1 /***********************************************************************
3 * Copyright (c) David L. Mills 1993-2001 *
5 * Permission to use, copy, modify, and distribute this software and *
6 * its documentation for any purpose and without fee is hereby *
7 * granted, provided that the above copyright notice appears in all *
8 * copies and that both the copyright notice and this permission *
9 * notice appear in supporting documentation, and that the name *
10 * University of Delaware not be used in advertising or publicity *
11 * pertaining to distribution of the software without specific, *
12 * written prior permission. The University of Delaware makes no *
13 * representations about the suitability this software for any *
14 * purpose. It is provided "as is" without express or implied *
17 **********************************************************************/
20 * Adapted from the original sources for FreeBSD and timecounters by:
21 * Poul-Henning Kamp <phk@FreeBSD.org>.
23 * The 32bit version of the "LP" macros seems a bit past its "sell by"
24 * date so I have retained only the 64bit version and included it directly
27 * Only minor changes done to interface with the timecounters over in
28 * sys/kern/kern_clock.c. Some of the comments below may be (even more)
29 * confusing and/or plain wrong in that context.
31 * $FreeBSD: src/sys/kern/kern_ntptime.c,v 1.32.2.2 2001/04/22 11:19:46 jhay Exp $
32 * $DragonFly: src/sys/kern/kern_ntptime.c,v 1.13 2007/04/30 07:18:53 dillon Exp $
37 #include <sys/param.h>
38 #include <sys/systm.h>
39 #include <sys/sysproto.h>
40 #include <sys/kernel.h>
44 #include <sys/timex.h>
45 #include <sys/timepps.h>
46 #include <sys/sysctl.h>
47 #include <sys/thread2.h>
50 * Single-precision macros for 64-bit machines
52 typedef long long l_fp
;
53 #define L_ADD(v, u) ((v) += (u))
54 #define L_SUB(v, u) ((v) -= (u))
55 #define L_ADDHI(v, a) ((v) += (long long)(a) << 32)
56 #define L_NEG(v) ((v) = -(v))
57 #define L_RSHIFT(v, n) \
60 (v) = -(-(v) >> (n)); \
64 #define L_MPY(v, a) ((v) *= (a))
65 #define L_CLR(v) ((v) = 0)
66 #define L_ISNEG(v) ((v) < 0)
67 #define L_LINT(v, a) ((v) = (long long)(a) << 32)
68 #define L_GINT(v) ((v) < 0 ? -(-(v) >> 32) : (v) >> 32)
71 * Generic NTP kernel interface
73 * These routines constitute the Network Time Protocol (NTP) interfaces
74 * for user and daemon application programs. The ntp_gettime() routine
75 * provides the time, maximum error (synch distance) and estimated error
76 * (dispersion) to client user application programs. The ntp_adjtime()
77 * routine is used by the NTP daemon to adjust the system clock to an
78 * externally derived time. The time offset and related variables set by
79 * this routine are used by other routines in this module to adjust the
80 * phase and frequency of the clock discipline loop which controls the
83 * When the kernel time is reckoned directly in nanoseconds (NTP_NANO
84 * defined), the time at each tick interrupt is derived directly from
85 * the kernel time variable. When the kernel time is reckoned in
86 * microseconds, (NTP_NANO undefined), the time is derived from the
87 * kernel time variable together with a variable representing the
88 * leftover nanoseconds at the last tick interrupt. In either case, the
89 * current nanosecond time is reckoned from these values plus an
90 * interpolated value derived by the clock routines in another
91 * architecture-specific module. The interpolation can use either a
92 * dedicated counter or a processor cycle counter (PCC) implemented in
95 * Note that all routines must run at priority splclock or higher.
98 * Phase/frequency-lock loop (PLL/FLL) definitions
100 * The nanosecond clock discipline uses two variable types, time
101 * variables and frequency variables. Both types are represented as 64-
102 * bit fixed-point quantities with the decimal point between two 32-bit
103 * halves. On a 32-bit machine, each half is represented as a single
104 * word and mathematical operations are done using multiple-precision
105 * arithmetic. On a 64-bit machine, ordinary computer arithmetic is
108 * A time variable is a signed 64-bit fixed-point number in ns and
109 * fraction. It represents the remaining time offset to be amortized
110 * over succeeding tick interrupts. The maximum time offset is about
111 * 0.5 s and the resolution is about 2.3e-10 ns.
113 * 1 1 1 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2 2 2 3 3
114 * 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
115 * +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
117 * +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
119 * +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
121 * A frequency variable is a signed 64-bit fixed-point number in ns/s
122 * and fraction. It represents the ns and fraction to be added to the
123 * kernel time variable at each second. The maximum frequency offset is
124 * about +-500000 ns/s and the resolution is about 2.3e-10 ns/s.
126 * 1 1 1 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2 2 2 3 3
127 * 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
128 * +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
129 * |s s s s s s s s s s s s s| ns/s |
130 * +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
132 * +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
135 * The following variables establish the state of the PLL/FLL and the
136 * residual time and frequency offset of the local clock.
138 #define SHIFT_PLL 4 /* PLL loop gain (shift) */
139 #define SHIFT_FLL 2 /* FLL loop gain (shift) */
141 static int time_state
= TIME_OK
; /* clock state */
142 static int time_status
= STA_UNSYNC
; /* clock status bits */
143 static long time_tai
; /* TAI offset (s) */
144 static long time_monitor
; /* last time offset scaled (ns) */
145 static long time_constant
; /* poll interval (shift) (s) */
146 static long time_precision
= 1; /* clock precision (ns) */
147 static long time_maxerror
= MAXPHASE
/ 1000; /* maximum error (us) */
148 static long time_esterror
= MAXPHASE
/ 1000; /* estimated error (us) */
149 static long time_reftime
; /* time at last adjustment (s) */
150 static long time_tick
; /* nanoseconds per tick (ns) */
151 static l_fp time_offset
; /* time offset (ns) */
152 static l_fp time_freq
; /* frequency offset (ns/s) */
153 static l_fp time_adj
; /* tick adjust (ns/s) */
157 * The following variables are used when a pulse-per-second (PPS) signal
158 * is available and connected via a modem control lead. They establish
159 * the engineering parameters of the clock discipline loop when
160 * controlled by the PPS signal.
162 #define PPS_FAVG 2 /* min freq avg interval (s) (shift) */
163 #define PPS_FAVGDEF 8 /* default freq avg int (s) (shift) */
164 #define PPS_FAVGMAX 15 /* max freq avg interval (s) (shift) */
165 #define PPS_PAVG 4 /* phase avg interval (s) (shift) */
166 #define PPS_VALID 120 /* PPS signal watchdog max (s) */
167 #define PPS_MAXWANDER 100000 /* max PPS wander (ns/s) */
168 #define PPS_POPCORN 2 /* popcorn spike threshold (shift) */
170 static struct timespec pps_tf
[3]; /* phase median filter */
171 static l_fp pps_freq
; /* scaled frequency offset (ns/s) */
172 static long pps_fcount
; /* frequency accumulator */
173 static long pps_jitter
; /* nominal jitter (ns) */
174 static long pps_stabil
; /* nominal stability (scaled ns/s) */
175 static long pps_lastsec
; /* time at last calibration (s) */
176 static int pps_valid
; /* signal watchdog counter */
177 static int pps_shift
= PPS_FAVG
; /* interval duration (s) (shift) */
178 static int pps_shiftmax
= PPS_FAVGDEF
; /* max interval duration (s) (shift) */
179 static int pps_intcnt
; /* wander counter */
182 * PPS signal quality monitors
184 static long pps_calcnt
; /* calibration intervals */
185 static long pps_jitcnt
; /* jitter limit exceeded */
186 static long pps_stbcnt
; /* stability limit exceeded */
187 static long pps_errcnt
; /* calibration errors */
188 #endif /* PPS_SYNC */
190 * End of phase/frequency-lock loop (PLL/FLL) definitions
193 static void ntp_init(void);
194 static void hardupdate(long offset
);
197 * ntp_gettime() - NTP user application interface
199 * See the timex.h header file for synopsis and API description. Note
200 * that the TAI offset is returned in the ntvtimeval.tai structure
204 ntp_sysctl(SYSCTL_HANDLER_ARGS
)
206 struct ntptimeval ntv
; /* temporary structure */
207 struct timespec atv
; /* nanosecond time */
210 ntv
.time
.tv_sec
= atv
.tv_sec
;
211 ntv
.time
.tv_nsec
= atv
.tv_nsec
;
212 ntv
.maxerror
= time_maxerror
;
213 ntv
.esterror
= time_esterror
;
215 ntv
.time_state
= time_state
;
218 * Status word error decode. If any of these conditions occur,
219 * an error is returned, instead of the status word. Most
220 * applications will care only about the fact the system clock
221 * may not be trusted, not about the details.
223 * Hardware or software error
225 if ((time_status
& (STA_UNSYNC
| STA_CLOCKERR
)) ||
228 * PPS signal lost when either time or frequency synchronization
231 (time_status
& (STA_PPSFREQ
| STA_PPSTIME
) &&
232 !(time_status
& STA_PPSSIGNAL
)) ||
235 * PPS jitter exceeded when time synchronization requested
237 (time_status
& STA_PPSTIME
&&
238 time_status
& STA_PPSJITTER
) ||
241 * PPS wander exceeded or calibration error when frequency
242 * synchronization requested
244 (time_status
& STA_PPSFREQ
&&
245 time_status
& (STA_PPSWANDER
| STA_PPSERROR
)))
246 ntv
.time_state
= TIME_ERROR
;
247 return (sysctl_handle_opaque(oidp
, &ntv
, sizeof ntv
, req
));
250 SYSCTL_NODE(_kern
, OID_AUTO
, ntp_pll
, CTLFLAG_RW
, 0, "");
251 SYSCTL_PROC(_kern_ntp_pll
, OID_AUTO
, gettime
, CTLTYPE_OPAQUE
|CTLFLAG_RD
,
252 0, sizeof(struct ntptimeval
) , ntp_sysctl
, "S,ntptimeval", "");
255 SYSCTL_INT(_kern_ntp_pll
, OID_AUTO
, pps_shiftmax
, CTLFLAG_RW
, &pps_shiftmax
, 0, "");
256 SYSCTL_INT(_kern_ntp_pll
, OID_AUTO
, pps_shift
, CTLFLAG_RW
, &pps_shift
, 0, "");
257 SYSCTL_INT(_kern_ntp_pll
, OID_AUTO
, time_monitor
, CTLFLAG_RD
, &time_monitor
, 0, "");
259 SYSCTL_OPAQUE(_kern_ntp_pll
, OID_AUTO
, pps_freq
, CTLFLAG_RD
, &pps_freq
, sizeof(pps_freq
), "I", "");
260 SYSCTL_OPAQUE(_kern_ntp_pll
, OID_AUTO
, time_freq
, CTLFLAG_RD
, &time_freq
, sizeof(time_freq
), "I", "");
263 * ntp_adjtime() - NTP daemon application interface
265 * See the timex.h header file for synopsis and API description. Note
266 * that the timex.constant structure member has a dual purpose to set
267 * the time constant and to set the TAI offset.
270 sys_ntp_adjtime(struct ntp_adjtime_args
*uap
)
272 struct thread
*td
= curthread
;
273 struct timex ntv
; /* temporary structure */
274 long freq
; /* frequency ns/s) */
275 int modes
; /* mode bits from structure */
278 error
= copyin((caddr_t
)uap
->tp
, (caddr_t
)&ntv
, sizeof(ntv
));
283 * Update selected clock variables - only the superuser can
284 * change anything. Note that there is no error checking here on
285 * the assumption the superuser should know what it is doing.
286 * Note that either the time constant or TAI offset are loaded
287 * from the ntv.constant member, depending on the mode bits. If
288 * the STA_PLL bit in the status word is cleared, the state and
289 * status words are reset to the initial values at boot.
293 error
= priv_check(td
, PRIV_NTP_ADJTIME
);
297 if (modes
& MOD_MAXERROR
)
298 time_maxerror
= ntv
.maxerror
;
299 if (modes
& MOD_ESTERROR
)
300 time_esterror
= ntv
.esterror
;
301 if (modes
& MOD_STATUS
) {
302 if (time_status
& STA_PLL
&& !(ntv
.status
& STA_PLL
)) {
303 time_state
= TIME_OK
;
304 time_status
= STA_UNSYNC
;
306 pps_shift
= PPS_FAVG
;
307 #endif /* PPS_SYNC */
309 time_status
&= STA_RONLY
;
310 time_status
|= ntv
.status
& ~STA_RONLY
;
312 if (modes
& MOD_TIMECONST
) {
313 if (ntv
.constant
< 0)
315 else if (ntv
.constant
> MAXTC
)
316 time_constant
= MAXTC
;
318 time_constant
= ntv
.constant
;
320 if (modes
& MOD_TAI
) {
321 if (ntv
.constant
> 0) /* XXX zero & negative numbers ? */
322 time_tai
= ntv
.constant
;
325 if (modes
& MOD_PPSMAX
) {
326 if (ntv
.shift
< PPS_FAVG
)
327 pps_shiftmax
= PPS_FAVG
;
328 else if (ntv
.shift
> PPS_FAVGMAX
)
329 pps_shiftmax
= PPS_FAVGMAX
;
331 pps_shiftmax
= ntv
.shift
;
333 #endif /* PPS_SYNC */
334 if (modes
& MOD_NANO
)
335 time_status
|= STA_NANO
;
336 if (modes
& MOD_MICRO
)
337 time_status
&= ~STA_NANO
;
338 if (modes
& MOD_CLKB
)
339 time_status
|= STA_CLK
;
340 if (modes
& MOD_CLKA
)
341 time_status
&= ~STA_CLK
;
342 if (modes
& MOD_OFFSET
) {
343 if (time_status
& STA_NANO
)
344 hardupdate(ntv
.offset
);
346 hardupdate(ntv
.offset
* 1000);
349 * Note: the userland specified frequency is in seconds per second
350 * times 65536e+6. Multiply by a thousand and divide by 65336 to
353 if (modes
& MOD_FREQUENCY
) {
354 freq
= (ntv
.freq
* 1000LL) >> 16;
356 L_LINT(time_freq
, MAXFREQ
);
357 else if (freq
< -MAXFREQ
)
358 L_LINT(time_freq
, -MAXFREQ
);
360 L_LINT(time_freq
, freq
);
362 pps_freq
= time_freq
;
363 #endif /* PPS_SYNC */
367 * Retrieve all clock variables. Note that the TAI offset is
368 * returned only by ntp_gettime();
370 if (time_status
& STA_NANO
)
371 ntv
.offset
= time_monitor
;
373 ntv
.offset
= time_monitor
/ 1000; /* XXX rounding ? */
374 ntv
.freq
= L_GINT((time_freq
/ 1000LL) << 16);
375 ntv
.maxerror
= time_maxerror
;
376 ntv
.esterror
= time_esterror
;
377 ntv
.status
= time_status
;
378 ntv
.constant
= time_constant
;
379 if (time_status
& STA_NANO
)
380 ntv
.precision
= time_precision
;
382 ntv
.precision
= time_precision
/ 1000;
383 ntv
.tolerance
= MAXFREQ
* SCALE_PPM
;
385 ntv
.shift
= pps_shift
;
386 ntv
.ppsfreq
= L_GINT((pps_freq
/ 1000LL) << 16);
387 if (time_status
& STA_NANO
)
388 ntv
.jitter
= pps_jitter
;
390 ntv
.jitter
= pps_jitter
/ 1000;
391 ntv
.stabil
= pps_stabil
;
392 ntv
.calcnt
= pps_calcnt
;
393 ntv
.errcnt
= pps_errcnt
;
394 ntv
.jitcnt
= pps_jitcnt
;
395 ntv
.stbcnt
= pps_stbcnt
;
396 #endif /* PPS_SYNC */
399 error
= copyout((caddr_t
)&ntv
, (caddr_t
)uap
->tp
, sizeof(ntv
));
404 * Status word error decode. See comments in
405 * ntp_gettime() routine.
407 if ((time_status
& (STA_UNSYNC
| STA_CLOCKERR
)) ||
408 (time_status
& (STA_PPSFREQ
| STA_PPSTIME
) &&
409 !(time_status
& STA_PPSSIGNAL
)) ||
410 (time_status
& STA_PPSTIME
&&
411 time_status
& STA_PPSJITTER
) ||
412 (time_status
& STA_PPSFREQ
&&
413 time_status
& (STA_PPSWANDER
| STA_PPSERROR
))) {
414 uap
->sysmsg_result
= TIME_ERROR
;
416 uap
->sysmsg_result
= time_state
;
422 * second_overflow() - called after ntp_tick_adjust()
424 * This routine is ordinarily called from hardclock() whenever the seconds
425 * hand rolls over. It returns leap seconds to add or drop, and sets nsec_adj
426 * to the total adjustment to make over the next second in (ns << 32).
428 * This routine is only called by cpu #0.
431 ntp_update_second(time_t newsec
, int64_t *nsec_adj
)
433 l_fp ftemp
; /* 32/64-bit temporary */
437 * On rollover of the second both the nanosecond and microsecond
438 * clocks are updated and the state machine cranked as
439 * necessary. The phase adjustment to be used for the next
440 * second is calculated and the maximum error is increased by
443 time_maxerror
+= MAXFREQ
/ 1000;
446 * Leap second processing. If in leap-insert state at
447 * the end of the day, the system clock is set back one
448 * second; if in leap-delete state, the system clock is
449 * set ahead one second. The nano_time() routine or
450 * external clock driver will insure that reported time
451 * is always monotonic.
453 switch (time_state
) {
459 if (time_status
& STA_INS
)
460 time_state
= TIME_INS
;
461 else if (time_status
& STA_DEL
)
462 time_state
= TIME_DEL
;
466 * Insert second 23:59:60 following second
470 if (!(time_status
& STA_INS
))
471 time_state
= TIME_OK
;
472 else if ((newsec
) % 86400 == 0) {
474 time_state
= TIME_OOP
;
479 * Delete second 23:59:59.
482 if (!(time_status
& STA_DEL
))
483 time_state
= TIME_OK
;
484 else if (((newsec
) + 1) % 86400 == 0) {
487 time_state
= TIME_WAIT
;
492 * Insert second in progress.
496 time_state
= TIME_WAIT
;
500 * Wait for status bits to clear.
503 if (!(time_status
& (STA_INS
| STA_DEL
)))
504 time_state
= TIME_OK
;
508 * time_offset represents the total time adjustment we wish to
509 * make (over no particular period of time). time_freq represents
510 * the frequency compensation we wish to apply.
512 * time_adj represents the total adjustment we wish to make over
513 * one full second. hardclock usually applies this adjustment in
514 * time_adj / hz jumps, hz times a second.
518 /* XXX even if PPS signal dies we should finish adjustment ? */
519 if ((time_status
& STA_PPSTIME
) && (time_status
& STA_PPSSIGNAL
))
520 L_RSHIFT(ftemp
, pps_shift
);
522 L_RSHIFT(ftemp
, SHIFT_PLL
+ time_constant
);
524 L_RSHIFT(ftemp
, SHIFT_PLL
+ time_constant
);
525 #endif /* PPS_SYNC */
526 time_adj
= ftemp
; /* adjustment for part of the offset */
527 L_SUB(time_offset
, ftemp
);
528 L_ADD(time_adj
, time_freq
); /* add frequency correction */
529 *nsec_adj
= time_adj
;
534 time_status
&= ~STA_PPSSIGNAL
;
535 #endif /* PPS_SYNC */
540 * ntp_init() - initialize variables and structures
542 * This routine must be called after the kernel variables hz and tick
543 * are set or changed and before the next tick interrupt. In this
544 * particular implementation, these values are assumed set elsewhere in
545 * the kernel. The design allows the clock frequency and tick interval
546 * to be changed while the system is running. So, this routine should
547 * probably be integrated with the code that does that.
554 * The following variable must be initialized any time the
555 * kernel variable hz is changed.
557 time_tick
= NANOSECOND
/ hz
;
560 * The following variables are initialized only at startup. Only
561 * those structures not cleared by the compiler need to be
562 * initialized, and these only in the simulator. In the actual
563 * kernel, any nonzero values here will quickly evaporate.
568 pps_tf
[0].tv_sec
= pps_tf
[0].tv_nsec
= 0;
569 pps_tf
[1].tv_sec
= pps_tf
[1].tv_nsec
= 0;
570 pps_tf
[2].tv_sec
= pps_tf
[2].tv_nsec
= 0;
573 #endif /* PPS_SYNC */
576 SYSINIT(ntpclocks
, SI_BOOT2_CLOCKS
, SI_ORDER_FIRST
, ntp_init
, NULL
)
579 * hardupdate() - local clock update
581 * This routine is called by ntp_adjtime() to update the local clock
582 * phase and frequency. The implementation is of an adaptive-parameter,
583 * hybrid phase/frequency-lock loop (PLL/FLL). The routine computes new
584 * time and frequency offset estimates for each call. If the kernel PPS
585 * discipline code is configured (PPS_SYNC), the PPS signal itself
586 * determines the new time offset, instead of the calling argument.
587 * Presumably, calls to ntp_adjtime() occur only when the caller
588 * believes the local clock is valid within some bound (+-128 ms with
589 * NTP). If the caller's time is far different than the PPS time, an
590 * argument will ensue, and it's not clear who will lose.
592 * For uncompensated quartz crystal oscillators and nominal update
593 * intervals less than 256 s, operation should be in phase-lock mode,
594 * where the loop is disciplined to phase. For update intervals greater
595 * than 1024 s, operation should be in frequency-lock mode, where the
596 * loop is disciplined to frequency. Between 256 s and 1024 s, the mode
597 * is selected by the STA_MODE status bit.
600 hardupdate(long offset
)
609 * Select how the phase is to be controlled and from which
610 * source. If the PPS signal is present and enabled to
611 * discipline the time, the PPS offset is used; otherwise, the
612 * argument offset is used.
614 if (!(time_status
& STA_PLL
))
616 if (!((time_status
& STA_PPSTIME
) && (time_status
& STA_PPSSIGNAL
))) {
617 if (offset
> MAXPHASE
)
618 time_monitor
= MAXPHASE
;
619 else if (offset
< -MAXPHASE
)
620 time_monitor
= -MAXPHASE
;
622 time_monitor
= offset
;
623 L_LINT(time_offset
, time_monitor
);
627 * Select how the frequency is to be controlled and in which
628 * mode (PLL or FLL). If the PPS signal is present and enabled
629 * to discipline the frequency, the PPS frequency is used;
630 * otherwise, the argument offset is used to compute it.
632 * gd_time_seconds is basically an uncompensated uptime. We use
633 * this for consistency.
635 if (time_status
& STA_PPSFREQ
&& time_status
& STA_PPSSIGNAL
) {
636 time_reftime
= time_second
;
639 if (time_status
& STA_FREQHOLD
|| time_reftime
== 0)
640 time_reftime
= time_second
;
641 mtemp
= time_second
- time_reftime
;
642 L_LINT(ftemp
, time_monitor
);
643 L_RSHIFT(ftemp
, (SHIFT_PLL
+ 2 + time_constant
) << 1);
645 L_ADD(time_freq
, ftemp
);
646 time_status
&= ~STA_MODE
;
647 if (mtemp
>= MINSEC
&& (time_status
& STA_FLL
|| mtemp
> MAXSEC
)) {
648 L_LINT(ftemp
, (time_monitor
<< 4) / mtemp
);
649 L_RSHIFT(ftemp
, SHIFT_FLL
+ 4);
650 L_ADD(time_freq
, ftemp
);
651 time_status
|= STA_MODE
;
653 time_reftime
= time_second
;
654 if (L_GINT(time_freq
) > MAXFREQ
)
655 L_LINT(time_freq
, MAXFREQ
);
656 else if (L_GINT(time_freq
) < -MAXFREQ
)
657 L_LINT(time_freq
, -MAXFREQ
);
662 * hardpps() - discipline CPU clock oscillator to external PPS signal
664 * This routine is called at each PPS interrupt in order to discipline
665 * the CPU clock oscillator to the PPS signal. There are two independent
666 * first-order feedback loops, one for the phase, the other for the
667 * frequency. The phase loop measures and grooms the PPS phase offset
668 * and leaves it in a handy spot for the seconds overflow routine. The
669 * frequency loop averages successive PPS phase differences and
670 * calculates the PPS frequency offset, which is also processed by the
671 * seconds overflow routine. The code requires the caller to capture the
672 * time and architecture-dependent hardware counter values in
673 * nanoseconds at the on-time PPS signal transition.
675 * Note that, on some Unix systems this routine runs at an interrupt
676 * priority level higher than the timer interrupt routine hardclock().
677 * Therefore, the variables used are distinct from the hardclock()
678 * variables, except for the actual time and frequency variables, which
679 * are determined by this routine and updated atomically.
682 hardpps(struct timespec
*tsp
, long nsec
)
684 long u_sec
, u_nsec
, v_nsec
; /* temps */
688 * The signal is first processed by a range gate and frequency
689 * discriminator. The range gate rejects noise spikes outside
690 * the range +-500 us. The frequency discriminator rejects input
691 * signals with apparent frequency outside the range 1 +-500
692 * PPM. If two hits occur in the same second, we ignore the
693 * later hit; if not and a hit occurs outside the range gate,
694 * keep the later hit for later comparison, but do not process
697 time_status
|= STA_PPSSIGNAL
| STA_PPSJITTER
;
698 time_status
&= ~(STA_PPSWANDER
| STA_PPSERROR
);
699 pps_valid
= PPS_VALID
;
701 u_nsec
= tsp
->tv_nsec
;
702 if (u_nsec
>= (NANOSECOND
>> 1)) {
703 u_nsec
-= NANOSECOND
;
706 v_nsec
= u_nsec
- pps_tf
[0].tv_nsec
;
707 if (u_sec
== pps_tf
[0].tv_sec
&& v_nsec
< NANOSECOND
-
710 pps_tf
[2] = pps_tf
[1];
711 pps_tf
[1] = pps_tf
[0];
712 pps_tf
[0].tv_sec
= u_sec
;
713 pps_tf
[0].tv_nsec
= u_nsec
;
716 * Compute the difference between the current and previous
717 * counter values. If the difference exceeds 0.5 s, assume it
718 * has wrapped around, so correct 1.0 s. If the result exceeds
719 * the tick interval, the sample point has crossed a tick
720 * boundary during the last second, so correct the tick. Very
724 if (u_nsec
> (NANOSECOND
>> 1))
725 u_nsec
-= NANOSECOND
;
726 else if (u_nsec
< -(NANOSECOND
>> 1))
727 u_nsec
+= NANOSECOND
;
728 pps_fcount
+= u_nsec
;
729 if (v_nsec
> MAXFREQ
|| v_nsec
< -MAXFREQ
)
731 time_status
&= ~STA_PPSJITTER
;
734 * A three-stage median filter is used to help denoise the PPS
735 * time. The median sample becomes the time offset estimate; the
736 * difference between the other two samples becomes the time
737 * dispersion (jitter) estimate.
739 if (pps_tf
[0].tv_nsec
> pps_tf
[1].tv_nsec
) {
740 if (pps_tf
[1].tv_nsec
> pps_tf
[2].tv_nsec
) {
741 v_nsec
= pps_tf
[1].tv_nsec
; /* 0 1 2 */
742 u_nsec
= pps_tf
[0].tv_nsec
- pps_tf
[2].tv_nsec
;
743 } else if (pps_tf
[2].tv_nsec
> pps_tf
[0].tv_nsec
) {
744 v_nsec
= pps_tf
[0].tv_nsec
; /* 2 0 1 */
745 u_nsec
= pps_tf
[2].tv_nsec
- pps_tf
[1].tv_nsec
;
747 v_nsec
= pps_tf
[2].tv_nsec
; /* 0 2 1 */
748 u_nsec
= pps_tf
[0].tv_nsec
- pps_tf
[1].tv_nsec
;
751 if (pps_tf
[1].tv_nsec
< pps_tf
[2].tv_nsec
) {
752 v_nsec
= pps_tf
[1].tv_nsec
; /* 2 1 0 */
753 u_nsec
= pps_tf
[2].tv_nsec
- pps_tf
[0].tv_nsec
;
754 } else if (pps_tf
[2].tv_nsec
< pps_tf
[0].tv_nsec
) {
755 v_nsec
= pps_tf
[0].tv_nsec
; /* 1 0 2 */
756 u_nsec
= pps_tf
[1].tv_nsec
- pps_tf
[2].tv_nsec
;
758 v_nsec
= pps_tf
[2].tv_nsec
; /* 1 2 0 */
759 u_nsec
= pps_tf
[1].tv_nsec
- pps_tf
[0].tv_nsec
;
764 * Nominal jitter is due to PPS signal noise and interrupt
765 * latency. If it exceeds the popcorn threshold, the sample is
766 * discarded. otherwise, if so enabled, the time offset is
767 * updated. We can tolerate a modest loss of data here without
768 * much degrading time accuracy.
770 if (u_nsec
> (pps_jitter
<< PPS_POPCORN
)) {
771 time_status
|= STA_PPSJITTER
;
773 } else if (time_status
& STA_PPSTIME
) {
774 time_monitor
= -v_nsec
;
775 L_LINT(time_offset
, time_monitor
);
777 pps_jitter
+= (u_nsec
- pps_jitter
) >> PPS_FAVG
;
778 u_sec
= pps_tf
[0].tv_sec
- pps_lastsec
;
779 if (u_sec
< (1 << pps_shift
))
783 * At the end of the calibration interval the difference between
784 * the first and last counter values becomes the scaled
785 * frequency. It will later be divided by the length of the
786 * interval to determine the frequency update. If the frequency
787 * exceeds a sanity threshold, or if the actual calibration
788 * interval is not equal to the expected length, the data are
789 * discarded. We can tolerate a modest loss of data here without
790 * much degrading frequency accuracy.
793 v_nsec
= -pps_fcount
;
794 pps_lastsec
= pps_tf
[0].tv_sec
;
796 u_nsec
= MAXFREQ
<< pps_shift
;
797 if (v_nsec
> u_nsec
|| v_nsec
< -u_nsec
|| u_sec
!= (1 <<
799 time_status
|= STA_PPSERROR
;
805 * Here the raw frequency offset and wander (stability) is
806 * calculated. If the wander is less than the wander threshold
807 * for four consecutive averaging intervals, the interval is
808 * doubled; if it is greater than the threshold for four
809 * consecutive intervals, the interval is halved. The scaled
810 * frequency offset is converted to frequency offset. The
811 * stability metric is calculated as the average of recent
812 * frequency changes, but is used only for performance
815 L_LINT(ftemp
, v_nsec
);
816 L_RSHIFT(ftemp
, pps_shift
);
817 L_SUB(ftemp
, pps_freq
);
818 u_nsec
= L_GINT(ftemp
);
819 if (u_nsec
> PPS_MAXWANDER
) {
820 L_LINT(ftemp
, PPS_MAXWANDER
);
822 time_status
|= STA_PPSWANDER
;
824 } else if (u_nsec
< -PPS_MAXWANDER
) {
825 L_LINT(ftemp
, -PPS_MAXWANDER
);
827 time_status
|= STA_PPSWANDER
;
832 if (pps_intcnt
>= 4) {
834 if (pps_shift
< pps_shiftmax
) {
838 } else if (pps_intcnt
<= -4 || pps_shift
> pps_shiftmax
) {
840 if (pps_shift
> PPS_FAVG
) {
847 pps_stabil
+= (u_nsec
* SCALE_PPM
- pps_stabil
) >> PPS_FAVG
;
850 * The PPS frequency is recalculated and clamped to the maximum
851 * MAXFREQ. If enabled, the system clock frequency is updated as
854 L_ADD(pps_freq
, ftemp
);
855 u_nsec
= L_GINT(pps_freq
);
856 if (u_nsec
> MAXFREQ
)
857 L_LINT(pps_freq
, MAXFREQ
);
858 else if (u_nsec
< -MAXFREQ
)
859 L_LINT(pps_freq
, -MAXFREQ
);
860 if (time_status
& STA_PPSFREQ
)
861 time_freq
= pps_freq
;
863 #endif /* PPS_SYNC */