priv: Define and use PRIV_SETHOSTNAME
[dragonfly.git] / sys / kern / kern_proc.c
blob797d51a4c50d48fadaea0fd090c11e5501bfeddb
1 /*
2 * Copyright (c) 1982, 1986, 1989, 1991, 1993
3 * The Regents of the University of California. All rights reserved.
5 * Redistribution and use in source and binary forms, with or without
6 * modification, are permitted provided that the following conditions
7 * are met:
8 * 1. Redistributions of source code must retain the above copyright
9 * notice, this list of conditions and the following disclaimer.
10 * 2. Redistributions in binary form must reproduce the above copyright
11 * notice, this list of conditions and the following disclaimer in the
12 * documentation and/or other materials provided with the distribution.
13 * 3. All advertising materials mentioning features or use of this software
14 * must display the following acknowledgement:
15 * This product includes software developed by the University of
16 * California, Berkeley and its contributors.
17 * 4. Neither the name of the University nor the names of its contributors
18 * may be used to endorse or promote products derived from this software
19 * without specific prior written permission.
21 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
22 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
23 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
24 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
25 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
26 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
27 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
28 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
29 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
30 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
31 * SUCH DAMAGE.
33 * @(#)kern_proc.c 8.7 (Berkeley) 2/14/95
34 * $FreeBSD: src/sys/kern/kern_proc.c,v 1.63.2.9 2003/05/08 07:47:16 kbyanc Exp $
35 * $DragonFly: src/sys/kern/kern_proc.c,v 1.45 2008/06/12 23:25:02 dillon Exp $
38 #include <sys/param.h>
39 #include <sys/systm.h>
40 #include <sys/kernel.h>
41 #include <sys/sysctl.h>
42 #include <sys/malloc.h>
43 #include <sys/proc.h>
44 #include <sys/jail.h>
45 #include <sys/filedesc.h>
46 #include <sys/tty.h>
47 #include <sys/signalvar.h>
48 #include <sys/spinlock.h>
49 #include <vm/vm.h>
50 #include <sys/lock.h>
51 #include <vm/pmap.h>
52 #include <vm/vm_map.h>
53 #include <sys/user.h>
54 #include <machine/smp.h>
56 #include <sys/spinlock2.h>
58 static MALLOC_DEFINE(M_PGRP, "pgrp", "process group header");
59 MALLOC_DEFINE(M_SESSION, "session", "session header");
60 MALLOC_DEFINE(M_PROC, "proc", "Proc structures");
61 MALLOC_DEFINE(M_LWP, "lwp", "lwp structures");
62 MALLOC_DEFINE(M_SUBPROC, "subproc", "Proc sub-structures");
64 int ps_showallprocs = 1;
65 static int ps_showallthreads = 1;
66 SYSCTL_INT(_security, OID_AUTO, ps_showallprocs, CTLFLAG_RW,
67 &ps_showallprocs, 0,
68 "Unprivileged processes can see proccesses with different UID/GID");
69 SYSCTL_INT(_security, OID_AUTO, ps_showallthreads, CTLFLAG_RW,
70 &ps_showallthreads, 0,
71 "Unprivileged processes can see kernel threads");
73 static void pgdelete(struct pgrp *);
74 static void orphanpg(struct pgrp *pg);
75 static pid_t proc_getnewpid_locked(int random_offset);
78 * Other process lists
80 struct pidhashhead *pidhashtbl;
81 u_long pidhash;
82 struct pgrphashhead *pgrphashtbl;
83 u_long pgrphash;
84 struct proclist allproc;
85 struct proclist zombproc;
86 struct spinlock allproc_spin;
89 * Random component to nextpid generation. We mix in a random factor to make
90 * it a little harder to predict. We sanity check the modulus value to avoid
91 * doing it in critical paths. Don't let it be too small or we pointlessly
92 * waste randomness entropy, and don't let it be impossibly large. Using a
93 * modulus that is too big causes a LOT more process table scans and slows
94 * down fork processing as the pidchecked caching is defeated.
96 static int randompid = 0;
98 static int
99 sysctl_kern_randompid(SYSCTL_HANDLER_ARGS)
101 int error, pid;
103 pid = randompid;
104 error = sysctl_handle_int(oidp, &pid, 0, req);
105 if (error || !req->newptr)
106 return (error);
107 if (pid < 0 || pid > PID_MAX - 100) /* out of range */
108 pid = PID_MAX - 100;
109 else if (pid < 2) /* NOP */
110 pid = 0;
111 else if (pid < 100) /* Make it reasonable */
112 pid = 100;
113 randompid = pid;
114 return (error);
117 SYSCTL_PROC(_kern, OID_AUTO, randompid, CTLTYPE_INT|CTLFLAG_RW,
118 0, 0, sysctl_kern_randompid, "I", "Random PID modulus");
121 * Initialize global process hashing structures.
123 void
124 procinit(void)
126 LIST_INIT(&allproc);
127 LIST_INIT(&zombproc);
128 spin_init(&allproc_spin);
129 lwkt_init();
130 pidhashtbl = hashinit(maxproc / 4, M_PROC, &pidhash);
131 pgrphashtbl = hashinit(maxproc / 4, M_PROC, &pgrphash);
132 uihashinit();
136 * Is p an inferior of the current process?
139 inferior(struct proc *p)
141 for (; p != curproc; p = p->p_pptr)
142 if (p->p_pid == 0)
143 return (0);
144 return (1);
148 * Locate a process by number
150 struct proc *
151 pfind(pid_t pid)
153 struct proc *p;
155 LIST_FOREACH(p, PIDHASH(pid), p_hash) {
156 if (p->p_pid == pid)
157 return (p);
159 return (NULL);
163 * Locate a process group by number
165 struct pgrp *
166 pgfind(pid_t pgid)
168 struct pgrp *pgrp;
170 LIST_FOREACH(pgrp, PGRPHASH(pgid), pg_hash) {
171 if (pgrp->pg_id == pgid)
172 return (pgrp);
174 return (NULL);
178 * Move p to a new or existing process group (and session)
181 enterpgrp(struct proc *p, pid_t pgid, int mksess)
183 struct pgrp *pgrp = pgfind(pgid);
185 KASSERT(pgrp == NULL || !mksess,
186 ("enterpgrp: setsid into non-empty pgrp"));
187 KASSERT(!SESS_LEADER(p),
188 ("enterpgrp: session leader attempted setpgrp"));
190 if (pgrp == NULL) {
191 pid_t savepid = p->p_pid;
192 struct proc *np;
194 * new process group
196 KASSERT(p->p_pid == pgid,
197 ("enterpgrp: new pgrp and pid != pgid"));
198 if ((np = pfind(savepid)) == NULL || np != p)
199 return (ESRCH);
200 MALLOC(pgrp, struct pgrp *, sizeof(struct pgrp), M_PGRP,
201 M_WAITOK);
202 if (mksess) {
203 struct session *sess;
206 * new session
208 MALLOC(sess, struct session *, sizeof(struct session),
209 M_SESSION, M_WAITOK);
210 sess->s_leader = p;
211 sess->s_sid = p->p_pid;
212 sess->s_count = 1;
213 sess->s_ttyvp = NULL;
214 sess->s_ttyp = NULL;
215 bcopy(p->p_session->s_login, sess->s_login,
216 sizeof(sess->s_login));
217 p->p_flag &= ~P_CONTROLT;
218 pgrp->pg_session = sess;
219 KASSERT(p == curproc,
220 ("enterpgrp: mksession and p != curproc"));
221 } else {
222 pgrp->pg_session = p->p_session;
223 sess_hold(pgrp->pg_session);
225 pgrp->pg_id = pgid;
226 LIST_INIT(&pgrp->pg_members);
227 LIST_INSERT_HEAD(PGRPHASH(pgid), pgrp, pg_hash);
228 pgrp->pg_jobc = 0;
229 SLIST_INIT(&pgrp->pg_sigiolst);
230 lockinit(&pgrp->pg_lock, "pgwt", 0, 0);
231 } else if (pgrp == p->p_pgrp)
232 return (0);
235 * Adjust eligibility of affected pgrps to participate in job control.
236 * Increment eligibility counts before decrementing, otherwise we
237 * could reach 0 spuriously during the first call.
239 fixjobc(p, pgrp, 1);
240 fixjobc(p, p->p_pgrp, 0);
242 LIST_REMOVE(p, p_pglist);
243 if (LIST_EMPTY(&p->p_pgrp->pg_members))
244 pgdelete(p->p_pgrp);
245 p->p_pgrp = pgrp;
246 LIST_INSERT_HEAD(&pgrp->pg_members, p, p_pglist);
247 return (0);
251 * remove process from process group
254 leavepgrp(struct proc *p)
257 LIST_REMOVE(p, p_pglist);
258 if (LIST_EMPTY(&p->p_pgrp->pg_members))
259 pgdelete(p->p_pgrp);
260 p->p_pgrp = 0;
261 return (0);
265 * delete a process group
267 static void
268 pgdelete(struct pgrp *pgrp)
272 * Reset any sigio structures pointing to us as a result of
273 * F_SETOWN with our pgid.
275 funsetownlst(&pgrp->pg_sigiolst);
277 if (pgrp->pg_session->s_ttyp != NULL &&
278 pgrp->pg_session->s_ttyp->t_pgrp == pgrp)
279 pgrp->pg_session->s_ttyp->t_pgrp = NULL;
280 LIST_REMOVE(pgrp, pg_hash);
281 sess_rele(pgrp->pg_session);
282 kfree(pgrp, M_PGRP);
286 * Adjust the ref count on a session structure. When the ref count falls to
287 * zero the tty is disassociated from the session and the session structure
288 * is freed. Note that tty assocation is not itself ref-counted.
290 void
291 sess_hold(struct session *sp)
293 ++sp->s_count;
296 void
297 sess_rele(struct session *sp)
299 KKASSERT(sp->s_count > 0);
300 if (--sp->s_count == 0) {
301 if (sp->s_ttyp && sp->s_ttyp->t_session) {
302 #ifdef TTY_DO_FULL_CLOSE
303 /* FULL CLOSE, see ttyclearsession() */
304 KKASSERT(sp->s_ttyp->t_session == sp);
305 sp->s_ttyp->t_session = NULL;
306 #else
307 /* HALF CLOSE, see ttyclearsession() */
308 if (sp->s_ttyp->t_session == sp)
309 sp->s_ttyp->t_session = NULL;
310 #endif
312 kfree(sp, M_SESSION);
317 * Adjust pgrp jobc counters when specified process changes process group.
318 * We count the number of processes in each process group that "qualify"
319 * the group for terminal job control (those with a parent in a different
320 * process group of the same session). If that count reaches zero, the
321 * process group becomes orphaned. Check both the specified process'
322 * process group and that of its children.
323 * entering == 0 => p is leaving specified group.
324 * entering == 1 => p is entering specified group.
326 void
327 fixjobc(struct proc *p, struct pgrp *pgrp, int entering)
329 struct pgrp *hispgrp;
330 struct session *mysession = pgrp->pg_session;
333 * Check p's parent to see whether p qualifies its own process
334 * group; if so, adjust count for p's process group.
336 if ((hispgrp = p->p_pptr->p_pgrp) != pgrp &&
337 hispgrp->pg_session == mysession) {
338 if (entering)
339 pgrp->pg_jobc++;
340 else if (--pgrp->pg_jobc == 0)
341 orphanpg(pgrp);
345 * Check this process' children to see whether they qualify
346 * their process groups; if so, adjust counts for children's
347 * process groups.
349 LIST_FOREACH(p, &p->p_children, p_sibling)
350 if ((hispgrp = p->p_pgrp) != pgrp &&
351 hispgrp->pg_session == mysession &&
352 p->p_stat != SZOMB) {
353 if (entering)
354 hispgrp->pg_jobc++;
355 else if (--hispgrp->pg_jobc == 0)
356 orphanpg(hispgrp);
361 * A process group has become orphaned;
362 * if there are any stopped processes in the group,
363 * hang-up all process in that group.
365 static void
366 orphanpg(struct pgrp *pg)
368 struct proc *p;
370 LIST_FOREACH(p, &pg->pg_members, p_pglist) {
371 if (p->p_stat == SSTOP) {
372 LIST_FOREACH(p, &pg->pg_members, p_pglist) {
373 ksignal(p, SIGHUP);
374 ksignal(p, SIGCONT);
376 return;
382 * Add a new process to the allproc list and the PID hash. This
383 * also assigns a pid to the new process.
385 * MPALMOSTSAFE - acquires mplock for karc4random() call
387 void
388 proc_add_allproc(struct proc *p)
390 int random_offset;
392 if ((random_offset = randompid) != 0) {
393 get_mplock();
394 random_offset = karc4random() % random_offset;
395 rel_mplock();
398 spin_lock_wr(&allproc_spin);
399 p->p_pid = proc_getnewpid_locked(random_offset);
400 LIST_INSERT_HEAD(&allproc, p, p_list);
401 LIST_INSERT_HEAD(PIDHASH(p->p_pid), p, p_hash);
402 spin_unlock_wr(&allproc_spin);
406 * Calculate a new process pid. This function is integrated into
407 * proc_add_allproc() to guarentee that the new pid is not reused before
408 * the new process can be added to the allproc list.
410 * MPSAFE - must be called with allproc_spin held.
412 static
413 pid_t
414 proc_getnewpid_locked(int random_offset)
416 static pid_t nextpid;
417 static pid_t pidchecked;
418 struct proc *p;
421 * Find an unused process ID. We remember a range of unused IDs
422 * ready to use (from nextpid+1 through pidchecked-1).
424 nextpid = nextpid + 1 + random_offset;
425 retry:
427 * If the process ID prototype has wrapped around,
428 * restart somewhat above 0, as the low-numbered procs
429 * tend to include daemons that don't exit.
431 if (nextpid >= PID_MAX) {
432 nextpid = nextpid % PID_MAX;
433 if (nextpid < 100)
434 nextpid += 100;
435 pidchecked = 0;
437 if (nextpid >= pidchecked) {
438 int doingzomb = 0;
440 pidchecked = PID_MAX;
442 * Scan the active and zombie procs to check whether this pid
443 * is in use. Remember the lowest pid that's greater
444 * than nextpid, so we can avoid checking for a while.
446 p = LIST_FIRST(&allproc);
447 again:
448 for (; p != 0; p = LIST_NEXT(p, p_list)) {
449 while (p->p_pid == nextpid ||
450 p->p_pgrp->pg_id == nextpid ||
451 p->p_session->s_sid == nextpid) {
452 nextpid++;
453 if (nextpid >= pidchecked)
454 goto retry;
456 if (p->p_pid > nextpid && pidchecked > p->p_pid)
457 pidchecked = p->p_pid;
458 if (p->p_pgrp->pg_id > nextpid &&
459 pidchecked > p->p_pgrp->pg_id)
460 pidchecked = p->p_pgrp->pg_id;
461 if (p->p_session->s_sid > nextpid &&
462 pidchecked > p->p_session->s_sid)
463 pidchecked = p->p_session->s_sid;
465 if (!doingzomb) {
466 doingzomb = 1;
467 p = LIST_FIRST(&zombproc);
468 goto again;
471 return(nextpid);
475 * Called from exit1 to remove a process from the allproc
476 * list and move it to the zombie list.
478 * MPSAFE
480 void
481 proc_move_allproc_zombie(struct proc *p)
483 spin_lock_wr(&allproc_spin);
484 while (p->p_lock) {
485 spin_unlock_wr(&allproc_spin);
486 tsleep(p, 0, "reap1", hz / 10);
487 spin_lock_wr(&allproc_spin);
489 LIST_REMOVE(p, p_list);
490 LIST_INSERT_HEAD(&zombproc, p, p_list);
491 LIST_REMOVE(p, p_hash);
492 p->p_stat = SZOMB;
493 spin_unlock_wr(&allproc_spin);
497 * This routine is called from kern_wait() and will remove the process
498 * from the zombie list and the sibling list. This routine will block
499 * if someone has a lock on the proces (p_lock).
501 * MPSAFE
503 void
504 proc_remove_zombie(struct proc *p)
506 spin_lock_wr(&allproc_spin);
507 while (p->p_lock) {
508 spin_unlock_wr(&allproc_spin);
509 tsleep(p, 0, "reap1", hz / 10);
510 spin_lock_wr(&allproc_spin);
512 LIST_REMOVE(p, p_list); /* off zombproc */
513 LIST_REMOVE(p, p_sibling);
514 spin_unlock_wr(&allproc_spin);
518 * Scan all processes on the allproc list. The process is automatically
519 * held for the callback. A return value of -1 terminates the loop.
521 * MPSAFE
523 void
524 allproc_scan(int (*callback)(struct proc *, void *), void *data)
526 struct proc *p;
527 int r;
529 spin_lock_rd(&allproc_spin);
530 LIST_FOREACH(p, &allproc, p_list) {
531 PHOLD(p);
532 spin_unlock_rd(&allproc_spin);
533 r = callback(p, data);
534 spin_lock_rd(&allproc_spin);
535 PRELE(p);
536 if (r < 0)
537 break;
539 spin_unlock_rd(&allproc_spin);
543 * Scan all lwps of processes on the allproc list. The lwp is automatically
544 * held for the callback. A return value of -1 terminates the loop.
546 * possibly not MPSAFE, needs to access foreingn proc structures
548 void
549 alllwp_scan(int (*callback)(struct lwp *, void *), void *data)
551 struct proc *p;
552 struct lwp *lp;
553 int r = 0;
555 spin_lock_rd(&allproc_spin);
556 LIST_FOREACH(p, &allproc, p_list) {
557 PHOLD(p);
558 spin_unlock_rd(&allproc_spin);
559 FOREACH_LWP_IN_PROC(lp, p) {
560 LWPHOLD(lp);
561 r = callback(lp, data);
562 LWPRELE(lp);
564 spin_lock_rd(&allproc_spin);
565 PRELE(p);
566 if (r < 0)
567 break;
569 spin_unlock_rd(&allproc_spin);
573 * Scan all processes on the zombproc list. The process is automatically
574 * held for the callback. A return value of -1 terminates the loop.
576 * MPSAFE
578 void
579 zombproc_scan(int (*callback)(struct proc *, void *), void *data)
581 struct proc *p;
582 int r;
584 spin_lock_rd(&allproc_spin);
585 LIST_FOREACH(p, &zombproc, p_list) {
586 PHOLD(p);
587 spin_unlock_rd(&allproc_spin);
588 r = callback(p, data);
589 spin_lock_rd(&allproc_spin);
590 PRELE(p);
591 if (r < 0)
592 break;
594 spin_unlock_rd(&allproc_spin);
597 #include "opt_ddb.h"
598 #ifdef DDB
599 #include <ddb/ddb.h>
601 DB_SHOW_COMMAND(pgrpdump, pgrpdump)
603 struct pgrp *pgrp;
604 struct proc *p;
605 int i;
607 for (i = 0; i <= pgrphash; i++) {
608 if (!LIST_EMPTY(&pgrphashtbl[i])) {
609 kprintf("\tindx %d\n", i);
610 LIST_FOREACH(pgrp, &pgrphashtbl[i], pg_hash) {
611 kprintf(
612 "\tpgrp %p, pgid %ld, sess %p, sesscnt %d, mem %p\n",
613 (void *)pgrp, (long)pgrp->pg_id,
614 (void *)pgrp->pg_session,
615 pgrp->pg_session->s_count,
616 (void *)LIST_FIRST(&pgrp->pg_members));
617 LIST_FOREACH(p, &pgrp->pg_members, p_pglist) {
618 kprintf("\t\tpid %ld addr %p pgrp %p\n",
619 (long)p->p_pid, (void *)p,
620 (void *)p->p_pgrp);
626 #endif /* DDB */
629 * Locate a process on the zombie list. Return a held process or NULL.
631 struct proc *
632 zpfind(pid_t pid)
634 struct proc *p;
636 LIST_FOREACH(p, &zombproc, p_list)
637 if (p->p_pid == pid)
638 return (p);
639 return (NULL);
642 static int
643 sysctl_out_proc(struct proc *p, struct sysctl_req *req, int flags)
645 struct kinfo_proc ki;
646 struct lwp *lp;
647 int skp = 0, had_output = 0;
648 int error;
650 bzero(&ki, sizeof(ki));
651 fill_kinfo_proc(p, &ki);
652 if ((flags & KERN_PROC_FLAG_LWP) == 0)
653 skp = 1;
654 error = 0;
655 FOREACH_LWP_IN_PROC(lp, p) {
656 LWPHOLD(lp);
657 fill_kinfo_lwp(lp, &ki.kp_lwp);
658 had_output = 1;
659 error = SYSCTL_OUT(req, &ki, sizeof(ki));
660 LWPRELE(lp);
661 if (error)
662 break;
663 if (skp)
664 break;
666 /* We need to output at least the proc, even if there is no lwp. */
667 if (had_output == 0) {
668 error = SYSCTL_OUT(req, &ki, sizeof(ki));
670 return (error);
673 static int
674 sysctl_out_proc_kthread(struct thread *td, struct sysctl_req *req, int flags)
676 struct kinfo_proc ki;
677 int error;
679 fill_kinfo_proc_kthread(td, &ki);
680 error = SYSCTL_OUT(req, &ki, sizeof(ki));
681 if (error)
682 return error;
683 return(0);
686 static int
687 sysctl_kern_proc(SYSCTL_HANDLER_ARGS)
689 int *name = (int*) arg1;
690 int oid = oidp->oid_number;
691 u_int namelen = arg2;
692 struct proc *p;
693 struct proclist *plist;
694 struct thread *td;
695 int doingzomb, flags = 0;
696 int error = 0;
697 int n;
698 int origcpu;
699 struct ucred *cr1 = curproc->p_ucred;
701 flags = oid & KERN_PROC_FLAGMASK;
702 oid &= ~KERN_PROC_FLAGMASK;
704 if ((oid == KERN_PROC_ALL && namelen != 0) ||
705 (oid != KERN_PROC_ALL && namelen != 1))
706 return (EINVAL);
708 if (oid == KERN_PROC_PID) {
709 p = pfind((pid_t)name[0]);
710 if (!p)
711 return (0);
712 if (!PRISON_CHECK(cr1, p->p_ucred))
713 return (0);
714 PHOLD(p);
715 error = sysctl_out_proc(p, req, flags);
716 PRELE(p);
717 return (error);
720 if (!req->oldptr) {
721 /* overestimate by 5 procs */
722 error = SYSCTL_OUT(req, 0, sizeof (struct kinfo_proc) * 5);
723 if (error)
724 return (error);
726 for (doingzomb = 0; doingzomb <= 1; doingzomb++) {
727 if (doingzomb)
728 plist = &zombproc;
729 else
730 plist = &allproc;
731 LIST_FOREACH(p, plist, p_list) {
733 * Show a user only their processes.
735 if ((!ps_showallprocs) && p_trespass(cr1, p->p_ucred))
736 continue;
738 * Skip embryonic processes.
740 if (p->p_stat == SIDL)
741 continue;
743 * TODO - make more efficient (see notes below).
744 * do by session.
746 switch (oid) {
747 case KERN_PROC_PGRP:
748 /* could do this by traversing pgrp */
749 if (p->p_pgrp == NULL ||
750 p->p_pgrp->pg_id != (pid_t)name[0])
751 continue;
752 break;
754 case KERN_PROC_TTY:
755 if ((p->p_flag & P_CONTROLT) == 0 ||
756 p->p_session == NULL ||
757 p->p_session->s_ttyp == NULL ||
758 dev2udev(p->p_session->s_ttyp->t_dev) !=
759 (udev_t)name[0])
760 continue;
761 break;
763 case KERN_PROC_UID:
764 if (p->p_ucred == NULL ||
765 p->p_ucred->cr_uid != (uid_t)name[0])
766 continue;
767 break;
769 case KERN_PROC_RUID:
770 if (p->p_ucred == NULL ||
771 p->p_ucred->cr_ruid != (uid_t)name[0])
772 continue;
773 break;
776 if (!PRISON_CHECK(cr1, p->p_ucred))
777 continue;
778 PHOLD(p);
779 error = sysctl_out_proc(p, req, flags);
780 PRELE(p);
781 if (error)
782 return (error);
787 * Iterate over all active cpus and scan their thread list. Start
788 * with the next logical cpu and end with our original cpu. We
789 * migrate our own thread to each target cpu in order to safely scan
790 * its thread list. In the last loop we migrate back to our original
791 * cpu.
793 origcpu = mycpu->gd_cpuid;
794 if (!ps_showallthreads || jailed(cr1))
795 goto post_threads;
796 for (n = 1; n <= ncpus; ++n) {
797 globaldata_t rgd;
798 int nid;
800 nid = (origcpu + n) % ncpus;
801 if ((smp_active_mask & (1 << nid)) == 0)
802 continue;
803 rgd = globaldata_find(nid);
804 lwkt_setcpu_self(rgd);
806 TAILQ_FOREACH(td, &mycpu->gd_tdallq, td_allq) {
807 if (td->td_proc)
808 continue;
809 switch (oid) {
810 case KERN_PROC_PGRP:
811 case KERN_PROC_TTY:
812 case KERN_PROC_UID:
813 case KERN_PROC_RUID:
814 continue;
815 default:
816 break;
818 lwkt_hold(td);
819 error = sysctl_out_proc_kthread(td, req, doingzomb);
820 lwkt_rele(td);
821 if (error)
822 return (error);
825 post_threads:
826 return (0);
830 * This sysctl allows a process to retrieve the argument list or process
831 * title for another process without groping around in the address space
832 * of the other process. It also allow a process to set its own "process
833 * title to a string of its own choice.
835 static int
836 sysctl_kern_proc_args(SYSCTL_HANDLER_ARGS)
838 int *name = (int*) arg1;
839 u_int namelen = arg2;
840 struct proc *p;
841 struct pargs *pa;
842 int error = 0;
843 struct ucred *cr1 = curproc->p_ucred;
845 if (namelen != 1)
846 return (EINVAL);
848 p = pfind((pid_t)name[0]);
849 if (!p)
850 return (0);
852 if ((!ps_argsopen) && p_trespass(cr1, p->p_ucred))
853 return (0);
855 if (req->newptr && curproc != p)
856 return (EPERM);
858 if (req->oldptr && p->p_args != NULL)
859 error = SYSCTL_OUT(req, p->p_args->ar_args, p->p_args->ar_length);
860 if (req->newptr == NULL)
861 return (error);
863 if (p->p_args && --p->p_args->ar_ref == 0)
864 FREE(p->p_args, M_PARGS);
865 p->p_args = NULL;
867 if (req->newlen + sizeof(struct pargs) > ps_arg_cache_limit)
868 return (error);
870 MALLOC(pa, struct pargs *, sizeof(struct pargs) + req->newlen,
871 M_PARGS, M_WAITOK);
872 pa->ar_ref = 1;
873 pa->ar_length = req->newlen;
874 error = SYSCTL_IN(req, pa->ar_args, req->newlen);
875 if (!error)
876 p->p_args = pa;
877 else
878 FREE(pa, M_PARGS);
879 return (error);
882 SYSCTL_NODE(_kern, KERN_PROC, proc, CTLFLAG_RD, 0, "Process table");
884 SYSCTL_PROC(_kern_proc, KERN_PROC_ALL, all, CTLFLAG_RD|CTLTYPE_STRUCT,
885 0, 0, sysctl_kern_proc, "S,proc", "Return entire process table");
887 SYSCTL_NODE(_kern_proc, KERN_PROC_PGRP, pgrp, CTLFLAG_RD,
888 sysctl_kern_proc, "Process table");
890 SYSCTL_NODE(_kern_proc, KERN_PROC_TTY, tty, CTLFLAG_RD,
891 sysctl_kern_proc, "Process table");
893 SYSCTL_NODE(_kern_proc, KERN_PROC_UID, uid, CTLFLAG_RD,
894 sysctl_kern_proc, "Process table");
896 SYSCTL_NODE(_kern_proc, KERN_PROC_RUID, ruid, CTLFLAG_RD,
897 sysctl_kern_proc, "Process table");
899 SYSCTL_NODE(_kern_proc, KERN_PROC_PID, pid, CTLFLAG_RD,
900 sysctl_kern_proc, "Process table");
902 SYSCTL_NODE(_kern_proc, (KERN_PROC_ALL | KERN_PROC_FLAG_LWP), all_lwp, CTLFLAG_RD,
903 sysctl_kern_proc, "Process table");
905 SYSCTL_NODE(_kern_proc, (KERN_PROC_PGRP | KERN_PROC_FLAG_LWP), pgrp_lwp, CTLFLAG_RD,
906 sysctl_kern_proc, "Process table");
908 SYSCTL_NODE(_kern_proc, (KERN_PROC_TTY | KERN_PROC_FLAG_LWP), tty_lwp, CTLFLAG_RD,
909 sysctl_kern_proc, "Process table");
911 SYSCTL_NODE(_kern_proc, (KERN_PROC_UID | KERN_PROC_FLAG_LWP), uid_lwp, CTLFLAG_RD,
912 sysctl_kern_proc, "Process table");
914 SYSCTL_NODE(_kern_proc, (KERN_PROC_RUID | KERN_PROC_FLAG_LWP), ruid_lwp, CTLFLAG_RD,
915 sysctl_kern_proc, "Process table");
917 SYSCTL_NODE(_kern_proc, (KERN_PROC_PID | KERN_PROC_FLAG_LWP), pid_lwp, CTLFLAG_RD,
918 sysctl_kern_proc, "Process table");
920 SYSCTL_NODE(_kern_proc, KERN_PROC_ARGS, args, CTLFLAG_RW | CTLFLAG_ANYBODY,
921 sysctl_kern_proc_args, "Process argument list");