2 * Copyright (c) 2003,2004 The DragonFly Project. All rights reserved.
4 * This code is derived from software contributed to The DragonFly Project
5 * by Matthew Dillon <dillon@backplane.com>
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following conditions
11 * 1. Redistributions of source code must retain the above copyright
12 * notice, this list of conditions and the following disclaimer.
13 * 2. Redistributions in binary form must reproduce the above copyright
14 * notice, this list of conditions and the following disclaimer in
15 * the documentation and/or other materials provided with the
17 * 3. Neither the name of The DragonFly Project nor the names of its
18 * contributors may be used to endorse or promote products derived
19 * from this software without specific, prior written permission.
21 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
22 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
23 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
24 * FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
25 * COPYRIGHT HOLDERS OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
26 * INCIDENTAL, SPECIAL, EXEMPLARY OR CONSEQUENTIAL DAMAGES (INCLUDING,
27 * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
28 * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
29 * AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
30 * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT
31 * OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
34 * Copyright (c) 1997, 1998 Poul-Henning Kamp <phk@FreeBSD.org>
35 * Copyright (c) 1982, 1986, 1991, 1993
36 * The Regents of the University of California. All rights reserved.
37 * (c) UNIX System Laboratories, Inc.
38 * All or some portions of this file are derived from material licensed
39 * to the University of California by American Telephone and Telegraph
40 * Co. or Unix System Laboratories, Inc. and are reproduced herein with
41 * the permission of UNIX System Laboratories, Inc.
43 * Redistribution and use in source and binary forms, with or without
44 * modification, are permitted provided that the following conditions
46 * 1. Redistributions of source code must retain the above copyright
47 * notice, this list of conditions and the following disclaimer.
48 * 2. Redistributions in binary form must reproduce the above copyright
49 * notice, this list of conditions and the following disclaimer in the
50 * documentation and/or other materials provided with the distribution.
51 * 3. All advertising materials mentioning features or use of this software
52 * must display the following acknowledgement:
53 * This product includes software developed by the University of
54 * California, Berkeley and its contributors.
55 * 4. Neither the name of the University nor the names of its contributors
56 * may be used to endorse or promote products derived from this software
57 * without specific prior written permission.
59 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
60 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
61 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
62 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
63 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
64 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
65 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
66 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
67 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
68 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
71 * @(#)kern_clock.c 8.5 (Berkeley) 1/21/94
72 * $FreeBSD: src/sys/kern/kern_clock.c,v 1.105.2.10 2002/10/17 13:19:40 maxim Exp $
73 * $DragonFly: src/sys/kern/kern_clock.c,v 1.62 2008/09/09 04:06:13 dillon Exp $
77 #include "opt_polling.h"
78 #include "opt_ifpoll.h"
79 #include "opt_pctrack.h"
81 #include <sys/param.h>
82 #include <sys/systm.h>
83 #include <sys/callout.h>
84 #include <sys/kernel.h>
85 #include <sys/kinfo.h>
87 #include <sys/malloc.h>
88 #include <sys/resourcevar.h>
89 #include <sys/signalvar.h>
90 #include <sys/timex.h>
91 #include <sys/timepps.h>
95 #include <vm/vm_map.h>
96 #include <vm/vm_extern.h>
97 #include <sys/sysctl.h>
98 #include <sys/thread2.h>
100 #include <machine/cpu.h>
101 #include <machine/limits.h>
102 #include <machine/smp.h>
105 #include <sys/gmon.h>
108 #ifdef DEVICE_POLLING
109 extern void init_device_poll_pcpu(int);
113 extern void ifpoll_init_pcpu(int);
117 static void do_pctrack(struct intrframe
*frame
, int which
);
120 static void initclocks (void *dummy
);
121 SYSINIT(clocks
, SI_BOOT2_CLOCKS
, SI_ORDER_FIRST
, initclocks
, NULL
)
124 * Some of these don't belong here, but it's easiest to concentrate them.
125 * Note that cpu_time counts in microseconds, but most userland programs
126 * just compare relative times against the total by delta.
128 struct kinfo_cputime cputime_percpu
[MAXCPU
];
130 struct kinfo_pcheader cputime_pcheader
= { PCTRACK_SIZE
, PCTRACK_ARYSIZE
};
131 struct kinfo_pctrack cputime_pctrack
[MAXCPU
][PCTRACK_SIZE
];
136 sysctl_cputime(SYSCTL_HANDLER_ARGS
)
139 size_t size
= sizeof(struct kinfo_cputime
);
141 for (cpu
= 0; cpu
< ncpus
; ++cpu
) {
142 if ((error
= SYSCTL_OUT(req
, &cputime_percpu
[cpu
], size
)))
148 SYSCTL_PROC(_kern
, OID_AUTO
, cputime
, (CTLTYPE_OPAQUE
|CTLFLAG_RD
), 0, 0,
149 sysctl_cputime
, "S,kinfo_cputime", "CPU time statistics");
151 SYSCTL_STRUCT(_kern
, OID_AUTO
, cputime
, CTLFLAG_RD
, &cpu_time
, kinfo_cputime
,
152 "CPU time statistics");
156 * boottime is used to calculate the 'real' uptime. Do not confuse this with
157 * microuptime(). microtime() is not drift compensated. The real uptime
158 * with compensation is nanotime() - bootime. boottime is recalculated
159 * whenever the real time is set based on the compensated elapsed time
160 * in seconds (gd->gd_time_seconds).
162 * The gd_time_seconds and gd_cpuclock_base fields remain fairly monotonic.
163 * Slight adjustments to gd_cpuclock_base are made to phase-lock it to
166 struct timespec boottime
; /* boot time (realtime) for reference only */
167 time_t time_second
; /* read-only 'passive' uptime in seconds */
170 * basetime is used to calculate the compensated real time of day. The
171 * basetime can be modified on a per-tick basis by the adjtime(),
172 * ntp_adjtime(), and sysctl-based time correction APIs.
174 * Note that frequency corrections can also be made by adjusting
177 * basetime is a tail-chasing FIFO, updated only by cpu #0. The FIFO is
178 * used on both SMP and UP systems to avoid MP races between cpu's and
179 * interrupt races on UP systems.
181 #define BASETIME_ARYSIZE 16
182 #define BASETIME_ARYMASK (BASETIME_ARYSIZE - 1)
183 static struct timespec basetime
[BASETIME_ARYSIZE
];
184 static volatile int basetime_index
;
187 sysctl_get_basetime(SYSCTL_HANDLER_ARGS
)
194 * Because basetime data and index may be updated by another cpu,
195 * a load fence is required to ensure that the data we read has
196 * not been speculatively read relative to a possibly updated index.
198 index
= basetime_index
;
200 bt
= &basetime
[index
];
201 error
= SYSCTL_OUT(req
, bt
, sizeof(*bt
));
205 SYSCTL_STRUCT(_kern
, KERN_BOOTTIME
, boottime
, CTLFLAG_RD
,
206 &boottime
, timespec
, "System boottime");
207 SYSCTL_PROC(_kern
, OID_AUTO
, basetime
, CTLTYPE_STRUCT
|CTLFLAG_RD
, 0, 0,
208 sysctl_get_basetime
, "S,timespec", "System basetime");
210 static void hardclock(systimer_t info
, struct intrframe
*frame
);
211 static void statclock(systimer_t info
, struct intrframe
*frame
);
212 static void schedclock(systimer_t info
, struct intrframe
*frame
);
213 static void getnanotime_nbt(struct timespec
*nbt
, struct timespec
*tsp
);
215 int ticks
; /* system master ticks at hz */
216 int clocks_running
; /* tsleep/timeout clocks operational */
217 int64_t nsec_adj
; /* ntpd per-tick adjustment in nsec << 32 */
218 int64_t nsec_acc
; /* accumulator */
220 /* NTPD time correction fields */
221 int64_t ntp_tick_permanent
; /* per-tick adjustment in nsec << 32 */
222 int64_t ntp_tick_acc
; /* accumulator for per-tick adjustment */
223 int64_t ntp_delta
; /* one-time correction in nsec */
224 int64_t ntp_big_delta
= 1000000000;
225 int32_t ntp_tick_delta
; /* current adjustment rate */
226 int32_t ntp_default_tick_delta
; /* adjustment rate for ntp_delta */
227 time_t ntp_leap_second
; /* time of next leap second */
228 int ntp_leap_insert
; /* whether to insert or remove a second */
231 * Finish initializing clock frequencies and start all clocks running.
235 initclocks(void *dummy
)
237 /*psratio = profhz / stathz;*/
243 * Called on a per-cpu basis
246 initclocks_pcpu(void)
248 struct globaldata
*gd
= mycpu
;
251 if (gd
->gd_cpuid
== 0) {
252 gd
->gd_time_seconds
= 1;
253 gd
->gd_cpuclock_base
= sys_cputimer
->count();
256 gd
->gd_time_seconds
= globaldata_find(0)->gd_time_seconds
;
257 gd
->gd_cpuclock_base
= globaldata_find(0)->gd_cpuclock_base
;
260 systimer_intr_enable();
262 #ifdef DEVICE_POLLING
263 init_device_poll_pcpu(gd
->gd_cpuid
);
267 ifpoll_init_pcpu(gd
->gd_cpuid
);
271 * Use a non-queued periodic systimer to prevent multiple ticks from
272 * building up if the sysclock jumps forward (8254 gets reset). The
273 * sysclock will never jump backwards. Our time sync is based on
274 * the actual sysclock, not the ticks count.
276 systimer_init_periodic_nq(&gd
->gd_hardclock
, hardclock
, NULL
, hz
);
277 systimer_init_periodic_nq(&gd
->gd_statclock
, statclock
, NULL
, stathz
);
278 /* XXX correct the frequency for scheduler / estcpu tests */
279 systimer_init_periodic_nq(&gd
->gd_schedclock
, schedclock
,
285 * This sets the current real time of day. Timespecs are in seconds and
286 * nanoseconds. We do not mess with gd_time_seconds and gd_cpuclock_base,
287 * instead we adjust basetime so basetime + gd_* results in the current
288 * time of day. This way the gd_* fields are guarenteed to represent
289 * a monotonically increasing 'uptime' value.
291 * When set_timeofday() is called from userland, the system call forces it
292 * onto cpu #0 since only cpu #0 can update basetime_index.
295 set_timeofday(struct timespec
*ts
)
297 struct timespec
*nbt
;
301 * XXX SMP / non-atomic basetime updates
304 ni
= (basetime_index
+ 1) & BASETIME_ARYMASK
;
307 nbt
->tv_sec
= ts
->tv_sec
- nbt
->tv_sec
;
308 nbt
->tv_nsec
= ts
->tv_nsec
- nbt
->tv_nsec
;
309 if (nbt
->tv_nsec
< 0) {
310 nbt
->tv_nsec
+= 1000000000;
315 * Note that basetime diverges from boottime as the clock drift is
316 * compensated for, so we cannot do away with boottime. When setting
317 * the absolute time of day the drift is 0 (for an instant) and we
318 * can simply assign boottime to basetime.
320 * Note that nanouptime() is based on gd_time_seconds which is drift
321 * compensated up to a point (it is guarenteed to remain monotonically
322 * increasing). gd_time_seconds is thus our best uptime guess and
323 * suitable for use in the boottime calculation. It is already taken
324 * into account in the basetime calculation above.
326 boottime
.tv_sec
= nbt
->tv_sec
;
330 * We now have a new basetime, make sure all other cpus have it,
331 * then update the index.
340 * Each cpu has its own hardclock, but we only increments ticks and softticks
343 * NOTE! systimer! the MP lock might not be held here. We can only safely
344 * manipulate objects owned by the current cpu.
347 hardclock(systimer_t info
, struct intrframe
*frame
)
351 struct globaldata
*gd
= mycpu
;
354 * Realtime updates are per-cpu. Note that timer corrections as
355 * returned by microtime() and friends make an additional adjustment
356 * using a system-wise 'basetime', but the running time is always
357 * taken from the per-cpu globaldata area. Since the same clock
358 * is distributing (XXX SMP) to all cpus, the per-cpu timebases
361 * Note that we never allow info->time (aka gd->gd_hardclock.time)
362 * to reverse index gd_cpuclock_base, but that it is possible for
363 * it to temporarily get behind in the seconds if something in the
364 * system locks interrupts for a long period of time. Since periodic
365 * timers count events, though everything should resynch again
368 cputicks
= info
->time
- gd
->gd_cpuclock_base
;
369 if (cputicks
>= sys_cputimer
->freq
) {
370 ++gd
->gd_time_seconds
;
371 gd
->gd_cpuclock_base
+= sys_cputimer
->freq
;
375 * The system-wide ticks counter and NTP related timedelta/tickdelta
376 * adjustments only occur on cpu #0. NTP adjustments are accomplished
377 * by updating basetime.
379 if (gd
->gd_cpuid
== 0) {
380 struct timespec
*nbt
;
388 if (tco
->tc_poll_pps
)
389 tco
->tc_poll_pps(tco
);
393 * Calculate the new basetime index. We are in a critical section
394 * on cpu #0 and can safely play with basetime_index. Start
395 * with the current basetime and then make adjustments.
397 ni
= (basetime_index
+ 1) & BASETIME_ARYMASK
;
399 *nbt
= basetime
[basetime_index
];
402 * Apply adjtime corrections. (adjtime() API)
404 * adjtime() only runs on cpu #0 so our critical section is
405 * sufficient to access these variables.
407 if (ntp_delta
!= 0) {
408 nbt
->tv_nsec
+= ntp_tick_delta
;
409 ntp_delta
-= ntp_tick_delta
;
410 if ((ntp_delta
> 0 && ntp_delta
< ntp_tick_delta
) ||
411 (ntp_delta
< 0 && ntp_delta
> ntp_tick_delta
)) {
412 ntp_tick_delta
= ntp_delta
;
417 * Apply permanent frequency corrections. (sysctl API)
419 if (ntp_tick_permanent
!= 0) {
420 ntp_tick_acc
+= ntp_tick_permanent
;
421 if (ntp_tick_acc
>= (1LL << 32)) {
422 nbt
->tv_nsec
+= ntp_tick_acc
>> 32;
423 ntp_tick_acc
-= (ntp_tick_acc
>> 32) << 32;
424 } else if (ntp_tick_acc
<= -(1LL << 32)) {
425 /* Negate ntp_tick_acc to avoid shifting the sign bit. */
426 nbt
->tv_nsec
-= (-ntp_tick_acc
) >> 32;
427 ntp_tick_acc
+= ((-ntp_tick_acc
) >> 32) << 32;
431 if (nbt
->tv_nsec
>= 1000000000) {
433 nbt
->tv_nsec
-= 1000000000;
434 } else if (nbt
->tv_nsec
< 0) {
436 nbt
->tv_nsec
+= 1000000000;
440 * Another per-tick compensation. (for ntp_adjtime() API)
443 nsec_acc
+= nsec_adj
;
444 if (nsec_acc
>= 0x100000000LL
) {
445 nbt
->tv_nsec
+= nsec_acc
>> 32;
446 nsec_acc
= (nsec_acc
& 0xFFFFFFFFLL
);
447 } else if (nsec_acc
<= -0x100000000LL
) {
448 nbt
->tv_nsec
-= -nsec_acc
>> 32;
449 nsec_acc
= -(-nsec_acc
& 0xFFFFFFFFLL
);
451 if (nbt
->tv_nsec
>= 1000000000) {
452 nbt
->tv_nsec
-= 1000000000;
454 } else if (nbt
->tv_nsec
< 0) {
455 nbt
->tv_nsec
+= 1000000000;
460 /************************************************************
461 * LEAP SECOND CORRECTION *
462 ************************************************************
464 * Taking into account all the corrections made above, figure
465 * out the new real time. If the seconds field has changed
466 * then apply any pending leap-second corrections.
468 getnanotime_nbt(nbt
, &nts
);
470 if (time_second
!= nts
.tv_sec
) {
472 * Apply leap second (sysctl API). Adjust nts for changes
473 * so we do not have to call getnanotime_nbt again.
475 if (ntp_leap_second
) {
476 if (ntp_leap_second
== nts
.tv_sec
) {
477 if (ntp_leap_insert
) {
489 * Apply leap second (ntp_adjtime() API), calculate a new
490 * nsec_adj field. ntp_update_second() returns nsec_adj
491 * as a per-second value but we need it as a per-tick value.
493 leap
= ntp_update_second(time_second
, &nsec_adj
);
499 * Update the time_second 'approximate time' global.
501 time_second
= nts
.tv_sec
;
505 * Finally, our new basetime is ready to go live!
511 * Figure out how badly the system is starved for memory
513 vm_fault_ratecheck();
517 * softticks are handled for all cpus
519 hardclock_softtick(gd
);
522 * The LWKT scheduler will generally allow the current process to
523 * return to user mode even if there are other runnable LWKT threads
524 * running in kernel mode on behalf of a user process. This will
525 * ensure that those other threads have an opportunity to run in
526 * fairly short order (but not instantly).
531 * ITimer handling is per-tick, per-cpu. I don't think ksignal()
532 * is mpsafe on curproc, so XXX get the mplock.
534 if ((p
= curproc
) != NULL
&& try_mplock()) {
535 if (frame
&& CLKF_USERMODE(frame
) &&
536 timevalisset(&p
->p_timer
[ITIMER_VIRTUAL
].it_value
) &&
537 itimerdecr(&p
->p_timer
[ITIMER_VIRTUAL
], tick
) == 0)
538 ksignal(p
, SIGVTALRM
);
539 if (timevalisset(&p
->p_timer
[ITIMER_PROF
].it_value
) &&
540 itimerdecr(&p
->p_timer
[ITIMER_PROF
], tick
) == 0)
548 * The statistics clock typically runs at a 125Hz rate, and is intended
549 * to be frequency offset from the hardclock (typ 100Hz). It is per-cpu.
551 * NOTE! systimer! the MP lock might not be held here. We can only safely
552 * manipulate objects owned by the current cpu.
554 * The stats clock is responsible for grabbing a profiling sample.
555 * Most of the statistics are only used by user-level statistics programs.
556 * The main exceptions are p->p_uticks, p->p_sticks, p->p_iticks, and
559 * Like the other clocks, the stat clock is called from what is effectively
560 * a fast interrupt, so the context should be the thread/process that got
564 statclock(systimer_t info
, struct intrframe
*frame
)
577 * How big was our timeslice relative to the last time?
579 microuptime(&tv
); /* mpsafe */
580 stv
= &mycpu
->gd_stattv
;
581 if (stv
->tv_sec
== 0) {
584 bump
= tv
.tv_usec
- stv
->tv_usec
+
585 (tv
.tv_sec
- stv
->tv_sec
) * 1000000;
596 if (frame
&& CLKF_USERMODE(frame
)) {
598 * Came from userland, handle user time and deal with
601 if (p
&& (p
->p_flag
& P_PROFIL
))
602 addupc_intr(p
, CLKF_PC(frame
), 1);
603 td
->td_uticks
+= bump
;
606 * Charge the time as appropriate
608 if (p
&& p
->p_nice
> NZERO
)
609 cpu_time
.cp_nice
+= bump
;
611 cpu_time
.cp_user
+= bump
;
615 * Kernel statistics are just like addupc_intr, only easier.
618 if (g
->state
== GMON_PROF_ON
&& frame
) {
619 i
= CLKF_PC(frame
) - g
->lowpc
;
620 if (i
< g
->textsize
) {
621 i
/= HISTFRACTION
* sizeof(*g
->kcount
);
627 * Came from kernel mode, so we were:
628 * - handling an interrupt,
629 * - doing syscall or trap work on behalf of the current
631 * - spinning in the idle loop.
632 * Whichever it is, charge the time as appropriate.
633 * Note that we charge interrupts to the current process,
634 * regardless of whether they are ``for'' that process,
635 * so that we know how much of its real time was spent
636 * in ``non-process'' (i.e., interrupt) work.
638 * XXX assume system if frame is NULL. A NULL frame
639 * can occur if ipi processing is done from a crit_exit().
641 if (frame
&& CLKF_INTR(frame
))
642 td
->td_iticks
+= bump
;
644 td
->td_sticks
+= bump
;
646 if (frame
&& CLKF_INTR(frame
)) {
648 do_pctrack(frame
, PCTRACK_INT
);
650 cpu_time
.cp_intr
+= bump
;
652 if (td
== &mycpu
->gd_idlethread
) {
653 cpu_time
.cp_idle
+= bump
;
657 do_pctrack(frame
, PCTRACK_SYS
);
659 cpu_time
.cp_sys
+= bump
;
667 * Sample the PC when in the kernel or in an interrupt. User code can
668 * retrieve the information and generate a histogram or other output.
672 do_pctrack(struct intrframe
*frame
, int which
)
674 struct kinfo_pctrack
*pctrack
;
676 pctrack
= &cputime_pctrack
[mycpu
->gd_cpuid
][which
];
677 pctrack
->pc_array
[pctrack
->pc_index
& PCTRACK_ARYMASK
] =
678 (void *)CLKF_PC(frame
);
683 sysctl_pctrack(SYSCTL_HANDLER_ARGS
)
685 struct kinfo_pcheader head
;
690 head
.pc_ntrack
= PCTRACK_SIZE
;
691 head
.pc_arysize
= PCTRACK_ARYSIZE
;
693 if ((error
= SYSCTL_OUT(req
, &head
, sizeof(head
))) != 0)
696 for (cpu
= 0; cpu
< ncpus
; ++cpu
) {
697 for (ntrack
= 0; ntrack
< PCTRACK_SIZE
; ++ntrack
) {
698 error
= SYSCTL_OUT(req
, &cputime_pctrack
[cpu
][ntrack
],
699 sizeof(struct kinfo_pctrack
));
708 SYSCTL_PROC(_kern
, OID_AUTO
, pctrack
, (CTLTYPE_OPAQUE
|CTLFLAG_RD
), 0, 0,
709 sysctl_pctrack
, "S,kinfo_pcheader", "CPU PC tracking");
714 * The scheduler clock typically runs at a 50Hz rate. NOTE! systimer,
715 * the MP lock might not be held. We can safely manipulate parts of curproc
716 * but that's about it.
718 * Each cpu has its own scheduler clock.
721 schedclock(systimer_t info
, struct intrframe
*frame
)
728 if ((lp
= lwkt_preempted_proc()) != NULL
) {
730 * Account for cpu time used and hit the scheduler. Note
731 * that this call MUST BE MP SAFE, and the BGL IS NOT HELD
735 lp
->lwp_proc
->p_usched
->schedulerclock(lp
, info
->periodic
,
738 if ((lp
= curthread
->td_lwp
) != NULL
) {
740 * Update resource usage integrals and maximums.
742 if ((ru
= &lp
->lwp_proc
->p_ru
) &&
743 (vm
= lp
->lwp_proc
->p_vmspace
) != NULL
) {
744 ru
->ru_ixrss
+= pgtok(vm
->vm_tsize
);
745 ru
->ru_idrss
+= pgtok(vm
->vm_dsize
);
746 ru
->ru_isrss
+= pgtok(vm
->vm_ssize
);
747 rss
= pgtok(vmspace_resident_count(vm
));
748 if (ru
->ru_maxrss
< rss
)
755 * Compute number of ticks for the specified amount of time. The
756 * return value is intended to be used in a clock interrupt timed
757 * operation and guarenteed to meet or exceed the requested time.
758 * If the representation overflows, return INT_MAX. The minimum return
759 * value is 1 ticks and the function will average the calculation up.
760 * If any value greater then 0 microseconds is supplied, a value
761 * of at least 2 will be returned to ensure that a near-term clock
762 * interrupt does not cause the timeout to occur (degenerately) early.
764 * Note that limit checks must take into account microseconds, which is
765 * done simply by using the smaller signed long maximum instead of
766 * the unsigned long maximum.
768 * If ints have 32 bits, then the maximum value for any timeout in
769 * 10ms ticks is 248 days.
772 tvtohz_high(struct timeval
*tv
)
789 kprintf("tvtohz_high: negative time difference %ld sec %ld usec\n",
793 } else if (sec
<= INT_MAX
/ hz
) {
794 ticks
= (int)(sec
* hz
+
795 ((u_long
)usec
+ (tick
- 1)) / tick
) + 1;
803 * Compute number of ticks for the specified amount of time, erroring on
804 * the side of it being too low to ensure that sleeping the returned number
805 * of ticks will not result in a late return.
807 * The supplied timeval may not be negative and should be normalized. A
808 * return value of 0 is possible if the timeval converts to less then
811 * If ints have 32 bits, then the maximum value for any timeout in
812 * 10ms ticks is 248 days.
815 tvtohz_low(struct timeval
*tv
)
821 if (sec
<= INT_MAX
/ hz
)
822 ticks
= (int)(sec
* hz
+ (u_long
)tv
->tv_usec
/ tick
);
830 * Start profiling on a process.
832 * Kernel profiling passes proc0 which never exits and hence
833 * keeps the profile clock running constantly.
836 startprofclock(struct proc
*p
)
838 if ((p
->p_flag
& P_PROFIL
) == 0) {
839 p
->p_flag
|= P_PROFIL
;
841 if (++profprocs
== 1 && stathz
!= 0) {
844 setstatclockrate(profhz
);
852 * Stop profiling on a process.
855 stopprofclock(struct proc
*p
)
857 if (p
->p_flag
& P_PROFIL
) {
858 p
->p_flag
&= ~P_PROFIL
;
860 if (--profprocs
== 0 && stathz
!= 0) {
863 setstatclockrate(stathz
);
871 * Return information about system clocks.
874 sysctl_kern_clockrate(SYSCTL_HANDLER_ARGS
)
876 struct kinfo_clockinfo clkinfo
;
878 * Construct clockinfo structure.
881 clkinfo
.ci_tick
= tick
;
882 clkinfo
.ci_tickadj
= ntp_default_tick_delta
/ 1000;
883 clkinfo
.ci_profhz
= profhz
;
884 clkinfo
.ci_stathz
= stathz
? stathz
: hz
;
885 return (sysctl_handle_opaque(oidp
, &clkinfo
, sizeof clkinfo
, req
));
888 SYSCTL_PROC(_kern
, KERN_CLOCKRATE
, clockrate
, CTLTYPE_STRUCT
|CTLFLAG_RD
,
889 0, 0, sysctl_kern_clockrate
, "S,clockinfo","");
892 * We have eight functions for looking at the clock, four for
893 * microseconds and four for nanoseconds. For each there is fast
894 * but less precise version "get{nano|micro}[up]time" which will
895 * return a time which is up to 1/HZ previous to the call, whereas
896 * the raw version "{nano|micro}[up]time" will return a timestamp
897 * which is as precise as possible. The "up" variants return the
898 * time relative to system boot, these are well suited for time
899 * interval measurements.
901 * Each cpu independantly maintains the current time of day, so all
902 * we need to do to protect ourselves from changes is to do a loop
903 * check on the seconds field changing out from under us.
905 * The system timer maintains a 32 bit count and due to various issues
906 * it is possible for the calculated delta to occassionally exceed
907 * sys_cputimer->freq. If this occurs the sys_cputimer->freq64_nsec
908 * multiplication can easily overflow, so we deal with the case. For
909 * uniformity we deal with the case in the usec case too.
912 getmicrouptime(struct timeval
*tvp
)
914 struct globaldata
*gd
= mycpu
;
918 tvp
->tv_sec
= gd
->gd_time_seconds
;
919 delta
= gd
->gd_hardclock
.time
- gd
->gd_cpuclock_base
;
920 } while (tvp
->tv_sec
!= gd
->gd_time_seconds
);
922 if (delta
>= sys_cputimer
->freq
) {
923 tvp
->tv_sec
+= delta
/ sys_cputimer
->freq
;
924 delta
%= sys_cputimer
->freq
;
926 tvp
->tv_usec
= (sys_cputimer
->freq64_usec
* delta
) >> 32;
927 if (tvp
->tv_usec
>= 1000000) {
928 tvp
->tv_usec
-= 1000000;
934 getnanouptime(struct timespec
*tsp
)
936 struct globaldata
*gd
= mycpu
;
940 tsp
->tv_sec
= gd
->gd_time_seconds
;
941 delta
= gd
->gd_hardclock
.time
- gd
->gd_cpuclock_base
;
942 } while (tsp
->tv_sec
!= gd
->gd_time_seconds
);
944 if (delta
>= sys_cputimer
->freq
) {
945 tsp
->tv_sec
+= delta
/ sys_cputimer
->freq
;
946 delta
%= sys_cputimer
->freq
;
948 tsp
->tv_nsec
= (sys_cputimer
->freq64_nsec
* delta
) >> 32;
952 microuptime(struct timeval
*tvp
)
954 struct globaldata
*gd
= mycpu
;
958 tvp
->tv_sec
= gd
->gd_time_seconds
;
959 delta
= sys_cputimer
->count() - gd
->gd_cpuclock_base
;
960 } while (tvp
->tv_sec
!= gd
->gd_time_seconds
);
962 if (delta
>= sys_cputimer
->freq
) {
963 tvp
->tv_sec
+= delta
/ sys_cputimer
->freq
;
964 delta
%= sys_cputimer
->freq
;
966 tvp
->tv_usec
= (sys_cputimer
->freq64_usec
* delta
) >> 32;
970 nanouptime(struct timespec
*tsp
)
972 struct globaldata
*gd
= mycpu
;
976 tsp
->tv_sec
= gd
->gd_time_seconds
;
977 delta
= sys_cputimer
->count() - gd
->gd_cpuclock_base
;
978 } while (tsp
->tv_sec
!= gd
->gd_time_seconds
);
980 if (delta
>= sys_cputimer
->freq
) {
981 tsp
->tv_sec
+= delta
/ sys_cputimer
->freq
;
982 delta
%= sys_cputimer
->freq
;
984 tsp
->tv_nsec
= (sys_cputimer
->freq64_nsec
* delta
) >> 32;
992 getmicrotime(struct timeval
*tvp
)
994 struct globaldata
*gd
= mycpu
;
999 tvp
->tv_sec
= gd
->gd_time_seconds
;
1000 delta
= gd
->gd_hardclock
.time
- gd
->gd_cpuclock_base
;
1001 } while (tvp
->tv_sec
!= gd
->gd_time_seconds
);
1003 if (delta
>= sys_cputimer
->freq
) {
1004 tvp
->tv_sec
+= delta
/ sys_cputimer
->freq
;
1005 delta
%= sys_cputimer
->freq
;
1007 tvp
->tv_usec
= (sys_cputimer
->freq64_usec
* delta
) >> 32;
1009 bt
= &basetime
[basetime_index
];
1010 tvp
->tv_sec
+= bt
->tv_sec
;
1011 tvp
->tv_usec
+= bt
->tv_nsec
/ 1000;
1012 while (tvp
->tv_usec
>= 1000000) {
1013 tvp
->tv_usec
-= 1000000;
1019 getnanotime(struct timespec
*tsp
)
1021 struct globaldata
*gd
= mycpu
;
1022 struct timespec
*bt
;
1026 tsp
->tv_sec
= gd
->gd_time_seconds
;
1027 delta
= gd
->gd_hardclock
.time
- gd
->gd_cpuclock_base
;
1028 } while (tsp
->tv_sec
!= gd
->gd_time_seconds
);
1030 if (delta
>= sys_cputimer
->freq
) {
1031 tsp
->tv_sec
+= delta
/ sys_cputimer
->freq
;
1032 delta
%= sys_cputimer
->freq
;
1034 tsp
->tv_nsec
= (sys_cputimer
->freq64_nsec
* delta
) >> 32;
1036 bt
= &basetime
[basetime_index
];
1037 tsp
->tv_sec
+= bt
->tv_sec
;
1038 tsp
->tv_nsec
+= bt
->tv_nsec
;
1039 while (tsp
->tv_nsec
>= 1000000000) {
1040 tsp
->tv_nsec
-= 1000000000;
1046 getnanotime_nbt(struct timespec
*nbt
, struct timespec
*tsp
)
1048 struct globaldata
*gd
= mycpu
;
1052 tsp
->tv_sec
= gd
->gd_time_seconds
;
1053 delta
= gd
->gd_hardclock
.time
- gd
->gd_cpuclock_base
;
1054 } while (tsp
->tv_sec
!= gd
->gd_time_seconds
);
1056 if (delta
>= sys_cputimer
->freq
) {
1057 tsp
->tv_sec
+= delta
/ sys_cputimer
->freq
;
1058 delta
%= sys_cputimer
->freq
;
1060 tsp
->tv_nsec
= (sys_cputimer
->freq64_nsec
* delta
) >> 32;
1062 tsp
->tv_sec
+= nbt
->tv_sec
;
1063 tsp
->tv_nsec
+= nbt
->tv_nsec
;
1064 while (tsp
->tv_nsec
>= 1000000000) {
1065 tsp
->tv_nsec
-= 1000000000;
1072 microtime(struct timeval
*tvp
)
1074 struct globaldata
*gd
= mycpu
;
1075 struct timespec
*bt
;
1079 tvp
->tv_sec
= gd
->gd_time_seconds
;
1080 delta
= sys_cputimer
->count() - gd
->gd_cpuclock_base
;
1081 } while (tvp
->tv_sec
!= gd
->gd_time_seconds
);
1083 if (delta
>= sys_cputimer
->freq
) {
1084 tvp
->tv_sec
+= delta
/ sys_cputimer
->freq
;
1085 delta
%= sys_cputimer
->freq
;
1087 tvp
->tv_usec
= (sys_cputimer
->freq64_usec
* delta
) >> 32;
1089 bt
= &basetime
[basetime_index
];
1090 tvp
->tv_sec
+= bt
->tv_sec
;
1091 tvp
->tv_usec
+= bt
->tv_nsec
/ 1000;
1092 while (tvp
->tv_usec
>= 1000000) {
1093 tvp
->tv_usec
-= 1000000;
1099 nanotime(struct timespec
*tsp
)
1101 struct globaldata
*gd
= mycpu
;
1102 struct timespec
*bt
;
1106 tsp
->tv_sec
= gd
->gd_time_seconds
;
1107 delta
= sys_cputimer
->count() - gd
->gd_cpuclock_base
;
1108 } while (tsp
->tv_sec
!= gd
->gd_time_seconds
);
1110 if (delta
>= sys_cputimer
->freq
) {
1111 tsp
->tv_sec
+= delta
/ sys_cputimer
->freq
;
1112 delta
%= sys_cputimer
->freq
;
1114 tsp
->tv_nsec
= (sys_cputimer
->freq64_nsec
* delta
) >> 32;
1116 bt
= &basetime
[basetime_index
];
1117 tsp
->tv_sec
+= bt
->tv_sec
;
1118 tsp
->tv_nsec
+= bt
->tv_nsec
;
1119 while (tsp
->tv_nsec
>= 1000000000) {
1120 tsp
->tv_nsec
-= 1000000000;
1126 * note: this is not exactly synchronized with real time. To do that we
1127 * would have to do what microtime does and check for a nanoseconds overflow.
1130 get_approximate_time_t(void)
1132 struct globaldata
*gd
= mycpu
;
1133 struct timespec
*bt
;
1135 bt
= &basetime
[basetime_index
];
1136 return(gd
->gd_time_seconds
+ bt
->tv_sec
);
1140 pps_ioctl(u_long cmd
, caddr_t data
, struct pps_state
*pps
)
1143 struct pps_fetch_args
*fapi
;
1145 struct pps_kcbind_args
*kapi
;
1149 case PPS_IOC_CREATE
:
1151 case PPS_IOC_DESTROY
:
1153 case PPS_IOC_SETPARAMS
:
1154 app
= (pps_params_t
*)data
;
1155 if (app
->mode
& ~pps
->ppscap
)
1157 pps
->ppsparam
= *app
;
1159 case PPS_IOC_GETPARAMS
:
1160 app
= (pps_params_t
*)data
;
1161 *app
= pps
->ppsparam
;
1162 app
->api_version
= PPS_API_VERS_1
;
1164 case PPS_IOC_GETCAP
:
1165 *(int*)data
= pps
->ppscap
;
1168 fapi
= (struct pps_fetch_args
*)data
;
1169 if (fapi
->tsformat
&& fapi
->tsformat
!= PPS_TSFMT_TSPEC
)
1171 if (fapi
->timeout
.tv_sec
|| fapi
->timeout
.tv_nsec
)
1172 return (EOPNOTSUPP
);
1173 pps
->ppsinfo
.current_mode
= pps
->ppsparam
.mode
;
1174 fapi
->pps_info_buf
= pps
->ppsinfo
;
1176 case PPS_IOC_KCBIND
:
1178 kapi
= (struct pps_kcbind_args
*)data
;
1179 /* XXX Only root should be able to do this */
1180 if (kapi
->tsformat
&& kapi
->tsformat
!= PPS_TSFMT_TSPEC
)
1182 if (kapi
->kernel_consumer
!= PPS_KC_HARDPPS
)
1184 if (kapi
->edge
& ~pps
->ppscap
)
1186 pps
->kcmode
= kapi
->edge
;
1189 return (EOPNOTSUPP
);
1197 pps_init(struct pps_state
*pps
)
1199 pps
->ppscap
|= PPS_TSFMT_TSPEC
;
1200 if (pps
->ppscap
& PPS_CAPTUREASSERT
)
1201 pps
->ppscap
|= PPS_OFFSETASSERT
;
1202 if (pps
->ppscap
& PPS_CAPTURECLEAR
)
1203 pps
->ppscap
|= PPS_OFFSETCLEAR
;
1207 pps_event(struct pps_state
*pps
, sysclock_t count
, int event
)
1209 struct globaldata
*gd
;
1210 struct timespec
*tsp
;
1211 struct timespec
*osp
;
1212 struct timespec
*bt
;
1225 /* Things would be easier with arrays... */
1226 if (event
== PPS_CAPTUREASSERT
) {
1227 tsp
= &pps
->ppsinfo
.assert_timestamp
;
1228 osp
= &pps
->ppsparam
.assert_offset
;
1229 foff
= pps
->ppsparam
.mode
& PPS_OFFSETASSERT
;
1230 fhard
= pps
->kcmode
& PPS_CAPTUREASSERT
;
1231 pcount
= &pps
->ppscount
[0];
1232 pseq
= &pps
->ppsinfo
.assert_sequence
;
1234 tsp
= &pps
->ppsinfo
.clear_timestamp
;
1235 osp
= &pps
->ppsparam
.clear_offset
;
1236 foff
= pps
->ppsparam
.mode
& PPS_OFFSETCLEAR
;
1237 fhard
= pps
->kcmode
& PPS_CAPTURECLEAR
;
1238 pcount
= &pps
->ppscount
[1];
1239 pseq
= &pps
->ppsinfo
.clear_sequence
;
1242 /* Nothing really happened */
1243 if (*pcount
== count
)
1249 ts
.tv_sec
= gd
->gd_time_seconds
;
1250 delta
= count
- gd
->gd_cpuclock_base
;
1251 } while (ts
.tv_sec
!= gd
->gd_time_seconds
);
1253 if (delta
>= sys_cputimer
->freq
) {
1254 ts
.tv_sec
+= delta
/ sys_cputimer
->freq
;
1255 delta
%= sys_cputimer
->freq
;
1257 ts
.tv_nsec
= (sys_cputimer
->freq64_nsec
* delta
) >> 32;
1258 bt
= &basetime
[basetime_index
];
1259 ts
.tv_sec
+= bt
->tv_sec
;
1260 ts
.tv_nsec
+= bt
->tv_nsec
;
1261 while (ts
.tv_nsec
>= 1000000000) {
1262 ts
.tv_nsec
-= 1000000000;
1270 timespecadd(tsp
, osp
);
1271 if (tsp
->tv_nsec
< 0) {
1272 tsp
->tv_nsec
+= 1000000000;
1278 /* magic, at its best... */
1279 tcount
= count
- pps
->ppscount
[2];
1280 pps
->ppscount
[2] = count
;
1281 if (tcount
>= sys_cputimer
->freq
) {
1282 delta
= (1000000000 * (tcount
/ sys_cputimer
->freq
) +
1283 sys_cputimer
->freq64_nsec
*
1284 (tcount
% sys_cputimer
->freq
)) >> 32;
1286 delta
= (sys_cputimer
->freq64_nsec
* tcount
) >> 32;
1288 hardpps(tsp
, delta
);