2 * Copyright (c) 1994,1997 John S. Dyson
5 * Redistribution and use in source and binary forms, with or without
6 * modification, are permitted provided that the following conditions
8 * 1. Redistributions of source code must retain the above copyright
9 * notice immediately at the beginning of the file, without modification,
10 * this list of conditions, and the following disclaimer.
11 * 2. Absolutely no warranty of function or purpose is made by the author
14 * $FreeBSD: src/sys/kern/vfs_bio.c,v 1.242.2.20 2003/05/28 18:38:10 alc Exp $
15 * $DragonFly: src/sys/kern/vfs_bio.c,v 1.115 2008/08/13 11:02:31 swildner Exp $
19 * this file contains a new buffer I/O scheme implementing a coherent
20 * VM object and buffer cache scheme. Pains have been taken to make
21 * sure that the performance degradation associated with schemes such
22 * as this is not realized.
24 * Author: John S. Dyson
25 * Significant help during the development and debugging phases
26 * had been provided by David Greenman, also of the FreeBSD core team.
28 * see man buf(9) for more info.
31 #include <sys/param.h>
32 #include <sys/systm.h>
35 #include <sys/eventhandler.h>
37 #include <sys/malloc.h>
38 #include <sys/mount.h>
39 #include <sys/kernel.h>
40 #include <sys/kthread.h>
42 #include <sys/reboot.h>
43 #include <sys/resourcevar.h>
44 #include <sys/sysctl.h>
45 #include <sys/vmmeter.h>
46 #include <sys/vnode.h>
49 #include <vm/vm_param.h>
50 #include <vm/vm_kern.h>
51 #include <vm/vm_pageout.h>
52 #include <vm/vm_page.h>
53 #include <vm/vm_object.h>
54 #include <vm/vm_extern.h>
55 #include <vm/vm_map.h>
58 #include <sys/thread2.h>
59 #include <sys/spinlock2.h>
60 #include <vm/vm_page2.h>
71 BQUEUE_NONE
, /* not on any queue */
72 BQUEUE_LOCKED
, /* locked buffers */
73 BQUEUE_CLEAN
, /* non-B_DELWRI buffers */
74 BQUEUE_DIRTY
, /* B_DELWRI buffers */
75 BQUEUE_DIRTY_HW
, /* B_DELWRI buffers - heavy weight */
76 BQUEUE_EMPTYKVA
, /* empty buffer headers with KVA assignment */
77 BQUEUE_EMPTY
, /* empty buffer headers */
79 BUFFER_QUEUES
/* number of buffer queues */
82 typedef enum bufq_type bufq_type_t
;
84 #define BD_WAKE_SIZE 128
85 #define BD_WAKE_MASK (BD_WAKE_SIZE - 1)
87 TAILQ_HEAD(bqueues
, buf
) bufqueues
[BUFFER_QUEUES
];
89 static MALLOC_DEFINE(M_BIOBUF
, "BIO buffer", "BIO buffer");
91 struct buf
*buf
; /* buffer header pool */
93 static void vfs_page_set_valid(struct buf
*bp
, vm_ooffset_t off
,
94 int pageno
, vm_page_t m
);
95 static void vfs_clean_pages(struct buf
*bp
);
96 static void vfs_setdirty(struct buf
*bp
);
97 static void vfs_vmio_release(struct buf
*bp
);
98 static int flushbufqueues(bufq_type_t q
);
99 static vm_page_t
bio_page_alloc(vm_object_t obj
, vm_pindex_t pg
, int deficit
);
101 static void bd_signal(int totalspace
);
102 static void buf_daemon(void);
103 static void buf_daemon_hw(void);
106 * bogus page -- for I/O to/from partially complete buffers
107 * this is a temporary solution to the problem, but it is not
108 * really that bad. it would be better to split the buffer
109 * for input in the case of buffers partially already in memory,
110 * but the code is intricate enough already.
112 vm_page_t bogus_page
;
115 * These are all static, but make the ones we export globals so we do
116 * not need to use compiler magic.
118 int bufspace
, maxbufspace
,
119 bufmallocspace
, maxbufmallocspace
, lobufspace
, hibufspace
;
120 static int bufreusecnt
, bufdefragcnt
, buffreekvacnt
;
121 static int lorunningspace
, hirunningspace
, runningbufreq
;
122 int dirtybufspace
, dirtybufspacehw
, lodirtybufspace
, hidirtybufspace
;
123 int dirtybufcount
, dirtybufcounthw
;
124 int runningbufspace
, runningbufcount
;
125 static int getnewbufcalls
;
126 static int getnewbufrestarts
;
127 static int recoverbufcalls
;
128 static int needsbuffer
; /* locked by needsbuffer_spin */
129 static int bd_request
; /* locked by needsbuffer_spin */
130 static int bd_request_hw
; /* locked by needsbuffer_spin */
131 static u_int bd_wake_ary
[BD_WAKE_SIZE
];
132 static u_int bd_wake_index
;
133 static struct spinlock needsbuffer_spin
;
135 static struct thread
*bufdaemon_td
;
136 static struct thread
*bufdaemonhw_td
;
140 * Sysctls for operational control of the buffer cache.
142 SYSCTL_INT(_vfs
, OID_AUTO
, lodirtybufspace
, CTLFLAG_RW
, &lodirtybufspace
, 0,
143 "Number of dirty buffers to flush before bufdaemon becomes inactive");
144 SYSCTL_INT(_vfs
, OID_AUTO
, hidirtybufspace
, CTLFLAG_RW
, &hidirtybufspace
, 0,
145 "High watermark used to trigger explicit flushing of dirty buffers");
146 SYSCTL_INT(_vfs
, OID_AUTO
, lorunningspace
, CTLFLAG_RW
, &lorunningspace
, 0,
147 "Minimum amount of buffer space required for active I/O");
148 SYSCTL_INT(_vfs
, OID_AUTO
, hirunningspace
, CTLFLAG_RW
, &hirunningspace
, 0,
149 "Maximum amount of buffer space to usable for active I/O");
151 * Sysctls determining current state of the buffer cache.
153 SYSCTL_INT(_vfs
, OID_AUTO
, nbuf
, CTLFLAG_RD
, &nbuf
, 0,
154 "Total number of buffers in buffer cache");
155 SYSCTL_INT(_vfs
, OID_AUTO
, dirtybufspace
, CTLFLAG_RD
, &dirtybufspace
, 0,
156 "Pending bytes of dirty buffers (all)");
157 SYSCTL_INT(_vfs
, OID_AUTO
, dirtybufspacehw
, CTLFLAG_RD
, &dirtybufspacehw
, 0,
158 "Pending bytes of dirty buffers (heavy weight)");
159 SYSCTL_INT(_vfs
, OID_AUTO
, dirtybufcount
, CTLFLAG_RD
, &dirtybufcount
, 0,
160 "Pending number of dirty buffers");
161 SYSCTL_INT(_vfs
, OID_AUTO
, dirtybufcounthw
, CTLFLAG_RD
, &dirtybufcounthw
, 0,
162 "Pending number of dirty buffers (heavy weight)");
163 SYSCTL_INT(_vfs
, OID_AUTO
, runningbufspace
, CTLFLAG_RD
, &runningbufspace
, 0,
164 "I/O bytes currently in progress due to asynchronous writes");
165 SYSCTL_INT(_vfs
, OID_AUTO
, runningbufcount
, CTLFLAG_RD
, &runningbufcount
, 0,
166 "I/O buffers currently in progress due to asynchronous writes");
167 SYSCTL_INT(_vfs
, OID_AUTO
, maxbufspace
, CTLFLAG_RD
, &maxbufspace
, 0,
168 "Hard limit on maximum amount of memory usable for buffer space");
169 SYSCTL_INT(_vfs
, OID_AUTO
, hibufspace
, CTLFLAG_RD
, &hibufspace
, 0,
170 "Soft limit on maximum amount of memory usable for buffer space");
171 SYSCTL_INT(_vfs
, OID_AUTO
, lobufspace
, CTLFLAG_RD
, &lobufspace
, 0,
172 "Minimum amount of memory to reserve for system buffer space");
173 SYSCTL_INT(_vfs
, OID_AUTO
, bufspace
, CTLFLAG_RD
, &bufspace
, 0,
174 "Amount of memory available for buffers");
175 SYSCTL_INT(_vfs
, OID_AUTO
, maxmallocbufspace
, CTLFLAG_RD
, &maxbufmallocspace
,
176 0, "Maximum amount of memory reserved for buffers using malloc");
177 SYSCTL_INT(_vfs
, OID_AUTO
, bufmallocspace
, CTLFLAG_RD
, &bufmallocspace
, 0,
178 "Amount of memory left for buffers using malloc-scheme");
179 SYSCTL_INT(_vfs
, OID_AUTO
, getnewbufcalls
, CTLFLAG_RD
, &getnewbufcalls
, 0,
180 "New buffer header acquisition requests");
181 SYSCTL_INT(_vfs
, OID_AUTO
, getnewbufrestarts
, CTLFLAG_RD
, &getnewbufrestarts
,
182 0, "New buffer header acquisition restarts");
183 SYSCTL_INT(_vfs
, OID_AUTO
, recoverbufcalls
, CTLFLAG_RD
, &recoverbufcalls
, 0,
184 "Recover VM space in an emergency");
185 SYSCTL_INT(_vfs
, OID_AUTO
, bufdefragcnt
, CTLFLAG_RD
, &bufdefragcnt
, 0,
186 "Buffer acquisition restarts due to fragmented buffer map");
187 SYSCTL_INT(_vfs
, OID_AUTO
, buffreekvacnt
, CTLFLAG_RD
, &buffreekvacnt
, 0,
188 "Amount of time KVA space was deallocated in an arbitrary buffer");
189 SYSCTL_INT(_vfs
, OID_AUTO
, bufreusecnt
, CTLFLAG_RD
, &bufreusecnt
, 0,
190 "Amount of time buffer re-use operations were successful");
191 SYSCTL_INT(_debug_sizeof
, OID_AUTO
, buf
, CTLFLAG_RD
, 0, sizeof(struct buf
),
192 "sizeof(struct buf)");
194 char *buf_wmesg
= BUF_WMESG
;
196 extern int vm_swap_size
;
198 #define VFS_BIO_NEED_ANY 0x01 /* any freeable buffer */
199 #define VFS_BIO_NEED_UNUSED02 0x02
200 #define VFS_BIO_NEED_UNUSED04 0x04
201 #define VFS_BIO_NEED_BUFSPACE 0x08 /* wait for buf space, lo hysteresis */
206 * Called when buffer space is potentially available for recovery.
207 * getnewbuf() will block on this flag when it is unable to free
208 * sufficient buffer space. Buffer space becomes recoverable when
209 * bp's get placed back in the queues.
216 * If someone is waiting for BUF space, wake them up. Even
217 * though we haven't freed the kva space yet, the waiting
218 * process will be able to now.
220 if (needsbuffer
& VFS_BIO_NEED_BUFSPACE
) {
221 spin_lock_wr(&needsbuffer_spin
);
222 needsbuffer
&= ~VFS_BIO_NEED_BUFSPACE
;
223 spin_unlock_wr(&needsbuffer_spin
);
224 wakeup(&needsbuffer
);
231 * Accounting for I/O in progress.
235 runningbufwakeup(struct buf
*bp
)
239 if ((totalspace
= bp
->b_runningbufspace
) != 0) {
240 runningbufspace
-= totalspace
;
242 bp
->b_runningbufspace
= 0;
243 if (runningbufreq
&& runningbufspace
<= lorunningspace
) {
245 wakeup(&runningbufreq
);
247 bd_signal(totalspace
);
254 * Called when a buffer has been added to one of the free queues to
255 * account for the buffer and to wakeup anyone waiting for free buffers.
256 * This typically occurs when large amounts of metadata are being handled
257 * by the buffer cache ( else buffer space runs out first, usually ).
264 spin_lock_wr(&needsbuffer_spin
);
265 needsbuffer
&= ~VFS_BIO_NEED_ANY
;
266 spin_unlock_wr(&needsbuffer_spin
);
267 wakeup(&needsbuffer
);
272 * waitrunningbufspace()
274 * Wait for the amount of running I/O to drop to a reasonable level.
276 * The caller may be using this function to block in a tight loop, we
277 * must block of runningbufspace is greater then the passed limit.
278 * And even with that it may not be enough, due to the presence of
279 * B_LOCKED dirty buffers, so also wait for at least one running buffer
283 waitrunningbufspace(int limit
)
287 if (lorunningspace
< limit
)
288 lorun
= lorunningspace
;
293 if (runningbufspace
> lorun
) {
294 while (runningbufspace
> lorun
) {
296 tsleep(&runningbufreq
, 0, "wdrain", 0);
298 } else if (runningbufspace
) {
300 tsleep(&runningbufreq
, 0, "wdrain2", 1);
306 * vfs_buf_test_cache:
308 * Called when a buffer is extended. This function clears the B_CACHE
309 * bit if the newly extended portion of the buffer does not contain
314 vfs_buf_test_cache(struct buf
*bp
,
315 vm_ooffset_t foff
, vm_offset_t off
, vm_offset_t size
,
318 if (bp
->b_flags
& B_CACHE
) {
319 int base
= (foff
+ off
) & PAGE_MASK
;
320 if (vm_page_is_valid(m
, base
, size
) == 0)
321 bp
->b_flags
&= ~B_CACHE
;
328 * Spank the buf_daemon[_hw] if the total dirty buffer space exceeds the
335 if (dirtybufspace
< lodirtybufspace
&& dirtybufcount
< nbuf
/ 2)
338 if (bd_request
== 0 &&
339 (dirtybufspace
- dirtybufspacehw
> lodirtybufspace
/ 2 ||
340 dirtybufcount
- dirtybufcounthw
>= nbuf
/ 2)) {
341 spin_lock_wr(&needsbuffer_spin
);
343 spin_unlock_wr(&needsbuffer_spin
);
346 if (bd_request_hw
== 0 &&
347 (dirtybufspacehw
> lodirtybufspace
/ 2 ||
348 dirtybufcounthw
>= nbuf
/ 2)) {
349 spin_lock_wr(&needsbuffer_spin
);
351 spin_unlock_wr(&needsbuffer_spin
);
352 wakeup(&bd_request_hw
);
359 * Get the buf_daemon heated up when the number of running and dirty
360 * buffers exceeds the mid-point.
369 mid1
= lodirtybufspace
+ (hidirtybufspace
- lodirtybufspace
) / 2;
371 totalspace
= runningbufspace
+ dirtybufspace
;
372 if (totalspace
>= mid1
|| dirtybufcount
>= nbuf
/ 2) {
374 mid2
= mid1
+ (hidirtybufspace
- mid1
) / 2;
375 if (totalspace
>= mid2
)
376 return(totalspace
- mid2
);
384 * Wait for the buffer cache to flush (totalspace) bytes worth of
385 * buffers, then return.
387 * Regardless this function blocks while the number of dirty buffers
388 * exceeds hidirtybufspace.
391 bd_wait(int totalspace
)
396 if (curthread
== bufdaemonhw_td
|| curthread
== bufdaemon_td
)
399 while (totalspace
> 0) {
402 if (totalspace
> runningbufspace
+ dirtybufspace
)
403 totalspace
= runningbufspace
+ dirtybufspace
;
404 count
= totalspace
/ BKVASIZE
;
405 if (count
>= BD_WAKE_SIZE
)
406 count
= BD_WAKE_SIZE
- 1;
407 i
= (bd_wake_index
+ count
) & BD_WAKE_MASK
;
409 tsleep(&bd_wake_ary
[i
], 0, "flstik", hz
);
412 totalspace
= runningbufspace
+ dirtybufspace
- hidirtybufspace
;
419 * This function is called whenever runningbufspace or dirtybufspace
420 * is reduced. Track threads waiting for run+dirty buffer I/O
424 bd_signal(int totalspace
)
428 while (totalspace
> 0) {
429 i
= atomic_fetchadd_int(&bd_wake_index
, 1);
431 if (bd_wake_ary
[i
]) {
433 wakeup(&bd_wake_ary
[i
]);
435 totalspace
-= BKVASIZE
;
442 * Load time initialisation of the buffer cache, called from machine
443 * dependant initialization code.
449 vm_offset_t bogus_offset
;
452 spin_init(&needsbuffer_spin
);
454 /* next, make a null set of free lists */
455 for (i
= 0; i
< BUFFER_QUEUES
; i
++)
456 TAILQ_INIT(&bufqueues
[i
]);
458 /* finally, initialize each buffer header and stick on empty q */
459 for (i
= 0; i
< nbuf
; i
++) {
461 bzero(bp
, sizeof *bp
);
462 bp
->b_flags
= B_INVAL
; /* we're just an empty header */
463 bp
->b_cmd
= BUF_CMD_DONE
;
464 bp
->b_qindex
= BQUEUE_EMPTY
;
466 xio_init(&bp
->b_xio
);
469 TAILQ_INSERT_TAIL(&bufqueues
[BQUEUE_EMPTY
], bp
, b_freelist
);
473 * maxbufspace is the absolute maximum amount of buffer space we are
474 * allowed to reserve in KVM and in real terms. The absolute maximum
475 * is nominally used by buf_daemon. hibufspace is the nominal maximum
476 * used by most other processes. The differential is required to
477 * ensure that buf_daemon is able to run when other processes might
478 * be blocked waiting for buffer space.
480 * maxbufspace is based on BKVASIZE. Allocating buffers larger then
481 * this may result in KVM fragmentation which is not handled optimally
484 maxbufspace
= nbuf
* BKVASIZE
;
485 hibufspace
= imax(3 * maxbufspace
/ 4, maxbufspace
- MAXBSIZE
* 10);
486 lobufspace
= hibufspace
- MAXBSIZE
;
488 lorunningspace
= 512 * 1024;
489 hirunningspace
= 1024 * 1024;
492 * Limit the amount of malloc memory since it is wired permanently
493 * into the kernel space. Even though this is accounted for in
494 * the buffer allocation, we don't want the malloced region to grow
495 * uncontrolled. The malloc scheme improves memory utilization
496 * significantly on average (small) directories.
498 maxbufmallocspace
= hibufspace
/ 20;
501 * Reduce the chance of a deadlock occuring by limiting the number
502 * of delayed-write dirty buffers we allow to stack up.
504 hidirtybufspace
= hibufspace
/ 2;
508 lodirtybufspace
= hidirtybufspace
/ 2;
511 * Maximum number of async ops initiated per buf_daemon loop. This is
512 * somewhat of a hack at the moment, we really need to limit ourselves
513 * based on the number of bytes of I/O in-transit that were initiated
517 bogus_offset
= kmem_alloc_pageable(&kernel_map
, PAGE_SIZE
);
518 bogus_page
= vm_page_alloc(&kernel_object
,
519 (bogus_offset
>> PAGE_SHIFT
),
521 vmstats
.v_wire_count
++;
526 * Initialize the embedded bio structures
529 initbufbio(struct buf
*bp
)
531 bp
->b_bio1
.bio_buf
= bp
;
532 bp
->b_bio1
.bio_prev
= NULL
;
533 bp
->b_bio1
.bio_offset
= NOOFFSET
;
534 bp
->b_bio1
.bio_next
= &bp
->b_bio2
;
535 bp
->b_bio1
.bio_done
= NULL
;
537 bp
->b_bio2
.bio_buf
= bp
;
538 bp
->b_bio2
.bio_prev
= &bp
->b_bio1
;
539 bp
->b_bio2
.bio_offset
= NOOFFSET
;
540 bp
->b_bio2
.bio_next
= NULL
;
541 bp
->b_bio2
.bio_done
= NULL
;
545 * Reinitialize the embedded bio structures as well as any additional
546 * translation cache layers.
549 reinitbufbio(struct buf
*bp
)
553 for (bio
= &bp
->b_bio1
; bio
; bio
= bio
->bio_next
) {
554 bio
->bio_done
= NULL
;
555 bio
->bio_offset
= NOOFFSET
;
560 * Push another BIO layer onto an existing BIO and return it. The new
561 * BIO layer may already exist, holding cached translation data.
564 push_bio(struct bio
*bio
)
568 if ((nbio
= bio
->bio_next
) == NULL
) {
569 int index
= bio
- &bio
->bio_buf
->b_bio_array
[0];
570 if (index
>= NBUF_BIO
- 1) {
571 panic("push_bio: too many layers bp %p\n",
574 nbio
= &bio
->bio_buf
->b_bio_array
[index
+ 1];
575 bio
->bio_next
= nbio
;
576 nbio
->bio_prev
= bio
;
577 nbio
->bio_buf
= bio
->bio_buf
;
578 nbio
->bio_offset
= NOOFFSET
;
579 nbio
->bio_done
= NULL
;
580 nbio
->bio_next
= NULL
;
582 KKASSERT(nbio
->bio_done
== NULL
);
587 * Pop a BIO translation layer, returning the previous layer. The
588 * must have been previously pushed.
591 pop_bio(struct bio
*bio
)
593 return(bio
->bio_prev
);
597 clearbiocache(struct bio
*bio
)
600 bio
->bio_offset
= NOOFFSET
;
608 * Free the KVA allocation for buffer 'bp'.
610 * Must be called from a critical section as this is the only locking for
613 * Since this call frees up buffer space, we call bufspacewakeup().
616 bfreekva(struct buf
*bp
)
622 count
= vm_map_entry_reserve(MAP_RESERVE_COUNT
);
623 vm_map_lock(&buffer_map
);
624 bufspace
-= bp
->b_kvasize
;
625 vm_map_delete(&buffer_map
,
626 (vm_offset_t
) bp
->b_kvabase
,
627 (vm_offset_t
) bp
->b_kvabase
+ bp
->b_kvasize
,
630 vm_map_unlock(&buffer_map
);
631 vm_map_entry_release(count
);
640 * Remove the buffer from the appropriate free list.
643 bremfree(struct buf
*bp
)
647 if (bp
->b_qindex
!= BQUEUE_NONE
) {
648 KASSERT(BUF_REFCNTNB(bp
) == 1,
649 ("bremfree: bp %p not locked",bp
));
650 TAILQ_REMOVE(&bufqueues
[bp
->b_qindex
], bp
, b_freelist
);
651 bp
->b_qindex
= BQUEUE_NONE
;
653 if (BUF_REFCNTNB(bp
) <= 1)
654 panic("bremfree: removing a buffer not on a queue");
664 * Get a buffer with the specified data. Look in the cache first. We
665 * must clear B_ERROR and B_INVAL prior to initiating I/O. If B_CACHE
666 * is set, the buffer is valid and we do not have to do anything ( see
670 bread(struct vnode
*vp
, off_t loffset
, int size
, struct buf
**bpp
)
674 bp
= getblk(vp
, loffset
, size
, 0, 0);
677 /* if not found in cache, do some I/O */
678 if ((bp
->b_flags
& B_CACHE
) == 0) {
679 KASSERT(!(bp
->b_flags
& B_ASYNC
),
680 ("bread: illegal async bp %p", bp
));
681 bp
->b_flags
&= ~(B_ERROR
| B_INVAL
);
682 bp
->b_cmd
= BUF_CMD_READ
;
683 vfs_busy_pages(vp
, bp
);
684 vn_strategy(vp
, &bp
->b_bio1
);
685 return (biowait(bp
));
693 * Operates like bread, but also starts asynchronous I/O on
694 * read-ahead blocks. We must clear B_ERROR and B_INVAL prior
695 * to initiating I/O . If B_CACHE is set, the buffer is valid
696 * and we do not have to do anything.
699 breadn(struct vnode
*vp
, off_t loffset
, int size
, off_t
*raoffset
,
700 int *rabsize
, int cnt
, struct buf
**bpp
)
702 struct buf
*bp
, *rabp
;
704 int rv
= 0, readwait
= 0;
706 *bpp
= bp
= getblk(vp
, loffset
, size
, 0, 0);
708 /* if not found in cache, do some I/O */
709 if ((bp
->b_flags
& B_CACHE
) == 0) {
710 bp
->b_flags
&= ~(B_ERROR
| B_INVAL
);
711 bp
->b_cmd
= BUF_CMD_READ
;
712 vfs_busy_pages(vp
, bp
);
713 vn_strategy(vp
, &bp
->b_bio1
);
717 for (i
= 0; i
< cnt
; i
++, raoffset
++, rabsize
++) {
718 if (inmem(vp
, *raoffset
))
720 rabp
= getblk(vp
, *raoffset
, *rabsize
, 0, 0);
722 if ((rabp
->b_flags
& B_CACHE
) == 0) {
723 rabp
->b_flags
|= B_ASYNC
;
724 rabp
->b_flags
&= ~(B_ERROR
| B_INVAL
);
725 rabp
->b_cmd
= BUF_CMD_READ
;
726 vfs_busy_pages(vp
, rabp
);
728 vn_strategy(vp
, &rabp
->b_bio1
);
743 * Write, release buffer on completion. (Done by iodone
744 * if async). Do not bother writing anything if the buffer
747 * Note that we set B_CACHE here, indicating that buffer is
748 * fully valid and thus cacheable. This is true even of NFS
749 * now so we set it generally. This could be set either here
750 * or in biodone() since the I/O is synchronous. We put it
754 bwrite(struct buf
*bp
)
758 if (bp
->b_flags
& B_INVAL
) {
763 oldflags
= bp
->b_flags
;
765 if (BUF_REFCNTNB(bp
) == 0)
766 panic("bwrite: buffer is not busy???");
769 /* Mark the buffer clean */
772 bp
->b_flags
&= ~B_ERROR
;
773 bp
->b_flags
|= B_CACHE
;
774 bp
->b_cmd
= BUF_CMD_WRITE
;
775 vfs_busy_pages(bp
->b_vp
, bp
);
778 * Normal bwrites pipeline writes. NOTE: b_bufsize is only
779 * valid for vnode-backed buffers.
781 bp
->b_runningbufspace
= bp
->b_bufsize
;
782 if (bp
->b_runningbufspace
) {
783 runningbufspace
+= bp
->b_runningbufspace
;
788 if (oldflags
& B_ASYNC
)
790 vn_strategy(bp
->b_vp
, &bp
->b_bio1
);
792 if ((oldflags
& B_ASYNC
) == 0) {
793 int rtval
= biowait(bp
);
803 * Delayed write. (Buffer is marked dirty). Do not bother writing
804 * anything if the buffer is marked invalid.
806 * Note that since the buffer must be completely valid, we can safely
807 * set B_CACHE. In fact, we have to set B_CACHE here rather then in
808 * biodone() in order to prevent getblk from writing the buffer
812 bdwrite(struct buf
*bp
)
814 if (BUF_REFCNTNB(bp
) == 0)
815 panic("bdwrite: buffer is not busy");
817 if (bp
->b_flags
& B_INVAL
) {
824 * Set B_CACHE, indicating that the buffer is fully valid. This is
825 * true even of NFS now.
827 bp
->b_flags
|= B_CACHE
;
830 * This bmap keeps the system from needing to do the bmap later,
831 * perhaps when the system is attempting to do a sync. Since it
832 * is likely that the indirect block -- or whatever other datastructure
833 * that the filesystem needs is still in memory now, it is a good
834 * thing to do this. Note also, that if the pageout daemon is
835 * requesting a sync -- there might not be enough memory to do
836 * the bmap then... So, this is important to do.
838 if (bp
->b_bio2
.bio_offset
== NOOFFSET
) {
839 VOP_BMAP(bp
->b_vp
, bp
->b_loffset
, &bp
->b_bio2
.bio_offset
,
840 NULL
, NULL
, BUF_CMD_WRITE
);
844 * Set the *dirty* buffer range based upon the VM system dirty pages.
849 * We need to do this here to satisfy the vnode_pager and the
850 * pageout daemon, so that it thinks that the pages have been
851 * "cleaned". Note that since the pages are in a delayed write
852 * buffer -- the VFS layer "will" see that the pages get written
853 * out on the next sync, or perhaps the cluster will be completed.
859 * note: we cannot initiate I/O from a bdwrite even if we wanted to,
860 * due to the softdep code.
867 * Turn buffer into delayed write request by marking it B_DELWRI.
868 * B_RELBUF and B_NOCACHE must be cleared.
870 * We reassign the buffer to itself to properly update it in the
873 * Must be called from a critical section.
874 * The buffer must be on BQUEUE_NONE.
877 bdirty(struct buf
*bp
)
879 KASSERT(bp
->b_qindex
== BQUEUE_NONE
, ("bdirty: buffer %p still on queue %d", bp
, bp
->b_qindex
));
880 if (bp
->b_flags
& B_NOCACHE
) {
881 kprintf("bdirty: clearing B_NOCACHE on buf %p\n", bp
);
882 bp
->b_flags
&= ~B_NOCACHE
;
884 if (bp
->b_flags
& B_INVAL
) {
885 kprintf("bdirty: warning, dirtying invalid buffer %p\n", bp
);
887 bp
->b_flags
&= ~B_RELBUF
;
889 if ((bp
->b_flags
& B_DELWRI
) == 0) {
890 bp
->b_flags
|= B_DELWRI
;
893 dirtybufspace
+= bp
->b_bufsize
;
894 if (bp
->b_flags
& B_HEAVY
) {
896 dirtybufspacehw
+= bp
->b_bufsize
;
903 * Set B_HEAVY, indicating that this is a heavy-weight buffer that
904 * needs to be flushed with a different buf_daemon thread to avoid
905 * deadlocks. B_HEAVY also imposes restrictions in getnewbuf().
908 bheavy(struct buf
*bp
)
910 if ((bp
->b_flags
& B_HEAVY
) == 0) {
911 bp
->b_flags
|= B_HEAVY
;
912 if (bp
->b_flags
& B_DELWRI
) {
914 dirtybufspacehw
+= bp
->b_bufsize
;
922 * Clear B_DELWRI for buffer.
924 * Must be called from a critical section.
926 * The buffer is typically on BQUEUE_NONE but there is one case in
927 * brelse() that calls this function after placing the buffer on
932 bundirty(struct buf
*bp
)
934 if (bp
->b_flags
& B_DELWRI
) {
935 bp
->b_flags
&= ~B_DELWRI
;
938 dirtybufspace
-= bp
->b_bufsize
;
939 if (bp
->b_flags
& B_HEAVY
) {
941 dirtybufspacehw
-= bp
->b_bufsize
;
943 bd_signal(bp
->b_bufsize
);
946 * Since it is now being written, we can clear its deferred write flag.
948 bp
->b_flags
&= ~B_DEFERRED
;
954 * Asynchronous write. Start output on a buffer, but do not wait for
955 * it to complete. The buffer is released when the output completes.
957 * bwrite() ( or the VOP routine anyway ) is responsible for handling
958 * B_INVAL buffers. Not us.
961 bawrite(struct buf
*bp
)
963 bp
->b_flags
|= B_ASYNC
;
970 * Ordered write. Start output on a buffer, and flag it so that the
971 * device will write it in the order it was queued. The buffer is
972 * released when the output completes. bwrite() ( or the VOP routine
973 * anyway ) is responsible for handling B_INVAL buffers.
976 bowrite(struct buf
*bp
)
978 bp
->b_flags
|= B_ORDERED
| B_ASYNC
;
983 * buf_dirty_count_severe:
985 * Return true if we have too many dirty buffers.
988 buf_dirty_count_severe(void)
990 return (runningbufspace
+ dirtybufspace
>= hidirtybufspace
||
991 dirtybufcount
>= nbuf
/ 2);
997 * Release a busy buffer and, if requested, free its resources. The
998 * buffer will be stashed in the appropriate bufqueue[] allowing it
999 * to be accessed later as a cache entity or reused for other purposes.
1002 brelse(struct buf
*bp
)
1005 int saved_flags
= bp
->b_flags
;
1008 KASSERT(!(bp
->b_flags
& (B_CLUSTER
|B_PAGING
)), ("brelse: inappropriate B_PAGING or B_CLUSTER bp %p", bp
));
1013 * If B_NOCACHE is set we are being asked to destroy the buffer and
1014 * its backing store. Clear B_DELWRI.
1016 * B_NOCACHE is set in two cases: (1) when the caller really wants
1017 * to destroy the buffer and backing store and (2) when the caller
1018 * wants to destroy the buffer and backing store after a write
1021 if ((bp
->b_flags
& (B_NOCACHE
|B_DELWRI
)) == (B_NOCACHE
|B_DELWRI
)) {
1025 if ((bp
->b_flags
& (B_INVAL
| B_DELWRI
)) == B_DELWRI
) {
1027 * A re-dirtied buffer is only subject to destruction
1028 * by B_INVAL. B_ERROR and B_NOCACHE are ignored.
1030 /* leave buffer intact */
1031 } else if ((bp
->b_flags
& (B_NOCACHE
| B_INVAL
| B_ERROR
)) ||
1032 (bp
->b_bufsize
<= 0)) {
1034 * Either a failed read or we were asked to free or not
1035 * cache the buffer. This path is reached with B_DELWRI
1036 * set only if B_INVAL is already set. B_NOCACHE governs
1037 * backing store destruction.
1039 * NOTE: HAMMER will set B_LOCKED in buf_deallocate if the
1040 * buffer cannot be immediately freed.
1042 bp
->b_flags
|= B_INVAL
;
1043 if (LIST_FIRST(&bp
->b_dep
) != NULL
)
1045 if (bp
->b_flags
& B_DELWRI
) {
1047 dirtybufspace
-= bp
->b_bufsize
;
1048 if (bp
->b_flags
& B_HEAVY
) {
1050 dirtybufspacehw
-= bp
->b_bufsize
;
1052 bd_signal(bp
->b_bufsize
);
1054 bp
->b_flags
&= ~(B_DELWRI
| B_CACHE
);
1058 * We must clear B_RELBUF if B_DELWRI or B_LOCKED is set.
1059 * If vfs_vmio_release() is called with either bit set, the
1060 * underlying pages may wind up getting freed causing a previous
1061 * write (bdwrite()) to get 'lost' because pages associated with
1062 * a B_DELWRI bp are marked clean. Pages associated with a
1063 * B_LOCKED buffer may be mapped by the filesystem.
1065 * If we want to release the buffer ourselves (rather then the
1066 * originator asking us to release it), give the originator a
1067 * chance to countermand the release by setting B_LOCKED.
1069 * We still allow the B_INVAL case to call vfs_vmio_release(), even
1070 * if B_DELWRI is set.
1072 * If B_DELWRI is not set we may have to set B_RELBUF if we are low
1073 * on pages to return pages to the VM page queues.
1075 if (bp
->b_flags
& (B_DELWRI
| B_LOCKED
)) {
1076 bp
->b_flags
&= ~B_RELBUF
;
1077 } else if (vm_page_count_severe()) {
1078 if (LIST_FIRST(&bp
->b_dep
) != NULL
)
1079 buf_deallocate(bp
); /* can set B_LOCKED */
1080 if (bp
->b_flags
& (B_DELWRI
| B_LOCKED
))
1081 bp
->b_flags
&= ~B_RELBUF
;
1083 bp
->b_flags
|= B_RELBUF
;
1087 * Make sure b_cmd is clear. It may have already been cleared by
1090 * At this point destroying the buffer is governed by the B_INVAL
1091 * or B_RELBUF flags.
1093 bp
->b_cmd
= BUF_CMD_DONE
;
1096 * VMIO buffer rundown. Make sure the VM page array is restored
1097 * after an I/O may have replaces some of the pages with bogus pages
1098 * in order to not destroy dirty pages in a fill-in read.
1100 * Note that due to the code above, if a buffer is marked B_DELWRI
1101 * then the B_RELBUF and B_NOCACHE bits will always be clear.
1102 * B_INVAL may still be set, however.
1104 * For clean buffers, B_INVAL or B_RELBUF will destroy the buffer
1105 * but not the backing store. B_NOCACHE will destroy the backing
1108 * Note that dirty NFS buffers contain byte-granular write ranges
1109 * and should not be destroyed w/ B_INVAL even if the backing store
1112 if (bp
->b_flags
& B_VMIO
) {
1114 * Rundown for VMIO buffers which are not dirty NFS buffers.
1126 * Get the base offset and length of the buffer. Note that
1127 * in the VMIO case if the buffer block size is not
1128 * page-aligned then b_data pointer may not be page-aligned.
1129 * But our b_xio.xio_pages array *IS* page aligned.
1131 * block sizes less then DEV_BSIZE (usually 512) are not
1132 * supported due to the page granularity bits (m->valid,
1133 * m->dirty, etc...).
1135 * See man buf(9) for more information
1138 resid
= bp
->b_bufsize
;
1139 foff
= bp
->b_loffset
;
1141 for (i
= 0; i
< bp
->b_xio
.xio_npages
; i
++) {
1142 m
= bp
->b_xio
.xio_pages
[i
];
1143 vm_page_flag_clear(m
, PG_ZERO
);
1145 * If we hit a bogus page, fixup *all* of them
1146 * now. Note that we left these pages wired
1147 * when we removed them so they had better exist,
1148 * and they cannot be ripped out from under us so
1149 * no critical section protection is necessary.
1151 if (m
== bogus_page
) {
1153 poff
= OFF_TO_IDX(bp
->b_loffset
);
1155 for (j
= i
; j
< bp
->b_xio
.xio_npages
; j
++) {
1158 mtmp
= bp
->b_xio
.xio_pages
[j
];
1159 if (mtmp
== bogus_page
) {
1160 mtmp
= vm_page_lookup(obj
, poff
+ j
);
1162 panic("brelse: page missing");
1164 bp
->b_xio
.xio_pages
[j
] = mtmp
;
1168 if ((bp
->b_flags
& B_INVAL
) == 0) {
1169 pmap_qenter(trunc_page((vm_offset_t
)bp
->b_data
),
1170 bp
->b_xio
.xio_pages
, bp
->b_xio
.xio_npages
);
1172 m
= bp
->b_xio
.xio_pages
[i
];
1176 * Invalidate the backing store if B_NOCACHE is set
1177 * (e.g. used with vinvalbuf()). If this is NFS
1178 * we impose a requirement that the block size be
1179 * a multiple of PAGE_SIZE and create a temporary
1180 * hack to basically invalidate the whole page. The
1181 * problem is that NFS uses really odd buffer sizes
1182 * especially when tracking piecemeal writes and
1183 * it also vinvalbuf()'s a lot, which would result
1184 * in only partial page validation and invalidation
1185 * here. If the file page is mmap()'d, however,
1186 * all the valid bits get set so after we invalidate
1187 * here we would end up with weird m->valid values
1188 * like 0xfc. nfs_getpages() can't handle this so
1189 * we clear all the valid bits for the NFS case
1190 * instead of just some of them.
1192 * The real bug is the VM system having to set m->valid
1193 * to VM_PAGE_BITS_ALL for faulted-in pages, which
1194 * itself is an artifact of the whole 512-byte
1195 * granular mess that exists to support odd block
1196 * sizes and UFS meta-data block sizes (e.g. 6144).
1197 * A complete rewrite is required.
1199 if (bp
->b_flags
& (B_NOCACHE
|B_ERROR
)) {
1200 int poffset
= foff
& PAGE_MASK
;
1203 presid
= PAGE_SIZE
- poffset
;
1204 if (bp
->b_vp
->v_tag
== VT_NFS
&&
1205 bp
->b_vp
->v_type
== VREG
) {
1207 } else if (presid
> resid
) {
1210 KASSERT(presid
>= 0, ("brelse: extra page"));
1211 vm_page_set_invalid(m
, poffset
, presid
);
1213 resid
-= PAGE_SIZE
- (foff
& PAGE_MASK
);
1214 foff
= (foff
+ PAGE_SIZE
) & ~(off_t
)PAGE_MASK
;
1216 if (bp
->b_flags
& (B_INVAL
| B_RELBUF
))
1217 vfs_vmio_release(bp
);
1220 * Rundown for non-VMIO buffers.
1222 if (bp
->b_flags
& (B_INVAL
| B_RELBUF
)) {
1225 kprintf("brelse bp %p %08x/%08x: Warning, caught and fixed brelvp bug\n", bp
, saved_flags
, bp
->b_flags
);
1229 KKASSERT (LIST_FIRST(&bp
->b_dep
) == NULL
);
1235 if (bp
->b_qindex
!= BQUEUE_NONE
)
1236 panic("brelse: free buffer onto another queue???");
1237 if (BUF_REFCNTNB(bp
) > 1) {
1238 /* Temporary panic to verify exclusive locking */
1239 /* This panic goes away when we allow shared refs */
1240 panic("brelse: multiple refs");
1241 /* do not release to free list */
1248 * Figure out the correct queue to place the cleaned up buffer on.
1249 * Buffers placed in the EMPTY or EMPTYKVA had better already be
1250 * disassociated from their vnode.
1252 if (bp
->b_flags
& B_LOCKED
) {
1254 * Buffers that are locked are placed in the locked queue
1255 * immediately, regardless of their state.
1257 bp
->b_qindex
= BQUEUE_LOCKED
;
1258 TAILQ_INSERT_TAIL(&bufqueues
[BQUEUE_LOCKED
], bp
, b_freelist
);
1259 } else if (bp
->b_bufsize
== 0) {
1261 * Buffers with no memory. Due to conditionals near the top
1262 * of brelse() such buffers should probably already be
1263 * marked B_INVAL and disassociated from their vnode.
1265 bp
->b_flags
|= B_INVAL
;
1266 KASSERT(bp
->b_vp
== NULL
, ("bp1 %p flags %08x/%08x vnode %p unexpectededly still associated!", bp
, saved_flags
, bp
->b_flags
, bp
->b_vp
));
1267 KKASSERT((bp
->b_flags
& B_HASHED
) == 0);
1268 if (bp
->b_kvasize
) {
1269 bp
->b_qindex
= BQUEUE_EMPTYKVA
;
1271 bp
->b_qindex
= BQUEUE_EMPTY
;
1273 TAILQ_INSERT_HEAD(&bufqueues
[bp
->b_qindex
], bp
, b_freelist
);
1274 } else if (bp
->b_flags
& (B_INVAL
| B_NOCACHE
| B_RELBUF
)) {
1276 * Buffers with junk contents. Again these buffers had better
1277 * already be disassociated from their vnode.
1279 KASSERT(bp
->b_vp
== NULL
, ("bp2 %p flags %08x/%08x vnode %p unexpectededly still associated!", bp
, saved_flags
, bp
->b_flags
, bp
->b_vp
));
1280 KKASSERT((bp
->b_flags
& B_HASHED
) == 0);
1281 bp
->b_flags
|= B_INVAL
;
1282 bp
->b_qindex
= BQUEUE_CLEAN
;
1283 TAILQ_INSERT_HEAD(&bufqueues
[BQUEUE_CLEAN
], bp
, b_freelist
);
1286 * Remaining buffers. These buffers are still associated with
1289 switch(bp
->b_flags
& (B_DELWRI
|B_HEAVY
)) {
1291 bp
->b_qindex
= BQUEUE_DIRTY
;
1292 TAILQ_INSERT_TAIL(&bufqueues
[BQUEUE_DIRTY
], bp
, b_freelist
);
1294 case B_DELWRI
| B_HEAVY
:
1295 bp
->b_qindex
= BQUEUE_DIRTY_HW
;
1296 TAILQ_INSERT_TAIL(&bufqueues
[BQUEUE_DIRTY_HW
], bp
,
1301 * NOTE: Buffers are always placed at the end of the
1302 * queue. If B_AGE is not set the buffer will cycle
1303 * through the queue twice.
1305 bp
->b_qindex
= BQUEUE_CLEAN
;
1306 TAILQ_INSERT_TAIL(&bufqueues
[BQUEUE_CLEAN
], bp
, b_freelist
);
1312 * If B_INVAL, clear B_DELWRI. We've already placed the buffer
1313 * on the correct queue.
1315 if ((bp
->b_flags
& (B_INVAL
|B_DELWRI
)) == (B_INVAL
|B_DELWRI
))
1319 * The bp is on an appropriate queue unless locked. If it is not
1320 * locked or dirty we can wakeup threads waiting for buffer space.
1322 * We've already handled the B_INVAL case ( B_DELWRI will be clear
1323 * if B_INVAL is set ).
1325 if ((bp
->b_flags
& (B_LOCKED
|B_DELWRI
)) == 0)
1329 * Something we can maybe free or reuse
1331 if (bp
->b_bufsize
|| bp
->b_kvasize
)
1335 * Clean up temporary flags and unlock the buffer.
1337 bp
->b_flags
&= ~(B_ORDERED
| B_ASYNC
| B_NOCACHE
| B_RELBUF
| B_DIRECT
);
1345 * Release a buffer back to the appropriate queue but do not try to free
1346 * it. The buffer is expected to be used again soon.
1348 * bqrelse() is used by bdwrite() to requeue a delayed write, and used by
1349 * biodone() to requeue an async I/O on completion. It is also used when
1350 * known good buffers need to be requeued but we think we may need the data
1353 * XXX we should be able to leave the B_RELBUF hint set on completion.
1356 bqrelse(struct buf
*bp
)
1360 KASSERT(!(bp
->b_flags
& (B_CLUSTER
|B_PAGING
)), ("bqrelse: inappropriate B_PAGING or B_CLUSTER bp %p", bp
));
1362 if (bp
->b_qindex
!= BQUEUE_NONE
)
1363 panic("bqrelse: free buffer onto another queue???");
1364 if (BUF_REFCNTNB(bp
) > 1) {
1365 /* do not release to free list */
1366 panic("bqrelse: multiple refs");
1371 if (bp
->b_flags
& B_LOCKED
) {
1373 * Locked buffers are released to the locked queue. However,
1374 * if the buffer is dirty it will first go into the dirty
1375 * queue and later on after the I/O completes successfully it
1376 * will be released to the locked queue.
1378 bp
->b_qindex
= BQUEUE_LOCKED
;
1379 TAILQ_INSERT_TAIL(&bufqueues
[BQUEUE_LOCKED
], bp
, b_freelist
);
1380 } else if (bp
->b_flags
& B_DELWRI
) {
1381 bp
->b_qindex
= (bp
->b_flags
& B_HEAVY
) ?
1382 BQUEUE_DIRTY_HW
: BQUEUE_DIRTY
;
1383 TAILQ_INSERT_TAIL(&bufqueues
[bp
->b_qindex
], bp
, b_freelist
);
1384 } else if (vm_page_count_severe()) {
1386 * We are too low on memory, we have to try to free the
1387 * buffer (most importantly: the wired pages making up its
1388 * backing store) *now*.
1394 bp
->b_qindex
= BQUEUE_CLEAN
;
1395 TAILQ_INSERT_TAIL(&bufqueues
[BQUEUE_CLEAN
], bp
, b_freelist
);
1398 if ((bp
->b_flags
& B_LOCKED
) == 0 &&
1399 ((bp
->b_flags
& B_INVAL
) || (bp
->b_flags
& B_DELWRI
) == 0)) {
1404 * Something we can maybe free or reuse.
1406 if (bp
->b_bufsize
&& !(bp
->b_flags
& B_DELWRI
))
1410 * Final cleanup and unlock. Clear bits that are only used while a
1411 * buffer is actively locked.
1413 bp
->b_flags
&= ~(B_ORDERED
| B_ASYNC
| B_NOCACHE
| B_RELBUF
);
1421 * Return backing pages held by the buffer 'bp' back to the VM system
1422 * if possible. The pages are freed if they are no longer valid or
1423 * attempt to free if it was used for direct I/O otherwise they are
1424 * sent to the page cache.
1426 * Pages that were marked busy are left alone and skipped.
1428 * The KVA mapping (b_data) for the underlying pages is removed by
1432 vfs_vmio_release(struct buf
*bp
)
1438 for (i
= 0; i
< bp
->b_xio
.xio_npages
; i
++) {
1439 m
= bp
->b_xio
.xio_pages
[i
];
1440 bp
->b_xio
.xio_pages
[i
] = NULL
;
1442 * In order to keep page LRU ordering consistent, put
1443 * everything on the inactive queue.
1445 vm_page_unwire(m
, 0);
1447 * We don't mess with busy pages, it is
1448 * the responsibility of the process that
1449 * busied the pages to deal with them.
1451 if ((m
->flags
& PG_BUSY
) || (m
->busy
!= 0))
1454 if (m
->wire_count
== 0) {
1455 vm_page_flag_clear(m
, PG_ZERO
);
1457 * Might as well free the page if we can and it has
1458 * no valid data. We also free the page if the
1459 * buffer was used for direct I/O.
1461 if ((bp
->b_flags
& B_ASYNC
) == 0 && !m
->valid
&&
1462 m
->hold_count
== 0) {
1464 vm_page_protect(m
, VM_PROT_NONE
);
1466 } else if (bp
->b_flags
& B_DIRECT
) {
1467 vm_page_try_to_free(m
);
1468 } else if (vm_page_count_severe()) {
1469 vm_page_try_to_cache(m
);
1474 pmap_qremove(trunc_page((vm_offset_t
) bp
->b_data
), bp
->b_xio
.xio_npages
);
1475 if (bp
->b_bufsize
) {
1479 bp
->b_xio
.xio_npages
= 0;
1480 bp
->b_flags
&= ~B_VMIO
;
1481 KKASSERT (LIST_FIRST(&bp
->b_dep
) == NULL
);
1489 * Implement clustered async writes for clearing out B_DELWRI buffers.
1490 * This is much better then the old way of writing only one buffer at
1491 * a time. Note that we may not be presented with the buffers in the
1492 * correct order, so we search for the cluster in both directions.
1494 * The buffer is locked on call.
1497 vfs_bio_awrite(struct buf
*bp
)
1501 off_t loffset
= bp
->b_loffset
;
1502 struct vnode
*vp
= bp
->b_vp
;
1510 * right now we support clustered writing only to regular files. If
1511 * we find a clusterable block we could be in the middle of a cluster
1512 * rather then at the beginning.
1514 * NOTE: b_bio1 contains the logical loffset and is aliased
1515 * to b_loffset. b_bio2 contains the translated block number.
1517 if ((vp
->v_type
== VREG
) &&
1518 (vp
->v_mount
!= 0) && /* Only on nodes that have the size info */
1519 (bp
->b_flags
& (B_CLUSTEROK
| B_INVAL
)) == B_CLUSTEROK
) {
1521 size
= vp
->v_mount
->mnt_stat
.f_iosize
;
1523 for (i
= size
; i
< MAXPHYS
; i
+= size
) {
1524 if ((bpa
= findblk(vp
, loffset
+ i
)) &&
1525 BUF_REFCNT(bpa
) == 0 &&
1526 ((bpa
->b_flags
& (B_DELWRI
| B_CLUSTEROK
| B_INVAL
)) ==
1527 (B_DELWRI
| B_CLUSTEROK
)) &&
1528 (bpa
->b_bufsize
== size
)) {
1529 if ((bpa
->b_bio2
.bio_offset
== NOOFFSET
) ||
1530 (bpa
->b_bio2
.bio_offset
!=
1531 bp
->b_bio2
.bio_offset
+ i
))
1537 for (j
= size
; i
+ j
<= MAXPHYS
&& j
<= loffset
; j
+= size
) {
1538 if ((bpa
= findblk(vp
, loffset
- j
)) &&
1539 BUF_REFCNT(bpa
) == 0 &&
1540 ((bpa
->b_flags
& (B_DELWRI
| B_CLUSTEROK
| B_INVAL
)) ==
1541 (B_DELWRI
| B_CLUSTEROK
)) &&
1542 (bpa
->b_bufsize
== size
)) {
1543 if ((bpa
->b_bio2
.bio_offset
== NOOFFSET
) ||
1544 (bpa
->b_bio2
.bio_offset
!=
1545 bp
->b_bio2
.bio_offset
- j
))
1554 * this is a possible cluster write
1556 if (nbytes
!= size
) {
1558 nwritten
= cluster_wbuild(vp
, size
,
1559 loffset
- j
, nbytes
);
1566 bp
->b_flags
|= B_ASYNC
;
1570 * default (old) behavior, writing out only one block
1572 * XXX returns b_bufsize instead of b_bcount for nwritten?
1574 nwritten
= bp
->b_bufsize
;
1583 * Find and initialize a new buffer header, freeing up existing buffers
1584 * in the bufqueues as necessary. The new buffer is returned locked.
1586 * Important: B_INVAL is not set. If the caller wishes to throw the
1587 * buffer away, the caller must set B_INVAL prior to calling brelse().
1590 * We have insufficient buffer headers
1591 * We have insufficient buffer space
1592 * buffer_map is too fragmented ( space reservation fails )
1593 * If we have to flush dirty buffers ( but we try to avoid this )
1595 * To avoid VFS layer recursion we do not flush dirty buffers ourselves.
1596 * Instead we ask the buf daemon to do it for us. We attempt to
1597 * avoid piecemeal wakeups of the pageout daemon.
1601 getnewbuf(int blkflags
, int slptimeo
, int size
, int maxsize
)
1607 int slpflags
= (blkflags
& GETBLK_PCATCH
) ? PCATCH
: 0;
1608 static int flushingbufs
;
1611 * We can't afford to block since we might be holding a vnode lock,
1612 * which may prevent system daemons from running. We deal with
1613 * low-memory situations by proactively returning memory and running
1614 * async I/O rather then sync I/O.
1618 --getnewbufrestarts
;
1620 ++getnewbufrestarts
;
1623 * Setup for scan. If we do not have enough free buffers,
1624 * we setup a degenerate case that immediately fails. Note
1625 * that if we are specially marked process, we are allowed to
1626 * dip into our reserves.
1628 * The scanning sequence is nominally: EMPTY->EMPTYKVA->CLEAN
1630 * We start with EMPTYKVA. If the list is empty we backup to EMPTY.
1631 * However, there are a number of cases (defragging, reusing, ...)
1632 * where we cannot backup.
1634 nqindex
= BQUEUE_EMPTYKVA
;
1635 nbp
= TAILQ_FIRST(&bufqueues
[BQUEUE_EMPTYKVA
]);
1639 * If no EMPTYKVA buffers and we are either
1640 * defragging or reusing, locate a CLEAN buffer
1641 * to free or reuse. If bufspace useage is low
1642 * skip this step so we can allocate a new buffer.
1644 if (defrag
|| bufspace
>= lobufspace
) {
1645 nqindex
= BQUEUE_CLEAN
;
1646 nbp
= TAILQ_FIRST(&bufqueues
[BQUEUE_CLEAN
]);
1650 * If we could not find or were not allowed to reuse a
1651 * CLEAN buffer, check to see if it is ok to use an EMPTY
1652 * buffer. We can only use an EMPTY buffer if allocating
1653 * its KVA would not otherwise run us out of buffer space.
1655 if (nbp
== NULL
&& defrag
== 0 &&
1656 bufspace
+ maxsize
< hibufspace
) {
1657 nqindex
= BQUEUE_EMPTY
;
1658 nbp
= TAILQ_FIRST(&bufqueues
[BQUEUE_EMPTY
]);
1663 * Run scan, possibly freeing data and/or kva mappings on the fly
1667 while ((bp
= nbp
) != NULL
) {
1668 int qindex
= nqindex
;
1670 nbp
= TAILQ_NEXT(bp
, b_freelist
);
1673 * BQUEUE_CLEAN - B_AGE special case. If not set the bp
1674 * cycles through the queue twice before being selected.
1676 if (qindex
== BQUEUE_CLEAN
&&
1677 (bp
->b_flags
& B_AGE
) == 0 && nbp
) {
1678 bp
->b_flags
|= B_AGE
;
1679 TAILQ_REMOVE(&bufqueues
[qindex
], bp
, b_freelist
);
1680 TAILQ_INSERT_TAIL(&bufqueues
[qindex
], bp
, b_freelist
);
1685 * Calculate next bp ( we can only use it if we do not block
1686 * or do other fancy things ).
1691 nqindex
= BQUEUE_EMPTYKVA
;
1692 if ((nbp
= TAILQ_FIRST(&bufqueues
[BQUEUE_EMPTYKVA
])))
1695 case BQUEUE_EMPTYKVA
:
1696 nqindex
= BQUEUE_CLEAN
;
1697 if ((nbp
= TAILQ_FIRST(&bufqueues
[BQUEUE_CLEAN
])))
1711 KASSERT(bp
->b_qindex
== qindex
, ("getnewbuf: inconsistent queue %d bp %p", qindex
, bp
));
1714 * Note: we no longer distinguish between VMIO and non-VMIO
1718 KASSERT((bp
->b_flags
& B_DELWRI
) == 0, ("delwri buffer %p found in queue %d", bp
, qindex
));
1721 * If we are defragging then we need a buffer with
1722 * b_kvasize != 0. XXX this situation should no longer
1723 * occur, if defrag is non-zero the buffer's b_kvasize
1724 * should also be non-zero at this point. XXX
1726 if (defrag
&& bp
->b_kvasize
== 0) {
1727 kprintf("Warning: defrag empty buffer %p\n", bp
);
1732 * Start freeing the bp. This is somewhat involved. nbp
1733 * remains valid only for BQUEUE_EMPTY[KVA] bp's. Buffers
1734 * on the clean list must be disassociated from their
1735 * current vnode. Buffers on the empty[kva] lists have
1736 * already been disassociated.
1739 if (BUF_LOCK(bp
, LK_EXCLUSIVE
| LK_NOWAIT
) != 0) {
1740 kprintf("getnewbuf: warning, locked buf %p, race corrected\n", bp
);
1741 tsleep(&bd_request
, 0, "gnbxxx", hz
/ 100);
1744 if (bp
->b_qindex
!= qindex
) {
1745 kprintf("getnewbuf: warning, BUF_LOCK blocked unexpectedly on buf %p index %d->%d, race corrected\n", bp
, qindex
, bp
->b_qindex
);
1752 * Dependancies must be handled before we disassociate the
1755 * NOTE: HAMMER will set B_LOCKED if the buffer cannot
1756 * be immediately disassociated. HAMMER then becomes
1757 * responsible for releasing the buffer.
1759 if (LIST_FIRST(&bp
->b_dep
) != NULL
) {
1761 if (bp
->b_flags
& B_LOCKED
) {
1765 KKASSERT(LIST_FIRST(&bp
->b_dep
) == NULL
);
1768 if (qindex
== BQUEUE_CLEAN
) {
1769 if (bp
->b_flags
& B_VMIO
) {
1770 bp
->b_flags
&= ~B_ASYNC
;
1771 vfs_vmio_release(bp
);
1778 * NOTE: nbp is now entirely invalid. We can only restart
1779 * the scan from this point on.
1781 * Get the rest of the buffer freed up. b_kva* is still
1782 * valid after this operation.
1785 KASSERT(bp
->b_vp
== NULL
, ("bp3 %p flags %08x vnode %p qindex %d unexpectededly still associated!", bp
, bp
->b_flags
, bp
->b_vp
, qindex
));
1786 KKASSERT((bp
->b_flags
& B_HASHED
) == 0);
1789 * critical section protection is not required when
1790 * scrapping a buffer's contents because it is already
1796 bp
->b_flags
= B_BNOCLIP
;
1797 bp
->b_cmd
= BUF_CMD_DONE
;
1802 bp
->b_xio
.xio_npages
= 0;
1803 bp
->b_dirtyoff
= bp
->b_dirtyend
= 0;
1805 KKASSERT(LIST_FIRST(&bp
->b_dep
) == NULL
);
1807 if (blkflags
& GETBLK_BHEAVY
)
1808 bp
->b_flags
|= B_HEAVY
;
1811 * If we are defragging then free the buffer.
1814 bp
->b_flags
|= B_INVAL
;
1822 * If we are overcomitted then recover the buffer and its
1823 * KVM space. This occurs in rare situations when multiple
1824 * processes are blocked in getnewbuf() or allocbuf().
1826 if (bufspace
>= hibufspace
)
1828 if (flushingbufs
&& bp
->b_kvasize
!= 0) {
1829 bp
->b_flags
|= B_INVAL
;
1834 if (bufspace
< lobufspace
)
1840 * If we exhausted our list, sleep as appropriate. We may have to
1841 * wakeup various daemons and write out some dirty buffers.
1843 * Generally we are sleeping due to insufficient buffer space.
1851 flags
= VFS_BIO_NEED_BUFSPACE
;
1853 } else if (bufspace
>= hibufspace
) {
1855 flags
= VFS_BIO_NEED_BUFSPACE
;
1858 flags
= VFS_BIO_NEED_ANY
;
1861 needsbuffer
|= flags
;
1862 bd_speedup(); /* heeeelp */
1863 while (needsbuffer
& flags
) {
1864 if (tsleep(&needsbuffer
, slpflags
, waitmsg
, slptimeo
))
1869 * We finally have a valid bp. We aren't quite out of the
1870 * woods, we still have to reserve kva space. In order
1871 * to keep fragmentation sane we only allocate kva in
1874 maxsize
= (maxsize
+ BKVAMASK
) & ~BKVAMASK
;
1876 if (maxsize
!= bp
->b_kvasize
) {
1877 vm_offset_t addr
= 0;
1882 count
= vm_map_entry_reserve(MAP_RESERVE_COUNT
);
1883 vm_map_lock(&buffer_map
);
1885 if (vm_map_findspace(&buffer_map
,
1886 vm_map_min(&buffer_map
), maxsize
,
1887 maxsize
, 0, &addr
)) {
1889 * Uh oh. Buffer map is too fragmented. We
1890 * must defragment the map.
1892 vm_map_unlock(&buffer_map
);
1893 vm_map_entry_release(count
);
1896 bp
->b_flags
|= B_INVAL
;
1901 vm_map_insert(&buffer_map
, &count
,
1903 addr
, addr
+ maxsize
,
1905 VM_PROT_ALL
, VM_PROT_ALL
,
1908 bp
->b_kvabase
= (caddr_t
) addr
;
1909 bp
->b_kvasize
= maxsize
;
1910 bufspace
+= bp
->b_kvasize
;
1913 vm_map_unlock(&buffer_map
);
1914 vm_map_entry_release(count
);
1916 bp
->b_data
= bp
->b_kvabase
;
1922 * This routine is called in an emergency to recover VM pages from the
1923 * buffer cache by cashing in clean buffers. The idea is to recover
1924 * enough pages to be able to satisfy a stuck bio_page_alloc().
1927 recoverbufpages(void)
1934 while (bytes
< MAXBSIZE
) {
1935 bp
= TAILQ_FIRST(&bufqueues
[BQUEUE_CLEAN
]);
1940 * BQUEUE_CLEAN - B_AGE special case. If not set the bp
1941 * cycles through the queue twice before being selected.
1943 if ((bp
->b_flags
& B_AGE
) == 0 && TAILQ_NEXT(bp
, b_freelist
)) {
1944 bp
->b_flags
|= B_AGE
;
1945 TAILQ_REMOVE(&bufqueues
[BQUEUE_CLEAN
], bp
, b_freelist
);
1946 TAILQ_INSERT_TAIL(&bufqueues
[BQUEUE_CLEAN
],
1954 KKASSERT(bp
->b_qindex
== BQUEUE_CLEAN
);
1955 KKASSERT((bp
->b_flags
& B_DELWRI
) == 0);
1958 * Start freeing the bp. This is somewhat involved.
1960 * Buffers on the clean list must be disassociated from
1961 * their current vnode
1964 if (BUF_LOCK(bp
, LK_EXCLUSIVE
| LK_NOWAIT
) != 0) {
1965 kprintf("recoverbufpages: warning, locked buf %p, race corrected\n", bp
);
1966 tsleep(&bd_request
, 0, "gnbxxx", hz
/ 100);
1969 if (bp
->b_qindex
!= BQUEUE_CLEAN
) {
1970 kprintf("recoverbufpages: warning, BUF_LOCK blocked unexpectedly on buf %p index %d, race corrected\n", bp
, bp
->b_qindex
);
1977 * Dependancies must be handled before we disassociate the
1980 * NOTE: HAMMER will set B_LOCKED if the buffer cannot
1981 * be immediately disassociated. HAMMER then becomes
1982 * responsible for releasing the buffer.
1984 if (LIST_FIRST(&bp
->b_dep
) != NULL
) {
1986 if (bp
->b_flags
& B_LOCKED
) {
1990 KKASSERT(LIST_FIRST(&bp
->b_dep
) == NULL
);
1993 bytes
+= bp
->b_bufsize
;
1995 if (bp
->b_flags
& B_VMIO
) {
1996 bp
->b_flags
&= ~B_ASYNC
;
1997 bp
->b_flags
|= B_DIRECT
; /* try to free pages */
1998 vfs_vmio_release(bp
);
2003 KKASSERT(bp
->b_vp
== NULL
);
2004 KKASSERT((bp
->b_flags
& B_HASHED
) == 0);
2007 * critical section protection is not required when
2008 * scrapping a buffer's contents because it is already
2014 bp
->b_flags
= B_BNOCLIP
;
2015 bp
->b_cmd
= BUF_CMD_DONE
;
2020 bp
->b_xio
.xio_npages
= 0;
2021 bp
->b_dirtyoff
= bp
->b_dirtyend
= 0;
2023 KKASSERT(LIST_FIRST(&bp
->b_dep
) == NULL
);
2025 bp
->b_flags
|= B_INVAL
;
2035 * Buffer flushing daemon. Buffers are normally flushed by the
2036 * update daemon but if it cannot keep up this process starts to
2037 * take the load in an attempt to prevent getnewbuf() from blocking.
2039 * Once a flush is initiated it does not stop until the number
2040 * of buffers falls below lodirtybuffers, but we will wake up anyone
2041 * waiting at the mid-point.
2044 static struct kproc_desc buf_kp
= {
2049 SYSINIT(bufdaemon
, SI_SUB_KTHREAD_BUF
, SI_ORDER_FIRST
,
2050 kproc_start
, &buf_kp
)
2052 static struct kproc_desc bufhw_kp
= {
2057 SYSINIT(bufdaemon_hw
, SI_SUB_KTHREAD_BUF
, SI_ORDER_FIRST
,
2058 kproc_start
, &bufhw_kp
)
2066 * This process needs to be suspended prior to shutdown sync.
2068 EVENTHANDLER_REGISTER(shutdown_pre_sync
, shutdown_kproc
,
2069 bufdaemon_td
, SHUTDOWN_PRI_LAST
);
2070 curthread
->td_flags
|= TDF_SYSTHREAD
;
2073 * This process is allowed to take the buffer cache to the limit
2078 kproc_suspend_loop();
2081 * Do the flush. Limit the amount of in-transit I/O we
2082 * allow to build up, otherwise we would completely saturate
2083 * the I/O system. Wakeup any waiting processes before we
2084 * normally would so they can run in parallel with our drain.
2086 * Our aggregate normal+HW lo water mark is lodirtybufspace,
2087 * but because we split the operation into two threads we
2088 * have to cut it in half for each thread.
2090 limit
= lodirtybufspace
/ 2;
2091 waitrunningbufspace(limit
);
2092 while (runningbufspace
+ dirtybufspace
> limit
||
2093 dirtybufcount
- dirtybufcounthw
>= nbuf
/ 2) {
2094 if (flushbufqueues(BQUEUE_DIRTY
) == 0)
2096 waitrunningbufspace(limit
);
2100 * We reached our low water mark, reset the
2101 * request and sleep until we are needed again.
2102 * The sleep is just so the suspend code works.
2104 spin_lock_wr(&needsbuffer_spin
);
2105 if (bd_request
== 0) {
2106 msleep(&bd_request
, &needsbuffer_spin
, 0,
2110 spin_unlock_wr(&needsbuffer_spin
);
2120 * This process needs to be suspended prior to shutdown sync.
2122 EVENTHANDLER_REGISTER(shutdown_pre_sync
, shutdown_kproc
,
2123 bufdaemonhw_td
, SHUTDOWN_PRI_LAST
);
2124 curthread
->td_flags
|= TDF_SYSTHREAD
;
2127 * This process is allowed to take the buffer cache to the limit
2132 kproc_suspend_loop();
2135 * Do the flush. Limit the amount of in-transit I/O we
2136 * allow to build up, otherwise we would completely saturate
2137 * the I/O system. Wakeup any waiting processes before we
2138 * normally would so they can run in parallel with our drain.
2140 * Our aggregate normal+HW lo water mark is lodirtybufspace,
2141 * but because we split the operation into two threads we
2142 * have to cut it in half for each thread.
2144 limit
= lodirtybufspace
/ 2;
2145 waitrunningbufspace(limit
);
2146 while (runningbufspace
+ dirtybufspacehw
> limit
||
2147 dirtybufcounthw
>= nbuf
/ 2) {
2148 if (flushbufqueues(BQUEUE_DIRTY_HW
) == 0)
2150 waitrunningbufspace(limit
);
2154 * We reached our low water mark, reset the
2155 * request and sleep until we are needed again.
2156 * The sleep is just so the suspend code works.
2158 spin_lock_wr(&needsbuffer_spin
);
2159 if (bd_request_hw
== 0) {
2160 msleep(&bd_request_hw
, &needsbuffer_spin
, 0,
2164 spin_unlock_wr(&needsbuffer_spin
);
2171 * Try to flush a buffer in the dirty queue. We must be careful to
2172 * free up B_INVAL buffers instead of write them, which NFS is
2173 * particularly sensitive to.
2175 * B_RELBUF may only be set by VFSs. We do set B_AGE to indicate
2176 * that we really want to try to get the buffer out and reuse it
2177 * due to the write load on the machine.
2181 flushbufqueues(bufq_type_t q
)
2186 bp
= TAILQ_FIRST(&bufqueues
[q
]);
2188 KASSERT((bp
->b_flags
& B_DELWRI
),
2189 ("unexpected clean buffer %p", bp
));
2191 if (bp
->b_flags
& B_DELWRI
) {
2192 if (bp
->b_flags
& B_INVAL
) {
2193 if (BUF_LOCK(bp
, LK_EXCLUSIVE
| LK_NOWAIT
) != 0)
2194 panic("flushbufqueues: locked buf");
2200 if (LIST_FIRST(&bp
->b_dep
) != NULL
&&
2201 (bp
->b_flags
& B_DEFERRED
) == 0 &&
2202 buf_countdeps(bp
, 0)) {
2203 TAILQ_REMOVE(&bufqueues
[q
], bp
, b_freelist
);
2204 TAILQ_INSERT_TAIL(&bufqueues
[q
], bp
,
2206 bp
->b_flags
|= B_DEFERRED
;
2207 bp
= TAILQ_FIRST(&bufqueues
[q
]);
2212 * Only write it out if we can successfully lock
2213 * it. If the buffer has a dependancy,
2214 * buf_checkwrite must also return 0 for us to
2215 * be able to initate the write.
2217 * If the buffer is flagged B_ERROR it may be
2218 * requeued over and over again, we try to
2219 * avoid a live lock.
2221 if (BUF_LOCK(bp
, LK_EXCLUSIVE
| LK_NOWAIT
) == 0) {
2222 if (LIST_FIRST(&bp
->b_dep
) != NULL
&&
2223 buf_checkwrite(bp
)) {
2226 } else if (bp
->b_flags
& B_ERROR
) {
2227 tsleep(bp
, 0, "bioer", 1);
2228 bp
->b_flags
&= ~B_AGE
;
2231 bp
->b_flags
|= B_AGE
;
2238 bp
= TAILQ_NEXT(bp
, b_freelist
);
2246 * Returns true if no I/O is needed to access the associated VM object.
2247 * This is like findblk except it also hunts around in the VM system for
2250 * Note that we ignore vm_page_free() races from interrupts against our
2251 * lookup, since if the caller is not protected our return value will not
2252 * be any more valid then otherwise once we exit the critical section.
2255 inmem(struct vnode
*vp
, off_t loffset
)
2258 vm_offset_t toff
, tinc
, size
;
2261 if (findblk(vp
, loffset
))
2263 if (vp
->v_mount
== NULL
)
2265 if ((obj
= vp
->v_object
) == NULL
)
2269 if (size
> vp
->v_mount
->mnt_stat
.f_iosize
)
2270 size
= vp
->v_mount
->mnt_stat
.f_iosize
;
2272 for (toff
= 0; toff
< vp
->v_mount
->mnt_stat
.f_iosize
; toff
+= tinc
) {
2273 m
= vm_page_lookup(obj
, OFF_TO_IDX(loffset
+ toff
));
2277 if (tinc
> PAGE_SIZE
- ((toff
+ loffset
) & PAGE_MASK
))
2278 tinc
= PAGE_SIZE
- ((toff
+ loffset
) & PAGE_MASK
);
2279 if (vm_page_is_valid(m
,
2280 (vm_offset_t
) ((toff
+ loffset
) & PAGE_MASK
), tinc
) == 0)
2289 * Sets the dirty range for a buffer based on the status of the dirty
2290 * bits in the pages comprising the buffer.
2292 * The range is limited to the size of the buffer.
2294 * This routine is primarily used by NFS, but is generalized for the
2298 vfs_setdirty(struct buf
*bp
)
2304 * Degenerate case - empty buffer
2307 if (bp
->b_bufsize
== 0)
2311 * We qualify the scan for modified pages on whether the
2312 * object has been flushed yet. The OBJ_WRITEABLE flag
2313 * is not cleared simply by protecting pages off.
2316 if ((bp
->b_flags
& B_VMIO
) == 0)
2319 object
= bp
->b_xio
.xio_pages
[0]->object
;
2321 if ((object
->flags
& OBJ_WRITEABLE
) && !(object
->flags
& OBJ_MIGHTBEDIRTY
))
2322 kprintf("Warning: object %p writeable but not mightbedirty\n", object
);
2323 if (!(object
->flags
& OBJ_WRITEABLE
) && (object
->flags
& OBJ_MIGHTBEDIRTY
))
2324 kprintf("Warning: object %p mightbedirty but not writeable\n", object
);
2326 if (object
->flags
& (OBJ_MIGHTBEDIRTY
|OBJ_CLEANING
)) {
2327 vm_offset_t boffset
;
2328 vm_offset_t eoffset
;
2331 * test the pages to see if they have been modified directly
2332 * by users through the VM system.
2334 for (i
= 0; i
< bp
->b_xio
.xio_npages
; i
++) {
2335 vm_page_flag_clear(bp
->b_xio
.xio_pages
[i
], PG_ZERO
);
2336 vm_page_test_dirty(bp
->b_xio
.xio_pages
[i
]);
2340 * Calculate the encompassing dirty range, boffset and eoffset,
2341 * (eoffset - boffset) bytes.
2344 for (i
= 0; i
< bp
->b_xio
.xio_npages
; i
++) {
2345 if (bp
->b_xio
.xio_pages
[i
]->dirty
)
2348 boffset
= (i
<< PAGE_SHIFT
) - (bp
->b_loffset
& PAGE_MASK
);
2350 for (i
= bp
->b_xio
.xio_npages
- 1; i
>= 0; --i
) {
2351 if (bp
->b_xio
.xio_pages
[i
]->dirty
) {
2355 eoffset
= ((i
+ 1) << PAGE_SHIFT
) - (bp
->b_loffset
& PAGE_MASK
);
2358 * Fit it to the buffer.
2361 if (eoffset
> bp
->b_bcount
)
2362 eoffset
= bp
->b_bcount
;
2365 * If we have a good dirty range, merge with the existing
2369 if (boffset
< eoffset
) {
2370 if (bp
->b_dirtyoff
> boffset
)
2371 bp
->b_dirtyoff
= boffset
;
2372 if (bp
->b_dirtyend
< eoffset
)
2373 bp
->b_dirtyend
= eoffset
;
2381 * Locate and return the specified buffer, or NULL if the buffer does
2382 * not exist. Do not attempt to lock the buffer or manipulate it in
2383 * any way. The caller must validate that the correct buffer has been
2384 * obtain after locking it.
2387 findblk(struct vnode
*vp
, off_t loffset
)
2392 bp
= buf_rb_hash_RB_LOOKUP(&vp
->v_rbhash_tree
, loffset
);
2400 * Get a block given a specified block and offset into a file/device.
2401 * B_INVAL may or may not be set on return. The caller should clear
2402 * B_INVAL prior to initiating a READ.
2404 * IT IS IMPORTANT TO UNDERSTAND THAT IF YOU CALL GETBLK() AND B_CACHE
2405 * IS NOT SET, YOU MUST INITIALIZE THE RETURNED BUFFER, ISSUE A READ,
2406 * OR SET B_INVAL BEFORE RETIRING IT. If you retire a getblk'd buffer
2407 * without doing any of those things the system will likely believe
2408 * the buffer to be valid (especially if it is not B_VMIO), and the
2409 * next getblk() will return the buffer with B_CACHE set.
2411 * For a non-VMIO buffer, B_CACHE is set to the opposite of B_INVAL for
2412 * an existing buffer.
2414 * For a VMIO buffer, B_CACHE is modified according to the backing VM.
2415 * If getblk()ing a previously 0-sized invalid buffer, B_CACHE is set
2416 * and then cleared based on the backing VM. If the previous buffer is
2417 * non-0-sized but invalid, B_CACHE will be cleared.
2419 * If getblk() must create a new buffer, the new buffer is returned with
2420 * both B_INVAL and B_CACHE clear unless it is a VMIO buffer, in which
2421 * case it is returned with B_INVAL clear and B_CACHE set based on the
2424 * getblk() also forces a bwrite() for any B_DELWRI buffer whos
2425 * B_CACHE bit is clear.
2427 * What this means, basically, is that the caller should use B_CACHE to
2428 * determine whether the buffer is fully valid or not and should clear
2429 * B_INVAL prior to issuing a read. If the caller intends to validate
2430 * the buffer by loading its data area with something, the caller needs
2431 * to clear B_INVAL. If the caller does this without issuing an I/O,
2432 * the caller should set B_CACHE ( as an optimization ), else the caller
2433 * should issue the I/O and biodone() will set B_CACHE if the I/O was
2434 * a write attempt or if it was a successfull read. If the caller
2435 * intends to issue a READ, the caller must clear B_INVAL and B_ERROR
2436 * prior to issuing the READ. biodone() will *not* clear B_INVAL.
2440 * GETBLK_PCATCH - catch signal if blocked, can cause NULL return
2441 * GETBLK_BHEAVY - heavy-weight buffer cache buffer
2444 getblk(struct vnode
*vp
, off_t loffset
, int size
, int blkflags
, int slptimeo
)
2447 int slpflags
= (blkflags
& GETBLK_PCATCH
) ? PCATCH
: 0;
2450 if (size
> MAXBSIZE
)
2451 panic("getblk: size(%d) > MAXBSIZE(%d)", size
, MAXBSIZE
);
2452 if (vp
->v_object
== NULL
)
2453 panic("getblk: vnode %p has no object!", vp
);
2457 if ((bp
= findblk(vp
, loffset
))) {
2459 * The buffer was found in the cache, but we need to lock it.
2460 * Even with LK_NOWAIT the lockmgr may break our critical
2461 * section, so double-check the validity of the buffer
2462 * once the lock has been obtained.
2464 if (BUF_LOCK(bp
, LK_EXCLUSIVE
| LK_NOWAIT
)) {
2465 if (blkflags
& GETBLK_NOWAIT
) {
2469 int lkflags
= LK_EXCLUSIVE
| LK_SLEEPFAIL
;
2470 if (blkflags
& GETBLK_PCATCH
)
2471 lkflags
|= LK_PCATCH
;
2472 error
= BUF_TIMELOCK(bp
, lkflags
, "getblk", slptimeo
);
2474 if (error
== ENOLCK
)
2482 * Once the buffer has been locked, make sure we didn't race
2483 * a buffer recyclement. Buffers that are no longer hashed
2484 * will have b_vp == NULL, so this takes care of that check
2487 if (bp
->b_vp
!= vp
|| bp
->b_loffset
!= loffset
) {
2488 kprintf("Warning buffer %p (vp %p loffset %lld) "
2490 bp
, vp
, (long long)loffset
);
2496 * If SZMATCH any pre-existing buffer must be of the requested
2497 * size or NULL is returned. The caller absolutely does not
2498 * want getblk() to bwrite() the buffer on a size mismatch.
2500 if ((blkflags
& GETBLK_SZMATCH
) && size
!= bp
->b_bcount
) {
2507 * All vnode-based buffers must be backed by a VM object.
2509 KKASSERT(bp
->b_flags
& B_VMIO
);
2510 KKASSERT(bp
->b_cmd
== BUF_CMD_DONE
);
2511 bp
->b_flags
&= ~B_AGE
;
2514 * Make sure that B_INVAL buffers do not have a cached
2515 * block number translation.
2517 if ((bp
->b_flags
& B_INVAL
) && (bp
->b_bio2
.bio_offset
!= NOOFFSET
)) {
2518 kprintf("Warning invalid buffer %p (vp %p loffset %lld)"
2519 " did not have cleared bio_offset cache\n",
2520 bp
, vp
, (long long)loffset
);
2521 clearbiocache(&bp
->b_bio2
);
2525 * The buffer is locked. B_CACHE is cleared if the buffer is
2528 if (bp
->b_flags
& B_INVAL
)
2529 bp
->b_flags
&= ~B_CACHE
;
2533 * Any size inconsistancy with a dirty buffer or a buffer
2534 * with a softupdates dependancy must be resolved. Resizing
2535 * the buffer in such circumstances can lead to problems.
2537 if (size
!= bp
->b_bcount
) {
2538 if (bp
->b_flags
& B_DELWRI
) {
2539 bp
->b_flags
|= B_NOCACHE
;
2541 } else if (LIST_FIRST(&bp
->b_dep
)) {
2542 bp
->b_flags
|= B_NOCACHE
;
2545 bp
->b_flags
|= B_RELBUF
;
2550 KKASSERT(size
<= bp
->b_kvasize
);
2551 KASSERT(bp
->b_loffset
!= NOOFFSET
,
2552 ("getblk: no buffer offset"));
2555 * A buffer with B_DELWRI set and B_CACHE clear must
2556 * be committed before we can return the buffer in
2557 * order to prevent the caller from issuing a read
2558 * ( due to B_CACHE not being set ) and overwriting
2561 * Most callers, including NFS and FFS, need this to
2562 * operate properly either because they assume they
2563 * can issue a read if B_CACHE is not set, or because
2564 * ( for example ) an uncached B_DELWRI might loop due
2565 * to softupdates re-dirtying the buffer. In the latter
2566 * case, B_CACHE is set after the first write completes,
2567 * preventing further loops.
2569 * NOTE! b*write() sets B_CACHE. If we cleared B_CACHE
2570 * above while extending the buffer, we cannot allow the
2571 * buffer to remain with B_CACHE set after the write
2572 * completes or it will represent a corrupt state. To
2573 * deal with this we set B_NOCACHE to scrap the buffer
2576 * We might be able to do something fancy, like setting
2577 * B_CACHE in bwrite() except if B_DELWRI is already set,
2578 * so the below call doesn't set B_CACHE, but that gets real
2579 * confusing. This is much easier.
2582 if ((bp
->b_flags
& (B_CACHE
|B_DELWRI
)) == B_DELWRI
) {
2583 bp
->b_flags
|= B_NOCACHE
;
2590 * Buffer is not in-core, create new buffer. The buffer
2591 * returned by getnewbuf() is locked. Note that the returned
2592 * buffer is also considered valid (not marked B_INVAL).
2594 * Calculating the offset for the I/O requires figuring out
2595 * the block size. We use DEV_BSIZE for VBLK or VCHR and
2596 * the mount's f_iosize otherwise. If the vnode does not
2597 * have an associated mount we assume that the passed size is
2600 * Note that vn_isdisk() cannot be used here since it may
2601 * return a failure for numerous reasons. Note that the
2602 * buffer size may be larger then the block size (the caller
2603 * will use block numbers with the proper multiple). Beware
2604 * of using any v_* fields which are part of unions. In
2605 * particular, in DragonFly the mount point overloading
2606 * mechanism uses the namecache only and the underlying
2607 * directory vnode is not a special case.
2611 if (vp
->v_type
== VBLK
|| vp
->v_type
== VCHR
)
2613 else if (vp
->v_mount
)
2614 bsize
= vp
->v_mount
->mnt_stat
.f_iosize
;
2618 maxsize
= size
+ (loffset
& PAGE_MASK
);
2619 maxsize
= imax(maxsize
, bsize
);
2621 if ((bp
= getnewbuf(blkflags
, slptimeo
, size
, maxsize
)) == NULL
) {
2622 if (slpflags
|| slptimeo
) {
2630 * This code is used to make sure that a buffer is not
2631 * created while the getnewbuf routine is blocked.
2632 * This can be a problem whether the vnode is locked or not.
2633 * If the buffer is created out from under us, we have to
2634 * throw away the one we just created. There is no window
2635 * race because we are safely running in a critical section
2636 * from the point of the duplicate buffer creation through
2637 * to here, and we've locked the buffer.
2639 if (findblk(vp
, loffset
)) {
2640 bp
->b_flags
|= B_INVAL
;
2646 * Insert the buffer into the hash, so that it can
2647 * be found by findblk().
2649 * Make sure the translation layer has been cleared.
2651 bp
->b_loffset
= loffset
;
2652 bp
->b_bio2
.bio_offset
= NOOFFSET
;
2653 /* bp->b_bio2.bio_next = NULL; */
2658 * All vnode-based buffers must be backed by a VM object.
2660 KKASSERT(vp
->v_object
!= NULL
);
2661 bp
->b_flags
|= B_VMIO
;
2662 KKASSERT(bp
->b_cmd
== BUF_CMD_DONE
);
2674 * Reacquire a buffer that was previously released to the locked queue,
2675 * or reacquire a buffer which is interlocked by having bioops->io_deallocate
2676 * set B_LOCKED (which handles the acquisition race).
2678 * To this end, either B_LOCKED must be set or the dependancy list must be
2682 regetblk(struct buf
*bp
)
2684 KKASSERT((bp
->b_flags
& B_LOCKED
) || LIST_FIRST(&bp
->b_dep
) != NULL
);
2685 BUF_LOCK(bp
, LK_EXCLUSIVE
| LK_RETRY
);
2694 * Get an empty, disassociated buffer of given size. The buffer is
2695 * initially set to B_INVAL.
2697 * critical section protection is not required for the allocbuf()
2698 * call because races are impossible here.
2706 maxsize
= (size
+ BKVAMASK
) & ~BKVAMASK
;
2709 while ((bp
= getnewbuf(0, 0, size
, maxsize
)) == 0)
2713 bp
->b_flags
|= B_INVAL
; /* b_dep cleared by getnewbuf() */
2721 * This code constitutes the buffer memory from either anonymous system
2722 * memory (in the case of non-VMIO operations) or from an associated
2723 * VM object (in the case of VMIO operations). This code is able to
2724 * resize a buffer up or down.
2726 * Note that this code is tricky, and has many complications to resolve
2727 * deadlock or inconsistant data situations. Tread lightly!!!
2728 * There are B_CACHE and B_DELWRI interactions that must be dealt with by
2729 * the caller. Calling this code willy nilly can result in the loss of data.
2731 * allocbuf() only adjusts B_CACHE for VMIO buffers. getblk() deals with
2732 * B_CACHE for the non-VMIO case.
2734 * This routine does not need to be called from a critical section but you
2735 * must own the buffer.
2738 allocbuf(struct buf
*bp
, int size
)
2740 int newbsize
, mbsize
;
2743 if (BUF_REFCNT(bp
) == 0)
2744 panic("allocbuf: buffer not busy");
2746 if (bp
->b_kvasize
< size
)
2747 panic("allocbuf: buffer too small");
2749 if ((bp
->b_flags
& B_VMIO
) == 0) {
2753 * Just get anonymous memory from the kernel. Don't
2754 * mess with B_CACHE.
2756 mbsize
= (size
+ DEV_BSIZE
- 1) & ~(DEV_BSIZE
- 1);
2757 if (bp
->b_flags
& B_MALLOC
)
2760 newbsize
= round_page(size
);
2762 if (newbsize
< bp
->b_bufsize
) {
2764 * Malloced buffers are not shrunk
2766 if (bp
->b_flags
& B_MALLOC
) {
2768 bp
->b_bcount
= size
;
2770 kfree(bp
->b_data
, M_BIOBUF
);
2771 if (bp
->b_bufsize
) {
2772 bufmallocspace
-= bp
->b_bufsize
;
2776 bp
->b_data
= bp
->b_kvabase
;
2778 bp
->b_flags
&= ~B_MALLOC
;
2784 (vm_offset_t
) bp
->b_data
+ newbsize
,
2785 (vm_offset_t
) bp
->b_data
+ bp
->b_bufsize
);
2786 } else if (newbsize
> bp
->b_bufsize
) {
2788 * We only use malloced memory on the first allocation.
2789 * and revert to page-allocated memory when the buffer
2792 if ((bufmallocspace
< maxbufmallocspace
) &&
2793 (bp
->b_bufsize
== 0) &&
2794 (mbsize
<= PAGE_SIZE
/2)) {
2796 bp
->b_data
= kmalloc(mbsize
, M_BIOBUF
, M_WAITOK
);
2797 bp
->b_bufsize
= mbsize
;
2798 bp
->b_bcount
= size
;
2799 bp
->b_flags
|= B_MALLOC
;
2800 bufmallocspace
+= mbsize
;
2806 * If the buffer is growing on its other-than-first
2807 * allocation, then we revert to the page-allocation
2810 if (bp
->b_flags
& B_MALLOC
) {
2811 origbuf
= bp
->b_data
;
2812 origbufsize
= bp
->b_bufsize
;
2813 bp
->b_data
= bp
->b_kvabase
;
2814 if (bp
->b_bufsize
) {
2815 bufmallocspace
-= bp
->b_bufsize
;
2819 bp
->b_flags
&= ~B_MALLOC
;
2820 newbsize
= round_page(newbsize
);
2824 (vm_offset_t
) bp
->b_data
+ bp
->b_bufsize
,
2825 (vm_offset_t
) bp
->b_data
+ newbsize
);
2827 bcopy(origbuf
, bp
->b_data
, origbufsize
);
2828 kfree(origbuf
, M_BIOBUF
);
2835 newbsize
= (size
+ DEV_BSIZE
- 1) & ~(DEV_BSIZE
- 1);
2836 desiredpages
= ((int)(bp
->b_loffset
& PAGE_MASK
) +
2837 newbsize
+ PAGE_MASK
) >> PAGE_SHIFT
;
2838 KKASSERT(desiredpages
<= XIO_INTERNAL_PAGES
);
2840 if (bp
->b_flags
& B_MALLOC
)
2841 panic("allocbuf: VMIO buffer can't be malloced");
2843 * Set B_CACHE initially if buffer is 0 length or will become
2846 if (size
== 0 || bp
->b_bufsize
== 0)
2847 bp
->b_flags
|= B_CACHE
;
2849 if (newbsize
< bp
->b_bufsize
) {
2851 * DEV_BSIZE aligned new buffer size is less then the
2852 * DEV_BSIZE aligned existing buffer size. Figure out
2853 * if we have to remove any pages.
2855 if (desiredpages
< bp
->b_xio
.xio_npages
) {
2856 for (i
= desiredpages
; i
< bp
->b_xio
.xio_npages
; i
++) {
2858 * the page is not freed here -- it
2859 * is the responsibility of
2860 * vnode_pager_setsize
2862 m
= bp
->b_xio
.xio_pages
[i
];
2863 KASSERT(m
!= bogus_page
,
2864 ("allocbuf: bogus page found"));
2865 while (vm_page_sleep_busy(m
, TRUE
, "biodep"))
2868 bp
->b_xio
.xio_pages
[i
] = NULL
;
2869 vm_page_unwire(m
, 0);
2871 pmap_qremove((vm_offset_t
) trunc_page((vm_offset_t
)bp
->b_data
) +
2872 (desiredpages
<< PAGE_SHIFT
), (bp
->b_xio
.xio_npages
- desiredpages
));
2873 bp
->b_xio
.xio_npages
= desiredpages
;
2875 } else if (size
> bp
->b_bcount
) {
2877 * We are growing the buffer, possibly in a
2878 * byte-granular fashion.
2886 * Step 1, bring in the VM pages from the object,
2887 * allocating them if necessary. We must clear
2888 * B_CACHE if these pages are not valid for the
2889 * range covered by the buffer.
2891 * critical section protection is required to protect
2892 * against interrupts unbusying and freeing pages
2893 * between our vm_page_lookup() and our
2894 * busycheck/wiring call.
2900 while (bp
->b_xio
.xio_npages
< desiredpages
) {
2904 pi
= OFF_TO_IDX(bp
->b_loffset
) + bp
->b_xio
.xio_npages
;
2905 if ((m
= vm_page_lookup(obj
, pi
)) == NULL
) {
2907 * note: must allocate system pages
2908 * since blocking here could intefere
2909 * with paging I/O, no matter which
2912 m
= bio_page_alloc(obj
, pi
, desiredpages
- bp
->b_xio
.xio_npages
);
2916 bp
->b_flags
&= ~B_CACHE
;
2917 bp
->b_xio
.xio_pages
[bp
->b_xio
.xio_npages
] = m
;
2918 ++bp
->b_xio
.xio_npages
;
2924 * We found a page. If we have to sleep on it,
2925 * retry because it might have gotten freed out
2928 * We can only test PG_BUSY here. Blocking on
2929 * m->busy might lead to a deadlock:
2931 * vm_fault->getpages->cluster_read->allocbuf
2935 if (vm_page_sleep_busy(m
, FALSE
, "pgtblk"))
2937 vm_page_flag_clear(m
, PG_ZERO
);
2939 bp
->b_xio
.xio_pages
[bp
->b_xio
.xio_npages
] = m
;
2940 ++bp
->b_xio
.xio_npages
;
2945 * Step 2. We've loaded the pages into the buffer,
2946 * we have to figure out if we can still have B_CACHE
2947 * set. Note that B_CACHE is set according to the
2948 * byte-granular range ( bcount and size ), not the
2949 * aligned range ( newbsize ).
2951 * The VM test is against m->valid, which is DEV_BSIZE
2952 * aligned. Needless to say, the validity of the data
2953 * needs to also be DEV_BSIZE aligned. Note that this
2954 * fails with NFS if the server or some other client
2955 * extends the file's EOF. If our buffer is resized,
2956 * B_CACHE may remain set! XXX
2959 toff
= bp
->b_bcount
;
2960 tinc
= PAGE_SIZE
- ((bp
->b_loffset
+ toff
) & PAGE_MASK
);
2962 while ((bp
->b_flags
& B_CACHE
) && toff
< size
) {
2965 if (tinc
> (size
- toff
))
2968 pi
= ((bp
->b_loffset
& PAGE_MASK
) + toff
) >>
2976 bp
->b_xio
.xio_pages
[pi
]
2983 * Step 3, fixup the KVM pmap. Remember that
2984 * bp->b_data is relative to bp->b_loffset, but
2985 * bp->b_loffset may be offset into the first page.
2988 bp
->b_data
= (caddr_t
)
2989 trunc_page((vm_offset_t
)bp
->b_data
);
2991 (vm_offset_t
)bp
->b_data
,
2992 bp
->b_xio
.xio_pages
,
2993 bp
->b_xio
.xio_npages
2995 bp
->b_data
= (caddr_t
)((vm_offset_t
)bp
->b_data
|
2996 (vm_offset_t
)(bp
->b_loffset
& PAGE_MASK
));
3000 /* adjust space use on already-dirty buffer */
3001 if (bp
->b_flags
& B_DELWRI
) {
3002 dirtybufspace
+= newbsize
- bp
->b_bufsize
;
3003 if (bp
->b_flags
& B_HEAVY
)
3004 dirtybufspacehw
+= newbsize
- bp
->b_bufsize
;
3006 if (newbsize
< bp
->b_bufsize
)
3008 bp
->b_bufsize
= newbsize
; /* actual buffer allocation */
3009 bp
->b_bcount
= size
; /* requested buffer size */
3016 * Wait for buffer I/O completion, returning error status. The buffer
3017 * is left locked on return. B_EINTR is converted into an EINTR error
3020 * NOTE! The original b_cmd is lost on return, since b_cmd will be
3021 * set to BUF_CMD_DONE.
3024 biowait(struct buf
*bp
)
3027 while (bp
->b_cmd
!= BUF_CMD_DONE
) {
3028 if (bp
->b_cmd
== BUF_CMD_READ
)
3029 tsleep(bp
, 0, "biord", 0);
3031 tsleep(bp
, 0, "biowr", 0);
3034 if (bp
->b_flags
& B_EINTR
) {
3035 bp
->b_flags
&= ~B_EINTR
;
3038 if (bp
->b_flags
& B_ERROR
) {
3039 return (bp
->b_error
? bp
->b_error
: EIO
);
3046 * This associates a tracking count with an I/O. vn_strategy() and
3047 * dev_dstrategy() do this automatically but there are a few cases
3048 * where a vnode or device layer is bypassed when a block translation
3049 * is cached. In such cases bio_start_transaction() may be called on
3050 * the bypassed layers so the system gets an I/O in progress indication
3051 * for those higher layers.
3054 bio_start_transaction(struct bio
*bio
, struct bio_track
*track
)
3056 bio
->bio_track
= track
;
3057 atomic_add_int(&track
->bk_active
, 1);
3061 * Initiate I/O on a vnode.
3064 vn_strategy(struct vnode
*vp
, struct bio
*bio
)
3066 struct bio_track
*track
;
3068 KKASSERT(bio
->bio_buf
->b_cmd
!= BUF_CMD_DONE
);
3069 if (bio
->bio_buf
->b_cmd
== BUF_CMD_READ
)
3070 track
= &vp
->v_track_read
;
3072 track
= &vp
->v_track_write
;
3073 bio
->bio_track
= track
;
3074 atomic_add_int(&track
->bk_active
, 1);
3075 vop_strategy(*vp
->v_ops
, vp
, bio
);
3082 * Finish I/O on a buffer, optionally calling a completion function.
3083 * This is usually called from an interrupt so process blocking is
3086 * biodone is also responsible for setting B_CACHE in a B_VMIO bp.
3087 * In a non-VMIO bp, B_CACHE will be set on the next getblk()
3088 * assuming B_INVAL is clear.
3090 * For the VMIO case, we set B_CACHE if the op was a read and no
3091 * read error occured, or if the op was a write. B_CACHE is never
3092 * set if the buffer is invalid or otherwise uncacheable.
3094 * biodone does not mess with B_INVAL, allowing the I/O routine or the
3095 * initiator to leave B_INVAL set to brelse the buffer out of existance
3096 * in the biodone routine.
3099 biodone(struct bio
*bio
)
3101 struct buf
*bp
= bio
->bio_buf
;
3106 KASSERT(BUF_REFCNTNB(bp
) > 0,
3107 ("biodone: bp %p not busy %d", bp
, BUF_REFCNTNB(bp
)));
3108 KASSERT(bp
->b_cmd
!= BUF_CMD_DONE
,
3109 ("biodone: bp %p already done!", bp
));
3111 runningbufwakeup(bp
);
3114 * Run up the chain of BIO's. Leave b_cmd intact for the duration.
3117 biodone_t
*done_func
;
3118 struct bio_track
*track
;
3121 * BIO tracking. Most but not all BIOs are tracked.
3123 if ((track
= bio
->bio_track
) != NULL
) {
3124 atomic_subtract_int(&track
->bk_active
, 1);
3125 if (track
->bk_active
< 0) {
3126 panic("biodone: bad active count bio %p\n",
3129 if (track
->bk_waitflag
) {
3130 track
->bk_waitflag
= 0;
3133 bio
->bio_track
= NULL
;
3137 * A bio_done function terminates the loop. The function
3138 * will be responsible for any further chaining and/or
3139 * buffer management.
3141 * WARNING! The done function can deallocate the buffer!
3143 if ((done_func
= bio
->bio_done
) != NULL
) {
3144 bio
->bio_done
= NULL
;
3149 bio
= bio
->bio_prev
;
3153 bp
->b_cmd
= BUF_CMD_DONE
;
3156 * Only reads and writes are processed past this point.
3158 if (cmd
!= BUF_CMD_READ
&& cmd
!= BUF_CMD_WRITE
) {
3159 if (cmd
== BUF_CMD_FREEBLKS
)
3160 bp
->b_flags
|= B_NOCACHE
;
3167 * Warning: softupdates may re-dirty the buffer, and HAMMER can do
3168 * a lot worse. XXX - move this above the clearing of b_cmd
3170 if (LIST_FIRST(&bp
->b_dep
) != NULL
)
3174 * A failed write must re-dirty the buffer unless B_INVAL
3177 if (cmd
== BUF_CMD_WRITE
&&
3178 (bp
->b_flags
& (B_ERROR
| B_INVAL
)) == B_ERROR
) {
3179 bp
->b_flags
&= ~B_NOCACHE
;
3184 if (bp
->b_flags
& B_VMIO
) {
3190 struct vnode
*vp
= bp
->b_vp
;
3194 #if defined(VFS_BIO_DEBUG)
3195 if (vp
->v_auxrefs
== 0)
3196 panic("biodone: zero vnode hold count");
3197 if ((vp
->v_flag
& VOBJBUF
) == 0)
3198 panic("biodone: vnode is not setup for merged cache");
3201 foff
= bp
->b_loffset
;
3202 KASSERT(foff
!= NOOFFSET
, ("biodone: no buffer offset"));
3203 KASSERT(obj
!= NULL
, ("biodone: missing VM object"));
3205 #if defined(VFS_BIO_DEBUG)
3206 if (obj
->paging_in_progress
< bp
->b_xio
.xio_npages
) {
3207 kprintf("biodone: paging in progress(%d) < bp->b_xio.xio_npages(%d)\n",
3208 obj
->paging_in_progress
, bp
->b_xio
.xio_npages
);
3213 * Set B_CACHE if the op was a normal read and no error
3214 * occured. B_CACHE is set for writes in the b*write()
3217 iosize
= bp
->b_bcount
- bp
->b_resid
;
3218 if (cmd
== BUF_CMD_READ
&& (bp
->b_flags
& (B_INVAL
|B_NOCACHE
|B_ERROR
)) == 0) {
3219 bp
->b_flags
|= B_CACHE
;
3222 for (i
= 0; i
< bp
->b_xio
.xio_npages
; i
++) {
3226 resid
= ((foff
+ PAGE_SIZE
) & ~(off_t
)PAGE_MASK
) - foff
;
3231 * cleanup bogus pages, restoring the originals. Since
3232 * the originals should still be wired, we don't have
3233 * to worry about interrupt/freeing races destroying
3234 * the VM object association.
3236 m
= bp
->b_xio
.xio_pages
[i
];
3237 if (m
== bogus_page
) {
3239 m
= vm_page_lookup(obj
, OFF_TO_IDX(foff
));
3241 panic("biodone: page disappeared");
3242 bp
->b_xio
.xio_pages
[i
] = m
;
3243 pmap_qenter(trunc_page((vm_offset_t
)bp
->b_data
),
3244 bp
->b_xio
.xio_pages
, bp
->b_xio
.xio_npages
);
3246 #if defined(VFS_BIO_DEBUG)
3247 if (OFF_TO_IDX(foff
) != m
->pindex
) {
3249 "biodone: foff(%lu)/m->pindex(%d) mismatch\n",
3250 (unsigned long)foff
, m
->pindex
);
3255 * In the write case, the valid and clean bits are
3256 * already changed correctly ( see bdwrite() ), so we
3257 * only need to do this here in the read case.
3259 if (cmd
== BUF_CMD_READ
&& !bogusflag
&& resid
> 0) {
3260 vfs_page_set_valid(bp
, foff
, i
, m
);
3262 vm_page_flag_clear(m
, PG_ZERO
);
3265 * when debugging new filesystems or buffer I/O methods, this
3266 * is the most common error that pops up. if you see this, you
3267 * have not set the page busy flag correctly!!!
3270 kprintf("biodone: page busy < 0, "
3271 "pindex: %d, foff: 0x(%x,%x), "
3272 "resid: %d, index: %d\n",
3273 (int) m
->pindex
, (int)(foff
>> 32),
3274 (int) foff
& 0xffffffff, resid
, i
);
3275 if (!vn_isdisk(vp
, NULL
))
3276 kprintf(" iosize: %ld, loffset: %lld, "
3277 "flags: 0x%08x, npages: %d\n",
3278 bp
->b_vp
->v_mount
->mnt_stat
.f_iosize
,
3279 (long long)bp
->b_loffset
,
3280 bp
->b_flags
, bp
->b_xio
.xio_npages
);
3282 kprintf(" VDEV, loffset: %lld, flags: 0x%08x, npages: %d\n",
3283 (long long)bp
->b_loffset
,
3284 bp
->b_flags
, bp
->b_xio
.xio_npages
);
3285 kprintf(" valid: 0x%x, dirty: 0x%x, wired: %d\n",
3286 m
->valid
, m
->dirty
, m
->wire_count
);
3287 panic("biodone: page busy < 0");
3289 vm_page_io_finish(m
);
3290 vm_object_pip_subtract(obj
, 1);
3291 foff
= (foff
+ PAGE_SIZE
) & ~(off_t
)PAGE_MASK
;
3295 vm_object_pip_wakeupn(obj
, 0);
3299 * For asynchronous completions, release the buffer now. The brelse
3300 * will do a wakeup there if necessary - so no need to do a wakeup
3301 * here in the async case. The sync case always needs to do a wakeup.
3304 if (bp
->b_flags
& B_ASYNC
) {
3305 if ((bp
->b_flags
& (B_NOCACHE
| B_INVAL
| B_ERROR
| B_RELBUF
)) != 0)
3318 * This routine is called in lieu of iodone in the case of
3319 * incomplete I/O. This keeps the busy status for pages
3323 vfs_unbusy_pages(struct buf
*bp
)
3327 runningbufwakeup(bp
);
3328 if (bp
->b_flags
& B_VMIO
) {
3329 struct vnode
*vp
= bp
->b_vp
;
3334 for (i
= 0; i
< bp
->b_xio
.xio_npages
; i
++) {
3335 vm_page_t m
= bp
->b_xio
.xio_pages
[i
];
3338 * When restoring bogus changes the original pages
3339 * should still be wired, so we are in no danger of
3340 * losing the object association and do not need
3341 * critical section protection particularly.
3343 if (m
== bogus_page
) {
3344 m
= vm_page_lookup(obj
, OFF_TO_IDX(bp
->b_loffset
) + i
);
3346 panic("vfs_unbusy_pages: page missing");
3348 bp
->b_xio
.xio_pages
[i
] = m
;
3349 pmap_qenter(trunc_page((vm_offset_t
)bp
->b_data
),
3350 bp
->b_xio
.xio_pages
, bp
->b_xio
.xio_npages
);
3352 vm_object_pip_subtract(obj
, 1);
3353 vm_page_flag_clear(m
, PG_ZERO
);
3354 vm_page_io_finish(m
);
3356 vm_object_pip_wakeupn(obj
, 0);
3361 * vfs_page_set_valid:
3363 * Set the valid bits in a page based on the supplied offset. The
3364 * range is restricted to the buffer's size.
3366 * This routine is typically called after a read completes.
3369 vfs_page_set_valid(struct buf
*bp
, vm_ooffset_t off
, int pageno
, vm_page_t m
)
3371 vm_ooffset_t soff
, eoff
;
3374 * Start and end offsets in buffer. eoff - soff may not cross a
3375 * page boundry or cross the end of the buffer. The end of the
3376 * buffer, in this case, is our file EOF, not the allocation size
3380 eoff
= (off
+ PAGE_SIZE
) & ~(off_t
)PAGE_MASK
;
3381 if (eoff
> bp
->b_loffset
+ bp
->b_bcount
)
3382 eoff
= bp
->b_loffset
+ bp
->b_bcount
;
3385 * Set valid range. This is typically the entire buffer and thus the
3389 vm_page_set_validclean(
3391 (vm_offset_t
) (soff
& PAGE_MASK
),
3392 (vm_offset_t
) (eoff
- soff
)
3400 * This routine is called before a device strategy routine.
3401 * It is used to tell the VM system that paging I/O is in
3402 * progress, and treat the pages associated with the buffer
3403 * almost as being PG_BUSY. Also the object 'paging_in_progress'
3404 * flag is handled to make sure that the object doesn't become
3407 * Since I/O has not been initiated yet, certain buffer flags
3408 * such as B_ERROR or B_INVAL may be in an inconsistant state
3409 * and should be ignored.
3412 vfs_busy_pages(struct vnode
*vp
, struct buf
*bp
)
3415 struct lwp
*lp
= curthread
->td_lwp
;
3418 * The buffer's I/O command must already be set. If reading,
3419 * B_CACHE must be 0 (double check against callers only doing
3420 * I/O when B_CACHE is 0).
3422 KKASSERT(bp
->b_cmd
!= BUF_CMD_DONE
);
3423 KKASSERT(bp
->b_cmd
== BUF_CMD_WRITE
|| (bp
->b_flags
& B_CACHE
) == 0);
3425 if (bp
->b_flags
& B_VMIO
) {
3430 foff
= bp
->b_loffset
;
3431 KASSERT(bp
->b_loffset
!= NOOFFSET
,
3432 ("vfs_busy_pages: no buffer offset"));
3436 * Loop until none of the pages are busy.
3439 for (i
= 0; i
< bp
->b_xio
.xio_npages
; i
++) {
3440 vm_page_t m
= bp
->b_xio
.xio_pages
[i
];
3442 if (vm_page_sleep_busy(m
, FALSE
, "vbpage"))
3447 * Setup for I/O, soft-busy the page right now because
3448 * the next loop may block.
3450 for (i
= 0; i
< bp
->b_xio
.xio_npages
; i
++) {
3451 vm_page_t m
= bp
->b_xio
.xio_pages
[i
];
3453 vm_page_flag_clear(m
, PG_ZERO
);
3454 if ((bp
->b_flags
& B_CLUSTER
) == 0) {
3455 vm_object_pip_add(obj
, 1);
3456 vm_page_io_start(m
);
3461 * Adjust protections for I/O and do bogus-page mapping.
3462 * Assume that vm_page_protect() can block (it can block
3463 * if VM_PROT_NONE, don't take any chances regardless).
3466 for (i
= 0; i
< bp
->b_xio
.xio_npages
; i
++) {
3467 vm_page_t m
= bp
->b_xio
.xio_pages
[i
];
3470 * When readying a vnode-backed buffer for a write
3471 * we must zero-fill any invalid portions of the
3474 * When readying a vnode-backed buffer for a read
3475 * we must replace any dirty pages with a bogus
3476 * page so we do not destroy dirty data when
3477 * filling in gaps. Dirty pages might not
3478 * necessarily be marked dirty yet, so use m->valid
3479 * as a reasonable test.
3481 * Bogus page replacement is, uh, bogus. We need
3482 * to find a better way.
3484 if (bp
->b_cmd
== BUF_CMD_WRITE
) {
3485 vm_page_protect(m
, VM_PROT_READ
);
3486 vfs_page_set_valid(bp
, foff
, i
, m
);
3487 } else if (m
->valid
== VM_PAGE_BITS_ALL
) {
3488 bp
->b_xio
.xio_pages
[i
] = bogus_page
;
3491 vm_page_protect(m
, VM_PROT_NONE
);
3493 foff
= (foff
+ PAGE_SIZE
) & ~(off_t
)PAGE_MASK
;
3496 pmap_qenter(trunc_page((vm_offset_t
)bp
->b_data
),
3497 bp
->b_xio
.xio_pages
, bp
->b_xio
.xio_npages
);
3501 * This is the easiest place to put the process accounting for the I/O
3505 if (bp
->b_cmd
== BUF_CMD_READ
)
3506 lp
->lwp_ru
.ru_inblock
++;
3508 lp
->lwp_ru
.ru_oublock
++;
3515 * Tell the VM system that the pages associated with this buffer
3516 * are clean. This is used for delayed writes where the data is
3517 * going to go to disk eventually without additional VM intevention.
3519 * Note that while we only really need to clean through to b_bcount, we
3520 * just go ahead and clean through to b_bufsize.
3523 vfs_clean_pages(struct buf
*bp
)
3527 if (bp
->b_flags
& B_VMIO
) {
3530 foff
= bp
->b_loffset
;
3531 KASSERT(foff
!= NOOFFSET
, ("vfs_clean_pages: no buffer offset"));
3532 for (i
= 0; i
< bp
->b_xio
.xio_npages
; i
++) {
3533 vm_page_t m
= bp
->b_xio
.xio_pages
[i
];
3534 vm_ooffset_t noff
= (foff
+ PAGE_SIZE
) & ~(off_t
)PAGE_MASK
;
3536 vfs_page_set_valid(bp
, foff
, i
, m
);
3543 * vfs_bio_set_validclean:
3545 * Set the range within the buffer to valid and clean. The range is
3546 * relative to the beginning of the buffer, b_loffset. Note that
3547 * b_loffset itself may be offset from the beginning of the first page.
3551 vfs_bio_set_validclean(struct buf
*bp
, int base
, int size
)
3553 if (bp
->b_flags
& B_VMIO
) {
3558 * Fixup base to be relative to beginning of first page.
3559 * Set initial n to be the maximum number of bytes in the
3560 * first page that can be validated.
3563 base
+= (bp
->b_loffset
& PAGE_MASK
);
3564 n
= PAGE_SIZE
- (base
& PAGE_MASK
);
3566 for (i
= base
/ PAGE_SIZE
; size
> 0 && i
< bp
->b_xio
.xio_npages
; ++i
) {
3567 vm_page_t m
= bp
->b_xio
.xio_pages
[i
];
3572 vm_page_set_validclean(m
, base
& PAGE_MASK
, n
);
3583 * Clear a buffer. This routine essentially fakes an I/O, so we need
3584 * to clear B_ERROR and B_INVAL.
3586 * Note that while we only theoretically need to clear through b_bcount,
3587 * we go ahead and clear through b_bufsize.
3591 vfs_bio_clrbuf(struct buf
*bp
)
3595 if ((bp
->b_flags
& (B_VMIO
| B_MALLOC
)) == B_VMIO
) {
3596 bp
->b_flags
&= ~(B_INVAL
|B_ERROR
);
3597 if ((bp
->b_xio
.xio_npages
== 1) && (bp
->b_bufsize
< PAGE_SIZE
) &&
3598 (bp
->b_loffset
& PAGE_MASK
) == 0) {
3599 mask
= (1 << (bp
->b_bufsize
/ DEV_BSIZE
)) - 1;
3600 if ((bp
->b_xio
.xio_pages
[0]->valid
& mask
) == mask
) {
3604 if (((bp
->b_xio
.xio_pages
[0]->flags
& PG_ZERO
) == 0) &&
3605 ((bp
->b_xio
.xio_pages
[0]->valid
& mask
) == 0)) {
3606 bzero(bp
->b_data
, bp
->b_bufsize
);
3607 bp
->b_xio
.xio_pages
[0]->valid
|= mask
;
3613 for(i
=0;i
<bp
->b_xio
.xio_npages
;i
++,sa
=ea
) {
3614 int j
= ((vm_offset_t
)sa
& PAGE_MASK
) / DEV_BSIZE
;
3615 ea
= (caddr_t
)trunc_page((vm_offset_t
)sa
+ PAGE_SIZE
);
3616 ea
= (caddr_t
)(vm_offset_t
)ulmin(
3617 (u_long
)(vm_offset_t
)ea
,
3618 (u_long
)(vm_offset_t
)bp
->b_data
+ bp
->b_bufsize
);
3619 mask
= ((1 << ((ea
- sa
) / DEV_BSIZE
)) - 1) << j
;
3620 if ((bp
->b_xio
.xio_pages
[i
]->valid
& mask
) == mask
)
3622 if ((bp
->b_xio
.xio_pages
[i
]->valid
& mask
) == 0) {
3623 if ((bp
->b_xio
.xio_pages
[i
]->flags
& PG_ZERO
) == 0) {
3627 for (; sa
< ea
; sa
+= DEV_BSIZE
, j
++) {
3628 if (((bp
->b_xio
.xio_pages
[i
]->flags
& PG_ZERO
) == 0) &&
3629 (bp
->b_xio
.xio_pages
[i
]->valid
& (1<<j
)) == 0)
3630 bzero(sa
, DEV_BSIZE
);
3633 bp
->b_xio
.xio_pages
[i
]->valid
|= mask
;
3634 vm_page_flag_clear(bp
->b_xio
.xio_pages
[i
], PG_ZERO
);
3643 * vm_hold_load_pages:
3645 * Load pages into the buffer's address space. The pages are
3646 * allocated from the kernel object in order to reduce interference
3647 * with the any VM paging I/O activity. The range of loaded
3648 * pages will be wired.
3650 * If a page cannot be allocated, the 'pagedaemon' is woken up to
3651 * retrieve the full range (to - from) of pages.
3655 vm_hold_load_pages(struct buf
*bp
, vm_offset_t from
, vm_offset_t to
)
3661 to
= round_page(to
);
3662 from
= round_page(from
);
3663 index
= (from
- trunc_page((vm_offset_t
)bp
->b_data
)) >> PAGE_SHIFT
;
3668 * Note: must allocate system pages since blocking here
3669 * could intefere with paging I/O, no matter which
3672 p
= bio_page_alloc(&kernel_object
, pg
>> PAGE_SHIFT
,
3673 (vm_pindex_t
)((to
- pg
) >> PAGE_SHIFT
));
3676 p
->valid
= VM_PAGE_BITS_ALL
;
3677 vm_page_flag_clear(p
, PG_ZERO
);
3678 pmap_kenter(pg
, VM_PAGE_TO_PHYS(p
));
3679 bp
->b_xio
.xio_pages
[index
] = p
;
3686 bp
->b_xio
.xio_npages
= index
;
3690 * Allocate pages for a buffer cache buffer.
3692 * Under extremely severe memory conditions even allocating out of the
3693 * system reserve can fail. If this occurs we must allocate out of the
3694 * interrupt reserve to avoid a deadlock with the pageout daemon.
3696 * The pageout daemon can run (putpages -> VOP_WRITE -> getblk -> allocbuf).
3697 * If the buffer cache's vm_page_alloc() fails a vm_wait() can deadlock
3698 * against the pageout daemon if pages are not freed from other sources.
3702 bio_page_alloc(vm_object_t obj
, vm_pindex_t pg
, int deficit
)
3707 * Try a normal allocation, allow use of system reserve.
3709 p
= vm_page_alloc(obj
, pg
, VM_ALLOC_NORMAL
| VM_ALLOC_SYSTEM
);
3714 * The normal allocation failed and we clearly have a page
3715 * deficit. Try to reclaim some clean VM pages directly
3716 * from the buffer cache.
3718 vm_pageout_deficit
+= deficit
;
3722 * We may have blocked, the caller will know what to do if the
3725 if (vm_page_lookup(obj
, pg
))
3729 * Allocate and allow use of the interrupt reserve.
3731 * If after all that we still can't allocate a VM page we are
3732 * in real trouble, but we slog on anyway hoping that the system
3735 p
= vm_page_alloc(obj
, pg
, VM_ALLOC_NORMAL
| VM_ALLOC_SYSTEM
|
3736 VM_ALLOC_INTERRUPT
);
3738 if (vm_page_count_severe()) {
3739 kprintf("bio_page_alloc: WARNING emergency page "
3744 kprintf("bio_page_alloc: WARNING emergency page "
3745 "allocation failed\n");
3752 * vm_hold_free_pages:
3754 * Return pages associated with the buffer back to the VM system.
3756 * The range of pages underlying the buffer's address space will
3757 * be unmapped and un-wired.
3760 vm_hold_free_pages(struct buf
*bp
, vm_offset_t from
, vm_offset_t to
)
3764 int index
, newnpages
;
3766 from
= round_page(from
);
3767 to
= round_page(to
);
3768 newnpages
= index
= (from
- trunc_page((vm_offset_t
)bp
->b_data
)) >> PAGE_SHIFT
;
3770 for (pg
= from
; pg
< to
; pg
+= PAGE_SIZE
, index
++) {
3771 p
= bp
->b_xio
.xio_pages
[index
];
3772 if (p
&& (index
< bp
->b_xio
.xio_npages
)) {
3774 kprintf("vm_hold_free_pages: doffset: %lld, "
3776 (long long)bp
->b_bio2
.bio_offset
,
3777 (long long)bp
->b_loffset
);
3779 bp
->b_xio
.xio_pages
[index
] = NULL
;
3782 vm_page_unwire(p
, 0);
3786 bp
->b_xio
.xio_npages
= newnpages
;
3792 * Map a user buffer into KVM via a pbuf. On return the buffer's
3793 * b_data, b_bufsize, and b_bcount will be set, and its XIO page array
3797 vmapbuf(struct buf
*bp
, caddr_t udata
, int bytes
)
3808 * bp had better have a command and it better be a pbuf.
3810 KKASSERT(bp
->b_cmd
!= BUF_CMD_DONE
);
3811 KKASSERT(bp
->b_flags
& B_PAGING
);
3817 * Map the user data into KVM. Mappings have to be page-aligned.
3819 addr
= (caddr_t
)trunc_page((vm_offset_t
)udata
);
3822 vmprot
= VM_PROT_READ
;
3823 if (bp
->b_cmd
== BUF_CMD_READ
)
3824 vmprot
|= VM_PROT_WRITE
;
3826 while (addr
< udata
+ bytes
) {
3828 * Do the vm_fault if needed; do the copy-on-write thing
3829 * when reading stuff off device into memory.
3831 * vm_fault_page*() returns a held VM page.
3833 va
= (addr
>= udata
) ? (vm_offset_t
)addr
: (vm_offset_t
)udata
;
3834 va
= trunc_page(va
);
3836 m
= vm_fault_page_quick(va
, vmprot
, &error
);
3838 for (i
= 0; i
< pidx
; ++i
) {
3839 vm_page_unhold(bp
->b_xio
.xio_pages
[i
]);
3840 bp
->b_xio
.xio_pages
[i
] = NULL
;
3844 bp
->b_xio
.xio_pages
[pidx
] = m
;
3850 * Map the page array and set the buffer fields to point to
3851 * the mapped data buffer.
3853 if (pidx
> btoc(MAXPHYS
))
3854 panic("vmapbuf: mapped more than MAXPHYS");
3855 pmap_qenter((vm_offset_t
)bp
->b_kvabase
, bp
->b_xio
.xio_pages
, pidx
);
3857 bp
->b_xio
.xio_npages
= pidx
;
3858 bp
->b_data
= bp
->b_kvabase
+ ((int)(intptr_t)udata
& PAGE_MASK
);
3859 bp
->b_bcount
= bytes
;
3860 bp
->b_bufsize
= bytes
;
3867 * Free the io map PTEs associated with this IO operation.
3868 * We also invalidate the TLB entries and restore the original b_addr.
3871 vunmapbuf(struct buf
*bp
)
3876 KKASSERT(bp
->b_flags
& B_PAGING
);
3878 npages
= bp
->b_xio
.xio_npages
;
3879 pmap_qremove(trunc_page((vm_offset_t
)bp
->b_data
), npages
);
3880 for (pidx
= 0; pidx
< npages
; ++pidx
) {
3881 vm_page_unhold(bp
->b_xio
.xio_pages
[pidx
]);
3882 bp
->b_xio
.xio_pages
[pidx
] = NULL
;
3884 bp
->b_xio
.xio_npages
= 0;
3885 bp
->b_data
= bp
->b_kvabase
;
3889 * Scan all buffers in the system and issue the callback.
3892 scan_all_buffers(int (*callback
)(struct buf
*, void *), void *info
)
3898 for (n
= 0; n
< nbuf
; ++n
) {
3899 if ((error
= callback(&buf
[n
], info
)) < 0) {
3909 * print out statistics from the current status of the buffer pool
3910 * this can be toggeled by the system control option debug.syncprt
3919 int counts
[(MAXBSIZE
/ PAGE_SIZE
) + 1];
3920 static char *bname
[3] = { "LOCKED", "LRU", "AGE" };
3922 for (dp
= bufqueues
, i
= 0; dp
< &bufqueues
[3]; dp
++, i
++) {
3924 for (j
= 0; j
<= MAXBSIZE
/PAGE_SIZE
; j
++)
3927 TAILQ_FOREACH(bp
, dp
, b_freelist
) {
3928 counts
[bp
->b_bufsize
/PAGE_SIZE
]++;
3932 kprintf("%s: total-%d", bname
[i
], count
);
3933 for (j
= 0; j
<= MAXBSIZE
/PAGE_SIZE
; j
++)
3935 kprintf(", %d-%d", j
* PAGE_SIZE
, counts
[j
]);
3943 DB_SHOW_COMMAND(buffer
, db_show_buffer
)
3946 struct buf
*bp
= (struct buf
*)addr
;
3949 db_printf("usage: show buffer <addr>\n");
3953 db_printf("b_flags = 0x%b\n", (u_int
)bp
->b_flags
, PRINT_BUF_FLAGS
);
3954 db_printf("b_cmd = %d\n", bp
->b_cmd
);
3955 db_printf("b_error = %d, b_bufsize = %d, b_bcount = %d, "
3956 "b_resid = %d\n, b_data = %p, "
3957 "bio_offset(disk) = %lld, bio_offset(phys) = %lld\n",
3958 bp
->b_error
, bp
->b_bufsize
, bp
->b_bcount
, bp
->b_resid
,
3960 (long long)bp
->b_bio2
.bio_offset
,
3961 (long long)(bp
->b_bio2
.bio_next
?
3962 bp
->b_bio2
.bio_next
->bio_offset
: (off_t
)-1));
3963 if (bp
->b_xio
.xio_npages
) {
3965 db_printf("b_xio.xio_npages = %d, pages(OBJ, IDX, PA): ",
3966 bp
->b_xio
.xio_npages
);
3967 for (i
= 0; i
< bp
->b_xio
.xio_npages
; i
++) {
3969 m
= bp
->b_xio
.xio_pages
[i
];
3970 db_printf("(%p, 0x%lx, 0x%lx)", (void *)m
->object
,
3971 (u_long
)m
->pindex
, (u_long
)VM_PAGE_TO_PHYS(m
));
3972 if ((i
+ 1) < bp
->b_xio
.xio_npages
)