2 * Copyright (c) 2006 The DragonFly Project. All rights reserved.
4 * This code is derived from software contributed to The DragonFly Project
5 * by Matthew Dillon <dillon@backplane.com>
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following conditions
11 * 1. Redistributions of source code must retain the above copyright
12 * notice, this list of conditions and the following disclaimer.
13 * 2. Redistributions in binary form must reproduce the above copyright
14 * notice, this list of conditions and the following disclaimer in
15 * the documentation and/or other materials provided with the
17 * 3. Neither the name of The DragonFly Project nor the names of its
18 * contributors may be used to endorse or promote products derived
19 * from this software without specific, prior written permission.
21 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
22 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
23 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
24 * FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
25 * COPYRIGHT HOLDERS OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
26 * INCIDENTAL, SPECIAL, EXEMPLARY OR CONSEQUENTIAL DAMAGES (INCLUDING,
27 * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
28 * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
29 * AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
30 * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT
31 * OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
34 * $DragonFly: src/sys/kern/usched_dummy.c,v 1.9 2008/04/21 15:24:46 dillon Exp $
37 #include <sys/param.h>
38 #include <sys/systm.h>
39 #include <sys/kernel.h>
41 #include <sys/queue.h>
43 #include <sys/rtprio.h>
45 #include <sys/sysctl.h>
46 #include <sys/resourcevar.h>
47 #include <sys/spinlock.h>
48 #include <machine/cpu.h>
49 #include <machine/smp.h>
51 #include <sys/thread2.h>
52 #include <sys/spinlock2.h>
55 #define PRIBASE_REALTIME 0
56 #define PRIBASE_NORMAL MAXPRI
57 #define PRIBASE_IDLE (MAXPRI * 2)
58 #define PRIBASE_THREAD (MAXPRI * 3)
59 #define PRIBASE_NULL (MAXPRI * 4)
61 #define lwp_priority lwp_usdata.bsd4.priority
62 #define lwp_estcpu lwp_usdata.bsd4.estcpu
64 static void dummy_acquire_curproc(struct lwp
*lp
);
65 static void dummy_release_curproc(struct lwp
*lp
);
66 static void dummy_select_curproc(globaldata_t gd
);
67 static void dummy_setrunqueue(struct lwp
*lp
);
68 static void dummy_schedulerclock(struct lwp
*lp
, sysclock_t period
,
70 static void dummy_recalculate_estcpu(struct lwp
*lp
);
71 static void dummy_resetpriority(struct lwp
*lp
);
72 static void dummy_forking(struct lwp
*plp
, struct lwp
*lp
);
73 static void dummy_exiting(struct lwp
*plp
, struct lwp
*lp
);
74 static void dummy_yield(struct lwp
*lp
);
76 struct usched usched_dummy
= {
78 "dummy", "Dummy DragonFly Scheduler",
79 NULL
, /* default registration */
80 NULL
, /* default deregistration */
81 dummy_acquire_curproc
,
82 dummy_release_curproc
,
85 dummy_recalculate_estcpu
,
89 NULL
, /* setcpumask not supported */
93 struct usched_dummy_pcpu
{
95 struct thread helper_thread
;
99 typedef struct usched_dummy_pcpu
*dummy_pcpu_t
;
101 static struct usched_dummy_pcpu dummy_pcpu
[MAXCPU
];
102 static cpumask_t dummy_curprocmask
= -1;
103 static cpumask_t dummy_rdyprocmask
;
104 static struct spinlock dummy_spin
;
105 static TAILQ_HEAD(rq
, lwp
) dummy_runq
;
106 static int dummy_runqcount
;
108 static int usched_dummy_rrinterval
= (ESTCPUFREQ
+ 9) / 10;
109 SYSCTL_INT(_kern
, OID_AUTO
, usched_dummy_rrinterval
, CTLFLAG_RW
,
110 &usched_dummy_rrinterval
, 0, "");
113 * Initialize the run queues at boot time, clear cpu 0 in curprocmask
114 * to allow dummy scheduling on cpu 0.
117 dummyinit(void *dummy
)
119 TAILQ_INIT(&dummy_runq
);
120 spin_init(&dummy_spin
);
121 atomic_clear_int(&dummy_curprocmask
, 1);
123 SYSINIT(runqueue
, SI_BOOT2_USCHED
, SI_ORDER_FIRST
, dummyinit
, NULL
)
126 * DUMMY_ACQUIRE_CURPROC
128 * This function is called when the kernel intends to return to userland.
129 * It is responsible for making the thread the current designated userland
130 * thread for this cpu, blocking if necessary.
132 * We are expected to handle userland reschedule requests here too.
134 * WARNING! THIS FUNCTION IS ALLOWED TO CAUSE THE CURRENT THREAD TO MIGRATE
135 * TO ANOTHER CPU! Because most of the kernel assumes that no migration will
136 * occur, this function is called only under very controlled circumstances.
141 dummy_acquire_curproc(struct lwp
*lp
)
143 globaldata_t gd
= mycpu
;
144 dummy_pcpu_t dd
= &dummy_pcpu
[gd
->gd_cpuid
];
145 thread_t td
= lp
->lwp_thread
;
148 * Possibly select another thread
150 if (user_resched_wanted())
151 dummy_select_curproc(gd
);
154 * If this cpu has no current thread, select ourself
156 if (dd
->uschedcp
== lp
||
157 (dd
->uschedcp
== NULL
&& TAILQ_EMPTY(&dummy_runq
))) {
158 atomic_set_int(&dummy_curprocmask
, gd
->gd_cpumask
);
164 * If this cpu's current user process thread is not our thread,
165 * deschedule ourselves and place us on the run queue, then
168 * We loop until we become the current process. Its a good idea
169 * to run any passive release(s) before we mess with the scheduler
170 * so our thread is in the expected state.
172 KKASSERT(dd
->uschedcp
!= lp
);
174 td
->td_release(lp
->lwp_thread
);
177 lwkt_deschedule_self(td
);
178 dummy_setrunqueue(lp
);
179 if ((td
->td_flags
& TDF_RUNQ
) == 0)
180 ++lp
->lwp_ru
.ru_nivcsw
;
181 lwkt_switch(); /* WE MAY MIGRATE TO ANOTHER CPU */
184 dd
= &dummy_pcpu
[gd
->gd_cpuid
];
185 KKASSERT((lp
->lwp_flag
& LWP_ONRUNQ
) == 0);
186 } while (dd
->uschedcp
!= lp
);
190 * DUMMY_RELEASE_CURPROC
192 * This routine detaches the current thread from the userland scheduler,
193 * usually because the thread needs to run in the kernel (at kernel priority)
196 * This routine is also responsible for selecting a new thread to
197 * make the current thread.
199 * WARNING! The MP lock may be in an unsynchronized state due to the
200 * way get_mplock() works and the fact that this function may be called
201 * from a passive release during a lwkt_switch(). try_mplock() will deal
202 * with this for us but you should be aware that td_mpcount may not be
208 dummy_release_curproc(struct lwp
*lp
)
210 globaldata_t gd
= mycpu
;
211 dummy_pcpu_t dd
= &dummy_pcpu
[gd
->gd_cpuid
];
213 KKASSERT((lp
->lwp_flag
& LWP_ONRUNQ
) == 0);
214 if (dd
->uschedcp
== lp
) {
215 dummy_select_curproc(gd
);
220 * DUMMY_SELECT_CURPROC
222 * Select a new current process for this cpu. This satisfies a user
223 * scheduler reschedule request so clear that too.
225 * This routine is also responsible for equal-priority round-robining,
226 * typically triggered from dummy_schedulerclock(). In our dummy example
227 * all the 'user' threads are LWKT scheduled all at once and we just
228 * call lwkt_switch().
234 dummy_select_curproc(globaldata_t gd
)
236 dummy_pcpu_t dd
= &dummy_pcpu
[gd
->gd_cpuid
];
239 clear_user_resched();
240 spin_lock_wr(&dummy_spin
);
241 if ((lp
= TAILQ_FIRST(&dummy_runq
)) == NULL
) {
243 atomic_clear_int(&dummy_curprocmask
, gd
->gd_cpumask
);
244 spin_unlock_wr(&dummy_spin
);
247 TAILQ_REMOVE(&dummy_runq
, lp
, lwp_procq
);
248 lp
->lwp_flag
&= ~LWP_ONRUNQ
;
250 atomic_set_int(&dummy_curprocmask
, gd
->gd_cpumask
);
251 spin_unlock_wr(&dummy_spin
);
253 lwkt_acquire(lp
->lwp_thread
);
255 lwkt_schedule(lp
->lwp_thread
);
262 * This routine is called to schedule a new user process after a fork.
263 * The scheduler module itself might also call this routine to place
264 * the current process on the userland scheduler's run queue prior
265 * to calling dummy_select_curproc().
267 * The caller may set P_PASSIVE_ACQ in p_flag to indicate that we should
268 * attempt to leave the thread on the current cpu.
273 dummy_setrunqueue(struct lwp
*lp
)
275 globaldata_t gd
= mycpu
;
276 dummy_pcpu_t dd
= &dummy_pcpu
[gd
->gd_cpuid
];
280 if (dd
->uschedcp
== NULL
) {
282 atomic_set_int(&dummy_curprocmask
, gd
->gd_cpumask
);
283 lwkt_schedule(lp
->lwp_thread
);
286 * Add to our global runq
288 KKASSERT((lp
->lwp_flag
& LWP_ONRUNQ
) == 0);
289 spin_lock_wr(&dummy_spin
);
291 TAILQ_INSERT_TAIL(&dummy_runq
, lp
, lwp_procq
);
292 lp
->lwp_flag
|= LWP_ONRUNQ
;
294 lwkt_giveaway(lp
->lwp_thread
);
297 /* lp = TAILQ_FIRST(&dummy_runq); */
300 * Notify the next available cpu. P.S. some
301 * cpu affinity could be done here.
303 * The rdyprocmask bit placeholds the knowledge that there
304 * is a process on the runq that needs service. If the
305 * helper thread cannot find a home for it it will forward
306 * the request to another available cpu.
308 mask
= ~dummy_curprocmask
& dummy_rdyprocmask
&
312 atomic_clear_int(&dummy_rdyprocmask
, 1 << cpuid
);
313 spin_unlock_wr(&dummy_spin
);
314 lwkt_schedule(&dummy_pcpu
[cpuid
].helper_thread
);
316 spin_unlock_wr(&dummy_spin
);
322 * This routine is called from a systimer IPI. Thus it is called with
323 * a critical section held. Any spinlocks we get here that are also
324 * obtained in other procedures must be proected by a critical section
325 * in those other procedures to avoid a deadlock.
327 * The MP lock may or may not be held on entry and cannot be obtained
328 * by this routine (because it is called from a systimer IPI). Additionally,
329 * because this is equivalent to a FAST interrupt, spinlocks cannot be used
330 * (or at least, you have to check that gd_spin* counts are 0 before you
333 * This routine is called at ESTCPUFREQ on each cpu independantly.
335 * This routine typically queues a reschedule request, which will cause
336 * the scheduler's BLAH_select_curproc() to be called as soon as possible.
342 dummy_schedulerclock(struct lwp
*lp
, sysclock_t period
, sysclock_t cpstamp
)
344 globaldata_t gd
= mycpu
;
345 dummy_pcpu_t dd
= &dummy_pcpu
[gd
->gd_cpuid
];
347 if (++dd
->rrcount
>= usched_dummy_rrinterval
) {
354 * DUMMY_RECALCULATE_ESTCPU
356 * Called once a second for any process that is running or has slept
357 * for less then 2 seconds.
363 dummy_recalculate_estcpu(struct lwp
*lp
)
369 dummy_yield(struct lwp
*lp
)
375 * DUMMY_RESETPRIORITY
377 * This routine is called after the kernel has potentially modified
378 * the lwp_rtprio structure. The target process may be running or sleeping
379 * or scheduled but not yet running or owned by another cpu. Basically,
380 * it can be in virtually any state.
382 * This routine is called by fork1() for initial setup with the process
383 * of the run queue, and also may be called normally with the process on or
389 dummy_resetpriority(struct lwp
*lp
)
391 /* XXX spinlock usually needed */
393 * Set p_priority for general process comparisons
395 switch(lp
->lwp_rtprio
.type
) {
396 case RTP_PRIO_REALTIME
:
397 lp
->lwp_priority
= PRIBASE_REALTIME
+ lp
->lwp_rtprio
.prio
;
399 case RTP_PRIO_NORMAL
:
400 lp
->lwp_priority
= PRIBASE_NORMAL
+ lp
->lwp_rtprio
.prio
;
403 lp
->lwp_priority
= PRIBASE_IDLE
+ lp
->lwp_rtprio
.prio
;
405 case RTP_PRIO_THREAD
:
406 lp
->lwp_priority
= PRIBASE_THREAD
+ lp
->lwp_rtprio
.prio
;
409 /* XXX spinlock usually needed */
416 * Called from fork1() when a new child process is being created. Allows
417 * the scheduler to predispose the child process before it gets scheduled.
422 dummy_forking(struct lwp
*plp
, struct lwp
*lp
)
424 lp
->lwp_estcpu
= plp
->lwp_estcpu
;
433 * Called when the parent reaps a child. Typically used to propogate cpu
434 * use by the child back to the parent as part of a batch detection
437 * NOTE: cpu use is not normally back-propogated to PID 1.
442 dummy_exiting(struct lwp
*plp
, struct lwp
*lp
)
447 * SMP systems may need a scheduler helper thread. This is how one can be
450 * We use a neat LWKT scheduling trick to interlock the helper thread. It
451 * is possible to deschedule an LWKT thread and then do some work before
452 * switching away. The thread can be rescheduled at any time, even before
458 dummy_sched_thread(void *dummy
)
469 cpuid
= gd
->gd_cpuid
;
470 dd
= &dummy_pcpu
[cpuid
];
471 cpumask
= 1 << cpuid
;
474 * Our Scheduler helper thread does not need to hold the MP lock
479 lwkt_deschedule_self(gd
->gd_curthread
); /* interlock */
480 atomic_set_int(&dummy_rdyprocmask
, cpumask
);
481 spin_lock_wr(&dummy_spin
);
484 * We raced another cpu trying to schedule a thread onto us.
485 * If the runq isn't empty hit another free cpu.
487 tmpmask
= ~dummy_curprocmask
& dummy_rdyprocmask
&
489 if (tmpmask
&& dummy_runqcount
) {
490 tmpid
= bsfl(tmpmask
);
491 KKASSERT(tmpid
!= cpuid
);
492 atomic_clear_int(&dummy_rdyprocmask
, 1 << tmpid
);
493 spin_unlock_wr(&dummy_spin
);
494 lwkt_schedule(&dummy_pcpu
[tmpid
].helper_thread
);
496 spin_unlock_wr(&dummy_spin
);
498 } else if ((lp
= TAILQ_FIRST(&dummy_runq
)) != NULL
) {
500 TAILQ_REMOVE(&dummy_runq
, lp
, lwp_procq
);
501 lp
->lwp_flag
&= ~LWP_ONRUNQ
;
503 atomic_set_int(&dummy_curprocmask
, cpumask
);
504 spin_unlock_wr(&dummy_spin
);
506 lwkt_acquire(lp
->lwp_thread
);
508 lwkt_schedule(lp
->lwp_thread
);
510 spin_unlock_wr(&dummy_spin
);
517 * Setup our scheduler helpers. Note that curprocmask bit 0 has already
518 * been cleared by rqinit() and we should not mess with it further.
521 dummy_sched_thread_cpu_init(void)
526 kprintf("start dummy scheduler helpers on cpus:");
528 for (i
= 0; i
< ncpus
; ++i
) {
529 dummy_pcpu_t dd
= &dummy_pcpu
[i
];
530 cpumask_t mask
= 1 << i
;
532 if ((mask
& smp_active_mask
) == 0)
538 lwkt_create(dummy_sched_thread
, NULL
, NULL
, &dd
->helper_thread
,
539 TDF_STOPREQ
, i
, "dsched %d", i
);
542 * Allow user scheduling on the target cpu. cpu #0 has already
543 * been enabled in rqinit().
546 atomic_clear_int(&dummy_curprocmask
, mask
);
547 atomic_set_int(&dummy_rdyprocmask
, mask
);
552 SYSINIT(uschedtd
, SI_BOOT2_USCHED
, SI_ORDER_SECOND
,
553 dummy_sched_thread_cpu_init
, NULL
)