priv: Define and use PRIV_SETHOSTNAME
[dragonfly.git] / sys / kern / kern_intr.c
blob21ac5922a2de81b16b46edde361d9bb376e8b530
1 /*
2 * Copyright (c) 2003 Matthew Dillon <dillon@backplane.com> All rights reserved.
3 * Copyright (c) 1997, Stefan Esser <se@freebsd.org> All rights reserved.
5 * Redistribution and use in source and binary forms, with or without
6 * modification, are permitted provided that the following conditions
7 * are met:
8 * 1. Redistributions of source code must retain the above copyright
9 * notice unmodified, this list of conditions, and the following
10 * disclaimer.
11 * 2. Redistributions in binary form must reproduce the above copyright
12 * notice, this list of conditions and the following disclaimer in the
13 * documentation and/or other materials provided with the distribution.
15 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
16 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
17 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
18 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
19 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
20 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
21 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
22 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
23 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
24 * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
26 * $FreeBSD: src/sys/kern/kern_intr.c,v 1.24.2.1 2001/10/14 20:05:50 luigi Exp $
27 * $DragonFly: src/sys/kern/kern_intr.c,v 1.55 2008/09/01 12:49:00 sephe Exp $
31 #include <sys/param.h>
32 #include <sys/systm.h>
33 #include <sys/malloc.h>
34 #include <sys/kernel.h>
35 #include <sys/sysctl.h>
36 #include <sys/thread.h>
37 #include <sys/proc.h>
38 #include <sys/thread2.h>
39 #include <sys/random.h>
40 #include <sys/serialize.h>
41 #include <sys/interrupt.h>
42 #include <sys/bus.h>
43 #include <sys/machintr.h>
45 #include <machine/frame.h>
47 #include <sys/interrupt.h>
49 struct info_info;
51 typedef struct intrec {
52 struct intrec *next;
53 struct intr_info *info;
54 inthand2_t *handler;
55 void *argument;
56 char *name;
57 int intr;
58 int intr_flags;
59 struct lwkt_serialize *serializer;
60 } *intrec_t;
62 struct intr_info {
63 intrec_t i_reclist;
64 struct thread i_thread;
65 struct random_softc i_random;
66 int i_running;
67 long i_count; /* interrupts dispatched */
68 int i_mplock_required;
69 int i_fast;
70 int i_slow;
71 int i_state;
72 int i_errorticks;
73 unsigned long i_straycount;
74 } intr_info_ary[MAX_INTS];
76 int max_installed_hard_intr;
77 int max_installed_soft_intr;
79 #define EMERGENCY_INTR_POLLING_FREQ_MAX 20000
81 static int sysctl_emergency_freq(SYSCTL_HANDLER_ARGS);
82 static int sysctl_emergency_enable(SYSCTL_HANDLER_ARGS);
83 static void emergency_intr_timer_callback(systimer_t, struct intrframe *);
84 static void ithread_handler(void *arg);
85 static void ithread_emergency(void *arg);
86 static void report_stray_interrupt(int intr, struct intr_info *info);
87 static void int_moveto_destcpu(int *, int *, int);
88 static void int_moveto_origcpu(int, int);
90 int intr_info_size = sizeof(intr_info_ary) / sizeof(intr_info_ary[0]);
92 static struct systimer emergency_intr_timer;
93 static struct thread emergency_intr_thread;
95 #define ISTATE_NOTHREAD 0
96 #define ISTATE_NORMAL 1
97 #define ISTATE_LIVELOCKED 2
99 #ifdef SMP
100 static int intr_mpsafe = 1;
101 TUNABLE_INT("kern.intr_mpsafe", &intr_mpsafe);
102 SYSCTL_INT(_kern, OID_AUTO, intr_mpsafe,
103 CTLFLAG_RW, &intr_mpsafe, 0, "Run INTR_MPSAFE handlers without the BGL");
104 #endif
105 static int livelock_limit = 40000;
106 static int livelock_lowater = 20000;
107 static int livelock_debug = -1;
108 SYSCTL_INT(_kern, OID_AUTO, livelock_limit,
109 CTLFLAG_RW, &livelock_limit, 0, "Livelock interrupt rate limit");
110 SYSCTL_INT(_kern, OID_AUTO, livelock_lowater,
111 CTLFLAG_RW, &livelock_lowater, 0, "Livelock low-water mark restore");
112 SYSCTL_INT(_kern, OID_AUTO, livelock_debug,
113 CTLFLAG_RW, &livelock_debug, 0, "Livelock debug intr#");
115 static int emergency_intr_enable = 0; /* emergency interrupt polling */
116 TUNABLE_INT("kern.emergency_intr_enable", &emergency_intr_enable);
117 SYSCTL_PROC(_kern, OID_AUTO, emergency_intr_enable, CTLTYPE_INT | CTLFLAG_RW,
118 0, 0, sysctl_emergency_enable, "I", "Emergency Interrupt Poll Enable");
120 static int emergency_intr_freq = 10; /* emergency polling frequency */
121 TUNABLE_INT("kern.emergency_intr_freq", &emergency_intr_freq);
122 SYSCTL_PROC(_kern, OID_AUTO, emergency_intr_freq, CTLTYPE_INT | CTLFLAG_RW,
123 0, 0, sysctl_emergency_freq, "I", "Emergency Interrupt Poll Frequency");
126 * Sysctl support routines
128 static int
129 sysctl_emergency_enable(SYSCTL_HANDLER_ARGS)
131 int error, enabled;
133 enabled = emergency_intr_enable;
134 error = sysctl_handle_int(oidp, &enabled, 0, req);
135 if (error || req->newptr == NULL)
136 return error;
137 emergency_intr_enable = enabled;
138 if (emergency_intr_enable) {
139 systimer_adjust_periodic(&emergency_intr_timer,
140 emergency_intr_freq);
141 } else {
142 systimer_adjust_periodic(&emergency_intr_timer, 1);
144 return 0;
147 static int
148 sysctl_emergency_freq(SYSCTL_HANDLER_ARGS)
150 int error, phz;
152 phz = emergency_intr_freq;
153 error = sysctl_handle_int(oidp, &phz, 0, req);
154 if (error || req->newptr == NULL)
155 return error;
156 if (phz <= 0)
157 return EINVAL;
158 else if (phz > EMERGENCY_INTR_POLLING_FREQ_MAX)
159 phz = EMERGENCY_INTR_POLLING_FREQ_MAX;
161 emergency_intr_freq = phz;
162 if (emergency_intr_enable) {
163 systimer_adjust_periodic(&emergency_intr_timer,
164 emergency_intr_freq);
165 } else {
166 systimer_adjust_periodic(&emergency_intr_timer, 1);
168 return 0;
172 * Register an SWI or INTerrupt handler.
174 void *
175 register_swi(int intr, inthand2_t *handler, void *arg, const char *name,
176 struct lwkt_serialize *serializer)
178 if (intr < FIRST_SOFTINT || intr >= MAX_INTS)
179 panic("register_swi: bad intr %d", intr);
180 return(register_int(intr, handler, arg, name, serializer, 0));
183 void *
184 register_int(int intr, inthand2_t *handler, void *arg, const char *name,
185 struct lwkt_serialize *serializer, int intr_flags)
187 struct intr_info *info;
188 struct intrec **list;
189 intrec_t rec;
190 int orig_cpuid, cpuid;
192 if (intr < 0 || intr >= MAX_INTS)
193 panic("register_int: bad intr %d", intr);
194 if (name == NULL)
195 name = "???";
196 info = &intr_info_ary[intr];
199 * Construct an interrupt handler record
201 rec = kmalloc(sizeof(struct intrec), M_DEVBUF, M_INTWAIT);
202 rec->name = kmalloc(strlen(name) + 1, M_DEVBUF, M_INTWAIT);
203 strcpy(rec->name, name);
205 rec->info = info;
206 rec->handler = handler;
207 rec->argument = arg;
208 rec->intr = intr;
209 rec->intr_flags = intr_flags;
210 rec->next = NULL;
211 rec->serializer = serializer;
214 * Create an emergency polling thread and set up a systimer to wake
215 * it up.
217 if (emergency_intr_thread.td_kstack == NULL) {
218 lwkt_create(ithread_emergency, NULL, NULL,
219 &emergency_intr_thread, TDF_STOPREQ|TDF_INTTHREAD, -1,
220 "ithread emerg");
221 systimer_init_periodic_nq(&emergency_intr_timer,
222 emergency_intr_timer_callback, &emergency_intr_thread,
223 (emergency_intr_enable ? emergency_intr_freq : 1));
226 int_moveto_destcpu(&orig_cpuid, &cpuid, intr);
229 * Create an interrupt thread if necessary, leave it in an unscheduled
230 * state.
232 if (info->i_state == ISTATE_NOTHREAD) {
233 info->i_state = ISTATE_NORMAL;
234 lwkt_create((void *)ithread_handler, (void *)(intptr_t)intr, NULL,
235 &info->i_thread, TDF_STOPREQ|TDF_INTTHREAD|TDF_MPSAFE, -1,
236 "ithread %d", intr);
237 if (intr >= FIRST_SOFTINT)
238 lwkt_setpri(&info->i_thread, TDPRI_SOFT_NORM);
239 else
240 lwkt_setpri(&info->i_thread, TDPRI_INT_MED);
241 info->i_thread.td_preemptable = lwkt_preempt;
244 list = &info->i_reclist;
247 * Keep track of how many fast and slow interrupts we have.
248 * Set i_mplock_required if any handler in the chain requires
249 * the MP lock to operate.
251 if ((intr_flags & INTR_MPSAFE) == 0)
252 info->i_mplock_required = 1;
253 if (intr_flags & INTR_FAST)
254 ++info->i_fast;
255 else
256 ++info->i_slow;
259 * Enable random number generation keying off of this interrupt.
261 if ((intr_flags & INTR_NOENTROPY) == 0 && info->i_random.sc_enabled == 0) {
262 info->i_random.sc_enabled = 1;
263 info->i_random.sc_intr = intr;
267 * Add the record to the interrupt list.
269 crit_enter();
270 while (*list != NULL)
271 list = &(*list)->next;
272 *list = rec;
273 crit_exit();
276 * Update max_installed_hard_intr to make the emergency intr poll
277 * a bit more efficient.
279 if (intr < FIRST_SOFTINT) {
280 if (max_installed_hard_intr <= intr)
281 max_installed_hard_intr = intr + 1;
282 } else {
283 if (max_installed_soft_intr <= intr)
284 max_installed_soft_intr = intr + 1;
288 * Setup the machine level interrupt vector
290 if (intr < FIRST_SOFTINT && info->i_slow + info->i_fast == 1) {
291 if (machintr_vector_setup(intr, intr_flags))
292 kprintf("machintr_vector_setup: failed on irq %d\n", intr);
295 int_moveto_origcpu(orig_cpuid, cpuid);
297 return(rec);
300 void
301 unregister_swi(void *id)
303 unregister_int(id);
306 void
307 unregister_int(void *id)
309 struct intr_info *info;
310 struct intrec **list;
311 intrec_t rec;
312 int intr, orig_cpuid, cpuid;
314 intr = ((intrec_t)id)->intr;
316 if (intr < 0 || intr >= MAX_INTS)
317 panic("register_int: bad intr %d", intr);
319 info = &intr_info_ary[intr];
321 int_moveto_destcpu(&orig_cpuid, &cpuid, intr);
324 * Remove the interrupt descriptor, adjust the descriptor count,
325 * and teardown the machine level vector if this was the last interrupt.
327 crit_enter();
328 list = &info->i_reclist;
329 while ((rec = *list) != NULL) {
330 if (rec == id)
331 break;
332 list = &rec->next;
334 if (rec) {
335 intrec_t rec0;
337 *list = rec->next;
338 if (rec->intr_flags & INTR_FAST)
339 --info->i_fast;
340 else
341 --info->i_slow;
342 if (intr < FIRST_SOFTINT && info->i_fast + info->i_slow == 0)
343 machintr_vector_teardown(intr);
346 * Clear i_mplock_required if no handlers in the chain require the
347 * MP lock.
349 for (rec0 = info->i_reclist; rec0; rec0 = rec0->next) {
350 if ((rec0->intr_flags & INTR_MPSAFE) == 0)
351 break;
353 if (rec0 == NULL)
354 info->i_mplock_required = 0;
357 crit_exit();
359 int_moveto_origcpu(orig_cpuid, cpuid);
362 * Free the record.
364 if (rec != NULL) {
365 kfree(rec->name, M_DEVBUF);
366 kfree(rec, M_DEVBUF);
367 } else {
368 kprintf("warning: unregister_int: int %d handler for %s not found\n",
369 intr, ((intrec_t)id)->name);
373 const char *
374 get_registered_name(int intr)
376 intrec_t rec;
378 if (intr < 0 || intr >= MAX_INTS)
379 panic("register_int: bad intr %d", intr);
381 if ((rec = intr_info_ary[intr].i_reclist) == NULL)
382 return(NULL);
383 else if (rec->next)
384 return("mux");
385 else
386 return(rec->name);
390 count_registered_ints(int intr)
392 struct intr_info *info;
394 if (intr < 0 || intr >= MAX_INTS)
395 panic("register_int: bad intr %d", intr);
396 info = &intr_info_ary[intr];
397 return(info->i_fast + info->i_slow);
400 long
401 get_interrupt_counter(int intr)
403 struct intr_info *info;
405 if (intr < 0 || intr >= MAX_INTS)
406 panic("register_int: bad intr %d", intr);
407 info = &intr_info_ary[intr];
408 return(info->i_count);
412 void
413 swi_setpriority(int intr, int pri)
415 struct intr_info *info;
417 if (intr < FIRST_SOFTINT || intr >= MAX_INTS)
418 panic("register_swi: bad intr %d", intr);
419 info = &intr_info_ary[intr];
420 if (info->i_state != ISTATE_NOTHREAD)
421 lwkt_setpri(&info->i_thread, pri);
424 void
425 register_randintr(int intr)
427 struct intr_info *info;
429 if (intr < 0 || intr >= MAX_INTS)
430 panic("register_randintr: bad intr %d", intr);
431 info = &intr_info_ary[intr];
432 info->i_random.sc_intr = intr;
433 info->i_random.sc_enabled = 1;
436 void
437 unregister_randintr(int intr)
439 struct intr_info *info;
441 if (intr < 0 || intr >= MAX_INTS)
442 panic("register_swi: bad intr %d", intr);
443 info = &intr_info_ary[intr];
444 info->i_random.sc_enabled = -1;
448 next_registered_randintr(int intr)
450 struct intr_info *info;
452 if (intr < 0 || intr >= MAX_INTS)
453 panic("register_swi: bad intr %d", intr);
454 while (intr < MAX_INTS) {
455 info = &intr_info_ary[intr];
456 if (info->i_random.sc_enabled > 0)
457 break;
458 ++intr;
460 return(intr);
464 * Dispatch an interrupt. If there's nothing to do we have a stray
465 * interrupt and can just return, leaving the interrupt masked.
467 * We need to schedule the interrupt and set its i_running bit. If
468 * we are not on the interrupt thread's cpu we have to send a message
469 * to the correct cpu that will issue the desired action (interlocking
470 * with the interrupt thread's critical section). We do NOT attempt to
471 * reschedule interrupts whos i_running bit is already set because
472 * this would prematurely wakeup a livelock-limited interrupt thread.
474 * i_running is only tested/set on the same cpu as the interrupt thread.
476 * We are NOT in a critical section, which will allow the scheduled
477 * interrupt to preempt us. The MP lock might *NOT* be held here.
479 #ifdef SMP
481 static void
482 sched_ithd_remote(void *arg)
484 sched_ithd((int)arg);
487 #endif
489 void
490 sched_ithd(int intr)
492 struct intr_info *info;
494 info = &intr_info_ary[intr];
496 ++info->i_count;
497 if (info->i_state != ISTATE_NOTHREAD) {
498 if (info->i_reclist == NULL) {
499 report_stray_interrupt(intr, info);
500 } else {
501 #ifdef SMP
502 if (info->i_thread.td_gd == mycpu) {
503 if (info->i_running == 0) {
504 info->i_running = 1;
505 if (info->i_state != ISTATE_LIVELOCKED)
506 lwkt_schedule(&info->i_thread); /* MIGHT PREEMPT */
508 } else {
509 lwkt_send_ipiq(info->i_thread.td_gd,
510 sched_ithd_remote, (void *)intr);
512 #else
513 if (info->i_running == 0) {
514 info->i_running = 1;
515 if (info->i_state != ISTATE_LIVELOCKED)
516 lwkt_schedule(&info->i_thread); /* MIGHT PREEMPT */
518 #endif
520 } else {
521 report_stray_interrupt(intr, info);
525 static void
526 report_stray_interrupt(int intr, struct intr_info *info)
528 ++info->i_straycount;
529 if (info->i_straycount < 10) {
530 if (info->i_errorticks == ticks)
531 return;
532 info->i_errorticks = ticks;
533 kprintf("sched_ithd: stray interrupt %d on cpu %d\n",
534 intr, mycpuid);
535 } else if (info->i_straycount == 10) {
536 kprintf("sched_ithd: %ld stray interrupts %d on cpu %d - "
537 "there will be no further reports\n",
538 info->i_straycount, intr, mycpuid);
543 * This is run from a periodic SYSTIMER (and thus must be MP safe, the BGL
544 * might not be held).
546 static void
547 ithread_livelock_wakeup(systimer_t st)
549 struct intr_info *info;
551 info = &intr_info_ary[(int)(intptr_t)st->data];
552 if (info->i_state != ISTATE_NOTHREAD)
553 lwkt_schedule(&info->i_thread);
557 * Schedule ithread within fast intr handler
559 * XXX Protect sched_ithd() call with gd_intr_nesting_level?
560 * Interrupts aren't enabled, but still...
562 static __inline void
563 ithread_fast_sched(int intr, thread_t td)
565 ++td->td_nest_count;
568 * We are already in critical section, exit it now to
569 * allow preemption.
571 crit_exit_quick(td);
572 sched_ithd(intr);
573 crit_enter_quick(td);
575 --td->td_nest_count;
579 * This function is called directly from the ICU or APIC vector code assembly
580 * to process an interrupt. The critical section and interrupt deferral
581 * checks have already been done but the function is entered WITHOUT
582 * a critical section held. The BGL may or may not be held.
584 * Must return non-zero if we do not want the vector code to re-enable
585 * the interrupt (which we don't if we have to schedule the interrupt)
587 int ithread_fast_handler(struct intrframe *frame);
590 ithread_fast_handler(struct intrframe *frame)
592 int intr;
593 struct intr_info *info;
594 struct intrec **list;
595 int must_schedule;
596 #ifdef SMP
597 int got_mplock;
598 #endif
599 intrec_t rec, next_rec;
600 globaldata_t gd;
601 thread_t td;
603 intr = frame->if_vec;
604 gd = mycpu;
605 td = curthread;
607 /* We must be in critical section. */
608 KKASSERT(td->td_pri >= TDPRI_CRIT);
610 info = &intr_info_ary[intr];
613 * If we are not processing any FAST interrupts, just schedule the thing.
615 if (info->i_fast == 0) {
616 ++gd->gd_cnt.v_intr;
617 ithread_fast_sched(intr, td);
618 return(1);
622 * This should not normally occur since interrupts ought to be
623 * masked if the ithread has been scheduled or is running.
625 if (info->i_running)
626 return(1);
629 * Bump the interrupt nesting level to process any FAST interrupts.
630 * Obtain the MP lock as necessary. If the MP lock cannot be obtained,
631 * schedule the interrupt thread to deal with the issue instead.
633 * To reduce overhead, just leave the MP lock held once it has been
634 * obtained.
636 ++gd->gd_intr_nesting_level;
637 ++gd->gd_cnt.v_intr;
638 must_schedule = info->i_slow;
639 #ifdef SMP
640 got_mplock = 0;
641 #endif
643 list = &info->i_reclist;
644 for (rec = *list; rec; rec = next_rec) {
645 next_rec = rec->next; /* rec may be invalid after call */
647 if (rec->intr_flags & INTR_FAST) {
648 #ifdef SMP
649 if ((rec->intr_flags & INTR_MPSAFE) == 0 && got_mplock == 0) {
650 if (try_mplock() == 0) {
651 /* Couldn't get the MP lock; just schedule it. */
652 must_schedule = 1;
653 break;
655 got_mplock = 1;
657 #endif
658 if (rec->serializer) {
659 must_schedule += lwkt_serialize_handler_try(
660 rec->serializer, rec->handler,
661 rec->argument, frame);
662 } else {
663 rec->handler(rec->argument, frame);
669 * Cleanup
671 --gd->gd_intr_nesting_level;
672 #ifdef SMP
673 if (got_mplock)
674 rel_mplock();
675 #endif
678 * If we had a problem, or mixed fast and slow interrupt handlers are
679 * registered, schedule the ithread to catch the missed records (it
680 * will just re-run all of them). A return value of 0 indicates that
681 * all handlers have been run and the interrupt can be re-enabled, and
682 * a non-zero return indicates that the interrupt thread controls
683 * re-enablement.
685 if (must_schedule > 0)
686 ithread_fast_sched(intr, td);
687 else if (must_schedule == 0)
688 ++info->i_count;
689 return(must_schedule);
693 * Interrupt threads run this as their main loop.
695 * The handler begins execution outside a critical section and with the BGL
696 * held.
698 * The i_running state starts at 0. When an interrupt occurs, the hardware
699 * interrupt is disabled and sched_ithd() The HW interrupt remains disabled
700 * until all routines have run. We then call ithread_done() to reenable
701 * the HW interrupt and deschedule us until the next interrupt.
703 * We are responsible for atomically checking i_running and ithread_done()
704 * is responsible for atomically checking for platform-specific delayed
705 * interrupts. i_running for our irq is only set in the context of our cpu,
706 * so a critical section is a sufficient interlock.
708 #define LIVELOCK_TIMEFRAME(freq) ((freq) >> 2) /* 1/4 second */
710 static void
711 ithread_handler(void *arg)
713 struct intr_info *info;
714 int use_limit;
715 __uint32_t lseconds;
716 int intr;
717 int mpheld;
718 struct intrec **list;
719 intrec_t rec, nrec;
720 globaldata_t gd;
721 struct systimer ill_timer; /* enforced freq. timer */
722 u_int ill_count; /* interrupt livelock counter */
724 ill_count = 0;
725 intr = (int)(intptr_t)arg;
726 info = &intr_info_ary[intr];
727 list = &info->i_reclist;
728 gd = mycpu;
729 lseconds = gd->gd_time_seconds;
732 * The loop must be entered with one critical section held. The thread
733 * is created with TDF_MPSAFE so the MP lock is not held on start.
735 crit_enter_gd(gd);
736 mpheld = 0;
738 for (;;) {
740 * The chain is only considered MPSAFE if all its interrupt handlers
741 * are MPSAFE. However, if intr_mpsafe has been turned off we
742 * always operate with the BGL.
744 #ifdef SMP
745 if (intr_mpsafe == 0) {
746 if (mpheld == 0) {
747 get_mplock();
748 mpheld = 1;
750 } else if (info->i_mplock_required != mpheld) {
751 if (info->i_mplock_required) {
752 KKASSERT(mpheld == 0);
753 get_mplock();
754 mpheld = 1;
755 } else {
756 KKASSERT(mpheld != 0);
757 rel_mplock();
758 mpheld = 0;
761 #endif
764 * If an interrupt is pending, clear i_running and execute the
765 * handlers. Note that certain types of interrupts can re-trigger
766 * and set i_running again.
768 * Each handler is run in a critical section. Note that we run both
769 * FAST and SLOW designated service routines.
771 if (info->i_running) {
772 ++ill_count;
773 info->i_running = 0;
775 if (*list == NULL)
776 report_stray_interrupt(intr, info);
778 for (rec = *list; rec; rec = nrec) {
779 nrec = rec->next;
780 if (rec->serializer) {
781 lwkt_serialize_handler_call(rec->serializer, rec->handler,
782 rec->argument, NULL);
783 } else {
784 rec->handler(rec->argument, NULL);
790 * This is our interrupt hook to add rate randomness to the random
791 * number generator.
793 if (info->i_random.sc_enabled > 0)
794 add_interrupt_randomness(intr);
797 * Unmask the interrupt to allow it to trigger again. This only
798 * applies to certain types of interrupts (typ level interrupts).
799 * This can result in the interrupt retriggering, but the retrigger
800 * will not be processed until we cycle our critical section.
802 * Only unmask interrupts while handlers are installed. It is
803 * possible to hit a situation where no handlers are installed
804 * due to a device driver livelocking and then tearing down its
805 * interrupt on close (the parallel bus being a good example).
807 if (*list)
808 machintr_intren(intr);
811 * Do a quick exit/enter to catch any higher-priority interrupt
812 * sources, such as the statclock, so thread time accounting
813 * will still work. This may also cause an interrupt to re-trigger.
815 crit_exit_gd(gd);
816 crit_enter_gd(gd);
819 * LIVELOCK STATE MACHINE
821 switch(info->i_state) {
822 case ISTATE_NORMAL:
824 * Reset the count each second.
826 if (lseconds != gd->gd_time_seconds) {
827 lseconds = gd->gd_time_seconds;
828 ill_count = 0;
832 * If we did not exceed the frequency limit, we are done.
833 * If the interrupt has not retriggered we deschedule ourselves.
835 if (ill_count <= livelock_limit) {
836 if (info->i_running == 0) {
837 lwkt_deschedule_self(gd->gd_curthread);
838 lwkt_switch();
840 break;
844 * Otherwise we are livelocked. Set up a periodic systimer
845 * to wake the thread up at the limit frequency.
847 kprintf("intr %d at %d/%d hz, livelocked limit engaged!\n",
848 intr, ill_count, livelock_limit);
849 info->i_state = ISTATE_LIVELOCKED;
850 if ((use_limit = livelock_limit) < 100)
851 use_limit = 100;
852 else if (use_limit > 500000)
853 use_limit = 500000;
854 systimer_init_periodic_nq(&ill_timer, ithread_livelock_wakeup,
855 (void *)(intptr_t)intr, use_limit);
856 /* fall through */
857 case ISTATE_LIVELOCKED:
859 * Wait for our periodic timer to go off. Since the interrupt
860 * has re-armed it can still set i_running, but it will not
861 * reschedule us while we are in a livelocked state.
863 lwkt_deschedule_self(gd->gd_curthread);
864 lwkt_switch();
867 * Check once a second to see if the livelock condition no
868 * longer applies.
870 if (lseconds != gd->gd_time_seconds) {
871 lseconds = gd->gd_time_seconds;
872 if (ill_count < livelock_lowater) {
873 info->i_state = ISTATE_NORMAL;
874 systimer_del(&ill_timer);
875 kprintf("intr %d at %d/%d hz, livelock removed\n",
876 intr, ill_count, livelock_lowater);
877 } else if (livelock_debug == intr ||
878 (bootverbose && cold)) {
879 kprintf("intr %d at %d/%d hz, in livelock\n",
880 intr, ill_count, livelock_lowater);
882 ill_count = 0;
884 break;
887 /* not reached */
891 * Emergency interrupt polling thread. The thread begins execution
892 * outside a critical section with the BGL held.
894 * If emergency interrupt polling is enabled, this thread will
895 * execute all system interrupts not marked INTR_NOPOLL at the
896 * specified polling frequency.
898 * WARNING! This thread runs *ALL* interrupt service routines that
899 * are not marked INTR_NOPOLL, which basically means everything except
900 * the 8254 clock interrupt and the ATA interrupt. It has very high
901 * overhead and should only be used in situations where the machine
902 * cannot otherwise be made to work. Due to the severe performance
903 * degredation, it should not be enabled on production machines.
905 static void
906 ithread_emergency(void *arg __unused)
908 struct intr_info *info;
909 intrec_t rec, nrec;
910 int intr;
912 for (;;) {
913 for (intr = 0; intr < max_installed_hard_intr; ++intr) {
914 info = &intr_info_ary[intr];
915 for (rec = info->i_reclist; rec; rec = nrec) {
916 if ((rec->intr_flags & INTR_NOPOLL) == 0) {
917 if (rec->serializer) {
918 lwkt_serialize_handler_call(rec->serializer,
919 rec->handler, rec->argument, NULL);
920 } else {
921 rec->handler(rec->argument, NULL);
924 nrec = rec->next;
927 lwkt_deschedule_self(curthread);
928 lwkt_switch();
933 * Systimer callback - schedule the emergency interrupt poll thread
934 * if emergency polling is enabled.
936 static
937 void
938 emergency_intr_timer_callback(systimer_t info, struct intrframe *frame __unused)
940 if (emergency_intr_enable)
941 lwkt_schedule(info->data);
945 ithread_cpuid(int intr)
947 const struct intr_info *info;
949 KKASSERT(intr >= 0 && intr < MAX_INTS);
950 info = &intr_info_ary[intr];
952 if (info->i_state == ISTATE_NOTHREAD)
953 return -1;
954 return info->i_thread.td_gd->gd_cpuid;
958 * Sysctls used by systat and others: hw.intrnames and hw.intrcnt.
959 * The data for this machine dependent, and the declarations are in machine
960 * dependent code. The layout of intrnames and intrcnt however is machine
961 * independent.
963 * We do not know the length of intrcnt and intrnames at compile time, so
964 * calculate things at run time.
967 static int
968 sysctl_intrnames(SYSCTL_HANDLER_ARGS)
970 struct intr_info *info;
971 intrec_t rec;
972 int error = 0;
973 int len;
974 int intr;
975 char buf[64];
977 for (intr = 0; error == 0 && intr < MAX_INTS; ++intr) {
978 info = &intr_info_ary[intr];
980 len = 0;
981 buf[0] = 0;
982 for (rec = info->i_reclist; rec; rec = rec->next) {
983 ksnprintf(buf + len, sizeof(buf) - len, "%s%s",
984 (len ? "/" : ""), rec->name);
985 len += strlen(buf + len);
987 if (len == 0) {
988 ksnprintf(buf, sizeof(buf), "irq%d", intr);
989 len = strlen(buf);
991 error = SYSCTL_OUT(req, buf, len + 1);
993 return (error);
997 SYSCTL_PROC(_hw, OID_AUTO, intrnames, CTLTYPE_OPAQUE | CTLFLAG_RD,
998 NULL, 0, sysctl_intrnames, "", "Interrupt Names");
1000 static int
1001 sysctl_intrcnt(SYSCTL_HANDLER_ARGS)
1003 struct intr_info *info;
1004 int error = 0;
1005 int intr;
1007 for (intr = 0; intr < max_installed_hard_intr; ++intr) {
1008 info = &intr_info_ary[intr];
1010 error = SYSCTL_OUT(req, &info->i_count, sizeof(info->i_count));
1011 if (error)
1012 goto failed;
1014 for (intr = FIRST_SOFTINT; intr < max_installed_soft_intr; ++intr) {
1015 info = &intr_info_ary[intr];
1017 error = SYSCTL_OUT(req, &info->i_count, sizeof(info->i_count));
1018 if (error)
1019 goto failed;
1021 failed:
1022 return(error);
1025 SYSCTL_PROC(_hw, OID_AUTO, intrcnt, CTLTYPE_OPAQUE | CTLFLAG_RD,
1026 NULL, 0, sysctl_intrcnt, "", "Interrupt Counts");
1028 static void
1029 int_moveto_destcpu(int *orig_cpuid0, int *cpuid0, int intr)
1031 int orig_cpuid = mycpuid, cpuid;
1032 char envpath[32];
1034 cpuid = orig_cpuid;
1035 ksnprintf(envpath, sizeof(envpath), "hw.irq.%d.dest", intr);
1036 kgetenv_int(envpath, &cpuid);
1037 if (cpuid >= ncpus)
1038 cpuid = orig_cpuid;
1040 if (cpuid != orig_cpuid)
1041 lwkt_migratecpu(cpuid);
1043 *orig_cpuid0 = orig_cpuid;
1044 *cpuid0 = cpuid;
1047 static void
1048 int_moveto_origcpu(int orig_cpuid, int cpuid)
1050 if (cpuid != orig_cpuid)
1051 lwkt_migratecpu(orig_cpuid);