priv: Define and use PRIV_SETHOSTNAME
[dragonfly.git] / sys / kern / kern_clock.c
blob9a558707b8c37eef3b148b4ad42910e673c1bf78
1 /*
2 * Copyright (c) 2003,2004 The DragonFly Project. All rights reserved.
3 *
4 * This code is derived from software contributed to The DragonFly Project
5 * by Matthew Dillon <dillon@backplane.com>
6 *
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following conditions
9 * are met:
11 * 1. Redistributions of source code must retain the above copyright
12 * notice, this list of conditions and the following disclaimer.
13 * 2. Redistributions in binary form must reproduce the above copyright
14 * notice, this list of conditions and the following disclaimer in
15 * the documentation and/or other materials provided with the
16 * distribution.
17 * 3. Neither the name of The DragonFly Project nor the names of its
18 * contributors may be used to endorse or promote products derived
19 * from this software without specific, prior written permission.
21 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
22 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
23 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
24 * FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
25 * COPYRIGHT HOLDERS OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
26 * INCIDENTAL, SPECIAL, EXEMPLARY OR CONSEQUENTIAL DAMAGES (INCLUDING,
27 * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
28 * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
29 * AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
30 * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT
31 * OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
32 * SUCH DAMAGE.
34 * Copyright (c) 1997, 1998 Poul-Henning Kamp <phk@FreeBSD.org>
35 * Copyright (c) 1982, 1986, 1991, 1993
36 * The Regents of the University of California. All rights reserved.
37 * (c) UNIX System Laboratories, Inc.
38 * All or some portions of this file are derived from material licensed
39 * to the University of California by American Telephone and Telegraph
40 * Co. or Unix System Laboratories, Inc. and are reproduced herein with
41 * the permission of UNIX System Laboratories, Inc.
43 * Redistribution and use in source and binary forms, with or without
44 * modification, are permitted provided that the following conditions
45 * are met:
46 * 1. Redistributions of source code must retain the above copyright
47 * notice, this list of conditions and the following disclaimer.
48 * 2. Redistributions in binary form must reproduce the above copyright
49 * notice, this list of conditions and the following disclaimer in the
50 * documentation and/or other materials provided with the distribution.
51 * 3. All advertising materials mentioning features or use of this software
52 * must display the following acknowledgement:
53 * This product includes software developed by the University of
54 * California, Berkeley and its contributors.
55 * 4. Neither the name of the University nor the names of its contributors
56 * may be used to endorse or promote products derived from this software
57 * without specific prior written permission.
59 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
60 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
61 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
62 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
63 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
64 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
65 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
66 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
67 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
68 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
69 * SUCH DAMAGE.
71 * @(#)kern_clock.c 8.5 (Berkeley) 1/21/94
72 * $FreeBSD: src/sys/kern/kern_clock.c,v 1.105.2.10 2002/10/17 13:19:40 maxim Exp $
73 * $DragonFly: src/sys/kern/kern_clock.c,v 1.62 2008/09/09 04:06:13 dillon Exp $
76 #include "opt_ntp.h"
77 #include "opt_polling.h"
78 #include "opt_ifpoll.h"
79 #include "opt_pctrack.h"
81 #include <sys/param.h>
82 #include <sys/systm.h>
83 #include <sys/callout.h>
84 #include <sys/kernel.h>
85 #include <sys/kinfo.h>
86 #include <sys/proc.h>
87 #include <sys/malloc.h>
88 #include <sys/resourcevar.h>
89 #include <sys/signalvar.h>
90 #include <sys/timex.h>
91 #include <sys/timepps.h>
92 #include <vm/vm.h>
93 #include <sys/lock.h>
94 #include <vm/pmap.h>
95 #include <vm/vm_map.h>
96 #include <vm/vm_extern.h>
97 #include <sys/sysctl.h>
98 #include <sys/thread2.h>
100 #include <machine/cpu.h>
101 #include <machine/limits.h>
102 #include <machine/smp.h>
104 #ifdef GPROF
105 #include <sys/gmon.h>
106 #endif
108 #ifdef DEVICE_POLLING
109 extern void init_device_poll_pcpu(int);
110 #endif
112 #ifdef IFPOLL_ENABLE
113 extern void ifpoll_init_pcpu(int);
114 #endif
116 #ifdef DEBUG_PCTRACK
117 static void do_pctrack(struct intrframe *frame, int which);
118 #endif
120 static void initclocks (void *dummy);
121 SYSINIT(clocks, SI_BOOT2_CLOCKS, SI_ORDER_FIRST, initclocks, NULL)
124 * Some of these don't belong here, but it's easiest to concentrate them.
125 * Note that cpu_time counts in microseconds, but most userland programs
126 * just compare relative times against the total by delta.
128 struct kinfo_cputime cputime_percpu[MAXCPU];
129 #ifdef DEBUG_PCTRACK
130 struct kinfo_pcheader cputime_pcheader = { PCTRACK_SIZE, PCTRACK_ARYSIZE };
131 struct kinfo_pctrack cputime_pctrack[MAXCPU][PCTRACK_SIZE];
132 #endif
134 #ifdef SMP
135 static int
136 sysctl_cputime(SYSCTL_HANDLER_ARGS)
138 int cpu, error = 0;
139 size_t size = sizeof(struct kinfo_cputime);
141 for (cpu = 0; cpu < ncpus; ++cpu) {
142 if ((error = SYSCTL_OUT(req, &cputime_percpu[cpu], size)))
143 break;
146 return (error);
148 SYSCTL_PROC(_kern, OID_AUTO, cputime, (CTLTYPE_OPAQUE|CTLFLAG_RD), 0, 0,
149 sysctl_cputime, "S,kinfo_cputime", "CPU time statistics");
150 #else
151 SYSCTL_STRUCT(_kern, OID_AUTO, cputime, CTLFLAG_RD, &cpu_time, kinfo_cputime,
152 "CPU time statistics");
153 #endif
156 * boottime is used to calculate the 'real' uptime. Do not confuse this with
157 * microuptime(). microtime() is not drift compensated. The real uptime
158 * with compensation is nanotime() - bootime. boottime is recalculated
159 * whenever the real time is set based on the compensated elapsed time
160 * in seconds (gd->gd_time_seconds).
162 * The gd_time_seconds and gd_cpuclock_base fields remain fairly monotonic.
163 * Slight adjustments to gd_cpuclock_base are made to phase-lock it to
164 * the real time.
166 struct timespec boottime; /* boot time (realtime) for reference only */
167 time_t time_second; /* read-only 'passive' uptime in seconds */
170 * basetime is used to calculate the compensated real time of day. The
171 * basetime can be modified on a per-tick basis by the adjtime(),
172 * ntp_adjtime(), and sysctl-based time correction APIs.
174 * Note that frequency corrections can also be made by adjusting
175 * gd_cpuclock_base.
177 * basetime is a tail-chasing FIFO, updated only by cpu #0. The FIFO is
178 * used on both SMP and UP systems to avoid MP races between cpu's and
179 * interrupt races on UP systems.
181 #define BASETIME_ARYSIZE 16
182 #define BASETIME_ARYMASK (BASETIME_ARYSIZE - 1)
183 static struct timespec basetime[BASETIME_ARYSIZE];
184 static volatile int basetime_index;
186 static int
187 sysctl_get_basetime(SYSCTL_HANDLER_ARGS)
189 struct timespec *bt;
190 int error;
191 int index;
194 * Because basetime data and index may be updated by another cpu,
195 * a load fence is required to ensure that the data we read has
196 * not been speculatively read relative to a possibly updated index.
198 index = basetime_index;
199 cpu_lfence();
200 bt = &basetime[index];
201 error = SYSCTL_OUT(req, bt, sizeof(*bt));
202 return (error);
205 SYSCTL_STRUCT(_kern, KERN_BOOTTIME, boottime, CTLFLAG_RD,
206 &boottime, timespec, "System boottime");
207 SYSCTL_PROC(_kern, OID_AUTO, basetime, CTLTYPE_STRUCT|CTLFLAG_RD, 0, 0,
208 sysctl_get_basetime, "S,timespec", "System basetime");
210 static void hardclock(systimer_t info, struct intrframe *frame);
211 static void statclock(systimer_t info, struct intrframe *frame);
212 static void schedclock(systimer_t info, struct intrframe *frame);
213 static void getnanotime_nbt(struct timespec *nbt, struct timespec *tsp);
215 int ticks; /* system master ticks at hz */
216 int clocks_running; /* tsleep/timeout clocks operational */
217 int64_t nsec_adj; /* ntpd per-tick adjustment in nsec << 32 */
218 int64_t nsec_acc; /* accumulator */
220 /* NTPD time correction fields */
221 int64_t ntp_tick_permanent; /* per-tick adjustment in nsec << 32 */
222 int64_t ntp_tick_acc; /* accumulator for per-tick adjustment */
223 int64_t ntp_delta; /* one-time correction in nsec */
224 int64_t ntp_big_delta = 1000000000;
225 int32_t ntp_tick_delta; /* current adjustment rate */
226 int32_t ntp_default_tick_delta; /* adjustment rate for ntp_delta */
227 time_t ntp_leap_second; /* time of next leap second */
228 int ntp_leap_insert; /* whether to insert or remove a second */
231 * Finish initializing clock frequencies and start all clocks running.
233 /* ARGSUSED*/
234 static void
235 initclocks(void *dummy)
237 /*psratio = profhz / stathz;*/
238 initclocks_pcpu();
239 clocks_running = 1;
243 * Called on a per-cpu basis
245 void
246 initclocks_pcpu(void)
248 struct globaldata *gd = mycpu;
250 crit_enter();
251 if (gd->gd_cpuid == 0) {
252 gd->gd_time_seconds = 1;
253 gd->gd_cpuclock_base = sys_cputimer->count();
254 } else {
255 /* XXX */
256 gd->gd_time_seconds = globaldata_find(0)->gd_time_seconds;
257 gd->gd_cpuclock_base = globaldata_find(0)->gd_cpuclock_base;
260 systimer_intr_enable();
262 #ifdef DEVICE_POLLING
263 init_device_poll_pcpu(gd->gd_cpuid);
264 #endif
266 #ifdef IFPOLL_ENABLE
267 ifpoll_init_pcpu(gd->gd_cpuid);
268 #endif
271 * Use a non-queued periodic systimer to prevent multiple ticks from
272 * building up if the sysclock jumps forward (8254 gets reset). The
273 * sysclock will never jump backwards. Our time sync is based on
274 * the actual sysclock, not the ticks count.
276 systimer_init_periodic_nq(&gd->gd_hardclock, hardclock, NULL, hz);
277 systimer_init_periodic_nq(&gd->gd_statclock, statclock, NULL, stathz);
278 /* XXX correct the frequency for scheduler / estcpu tests */
279 systimer_init_periodic_nq(&gd->gd_schedclock, schedclock,
280 NULL, ESTCPUFREQ);
281 crit_exit();
285 * This sets the current real time of day. Timespecs are in seconds and
286 * nanoseconds. We do not mess with gd_time_seconds and gd_cpuclock_base,
287 * instead we adjust basetime so basetime + gd_* results in the current
288 * time of day. This way the gd_* fields are guarenteed to represent
289 * a monotonically increasing 'uptime' value.
291 * When set_timeofday() is called from userland, the system call forces it
292 * onto cpu #0 since only cpu #0 can update basetime_index.
294 void
295 set_timeofday(struct timespec *ts)
297 struct timespec *nbt;
298 int ni;
301 * XXX SMP / non-atomic basetime updates
303 crit_enter();
304 ni = (basetime_index + 1) & BASETIME_ARYMASK;
305 nbt = &basetime[ni];
306 nanouptime(nbt);
307 nbt->tv_sec = ts->tv_sec - nbt->tv_sec;
308 nbt->tv_nsec = ts->tv_nsec - nbt->tv_nsec;
309 if (nbt->tv_nsec < 0) {
310 nbt->tv_nsec += 1000000000;
311 --nbt->tv_sec;
315 * Note that basetime diverges from boottime as the clock drift is
316 * compensated for, so we cannot do away with boottime. When setting
317 * the absolute time of day the drift is 0 (for an instant) and we
318 * can simply assign boottime to basetime.
320 * Note that nanouptime() is based on gd_time_seconds which is drift
321 * compensated up to a point (it is guarenteed to remain monotonically
322 * increasing). gd_time_seconds is thus our best uptime guess and
323 * suitable for use in the boottime calculation. It is already taken
324 * into account in the basetime calculation above.
326 boottime.tv_sec = nbt->tv_sec;
327 ntp_delta = 0;
330 * We now have a new basetime, make sure all other cpus have it,
331 * then update the index.
333 cpu_sfence();
334 basetime_index = ni;
336 crit_exit();
340 * Each cpu has its own hardclock, but we only increments ticks and softticks
341 * on cpu #0.
343 * NOTE! systimer! the MP lock might not be held here. We can only safely
344 * manipulate objects owned by the current cpu.
346 static void
347 hardclock(systimer_t info, struct intrframe *frame)
349 sysclock_t cputicks;
350 struct proc *p;
351 struct globaldata *gd = mycpu;
354 * Realtime updates are per-cpu. Note that timer corrections as
355 * returned by microtime() and friends make an additional adjustment
356 * using a system-wise 'basetime', but the running time is always
357 * taken from the per-cpu globaldata area. Since the same clock
358 * is distributing (XXX SMP) to all cpus, the per-cpu timebases
359 * stay in synch.
361 * Note that we never allow info->time (aka gd->gd_hardclock.time)
362 * to reverse index gd_cpuclock_base, but that it is possible for
363 * it to temporarily get behind in the seconds if something in the
364 * system locks interrupts for a long period of time. Since periodic
365 * timers count events, though everything should resynch again
366 * immediately.
368 cputicks = info->time - gd->gd_cpuclock_base;
369 if (cputicks >= sys_cputimer->freq) {
370 ++gd->gd_time_seconds;
371 gd->gd_cpuclock_base += sys_cputimer->freq;
375 * The system-wide ticks counter and NTP related timedelta/tickdelta
376 * adjustments only occur on cpu #0. NTP adjustments are accomplished
377 * by updating basetime.
379 if (gd->gd_cpuid == 0) {
380 struct timespec *nbt;
381 struct timespec nts;
382 int leap;
383 int ni;
385 ++ticks;
387 #if 0
388 if (tco->tc_poll_pps)
389 tco->tc_poll_pps(tco);
390 #endif
393 * Calculate the new basetime index. We are in a critical section
394 * on cpu #0 and can safely play with basetime_index. Start
395 * with the current basetime and then make adjustments.
397 ni = (basetime_index + 1) & BASETIME_ARYMASK;
398 nbt = &basetime[ni];
399 *nbt = basetime[basetime_index];
402 * Apply adjtime corrections. (adjtime() API)
404 * adjtime() only runs on cpu #0 so our critical section is
405 * sufficient to access these variables.
407 if (ntp_delta != 0) {
408 nbt->tv_nsec += ntp_tick_delta;
409 ntp_delta -= ntp_tick_delta;
410 if ((ntp_delta > 0 && ntp_delta < ntp_tick_delta) ||
411 (ntp_delta < 0 && ntp_delta > ntp_tick_delta)) {
412 ntp_tick_delta = ntp_delta;
417 * Apply permanent frequency corrections. (sysctl API)
419 if (ntp_tick_permanent != 0) {
420 ntp_tick_acc += ntp_tick_permanent;
421 if (ntp_tick_acc >= (1LL << 32)) {
422 nbt->tv_nsec += ntp_tick_acc >> 32;
423 ntp_tick_acc -= (ntp_tick_acc >> 32) << 32;
424 } else if (ntp_tick_acc <= -(1LL << 32)) {
425 /* Negate ntp_tick_acc to avoid shifting the sign bit. */
426 nbt->tv_nsec -= (-ntp_tick_acc) >> 32;
427 ntp_tick_acc += ((-ntp_tick_acc) >> 32) << 32;
431 if (nbt->tv_nsec >= 1000000000) {
432 nbt->tv_sec++;
433 nbt->tv_nsec -= 1000000000;
434 } else if (nbt->tv_nsec < 0) {
435 nbt->tv_sec--;
436 nbt->tv_nsec += 1000000000;
440 * Another per-tick compensation. (for ntp_adjtime() API)
442 if (nsec_adj != 0) {
443 nsec_acc += nsec_adj;
444 if (nsec_acc >= 0x100000000LL) {
445 nbt->tv_nsec += nsec_acc >> 32;
446 nsec_acc = (nsec_acc & 0xFFFFFFFFLL);
447 } else if (nsec_acc <= -0x100000000LL) {
448 nbt->tv_nsec -= -nsec_acc >> 32;
449 nsec_acc = -(-nsec_acc & 0xFFFFFFFFLL);
451 if (nbt->tv_nsec >= 1000000000) {
452 nbt->tv_nsec -= 1000000000;
453 ++nbt->tv_sec;
454 } else if (nbt->tv_nsec < 0) {
455 nbt->tv_nsec += 1000000000;
456 --nbt->tv_sec;
460 /************************************************************
461 * LEAP SECOND CORRECTION *
462 ************************************************************
464 * Taking into account all the corrections made above, figure
465 * out the new real time. If the seconds field has changed
466 * then apply any pending leap-second corrections.
468 getnanotime_nbt(nbt, &nts);
470 if (time_second != nts.tv_sec) {
472 * Apply leap second (sysctl API). Adjust nts for changes
473 * so we do not have to call getnanotime_nbt again.
475 if (ntp_leap_second) {
476 if (ntp_leap_second == nts.tv_sec) {
477 if (ntp_leap_insert) {
478 nbt->tv_sec++;
479 nts.tv_sec++;
480 } else {
481 nbt->tv_sec--;
482 nts.tv_sec--;
484 ntp_leap_second--;
489 * Apply leap second (ntp_adjtime() API), calculate a new
490 * nsec_adj field. ntp_update_second() returns nsec_adj
491 * as a per-second value but we need it as a per-tick value.
493 leap = ntp_update_second(time_second, &nsec_adj);
494 nsec_adj /= hz;
495 nbt->tv_sec += leap;
496 nts.tv_sec += leap;
499 * Update the time_second 'approximate time' global.
501 time_second = nts.tv_sec;
505 * Finally, our new basetime is ready to go live!
507 cpu_sfence();
508 basetime_index = ni;
511 * Figure out how badly the system is starved for memory
513 vm_fault_ratecheck();
517 * softticks are handled for all cpus
519 hardclock_softtick(gd);
522 * The LWKT scheduler will generally allow the current process to
523 * return to user mode even if there are other runnable LWKT threads
524 * running in kernel mode on behalf of a user process. This will
525 * ensure that those other threads have an opportunity to run in
526 * fairly short order (but not instantly).
528 need_lwkt_resched();
531 * ITimer handling is per-tick, per-cpu. I don't think ksignal()
532 * is mpsafe on curproc, so XXX get the mplock.
534 if ((p = curproc) != NULL && try_mplock()) {
535 if (frame && CLKF_USERMODE(frame) &&
536 timevalisset(&p->p_timer[ITIMER_VIRTUAL].it_value) &&
537 itimerdecr(&p->p_timer[ITIMER_VIRTUAL], tick) == 0)
538 ksignal(p, SIGVTALRM);
539 if (timevalisset(&p->p_timer[ITIMER_PROF].it_value) &&
540 itimerdecr(&p->p_timer[ITIMER_PROF], tick) == 0)
541 ksignal(p, SIGPROF);
542 rel_mplock();
544 setdelayed();
548 * The statistics clock typically runs at a 125Hz rate, and is intended
549 * to be frequency offset from the hardclock (typ 100Hz). It is per-cpu.
551 * NOTE! systimer! the MP lock might not be held here. We can only safely
552 * manipulate objects owned by the current cpu.
554 * The stats clock is responsible for grabbing a profiling sample.
555 * Most of the statistics are only used by user-level statistics programs.
556 * The main exceptions are p->p_uticks, p->p_sticks, p->p_iticks, and
557 * p->p_estcpu.
559 * Like the other clocks, the stat clock is called from what is effectively
560 * a fast interrupt, so the context should be the thread/process that got
561 * interrupted.
563 static void
564 statclock(systimer_t info, struct intrframe *frame)
566 #ifdef GPROF
567 struct gmonparam *g;
568 int i;
569 #endif
570 thread_t td;
571 struct proc *p;
572 int bump;
573 struct timeval tv;
574 struct timeval *stv;
577 * How big was our timeslice relative to the last time?
579 microuptime(&tv); /* mpsafe */
580 stv = &mycpu->gd_stattv;
581 if (stv->tv_sec == 0) {
582 bump = 1;
583 } else {
584 bump = tv.tv_usec - stv->tv_usec +
585 (tv.tv_sec - stv->tv_sec) * 1000000;
586 if (bump < 0)
587 bump = 0;
588 if (bump > 1000000)
589 bump = 1000000;
591 *stv = tv;
593 td = curthread;
594 p = td->td_proc;
596 if (frame && CLKF_USERMODE(frame)) {
598 * Came from userland, handle user time and deal with
599 * possible process.
601 if (p && (p->p_flag & P_PROFIL))
602 addupc_intr(p, CLKF_PC(frame), 1);
603 td->td_uticks += bump;
606 * Charge the time as appropriate
608 if (p && p->p_nice > NZERO)
609 cpu_time.cp_nice += bump;
610 else
611 cpu_time.cp_user += bump;
612 } else {
613 #ifdef GPROF
615 * Kernel statistics are just like addupc_intr, only easier.
617 g = &_gmonparam;
618 if (g->state == GMON_PROF_ON && frame) {
619 i = CLKF_PC(frame) - g->lowpc;
620 if (i < g->textsize) {
621 i /= HISTFRACTION * sizeof(*g->kcount);
622 g->kcount[i]++;
625 #endif
627 * Came from kernel mode, so we were:
628 * - handling an interrupt,
629 * - doing syscall or trap work on behalf of the current
630 * user process, or
631 * - spinning in the idle loop.
632 * Whichever it is, charge the time as appropriate.
633 * Note that we charge interrupts to the current process,
634 * regardless of whether they are ``for'' that process,
635 * so that we know how much of its real time was spent
636 * in ``non-process'' (i.e., interrupt) work.
638 * XXX assume system if frame is NULL. A NULL frame
639 * can occur if ipi processing is done from a crit_exit().
641 if (frame && CLKF_INTR(frame))
642 td->td_iticks += bump;
643 else
644 td->td_sticks += bump;
646 if (frame && CLKF_INTR(frame)) {
647 #ifdef DEBUG_PCTRACK
648 do_pctrack(frame, PCTRACK_INT);
649 #endif
650 cpu_time.cp_intr += bump;
651 } else {
652 if (td == &mycpu->gd_idlethread) {
653 cpu_time.cp_idle += bump;
654 } else {
655 #ifdef DEBUG_PCTRACK
656 if (frame)
657 do_pctrack(frame, PCTRACK_SYS);
658 #endif
659 cpu_time.cp_sys += bump;
665 #ifdef DEBUG_PCTRACK
667 * Sample the PC when in the kernel or in an interrupt. User code can
668 * retrieve the information and generate a histogram or other output.
671 static void
672 do_pctrack(struct intrframe *frame, int which)
674 struct kinfo_pctrack *pctrack;
676 pctrack = &cputime_pctrack[mycpu->gd_cpuid][which];
677 pctrack->pc_array[pctrack->pc_index & PCTRACK_ARYMASK] =
678 (void *)CLKF_PC(frame);
679 ++pctrack->pc_index;
682 static int
683 sysctl_pctrack(SYSCTL_HANDLER_ARGS)
685 struct kinfo_pcheader head;
686 int error;
687 int cpu;
688 int ntrack;
690 head.pc_ntrack = PCTRACK_SIZE;
691 head.pc_arysize = PCTRACK_ARYSIZE;
693 if ((error = SYSCTL_OUT(req, &head, sizeof(head))) != 0)
694 return (error);
696 for (cpu = 0; cpu < ncpus; ++cpu) {
697 for (ntrack = 0; ntrack < PCTRACK_SIZE; ++ntrack) {
698 error = SYSCTL_OUT(req, &cputime_pctrack[cpu][ntrack],
699 sizeof(struct kinfo_pctrack));
700 if (error)
701 break;
703 if (error)
704 break;
706 return (error);
708 SYSCTL_PROC(_kern, OID_AUTO, pctrack, (CTLTYPE_OPAQUE|CTLFLAG_RD), 0, 0,
709 sysctl_pctrack, "S,kinfo_pcheader", "CPU PC tracking");
711 #endif
714 * The scheduler clock typically runs at a 50Hz rate. NOTE! systimer,
715 * the MP lock might not be held. We can safely manipulate parts of curproc
716 * but that's about it.
718 * Each cpu has its own scheduler clock.
720 static void
721 schedclock(systimer_t info, struct intrframe *frame)
723 struct lwp *lp;
724 struct rusage *ru;
725 struct vmspace *vm;
726 long rss;
728 if ((lp = lwkt_preempted_proc()) != NULL) {
730 * Account for cpu time used and hit the scheduler. Note
731 * that this call MUST BE MP SAFE, and the BGL IS NOT HELD
732 * HERE.
734 ++lp->lwp_cpticks;
735 lp->lwp_proc->p_usched->schedulerclock(lp, info->periodic,
736 info->time);
738 if ((lp = curthread->td_lwp) != NULL) {
740 * Update resource usage integrals and maximums.
742 if ((ru = &lp->lwp_proc->p_ru) &&
743 (vm = lp->lwp_proc->p_vmspace) != NULL) {
744 ru->ru_ixrss += pgtok(vm->vm_tsize);
745 ru->ru_idrss += pgtok(vm->vm_dsize);
746 ru->ru_isrss += pgtok(vm->vm_ssize);
747 rss = pgtok(vmspace_resident_count(vm));
748 if (ru->ru_maxrss < rss)
749 ru->ru_maxrss = rss;
755 * Compute number of ticks for the specified amount of time. The
756 * return value is intended to be used in a clock interrupt timed
757 * operation and guarenteed to meet or exceed the requested time.
758 * If the representation overflows, return INT_MAX. The minimum return
759 * value is 1 ticks and the function will average the calculation up.
760 * If any value greater then 0 microseconds is supplied, a value
761 * of at least 2 will be returned to ensure that a near-term clock
762 * interrupt does not cause the timeout to occur (degenerately) early.
764 * Note that limit checks must take into account microseconds, which is
765 * done simply by using the smaller signed long maximum instead of
766 * the unsigned long maximum.
768 * If ints have 32 bits, then the maximum value for any timeout in
769 * 10ms ticks is 248 days.
772 tvtohz_high(struct timeval *tv)
774 int ticks;
775 long sec, usec;
777 sec = tv->tv_sec;
778 usec = tv->tv_usec;
779 if (usec < 0) {
780 sec--;
781 usec += 1000000;
783 if (sec < 0) {
784 #ifdef DIAGNOSTIC
785 if (usec > 0) {
786 sec++;
787 usec -= 1000000;
789 kprintf("tvtohz_high: negative time difference %ld sec %ld usec\n",
790 sec, usec);
791 #endif
792 ticks = 1;
793 } else if (sec <= INT_MAX / hz) {
794 ticks = (int)(sec * hz +
795 ((u_long)usec + (tick - 1)) / tick) + 1;
796 } else {
797 ticks = INT_MAX;
799 return (ticks);
803 * Compute number of ticks for the specified amount of time, erroring on
804 * the side of it being too low to ensure that sleeping the returned number
805 * of ticks will not result in a late return.
807 * The supplied timeval may not be negative and should be normalized. A
808 * return value of 0 is possible if the timeval converts to less then
809 * 1 tick.
811 * If ints have 32 bits, then the maximum value for any timeout in
812 * 10ms ticks is 248 days.
815 tvtohz_low(struct timeval *tv)
817 int ticks;
818 long sec;
820 sec = tv->tv_sec;
821 if (sec <= INT_MAX / hz)
822 ticks = (int)(sec * hz + (u_long)tv->tv_usec / tick);
823 else
824 ticks = INT_MAX;
825 return (ticks);
830 * Start profiling on a process.
832 * Kernel profiling passes proc0 which never exits and hence
833 * keeps the profile clock running constantly.
835 void
836 startprofclock(struct proc *p)
838 if ((p->p_flag & P_PROFIL) == 0) {
839 p->p_flag |= P_PROFIL;
840 #if 0 /* XXX */
841 if (++profprocs == 1 && stathz != 0) {
842 crit_enter();
843 psdiv = psratio;
844 setstatclockrate(profhz);
845 crit_exit();
847 #endif
852 * Stop profiling on a process.
854 void
855 stopprofclock(struct proc *p)
857 if (p->p_flag & P_PROFIL) {
858 p->p_flag &= ~P_PROFIL;
859 #if 0 /* XXX */
860 if (--profprocs == 0 && stathz != 0) {
861 crit_enter();
862 psdiv = 1;
863 setstatclockrate(stathz);
864 crit_exit();
866 #endif
871 * Return information about system clocks.
873 static int
874 sysctl_kern_clockrate(SYSCTL_HANDLER_ARGS)
876 struct kinfo_clockinfo clkinfo;
878 * Construct clockinfo structure.
880 clkinfo.ci_hz = hz;
881 clkinfo.ci_tick = tick;
882 clkinfo.ci_tickadj = ntp_default_tick_delta / 1000;
883 clkinfo.ci_profhz = profhz;
884 clkinfo.ci_stathz = stathz ? stathz : hz;
885 return (sysctl_handle_opaque(oidp, &clkinfo, sizeof clkinfo, req));
888 SYSCTL_PROC(_kern, KERN_CLOCKRATE, clockrate, CTLTYPE_STRUCT|CTLFLAG_RD,
889 0, 0, sysctl_kern_clockrate, "S,clockinfo","");
892 * We have eight functions for looking at the clock, four for
893 * microseconds and four for nanoseconds. For each there is fast
894 * but less precise version "get{nano|micro}[up]time" which will
895 * return a time which is up to 1/HZ previous to the call, whereas
896 * the raw version "{nano|micro}[up]time" will return a timestamp
897 * which is as precise as possible. The "up" variants return the
898 * time relative to system boot, these are well suited for time
899 * interval measurements.
901 * Each cpu independantly maintains the current time of day, so all
902 * we need to do to protect ourselves from changes is to do a loop
903 * check on the seconds field changing out from under us.
905 * The system timer maintains a 32 bit count and due to various issues
906 * it is possible for the calculated delta to occassionally exceed
907 * sys_cputimer->freq. If this occurs the sys_cputimer->freq64_nsec
908 * multiplication can easily overflow, so we deal with the case. For
909 * uniformity we deal with the case in the usec case too.
911 void
912 getmicrouptime(struct timeval *tvp)
914 struct globaldata *gd = mycpu;
915 sysclock_t delta;
917 do {
918 tvp->tv_sec = gd->gd_time_seconds;
919 delta = gd->gd_hardclock.time - gd->gd_cpuclock_base;
920 } while (tvp->tv_sec != gd->gd_time_seconds);
922 if (delta >= sys_cputimer->freq) {
923 tvp->tv_sec += delta / sys_cputimer->freq;
924 delta %= sys_cputimer->freq;
926 tvp->tv_usec = (sys_cputimer->freq64_usec * delta) >> 32;
927 if (tvp->tv_usec >= 1000000) {
928 tvp->tv_usec -= 1000000;
929 ++tvp->tv_sec;
933 void
934 getnanouptime(struct timespec *tsp)
936 struct globaldata *gd = mycpu;
937 sysclock_t delta;
939 do {
940 tsp->tv_sec = gd->gd_time_seconds;
941 delta = gd->gd_hardclock.time - gd->gd_cpuclock_base;
942 } while (tsp->tv_sec != gd->gd_time_seconds);
944 if (delta >= sys_cputimer->freq) {
945 tsp->tv_sec += delta / sys_cputimer->freq;
946 delta %= sys_cputimer->freq;
948 tsp->tv_nsec = (sys_cputimer->freq64_nsec * delta) >> 32;
951 void
952 microuptime(struct timeval *tvp)
954 struct globaldata *gd = mycpu;
955 sysclock_t delta;
957 do {
958 tvp->tv_sec = gd->gd_time_seconds;
959 delta = sys_cputimer->count() - gd->gd_cpuclock_base;
960 } while (tvp->tv_sec != gd->gd_time_seconds);
962 if (delta >= sys_cputimer->freq) {
963 tvp->tv_sec += delta / sys_cputimer->freq;
964 delta %= sys_cputimer->freq;
966 tvp->tv_usec = (sys_cputimer->freq64_usec * delta) >> 32;
969 void
970 nanouptime(struct timespec *tsp)
972 struct globaldata *gd = mycpu;
973 sysclock_t delta;
975 do {
976 tsp->tv_sec = gd->gd_time_seconds;
977 delta = sys_cputimer->count() - gd->gd_cpuclock_base;
978 } while (tsp->tv_sec != gd->gd_time_seconds);
980 if (delta >= sys_cputimer->freq) {
981 tsp->tv_sec += delta / sys_cputimer->freq;
982 delta %= sys_cputimer->freq;
984 tsp->tv_nsec = (sys_cputimer->freq64_nsec * delta) >> 32;
988 * realtime routines
991 void
992 getmicrotime(struct timeval *tvp)
994 struct globaldata *gd = mycpu;
995 struct timespec *bt;
996 sysclock_t delta;
998 do {
999 tvp->tv_sec = gd->gd_time_seconds;
1000 delta = gd->gd_hardclock.time - gd->gd_cpuclock_base;
1001 } while (tvp->tv_sec != gd->gd_time_seconds);
1003 if (delta >= sys_cputimer->freq) {
1004 tvp->tv_sec += delta / sys_cputimer->freq;
1005 delta %= sys_cputimer->freq;
1007 tvp->tv_usec = (sys_cputimer->freq64_usec * delta) >> 32;
1009 bt = &basetime[basetime_index];
1010 tvp->tv_sec += bt->tv_sec;
1011 tvp->tv_usec += bt->tv_nsec / 1000;
1012 while (tvp->tv_usec >= 1000000) {
1013 tvp->tv_usec -= 1000000;
1014 ++tvp->tv_sec;
1018 void
1019 getnanotime(struct timespec *tsp)
1021 struct globaldata *gd = mycpu;
1022 struct timespec *bt;
1023 sysclock_t delta;
1025 do {
1026 tsp->tv_sec = gd->gd_time_seconds;
1027 delta = gd->gd_hardclock.time - gd->gd_cpuclock_base;
1028 } while (tsp->tv_sec != gd->gd_time_seconds);
1030 if (delta >= sys_cputimer->freq) {
1031 tsp->tv_sec += delta / sys_cputimer->freq;
1032 delta %= sys_cputimer->freq;
1034 tsp->tv_nsec = (sys_cputimer->freq64_nsec * delta) >> 32;
1036 bt = &basetime[basetime_index];
1037 tsp->tv_sec += bt->tv_sec;
1038 tsp->tv_nsec += bt->tv_nsec;
1039 while (tsp->tv_nsec >= 1000000000) {
1040 tsp->tv_nsec -= 1000000000;
1041 ++tsp->tv_sec;
1045 static void
1046 getnanotime_nbt(struct timespec *nbt, struct timespec *tsp)
1048 struct globaldata *gd = mycpu;
1049 sysclock_t delta;
1051 do {
1052 tsp->tv_sec = gd->gd_time_seconds;
1053 delta = gd->gd_hardclock.time - gd->gd_cpuclock_base;
1054 } while (tsp->tv_sec != gd->gd_time_seconds);
1056 if (delta >= sys_cputimer->freq) {
1057 tsp->tv_sec += delta / sys_cputimer->freq;
1058 delta %= sys_cputimer->freq;
1060 tsp->tv_nsec = (sys_cputimer->freq64_nsec * delta) >> 32;
1062 tsp->tv_sec += nbt->tv_sec;
1063 tsp->tv_nsec += nbt->tv_nsec;
1064 while (tsp->tv_nsec >= 1000000000) {
1065 tsp->tv_nsec -= 1000000000;
1066 ++tsp->tv_sec;
1071 void
1072 microtime(struct timeval *tvp)
1074 struct globaldata *gd = mycpu;
1075 struct timespec *bt;
1076 sysclock_t delta;
1078 do {
1079 tvp->tv_sec = gd->gd_time_seconds;
1080 delta = sys_cputimer->count() - gd->gd_cpuclock_base;
1081 } while (tvp->tv_sec != gd->gd_time_seconds);
1083 if (delta >= sys_cputimer->freq) {
1084 tvp->tv_sec += delta / sys_cputimer->freq;
1085 delta %= sys_cputimer->freq;
1087 tvp->tv_usec = (sys_cputimer->freq64_usec * delta) >> 32;
1089 bt = &basetime[basetime_index];
1090 tvp->tv_sec += bt->tv_sec;
1091 tvp->tv_usec += bt->tv_nsec / 1000;
1092 while (tvp->tv_usec >= 1000000) {
1093 tvp->tv_usec -= 1000000;
1094 ++tvp->tv_sec;
1098 void
1099 nanotime(struct timespec *tsp)
1101 struct globaldata *gd = mycpu;
1102 struct timespec *bt;
1103 sysclock_t delta;
1105 do {
1106 tsp->tv_sec = gd->gd_time_seconds;
1107 delta = sys_cputimer->count() - gd->gd_cpuclock_base;
1108 } while (tsp->tv_sec != gd->gd_time_seconds);
1110 if (delta >= sys_cputimer->freq) {
1111 tsp->tv_sec += delta / sys_cputimer->freq;
1112 delta %= sys_cputimer->freq;
1114 tsp->tv_nsec = (sys_cputimer->freq64_nsec * delta) >> 32;
1116 bt = &basetime[basetime_index];
1117 tsp->tv_sec += bt->tv_sec;
1118 tsp->tv_nsec += bt->tv_nsec;
1119 while (tsp->tv_nsec >= 1000000000) {
1120 tsp->tv_nsec -= 1000000000;
1121 ++tsp->tv_sec;
1126 * note: this is not exactly synchronized with real time. To do that we
1127 * would have to do what microtime does and check for a nanoseconds overflow.
1129 time_t
1130 get_approximate_time_t(void)
1132 struct globaldata *gd = mycpu;
1133 struct timespec *bt;
1135 bt = &basetime[basetime_index];
1136 return(gd->gd_time_seconds + bt->tv_sec);
1140 pps_ioctl(u_long cmd, caddr_t data, struct pps_state *pps)
1142 pps_params_t *app;
1143 struct pps_fetch_args *fapi;
1144 #ifdef PPS_SYNC
1145 struct pps_kcbind_args *kapi;
1146 #endif
1148 switch (cmd) {
1149 case PPS_IOC_CREATE:
1150 return (0);
1151 case PPS_IOC_DESTROY:
1152 return (0);
1153 case PPS_IOC_SETPARAMS:
1154 app = (pps_params_t *)data;
1155 if (app->mode & ~pps->ppscap)
1156 return (EINVAL);
1157 pps->ppsparam = *app;
1158 return (0);
1159 case PPS_IOC_GETPARAMS:
1160 app = (pps_params_t *)data;
1161 *app = pps->ppsparam;
1162 app->api_version = PPS_API_VERS_1;
1163 return (0);
1164 case PPS_IOC_GETCAP:
1165 *(int*)data = pps->ppscap;
1166 return (0);
1167 case PPS_IOC_FETCH:
1168 fapi = (struct pps_fetch_args *)data;
1169 if (fapi->tsformat && fapi->tsformat != PPS_TSFMT_TSPEC)
1170 return (EINVAL);
1171 if (fapi->timeout.tv_sec || fapi->timeout.tv_nsec)
1172 return (EOPNOTSUPP);
1173 pps->ppsinfo.current_mode = pps->ppsparam.mode;
1174 fapi->pps_info_buf = pps->ppsinfo;
1175 return (0);
1176 case PPS_IOC_KCBIND:
1177 #ifdef PPS_SYNC
1178 kapi = (struct pps_kcbind_args *)data;
1179 /* XXX Only root should be able to do this */
1180 if (kapi->tsformat && kapi->tsformat != PPS_TSFMT_TSPEC)
1181 return (EINVAL);
1182 if (kapi->kernel_consumer != PPS_KC_HARDPPS)
1183 return (EINVAL);
1184 if (kapi->edge & ~pps->ppscap)
1185 return (EINVAL);
1186 pps->kcmode = kapi->edge;
1187 return (0);
1188 #else
1189 return (EOPNOTSUPP);
1190 #endif
1191 default:
1192 return (ENOTTY);
1196 void
1197 pps_init(struct pps_state *pps)
1199 pps->ppscap |= PPS_TSFMT_TSPEC;
1200 if (pps->ppscap & PPS_CAPTUREASSERT)
1201 pps->ppscap |= PPS_OFFSETASSERT;
1202 if (pps->ppscap & PPS_CAPTURECLEAR)
1203 pps->ppscap |= PPS_OFFSETCLEAR;
1206 void
1207 pps_event(struct pps_state *pps, sysclock_t count, int event)
1209 struct globaldata *gd;
1210 struct timespec *tsp;
1211 struct timespec *osp;
1212 struct timespec *bt;
1213 struct timespec ts;
1214 sysclock_t *pcount;
1215 #ifdef PPS_SYNC
1216 sysclock_t tcount;
1217 #endif
1218 sysclock_t delta;
1219 pps_seq_t *pseq;
1220 int foff;
1221 int fhard;
1223 gd = mycpu;
1225 /* Things would be easier with arrays... */
1226 if (event == PPS_CAPTUREASSERT) {
1227 tsp = &pps->ppsinfo.assert_timestamp;
1228 osp = &pps->ppsparam.assert_offset;
1229 foff = pps->ppsparam.mode & PPS_OFFSETASSERT;
1230 fhard = pps->kcmode & PPS_CAPTUREASSERT;
1231 pcount = &pps->ppscount[0];
1232 pseq = &pps->ppsinfo.assert_sequence;
1233 } else {
1234 tsp = &pps->ppsinfo.clear_timestamp;
1235 osp = &pps->ppsparam.clear_offset;
1236 foff = pps->ppsparam.mode & PPS_OFFSETCLEAR;
1237 fhard = pps->kcmode & PPS_CAPTURECLEAR;
1238 pcount = &pps->ppscount[1];
1239 pseq = &pps->ppsinfo.clear_sequence;
1242 /* Nothing really happened */
1243 if (*pcount == count)
1244 return;
1246 *pcount = count;
1248 do {
1249 ts.tv_sec = gd->gd_time_seconds;
1250 delta = count - gd->gd_cpuclock_base;
1251 } while (ts.tv_sec != gd->gd_time_seconds);
1253 if (delta >= sys_cputimer->freq) {
1254 ts.tv_sec += delta / sys_cputimer->freq;
1255 delta %= sys_cputimer->freq;
1257 ts.tv_nsec = (sys_cputimer->freq64_nsec * delta) >> 32;
1258 bt = &basetime[basetime_index];
1259 ts.tv_sec += bt->tv_sec;
1260 ts.tv_nsec += bt->tv_nsec;
1261 while (ts.tv_nsec >= 1000000000) {
1262 ts.tv_nsec -= 1000000000;
1263 ++ts.tv_sec;
1266 (*pseq)++;
1267 *tsp = ts;
1269 if (foff) {
1270 timespecadd(tsp, osp);
1271 if (tsp->tv_nsec < 0) {
1272 tsp->tv_nsec += 1000000000;
1273 tsp->tv_sec -= 1;
1276 #ifdef PPS_SYNC
1277 if (fhard) {
1278 /* magic, at its best... */
1279 tcount = count - pps->ppscount[2];
1280 pps->ppscount[2] = count;
1281 if (tcount >= sys_cputimer->freq) {
1282 delta = (1000000000 * (tcount / sys_cputimer->freq) +
1283 sys_cputimer->freq64_nsec *
1284 (tcount % sys_cputimer->freq)) >> 32;
1285 } else {
1286 delta = (sys_cputimer->freq64_nsec * tcount) >> 32;
1288 hardpps(tsp, delta);
1290 #endif