Fix path.
[dragonfly.git] / sys / kern / vfs_cluster.c
blob35ae5d3d171d8e1b4fbb02e7e9b620abc915121b
1 /*-
2 * Copyright (c) 1993
3 * The Regents of the University of California. All rights reserved.
4 * Modifications/enhancements:
5 * Copyright (c) 1995 John S. Dyson. All rights reserved.
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following conditions
9 * are met:
10 * 1. Redistributions of source code must retain the above copyright
11 * notice, this list of conditions and the following disclaimer.
12 * 2. Redistributions in binary form must reproduce the above copyright
13 * notice, this list of conditions and the following disclaimer in the
14 * documentation and/or other materials provided with the distribution.
15 * 3. All advertising materials mentioning features or use of this software
16 * must display the following acknowledgement:
17 * This product includes software developed by the University of
18 * California, Berkeley and its contributors.
19 * 4. Neither the name of the University nor the names of its contributors
20 * may be used to endorse or promote products derived from this software
21 * without specific prior written permission.
23 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
24 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
25 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
26 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
27 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
28 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
29 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
30 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
31 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
32 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
33 * SUCH DAMAGE.
35 * @(#)vfs_cluster.c 8.7 (Berkeley) 2/13/94
36 * $FreeBSD: src/sys/kern/vfs_cluster.c,v 1.92.2.9 2001/11/18 07:10:59 dillon Exp $
37 * $DragonFly: src/sys/kern/vfs_cluster.c,v 1.30 2007/08/13 17:31:51 dillon Exp $
40 #include "opt_debug_cluster.h"
42 #include <sys/param.h>
43 #include <sys/systm.h>
44 #include <sys/kernel.h>
45 #include <sys/proc.h>
46 #include <sys/buf.h>
47 #include <sys/vnode.h>
48 #include <sys/malloc.h>
49 #include <sys/mount.h>
50 #include <sys/resourcevar.h>
51 #include <sys/vmmeter.h>
52 #include <vm/vm.h>
53 #include <vm/vm_object.h>
54 #include <vm/vm_page.h>
55 #include <sys/sysctl.h>
56 #include <sys/buf2.h>
57 #include <vm/vm_page2.h>
59 #if defined(CLUSTERDEBUG)
60 #include <sys/sysctl.h>
61 static int rcluster= 0;
62 SYSCTL_INT(_debug, OID_AUTO, rcluster, CTLFLAG_RW, &rcluster, 0, "");
63 #endif
65 static MALLOC_DEFINE(M_SEGMENT, "cluster_save", "cluster_save buffer");
67 static struct cluster_save *
68 cluster_collectbufs (struct vnode *vp, struct buf *last_bp,
69 int lblocksize);
70 static struct buf *
71 cluster_rbuild (struct vnode *vp, off_t filesize, off_t loffset,
72 off_t doffset, int size, int run,
73 struct buf *fbp, int doasync);
74 static void cluster_callback (struct bio *);
77 static int write_behind = 1;
78 SYSCTL_INT(_vfs, OID_AUTO, write_behind, CTLFLAG_RW, &write_behind, 0, "");
80 extern vm_page_t bogus_page;
82 extern int cluster_pbuf_freecnt;
85 * Maximum number of blocks for read-ahead.
87 #define MAXRA 32
90 * This replaces bread.
92 int
93 cluster_read(struct vnode *vp, off_t filesize, off_t loffset,
94 int size, int totread, int seqcount, struct buf **bpp)
96 struct buf *bp, *rbp, *reqbp;
97 off_t origoffset;
98 off_t doffset;
99 int error;
100 int i;
101 int maxra, racluster;
103 error = 0;
106 * Try to limit the amount of read-ahead by a few
107 * ad-hoc parameters. This needs work!!!
109 racluster = vp->v_mount->mnt_iosize_max / size;
110 maxra = 2 * racluster + (totread / size);
111 if (maxra > MAXRA)
112 maxra = MAXRA;
113 if (maxra > nbuf/8)
114 maxra = nbuf/8;
117 * get the requested block
119 *bpp = reqbp = bp = getblk(vp, loffset, size, 0, 0);
120 origoffset = loffset;
123 * if it is in the cache, then check to see if the reads have been
124 * sequential. If they have, then try some read-ahead, otherwise
125 * back-off on prospective read-aheads.
127 if (bp->b_flags & B_CACHE) {
128 if (!seqcount) {
129 return 0;
130 } else if ((bp->b_flags & B_RAM) == 0) {
131 return 0;
132 } else {
133 struct buf *tbp;
134 bp->b_flags &= ~B_RAM;
136 * We do the crit here so that there is no window
137 * between the findblk and the b_usecount increment
138 * below. We opt to keep the crit out of the loop
139 * for efficiency.
141 crit_enter();
142 for (i = 1; i < maxra; i++) {
143 if (!(tbp = findblk(vp, loffset + i * size))) {
144 break;
148 * Set another read-ahead mark so we know
149 * to check again.
151 if (((i % racluster) == (racluster - 1)) ||
152 (i == (maxra - 1)))
153 tbp->b_flags |= B_RAM;
155 crit_exit();
156 if (i >= maxra) {
157 return 0;
159 loffset += i * size;
161 reqbp = bp = NULL;
162 } else {
163 off_t firstread = bp->b_loffset;
164 int nblks;
166 KASSERT(firstread != NOOFFSET,
167 ("cluster_read: no buffer offset"));
168 if (firstread + totread > filesize)
169 totread = (int)(filesize - firstread);
170 nblks = totread / size;
171 if (nblks) {
172 int burstbytes;
174 if (nblks > racluster)
175 nblks = racluster;
177 error = VOP_BMAP(vp, loffset,
178 &doffset, &burstbytes, NULL);
179 if (error)
180 goto single_block_read;
181 if (doffset == NOOFFSET)
182 goto single_block_read;
183 if (burstbytes < size * 2)
184 goto single_block_read;
185 if (nblks > burstbytes / size)
186 nblks = burstbytes / size;
188 bp = cluster_rbuild(vp, filesize, loffset,
189 doffset, size, nblks, bp, 0);
190 loffset += bp->b_bufsize;
191 } else {
192 single_block_read:
194 * if it isn't in the cache, then get a chunk from
195 * disk if sequential, otherwise just get the block.
197 bp->b_flags |= B_RAM;
198 loffset += size;
203 * Handle the synchronous read. This only occurs if B_CACHE was
204 * not set. bp (and rbp) could be either a cluster bp or a normal
205 * bp depending on the what cluster_rbuild() decided to do. If
206 * it is a cluster bp, vfs_busy_pages() has already been called.
208 if (bp) {
209 #if defined(CLUSTERDEBUG)
210 if (rcluster)
211 kprintf("S(%lld,%d,%d) ",
212 bp->b_loffset, bp->b_bcount, seqcount);
213 #endif
214 bp->b_cmd = BUF_CMD_READ;
215 if ((bp->b_flags & B_CLUSTER) == 0)
216 vfs_busy_pages(vp, bp);
217 bp->b_flags &= ~(B_ERROR|B_INVAL);
218 if ((bp->b_flags & B_ASYNC) || bp->b_bio1.bio_done != NULL)
219 BUF_KERNPROC(bp);
220 vn_strategy(vp, &bp->b_bio1);
221 error = bp->b_error;
225 * If we have been doing sequential I/O, then do some read-ahead.
227 rbp = NULL;
228 if (!error &&
229 seqcount &&
230 loffset < origoffset + seqcount * size &&
231 loffset + size <= filesize
233 int nblksread;
234 int ntoread;
235 int burstbytes;
237 rbp = getblk(vp, loffset, size, 0, 0);
238 if ((rbp->b_flags & B_CACHE)) {
239 bqrelse(rbp);
240 goto no_read_ahead;
243 error = VOP_BMAP(vp, loffset,
244 &doffset, &burstbytes, NULL);
245 if (error || doffset == NOOFFSET) {
246 rbp->b_flags |= B_INVAL;
247 brelse(rbp);
248 rbp = NULL;
249 goto no_read_ahead;
251 ntoread = burstbytes / size;
252 nblksread = (totread + size - 1) / size;
253 if (seqcount < nblksread)
254 seqcount = nblksread;
255 if (seqcount < ntoread)
256 ntoread = seqcount;
258 rbp->b_flags |= B_RAM;
259 if (burstbytes) {
260 rbp = cluster_rbuild(vp, filesize, loffset,
261 doffset, size,
262 ntoread, rbp, 1);
263 } else {
264 rbp->b_bio2.bio_offset = doffset;
266 #if defined(CLUSTERDEBUG)
267 if (rcluster) {
268 if (bp)
269 kprintf("A+(%lld,%d,%lld,%d) ",
270 rbp->b_loffset, rbp->b_bcount,
271 rbp->b_loffset - origoffset,
272 seqcount);
273 else
274 kprintf("A(%lld,%d,%lld,%d) ",
275 rbp->b_loffset, rbp->b_bcount,
276 rbp->b_loffset - origoffset,
277 seqcount);
279 #endif
280 rbp->b_flags &= ~(B_ERROR|B_INVAL);
281 rbp->b_flags |= B_ASYNC;
282 rbp->b_cmd = BUF_CMD_READ;
284 if ((rbp->b_flags & B_CLUSTER) == 0)
285 vfs_busy_pages(vp, rbp);
286 BUF_KERNPROC(rbp); /* B_ASYNC */
287 vn_strategy(vp, &rbp->b_bio1);
289 no_read_ahead:
291 if (reqbp)
292 return (biowait(reqbp));
293 else
294 return (error);
298 * If blocks are contiguous on disk, use this to provide clustered
299 * read ahead. We will read as many blocks as possible sequentially
300 * and then parcel them up into logical blocks in the buffer hash table.
302 static struct buf *
303 cluster_rbuild(struct vnode *vp, off_t filesize, off_t loffset,
304 off_t doffset, int size, int run, struct buf *fbp, int doasync)
306 struct buf *bp, *tbp;
307 off_t boffset;
308 int i, j;
310 KASSERT(size == vp->v_mount->mnt_stat.f_iosize,
311 ("cluster_rbuild: size %d != filesize %ld\n",
312 size, vp->v_mount->mnt_stat.f_iosize));
315 * avoid a division
317 while (loffset + run * size > filesize) {
318 --run;
321 tbp = fbp;
322 tbp->b_bio2.bio_offset = doffset;
323 if((tbp->b_flags & B_MALLOC) ||
324 ((tbp->b_flags & B_VMIO) == 0) || (run <= 1)) {
325 return tbp;
328 bp = trypbuf(&cluster_pbuf_freecnt);
329 if (bp == NULL)
330 return tbp;
333 * We are synthesizing a buffer out of vm_page_t's, but
334 * if the block size is not page aligned then the starting
335 * address may not be either. Inherit the b_data offset
336 * from the original buffer.
338 bp->b_data = (char *)((vm_offset_t)bp->b_data |
339 ((vm_offset_t)tbp->b_data & PAGE_MASK));
340 bp->b_flags |= B_ASYNC | B_CLUSTER | B_VMIO;
341 bp->b_cmd = BUF_CMD_READ;
342 bp->b_bio1.bio_done = cluster_callback;
343 bp->b_bio1.bio_caller_info1.cluster_head = NULL;
344 bp->b_bio1.bio_caller_info2.cluster_tail = NULL;
345 bp->b_loffset = loffset;
346 bp->b_bio2.bio_offset = NOOFFSET;
347 KASSERT(bp->b_loffset != NOOFFSET,
348 ("cluster_rbuild: no buffer offset"));
350 bp->b_bcount = 0;
351 bp->b_bufsize = 0;
352 bp->b_xio.xio_npages = 0;
354 for (boffset = doffset, i = 0; i < run; ++i, boffset += size) {
355 if (i) {
356 if ((bp->b_xio.xio_npages * PAGE_SIZE) +
357 round_page(size) > vp->v_mount->mnt_iosize_max) {
358 break;
362 * Shortcut some checks and try to avoid buffers that
363 * would block in the lock. The same checks have to
364 * be made again after we officially get the buffer.
366 if ((tbp = findblk(vp, loffset + i * size)) != NULL) {
367 if (BUF_LOCK(tbp, LK_EXCLUSIVE | LK_NOWAIT))
368 break;
369 BUF_UNLOCK(tbp);
371 for (j = 0; j < tbp->b_xio.xio_npages; j++) {
372 if (tbp->b_xio.xio_pages[j]->valid)
373 break;
376 if (j != tbp->b_xio.xio_npages)
377 break;
379 if (tbp->b_bcount != size)
380 break;
383 tbp = getblk(vp, loffset + i * size, size, 0, 0);
386 * Stop scanning if the buffer is fuly valid
387 * (marked B_CACHE), or locked (may be doing a
388 * background write), or if the buffer is not
389 * VMIO backed. The clustering code can only deal
390 * with VMIO-backed buffers.
392 if ((tbp->b_flags & (B_CACHE|B_LOCKED)) ||
393 (tbp->b_flags & B_VMIO) == 0) {
394 bqrelse(tbp);
395 break;
399 * The buffer must be completely invalid in order to
400 * take part in the cluster. If it is partially valid
401 * then we stop.
403 for (j = 0;j < tbp->b_xio.xio_npages; j++) {
404 if (tbp->b_xio.xio_pages[j]->valid)
405 break;
407 if (j != tbp->b_xio.xio_npages) {
408 bqrelse(tbp);
409 break;
413 * Set a read-ahead mark as appropriate
415 if (i == 1 || i == (run - 1))
416 tbp->b_flags |= B_RAM;
419 * Set the block number if it isn't set, otherwise
420 * if it is make sure it matches the block number we
421 * expect.
423 if (tbp->b_bio2.bio_offset == NOOFFSET) {
424 tbp->b_bio2.bio_offset = boffset;
425 } else if (tbp->b_bio2.bio_offset != boffset) {
426 brelse(tbp);
427 break;
431 * The first buffer is setup async if doasync is specified.
432 * All other buffers in the cluster are setup async. This
433 * way the caller can decide how to deal with the requested
434 * buffer.
436 if (i || doasync)
437 tbp->b_flags |= B_ASYNC;
438 tbp->b_cmd = BUF_CMD_READ;
439 BUF_KERNPROC(tbp);
440 cluster_append(&bp->b_bio1, tbp);
441 for (j = 0; j < tbp->b_xio.xio_npages; ++j) {
442 vm_page_t m;
443 m = tbp->b_xio.xio_pages[j];
444 vm_page_io_start(m);
445 vm_object_pip_add(m->object, 1);
446 if ((bp->b_xio.xio_npages == 0) ||
447 (bp->b_xio.xio_pages[bp->b_xio.xio_npages-1] != m)) {
448 bp->b_xio.xio_pages[bp->b_xio.xio_npages] = m;
449 bp->b_xio.xio_npages++;
451 if ((m->valid & VM_PAGE_BITS_ALL) == VM_PAGE_BITS_ALL)
452 tbp->b_xio.xio_pages[j] = bogus_page;
455 * XXX shouldn't this be += size for both, like in
456 * cluster_wbuild()?
458 * Don't inherit tbp->b_bufsize as it may be larger due to
459 * a non-page-aligned size. Instead just aggregate using
460 * 'size'.
462 if (tbp->b_bcount != size)
463 kprintf("warning: tbp->b_bcount wrong %d vs %d\n", tbp->b_bcount, size);
464 if (tbp->b_bufsize != size)
465 kprintf("warning: tbp->b_bufsize wrong %d vs %d\n", tbp->b_bufsize, size);
466 bp->b_bcount += size;
467 bp->b_bufsize += size;
471 * Fully valid pages in the cluster are already good and do not need
472 * to be re-read from disk. Replace the page with bogus_page
474 for (j = 0; j < bp->b_xio.xio_npages; j++) {
475 if ((bp->b_xio.xio_pages[j]->valid & VM_PAGE_BITS_ALL) ==
476 VM_PAGE_BITS_ALL) {
477 bp->b_xio.xio_pages[j] = bogus_page;
480 if (bp->b_bufsize > bp->b_kvasize) {
481 panic("cluster_rbuild: b_bufsize(%d) > b_kvasize(%d)",
482 bp->b_bufsize, bp->b_kvasize);
485 pmap_qenter(trunc_page((vm_offset_t) bp->b_data),
486 (vm_page_t *)bp->b_xio.xio_pages, bp->b_xio.xio_npages);
487 return (bp);
491 * Cleanup after a clustered read or write.
492 * This is complicated by the fact that any of the buffers might have
493 * extra memory (if there were no empty buffer headers at allocbuf time)
494 * that we will need to shift around.
496 * The returned bio is &bp->b_bio1
498 void
499 cluster_callback(struct bio *bio)
501 struct buf *bp = bio->bio_buf;
502 struct buf *tbp;
503 int error = 0;
506 * Must propogate errors to all the components. A short read (EOF)
507 * is a critical error.
509 if (bp->b_flags & B_ERROR) {
510 error = bp->b_error;
511 } else if (bp->b_bcount != bp->b_bufsize) {
512 panic("cluster_callback: unexpected EOF on cluster %p!", bio);
515 pmap_qremove(trunc_page((vm_offset_t) bp->b_data), bp->b_xio.xio_npages);
517 * Move memory from the large cluster buffer into the component
518 * buffers and mark IO as done on these. Since the memory map
519 * is the same, no actual copying is required.
521 while ((tbp = bio->bio_caller_info1.cluster_head) != NULL) {
522 bio->bio_caller_info1.cluster_head = tbp->b_cluster_next;
523 if (error) {
524 tbp->b_flags |= B_ERROR;
525 tbp->b_error = error;
526 } else {
527 tbp->b_dirtyoff = tbp->b_dirtyend = 0;
528 tbp->b_flags &= ~(B_ERROR|B_INVAL);
530 * XXX the bdwrite()/bqrelse() issued during
531 * cluster building clears B_RELBUF (see bqrelse()
532 * comment). If direct I/O was specified, we have
533 * to restore it here to allow the buffer and VM
534 * to be freed.
536 if (tbp->b_flags & B_DIRECT)
537 tbp->b_flags |= B_RELBUF;
539 biodone(&tbp->b_bio1);
541 relpbuf(bp, &cluster_pbuf_freecnt);
545 * cluster_wbuild_wb:
547 * Implement modified write build for cluster.
549 * write_behind = 0 write behind disabled
550 * write_behind = 1 write behind normal (default)
551 * write_behind = 2 write behind backed-off
554 static __inline int
555 cluster_wbuild_wb(struct vnode *vp, int size, off_t start_loffset, int len)
557 int r = 0;
559 switch(write_behind) {
560 case 2:
561 if (start_loffset < len)
562 break;
563 start_loffset -= len;
564 /* fall through */
565 case 1:
566 r = cluster_wbuild(vp, size, start_loffset, len);
567 /* fall through */
568 default:
569 /* fall through */
570 break;
572 return(r);
576 * Do clustered write for FFS.
578 * Three cases:
579 * 1. Write is not sequential (write asynchronously)
580 * Write is sequential:
581 * 2. beginning of cluster - begin cluster
582 * 3. middle of a cluster - add to cluster
583 * 4. end of a cluster - asynchronously write cluster
585 void
586 cluster_write(struct buf *bp, off_t filesize, int seqcount)
588 struct vnode *vp;
589 off_t loffset;
590 int maxclen, cursize;
591 int lblocksize;
592 int async;
594 vp = bp->b_vp;
595 if (vp->v_type == VREG) {
596 async = vp->v_mount->mnt_flag & MNT_ASYNC;
597 lblocksize = vp->v_mount->mnt_stat.f_iosize;
598 } else {
599 async = 0;
600 lblocksize = bp->b_bufsize;
602 loffset = bp->b_loffset;
603 KASSERT(bp->b_loffset != NOOFFSET,
604 ("cluster_write: no buffer offset"));
606 /* Initialize vnode to beginning of file. */
607 if (loffset == 0)
608 vp->v_lasta = vp->v_clen = vp->v_cstart = vp->v_lastw = 0;
610 if (vp->v_clen == 0 || loffset != vp->v_lastw + lblocksize ||
611 bp->b_bio2.bio_offset == NOOFFSET ||
612 (bp->b_bio2.bio_offset != vp->v_lasta + lblocksize)) {
613 maxclen = vp->v_mount->mnt_iosize_max;
614 if (vp->v_clen != 0) {
616 * Next block is not sequential.
618 * If we are not writing at end of file, the process
619 * seeked to another point in the file since its last
620 * write, or we have reached our maximum cluster size,
621 * then push the previous cluster. Otherwise try
622 * reallocating to make it sequential.
624 * Change to algorithm: only push previous cluster if
625 * it was sequential from the point of view of the
626 * seqcount heuristic, otherwise leave the buffer
627 * intact so we can potentially optimize the I/O
628 * later on in the buf_daemon or update daemon
629 * flush.
631 cursize = vp->v_lastw - vp->v_cstart + lblocksize;
632 if (bp->b_loffset + lblocksize != filesize ||
633 loffset != vp->v_lastw + lblocksize || vp->v_clen <= cursize) {
634 if (!async && seqcount > 0) {
635 cluster_wbuild_wb(vp, lblocksize,
636 vp->v_cstart, cursize);
638 } else {
639 struct buf **bpp, **endbp;
640 struct cluster_save *buflist;
642 buflist = cluster_collectbufs(vp, bp,
643 lblocksize);
644 endbp = &buflist->bs_children
645 [buflist->bs_nchildren - 1];
646 if (VOP_REALLOCBLKS(vp, buflist)) {
648 * Failed, push the previous cluster
649 * if *really* writing sequentially
650 * in the logical file (seqcount > 1),
651 * otherwise delay it in the hopes that
652 * the low level disk driver can
653 * optimize the write ordering.
655 for (bpp = buflist->bs_children;
656 bpp < endbp; bpp++)
657 brelse(*bpp);
658 kfree(buflist, M_SEGMENT);
659 if (seqcount > 1) {
660 cluster_wbuild_wb(vp,
661 lblocksize, vp->v_cstart,
662 cursize);
664 } else {
666 * Succeeded, keep building cluster.
668 for (bpp = buflist->bs_children;
669 bpp <= endbp; bpp++)
670 bdwrite(*bpp);
671 kfree(buflist, M_SEGMENT);
672 vp->v_lastw = loffset;
673 vp->v_lasta = bp->b_bio2.bio_offset;
674 return;
679 * Consider beginning a cluster. If at end of file, make
680 * cluster as large as possible, otherwise find size of
681 * existing cluster.
683 if ((vp->v_type == VREG) &&
684 bp->b_loffset + lblocksize != filesize &&
685 (bp->b_bio2.bio_offset == NOOFFSET) &&
686 (VOP_BMAP(vp, loffset, &bp->b_bio2.bio_offset, &maxclen, NULL) ||
687 bp->b_bio2.bio_offset == NOOFFSET)) {
688 bawrite(bp);
689 vp->v_clen = 0;
690 vp->v_lasta = bp->b_bio2.bio_offset;
691 vp->v_cstart = loffset + lblocksize;
692 vp->v_lastw = loffset;
693 return;
695 if (maxclen > lblocksize)
696 vp->v_clen = maxclen - lblocksize;
697 else
698 vp->v_clen = 0;
699 if (!async && vp->v_clen == 0) { /* I/O not contiguous */
700 vp->v_cstart = loffset + lblocksize;
701 bawrite(bp);
702 } else { /* Wait for rest of cluster */
703 vp->v_cstart = loffset;
704 bdwrite(bp);
706 } else if (loffset == vp->v_cstart + vp->v_clen) {
708 * At end of cluster, write it out if seqcount tells us we
709 * are operating sequentially, otherwise let the buf or
710 * update daemon handle it.
712 bdwrite(bp);
713 if (seqcount > 1)
714 cluster_wbuild_wb(vp, lblocksize, vp->v_cstart,
715 vp->v_clen + lblocksize);
716 vp->v_clen = 0;
717 vp->v_cstart = loffset + lblocksize;
718 } else if (vm_page_count_severe()) {
720 * We are low on memory, get it going NOW
722 bawrite(bp);
723 } else {
725 * In the middle of a cluster, so just delay the I/O for now.
727 bdwrite(bp);
729 vp->v_lastw = loffset;
730 vp->v_lasta = bp->b_bio2.bio_offset;
735 * This is an awful lot like cluster_rbuild...wish they could be combined.
736 * The last lbn argument is the current block on which I/O is being
737 * performed. Check to see that it doesn't fall in the middle of
738 * the current block (if last_bp == NULL).
741 cluster_wbuild(struct vnode *vp, int size, off_t start_loffset, int bytes)
743 struct buf *bp, *tbp;
744 int i, j;
745 int totalwritten = 0;
747 while (bytes > 0) {
748 crit_enter();
750 * If the buffer is not delayed-write (i.e. dirty), or it
751 * is delayed-write but either locked or inval, it cannot
752 * partake in the clustered write.
754 if (((tbp = findblk(vp, start_loffset)) == NULL) ||
755 ((tbp->b_flags & (B_LOCKED | B_INVAL | B_DELWRI)) != B_DELWRI) ||
756 BUF_LOCK(tbp, LK_EXCLUSIVE | LK_NOWAIT)) {
757 start_loffset += size;
758 bytes -= size;
759 crit_exit();
760 continue;
762 bremfree(tbp);
763 KKASSERT(tbp->b_cmd == BUF_CMD_DONE);
764 crit_exit();
767 * Extra memory in the buffer, punt on this buffer.
768 * XXX we could handle this in most cases, but we would
769 * have to push the extra memory down to after our max
770 * possible cluster size and then potentially pull it back
771 * up if the cluster was terminated prematurely--too much
772 * hassle.
774 if (((tbp->b_flags & (B_CLUSTEROK|B_MALLOC)) != B_CLUSTEROK) ||
775 (tbp->b_bcount != tbp->b_bufsize) ||
776 (tbp->b_bcount != size) ||
777 (bytes == size) ||
778 ((bp = getpbuf(&cluster_pbuf_freecnt)) == NULL)) {
779 totalwritten += tbp->b_bufsize;
780 bawrite(tbp);
781 start_loffset += size;
782 bytes -= size;
783 continue;
787 * Set up the pbuf. Track our append point with b_bcount
788 * and b_bufsize. b_bufsize is not used by the device but
789 * our caller uses it to loop clusters and we use it to
790 * detect a premature EOF on the block device.
792 bp->b_bcount = 0;
793 bp->b_bufsize = 0;
794 bp->b_xio.xio_npages = 0;
795 bp->b_loffset = tbp->b_loffset;
796 bp->b_bio2.bio_offset = tbp->b_bio2.bio_offset;
799 * We are synthesizing a buffer out of vm_page_t's, but
800 * if the block size is not page aligned then the starting
801 * address may not be either. Inherit the b_data offset
802 * from the original buffer.
804 bp->b_data = (char *)((vm_offset_t)bp->b_data |
805 ((vm_offset_t)tbp->b_data & PAGE_MASK));
806 bp->b_flags &= ~B_ERROR;
807 bp->b_flags |= B_CLUSTER | B_BNOCLIP |
808 (tbp->b_flags & (B_VMIO | B_NEEDCOMMIT | B_NOWDRAIN));
809 bp->b_bio1.bio_done = cluster_callback;
810 bp->b_bio1.bio_caller_info1.cluster_head = NULL;
811 bp->b_bio1.bio_caller_info2.cluster_tail = NULL;
813 * From this location in the file, scan forward to see
814 * if there are buffers with adjacent data that need to
815 * be written as well.
817 for (i = 0; i < bytes; (i += size), (start_loffset += size)) {
818 if (i != 0) { /* If not the first buffer */
819 crit_enter();
821 * If the adjacent data is not even in core it
822 * can't need to be written.
824 if ((tbp = findblk(vp, start_loffset)) == NULL) {
825 crit_exit();
826 break;
830 * If it IS in core, but has different
831 * characteristics, or is locked (which
832 * means it could be undergoing a background
833 * I/O or be in a weird state), then don't
834 * cluster with it.
836 if ((tbp->b_flags & (B_VMIO | B_CLUSTEROK |
837 B_INVAL | B_DELWRI | B_NEEDCOMMIT))
838 != (B_DELWRI | B_CLUSTEROK |
839 (bp->b_flags & (B_VMIO | B_NEEDCOMMIT))) ||
840 (tbp->b_flags & B_LOCKED) ||
841 BUF_LOCK(tbp, LK_EXCLUSIVE | LK_NOWAIT)) {
842 crit_exit();
843 break;
847 * Check that the combined cluster
848 * would make sense with regard to pages
849 * and would not be too large
851 if ((tbp->b_bcount != size) ||
852 ((bp->b_bio2.bio_offset + i) !=
853 tbp->b_bio2.bio_offset) ||
854 ((tbp->b_xio.xio_npages + bp->b_xio.xio_npages) >
855 (vp->v_mount->mnt_iosize_max / PAGE_SIZE))) {
856 BUF_UNLOCK(tbp);
857 crit_exit();
858 break;
861 * Ok, it's passed all the tests,
862 * so remove it from the free list
863 * and mark it busy. We will use it.
865 bremfree(tbp);
866 KKASSERT(tbp->b_cmd == BUF_CMD_DONE);
867 crit_exit();
868 } /* end of code for non-first buffers only */
871 * If the IO is via the VM then we do some
872 * special VM hackery (yuck). Since the buffer's
873 * block size may not be page-aligned it is possible
874 * for a page to be shared between two buffers. We
875 * have to get rid of the duplication when building
876 * the cluster.
878 if (tbp->b_flags & B_VMIO) {
879 vm_page_t m;
881 if (i != 0) { /* if not first buffer */
882 for (j = 0; j < tbp->b_xio.xio_npages; ++j) {
883 m = tbp->b_xio.xio_pages[j];
884 if (m->flags & PG_BUSY) {
885 bqrelse(tbp);
886 goto finishcluster;
891 for (j = 0; j < tbp->b_xio.xio_npages; ++j) {
892 m = tbp->b_xio.xio_pages[j];
893 vm_page_io_start(m);
894 vm_object_pip_add(m->object, 1);
895 if ((bp->b_xio.xio_npages == 0) ||
896 (bp->b_xio.xio_pages[bp->b_xio.xio_npages - 1] != m)) {
897 bp->b_xio.xio_pages[bp->b_xio.xio_npages] = m;
898 bp->b_xio.xio_npages++;
902 bp->b_bcount += size;
903 bp->b_bufsize += size;
905 crit_enter();
906 bundirty(tbp);
907 tbp->b_flags &= ~B_ERROR;
908 tbp->b_flags |= B_ASYNC;
909 tbp->b_cmd = BUF_CMD_WRITE;
910 crit_exit();
911 BUF_KERNPROC(tbp);
912 cluster_append(&bp->b_bio1, tbp);
915 * check for latent dependencies to be handled
917 if (LIST_FIRST(&tbp->b_dep) != NULL && bioops.io_start)
918 (*bioops.io_start)(tbp);
921 finishcluster:
922 pmap_qenter(trunc_page((vm_offset_t) bp->b_data),
923 (vm_page_t *) bp->b_xio.xio_pages, bp->b_xio.xio_npages);
924 if (bp->b_bufsize > bp->b_kvasize) {
925 panic(
926 "cluster_wbuild: b_bufsize(%d) > b_kvasize(%d)\n",
927 bp->b_bufsize, bp->b_kvasize);
929 totalwritten += bp->b_bufsize;
930 bp->b_dirtyoff = 0;
931 bp->b_dirtyend = bp->b_bufsize;
932 bp->b_flags |= B_ASYNC;
933 bp->b_cmd = BUF_CMD_WRITE;
934 vfs_busy_pages(vp, bp);
935 bp->b_runningbufspace = bp->b_bufsize;
936 runningbufspace += bp->b_runningbufspace;
937 BUF_KERNPROC(bp); /* B_ASYNC */
938 vn_strategy(vp, &bp->b_bio1);
940 bytes -= i;
942 return totalwritten;
946 * Collect together all the buffers in a cluster.
947 * Plus add one additional buffer.
949 static struct cluster_save *
950 cluster_collectbufs(struct vnode *vp, struct buf *last_bp, int lblocksize)
952 struct cluster_save *buflist;
953 struct buf *bp;
954 off_t loffset;
955 int i, len;
957 len = (int)(vp->v_lastw - vp->v_cstart + lblocksize) / lblocksize;
958 buflist = kmalloc(sizeof(struct buf *) * (len + 1) + sizeof(*buflist),
959 M_SEGMENT, M_WAITOK);
960 buflist->bs_nchildren = 0;
961 buflist->bs_children = (struct buf **) (buflist + 1);
962 for (loffset = vp->v_cstart, i = 0; i < len; (loffset += lblocksize), i++) {
963 (void) bread(vp, loffset, last_bp->b_bcount, &bp);
964 buflist->bs_children[i] = bp;
965 if (bp->b_bio2.bio_offset == NOOFFSET) {
966 VOP_BMAP(bp->b_vp, bp->b_loffset,
967 &bp->b_bio2.bio_offset, NULL, NULL);
970 buflist->bs_children[i] = bp = last_bp;
971 if (bp->b_bio2.bio_offset == NOOFFSET) {
972 VOP_BMAP(bp->b_vp, bp->b_loffset,
973 &bp->b_bio2.bio_offset, NULL, NULL);
975 buflist->bs_nchildren = i + 1;
976 return (buflist);
979 void
980 cluster_append(struct bio *bio, struct buf *tbp)
982 tbp->b_cluster_next = NULL;
983 if (bio->bio_caller_info1.cluster_head == NULL) {
984 bio->bio_caller_info1.cluster_head = tbp;
985 bio->bio_caller_info2.cluster_tail = tbp;
986 } else {
987 bio->bio_caller_info2.cluster_tail->b_cluster_next = tbp;
988 bio->bio_caller_info2.cluster_tail = tbp;