529 avail
= jo
->fifo
.size
- (jo
->fifo
.windex
- jo
->fifo
.xindex
);
530 KKASSERT(avail
>= 0 && (avail
& 15) == 0);
533 /* XXX MC_JOURNAL_STOP_IMM */
534 jo
->flags
|= MC_JOURNAL_WWAIT
;
536 tsleep(&jo
->fifo
.windex
, 0, "jwrite", 0);
541 * Create a pad record for any dead space and create an incomplete
542 * record for the live space, then return a pointer to the
543 * contiguous buffer space that was requested.
545 * NOTE: The worker thread will not flush past an incomplete
546 * record, so the reserved space can be filled in at-will. The
547 * journaling code must also be aware the reserved sections occuring
548 * after this one will also not be written out even if completed
549 * until this one is completed.
551 * The transaction id must accomodate real and potential pad creation.
553 rawp
= (void *)(jo
->fifo
.membase
+ (jo
->fifo
.windex
& jo
->fifo
.mask
));
555 journal_build_pad(rawp
, availtoend
, jo
->transid
);
557 rawp
= (void *)jo
->fifo
.membase
;
559 rawp
->begmagic
= JREC_INCOMPLETEMAGIC
; /* updated by abort/commit */
560 rawp
->recsize
= bytes
; /* (unaligned size) */
561 rawp
->streamid
= streamid
| JREC_STREAMCTL_BEGIN
;
562 rawp
->transid
= jo
->transid
;
566 * Issue a memory barrier to guarentee that the record data has been
567 * properly initialized before we advance the write index and return
568 * a pointer to the reserved record. Otherwise the worker thread
569 * could accidently run past us.
571 * Note that stream records are always 16-byte aligned.
574 jo
->fifo
.windex
+= (req
+ 15) & ~15;
584 * Attempt to extend the stream record by <bytes> worth of payload space.
586 * If it is possible to extend the existing stream record no truncation
587 * occurs and the record is extended as specified. A pointer to the
588 * truncation offset within the payload space is returned.
590 * If it is not possible to do this the existing stream record is truncated
591 * and committed, and a new stream record of size <bytes> is created. A
592 * pointer to the base of the new stream record's payload space is returned.
594 * *rawpp is set to the new reservation in the case of a new record but
595 * the caller cannot depend on a comparison with the old rawp to determine if
596 * this case occurs because we could end up using the same memory FIFO
597 * offset for the new stream record. Use *newstreamrecp instead.
600 journal_extend(struct journal
*jo
, struct journal_rawrecbeg
**rawpp
,
601 int truncbytes
, int bytes
, int *newstreamrecp
)
603 struct journal_rawrecbeg
*rawp
;
614 osize
= (rawp
->recsize
+ 15) & ~15;
615 nsize
= (rawp
->recsize
+ bytes
+ 15) & ~15;
616 wbase
= (char *)rawp
- jo
->fifo
.membase
;
619 * If the aligned record size does not change we can trivially adjust
622 if (nsize
== osize
) {
623 rawp
->recsize
+= bytes
;
624 return((char *)(rawp
+ 1) + truncbytes
);
628 * If the fifo's write index hasn't been modified since we made the
629 * reservation and we do not hit any boundary conditions, we can
630 * trivially make the record smaller or larger.
632 if ((jo
->fifo
.windex
& jo
->fifo
.mask
) == wbase
+ osize
) {
633 availtoend
= jo
->fifo
.size
- wbase
;
634 avail
= jo
->fifo
.size
- (jo
->fifo
.windex
- jo
->fifo
.xindex
) + osize
;
635 KKASSERT((availtoend
& 15) == 0);
636 KKASSERT((avail
& 15) == 0);
637 if (nsize
<= avail
&& nsize
<= availtoend
) {
638 jo
->fifo
.windex
+= nsize
- osize
;
639 rawp
->recsize
+= bytes
;
640 return((char *)(rawp
+ 1) + truncbytes
);
645 * It was not possible to extend the buffer. Commit the current
646 * buffer and create a new one. We manually clear the BEGIN mark that
647 * journal_reserve() creates (because this is a continuing record, not
648 * the start of a new stream).
650 streamid
= rawp
->streamid
& JREC_STREAMID_MASK
;
651 journal_commit(jo
, rawpp
, truncbytes
, 0);
652 rptr
= journal_reserve(jo
, rawpp
, streamid
, bytes
);
654 rawp
->streamid
&= ~JREC_STREAMCTL_BEGIN
;
660 * Abort a journal record. If the transaction record represents a stream
661 * BEGIN and we can reverse the fifo's write index we can simply reverse
662 * index the entire record, as if it were never reserved in the first place.
664 * Otherwise we set the JREC_STREAMCTL_ABORTED bit and commit the record
665 * with the payload truncated to 0 bytes.
668 journal_abort(struct journal
*jo
, struct journal_rawrecbeg
**rawpp
)
670 struct journal_rawrecbeg
*rawp
;
674 osize
= (rawp
->recsize
+ 15) & ~15;
676 if ((rawp
->streamid
& JREC_STREAMCTL_BEGIN
) &&
677 (jo
->fifo
.windex
& jo
->fifo
.mask
) ==
678 (char *)rawp
- jo
->fifo
.membase
+ osize
)
680 jo
->fifo
.windex
-= osize
;
683 rawp
->streamid
|= JREC_STREAMCTL_ABORTED
;
684 journal_commit(jo
, rawpp
, 0, 1);
689 * Commit a journal record and potentially truncate it to the specified
690 * number of payload bytes. If you do not want to truncate the record,
691 * simply pass -1 for the bytes parameter. Do not pass rawp->recsize, that
692 * field includes header and trailer and will not be correct. Note that
693 * passing 0 will truncate the entire data payload of the record.
695 * The logical stream is terminated by this function.
697 * If truncation occurs, and it is not possible to physically optimize the
698 * memory FIFO due to other threads having reserved space after ours,
699 * the remaining reserved space will be covered by a pad record.
702 journal_commit(struct journal
*jo
, struct journal_rawrecbeg
**rawpp
,
703 int bytes
, int closeout
)
705 struct journal_rawrecbeg
*rawp
;
706 struct journal_rawrecend
*rendp
;
713 KKASSERT((char *)rawp
>= jo
->fifo
.membase
&&
714 (char *)rawp
+ rawp
->recsize
<= jo
->fifo
.membase
+ jo
->fifo
.size
);
715 KKASSERT(((intptr_t)rawp
& 15) == 0);
718 * Truncate the record if necessary. If the FIFO write index as still
719 * at the end of our record we can optimally backindex it. Otherwise
720 * we have to insert a pad record to cover the dead space.
722 * We calculate osize which is the 16-byte-aligned original recsize.
723 * We calculate nsize which is the 16-byte-aligned new recsize.
725 * Due to alignment issues or in case the passed truncation bytes is
726 * the same as the original payload, nsize may be equal to osize even
727 * if the committed bytes is less then the originally reserved bytes.
730 KKASSERT(bytes
>= 0 && bytes
<= rawp
->recsize
- sizeof(struct journal_rawrecbeg
) - sizeof(struct journal_rawrecend
));
731 osize
= (rawp
->recsize
+ 15) & ~15;
732 rawp
->recsize
= bytes
+ sizeof(struct journal_rawrecbeg
) +
733 sizeof(struct journal_rawrecend
);
734 nsize
= (rawp
->recsize
+ 15) & ~15;
735 KKASSERT(nsize
<= osize
);
736 if (osize
== nsize
) {
738 } else if ((jo
->fifo
.windex
& jo
->fifo
.mask
) == (char *)rawp
- jo
->fifo
.membase
+ osize
) {
739 /* we are able to backindex the fifo */
740 jo
->fifo
.windex
-= osize
- nsize
;
742 /* we cannot backindex the fifo, emplace a pad in the dead space */
743 journal_build_pad((void *)((char *)rawp
+ nsize
), osize
- nsize
,
749 * Fill in the trailer. Note that unlike pad records, the trailer will
750 * never overlap the header.
752 rendp
= (void *)((char *)rawp
+
753 ((rawp
->recsize
+ 15) & ~15) - sizeof(*rendp
));
754 rendp
->endmagic
= JREC_ENDMAGIC
;
755 rendp
->recsize
= rawp
->recsize
;
756 rendp
->check
= 0; /* XXX check word, disabled for now */
759 * Fill in begmagic last. This will allow the worker thread to proceed.
760 * Use a memory barrier to guarentee write ordering. Mark the stream
761 * as terminated if closeout is set. This is the typical case.
764 rawp
->streamid
|= JREC_STREAMCTL_END
;
765 cpu_sfence(); /* memory and compiler barrier */
766 rawp
->begmagic
= JREC_BEGMAGIC
;
768 journal_commit_wakeup(jo
);
771 /************************************************************************
772 * TRANSACTION SUPPORT ROUTINES *
773 ************************************************************************
775 * JRECORD_*() - routines to create subrecord transactions and embed them
776 * in the logical streams managed by the journal_*() routines.
780 * Initialize the passed jrecord structure and start a new stream transaction
781 * by reserving an initial build space in the journal's memory FIFO.
784 jrecord_init(struct journal
*jo
, struct jrecord
*jrec
, int16_t streamid
)
786 bzero(jrec
, sizeof(*jrec
));
788 jrec
->streamid
= streamid
;
789 jrec
->stream_residual
= JREC_DEFAULTSIZE
;
790 jrec
->stream_reserved
= jrec
->stream_residual
;
792 journal_reserve(jo
, &jrec
->rawp
, streamid
, jrec
->stream_reserved
);
796 * Push a recursive record type. All pushes should have matching pops.
797 * The old parent is returned and the newly pushed record becomes the
798 * new parent. Note that the old parent's pointer may already be invalid
799 * or may become invalid if jrecord_write() had to build a new stream
800 * record, so the caller should not mess with the returned pointer in
801 * any way other then to save it.
803 struct journal_subrecord
*
804 jrecord_push(struct jrecord
*jrec
, int16_t rectype
)
806 struct journal_subrecord
*save
;
809 jrec
->parent
= jrecord_write(jrec
, rectype
|JMASK_NESTED
, 0);
811 KKASSERT(jrec
->parent
!= NULL
);
813 ++jrec
->pushptrgood
; /* cleared on flush */
818 * Pop a previously pushed sub-transaction. We must set JMASK_LAST
819 * on the last record written within the subtransaction. If the last
820 * record written is not accessible or if the subtransaction is empty,
821 * we must write out a pad record with JMASK_LAST set before popping.
823 * When popping a subtransaction the parent record's recsize field
824 * will be properly set. If the parent pointer is no longer valid
825 * (which can occur if the data has already been flushed out to the
826 * stream), the protocol spec allows us to leave it 0.
828 * The saved parent pointer which we restore may or may not be valid,
829 * and if not valid may or may not be NULL, depending on the value
833 jrecord_pop(struct jrecord
*jrec
, struct journal_subrecord
*save
)
835 struct journal_subrecord
*last
;
837 KKASSERT(jrec
->pushcount
> 0);
838 KKASSERT(jrec
->residual
== 0);
841 * Set JMASK_LAST on the last record we wrote at the current
842 * level. If last is NULL we either no longer have access to the
843 * record or the subtransaction was empty and we must write out a pad
846 if ((last
= jrec
->last
) == NULL
) {
847 jrecord_write(jrec
, JLEAF_PAD
|JMASK_LAST
, 0);
848 last
= jrec
->last
; /* reload after possible flush */
850 last
->rectype
|= JMASK_LAST
;
854 * pushptrgood tells us how many levels of parent record pointers
855 * are valid. The jrec only stores the current parent record pointer
856 * (and it is only valid if pushptrgood != 0). The higher level parent
857 * record pointers are saved by the routines calling jrecord_push() and
858 * jrecord_pop(). These pointers may become stale and we determine
859 * that fact by tracking the count of valid parent pointers with
860 * pushptrgood. Pointers become invalid when their related stream
861 * record gets pushed out.
863 * If no pointer is available (the data has already been pushed out),
864 * then no fixup of e.g. the length field is possible for non-leaf
865 * nodes. The protocol allows for this situation by placing a larger
866 * burden on the program scanning the stream on the other end.
876 * NOTE B: This pop sets LAST in node Z if the node is still accessible,
877 * else a PAD record is appended and LAST is set in that.
879 * This pop sets the record size in parentB if parentB is still
880 * accessible, else the record size is left 0 (the scanner must
883 * This pop sets the new 'last' record to parentB, the pointer
884 * to which may or may not still be accessible.
886 * NOTE A: This pop sets LAST in parentB if the node is still accessible,
887 * else a PAD record is appended and LAST is set in that.
889 * This pop sets the record size in parentA if parentA is still
890 * accessible, else the record size is left 0 (the scanner must
893 * This pop sets the new 'last' record to parentA, the pointer
894 * to which may or may not still be accessible.
896 * Also note that the last record in the stream transaction, which in
897 * the above example is parentA, does not currently have the LAST bit
900 * The current parent becomes the last record relative to the
901 * saved parent passed into us. It's validity is based on
902 * whether pushptrgood is non-zero prior to decrementing. The saved
903 * parent becomes the new parent, and its validity is based on whether
904 * pushptrgood is non-zero after decrementing.
906 * The old jrec->parent may be NULL if it is no longer accessible.
907 * If pushptrgood is non-zero, however, it is guarenteed to not
908 * be NULL (since no flush occured).
910 jrec
->last
= jrec
->parent
;
912 if (jrec
->pushptrgood
) {
913 KKASSERT(jrec
->last
!= NULL
&& last
!= NULL
);
914 if (--jrec
->pushptrgood
== 0) {
915 jrec
->parent
= NULL
; /* 'save' contains garbage or NULL */
917 KKASSERT(save
!= NULL
);
918 jrec
->parent
= save
; /* 'save' must not be NULL */
922 * Set the record size in the old parent. 'last' still points to
923 * the original last record in the subtransaction being popped,
924 * jrec->last points to the old parent (which became the last
925 * record relative to the new parent being popped into).
927 jrec
->last
->recsize
= (char *)last
+ last
->recsize
- (char *)jrec
->last
;
930 KKASSERT(jrec
->last
== NULL
);
935 * Write out a leaf record, including associated data.
938 jrecord_leaf(struct jrecord
*jrec
, int16_t rectype
, void *ptr
, int bytes
)
940 jrecord_write(jrec
, rectype
, bytes
);
941 jrecord_data(jrec
, ptr
, bytes
);
945 * Write a leaf record out and return a pointer to its base. The leaf
946 * record may contain potentially megabytes of data which is supplied
947 * in jrecord_data() calls. The exact amount must be specified in this
950 * THE RETURNED SUBRECORD POINTER IS ONLY VALID IMMEDIATELY AFTER THE
951 * CALL AND MAY BECOME INVALID AT ANY TIME. ONLY THE PUSH/POP CODE SHOULD
952 * USE THE RETURN VALUE.
954 struct journal_subrecord
*
955 jrecord_write(struct jrecord
*jrec
, int16_t rectype
, int bytes
)
957 struct journal_subrecord
*last
;
961 * Try to catch some obvious errors. Nesting records must specify a
962 * size of 0, and there should be no left-overs from previous operations
963 * (such as incomplete data writeouts).
965 KKASSERT(bytes
== 0 || (rectype
& JMASK_NESTED
) == 0);
966 KKASSERT(jrec
->residual
== 0);
969 * Check to see if the current stream record has enough room for
970 * the new subrecord header. If it doesn't we extend the current
973 * This may have the side effect of pushing out the current stream record
974 * and creating a new one. We must adjust our stream tracking fields
977 if (jrec
->stream_residual
< sizeof(struct journal_subrecord
)) {
978 jrec
->stream_ptr
= journal_extend(jrec
->jo
, &jrec
->rawp
,
979 jrec
->stream_reserved
- jrec
->stream_residual
,
980 JREC_DEFAULTSIZE
, &pusheditout
);
983 * If a pushout occured, the pushed out stream record was
984 * truncated as specified and the new record is exactly the
985 * extension size specified.
987 jrec
->stream_reserved
= JREC_DEFAULTSIZE
;
988 jrec
->stream_residual
= JREC_DEFAULTSIZE
;
989 jrec
->parent
= NULL
; /* no longer accessible */
990 jrec
->pushptrgood
= 0; /* restored parents in pops no good */
993 * If no pushout occured the stream record is NOT truncated and
996 jrec
->stream_reserved
+= JREC_DEFAULTSIZE
;
997 jrec
->stream_residual
+= JREC_DEFAULTSIZE
;
1000 last
= (void *)jrec
->stream_ptr
;
1001 last
->rectype
= rectype
;
1005 * We may not know the record size for recursive records and the
1006 * header may become unavailable due to limited FIFO space. Write
1007 * -1 to indicate this special case.
1009 if ((rectype
& JMASK_NESTED
) && bytes
== 0)
1012 last
->recsize
= sizeof(struct journal_subrecord
) + bytes
;
1014 jrec
->residual
= bytes
; /* remaining data to be posted */
1015 jrec
->residual_align
= -bytes
& 7; /* post-data alignment required */
1016 jrec
->stream_ptr
+= sizeof(*last
); /* current write pointer */
1017 jrec
->stream_residual
-= sizeof(*last
); /* space remaining in stream */
1022 * Write out the data associated with a leaf record. Any number of calls
1023 * to this routine may be made as long as the byte count adds up to the
1024 * amount originally specified in jrecord_write().
1026 * The act of writing out the leaf data may result in numerous stream records
1027 * being pushed out. Callers should be aware that even the associated
1028 * subrecord header may become inaccessible due to stream record pushouts.
1031 jrecord_data(struct jrecord
*jrec
, const void *buf
, int bytes
)
1036 KKASSERT(bytes
>= 0 && bytes
<= jrec
->residual
);
1039 * Push out stream records as long as there is insufficient room to hold
1040 * the remaining data.
1042 while (jrec
->stream_residual
< bytes
) {
1044 * Fill in any remaining space in the current stream record.
1046 bcopy(buf
, jrec
->stream_ptr
, jrec
->stream_residual
);
1047 buf
= (const char *)buf
+ jrec
->stream_residual
;
1048 bytes
-= jrec
->stream_residual
;
1049 /*jrec->stream_ptr += jrec->stream_residual;*/
1050 jrec
->residual
-= jrec
->stream_residual
;
1051 jrec
->stream_residual
= 0;
1054 * Try to extend the current stream record, but no more then 1/4
1055 * the size of the FIFO.
1057 extsize
= jrec
->jo
->fifo
.size
>> 2;
1058 if (extsize
> bytes
)
1059 extsize
= (bytes
+ 15) & ~15;
1061 jrec
->stream_ptr
= journal_extend(jrec
->jo
, &jrec
->rawp
,
1062 jrec
->stream_reserved
- jrec
->stream_residual
,
1063 extsize
, &pusheditout
);
1065 jrec
->stream_reserved
= extsize
;
1066 jrec
->stream_residual
= extsize
;
1067 jrec
->parent
= NULL
; /* no longer accessible */
1068 jrec
->last
= NULL
; /* no longer accessible */
1069 jrec
->pushptrgood
= 0; /* restored parents in pops no good */
1071 jrec
->stream_reserved
+= extsize
;
1072 jrec
->stream_residual
+= extsize
;
1077 * Push out any remaining bytes into the current stream record.
1080 bcopy(buf
, jrec
->stream_ptr
, bytes
);
1081 jrec
->stream_ptr
+= bytes
;
1082 jrec
->stream_residual
-= bytes
;
1083 jrec
->residual
-= bytes
;
1087 * Handle data alignment requirements for the subrecord. Because the
1088 * stream record's data space is more strictly aligned, it must already
1089 * have sufficient space to hold any subrecord alignment slop.
1091 if (jrec
->residual
== 0 && jrec
->residual_align
) {
1092 KKASSERT(jrec
->residual_align
<= jrec
->stream_residual
);
1093 bzero(jrec
->stream_ptr
, jrec
->residual_align
);
1094 jrec
->stream_ptr
+= jrec
->residual_align
;
1095 jrec
->stream_residual
-= jrec
->residual_align
;
1096 jrec
->residual_align
= 0;
1101 * We are finished with the transaction. This closes the transaction created
1102 * by jrecord_init().
1104 * NOTE: If abortit is not set then we must be at the top level with no
1105 * residual subrecord data left to output.
1107 * If abortit is set then we can be in any state, all pushes will be
1108 * popped and it is ok for there to be residual data. This works
1109 * because the virtual stream itself is truncated. Scanners must deal
1110 * with this situation.
1112 * The stream record will be committed or aborted as specified and jrecord
1113 * resources will be cleaned up.
1116 jrecord_done(struct jrecord
*jrec
, int abortit
)
1118 KKASSERT(jrec
->rawp
!= NULL
);
1121 journal_abort(jrec
->jo
, &jrec
->rawp
);
1123 KKASSERT(jrec
->pushcount
== 0 && jrec
->residual
== 0);
1124 journal_commit(jrec
->jo
, &jrec
->rawp
,
1125 jrec
->stream_reserved
- jrec
->stream_residual
, 1);
1129 * jrec should not be used beyond this point without another init,
1130 * but clean up some fields to ensure that we panic if it is.
1132 * Note that jrec->rawp is NULLd out by journal_abort/journal_commit.
1135 jrec
->stream_ptr
= NULL
;
1138 /************************************************************************
1139 * LOW LEVEL RECORD SUPPORT ROUTINES *
1140 ************************************************************************
1142 * These routine create low level recursive and leaf subrecords representing
1143 * common filesystem structures.
1147 * Write out a filename path relative to the base of the mount point.
1148 * rectype is typically JLEAF_PATH{1,2,3,4}.
1151 jrecord_write_path(struct jrecord
*jrec
, int16_t rectype
, struct namecache
*ncp
)
1153 char buf
[64]; /* local buffer if it fits, else malloced */
1157 struct namecache
*scan
;
1160 * Pass 1 - figure out the number of bytes required. Include terminating
1161 * \0 on last element and '/' separator on other elements.
1163 * The namecache topology terminates at the root of the filesystem
1164 * (the normal lookup code would then continue by using the mount
1165 * structure to figure out what it was mounted on).
1169 for (scan
= ncp
; scan
; scan
= scan
->nc_parent
) {
1170 if (scan
->nc_nlen
> 0)
1171 pathlen
+= scan
->nc_nlen
+ 1;
1174 if (pathlen
<= sizeof(buf
))
1177 base
= kmalloc(pathlen
, M_TEMP
, M_INTWAIT
);
1180 * Pass 2 - generate the path buffer
1183 for (scan
= ncp
; scan
; scan
= scan
->nc_parent
) {
1184 if (scan
->nc_nlen
== 0)
1186 if (scan
->nc_nlen
>= index
) {
1188 kfree(base
, M_TEMP
);
1191 if (index
== pathlen
)
1194 base
[--index
] = '/';
1195 index
-= scan
->nc_nlen
;
1196 bcopy(scan
->nc_name
, base
+ index
, scan
->nc_nlen
);
1198 jrecord_leaf(jrec
, rectype
, base
+ index
, pathlen
- index
);
1200 kfree(base
, M_TEMP
);
1204 * Write out a file attribute structure. While somewhat inefficient, using
1205 * a recursive data structure is the most portable and extensible way.
1208 jrecord_write_vattr(struct jrecord
*jrec
, struct vattr
*vat
)
1212 save
= jrecord_push(jrec
, JTYPE_VATTR
);
1213 if (vat
->va_type
!= VNON
)
1214 jrecord_leaf(jrec
, JLEAF_VTYPE
, &vat
->va_type
, sizeof(vat
->va_type
));
1215 if (vat
->va_mode
!= (mode_t
)VNOVAL
)
1216 jrecord_leaf(jrec
, JLEAF_MODES
, &vat
->va_mode
, sizeof(vat
->va_mode
));
1217 if (vat
->va_nlink
!= VNOVAL
)
1218 jrecord_leaf(jrec
, JLEAF_NLINK
, &vat
->va_nlink
, sizeof(vat
->va_nlink
));
1219 if (vat
->va_uid
!= VNOVAL
)
1220 jrecord_leaf(jrec
, JLEAF_UID
, &vat
->va_uid
, sizeof(vat
->va_uid
));
1221 if (vat
->va_gid
!= VNOVAL
)
1222 jrecord_leaf(jrec
, JLEAF_GID
, &vat
->va_gid
, sizeof(vat
->va_gid
));
1223 if (vat
->va_fsid
!= VNOVAL
)
1224 jrecord_leaf(jrec
, JLEAF_FSID
, &vat
->va_fsid
, sizeof(vat
->va_fsid
));
1225 if (vat
->va_fileid
!= VNOVAL
)
1226 jrecord_leaf(jrec
, JLEAF_INUM
, &vat
->va_fileid
, sizeof(vat
->va_fileid
));
1227 if (vat
->va_size
!= VNOVAL
)
1228 jrecord_leaf(jrec
, JLEAF_SIZE
, &vat
->va_size
, sizeof(vat
->va_size
));
1229 if (vat
->va_atime
.tv_sec
!= VNOVAL
)
1230 jrecord_leaf(jrec
, JLEAF_ATIME
, &vat
->va_atime
, sizeof(vat
->va_atime
));
1231 if (vat
->va_mtime
.tv_sec
!= VNOVAL
)
1232 jrecord_leaf(jrec
, JLEAF_MTIME
, &vat
->va_mtime
, sizeof(vat
->va_mtime
));
1233 if (vat
->va_ctime
.tv_sec
!= VNOVAL
)
1234 jrecord_leaf(jrec
, JLEAF_CTIME
, &vat
->va_ctime
, sizeof(vat
->va_ctime
));
1235 if (vat
->va_gen
!= VNOVAL
)
1236 jrecord_leaf(jrec
, JLEAF_GEN
, &vat
->va_gen
, sizeof(vat
->va_gen
));
1237 if (vat
->va_flags
!= VNOVAL
)
1238 jrecord_leaf(jrec
, JLEAF_FLAGS
, &vat
->va_flags
, sizeof(vat
->va_flags
));
1239 if (vat
->va_rmajor
!= VNOVAL
) {
1240 udev_t rdev
= makeudev(vat
->va_rmajor
, vat
->va_rminor
);
1241 jrecord_leaf(jrec
, JLEAF_UDEV
, &rdev
, sizeof(rdev
));
1242 jrecord_leaf(jrec
, JLEAF_UMAJOR
, &vat
->va_rmajor
, sizeof(vat
->va_rmajor
));
1243 jrecord_leaf(jrec
, JLEAF_UMINOR
, &vat
->va_rminor
, sizeof(vat
->va_rminor
));
1246 if (vat
->va_filerev
!= VNOVAL
)
1247 jrecord_leaf(jrec
, JLEAF_FILEREV
, &vat
->va_filerev
, sizeof(vat
->va_filerev
));
1249 jrecord_pop(jrec
, save
);
1253 * Write out the creds used to issue a file operation. If a process is
1254 * available write out additional tracking information related to the
1257 * XXX additional tracking info
1261 jrecord_write_cred(struct jrecord
*jrec
, struct thread
*td
, struct ucred
*cred
)
1266 save
= jrecord_push(jrec
, JTYPE_CRED
);
1267 jrecord_leaf(jrec
, JLEAF_UID
, &cred
->cr_uid
, sizeof(cred
->cr_uid
));
1268 jrecord_leaf(jrec
, JLEAF_GID
, &cred
->cr_gid
, sizeof(cred
->cr_gid
));
1269 if (td
&& (p
= td
->td_proc
) != NULL
) {
1270 jrecord_leaf(jrec
, JLEAF_PID
, &p
->p_pid
, sizeof(p
->p_pid
));
1271 jrecord_leaf(jrec
, JLEAF_COMM
, p
->p_comm
, sizeof(p
->p_comm
));
1273 jrecord_pop(jrec
, save
);
1277 * Write out information required to identify a vnode
1279 * XXX this needs work. We should write out the inode number as well,
1280 * and in fact avoid writing out the file path for seqential writes
1281 * occuring within e.g. a certain period of time.
1284 jrecord_write_vnode_ref(struct jrecord
*jrec
, struct vnode
*vp
)
1286 struct namecache
*ncp
;
1288 TAILQ_FOREACH(ncp
, &vp
->v_namecache
, nc_vnode
) {
1289 if ((ncp
->nc_flag
& (NCF_UNRESOLVED
|NCF_DESTROYED
)) == 0)
1293 jrecord_write_path(jrec
, JLEAF_PATH_REF
, ncp
);
1297 jrecord_write_vnode_link(struct jrecord
*jrec
, struct vnode
*vp
,
1298 struct namecache
*notncp
)
1300 struct namecache
*ncp
;
1302 TAILQ_FOREACH(ncp
, &vp
->v_namecache
, nc_vnode
) {
1305 if ((ncp
->nc_flag
& (NCF_UNRESOLVED
|NCF_DESTROYED
)) == 0)
1309 jrecord_write_path(jrec
, JLEAF_PATH_REF
, ncp
);
1313 * Write out the data represented by a pagelist
1316 jrecord_write_pagelist(struct jrecord
*jrec
, int16_t rectype
,
1317 struct vm_page
**pglist
, int *rtvals
, int pgcount
,
1320 struct msf_buf
*msf
;
1326 while (i
< pgcount
) {
1328 * Find the next valid section. Skip any invalid elements
1330 if (rtvals
[i
] != VM_PAGER_OK
) {
1332 offset
+= PAGE_SIZE
;
1337 * Figure out how big the valid section is, capping I/O at what the
1338 * MSFBUF can represent.
1341 while (i
< pgcount
&& i
- b
!= XIO_INTERNAL_PAGES
&&
1342 rtvals
[i
] == VM_PAGER_OK
1351 error
= msf_map_pagelist(&msf
, pglist
+ b
, i
- b
, 0);
1353 kprintf("RECORD PUTPAGES %d\n", msf_buf_bytes(msf
));
1354 jrecord_leaf(jrec
, JLEAF_SEEKPOS
, &offset
, sizeof(offset
));
1355 jrecord_leaf(jrec
, rectype
,
1356 msf_buf_kva(msf
), msf_buf_bytes(msf
));
1359 kprintf("jrecord_write_pagelist: mapping failure\n");
1361 offset
+= (off_t
)(i
- b
) << PAGE_SHIFT
;
1367 * Write out the data represented by a UIO.
1370 struct jrecord
*jrec
;
1374 static int jrecord_write_uio_callback(void *info
, char *buf
, int bytes
);
1377 jrecord_write_uio(struct jrecord
*jrec
, int16_t rectype
, struct uio
*uio
)
1379 struct jwuio_info info
= { jrec
, rectype
};
1382 if (uio
->uio_segflg
!= UIO_NOCOPY
) {
1383 jrecord_leaf(jrec
, JLEAF_SEEKPOS
, &uio
->uio_offset
,
1384 sizeof(uio
->uio_offset
));
1385 error
= msf_uio_iterate(uio
, jrecord_write_uio_callback
, &info
);
1387 kprintf("XXX warning uio iterate failed %d\n", error
);
1392 jrecord_write_uio_callback(void *info_arg
, char *buf
, int bytes
)
1394 struct jwuio_info
*info
= info_arg
;
1396 jrecord_leaf(info
->jrec
, info
->rectype
, buf
, bytes
);
1401 jrecord_file_data(struct jrecord
*jrec
, struct vnode
*vp
,
1402 off_t off
, off_t bytes
)
1404 const int bufsize
= 8192;
1409 buf
= kmalloc(bufsize
, M_JOURNAL
, M_WAITOK
);
1410 jrecord_leaf(jrec
, JLEAF_SEEKPOS
, &off
, sizeof(off
));
1412 n
= (bytes
> bufsize
) ? bufsize
: (int)bytes
;
1413 error
= vn_rdwr(UIO_READ
, vp
, buf
, n
, off
, UIO_SYSSPACE
, IO_NODELOCKED
,
1414 proc0
.p_ucred
, NULL
);
1416 jrecord_leaf(jrec
, JLEAF_ERROR
, &error
, sizeof(error
));
1419 jrecord_leaf(jrec
, JLEAF_FILEDATA
, buf
, n
);
1423 kfree(buf
, M_JOURNAL
);