Document bthcid(8) related variables in rc.conf(5).
[dragonfly.git] / sys / vfs / ufs / ffs_softdep.c
blobec4e51b727b4788e972e2021e34a4b788a5c022a
1 /*
2 * Copyright 1998, 2000 Marshall Kirk McKusick. All Rights Reserved.
4 * The soft updates code is derived from the appendix of a University
5 * of Michigan technical report (Gregory R. Ganger and Yale N. Patt,
6 * "Soft Updates: A Solution to the Metadata Update Problem in File
7 * Systems", CSE-TR-254-95, August 1995).
9 * Further information about soft updates can be obtained from:
11 * Marshall Kirk McKusick http://www.mckusick.com/softdep/
12 * 1614 Oxford Street mckusick@mckusick.com
13 * Berkeley, CA 94709-1608 +1-510-843-9542
14 * USA
16 * Redistribution and use in source and binary forms, with or without
17 * modification, are permitted provided that the following conditions
18 * are met:
20 * 1. Redistributions of source code must retain the above copyright
21 * notice, this list of conditions and the following disclaimer.
22 * 2. Redistributions in binary form must reproduce the above copyright
23 * notice, this list of conditions and the following disclaimer in the
24 * documentation and/or other materials provided with the distribution.
26 * THIS SOFTWARE IS PROVIDED BY MARSHALL KIRK MCKUSICK ``AS IS'' AND ANY
27 * EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
28 * WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
29 * DISCLAIMED. IN NO EVENT SHALL MARSHALL KIRK MCKUSICK BE LIABLE FOR
30 * ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
31 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
32 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
33 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
34 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
35 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
36 * SUCH DAMAGE.
38 * from: @(#)ffs_softdep.c 9.59 (McKusick) 6/21/00
39 * $FreeBSD: src/sys/ufs/ffs/ffs_softdep.c,v 1.57.2.11 2002/02/05 18:46:53 dillon Exp $
40 * $DragonFly: src/sys/vfs/ufs/ffs_softdep.c,v 1.55 2008/01/05 14:02:41 swildner Exp $
44 * For now we want the safety net that the DIAGNOSTIC and DEBUG flags provide.
46 #ifndef DIAGNOSTIC
47 #define DIAGNOSTIC
48 #endif
49 #ifndef DEBUG
50 #define DEBUG
51 #endif
53 #include <sys/param.h>
54 #include <sys/kernel.h>
55 #include <sys/systm.h>
56 #include <sys/buf.h>
57 #include <sys/malloc.h>
58 #include <sys/mount.h>
59 #include <sys/proc.h>
60 #include <sys/syslog.h>
61 #include <sys/vnode.h>
62 #include <sys/conf.h>
63 #include <sys/buf2.h>
64 #include <machine/inttypes.h>
65 #include "dir.h"
66 #include "quota.h"
67 #include "inode.h"
68 #include "ufsmount.h"
69 #include "fs.h"
70 #include "softdep.h"
71 #include "ffs_extern.h"
72 #include "ufs_extern.h"
74 #include <sys/thread2.h>
77 * These definitions need to be adapted to the system to which
78 * this file is being ported.
81 * malloc types defined for the softdep system.
83 MALLOC_DEFINE(M_PAGEDEP, "pagedep","File page dependencies");
84 MALLOC_DEFINE(M_INODEDEP, "inodedep","Inode dependencies");
85 MALLOC_DEFINE(M_NEWBLK, "newblk","New block allocation");
86 MALLOC_DEFINE(M_BMSAFEMAP, "bmsafemap","Block or frag allocated from cyl group map");
87 MALLOC_DEFINE(M_ALLOCDIRECT, "allocdirect","Block or frag dependency for an inode");
88 MALLOC_DEFINE(M_INDIRDEP, "indirdep","Indirect block dependencies");
89 MALLOC_DEFINE(M_ALLOCINDIR, "allocindir","Block dependency for an indirect block");
90 MALLOC_DEFINE(M_FREEFRAG, "freefrag","Previously used frag for an inode");
91 MALLOC_DEFINE(M_FREEBLKS, "freeblks","Blocks freed from an inode");
92 MALLOC_DEFINE(M_FREEFILE, "freefile","Inode deallocated");
93 MALLOC_DEFINE(M_DIRADD, "diradd","New directory entry");
94 MALLOC_DEFINE(M_MKDIR, "mkdir","New directory");
95 MALLOC_DEFINE(M_DIRREM, "dirrem","Directory entry deleted");
97 #define M_SOFTDEP_FLAGS (M_WAITOK | M_USE_RESERVE)
99 #define D_PAGEDEP 0
100 #define D_INODEDEP 1
101 #define D_NEWBLK 2
102 #define D_BMSAFEMAP 3
103 #define D_ALLOCDIRECT 4
104 #define D_INDIRDEP 5
105 #define D_ALLOCINDIR 6
106 #define D_FREEFRAG 7
107 #define D_FREEBLKS 8
108 #define D_FREEFILE 9
109 #define D_DIRADD 10
110 #define D_MKDIR 11
111 #define D_DIRREM 12
112 #define D_LAST D_DIRREM
115 * translate from workitem type to memory type
116 * MUST match the defines above, such that memtype[D_XXX] == M_XXX
118 static struct malloc_type *memtype[] = {
119 M_PAGEDEP,
120 M_INODEDEP,
121 M_NEWBLK,
122 M_BMSAFEMAP,
123 M_ALLOCDIRECT,
124 M_INDIRDEP,
125 M_ALLOCINDIR,
126 M_FREEFRAG,
127 M_FREEBLKS,
128 M_FREEFILE,
129 M_DIRADD,
130 M_MKDIR,
131 M_DIRREM
134 #define DtoM(type) (memtype[type])
137 * Names of malloc types.
139 #define TYPENAME(type) \
140 ((unsigned)(type) < D_LAST ? memtype[type]->ks_shortdesc : "???")
142 * End system adaptaion definitions.
146 * Internal function prototypes.
148 static void softdep_error(char *, int);
149 static void drain_output(struct vnode *, int);
150 static int getdirtybuf(struct buf **, int);
151 static void clear_remove(struct thread *);
152 static void clear_inodedeps(struct thread *);
153 static int flush_pagedep_deps(struct vnode *, struct mount *,
154 struct diraddhd *);
155 static int flush_inodedep_deps(struct fs *, ino_t);
156 static int handle_written_filepage(struct pagedep *, struct buf *);
157 static void diradd_inode_written(struct diradd *, struct inodedep *);
158 static int handle_written_inodeblock(struct inodedep *, struct buf *);
159 static void handle_allocdirect_partdone(struct allocdirect *);
160 static void handle_allocindir_partdone(struct allocindir *);
161 static void initiate_write_filepage(struct pagedep *, struct buf *);
162 static void handle_written_mkdir(struct mkdir *, int);
163 static void initiate_write_inodeblock(struct inodedep *, struct buf *);
164 static void handle_workitem_freefile(struct freefile *);
165 static void handle_workitem_remove(struct dirrem *);
166 static struct dirrem *newdirrem(struct buf *, struct inode *,
167 struct inode *, int, struct dirrem **);
168 static void free_diradd(struct diradd *);
169 static void free_allocindir(struct allocindir *, struct inodedep *);
170 static int indir_trunc (struct inode *, off_t, int, ufs_lbn_t, long *);
171 static void deallocate_dependencies(struct buf *, struct inodedep *);
172 static void free_allocdirect(struct allocdirectlst *,
173 struct allocdirect *, int);
174 static int check_inode_unwritten(struct inodedep *);
175 static int free_inodedep(struct inodedep *);
176 static void handle_workitem_freeblocks(struct freeblks *);
177 static void merge_inode_lists(struct inodedep *);
178 static void setup_allocindir_phase2(struct buf *, struct inode *,
179 struct allocindir *);
180 static struct allocindir *newallocindir(struct inode *, int, ufs_daddr_t,
181 ufs_daddr_t);
182 static void handle_workitem_freefrag(struct freefrag *);
183 static struct freefrag *newfreefrag(struct inode *, ufs_daddr_t, long);
184 static void allocdirect_merge(struct allocdirectlst *,
185 struct allocdirect *, struct allocdirect *);
186 static struct bmsafemap *bmsafemap_lookup(struct buf *);
187 static int newblk_lookup(struct fs *, ufs_daddr_t, int,
188 struct newblk **);
189 static int inodedep_lookup(struct fs *, ino_t, int, struct inodedep **);
190 static int pagedep_lookup(struct inode *, ufs_lbn_t, int,
191 struct pagedep **);
192 static void pause_timer(void *);
193 static int request_cleanup(int, int);
194 static int process_worklist_item(struct mount *, int);
195 static void add_to_worklist(struct worklist *);
198 * Exported softdep operations.
200 static void softdep_disk_io_initiation(struct buf *);
201 static void softdep_disk_write_complete(struct buf *);
202 static void softdep_deallocate_dependencies(struct buf *);
203 static int softdep_fsync(struct vnode *);
204 static int softdep_process_worklist(struct mount *);
205 static void softdep_move_dependencies(struct buf *, struct buf *);
206 static int softdep_count_dependencies(struct buf *bp, int);
207 static int softdep_checkread(struct buf *bp);
208 static int softdep_checkwrite(struct buf *bp);
210 static struct bio_ops softdep_bioops = {
211 .io_start = softdep_disk_io_initiation,
212 .io_complete = softdep_disk_write_complete,
213 .io_deallocate = softdep_deallocate_dependencies,
214 .io_fsync = softdep_fsync,
215 .io_sync = softdep_process_worklist,
216 .io_movedeps = softdep_move_dependencies,
217 .io_countdeps = softdep_count_dependencies,
218 .io_checkread = softdep_checkread,
219 .io_checkwrite = softdep_checkwrite
223 * Locking primitives.
225 * For a uniprocessor, all we need to do is protect against disk
226 * interrupts. For a multiprocessor, this lock would have to be
227 * a mutex. A single mutex is used throughout this file, though
228 * finer grain locking could be used if contention warranted it.
230 * For a multiprocessor, the sleep call would accept a lock and
231 * release it after the sleep processing was complete. In a uniprocessor
232 * implementation there is no such interlock, so we simple mark
233 * the places where it needs to be done with the `interlocked' form
234 * of the lock calls. Since the uniprocessor sleep already interlocks
235 * the spl, there is nothing that really needs to be done.
237 #ifndef /* NOT */ DEBUG
238 static struct lockit {
239 } lk = { 0 };
240 #define ACQUIRE_LOCK(lk) crit_enter_id("softupdates");
241 #define FREE_LOCK(lk) crit_exit_id("softupdates");
243 #else /* DEBUG */
244 #define NOHOLDER ((struct thread *)-1)
245 #define SPECIAL_FLAG ((struct thread *)-2)
246 static struct lockit {
247 int lkt_spl;
248 struct thread *lkt_held;
249 } lk = { 0, NOHOLDER };
250 static int lockcnt;
252 static void acquire_lock(struct lockit *);
253 static void free_lock(struct lockit *);
254 void softdep_panic(char *);
256 #define ACQUIRE_LOCK(lk) acquire_lock(lk)
257 #define FREE_LOCK(lk) free_lock(lk)
259 static void
260 acquire_lock(struct lockit *lk)
262 thread_t holder;
264 if (lk->lkt_held != NOHOLDER) {
265 holder = lk->lkt_held;
266 FREE_LOCK(lk);
267 if (holder == curthread)
268 panic("softdep_lock: locking against myself");
269 else
270 panic("softdep_lock: lock held by %p", holder);
272 crit_enter_id("softupdates");
273 lk->lkt_held = curthread;
274 lockcnt++;
277 static void
278 free_lock(struct lockit *lk)
281 if (lk->lkt_held == NOHOLDER)
282 panic("softdep_unlock: lock not held");
283 lk->lkt_held = NOHOLDER;
284 crit_exit_id("softupdates");
288 * Function to release soft updates lock and panic.
290 void
291 softdep_panic(char *msg)
294 if (lk.lkt_held != NOHOLDER)
295 FREE_LOCK(&lk);
296 panic(msg);
298 #endif /* DEBUG */
300 static int interlocked_sleep(struct lockit *, int, void *, int,
301 const char *, int);
304 * When going to sleep, we must save our SPL so that it does
305 * not get lost if some other process uses the lock while we
306 * are sleeping. We restore it after we have slept. This routine
307 * wraps the interlocking with functions that sleep. The list
308 * below enumerates the available set of operations.
310 #define UNKNOWN 0
311 #define SLEEP 1
312 #define LOCKBUF 2
314 static int
315 interlocked_sleep(struct lockit *lk, int op, void *ident, int flags,
316 const char *wmesg, int timo)
318 thread_t holder;
319 int s, retval;
321 s = lk->lkt_spl;
322 # ifdef DEBUG
323 if (lk->lkt_held == NOHOLDER)
324 panic("interlocked_sleep: lock not held");
325 lk->lkt_held = NOHOLDER;
326 # endif /* DEBUG */
327 switch (op) {
328 case SLEEP:
329 retval = tsleep(ident, flags, wmesg, timo);
330 break;
331 case LOCKBUF:
332 retval = BUF_LOCK((struct buf *)ident, flags);
333 break;
334 default:
335 panic("interlocked_sleep: unknown operation");
337 # ifdef DEBUG
338 if (lk->lkt_held != NOHOLDER) {
339 holder = lk->lkt_held;
340 FREE_LOCK(lk);
341 if (holder == curthread)
342 panic("interlocked_sleep: locking against self");
343 else
344 panic("interlocked_sleep: lock held by %p", holder);
346 lk->lkt_held = curthread;
347 lockcnt++;
348 # endif /* DEBUG */
349 lk->lkt_spl = s;
350 return (retval);
354 * Place holder for real semaphores.
356 struct sema {
357 int value;
358 thread_t holder;
359 char *name;
360 int prio;
361 int timo;
363 static void sema_init(struct sema *, char *, int, int);
364 static int sema_get(struct sema *, struct lockit *);
365 static void sema_release(struct sema *);
367 static void
368 sema_init(struct sema *semap, char *name, int prio, int timo)
371 semap->holder = NOHOLDER;
372 semap->value = 0;
373 semap->name = name;
374 semap->prio = prio;
375 semap->timo = timo;
378 static int
379 sema_get(struct sema *semap, struct lockit *interlock)
382 if (semap->value++ > 0) {
383 if (interlock != NULL) {
384 interlocked_sleep(interlock, SLEEP, (caddr_t)semap,
385 semap->prio, semap->name, semap->timo);
386 FREE_LOCK(interlock);
387 } else {
388 tsleep((caddr_t)semap, semap->prio, semap->name,
389 semap->timo);
391 return (0);
393 semap->holder = curthread;
394 if (interlock != NULL)
395 FREE_LOCK(interlock);
396 return (1);
399 static void
400 sema_release(struct sema *semap)
403 if (semap->value <= 0 || semap->holder != curthread) {
404 if (lk.lkt_held != NOHOLDER)
405 FREE_LOCK(&lk);
406 panic("sema_release: not held");
408 if (--semap->value > 0) {
409 semap->value = 0;
410 wakeup(semap);
412 semap->holder = NOHOLDER;
416 * Worklist queue management.
417 * These routines require that the lock be held.
419 #ifndef /* NOT */ DEBUG
420 #define WORKLIST_INSERT(head, item) do { \
421 (item)->wk_state |= ONWORKLIST; \
422 LIST_INSERT_HEAD(head, item, wk_list); \
423 } while (0)
425 #define WORKLIST_INSERT_BP(bp, item) do { \
426 (item)->wk_state |= ONWORKLIST; \
427 (bp)->b_ops = &softdep_bioops; \
428 LIST_INSERT_HEAD(&(bp)->b_dep, item, wk_list); \
429 } while (0)
431 #define WORKLIST_REMOVE(item) do { \
432 (item)->wk_state &= ~ONWORKLIST; \
433 LIST_REMOVE(item, wk_list); \
434 } while (0)
436 #define WORKITEM_FREE(item, type) FREE(item, DtoM(type))
438 #else /* DEBUG */
439 static void worklist_insert(struct workhead *, struct worklist *);
440 static void worklist_remove(struct worklist *);
441 static void workitem_free(struct worklist *, int);
443 #define WORKLIST_INSERT_BP(bp, item) do { \
444 (bp)->b_ops = &softdep_bioops; \
445 worklist_insert(&(bp)->b_dep, item); \
446 } while (0)
448 #define WORKLIST_INSERT(head, item) worklist_insert(head, item)
449 #define WORKLIST_REMOVE(item) worklist_remove(item)
450 #define WORKITEM_FREE(item, type) workitem_free((struct worklist *)item, type)
452 static void
453 worklist_insert(struct workhead *head, struct worklist *item)
456 if (lk.lkt_held == NOHOLDER)
457 panic("worklist_insert: lock not held");
458 if (item->wk_state & ONWORKLIST) {
459 FREE_LOCK(&lk);
460 panic("worklist_insert: already on list");
462 item->wk_state |= ONWORKLIST;
463 LIST_INSERT_HEAD(head, item, wk_list);
466 static void
467 worklist_remove(struct worklist *item)
470 if (lk.lkt_held == NOHOLDER)
471 panic("worklist_remove: lock not held");
472 if ((item->wk_state & ONWORKLIST) == 0) {
473 FREE_LOCK(&lk);
474 panic("worklist_remove: not on list");
476 item->wk_state &= ~ONWORKLIST;
477 LIST_REMOVE(item, wk_list);
480 static void
481 workitem_free(struct worklist *item, int type)
484 if (item->wk_state & ONWORKLIST) {
485 if (lk.lkt_held != NOHOLDER)
486 FREE_LOCK(&lk);
487 panic("workitem_free: still on list");
489 if (item->wk_type != type) {
490 if (lk.lkt_held != NOHOLDER)
491 FREE_LOCK(&lk);
492 panic("workitem_free: type mismatch");
494 FREE(item, DtoM(type));
496 #endif /* DEBUG */
499 * Workitem queue management
501 static struct workhead softdep_workitem_pending;
502 static int num_on_worklist; /* number of worklist items to be processed */
503 static int softdep_worklist_busy; /* 1 => trying to do unmount */
504 static int softdep_worklist_req; /* serialized waiters */
505 static int max_softdeps; /* maximum number of structs before slowdown */
506 static int tickdelay = 2; /* number of ticks to pause during slowdown */
507 static int *stat_countp; /* statistic to count in proc_waiting timeout */
508 static int proc_waiting; /* tracks whether we have a timeout posted */
509 static struct callout handle; /* handle on posted proc_waiting timeout */
510 static struct thread *filesys_syncer; /* proc of filesystem syncer process */
511 static int req_clear_inodedeps; /* syncer process flush some inodedeps */
512 #define FLUSH_INODES 1
513 static int req_clear_remove; /* syncer process flush some freeblks */
514 #define FLUSH_REMOVE 2
516 * runtime statistics
518 static int stat_worklist_push; /* number of worklist cleanups */
519 static int stat_blk_limit_push; /* number of times block limit neared */
520 static int stat_ino_limit_push; /* number of times inode limit neared */
521 static int stat_blk_limit_hit; /* number of times block slowdown imposed */
522 static int stat_ino_limit_hit; /* number of times inode slowdown imposed */
523 static int stat_sync_limit_hit; /* number of synchronous slowdowns imposed */
524 static int stat_indir_blk_ptrs; /* bufs redirtied as indir ptrs not written */
525 static int stat_inode_bitmap; /* bufs redirtied as inode bitmap not written */
526 static int stat_direct_blk_ptrs;/* bufs redirtied as direct ptrs not written */
527 static int stat_dir_entry; /* bufs redirtied as dir entry cannot write */
528 #ifdef DEBUG
529 #include <vm/vm.h>
530 #include <sys/sysctl.h>
531 SYSCTL_INT(_debug, OID_AUTO, max_softdeps, CTLFLAG_RW, &max_softdeps, 0, "");
532 SYSCTL_INT(_debug, OID_AUTO, tickdelay, CTLFLAG_RW, &tickdelay, 0, "");
533 SYSCTL_INT(_debug, OID_AUTO, worklist_push, CTLFLAG_RW, &stat_worklist_push, 0,"");
534 SYSCTL_INT(_debug, OID_AUTO, blk_limit_push, CTLFLAG_RW, &stat_blk_limit_push, 0,"");
535 SYSCTL_INT(_debug, OID_AUTO, ino_limit_push, CTLFLAG_RW, &stat_ino_limit_push, 0,"");
536 SYSCTL_INT(_debug, OID_AUTO, blk_limit_hit, CTLFLAG_RW, &stat_blk_limit_hit, 0, "");
537 SYSCTL_INT(_debug, OID_AUTO, ino_limit_hit, CTLFLAG_RW, &stat_ino_limit_hit, 0, "");
538 SYSCTL_INT(_debug, OID_AUTO, sync_limit_hit, CTLFLAG_RW, &stat_sync_limit_hit, 0, "");
539 SYSCTL_INT(_debug, OID_AUTO, indir_blk_ptrs, CTLFLAG_RW, &stat_indir_blk_ptrs, 0, "");
540 SYSCTL_INT(_debug, OID_AUTO, inode_bitmap, CTLFLAG_RW, &stat_inode_bitmap, 0, "");
541 SYSCTL_INT(_debug, OID_AUTO, direct_blk_ptrs, CTLFLAG_RW, &stat_direct_blk_ptrs, 0, "");
542 SYSCTL_INT(_debug, OID_AUTO, dir_entry, CTLFLAG_RW, &stat_dir_entry, 0, "");
543 #endif /* DEBUG */
546 * Add an item to the end of the work queue.
547 * This routine requires that the lock be held.
548 * This is the only routine that adds items to the list.
549 * The following routine is the only one that removes items
550 * and does so in order from first to last.
552 static void
553 add_to_worklist(struct worklist *wk)
555 static struct worklist *worklist_tail;
557 if (wk->wk_state & ONWORKLIST) {
558 if (lk.lkt_held != NOHOLDER)
559 FREE_LOCK(&lk);
560 panic("add_to_worklist: already on list");
562 wk->wk_state |= ONWORKLIST;
563 if (LIST_FIRST(&softdep_workitem_pending) == NULL)
564 LIST_INSERT_HEAD(&softdep_workitem_pending, wk, wk_list);
565 else
566 LIST_INSERT_AFTER(worklist_tail, wk, wk_list);
567 worklist_tail = wk;
568 num_on_worklist += 1;
572 * Process that runs once per second to handle items in the background queue.
574 * Note that we ensure that everything is done in the order in which they
575 * appear in the queue. The code below depends on this property to ensure
576 * that blocks of a file are freed before the inode itself is freed. This
577 * ordering ensures that no new <vfsid, inum, lbn> triples will be generated
578 * until all the old ones have been purged from the dependency lists.
580 static int
581 softdep_process_worklist(struct mount *matchmnt)
583 thread_t td = curthread;
584 int matchcnt, loopcount;
585 long starttime;
588 * Record the process identifier of our caller so that we can give
589 * this process preferential treatment in request_cleanup below.
591 filesys_syncer = td;
592 matchcnt = 0;
595 * There is no danger of having multiple processes run this
596 * code, but we have to single-thread it when softdep_flushfiles()
597 * is in operation to get an accurate count of the number of items
598 * related to its mount point that are in the list.
600 if (matchmnt == NULL) {
601 if (softdep_worklist_busy < 0)
602 return(-1);
603 softdep_worklist_busy += 1;
607 * If requested, try removing inode or removal dependencies.
609 if (req_clear_inodedeps) {
610 clear_inodedeps(td);
611 req_clear_inodedeps -= 1;
612 wakeup_one(&proc_waiting);
614 if (req_clear_remove) {
615 clear_remove(td);
616 req_clear_remove -= 1;
617 wakeup_one(&proc_waiting);
619 loopcount = 1;
620 starttime = time_second;
621 while (num_on_worklist > 0) {
622 matchcnt += process_worklist_item(matchmnt, 0);
625 * If a umount operation wants to run the worklist
626 * accurately, abort.
628 if (softdep_worklist_req && matchmnt == NULL) {
629 matchcnt = -1;
630 break;
634 * If requested, try removing inode or removal dependencies.
636 if (req_clear_inodedeps) {
637 clear_inodedeps(td);
638 req_clear_inodedeps -= 1;
639 wakeup_one(&proc_waiting);
641 if (req_clear_remove) {
642 clear_remove(td);
643 req_clear_remove -= 1;
644 wakeup_one(&proc_waiting);
647 * We do not generally want to stop for buffer space, but if
648 * we are really being a buffer hog, we will stop and wait.
650 if (loopcount++ % 128 == 0)
651 bwillwrite();
653 * Never allow processing to run for more than one
654 * second. Otherwise the other syncer tasks may get
655 * excessively backlogged.
657 if (starttime != time_second && matchmnt == NULL) {
658 matchcnt = -1;
659 break;
662 if (matchmnt == NULL) {
663 --softdep_worklist_busy;
664 if (softdep_worklist_req && softdep_worklist_busy == 0)
665 wakeup(&softdep_worklist_req);
667 return (matchcnt);
671 * Process one item on the worklist.
673 static int
674 process_worklist_item(struct mount *matchmnt, int flags)
676 struct worklist *wk;
677 struct dirrem *dirrem;
678 struct fs *matchfs;
679 struct vnode *vp;
680 int matchcnt = 0;
682 matchfs = NULL;
683 if (matchmnt != NULL)
684 matchfs = VFSTOUFS(matchmnt)->um_fs;
685 ACQUIRE_LOCK(&lk);
687 * Normally we just process each item on the worklist in order.
688 * However, if we are in a situation where we cannot lock any
689 * inodes, we have to skip over any dirrem requests whose
690 * vnodes are resident and locked.
692 LIST_FOREACH(wk, &softdep_workitem_pending, wk_list) {
693 if ((flags & LK_NOWAIT) == 0 || wk->wk_type != D_DIRREM)
694 break;
695 dirrem = WK_DIRREM(wk);
696 vp = ufs_ihashlookup(VFSTOUFS(dirrem->dm_mnt)->um_dev,
697 dirrem->dm_oldinum);
698 if (vp == NULL || !vn_islocked(vp))
699 break;
701 if (wk == 0) {
702 FREE_LOCK(&lk);
703 return (0);
705 WORKLIST_REMOVE(wk);
706 num_on_worklist -= 1;
707 FREE_LOCK(&lk);
708 switch (wk->wk_type) {
710 case D_DIRREM:
711 /* removal of a directory entry */
712 if (WK_DIRREM(wk)->dm_mnt == matchmnt)
713 matchcnt += 1;
714 handle_workitem_remove(WK_DIRREM(wk));
715 break;
717 case D_FREEBLKS:
718 /* releasing blocks and/or fragments from a file */
719 if (WK_FREEBLKS(wk)->fb_fs == matchfs)
720 matchcnt += 1;
721 handle_workitem_freeblocks(WK_FREEBLKS(wk));
722 break;
724 case D_FREEFRAG:
725 /* releasing a fragment when replaced as a file grows */
726 if (WK_FREEFRAG(wk)->ff_fs == matchfs)
727 matchcnt += 1;
728 handle_workitem_freefrag(WK_FREEFRAG(wk));
729 break;
731 case D_FREEFILE:
732 /* releasing an inode when its link count drops to 0 */
733 if (WK_FREEFILE(wk)->fx_fs == matchfs)
734 matchcnt += 1;
735 handle_workitem_freefile(WK_FREEFILE(wk));
736 break;
738 default:
739 panic("%s_process_worklist: Unknown type %s",
740 "softdep", TYPENAME(wk->wk_type));
741 /* NOTREACHED */
743 return (matchcnt);
747 * Move dependencies from one buffer to another.
749 static void
750 softdep_move_dependencies(struct buf *oldbp, struct buf *newbp)
752 struct worklist *wk, *wktail;
754 if (LIST_FIRST(&newbp->b_dep) != NULL)
755 panic("softdep_move_dependencies: need merge code");
756 wktail = NULL;
757 ACQUIRE_LOCK(&lk);
758 while ((wk = LIST_FIRST(&oldbp->b_dep)) != NULL) {
759 LIST_REMOVE(wk, wk_list);
760 if (wktail == NULL)
761 LIST_INSERT_HEAD(&newbp->b_dep, wk, wk_list);
762 else
763 LIST_INSERT_AFTER(wktail, wk, wk_list);
764 wktail = wk;
765 newbp->b_ops = &softdep_bioops;
767 FREE_LOCK(&lk);
771 * Purge the work list of all items associated with a particular mount point.
774 softdep_flushfiles(struct mount *oldmnt, int flags)
776 struct vnode *devvp;
777 int error, loopcnt;
780 * Await our turn to clear out the queue, then serialize access.
782 while (softdep_worklist_busy != 0) {
783 softdep_worklist_req += 1;
784 tsleep(&softdep_worklist_req, 0, "softflush", 0);
785 softdep_worklist_req -= 1;
787 softdep_worklist_busy = -1;
789 if ((error = ffs_flushfiles(oldmnt, flags)) != 0) {
790 softdep_worklist_busy = 0;
791 if (softdep_worklist_req)
792 wakeup(&softdep_worklist_req);
793 return (error);
796 * Alternately flush the block device associated with the mount
797 * point and process any dependencies that the flushing
798 * creates. In theory, this loop can happen at most twice,
799 * but we give it a few extra just to be sure.
801 devvp = VFSTOUFS(oldmnt)->um_devvp;
802 for (loopcnt = 10; loopcnt > 0; ) {
803 if (softdep_process_worklist(oldmnt) == 0) {
804 loopcnt--;
806 * Do another flush in case any vnodes were brought in
807 * as part of the cleanup operations.
809 if ((error = ffs_flushfiles(oldmnt, flags)) != 0)
810 break;
812 * If we still found nothing to do, we are really done.
814 if (softdep_process_worklist(oldmnt) == 0)
815 break;
817 vn_lock(devvp, LK_EXCLUSIVE | LK_RETRY);
818 error = VOP_FSYNC(devvp, MNT_WAIT);
819 vn_unlock(devvp);
820 if (error)
821 break;
823 softdep_worklist_busy = 0;
824 if (softdep_worklist_req)
825 wakeup(&softdep_worklist_req);
828 * If we are unmounting then it is an error to fail. If we
829 * are simply trying to downgrade to read-only, then filesystem
830 * activity can keep us busy forever, so we just fail with EBUSY.
832 if (loopcnt == 0) {
833 if (oldmnt->mnt_kern_flag & MNTK_UNMOUNT)
834 panic("softdep_flushfiles: looping");
835 error = EBUSY;
837 return (error);
841 * Structure hashing.
843 * There are three types of structures that can be looked up:
844 * 1) pagedep structures identified by mount point, inode number,
845 * and logical block.
846 * 2) inodedep structures identified by mount point and inode number.
847 * 3) newblk structures identified by mount point and
848 * physical block number.
850 * The "pagedep" and "inodedep" dependency structures are hashed
851 * separately from the file blocks and inodes to which they correspond.
852 * This separation helps when the in-memory copy of an inode or
853 * file block must be replaced. It also obviates the need to access
854 * an inode or file page when simply updating (or de-allocating)
855 * dependency structures. Lookup of newblk structures is needed to
856 * find newly allocated blocks when trying to associate them with
857 * their allocdirect or allocindir structure.
859 * The lookup routines optionally create and hash a new instance when
860 * an existing entry is not found.
862 #define DEPALLOC 0x0001 /* allocate structure if lookup fails */
863 #define NODELAY 0x0002 /* cannot do background work */
866 * Structures and routines associated with pagedep caching.
868 LIST_HEAD(pagedep_hashhead, pagedep) *pagedep_hashtbl;
869 u_long pagedep_hash; /* size of hash table - 1 */
870 #define PAGEDEP_HASH(mp, inum, lbn) \
871 (&pagedep_hashtbl[((((register_t)(mp)) >> 13) + (inum) + (lbn)) & \
872 pagedep_hash])
873 static struct sema pagedep_in_progress;
876 * Helper routine for pagedep_lookup()
878 static __inline
879 struct pagedep *
880 pagedep_find(struct pagedep_hashhead *pagedephd, ino_t ino, ufs_lbn_t lbn,
881 struct mount *mp)
883 struct pagedep *pagedep;
885 LIST_FOREACH(pagedep, pagedephd, pd_hash) {
886 if (ino == pagedep->pd_ino &&
887 lbn == pagedep->pd_lbn &&
888 mp == pagedep->pd_mnt) {
889 return (pagedep);
892 return(NULL);
896 * Look up a pagedep. Return 1 if found, 0 if not found.
897 * If not found, allocate if DEPALLOC flag is passed.
898 * Found or allocated entry is returned in pagedeppp.
899 * This routine must be called with splbio interrupts blocked.
901 static int
902 pagedep_lookup(struct inode *ip, ufs_lbn_t lbn, int flags,
903 struct pagedep **pagedeppp)
905 struct pagedep *pagedep;
906 struct pagedep_hashhead *pagedephd;
907 struct mount *mp;
908 int i;
910 #ifdef DEBUG
911 if (lk.lkt_held == NOHOLDER)
912 panic("pagedep_lookup: lock not held");
913 #endif
914 mp = ITOV(ip)->v_mount;
915 pagedephd = PAGEDEP_HASH(mp, ip->i_number, lbn);
916 top:
917 *pagedeppp = pagedep_find(pagedephd, ip->i_number, lbn, mp);
918 if (*pagedeppp)
919 return(1);
920 if ((flags & DEPALLOC) == 0)
921 return (0);
922 if (sema_get(&pagedep_in_progress, &lk) == 0) {
923 ACQUIRE_LOCK(&lk);
924 goto top;
926 MALLOC(pagedep, struct pagedep *, sizeof(struct pagedep), M_PAGEDEP,
927 M_SOFTDEP_FLAGS | M_ZERO);
929 if (pagedep_find(pagedephd, ip->i_number, lbn, mp)) {
930 kprintf("pagedep_lookup: blocking race avoided\n");
931 ACQUIRE_LOCK(&lk);
932 sema_release(&pagedep_in_progress);
933 kfree(pagedep, M_PAGEDEP);
934 goto top;
937 pagedep->pd_list.wk_type = D_PAGEDEP;
938 pagedep->pd_mnt = mp;
939 pagedep->pd_ino = ip->i_number;
940 pagedep->pd_lbn = lbn;
941 LIST_INIT(&pagedep->pd_dirremhd);
942 LIST_INIT(&pagedep->pd_pendinghd);
943 for (i = 0; i < DAHASHSZ; i++)
944 LIST_INIT(&pagedep->pd_diraddhd[i]);
945 ACQUIRE_LOCK(&lk);
946 LIST_INSERT_HEAD(pagedephd, pagedep, pd_hash);
947 sema_release(&pagedep_in_progress);
948 *pagedeppp = pagedep;
949 return (0);
953 * Structures and routines associated with inodedep caching.
955 LIST_HEAD(inodedep_hashhead, inodedep) *inodedep_hashtbl;
956 static u_long inodedep_hash; /* size of hash table - 1 */
957 static long num_inodedep; /* number of inodedep allocated */
958 #define INODEDEP_HASH(fs, inum) \
959 (&inodedep_hashtbl[((((register_t)(fs)) >> 13) + (inum)) & inodedep_hash])
960 static struct sema inodedep_in_progress;
963 * Helper routine for inodedep_lookup()
965 static __inline
966 struct inodedep *
967 inodedep_find(struct inodedep_hashhead *inodedephd, struct fs *fs, ino_t inum)
969 struct inodedep *inodedep;
971 LIST_FOREACH(inodedep, inodedephd, id_hash) {
972 if (inum == inodedep->id_ino && fs == inodedep->id_fs)
973 return(inodedep);
975 return (NULL);
979 * Look up a inodedep. Return 1 if found, 0 if not found.
980 * If not found, allocate if DEPALLOC flag is passed.
981 * Found or allocated entry is returned in inodedeppp.
982 * This routine must be called with splbio interrupts blocked.
984 static int
985 inodedep_lookup(struct fs *fs, ino_t inum, int flags,
986 struct inodedep **inodedeppp)
988 struct inodedep *inodedep;
989 struct inodedep_hashhead *inodedephd;
990 int firsttry;
992 #ifdef DEBUG
993 if (lk.lkt_held == NOHOLDER)
994 panic("inodedep_lookup: lock not held");
995 #endif
996 firsttry = 1;
997 inodedephd = INODEDEP_HASH(fs, inum);
998 top:
999 *inodedeppp = inodedep_find(inodedephd, fs, inum);
1000 if (*inodedeppp)
1001 return (1);
1002 if ((flags & DEPALLOC) == 0)
1003 return (0);
1005 * If we are over our limit, try to improve the situation.
1007 if (num_inodedep > max_softdeps && firsttry &&
1008 speedup_syncer() == 0 && (flags & NODELAY) == 0 &&
1009 request_cleanup(FLUSH_INODES, 1)) {
1010 firsttry = 0;
1011 goto top;
1013 if (sema_get(&inodedep_in_progress, &lk) == 0) {
1014 ACQUIRE_LOCK(&lk);
1015 goto top;
1017 MALLOC(inodedep, struct inodedep *, sizeof(struct inodedep),
1018 M_INODEDEP, M_SOFTDEP_FLAGS | M_ZERO);
1019 if (inodedep_find(inodedephd, fs, inum)) {
1020 kprintf("inodedep_lookup: blocking race avoided\n");
1021 ACQUIRE_LOCK(&lk);
1022 sema_release(&inodedep_in_progress);
1023 kfree(inodedep, M_INODEDEP);
1024 goto top;
1026 inodedep->id_list.wk_type = D_INODEDEP;
1027 inodedep->id_fs = fs;
1028 inodedep->id_ino = inum;
1029 inodedep->id_state = ALLCOMPLETE;
1030 inodedep->id_nlinkdelta = 0;
1031 inodedep->id_savedino = NULL;
1032 inodedep->id_savedsize = -1;
1033 inodedep->id_buf = NULL;
1034 LIST_INIT(&inodedep->id_pendinghd);
1035 LIST_INIT(&inodedep->id_inowait);
1036 LIST_INIT(&inodedep->id_bufwait);
1037 TAILQ_INIT(&inodedep->id_inoupdt);
1038 TAILQ_INIT(&inodedep->id_newinoupdt);
1039 ACQUIRE_LOCK(&lk);
1040 num_inodedep += 1;
1041 LIST_INSERT_HEAD(inodedephd, inodedep, id_hash);
1042 sema_release(&inodedep_in_progress);
1043 *inodedeppp = inodedep;
1044 return (0);
1048 * Structures and routines associated with newblk caching.
1050 LIST_HEAD(newblk_hashhead, newblk) *newblk_hashtbl;
1051 u_long newblk_hash; /* size of hash table - 1 */
1052 #define NEWBLK_HASH(fs, inum) \
1053 (&newblk_hashtbl[((((register_t)(fs)) >> 13) + (inum)) & newblk_hash])
1054 static struct sema newblk_in_progress;
1057 * Helper routine for newblk_lookup()
1059 static __inline
1060 struct newblk *
1061 newblk_find(struct newblk_hashhead *newblkhd, struct fs *fs,
1062 ufs_daddr_t newblkno)
1064 struct newblk *newblk;
1066 LIST_FOREACH(newblk, newblkhd, nb_hash) {
1067 if (newblkno == newblk->nb_newblkno && fs == newblk->nb_fs)
1068 return (newblk);
1070 return(NULL);
1074 * Look up a newblk. Return 1 if found, 0 if not found.
1075 * If not found, allocate if DEPALLOC flag is passed.
1076 * Found or allocated entry is returned in newblkpp.
1078 static int
1079 newblk_lookup(struct fs *fs, ufs_daddr_t newblkno, int flags,
1080 struct newblk **newblkpp)
1082 struct newblk *newblk;
1083 struct newblk_hashhead *newblkhd;
1085 newblkhd = NEWBLK_HASH(fs, newblkno);
1086 top:
1087 *newblkpp = newblk_find(newblkhd, fs, newblkno);
1088 if (*newblkpp)
1089 return(1);
1090 if ((flags & DEPALLOC) == 0)
1091 return (0);
1092 if (sema_get(&newblk_in_progress, 0) == 0)
1093 goto top;
1094 MALLOC(newblk, struct newblk *, sizeof(struct newblk),
1095 M_NEWBLK, M_SOFTDEP_FLAGS | M_ZERO);
1097 if (newblk_find(newblkhd, fs, newblkno)) {
1098 kprintf("newblk_lookup: blocking race avoided\n");
1099 sema_release(&pagedep_in_progress);
1100 kfree(newblk, M_NEWBLK);
1101 goto top;
1103 newblk->nb_state = 0;
1104 newblk->nb_fs = fs;
1105 newblk->nb_newblkno = newblkno;
1106 LIST_INSERT_HEAD(newblkhd, newblk, nb_hash);
1107 sema_release(&newblk_in_progress);
1108 *newblkpp = newblk;
1109 return (0);
1113 * Executed during filesystem system initialization before
1114 * mounting any filesystems.
1116 void
1117 softdep_initialize(void)
1119 callout_init(&handle);
1121 LIST_INIT(&mkdirlisthd);
1122 LIST_INIT(&softdep_workitem_pending);
1123 max_softdeps = min(desiredvnodes * 8,
1124 M_INODEDEP->ks_limit / (2 * sizeof(struct inodedep)));
1125 pagedep_hashtbl = hashinit(desiredvnodes / 5, M_PAGEDEP,
1126 &pagedep_hash);
1127 sema_init(&pagedep_in_progress, "pagedep", 0, 0);
1128 inodedep_hashtbl = hashinit(desiredvnodes, M_INODEDEP, &inodedep_hash);
1129 sema_init(&inodedep_in_progress, "inodedep", 0, 0);
1130 newblk_hashtbl = hashinit(64, M_NEWBLK, &newblk_hash);
1131 sema_init(&newblk_in_progress, "newblk", 0, 0);
1132 add_bio_ops(&softdep_bioops);
1136 * Called at mount time to notify the dependency code that a
1137 * filesystem wishes to use it.
1140 softdep_mount(struct vnode *devvp, struct mount *mp, struct fs *fs)
1142 struct csum cstotal;
1143 struct cg *cgp;
1144 struct buf *bp;
1145 int error, cyl;
1147 mp->mnt_flag &= ~MNT_ASYNC;
1148 mp->mnt_flag |= MNT_SOFTDEP;
1149 mp->mnt_bioops = &softdep_bioops;
1151 * When doing soft updates, the counters in the
1152 * superblock may have gotten out of sync, so we have
1153 * to scan the cylinder groups and recalculate them.
1155 if (fs->fs_clean != 0)
1156 return (0);
1157 bzero(&cstotal, sizeof cstotal);
1158 for (cyl = 0; cyl < fs->fs_ncg; cyl++) {
1159 if ((error = bread(devvp, fsbtodoff(fs, cgtod(fs, cyl)),
1160 fs->fs_cgsize, &bp)) != 0) {
1161 brelse(bp);
1162 return (error);
1164 cgp = (struct cg *)bp->b_data;
1165 cstotal.cs_nffree += cgp->cg_cs.cs_nffree;
1166 cstotal.cs_nbfree += cgp->cg_cs.cs_nbfree;
1167 cstotal.cs_nifree += cgp->cg_cs.cs_nifree;
1168 cstotal.cs_ndir += cgp->cg_cs.cs_ndir;
1169 fs->fs_cs(fs, cyl) = cgp->cg_cs;
1170 brelse(bp);
1172 #ifdef DEBUG
1173 if (bcmp(&cstotal, &fs->fs_cstotal, sizeof cstotal))
1174 kprintf("ffs_mountfs: superblock updated for soft updates\n");
1175 #endif
1176 bcopy(&cstotal, &fs->fs_cstotal, sizeof cstotal);
1177 return (0);
1181 * Protecting the freemaps (or bitmaps).
1183 * To eliminate the need to execute fsck before mounting a filesystem
1184 * after a power failure, one must (conservatively) guarantee that the
1185 * on-disk copy of the bitmaps never indicate that a live inode or block is
1186 * free. So, when a block or inode is allocated, the bitmap should be
1187 * updated (on disk) before any new pointers. When a block or inode is
1188 * freed, the bitmap should not be updated until all pointers have been
1189 * reset. The latter dependency is handled by the delayed de-allocation
1190 * approach described below for block and inode de-allocation. The former
1191 * dependency is handled by calling the following procedure when a block or
1192 * inode is allocated. When an inode is allocated an "inodedep" is created
1193 * with its DEPCOMPLETE flag cleared until its bitmap is written to disk.
1194 * Each "inodedep" is also inserted into the hash indexing structure so
1195 * that any additional link additions can be made dependent on the inode
1196 * allocation.
1198 * The ufs filesystem maintains a number of free block counts (e.g., per
1199 * cylinder group, per cylinder and per <cylinder, rotational position> pair)
1200 * in addition to the bitmaps. These counts are used to improve efficiency
1201 * during allocation and therefore must be consistent with the bitmaps.
1202 * There is no convenient way to guarantee post-crash consistency of these
1203 * counts with simple update ordering, for two main reasons: (1) The counts
1204 * and bitmaps for a single cylinder group block are not in the same disk
1205 * sector. If a disk write is interrupted (e.g., by power failure), one may
1206 * be written and the other not. (2) Some of the counts are located in the
1207 * superblock rather than the cylinder group block. So, we focus our soft
1208 * updates implementation on protecting the bitmaps. When mounting a
1209 * filesystem, we recompute the auxiliary counts from the bitmaps.
1213 * Called just after updating the cylinder group block to allocate an inode.
1215 * Parameters:
1216 * bp: buffer for cylgroup block with inode map
1217 * ip: inode related to allocation
1218 * newinum: new inode number being allocated
1220 void
1221 softdep_setup_inomapdep(struct buf *bp, struct inode *ip, ino_t newinum)
1223 struct inodedep *inodedep;
1224 struct bmsafemap *bmsafemap;
1227 * Create a dependency for the newly allocated inode.
1228 * Panic if it already exists as something is seriously wrong.
1229 * Otherwise add it to the dependency list for the buffer holding
1230 * the cylinder group map from which it was allocated.
1232 ACQUIRE_LOCK(&lk);
1233 if ((inodedep_lookup(ip->i_fs, newinum, DEPALLOC|NODELAY, &inodedep))) {
1234 FREE_LOCK(&lk);
1235 panic("softdep_setup_inomapdep: found inode");
1237 inodedep->id_buf = bp;
1238 inodedep->id_state &= ~DEPCOMPLETE;
1239 bmsafemap = bmsafemap_lookup(bp);
1240 LIST_INSERT_HEAD(&bmsafemap->sm_inodedephd, inodedep, id_deps);
1241 FREE_LOCK(&lk);
1245 * Called just after updating the cylinder group block to
1246 * allocate block or fragment.
1248 * Parameters:
1249 * bp: buffer for cylgroup block with block map
1250 * fs: filesystem doing allocation
1251 * newblkno: number of newly allocated block
1253 void
1254 softdep_setup_blkmapdep(struct buf *bp, struct fs *fs,
1255 ufs_daddr_t newblkno)
1257 struct newblk *newblk;
1258 struct bmsafemap *bmsafemap;
1261 * Create a dependency for the newly allocated block.
1262 * Add it to the dependency list for the buffer holding
1263 * the cylinder group map from which it was allocated.
1265 if (newblk_lookup(fs, newblkno, DEPALLOC, &newblk) != 0)
1266 panic("softdep_setup_blkmapdep: found block");
1267 ACQUIRE_LOCK(&lk);
1268 newblk->nb_bmsafemap = bmsafemap = bmsafemap_lookup(bp);
1269 LIST_INSERT_HEAD(&bmsafemap->sm_newblkhd, newblk, nb_deps);
1270 FREE_LOCK(&lk);
1274 * Find the bmsafemap associated with a cylinder group buffer.
1275 * If none exists, create one. The buffer must be locked when
1276 * this routine is called and this routine must be called with
1277 * splbio interrupts blocked.
1279 static struct bmsafemap *
1280 bmsafemap_lookup(struct buf *bp)
1282 struct bmsafemap *bmsafemap;
1283 struct worklist *wk;
1285 #ifdef DEBUG
1286 if (lk.lkt_held == NOHOLDER)
1287 panic("bmsafemap_lookup: lock not held");
1288 #endif
1289 LIST_FOREACH(wk, &bp->b_dep, wk_list) {
1290 if (wk->wk_type == D_BMSAFEMAP)
1291 return (WK_BMSAFEMAP(wk));
1293 FREE_LOCK(&lk);
1294 MALLOC(bmsafemap, struct bmsafemap *, sizeof(struct bmsafemap),
1295 M_BMSAFEMAP, M_SOFTDEP_FLAGS);
1296 bmsafemap->sm_list.wk_type = D_BMSAFEMAP;
1297 bmsafemap->sm_list.wk_state = 0;
1298 bmsafemap->sm_buf = bp;
1299 LIST_INIT(&bmsafemap->sm_allocdirecthd);
1300 LIST_INIT(&bmsafemap->sm_allocindirhd);
1301 LIST_INIT(&bmsafemap->sm_inodedephd);
1302 LIST_INIT(&bmsafemap->sm_newblkhd);
1303 ACQUIRE_LOCK(&lk);
1304 WORKLIST_INSERT_BP(bp, &bmsafemap->sm_list);
1305 return (bmsafemap);
1309 * Direct block allocation dependencies.
1311 * When a new block is allocated, the corresponding disk locations must be
1312 * initialized (with zeros or new data) before the on-disk inode points to
1313 * them. Also, the freemap from which the block was allocated must be
1314 * updated (on disk) before the inode's pointer. These two dependencies are
1315 * independent of each other and are needed for all file blocks and indirect
1316 * blocks that are pointed to directly by the inode. Just before the
1317 * "in-core" version of the inode is updated with a newly allocated block
1318 * number, a procedure (below) is called to setup allocation dependency
1319 * structures. These structures are removed when the corresponding
1320 * dependencies are satisfied or when the block allocation becomes obsolete
1321 * (i.e., the file is deleted, the block is de-allocated, or the block is a
1322 * fragment that gets upgraded). All of these cases are handled in
1323 * procedures described later.
1325 * When a file extension causes a fragment to be upgraded, either to a larger
1326 * fragment or to a full block, the on-disk location may change (if the
1327 * previous fragment could not simply be extended). In this case, the old
1328 * fragment must be de-allocated, but not until after the inode's pointer has
1329 * been updated. In most cases, this is handled by later procedures, which
1330 * will construct a "freefrag" structure to be added to the workitem queue
1331 * when the inode update is complete (or obsolete). The main exception to
1332 * this is when an allocation occurs while a pending allocation dependency
1333 * (for the same block pointer) remains. This case is handled in the main
1334 * allocation dependency setup procedure by immediately freeing the
1335 * unreferenced fragments.
1337 * Parameters:
1338 * ip: inode to which block is being added
1339 * lbn: block pointer within inode
1340 * newblkno: disk block number being added
1341 * oldblkno: previous block number, 0 unless frag
1342 * newsize: size of new block
1343 * oldsize: size of new block
1344 * bp: bp for allocated block
1346 void
1347 softdep_setup_allocdirect(struct inode *ip, ufs_lbn_t lbn, ufs_daddr_t newblkno,
1348 ufs_daddr_t oldblkno, long newsize, long oldsize,
1349 struct buf *bp)
1351 struct allocdirect *adp, *oldadp;
1352 struct allocdirectlst *adphead;
1353 struct bmsafemap *bmsafemap;
1354 struct inodedep *inodedep;
1355 struct pagedep *pagedep;
1356 struct newblk *newblk;
1358 MALLOC(adp, struct allocdirect *, sizeof(struct allocdirect),
1359 M_ALLOCDIRECT, M_SOFTDEP_FLAGS | M_ZERO);
1360 adp->ad_list.wk_type = D_ALLOCDIRECT;
1361 adp->ad_lbn = lbn;
1362 adp->ad_newblkno = newblkno;
1363 adp->ad_oldblkno = oldblkno;
1364 adp->ad_newsize = newsize;
1365 adp->ad_oldsize = oldsize;
1366 adp->ad_state = ATTACHED;
1367 if (newblkno == oldblkno)
1368 adp->ad_freefrag = NULL;
1369 else
1370 adp->ad_freefrag = newfreefrag(ip, oldblkno, oldsize);
1372 if (newblk_lookup(ip->i_fs, newblkno, 0, &newblk) == 0)
1373 panic("softdep_setup_allocdirect: lost block");
1375 ACQUIRE_LOCK(&lk);
1376 inodedep_lookup(ip->i_fs, ip->i_number, DEPALLOC | NODELAY, &inodedep);
1377 adp->ad_inodedep = inodedep;
1379 if (newblk->nb_state == DEPCOMPLETE) {
1380 adp->ad_state |= DEPCOMPLETE;
1381 adp->ad_buf = NULL;
1382 } else {
1383 bmsafemap = newblk->nb_bmsafemap;
1384 adp->ad_buf = bmsafemap->sm_buf;
1385 LIST_REMOVE(newblk, nb_deps);
1386 LIST_INSERT_HEAD(&bmsafemap->sm_allocdirecthd, adp, ad_deps);
1388 LIST_REMOVE(newblk, nb_hash);
1389 FREE(newblk, M_NEWBLK);
1391 WORKLIST_INSERT_BP(bp, &adp->ad_list);
1392 if (lbn >= NDADDR) {
1393 /* allocating an indirect block */
1394 if (oldblkno != 0) {
1395 FREE_LOCK(&lk);
1396 panic("softdep_setup_allocdirect: non-zero indir");
1398 } else {
1400 * Allocating a direct block.
1402 * If we are allocating a directory block, then we must
1403 * allocate an associated pagedep to track additions and
1404 * deletions.
1406 if ((ip->i_mode & IFMT) == IFDIR &&
1407 pagedep_lookup(ip, lbn, DEPALLOC, &pagedep) == 0) {
1408 WORKLIST_INSERT_BP(bp, &pagedep->pd_list);
1412 * The list of allocdirects must be kept in sorted and ascending
1413 * order so that the rollback routines can quickly determine the
1414 * first uncommitted block (the size of the file stored on disk
1415 * ends at the end of the lowest committed fragment, or if there
1416 * are no fragments, at the end of the highest committed block).
1417 * Since files generally grow, the typical case is that the new
1418 * block is to be added at the end of the list. We speed this
1419 * special case by checking against the last allocdirect in the
1420 * list before laboriously traversing the list looking for the
1421 * insertion point.
1423 adphead = &inodedep->id_newinoupdt;
1424 oldadp = TAILQ_LAST(adphead, allocdirectlst);
1425 if (oldadp == NULL || oldadp->ad_lbn <= lbn) {
1426 /* insert at end of list */
1427 TAILQ_INSERT_TAIL(adphead, adp, ad_next);
1428 if (oldadp != NULL && oldadp->ad_lbn == lbn)
1429 allocdirect_merge(adphead, adp, oldadp);
1430 FREE_LOCK(&lk);
1431 return;
1433 TAILQ_FOREACH(oldadp, adphead, ad_next) {
1434 if (oldadp->ad_lbn >= lbn)
1435 break;
1437 if (oldadp == NULL) {
1438 FREE_LOCK(&lk);
1439 panic("softdep_setup_allocdirect: lost entry");
1441 /* insert in middle of list */
1442 TAILQ_INSERT_BEFORE(oldadp, adp, ad_next);
1443 if (oldadp->ad_lbn == lbn)
1444 allocdirect_merge(adphead, adp, oldadp);
1445 FREE_LOCK(&lk);
1449 * Replace an old allocdirect dependency with a newer one.
1450 * This routine must be called with splbio interrupts blocked.
1452 * Parameters:
1453 * adphead: head of list holding allocdirects
1454 * newadp: allocdirect being added
1455 * oldadp: existing allocdirect being checked
1457 static void
1458 allocdirect_merge(struct allocdirectlst *adphead,
1459 struct allocdirect *newadp,
1460 struct allocdirect *oldadp)
1462 struct freefrag *freefrag;
1464 #ifdef DEBUG
1465 if (lk.lkt_held == NOHOLDER)
1466 panic("allocdirect_merge: lock not held");
1467 #endif
1468 if (newadp->ad_oldblkno != oldadp->ad_newblkno ||
1469 newadp->ad_oldsize != oldadp->ad_newsize ||
1470 newadp->ad_lbn >= NDADDR) {
1471 FREE_LOCK(&lk);
1472 panic("allocdirect_check: old %d != new %d || lbn %ld >= %d",
1473 newadp->ad_oldblkno, oldadp->ad_newblkno, newadp->ad_lbn,
1474 NDADDR);
1476 newadp->ad_oldblkno = oldadp->ad_oldblkno;
1477 newadp->ad_oldsize = oldadp->ad_oldsize;
1479 * If the old dependency had a fragment to free or had never
1480 * previously had a block allocated, then the new dependency
1481 * can immediately post its freefrag and adopt the old freefrag.
1482 * This action is done by swapping the freefrag dependencies.
1483 * The new dependency gains the old one's freefrag, and the
1484 * old one gets the new one and then immediately puts it on
1485 * the worklist when it is freed by free_allocdirect. It is
1486 * not possible to do this swap when the old dependency had a
1487 * non-zero size but no previous fragment to free. This condition
1488 * arises when the new block is an extension of the old block.
1489 * Here, the first part of the fragment allocated to the new
1490 * dependency is part of the block currently claimed on disk by
1491 * the old dependency, so cannot legitimately be freed until the
1492 * conditions for the new dependency are fulfilled.
1494 if (oldadp->ad_freefrag != NULL || oldadp->ad_oldblkno == 0) {
1495 freefrag = newadp->ad_freefrag;
1496 newadp->ad_freefrag = oldadp->ad_freefrag;
1497 oldadp->ad_freefrag = freefrag;
1499 free_allocdirect(adphead, oldadp, 0);
1503 * Allocate a new freefrag structure if needed.
1505 static struct freefrag *
1506 newfreefrag(struct inode *ip, ufs_daddr_t blkno, long size)
1508 struct freefrag *freefrag;
1509 struct fs *fs;
1511 if (blkno == 0)
1512 return (NULL);
1513 fs = ip->i_fs;
1514 if (fragnum(fs, blkno) + numfrags(fs, size) > fs->fs_frag)
1515 panic("newfreefrag: frag size");
1516 MALLOC(freefrag, struct freefrag *, sizeof(struct freefrag),
1517 M_FREEFRAG, M_SOFTDEP_FLAGS);
1518 freefrag->ff_list.wk_type = D_FREEFRAG;
1519 freefrag->ff_state = ip->i_uid & ~ONWORKLIST; /* XXX - used below */
1520 freefrag->ff_inum = ip->i_number;
1521 freefrag->ff_fs = fs;
1522 freefrag->ff_devvp = ip->i_devvp;
1523 freefrag->ff_blkno = blkno;
1524 freefrag->ff_fragsize = size;
1525 return (freefrag);
1529 * This workitem de-allocates fragments that were replaced during
1530 * file block allocation.
1532 static void
1533 handle_workitem_freefrag(struct freefrag *freefrag)
1535 struct inode tip;
1537 tip.i_fs = freefrag->ff_fs;
1538 tip.i_devvp = freefrag->ff_devvp;
1539 tip.i_dev = freefrag->ff_devvp->v_rdev;
1540 tip.i_number = freefrag->ff_inum;
1541 tip.i_uid = freefrag->ff_state & ~ONWORKLIST; /* XXX - set above */
1542 ffs_blkfree(&tip, freefrag->ff_blkno, freefrag->ff_fragsize);
1543 FREE(freefrag, M_FREEFRAG);
1547 * Indirect block allocation dependencies.
1549 * The same dependencies that exist for a direct block also exist when
1550 * a new block is allocated and pointed to by an entry in a block of
1551 * indirect pointers. The undo/redo states described above are also
1552 * used here. Because an indirect block contains many pointers that
1553 * may have dependencies, a second copy of the entire in-memory indirect
1554 * block is kept. The buffer cache copy is always completely up-to-date.
1555 * The second copy, which is used only as a source for disk writes,
1556 * contains only the safe pointers (i.e., those that have no remaining
1557 * update dependencies). The second copy is freed when all pointers
1558 * are safe. The cache is not allowed to replace indirect blocks with
1559 * pending update dependencies. If a buffer containing an indirect
1560 * block with dependencies is written, these routines will mark it
1561 * dirty again. It can only be successfully written once all the
1562 * dependencies are removed. The ffs_fsync routine in conjunction with
1563 * softdep_sync_metadata work together to get all the dependencies
1564 * removed so that a file can be successfully written to disk. Three
1565 * procedures are used when setting up indirect block pointer
1566 * dependencies. The division is necessary because of the organization
1567 * of the "balloc" routine and because of the distinction between file
1568 * pages and file metadata blocks.
1572 * Allocate a new allocindir structure.
1574 * Parameters:
1575 * ip: inode for file being extended
1576 * ptrno: offset of pointer in indirect block
1577 * newblkno: disk block number being added
1578 * oldblkno: previous block number, 0 if none
1580 static struct allocindir *
1581 newallocindir(struct inode *ip, int ptrno, ufs_daddr_t newblkno,
1582 ufs_daddr_t oldblkno)
1584 struct allocindir *aip;
1586 MALLOC(aip, struct allocindir *, sizeof(struct allocindir),
1587 M_ALLOCINDIR, M_SOFTDEP_FLAGS | M_ZERO);
1588 aip->ai_list.wk_type = D_ALLOCINDIR;
1589 aip->ai_state = ATTACHED;
1590 aip->ai_offset = ptrno;
1591 aip->ai_newblkno = newblkno;
1592 aip->ai_oldblkno = oldblkno;
1593 aip->ai_freefrag = newfreefrag(ip, oldblkno, ip->i_fs->fs_bsize);
1594 return (aip);
1598 * Called just before setting an indirect block pointer
1599 * to a newly allocated file page.
1601 * Parameters:
1602 * ip: inode for file being extended
1603 * lbn: allocated block number within file
1604 * bp: buffer with indirect blk referencing page
1605 * ptrno: offset of pointer in indirect block
1606 * newblkno: disk block number being added
1607 * oldblkno: previous block number, 0 if none
1608 * nbp: buffer holding allocated page
1610 void
1611 softdep_setup_allocindir_page(struct inode *ip, ufs_lbn_t lbn,
1612 struct buf *bp, int ptrno,
1613 ufs_daddr_t newblkno, ufs_daddr_t oldblkno,
1614 struct buf *nbp)
1616 struct allocindir *aip;
1617 struct pagedep *pagedep;
1619 aip = newallocindir(ip, ptrno, newblkno, oldblkno);
1620 ACQUIRE_LOCK(&lk);
1622 * If we are allocating a directory page, then we must
1623 * allocate an associated pagedep to track additions and
1624 * deletions.
1626 if ((ip->i_mode & IFMT) == IFDIR &&
1627 pagedep_lookup(ip, lbn, DEPALLOC, &pagedep) == 0)
1628 WORKLIST_INSERT_BP(nbp, &pagedep->pd_list);
1629 WORKLIST_INSERT_BP(nbp, &aip->ai_list);
1630 FREE_LOCK(&lk);
1631 setup_allocindir_phase2(bp, ip, aip);
1635 * Called just before setting an indirect block pointer to a
1636 * newly allocated indirect block.
1637 * Parameters:
1638 * nbp: newly allocated indirect block
1639 * ip: inode for file being extended
1640 * bp: indirect block referencing allocated block
1641 * ptrno: offset of pointer in indirect block
1642 * newblkno: disk block number being added
1644 void
1645 softdep_setup_allocindir_meta(struct buf *nbp, struct inode *ip,
1646 struct buf *bp, int ptrno,
1647 ufs_daddr_t newblkno)
1649 struct allocindir *aip;
1651 aip = newallocindir(ip, ptrno, newblkno, 0);
1652 ACQUIRE_LOCK(&lk);
1653 WORKLIST_INSERT_BP(nbp, &aip->ai_list);
1654 FREE_LOCK(&lk);
1655 setup_allocindir_phase2(bp, ip, aip);
1659 * Called to finish the allocation of the "aip" allocated
1660 * by one of the two routines above.
1662 * Parameters:
1663 * bp: in-memory copy of the indirect block
1664 * ip: inode for file being extended
1665 * aip: allocindir allocated by the above routines
1667 static void
1668 setup_allocindir_phase2(struct buf *bp, struct inode *ip,
1669 struct allocindir *aip)
1671 struct worklist *wk;
1672 struct indirdep *indirdep, *newindirdep;
1673 struct bmsafemap *bmsafemap;
1674 struct allocindir *oldaip;
1675 struct freefrag *freefrag;
1676 struct newblk *newblk;
1678 if (bp->b_loffset >= 0)
1679 panic("setup_allocindir_phase2: not indir blk");
1680 for (indirdep = NULL, newindirdep = NULL; ; ) {
1681 ACQUIRE_LOCK(&lk);
1682 LIST_FOREACH(wk, &bp->b_dep, wk_list) {
1683 if (wk->wk_type != D_INDIRDEP)
1684 continue;
1685 indirdep = WK_INDIRDEP(wk);
1686 break;
1688 if (indirdep == NULL && newindirdep) {
1689 indirdep = newindirdep;
1690 WORKLIST_INSERT_BP(bp, &indirdep->ir_list);
1691 newindirdep = NULL;
1693 FREE_LOCK(&lk);
1694 if (indirdep) {
1695 if (newblk_lookup(ip->i_fs, aip->ai_newblkno, 0,
1696 &newblk) == 0)
1697 panic("setup_allocindir: lost block");
1698 ACQUIRE_LOCK(&lk);
1699 if (newblk->nb_state == DEPCOMPLETE) {
1700 aip->ai_state |= DEPCOMPLETE;
1701 aip->ai_buf = NULL;
1702 } else {
1703 bmsafemap = newblk->nb_bmsafemap;
1704 aip->ai_buf = bmsafemap->sm_buf;
1705 LIST_REMOVE(newblk, nb_deps);
1706 LIST_INSERT_HEAD(&bmsafemap->sm_allocindirhd,
1707 aip, ai_deps);
1709 LIST_REMOVE(newblk, nb_hash);
1710 FREE(newblk, M_NEWBLK);
1711 aip->ai_indirdep = indirdep;
1713 * Check to see if there is an existing dependency
1714 * for this block. If there is, merge the old
1715 * dependency into the new one.
1717 if (aip->ai_oldblkno == 0)
1718 oldaip = NULL;
1719 else
1721 LIST_FOREACH(oldaip, &indirdep->ir_deplisthd, ai_next)
1722 if (oldaip->ai_offset == aip->ai_offset)
1723 break;
1724 if (oldaip != NULL) {
1725 if (oldaip->ai_newblkno != aip->ai_oldblkno) {
1726 FREE_LOCK(&lk);
1727 panic("setup_allocindir_phase2: blkno");
1729 aip->ai_oldblkno = oldaip->ai_oldblkno;
1730 freefrag = oldaip->ai_freefrag;
1731 oldaip->ai_freefrag = aip->ai_freefrag;
1732 aip->ai_freefrag = freefrag;
1733 free_allocindir(oldaip, NULL);
1735 LIST_INSERT_HEAD(&indirdep->ir_deplisthd, aip, ai_next);
1736 ((ufs_daddr_t *)indirdep->ir_savebp->b_data)
1737 [aip->ai_offset] = aip->ai_oldblkno;
1738 FREE_LOCK(&lk);
1740 if (newindirdep) {
1742 * Avoid any possibility of data corruption by
1743 * ensuring that our old version is thrown away.
1745 newindirdep->ir_savebp->b_flags |= B_INVAL | B_NOCACHE;
1746 brelse(newindirdep->ir_savebp);
1747 WORKITEM_FREE((caddr_t)newindirdep, D_INDIRDEP);
1749 if (indirdep)
1750 break;
1751 MALLOC(newindirdep, struct indirdep *, sizeof(struct indirdep),
1752 M_INDIRDEP, M_SOFTDEP_FLAGS);
1753 newindirdep->ir_list.wk_type = D_INDIRDEP;
1754 newindirdep->ir_state = ATTACHED;
1755 LIST_INIT(&newindirdep->ir_deplisthd);
1756 LIST_INIT(&newindirdep->ir_donehd);
1757 if (bp->b_bio2.bio_offset == NOOFFSET) {
1758 VOP_BMAP(bp->b_vp, bp->b_bio1.bio_offset,
1759 &bp->b_bio2.bio_offset, NULL, NULL);
1761 KKASSERT(bp->b_bio2.bio_offset != NOOFFSET);
1762 newindirdep->ir_savebp = getblk(ip->i_devvp,
1763 bp->b_bio2.bio_offset,
1764 bp->b_bcount, 0, 0);
1765 BUF_KERNPROC(newindirdep->ir_savebp);
1766 bcopy(bp->b_data, newindirdep->ir_savebp->b_data, bp->b_bcount);
1771 * Block de-allocation dependencies.
1773 * When blocks are de-allocated, the on-disk pointers must be nullified before
1774 * the blocks are made available for use by other files. (The true
1775 * requirement is that old pointers must be nullified before new on-disk
1776 * pointers are set. We chose this slightly more stringent requirement to
1777 * reduce complexity.) Our implementation handles this dependency by updating
1778 * the inode (or indirect block) appropriately but delaying the actual block
1779 * de-allocation (i.e., freemap and free space count manipulation) until
1780 * after the updated versions reach stable storage. After the disk is
1781 * updated, the blocks can be safely de-allocated whenever it is convenient.
1782 * This implementation handles only the common case of reducing a file's
1783 * length to zero. Other cases are handled by the conventional synchronous
1784 * write approach.
1786 * The ffs implementation with which we worked double-checks
1787 * the state of the block pointers and file size as it reduces
1788 * a file's length. Some of this code is replicated here in our
1789 * soft updates implementation. The freeblks->fb_chkcnt field is
1790 * used to transfer a part of this information to the procedure
1791 * that eventually de-allocates the blocks.
1793 * This routine should be called from the routine that shortens
1794 * a file's length, before the inode's size or block pointers
1795 * are modified. It will save the block pointer information for
1796 * later release and zero the inode so that the calling routine
1797 * can release it.
1799 struct softdep_setup_freeblocks_info {
1800 struct fs *fs;
1801 struct inode *ip;
1804 static int softdep_setup_freeblocks_bp(struct buf *bp, void *data);
1807 * Parameters:
1808 * ip: The inode whose length is to be reduced
1809 * length: The new length for the file
1811 void
1812 softdep_setup_freeblocks(struct inode *ip, off_t length)
1814 struct softdep_setup_freeblocks_info info;
1815 struct freeblks *freeblks;
1816 struct inodedep *inodedep;
1817 struct allocdirect *adp;
1818 struct vnode *vp;
1819 struct buf *bp;
1820 struct fs *fs;
1821 int i, error, delay;
1822 int count;
1824 fs = ip->i_fs;
1825 if (length != 0)
1826 panic("softde_setup_freeblocks: non-zero length");
1827 MALLOC(freeblks, struct freeblks *, sizeof(struct freeblks),
1828 M_FREEBLKS, M_SOFTDEP_FLAGS | M_ZERO);
1829 freeblks->fb_list.wk_type = D_FREEBLKS;
1830 freeblks->fb_state = ATTACHED;
1831 freeblks->fb_uid = ip->i_uid;
1832 freeblks->fb_previousinum = ip->i_number;
1833 freeblks->fb_devvp = ip->i_devvp;
1834 freeblks->fb_fs = fs;
1835 freeblks->fb_oldsize = ip->i_size;
1836 freeblks->fb_newsize = length;
1837 freeblks->fb_chkcnt = ip->i_blocks;
1838 for (i = 0; i < NDADDR; i++) {
1839 freeblks->fb_dblks[i] = ip->i_db[i];
1840 ip->i_db[i] = 0;
1842 for (i = 0; i < NIADDR; i++) {
1843 freeblks->fb_iblks[i] = ip->i_ib[i];
1844 ip->i_ib[i] = 0;
1846 ip->i_blocks = 0;
1847 ip->i_size = 0;
1849 * Push the zero'ed inode to to its disk buffer so that we are free
1850 * to delete its dependencies below. Once the dependencies are gone
1851 * the buffer can be safely released.
1853 if ((error = bread(ip->i_devvp,
1854 fsbtodoff(fs, ino_to_fsba(fs, ip->i_number)),
1855 (int)fs->fs_bsize, &bp)) != 0)
1856 softdep_error("softdep_setup_freeblocks", error);
1857 *((struct ufs1_dinode *)bp->b_data + ino_to_fsbo(fs, ip->i_number)) =
1858 ip->i_din;
1860 * Find and eliminate any inode dependencies.
1862 ACQUIRE_LOCK(&lk);
1863 (void) inodedep_lookup(fs, ip->i_number, DEPALLOC, &inodedep);
1864 if ((inodedep->id_state & IOSTARTED) != 0) {
1865 FREE_LOCK(&lk);
1866 panic("softdep_setup_freeblocks: inode busy");
1869 * Add the freeblks structure to the list of operations that
1870 * must await the zero'ed inode being written to disk. If we
1871 * still have a bitmap dependency (delay == 0), then the inode
1872 * has never been written to disk, so we can process the
1873 * freeblks below once we have deleted the dependencies.
1875 delay = (inodedep->id_state & DEPCOMPLETE);
1876 if (delay)
1877 WORKLIST_INSERT(&inodedep->id_bufwait, &freeblks->fb_list);
1879 * Because the file length has been truncated to zero, any
1880 * pending block allocation dependency structures associated
1881 * with this inode are obsolete and can simply be de-allocated.
1882 * We must first merge the two dependency lists to get rid of
1883 * any duplicate freefrag structures, then purge the merged list.
1885 merge_inode_lists(inodedep);
1886 while ((adp = TAILQ_FIRST(&inodedep->id_inoupdt)) != 0)
1887 free_allocdirect(&inodedep->id_inoupdt, adp, 1);
1888 FREE_LOCK(&lk);
1889 bdwrite(bp);
1891 * We must wait for any I/O in progress to finish so that
1892 * all potential buffers on the dirty list will be visible.
1893 * Once they are all there, walk the list and get rid of
1894 * any dependencies.
1896 vp = ITOV(ip);
1897 ACQUIRE_LOCK(&lk);
1898 drain_output(vp, 1);
1900 info.fs = fs;
1901 info.ip = ip;
1902 do {
1903 count = RB_SCAN(buf_rb_tree, &vp->v_rbdirty_tree, NULL,
1904 softdep_setup_freeblocks_bp, &info);
1905 } while (count != 0);
1906 if (inodedep_lookup(fs, ip->i_number, 0, &inodedep) != 0)
1907 (void)free_inodedep(inodedep);
1909 if (delay) {
1910 freeblks->fb_state |= DEPCOMPLETE;
1912 * If the inode with zeroed block pointers is now on disk
1913 * we can start freeing blocks. Add freeblks to the worklist
1914 * instead of calling handle_workitem_freeblocks directly as
1915 * it is more likely that additional IO is needed to complete
1916 * the request here than in the !delay case.
1918 if ((freeblks->fb_state & ALLCOMPLETE) == ALLCOMPLETE)
1919 add_to_worklist(&freeblks->fb_list);
1922 FREE_LOCK(&lk);
1924 * If the inode has never been written to disk (delay == 0),
1925 * then we can process the freeblks now that we have deleted
1926 * the dependencies.
1928 if (!delay)
1929 handle_workitem_freeblocks(freeblks);
1932 static int
1933 softdep_setup_freeblocks_bp(struct buf *bp, void *data)
1935 struct softdep_setup_freeblocks_info *info = data;
1936 struct inodedep *inodedep;
1938 if (getdirtybuf(&bp, MNT_WAIT) == 0) {
1939 kprintf("softdep_setup_freeblocks_bp(1): caught bp %p going away\n", bp);
1940 return(-1);
1942 if (bp->b_vp != ITOV(info->ip) || (bp->b_flags & B_DELWRI) == 0) {
1943 kprintf("softdep_setup_freeblocks_bp(2): caught bp %p going away\n", bp);
1944 BUF_UNLOCK(bp);
1945 return(-1);
1947 (void) inodedep_lookup(info->fs, info->ip->i_number, 0, &inodedep);
1948 deallocate_dependencies(bp, inodedep);
1949 bp->b_flags |= B_INVAL | B_NOCACHE;
1950 FREE_LOCK(&lk);
1951 brelse(bp);
1952 ACQUIRE_LOCK(&lk);
1953 return(1);
1957 * Reclaim any dependency structures from a buffer that is about to
1958 * be reallocated to a new vnode. The buffer must be locked, thus,
1959 * no I/O completion operations can occur while we are manipulating
1960 * its associated dependencies. The mutex is held so that other I/O's
1961 * associated with related dependencies do not occur.
1963 static void
1964 deallocate_dependencies(struct buf *bp, struct inodedep *inodedep)
1966 struct worklist *wk;
1967 struct indirdep *indirdep;
1968 struct allocindir *aip;
1969 struct pagedep *pagedep;
1970 struct dirrem *dirrem;
1971 struct diradd *dap;
1972 int i;
1974 while ((wk = LIST_FIRST(&bp->b_dep)) != NULL) {
1975 switch (wk->wk_type) {
1977 case D_INDIRDEP:
1978 indirdep = WK_INDIRDEP(wk);
1980 * None of the indirect pointers will ever be visible,
1981 * so they can simply be tossed. GOINGAWAY ensures
1982 * that allocated pointers will be saved in the buffer
1983 * cache until they are freed. Note that they will
1984 * only be able to be found by their physical address
1985 * since the inode mapping the logical address will
1986 * be gone. The save buffer used for the safe copy
1987 * was allocated in setup_allocindir_phase2 using
1988 * the physical address so it could be used for this
1989 * purpose. Hence we swap the safe copy with the real
1990 * copy, allowing the safe copy to be freed and holding
1991 * on to the real copy for later use in indir_trunc.
1993 * NOTE: ir_savebp is relative to the block device
1994 * so b_bio1 contains the device block number.
1996 if (indirdep->ir_state & GOINGAWAY) {
1997 FREE_LOCK(&lk);
1998 panic("deallocate_dependencies: already gone");
2000 indirdep->ir_state |= GOINGAWAY;
2001 while ((aip = LIST_FIRST(&indirdep->ir_deplisthd)) != 0)
2002 free_allocindir(aip, inodedep);
2003 if (bp->b_bio1.bio_offset >= 0 ||
2004 bp->b_bio2.bio_offset != indirdep->ir_savebp->b_bio1.bio_offset) {
2005 FREE_LOCK(&lk);
2006 panic("deallocate_dependencies: not indir");
2008 bcopy(bp->b_data, indirdep->ir_savebp->b_data,
2009 bp->b_bcount);
2010 WORKLIST_REMOVE(wk);
2011 WORKLIST_INSERT_BP(indirdep->ir_savebp, wk);
2012 continue;
2014 case D_PAGEDEP:
2015 pagedep = WK_PAGEDEP(wk);
2017 * None of the directory additions will ever be
2018 * visible, so they can simply be tossed.
2020 for (i = 0; i < DAHASHSZ; i++)
2021 while ((dap =
2022 LIST_FIRST(&pagedep->pd_diraddhd[i])))
2023 free_diradd(dap);
2024 while ((dap = LIST_FIRST(&pagedep->pd_pendinghd)) != 0)
2025 free_diradd(dap);
2027 * Copy any directory remove dependencies to the list
2028 * to be processed after the zero'ed inode is written.
2029 * If the inode has already been written, then they
2030 * can be dumped directly onto the work list.
2032 LIST_FOREACH(dirrem, &pagedep->pd_dirremhd, dm_next) {
2033 LIST_REMOVE(dirrem, dm_next);
2034 dirrem->dm_dirinum = pagedep->pd_ino;
2035 if (inodedep == NULL ||
2036 (inodedep->id_state & ALLCOMPLETE) ==
2037 ALLCOMPLETE)
2038 add_to_worklist(&dirrem->dm_list);
2039 else
2040 WORKLIST_INSERT(&inodedep->id_bufwait,
2041 &dirrem->dm_list);
2043 WORKLIST_REMOVE(&pagedep->pd_list);
2044 LIST_REMOVE(pagedep, pd_hash);
2045 WORKITEM_FREE(pagedep, D_PAGEDEP);
2046 continue;
2048 case D_ALLOCINDIR:
2049 free_allocindir(WK_ALLOCINDIR(wk), inodedep);
2050 continue;
2052 case D_ALLOCDIRECT:
2053 case D_INODEDEP:
2054 FREE_LOCK(&lk);
2055 panic("deallocate_dependencies: Unexpected type %s",
2056 TYPENAME(wk->wk_type));
2057 /* NOTREACHED */
2059 default:
2060 FREE_LOCK(&lk);
2061 panic("deallocate_dependencies: Unknown type %s",
2062 TYPENAME(wk->wk_type));
2063 /* NOTREACHED */
2069 * Free an allocdirect. Generate a new freefrag work request if appropriate.
2070 * This routine must be called with splbio interrupts blocked.
2072 static void
2073 free_allocdirect(struct allocdirectlst *adphead,
2074 struct allocdirect *adp, int delay)
2077 #ifdef DEBUG
2078 if (lk.lkt_held == NOHOLDER)
2079 panic("free_allocdirect: lock not held");
2080 #endif
2081 if ((adp->ad_state & DEPCOMPLETE) == 0)
2082 LIST_REMOVE(adp, ad_deps);
2083 TAILQ_REMOVE(adphead, adp, ad_next);
2084 if ((adp->ad_state & COMPLETE) == 0)
2085 WORKLIST_REMOVE(&adp->ad_list);
2086 if (adp->ad_freefrag != NULL) {
2087 if (delay)
2088 WORKLIST_INSERT(&adp->ad_inodedep->id_bufwait,
2089 &adp->ad_freefrag->ff_list);
2090 else
2091 add_to_worklist(&adp->ad_freefrag->ff_list);
2093 WORKITEM_FREE(adp, D_ALLOCDIRECT);
2097 * Prepare an inode to be freed. The actual free operation is not
2098 * done until the zero'ed inode has been written to disk.
2100 void
2101 softdep_freefile(struct vnode *pvp, ino_t ino, int mode)
2103 struct inode *ip = VTOI(pvp);
2104 struct inodedep *inodedep;
2105 struct freefile *freefile;
2108 * This sets up the inode de-allocation dependency.
2110 MALLOC(freefile, struct freefile *, sizeof(struct freefile),
2111 M_FREEFILE, M_SOFTDEP_FLAGS);
2112 freefile->fx_list.wk_type = D_FREEFILE;
2113 freefile->fx_list.wk_state = 0;
2114 freefile->fx_mode = mode;
2115 freefile->fx_oldinum = ino;
2116 freefile->fx_devvp = ip->i_devvp;
2117 freefile->fx_fs = ip->i_fs;
2120 * If the inodedep does not exist, then the zero'ed inode has
2121 * been written to disk. If the allocated inode has never been
2122 * written to disk, then the on-disk inode is zero'ed. In either
2123 * case we can free the file immediately.
2125 ACQUIRE_LOCK(&lk);
2126 if (inodedep_lookup(ip->i_fs, ino, 0, &inodedep) == 0 ||
2127 check_inode_unwritten(inodedep)) {
2128 FREE_LOCK(&lk);
2129 handle_workitem_freefile(freefile);
2130 return;
2132 WORKLIST_INSERT(&inodedep->id_inowait, &freefile->fx_list);
2133 FREE_LOCK(&lk);
2137 * Check to see if an inode has never been written to disk. If
2138 * so free the inodedep and return success, otherwise return failure.
2139 * This routine must be called with splbio interrupts blocked.
2141 * If we still have a bitmap dependency, then the inode has never
2142 * been written to disk. Drop the dependency as it is no longer
2143 * necessary since the inode is being deallocated. We set the
2144 * ALLCOMPLETE flags since the bitmap now properly shows that the
2145 * inode is not allocated. Even if the inode is actively being
2146 * written, it has been rolled back to its zero'ed state, so we
2147 * are ensured that a zero inode is what is on the disk. For short
2148 * lived files, this change will usually result in removing all the
2149 * dependencies from the inode so that it can be freed immediately.
2151 static int
2152 check_inode_unwritten(struct inodedep *inodedep)
2155 if ((inodedep->id_state & DEPCOMPLETE) != 0 ||
2156 LIST_FIRST(&inodedep->id_pendinghd) != NULL ||
2157 LIST_FIRST(&inodedep->id_bufwait) != NULL ||
2158 LIST_FIRST(&inodedep->id_inowait) != NULL ||
2159 TAILQ_FIRST(&inodedep->id_inoupdt) != NULL ||
2160 TAILQ_FIRST(&inodedep->id_newinoupdt) != NULL ||
2161 inodedep->id_nlinkdelta != 0)
2162 return (0);
2165 * Another process might be in initiate_write_inodeblock
2166 * trying to allocate memory without holding "Softdep Lock".
2168 if ((inodedep->id_state & IOSTARTED) != 0 &&
2169 inodedep->id_savedino == NULL)
2170 return(0);
2172 inodedep->id_state |= ALLCOMPLETE;
2173 LIST_REMOVE(inodedep, id_deps);
2174 inodedep->id_buf = NULL;
2175 if (inodedep->id_state & ONWORKLIST)
2176 WORKLIST_REMOVE(&inodedep->id_list);
2177 if (inodedep->id_savedino != NULL) {
2178 FREE(inodedep->id_savedino, M_INODEDEP);
2179 inodedep->id_savedino = NULL;
2181 if (free_inodedep(inodedep) == 0) {
2182 FREE_LOCK(&lk);
2183 panic("check_inode_unwritten: busy inode");
2185 return (1);
2189 * Try to free an inodedep structure. Return 1 if it could be freed.
2191 static int
2192 free_inodedep(struct inodedep *inodedep)
2195 if ((inodedep->id_state & ONWORKLIST) != 0 ||
2196 (inodedep->id_state & ALLCOMPLETE) != ALLCOMPLETE ||
2197 LIST_FIRST(&inodedep->id_pendinghd) != NULL ||
2198 LIST_FIRST(&inodedep->id_bufwait) != NULL ||
2199 LIST_FIRST(&inodedep->id_inowait) != NULL ||
2200 TAILQ_FIRST(&inodedep->id_inoupdt) != NULL ||
2201 TAILQ_FIRST(&inodedep->id_newinoupdt) != NULL ||
2202 inodedep->id_nlinkdelta != 0 || inodedep->id_savedino != NULL)
2203 return (0);
2204 LIST_REMOVE(inodedep, id_hash);
2205 WORKITEM_FREE(inodedep, D_INODEDEP);
2206 num_inodedep -= 1;
2207 return (1);
2211 * This workitem routine performs the block de-allocation.
2212 * The workitem is added to the pending list after the updated
2213 * inode block has been written to disk. As mentioned above,
2214 * checks regarding the number of blocks de-allocated (compared
2215 * to the number of blocks allocated for the file) are also
2216 * performed in this function.
2218 static void
2219 handle_workitem_freeblocks(struct freeblks *freeblks)
2221 struct inode tip;
2222 ufs_daddr_t bn;
2223 struct fs *fs;
2224 int i, level, bsize;
2225 long nblocks, blocksreleased = 0;
2226 int error, allerror = 0;
2227 ufs_lbn_t baselbns[NIADDR], tmpval;
2229 tip.i_number = freeblks->fb_previousinum;
2230 tip.i_devvp = freeblks->fb_devvp;
2231 tip.i_dev = freeblks->fb_devvp->v_rdev;
2232 tip.i_fs = freeblks->fb_fs;
2233 tip.i_size = freeblks->fb_oldsize;
2234 tip.i_uid = freeblks->fb_uid;
2235 fs = freeblks->fb_fs;
2236 tmpval = 1;
2237 baselbns[0] = NDADDR;
2238 for (i = 1; i < NIADDR; i++) {
2239 tmpval *= NINDIR(fs);
2240 baselbns[i] = baselbns[i - 1] + tmpval;
2242 nblocks = btodb(fs->fs_bsize);
2243 blocksreleased = 0;
2245 * Indirect blocks first.
2247 for (level = (NIADDR - 1); level >= 0; level--) {
2248 if ((bn = freeblks->fb_iblks[level]) == 0)
2249 continue;
2250 if ((error = indir_trunc(&tip, fsbtodoff(fs, bn), level,
2251 baselbns[level], &blocksreleased)) == 0)
2252 allerror = error;
2253 ffs_blkfree(&tip, bn, fs->fs_bsize);
2254 blocksreleased += nblocks;
2257 * All direct blocks or frags.
2259 for (i = (NDADDR - 1); i >= 0; i--) {
2260 if ((bn = freeblks->fb_dblks[i]) == 0)
2261 continue;
2262 bsize = blksize(fs, &tip, i);
2263 ffs_blkfree(&tip, bn, bsize);
2264 blocksreleased += btodb(bsize);
2267 #ifdef DIAGNOSTIC
2268 if (freeblks->fb_chkcnt != blocksreleased)
2269 kprintf("handle_workitem_freeblocks: block count\n");
2270 if (allerror)
2271 softdep_error("handle_workitem_freeblks", allerror);
2272 #endif /* DIAGNOSTIC */
2273 WORKITEM_FREE(freeblks, D_FREEBLKS);
2277 * Release blocks associated with the inode ip and stored in the indirect
2278 * block at doffset. If level is greater than SINGLE, the block is an
2279 * indirect block and recursive calls to indirtrunc must be used to
2280 * cleanse other indirect blocks.
2282 static int
2283 indir_trunc(struct inode *ip, off_t doffset, int level, ufs_lbn_t lbn,
2284 long *countp)
2286 struct buf *bp;
2287 ufs_daddr_t *bap;
2288 ufs_daddr_t nb;
2289 struct fs *fs;
2290 struct worklist *wk;
2291 struct indirdep *indirdep;
2292 int i, lbnadd, nblocks;
2293 int error, allerror = 0;
2295 fs = ip->i_fs;
2296 lbnadd = 1;
2297 for (i = level; i > 0; i--)
2298 lbnadd *= NINDIR(fs);
2300 * Get buffer of block pointers to be freed. This routine is not
2301 * called until the zero'ed inode has been written, so it is safe
2302 * to free blocks as they are encountered. Because the inode has
2303 * been zero'ed, calls to bmap on these blocks will fail. So, we
2304 * have to use the on-disk address and the block device for the
2305 * filesystem to look them up. If the file was deleted before its
2306 * indirect blocks were all written to disk, the routine that set
2307 * us up (deallocate_dependencies) will have arranged to leave
2308 * a complete copy of the indirect block in memory for our use.
2309 * Otherwise we have to read the blocks in from the disk.
2311 ACQUIRE_LOCK(&lk);
2312 if ((bp = findblk(ip->i_devvp, doffset)) != NULL &&
2313 (wk = LIST_FIRST(&bp->b_dep)) != NULL) {
2315 * bp must be ir_savebp, which is held locked for our use.
2317 if (wk->wk_type != D_INDIRDEP ||
2318 (indirdep = WK_INDIRDEP(wk))->ir_savebp != bp ||
2319 (indirdep->ir_state & GOINGAWAY) == 0) {
2320 FREE_LOCK(&lk);
2321 panic("indir_trunc: lost indirdep");
2323 WORKLIST_REMOVE(wk);
2324 WORKITEM_FREE(indirdep, D_INDIRDEP);
2325 if (LIST_FIRST(&bp->b_dep) != NULL) {
2326 FREE_LOCK(&lk);
2327 panic("indir_trunc: dangling dep");
2329 FREE_LOCK(&lk);
2330 } else {
2331 FREE_LOCK(&lk);
2332 error = bread(ip->i_devvp, doffset, (int)fs->fs_bsize, &bp);
2333 if (error)
2334 return (error);
2337 * Recursively free indirect blocks.
2339 bap = (ufs_daddr_t *)bp->b_data;
2340 nblocks = btodb(fs->fs_bsize);
2341 for (i = NINDIR(fs) - 1; i >= 0; i--) {
2342 if ((nb = bap[i]) == 0)
2343 continue;
2344 if (level != 0) {
2345 if ((error = indir_trunc(ip, fsbtodoff(fs, nb),
2346 level - 1, lbn + (i * lbnadd), countp)) != 0)
2347 allerror = error;
2349 ffs_blkfree(ip, nb, fs->fs_bsize);
2350 *countp += nblocks;
2352 bp->b_flags |= B_INVAL | B_NOCACHE;
2353 brelse(bp);
2354 return (allerror);
2358 * Free an allocindir.
2359 * This routine must be called with splbio interrupts blocked.
2361 static void
2362 free_allocindir(struct allocindir *aip, struct inodedep *inodedep)
2364 struct freefrag *freefrag;
2366 #ifdef DEBUG
2367 if (lk.lkt_held == NOHOLDER)
2368 panic("free_allocindir: lock not held");
2369 #endif
2370 if ((aip->ai_state & DEPCOMPLETE) == 0)
2371 LIST_REMOVE(aip, ai_deps);
2372 if (aip->ai_state & ONWORKLIST)
2373 WORKLIST_REMOVE(&aip->ai_list);
2374 LIST_REMOVE(aip, ai_next);
2375 if ((freefrag = aip->ai_freefrag) != NULL) {
2376 if (inodedep == NULL)
2377 add_to_worklist(&freefrag->ff_list);
2378 else
2379 WORKLIST_INSERT(&inodedep->id_bufwait,
2380 &freefrag->ff_list);
2382 WORKITEM_FREE(aip, D_ALLOCINDIR);
2386 * Directory entry addition dependencies.
2388 * When adding a new directory entry, the inode (with its incremented link
2389 * count) must be written to disk before the directory entry's pointer to it.
2390 * Also, if the inode is newly allocated, the corresponding freemap must be
2391 * updated (on disk) before the directory entry's pointer. These requirements
2392 * are met via undo/redo on the directory entry's pointer, which consists
2393 * simply of the inode number.
2395 * As directory entries are added and deleted, the free space within a
2396 * directory block can become fragmented. The ufs filesystem will compact
2397 * a fragmented directory block to make space for a new entry. When this
2398 * occurs, the offsets of previously added entries change. Any "diradd"
2399 * dependency structures corresponding to these entries must be updated with
2400 * the new offsets.
2404 * This routine is called after the in-memory inode's link
2405 * count has been incremented, but before the directory entry's
2406 * pointer to the inode has been set.
2408 * Parameters:
2409 * bp: buffer containing directory block
2410 * dp: inode for directory
2411 * diroffset: offset of new entry in directory
2412 * newinum: inode referenced by new directory entry
2413 * newdirbp: non-NULL => contents of new mkdir
2415 void
2416 softdep_setup_directory_add(struct buf *bp, struct inode *dp, off_t diroffset,
2417 ino_t newinum, struct buf *newdirbp)
2419 int offset; /* offset of new entry within directory block */
2420 ufs_lbn_t lbn; /* block in directory containing new entry */
2421 struct fs *fs;
2422 struct diradd *dap;
2423 struct pagedep *pagedep;
2424 struct inodedep *inodedep;
2425 struct mkdir *mkdir1, *mkdir2;
2428 * Whiteouts have no dependencies.
2430 if (newinum == WINO) {
2431 if (newdirbp != NULL)
2432 bdwrite(newdirbp);
2433 return;
2436 fs = dp->i_fs;
2437 lbn = lblkno(fs, diroffset);
2438 offset = blkoff(fs, diroffset);
2439 MALLOC(dap, struct diradd *, sizeof(struct diradd), M_DIRADD,
2440 M_SOFTDEP_FLAGS | M_ZERO);
2441 dap->da_list.wk_type = D_DIRADD;
2442 dap->da_offset = offset;
2443 dap->da_newinum = newinum;
2444 dap->da_state = ATTACHED;
2445 if (newdirbp == NULL) {
2446 dap->da_state |= DEPCOMPLETE;
2447 ACQUIRE_LOCK(&lk);
2448 } else {
2449 dap->da_state |= MKDIR_BODY | MKDIR_PARENT;
2450 MALLOC(mkdir1, struct mkdir *, sizeof(struct mkdir), M_MKDIR,
2451 M_SOFTDEP_FLAGS);
2452 mkdir1->md_list.wk_type = D_MKDIR;
2453 mkdir1->md_state = MKDIR_BODY;
2454 mkdir1->md_diradd = dap;
2455 MALLOC(mkdir2, struct mkdir *, sizeof(struct mkdir), M_MKDIR,
2456 M_SOFTDEP_FLAGS);
2457 mkdir2->md_list.wk_type = D_MKDIR;
2458 mkdir2->md_state = MKDIR_PARENT;
2459 mkdir2->md_diradd = dap;
2461 * Dependency on "." and ".." being written to disk.
2463 mkdir1->md_buf = newdirbp;
2464 ACQUIRE_LOCK(&lk);
2465 LIST_INSERT_HEAD(&mkdirlisthd, mkdir1, md_mkdirs);
2466 WORKLIST_INSERT_BP(newdirbp, &mkdir1->md_list);
2467 FREE_LOCK(&lk);
2468 bdwrite(newdirbp);
2470 * Dependency on link count increase for parent directory
2472 ACQUIRE_LOCK(&lk);
2473 if (inodedep_lookup(dp->i_fs, dp->i_number, 0, &inodedep) == 0
2474 || (inodedep->id_state & ALLCOMPLETE) == ALLCOMPLETE) {
2475 dap->da_state &= ~MKDIR_PARENT;
2476 WORKITEM_FREE(mkdir2, D_MKDIR);
2477 } else {
2478 LIST_INSERT_HEAD(&mkdirlisthd, mkdir2, md_mkdirs);
2479 WORKLIST_INSERT(&inodedep->id_bufwait,&mkdir2->md_list);
2483 * Link into parent directory pagedep to await its being written.
2485 if (pagedep_lookup(dp, lbn, DEPALLOC, &pagedep) == 0)
2486 WORKLIST_INSERT_BP(bp, &pagedep->pd_list);
2487 dap->da_pagedep = pagedep;
2488 LIST_INSERT_HEAD(&pagedep->pd_diraddhd[DIRADDHASH(offset)], dap,
2489 da_pdlist);
2491 * Link into its inodedep. Put it on the id_bufwait list if the inode
2492 * is not yet written. If it is written, do the post-inode write
2493 * processing to put it on the id_pendinghd list.
2495 (void) inodedep_lookup(fs, newinum, DEPALLOC, &inodedep);
2496 if ((inodedep->id_state & ALLCOMPLETE) == ALLCOMPLETE)
2497 diradd_inode_written(dap, inodedep);
2498 else
2499 WORKLIST_INSERT(&inodedep->id_bufwait, &dap->da_list);
2500 FREE_LOCK(&lk);
2504 * This procedure is called to change the offset of a directory
2505 * entry when compacting a directory block which must be owned
2506 * exclusively by the caller. Note that the actual entry movement
2507 * must be done in this procedure to ensure that no I/O completions
2508 * occur while the move is in progress.
2510 * Parameters:
2511 * dp: inode for directory
2512 * base: address of dp->i_offset
2513 * oldloc: address of old directory location
2514 * newloc: address of new directory location
2515 * entrysize: size of directory entry
2517 void
2518 softdep_change_directoryentry_offset(struct inode *dp, caddr_t base,
2519 caddr_t oldloc, caddr_t newloc,
2520 int entrysize)
2522 int offset, oldoffset, newoffset;
2523 struct pagedep *pagedep;
2524 struct diradd *dap;
2525 ufs_lbn_t lbn;
2527 ACQUIRE_LOCK(&lk);
2528 lbn = lblkno(dp->i_fs, dp->i_offset);
2529 offset = blkoff(dp->i_fs, dp->i_offset);
2530 if (pagedep_lookup(dp, lbn, 0, &pagedep) == 0)
2531 goto done;
2532 oldoffset = offset + (oldloc - base);
2533 newoffset = offset + (newloc - base);
2535 LIST_FOREACH(dap, &pagedep->pd_diraddhd[DIRADDHASH(oldoffset)], da_pdlist) {
2536 if (dap->da_offset != oldoffset)
2537 continue;
2538 dap->da_offset = newoffset;
2539 if (DIRADDHASH(newoffset) == DIRADDHASH(oldoffset))
2540 break;
2541 LIST_REMOVE(dap, da_pdlist);
2542 LIST_INSERT_HEAD(&pagedep->pd_diraddhd[DIRADDHASH(newoffset)],
2543 dap, da_pdlist);
2544 break;
2546 if (dap == NULL) {
2548 LIST_FOREACH(dap, &pagedep->pd_pendinghd, da_pdlist) {
2549 if (dap->da_offset == oldoffset) {
2550 dap->da_offset = newoffset;
2551 break;
2555 done:
2556 bcopy(oldloc, newloc, entrysize);
2557 FREE_LOCK(&lk);
2561 * Free a diradd dependency structure. This routine must be called
2562 * with splbio interrupts blocked.
2564 static void
2565 free_diradd(struct diradd *dap)
2567 struct dirrem *dirrem;
2568 struct pagedep *pagedep;
2569 struct inodedep *inodedep;
2570 struct mkdir *mkdir, *nextmd;
2572 #ifdef DEBUG
2573 if (lk.lkt_held == NOHOLDER)
2574 panic("free_diradd: lock not held");
2575 #endif
2576 WORKLIST_REMOVE(&dap->da_list);
2577 LIST_REMOVE(dap, da_pdlist);
2578 if ((dap->da_state & DIRCHG) == 0) {
2579 pagedep = dap->da_pagedep;
2580 } else {
2581 dirrem = dap->da_previous;
2582 pagedep = dirrem->dm_pagedep;
2583 dirrem->dm_dirinum = pagedep->pd_ino;
2584 add_to_worklist(&dirrem->dm_list);
2586 if (inodedep_lookup(VFSTOUFS(pagedep->pd_mnt)->um_fs, dap->da_newinum,
2587 0, &inodedep) != 0)
2588 (void) free_inodedep(inodedep);
2589 if ((dap->da_state & (MKDIR_PARENT | MKDIR_BODY)) != 0) {
2590 for (mkdir = LIST_FIRST(&mkdirlisthd); mkdir; mkdir = nextmd) {
2591 nextmd = LIST_NEXT(mkdir, md_mkdirs);
2592 if (mkdir->md_diradd != dap)
2593 continue;
2594 dap->da_state &= ~mkdir->md_state;
2595 WORKLIST_REMOVE(&mkdir->md_list);
2596 LIST_REMOVE(mkdir, md_mkdirs);
2597 WORKITEM_FREE(mkdir, D_MKDIR);
2599 if ((dap->da_state & (MKDIR_PARENT | MKDIR_BODY)) != 0) {
2600 FREE_LOCK(&lk);
2601 panic("free_diradd: unfound ref");
2604 WORKITEM_FREE(dap, D_DIRADD);
2608 * Directory entry removal dependencies.
2610 * When removing a directory entry, the entry's inode pointer must be
2611 * zero'ed on disk before the corresponding inode's link count is decremented
2612 * (possibly freeing the inode for re-use). This dependency is handled by
2613 * updating the directory entry but delaying the inode count reduction until
2614 * after the directory block has been written to disk. After this point, the
2615 * inode count can be decremented whenever it is convenient.
2619 * This routine should be called immediately after removing
2620 * a directory entry. The inode's link count should not be
2621 * decremented by the calling procedure -- the soft updates
2622 * code will do this task when it is safe.
2624 * Parameters:
2625 * bp: buffer containing directory block
2626 * dp: inode for the directory being modified
2627 * ip: inode for directory entry being removed
2628 * isrmdir: indicates if doing RMDIR
2630 void
2631 softdep_setup_remove(struct buf *bp, struct inode *dp, struct inode *ip,
2632 int isrmdir)
2634 struct dirrem *dirrem, *prevdirrem;
2637 * Allocate a new dirrem if appropriate and ACQUIRE_LOCK.
2639 dirrem = newdirrem(bp, dp, ip, isrmdir, &prevdirrem);
2642 * If the COMPLETE flag is clear, then there were no active
2643 * entries and we want to roll back to a zeroed entry until
2644 * the new inode is committed to disk. If the COMPLETE flag is
2645 * set then we have deleted an entry that never made it to
2646 * disk. If the entry we deleted resulted from a name change,
2647 * then the old name still resides on disk. We cannot delete
2648 * its inode (returned to us in prevdirrem) until the zeroed
2649 * directory entry gets to disk. The new inode has never been
2650 * referenced on the disk, so can be deleted immediately.
2652 if ((dirrem->dm_state & COMPLETE) == 0) {
2653 LIST_INSERT_HEAD(&dirrem->dm_pagedep->pd_dirremhd, dirrem,
2654 dm_next);
2655 FREE_LOCK(&lk);
2656 } else {
2657 if (prevdirrem != NULL)
2658 LIST_INSERT_HEAD(&dirrem->dm_pagedep->pd_dirremhd,
2659 prevdirrem, dm_next);
2660 dirrem->dm_dirinum = dirrem->dm_pagedep->pd_ino;
2661 FREE_LOCK(&lk);
2662 handle_workitem_remove(dirrem);
2667 * Allocate a new dirrem if appropriate and return it along with
2668 * its associated pagedep. Called without a lock, returns with lock.
2670 static long num_dirrem; /* number of dirrem allocated */
2673 * Parameters:
2674 * bp: buffer containing directory block
2675 * dp: inode for the directory being modified
2676 * ip: inode for directory entry being removed
2677 * isrmdir: indicates if doing RMDIR
2678 * prevdirremp: previously referenced inode, if any
2680 static struct dirrem *
2681 newdirrem(struct buf *bp, struct inode *dp, struct inode *ip,
2682 int isrmdir, struct dirrem **prevdirremp)
2684 int offset;
2685 ufs_lbn_t lbn;
2686 struct diradd *dap;
2687 struct dirrem *dirrem;
2688 struct pagedep *pagedep;
2691 * Whiteouts have no deletion dependencies.
2693 if (ip == NULL)
2694 panic("newdirrem: whiteout");
2696 * If we are over our limit, try to improve the situation.
2697 * Limiting the number of dirrem structures will also limit
2698 * the number of freefile and freeblks structures.
2700 if (num_dirrem > max_softdeps / 2 && speedup_syncer() == 0)
2701 (void) request_cleanup(FLUSH_REMOVE, 0);
2702 num_dirrem += 1;
2703 MALLOC(dirrem, struct dirrem *, sizeof(struct dirrem),
2704 M_DIRREM, M_SOFTDEP_FLAGS | M_ZERO);
2705 dirrem->dm_list.wk_type = D_DIRREM;
2706 dirrem->dm_state = isrmdir ? RMDIR : 0;
2707 dirrem->dm_mnt = ITOV(ip)->v_mount;
2708 dirrem->dm_oldinum = ip->i_number;
2709 *prevdirremp = NULL;
2711 ACQUIRE_LOCK(&lk);
2712 lbn = lblkno(dp->i_fs, dp->i_offset);
2713 offset = blkoff(dp->i_fs, dp->i_offset);
2714 if (pagedep_lookup(dp, lbn, DEPALLOC, &pagedep) == 0)
2715 WORKLIST_INSERT_BP(bp, &pagedep->pd_list);
2716 dirrem->dm_pagedep = pagedep;
2718 * Check for a diradd dependency for the same directory entry.
2719 * If present, then both dependencies become obsolete and can
2720 * be de-allocated. Check for an entry on both the pd_dirraddhd
2721 * list and the pd_pendinghd list.
2724 LIST_FOREACH(dap, &pagedep->pd_diraddhd[DIRADDHASH(offset)], da_pdlist)
2725 if (dap->da_offset == offset)
2726 break;
2727 if (dap == NULL) {
2729 LIST_FOREACH(dap, &pagedep->pd_pendinghd, da_pdlist)
2730 if (dap->da_offset == offset)
2731 break;
2732 if (dap == NULL)
2733 return (dirrem);
2736 * Must be ATTACHED at this point.
2738 if ((dap->da_state & ATTACHED) == 0) {
2739 FREE_LOCK(&lk);
2740 panic("newdirrem: not ATTACHED");
2742 if (dap->da_newinum != ip->i_number) {
2743 FREE_LOCK(&lk);
2744 panic("newdirrem: inum %"PRId64" should be %"PRId64,
2745 ip->i_number, dap->da_newinum);
2748 * If we are deleting a changed name that never made it to disk,
2749 * then return the dirrem describing the previous inode (which
2750 * represents the inode currently referenced from this entry on disk).
2752 if ((dap->da_state & DIRCHG) != 0) {
2753 *prevdirremp = dap->da_previous;
2754 dap->da_state &= ~DIRCHG;
2755 dap->da_pagedep = pagedep;
2758 * We are deleting an entry that never made it to disk.
2759 * Mark it COMPLETE so we can delete its inode immediately.
2761 dirrem->dm_state |= COMPLETE;
2762 free_diradd(dap);
2763 return (dirrem);
2767 * Directory entry change dependencies.
2769 * Changing an existing directory entry requires that an add operation
2770 * be completed first followed by a deletion. The semantics for the addition
2771 * are identical to the description of adding a new entry above except
2772 * that the rollback is to the old inode number rather than zero. Once
2773 * the addition dependency is completed, the removal is done as described
2774 * in the removal routine above.
2778 * This routine should be called immediately after changing
2779 * a directory entry. The inode's link count should not be
2780 * decremented by the calling procedure -- the soft updates
2781 * code will perform this task when it is safe.
2783 * Parameters:
2784 * bp: buffer containing directory block
2785 * dp: inode for the directory being modified
2786 * ip: inode for directory entry being removed
2787 * newinum: new inode number for changed entry
2788 * isrmdir: indicates if doing RMDIR
2790 void
2791 softdep_setup_directory_change(struct buf *bp, struct inode *dp,
2792 struct inode *ip, ino_t newinum,
2793 int isrmdir)
2795 int offset;
2796 struct diradd *dap = NULL;
2797 struct dirrem *dirrem, *prevdirrem;
2798 struct pagedep *pagedep;
2799 struct inodedep *inodedep;
2801 offset = blkoff(dp->i_fs, dp->i_offset);
2804 * Whiteouts do not need diradd dependencies.
2806 if (newinum != WINO) {
2807 MALLOC(dap, struct diradd *, sizeof(struct diradd),
2808 M_DIRADD, M_SOFTDEP_FLAGS | M_ZERO);
2809 dap->da_list.wk_type = D_DIRADD;
2810 dap->da_state = DIRCHG | ATTACHED | DEPCOMPLETE;
2811 dap->da_offset = offset;
2812 dap->da_newinum = newinum;
2816 * Allocate a new dirrem and ACQUIRE_LOCK.
2818 dirrem = newdirrem(bp, dp, ip, isrmdir, &prevdirrem);
2819 pagedep = dirrem->dm_pagedep;
2821 * The possible values for isrmdir:
2822 * 0 - non-directory file rename
2823 * 1 - directory rename within same directory
2824 * inum - directory rename to new directory of given inode number
2825 * When renaming to a new directory, we are both deleting and
2826 * creating a new directory entry, so the link count on the new
2827 * directory should not change. Thus we do not need the followup
2828 * dirrem which is usually done in handle_workitem_remove. We set
2829 * the DIRCHG flag to tell handle_workitem_remove to skip the
2830 * followup dirrem.
2832 if (isrmdir > 1)
2833 dirrem->dm_state |= DIRCHG;
2836 * Whiteouts have no additional dependencies,
2837 * so just put the dirrem on the correct list.
2839 if (newinum == WINO) {
2840 if ((dirrem->dm_state & COMPLETE) == 0) {
2841 LIST_INSERT_HEAD(&pagedep->pd_dirremhd, dirrem,
2842 dm_next);
2843 } else {
2844 dirrem->dm_dirinum = pagedep->pd_ino;
2845 add_to_worklist(&dirrem->dm_list);
2847 FREE_LOCK(&lk);
2848 return;
2852 * If the COMPLETE flag is clear, then there were no active
2853 * entries and we want to roll back to the previous inode until
2854 * the new inode is committed to disk. If the COMPLETE flag is
2855 * set, then we have deleted an entry that never made it to disk.
2856 * If the entry we deleted resulted from a name change, then the old
2857 * inode reference still resides on disk. Any rollback that we do
2858 * needs to be to that old inode (returned to us in prevdirrem). If
2859 * the entry we deleted resulted from a create, then there is
2860 * no entry on the disk, so we want to roll back to zero rather
2861 * than the uncommitted inode. In either of the COMPLETE cases we
2862 * want to immediately free the unwritten and unreferenced inode.
2864 if ((dirrem->dm_state & COMPLETE) == 0) {
2865 dap->da_previous = dirrem;
2866 } else {
2867 if (prevdirrem != NULL) {
2868 dap->da_previous = prevdirrem;
2869 } else {
2870 dap->da_state &= ~DIRCHG;
2871 dap->da_pagedep = pagedep;
2873 dirrem->dm_dirinum = pagedep->pd_ino;
2874 add_to_worklist(&dirrem->dm_list);
2877 * Link into its inodedep. Put it on the id_bufwait list if the inode
2878 * is not yet written. If it is written, do the post-inode write
2879 * processing to put it on the id_pendinghd list.
2881 if (inodedep_lookup(dp->i_fs, newinum, DEPALLOC, &inodedep) == 0 ||
2882 (inodedep->id_state & ALLCOMPLETE) == ALLCOMPLETE) {
2883 dap->da_state |= COMPLETE;
2884 LIST_INSERT_HEAD(&pagedep->pd_pendinghd, dap, da_pdlist);
2885 WORKLIST_INSERT(&inodedep->id_pendinghd, &dap->da_list);
2886 } else {
2887 LIST_INSERT_HEAD(&pagedep->pd_diraddhd[DIRADDHASH(offset)],
2888 dap, da_pdlist);
2889 WORKLIST_INSERT(&inodedep->id_bufwait, &dap->da_list);
2891 FREE_LOCK(&lk);
2895 * Called whenever the link count on an inode is changed.
2896 * It creates an inode dependency so that the new reference(s)
2897 * to the inode cannot be committed to disk until the updated
2898 * inode has been written.
2900 * Parameters:
2901 * ip: the inode with the increased link count
2903 void
2904 softdep_change_linkcnt(struct inode *ip)
2906 struct inodedep *inodedep;
2908 ACQUIRE_LOCK(&lk);
2909 (void) inodedep_lookup(ip->i_fs, ip->i_number, DEPALLOC, &inodedep);
2910 if (ip->i_nlink < ip->i_effnlink) {
2911 FREE_LOCK(&lk);
2912 panic("softdep_change_linkcnt: bad delta");
2914 inodedep->id_nlinkdelta = ip->i_nlink - ip->i_effnlink;
2915 FREE_LOCK(&lk);
2919 * This workitem decrements the inode's link count.
2920 * If the link count reaches zero, the file is removed.
2922 static void
2923 handle_workitem_remove(struct dirrem *dirrem)
2925 struct inodedep *inodedep;
2926 struct vnode *vp;
2927 struct inode *ip;
2928 ino_t oldinum;
2929 int error;
2931 if ((error = VFS_VGET(dirrem->dm_mnt, dirrem->dm_oldinum, &vp)) != 0) {
2932 softdep_error("handle_workitem_remove: vget", error);
2933 return;
2935 ip = VTOI(vp);
2936 ACQUIRE_LOCK(&lk);
2937 if ((inodedep_lookup(ip->i_fs, dirrem->dm_oldinum, 0, &inodedep)) == 0){
2938 FREE_LOCK(&lk);
2939 panic("handle_workitem_remove: lost inodedep");
2942 * Normal file deletion.
2944 if ((dirrem->dm_state & RMDIR) == 0) {
2945 ip->i_nlink--;
2946 ip->i_flag |= IN_CHANGE;
2947 if (ip->i_nlink < ip->i_effnlink) {
2948 FREE_LOCK(&lk);
2949 panic("handle_workitem_remove: bad file delta");
2951 inodedep->id_nlinkdelta = ip->i_nlink - ip->i_effnlink;
2952 FREE_LOCK(&lk);
2953 vput(vp);
2954 num_dirrem -= 1;
2955 WORKITEM_FREE(dirrem, D_DIRREM);
2956 return;
2959 * Directory deletion. Decrement reference count for both the
2960 * just deleted parent directory entry and the reference for ".".
2961 * Next truncate the directory to length zero. When the
2962 * truncation completes, arrange to have the reference count on
2963 * the parent decremented to account for the loss of "..".
2965 ip->i_nlink -= 2;
2966 ip->i_flag |= IN_CHANGE;
2967 if (ip->i_nlink < ip->i_effnlink) {
2968 FREE_LOCK(&lk);
2969 panic("handle_workitem_remove: bad dir delta");
2971 inodedep->id_nlinkdelta = ip->i_nlink - ip->i_effnlink;
2972 FREE_LOCK(&lk);
2973 if ((error = ffs_truncate(vp, (off_t)0, 0, proc0.p_ucred)) != 0)
2974 softdep_error("handle_workitem_remove: truncate", error);
2976 * Rename a directory to a new parent. Since, we are both deleting
2977 * and creating a new directory entry, the link count on the new
2978 * directory should not change. Thus we skip the followup dirrem.
2980 if (dirrem->dm_state & DIRCHG) {
2981 vput(vp);
2982 num_dirrem -= 1;
2983 WORKITEM_FREE(dirrem, D_DIRREM);
2984 return;
2987 * If the inodedep does not exist, then the zero'ed inode has
2988 * been written to disk. If the allocated inode has never been
2989 * written to disk, then the on-disk inode is zero'ed. In either
2990 * case we can remove the file immediately.
2992 ACQUIRE_LOCK(&lk);
2993 dirrem->dm_state = 0;
2994 oldinum = dirrem->dm_oldinum;
2995 dirrem->dm_oldinum = dirrem->dm_dirinum;
2996 if (inodedep_lookup(ip->i_fs, oldinum, 0, &inodedep) == 0 ||
2997 check_inode_unwritten(inodedep)) {
2998 FREE_LOCK(&lk);
2999 vput(vp);
3000 handle_workitem_remove(dirrem);
3001 return;
3003 WORKLIST_INSERT(&inodedep->id_inowait, &dirrem->dm_list);
3004 FREE_LOCK(&lk);
3005 ip->i_flag |= IN_CHANGE;
3006 ffs_update(vp, 0);
3007 vput(vp);
3011 * Inode de-allocation dependencies.
3013 * When an inode's link count is reduced to zero, it can be de-allocated. We
3014 * found it convenient to postpone de-allocation until after the inode is
3015 * written to disk with its new link count (zero). At this point, all of the
3016 * on-disk inode's block pointers are nullified and, with careful dependency
3017 * list ordering, all dependencies related to the inode will be satisfied and
3018 * the corresponding dependency structures de-allocated. So, if/when the
3019 * inode is reused, there will be no mixing of old dependencies with new
3020 * ones. This artificial dependency is set up by the block de-allocation
3021 * procedure above (softdep_setup_freeblocks) and completed by the
3022 * following procedure.
3024 static void
3025 handle_workitem_freefile(struct freefile *freefile)
3027 struct vnode vp;
3028 struct inode tip;
3029 struct inodedep *idp;
3030 int error;
3032 #ifdef DEBUG
3033 ACQUIRE_LOCK(&lk);
3034 error = inodedep_lookup(freefile->fx_fs, freefile->fx_oldinum, 0, &idp);
3035 FREE_LOCK(&lk);
3036 if (error)
3037 panic("handle_workitem_freefile: inodedep survived");
3038 #endif
3039 tip.i_devvp = freefile->fx_devvp;
3040 tip.i_dev = freefile->fx_devvp->v_rdev;
3041 tip.i_fs = freefile->fx_fs;
3042 vp.v_data = &tip;
3043 if ((error = ffs_freefile(&vp, freefile->fx_oldinum, freefile->fx_mode)) != 0)
3044 softdep_error("handle_workitem_freefile", error);
3045 WORKITEM_FREE(freefile, D_FREEFILE);
3049 * Helper function which unlinks marker element from work list and returns
3050 * the next element on the list.
3052 static __inline struct worklist *
3053 markernext(struct worklist *marker)
3055 struct worklist *next;
3057 next = LIST_NEXT(marker, wk_list);
3058 LIST_REMOVE(marker, wk_list);
3059 return next;
3063 * checkread, checkwrite
3066 static int
3067 softdep_checkread(struct buf *bp)
3069 return(0);
3072 static int
3073 softdep_checkwrite(struct buf *bp)
3075 return(0);
3079 * Disk writes.
3081 * The dependency structures constructed above are most actively used when file
3082 * system blocks are written to disk. No constraints are placed on when a
3083 * block can be written, but unsatisfied update dependencies are made safe by
3084 * modifying (or replacing) the source memory for the duration of the disk
3085 * write. When the disk write completes, the memory block is again brought
3086 * up-to-date.
3088 * In-core inode structure reclamation.
3090 * Because there are a finite number of "in-core" inode structures, they are
3091 * reused regularly. By transferring all inode-related dependencies to the
3092 * in-memory inode block and indexing them separately (via "inodedep"s), we
3093 * can allow "in-core" inode structures to be reused at any time and avoid
3094 * any increase in contention.
3096 * Called just before entering the device driver to initiate a new disk I/O.
3097 * The buffer must be locked, thus, no I/O completion operations can occur
3098 * while we are manipulating its associated dependencies.
3100 * Parameters:
3101 * bp: structure describing disk write to occur
3103 static void
3104 softdep_disk_io_initiation(struct buf *bp)
3106 struct worklist *wk;
3107 struct worklist marker;
3108 struct indirdep *indirdep;
3111 * We only care about write operations. There should never
3112 * be dependencies for reads.
3114 if (bp->b_cmd == BUF_CMD_READ)
3115 panic("softdep_disk_io_initiation: read");
3117 marker.wk_type = D_LAST + 1; /* Not a normal workitem */
3120 * Do any necessary pre-I/O processing.
3122 for (wk = LIST_FIRST(&bp->b_dep); wk; wk = markernext(&marker)) {
3123 LIST_INSERT_AFTER(wk, &marker, wk_list);
3125 switch (wk->wk_type) {
3127 case D_PAGEDEP:
3128 initiate_write_filepage(WK_PAGEDEP(wk), bp);
3129 continue;
3131 case D_INODEDEP:
3132 initiate_write_inodeblock(WK_INODEDEP(wk), bp);
3133 continue;
3135 case D_INDIRDEP:
3136 indirdep = WK_INDIRDEP(wk);
3137 if (indirdep->ir_state & GOINGAWAY)
3138 panic("disk_io_initiation: indirdep gone");
3140 * If there are no remaining dependencies, this
3141 * will be writing the real pointers, so the
3142 * dependency can be freed.
3144 if (LIST_FIRST(&indirdep->ir_deplisthd) == NULL) {
3145 indirdep->ir_savebp->b_flags |= B_INVAL | B_NOCACHE;
3146 brelse(indirdep->ir_savebp);
3147 /* inline expand WORKLIST_REMOVE(wk); */
3148 wk->wk_state &= ~ONWORKLIST;
3149 LIST_REMOVE(wk, wk_list);
3150 WORKITEM_FREE(indirdep, D_INDIRDEP);
3151 continue;
3154 * Replace up-to-date version with safe version.
3156 MALLOC(indirdep->ir_saveddata, caddr_t, bp->b_bcount,
3157 M_INDIRDEP, M_SOFTDEP_FLAGS);
3158 ACQUIRE_LOCK(&lk);
3159 indirdep->ir_state &= ~ATTACHED;
3160 indirdep->ir_state |= UNDONE;
3161 bcopy(bp->b_data, indirdep->ir_saveddata, bp->b_bcount);
3162 bcopy(indirdep->ir_savebp->b_data, bp->b_data,
3163 bp->b_bcount);
3164 FREE_LOCK(&lk);
3165 continue;
3167 case D_MKDIR:
3168 case D_BMSAFEMAP:
3169 case D_ALLOCDIRECT:
3170 case D_ALLOCINDIR:
3171 continue;
3173 default:
3174 panic("handle_disk_io_initiation: Unexpected type %s",
3175 TYPENAME(wk->wk_type));
3176 /* NOTREACHED */
3182 * Called from within the procedure above to deal with unsatisfied
3183 * allocation dependencies in a directory. The buffer must be locked,
3184 * thus, no I/O completion operations can occur while we are
3185 * manipulating its associated dependencies.
3187 static void
3188 initiate_write_filepage(struct pagedep *pagedep, struct buf *bp)
3190 struct diradd *dap;
3191 struct direct *ep;
3192 int i;
3194 if (pagedep->pd_state & IOSTARTED) {
3196 * This can only happen if there is a driver that does not
3197 * understand chaining. Here biodone will reissue the call
3198 * to strategy for the incomplete buffers.
3200 kprintf("initiate_write_filepage: already started\n");
3201 return;
3203 pagedep->pd_state |= IOSTARTED;
3204 ACQUIRE_LOCK(&lk);
3205 for (i = 0; i < DAHASHSZ; i++) {
3206 LIST_FOREACH(dap, &pagedep->pd_diraddhd[i], da_pdlist) {
3207 ep = (struct direct *)
3208 ((char *)bp->b_data + dap->da_offset);
3209 if (ep->d_ino != dap->da_newinum) {
3210 FREE_LOCK(&lk);
3211 panic("%s: dir inum %d != new %"PRId64,
3212 "initiate_write_filepage",
3213 ep->d_ino, dap->da_newinum);
3215 if (dap->da_state & DIRCHG)
3216 ep->d_ino = dap->da_previous->dm_oldinum;
3217 else
3218 ep->d_ino = 0;
3219 dap->da_state &= ~ATTACHED;
3220 dap->da_state |= UNDONE;
3223 FREE_LOCK(&lk);
3227 * Called from within the procedure above to deal with unsatisfied
3228 * allocation dependencies in an inodeblock. The buffer must be
3229 * locked, thus, no I/O completion operations can occur while we
3230 * are manipulating its associated dependencies.
3232 * Parameters:
3233 * bp: The inode block
3235 static void
3236 initiate_write_inodeblock(struct inodedep *inodedep, struct buf *bp)
3238 struct allocdirect *adp, *lastadp;
3239 struct ufs1_dinode *dp;
3240 struct ufs1_dinode *sip;
3241 struct fs *fs;
3242 ufs_lbn_t prevlbn = 0;
3243 int i, deplist;
3245 if (inodedep->id_state & IOSTARTED)
3246 panic("initiate_write_inodeblock: already started");
3247 inodedep->id_state |= IOSTARTED;
3248 fs = inodedep->id_fs;
3249 dp = (struct ufs1_dinode *)bp->b_data +
3250 ino_to_fsbo(fs, inodedep->id_ino);
3252 * If the bitmap is not yet written, then the allocated
3253 * inode cannot be written to disk.
3255 if ((inodedep->id_state & DEPCOMPLETE) == 0) {
3256 if (inodedep->id_savedino != NULL)
3257 panic("initiate_write_inodeblock: already doing I/O");
3258 MALLOC(sip, struct ufs1_dinode *,
3259 sizeof(struct ufs1_dinode), M_INODEDEP, M_SOFTDEP_FLAGS);
3260 inodedep->id_savedino = sip;
3261 *inodedep->id_savedino = *dp;
3262 bzero((caddr_t)dp, sizeof(struct ufs1_dinode));
3263 dp->di_gen = inodedep->id_savedino->di_gen;
3264 return;
3267 * If no dependencies, then there is nothing to roll back.
3269 inodedep->id_savedsize = dp->di_size;
3270 if (TAILQ_FIRST(&inodedep->id_inoupdt) == NULL)
3271 return;
3273 * Set the dependencies to busy.
3275 ACQUIRE_LOCK(&lk);
3276 for (deplist = 0, adp = TAILQ_FIRST(&inodedep->id_inoupdt); adp;
3277 adp = TAILQ_NEXT(adp, ad_next)) {
3278 #ifdef DIAGNOSTIC
3279 if (deplist != 0 && prevlbn >= adp->ad_lbn) {
3280 FREE_LOCK(&lk);
3281 panic("softdep_write_inodeblock: lbn order");
3283 prevlbn = adp->ad_lbn;
3284 if (adp->ad_lbn < NDADDR &&
3285 dp->di_db[adp->ad_lbn] != adp->ad_newblkno) {
3286 FREE_LOCK(&lk);
3287 panic("%s: direct pointer #%ld mismatch %d != %d",
3288 "softdep_write_inodeblock", adp->ad_lbn,
3289 dp->di_db[adp->ad_lbn], adp->ad_newblkno);
3291 if (adp->ad_lbn >= NDADDR &&
3292 dp->di_ib[adp->ad_lbn - NDADDR] != adp->ad_newblkno) {
3293 FREE_LOCK(&lk);
3294 panic("%s: indirect pointer #%ld mismatch %d != %d",
3295 "softdep_write_inodeblock", adp->ad_lbn - NDADDR,
3296 dp->di_ib[adp->ad_lbn - NDADDR], adp->ad_newblkno);
3298 deplist |= 1 << adp->ad_lbn;
3299 if ((adp->ad_state & ATTACHED) == 0) {
3300 FREE_LOCK(&lk);
3301 panic("softdep_write_inodeblock: Unknown state 0x%x",
3302 adp->ad_state);
3304 #endif /* DIAGNOSTIC */
3305 adp->ad_state &= ~ATTACHED;
3306 adp->ad_state |= UNDONE;
3309 * The on-disk inode cannot claim to be any larger than the last
3310 * fragment that has been written. Otherwise, the on-disk inode
3311 * might have fragments that were not the last block in the file
3312 * which would corrupt the filesystem.
3314 for (lastadp = NULL, adp = TAILQ_FIRST(&inodedep->id_inoupdt); adp;
3315 lastadp = adp, adp = TAILQ_NEXT(adp, ad_next)) {
3316 if (adp->ad_lbn >= NDADDR)
3317 break;
3318 dp->di_db[adp->ad_lbn] = adp->ad_oldblkno;
3319 /* keep going until hitting a rollback to a frag */
3320 if (adp->ad_oldsize == 0 || adp->ad_oldsize == fs->fs_bsize)
3321 continue;
3322 dp->di_size = fs->fs_bsize * adp->ad_lbn + adp->ad_oldsize;
3323 for (i = adp->ad_lbn + 1; i < NDADDR; i++) {
3324 #ifdef DIAGNOSTIC
3325 if (dp->di_db[i] != 0 && (deplist & (1 << i)) == 0) {
3326 FREE_LOCK(&lk);
3327 panic("softdep_write_inodeblock: lost dep1");
3329 #endif /* DIAGNOSTIC */
3330 dp->di_db[i] = 0;
3332 for (i = 0; i < NIADDR; i++) {
3333 #ifdef DIAGNOSTIC
3334 if (dp->di_ib[i] != 0 &&
3335 (deplist & ((1 << NDADDR) << i)) == 0) {
3336 FREE_LOCK(&lk);
3337 panic("softdep_write_inodeblock: lost dep2");
3339 #endif /* DIAGNOSTIC */
3340 dp->di_ib[i] = 0;
3342 FREE_LOCK(&lk);
3343 return;
3346 * If we have zero'ed out the last allocated block of the file,
3347 * roll back the size to the last currently allocated block.
3348 * We know that this last allocated block is a full-sized as
3349 * we already checked for fragments in the loop above.
3351 if (lastadp != NULL &&
3352 dp->di_size <= (lastadp->ad_lbn + 1) * fs->fs_bsize) {
3353 for (i = lastadp->ad_lbn; i >= 0; i--)
3354 if (dp->di_db[i] != 0)
3355 break;
3356 dp->di_size = (i + 1) * fs->fs_bsize;
3359 * The only dependencies are for indirect blocks.
3361 * The file size for indirect block additions is not guaranteed.
3362 * Such a guarantee would be non-trivial to achieve. The conventional
3363 * synchronous write implementation also does not make this guarantee.
3364 * Fsck should catch and fix discrepancies. Arguably, the file size
3365 * can be over-estimated without destroying integrity when the file
3366 * moves into the indirect blocks (i.e., is large). If we want to
3367 * postpone fsck, we are stuck with this argument.
3369 for (; adp; adp = TAILQ_NEXT(adp, ad_next))
3370 dp->di_ib[adp->ad_lbn - NDADDR] = 0;
3371 FREE_LOCK(&lk);
3375 * This routine is called during the completion interrupt
3376 * service routine for a disk write (from the procedure called
3377 * by the device driver to inform the filesystem caches of
3378 * a request completion). It should be called early in this
3379 * procedure, before the block is made available to other
3380 * processes or other routines are called.
3382 * Parameters:
3383 * bp: describes the completed disk write
3385 static void
3386 softdep_disk_write_complete(struct buf *bp)
3388 struct worklist *wk;
3389 struct workhead reattach;
3390 struct newblk *newblk;
3391 struct allocindir *aip;
3392 struct allocdirect *adp;
3393 struct indirdep *indirdep;
3394 struct inodedep *inodedep;
3395 struct bmsafemap *bmsafemap;
3397 #ifdef DEBUG
3398 if (lk.lkt_held != NOHOLDER)
3399 panic("softdep_disk_write_complete: lock is held");
3400 lk.lkt_held = SPECIAL_FLAG;
3401 #endif
3402 LIST_INIT(&reattach);
3403 while ((wk = LIST_FIRST(&bp->b_dep)) != NULL) {
3404 WORKLIST_REMOVE(wk);
3405 switch (wk->wk_type) {
3407 case D_PAGEDEP:
3408 if (handle_written_filepage(WK_PAGEDEP(wk), bp))
3409 WORKLIST_INSERT(&reattach, wk);
3410 continue;
3412 case D_INODEDEP:
3413 if (handle_written_inodeblock(WK_INODEDEP(wk), bp))
3414 WORKLIST_INSERT(&reattach, wk);
3415 continue;
3417 case D_BMSAFEMAP:
3418 bmsafemap = WK_BMSAFEMAP(wk);
3419 while ((newblk = LIST_FIRST(&bmsafemap->sm_newblkhd))) {
3420 newblk->nb_state |= DEPCOMPLETE;
3421 newblk->nb_bmsafemap = NULL;
3422 LIST_REMOVE(newblk, nb_deps);
3424 while ((adp =
3425 LIST_FIRST(&bmsafemap->sm_allocdirecthd))) {
3426 adp->ad_state |= DEPCOMPLETE;
3427 adp->ad_buf = NULL;
3428 LIST_REMOVE(adp, ad_deps);
3429 handle_allocdirect_partdone(adp);
3431 while ((aip =
3432 LIST_FIRST(&bmsafemap->sm_allocindirhd))) {
3433 aip->ai_state |= DEPCOMPLETE;
3434 aip->ai_buf = NULL;
3435 LIST_REMOVE(aip, ai_deps);
3436 handle_allocindir_partdone(aip);
3438 while ((inodedep =
3439 LIST_FIRST(&bmsafemap->sm_inodedephd)) != NULL) {
3440 inodedep->id_state |= DEPCOMPLETE;
3441 LIST_REMOVE(inodedep, id_deps);
3442 inodedep->id_buf = NULL;
3444 WORKITEM_FREE(bmsafemap, D_BMSAFEMAP);
3445 continue;
3447 case D_MKDIR:
3448 handle_written_mkdir(WK_MKDIR(wk), MKDIR_BODY);
3449 continue;
3451 case D_ALLOCDIRECT:
3452 adp = WK_ALLOCDIRECT(wk);
3453 adp->ad_state |= COMPLETE;
3454 handle_allocdirect_partdone(adp);
3455 continue;
3457 case D_ALLOCINDIR:
3458 aip = WK_ALLOCINDIR(wk);
3459 aip->ai_state |= COMPLETE;
3460 handle_allocindir_partdone(aip);
3461 continue;
3463 case D_INDIRDEP:
3464 indirdep = WK_INDIRDEP(wk);
3465 if (indirdep->ir_state & GOINGAWAY) {
3466 lk.lkt_held = NOHOLDER;
3467 panic("disk_write_complete: indirdep gone");
3469 bcopy(indirdep->ir_saveddata, bp->b_data, bp->b_bcount);
3470 FREE(indirdep->ir_saveddata, M_INDIRDEP);
3471 indirdep->ir_saveddata = 0;
3472 indirdep->ir_state &= ~UNDONE;
3473 indirdep->ir_state |= ATTACHED;
3474 while ((aip = LIST_FIRST(&indirdep->ir_donehd)) != 0) {
3475 handle_allocindir_partdone(aip);
3476 if (aip == LIST_FIRST(&indirdep->ir_donehd)) {
3477 lk.lkt_held = NOHOLDER;
3478 panic("disk_write_complete: not gone");
3481 WORKLIST_INSERT(&reattach, wk);
3482 if ((bp->b_flags & B_DELWRI) == 0)
3483 stat_indir_blk_ptrs++;
3484 bdirty(bp);
3485 continue;
3487 default:
3488 lk.lkt_held = NOHOLDER;
3489 panic("handle_disk_write_complete: Unknown type %s",
3490 TYPENAME(wk->wk_type));
3491 /* NOTREACHED */
3495 * Reattach any requests that must be redone.
3497 while ((wk = LIST_FIRST(&reattach)) != NULL) {
3498 WORKLIST_REMOVE(wk);
3499 WORKLIST_INSERT_BP(bp, wk);
3501 #ifdef DEBUG
3502 if (lk.lkt_held != SPECIAL_FLAG)
3503 panic("softdep_disk_write_complete: lock lost");
3504 lk.lkt_held = NOHOLDER;
3505 #endif
3509 * Called from within softdep_disk_write_complete above. Note that
3510 * this routine is always called from interrupt level with further
3511 * splbio interrupts blocked.
3513 * Parameters:
3514 * adp: the completed allocdirect
3516 static void
3517 handle_allocdirect_partdone(struct allocdirect *adp)
3519 struct allocdirect *listadp;
3520 struct inodedep *inodedep;
3521 long bsize;
3523 if ((adp->ad_state & ALLCOMPLETE) != ALLCOMPLETE)
3524 return;
3525 if (adp->ad_buf != NULL) {
3526 lk.lkt_held = NOHOLDER;
3527 panic("handle_allocdirect_partdone: dangling dep");
3530 * The on-disk inode cannot claim to be any larger than the last
3531 * fragment that has been written. Otherwise, the on-disk inode
3532 * might have fragments that were not the last block in the file
3533 * which would corrupt the filesystem. Thus, we cannot free any
3534 * allocdirects after one whose ad_oldblkno claims a fragment as
3535 * these blocks must be rolled back to zero before writing the inode.
3536 * We check the currently active set of allocdirects in id_inoupdt.
3538 inodedep = adp->ad_inodedep;
3539 bsize = inodedep->id_fs->fs_bsize;
3540 TAILQ_FOREACH(listadp, &inodedep->id_inoupdt, ad_next) {
3541 /* found our block */
3542 if (listadp == adp)
3543 break;
3544 /* continue if ad_oldlbn is not a fragment */
3545 if (listadp->ad_oldsize == 0 ||
3546 listadp->ad_oldsize == bsize)
3547 continue;
3548 /* hit a fragment */
3549 return;
3552 * If we have reached the end of the current list without
3553 * finding the just finished dependency, then it must be
3554 * on the future dependency list. Future dependencies cannot
3555 * be freed until they are moved to the current list.
3557 if (listadp == NULL) {
3558 #ifdef DEBUG
3559 TAILQ_FOREACH(listadp, &inodedep->id_newinoupdt, ad_next)
3560 /* found our block */
3561 if (listadp == adp)
3562 break;
3563 if (listadp == NULL) {
3564 lk.lkt_held = NOHOLDER;
3565 panic("handle_allocdirect_partdone: lost dep");
3567 #endif /* DEBUG */
3568 return;
3571 * If we have found the just finished dependency, then free
3572 * it along with anything that follows it that is complete.
3574 for (; adp; adp = listadp) {
3575 listadp = TAILQ_NEXT(adp, ad_next);
3576 if ((adp->ad_state & ALLCOMPLETE) != ALLCOMPLETE)
3577 return;
3578 free_allocdirect(&inodedep->id_inoupdt, adp, 1);
3583 * Called from within softdep_disk_write_complete above. Note that
3584 * this routine is always called from interrupt level with further
3585 * splbio interrupts blocked.
3587 * Parameters:
3588 * aip: the completed allocindir
3590 static void
3591 handle_allocindir_partdone(struct allocindir *aip)
3593 struct indirdep *indirdep;
3595 if ((aip->ai_state & ALLCOMPLETE) != ALLCOMPLETE)
3596 return;
3597 if (aip->ai_buf != NULL) {
3598 lk.lkt_held = NOHOLDER;
3599 panic("handle_allocindir_partdone: dangling dependency");
3601 indirdep = aip->ai_indirdep;
3602 if (indirdep->ir_state & UNDONE) {
3603 LIST_REMOVE(aip, ai_next);
3604 LIST_INSERT_HEAD(&indirdep->ir_donehd, aip, ai_next);
3605 return;
3607 ((ufs_daddr_t *)indirdep->ir_savebp->b_data)[aip->ai_offset] =
3608 aip->ai_newblkno;
3609 LIST_REMOVE(aip, ai_next);
3610 if (aip->ai_freefrag != NULL)
3611 add_to_worklist(&aip->ai_freefrag->ff_list);
3612 WORKITEM_FREE(aip, D_ALLOCINDIR);
3616 * Called from within softdep_disk_write_complete above to restore
3617 * in-memory inode block contents to their most up-to-date state. Note
3618 * that this routine is always called from interrupt level with further
3619 * splbio interrupts blocked.
3621 * Parameters:
3622 * bp: buffer containing the inode block
3624 static int
3625 handle_written_inodeblock(struct inodedep *inodedep, struct buf *bp)
3627 struct worklist *wk, *filefree;
3628 struct allocdirect *adp, *nextadp;
3629 struct ufs1_dinode *dp;
3630 int hadchanges;
3632 if ((inodedep->id_state & IOSTARTED) == 0) {
3633 lk.lkt_held = NOHOLDER;
3634 panic("handle_written_inodeblock: not started");
3636 inodedep->id_state &= ~IOSTARTED;
3637 dp = (struct ufs1_dinode *)bp->b_data +
3638 ino_to_fsbo(inodedep->id_fs, inodedep->id_ino);
3640 * If we had to rollback the inode allocation because of
3641 * bitmaps being incomplete, then simply restore it.
3642 * Keep the block dirty so that it will not be reclaimed until
3643 * all associated dependencies have been cleared and the
3644 * corresponding updates written to disk.
3646 if (inodedep->id_savedino != NULL) {
3647 *dp = *inodedep->id_savedino;
3648 FREE(inodedep->id_savedino, M_INODEDEP);
3649 inodedep->id_savedino = NULL;
3650 if ((bp->b_flags & B_DELWRI) == 0)
3651 stat_inode_bitmap++;
3652 bdirty(bp);
3653 return (1);
3655 inodedep->id_state |= COMPLETE;
3657 * Roll forward anything that had to be rolled back before
3658 * the inode could be updated.
3660 hadchanges = 0;
3661 for (adp = TAILQ_FIRST(&inodedep->id_inoupdt); adp; adp = nextadp) {
3662 nextadp = TAILQ_NEXT(adp, ad_next);
3663 if (adp->ad_state & ATTACHED) {
3664 lk.lkt_held = NOHOLDER;
3665 panic("handle_written_inodeblock: new entry");
3667 if (adp->ad_lbn < NDADDR) {
3668 if (dp->di_db[adp->ad_lbn] != adp->ad_oldblkno) {
3669 lk.lkt_held = NOHOLDER;
3670 panic("%s: %s #%ld mismatch %d != %d",
3671 "handle_written_inodeblock",
3672 "direct pointer", adp->ad_lbn,
3673 dp->di_db[adp->ad_lbn], adp->ad_oldblkno);
3675 dp->di_db[adp->ad_lbn] = adp->ad_newblkno;
3676 } else {
3677 if (dp->di_ib[adp->ad_lbn - NDADDR] != 0) {
3678 lk.lkt_held = NOHOLDER;
3679 panic("%s: %s #%ld allocated as %d",
3680 "handle_written_inodeblock",
3681 "indirect pointer", adp->ad_lbn - NDADDR,
3682 dp->di_ib[adp->ad_lbn - NDADDR]);
3684 dp->di_ib[adp->ad_lbn - NDADDR] = adp->ad_newblkno;
3686 adp->ad_state &= ~UNDONE;
3687 adp->ad_state |= ATTACHED;
3688 hadchanges = 1;
3690 if (hadchanges && (bp->b_flags & B_DELWRI) == 0)
3691 stat_direct_blk_ptrs++;
3693 * Reset the file size to its most up-to-date value.
3695 if (inodedep->id_savedsize == -1) {
3696 lk.lkt_held = NOHOLDER;
3697 panic("handle_written_inodeblock: bad size");
3699 if (dp->di_size != inodedep->id_savedsize) {
3700 dp->di_size = inodedep->id_savedsize;
3701 hadchanges = 1;
3703 inodedep->id_savedsize = -1;
3705 * If there were any rollbacks in the inode block, then it must be
3706 * marked dirty so that its will eventually get written back in
3707 * its correct form.
3709 if (hadchanges)
3710 bdirty(bp);
3712 * Process any allocdirects that completed during the update.
3714 if ((adp = TAILQ_FIRST(&inodedep->id_inoupdt)) != NULL)
3715 handle_allocdirect_partdone(adp);
3717 * Process deallocations that were held pending until the
3718 * inode had been written to disk. Freeing of the inode
3719 * is delayed until after all blocks have been freed to
3720 * avoid creation of new <vfsid, inum, lbn> triples
3721 * before the old ones have been deleted.
3723 filefree = NULL;
3724 while ((wk = LIST_FIRST(&inodedep->id_bufwait)) != NULL) {
3725 WORKLIST_REMOVE(wk);
3726 switch (wk->wk_type) {
3728 case D_FREEFILE:
3730 * We defer adding filefree to the worklist until
3731 * all other additions have been made to ensure
3732 * that it will be done after all the old blocks
3733 * have been freed.
3735 if (filefree != NULL) {
3736 lk.lkt_held = NOHOLDER;
3737 panic("handle_written_inodeblock: filefree");
3739 filefree = wk;
3740 continue;
3742 case D_MKDIR:
3743 handle_written_mkdir(WK_MKDIR(wk), MKDIR_PARENT);
3744 continue;
3746 case D_DIRADD:
3747 diradd_inode_written(WK_DIRADD(wk), inodedep);
3748 continue;
3750 case D_FREEBLKS:
3751 wk->wk_state |= COMPLETE;
3752 if ((wk->wk_state & ALLCOMPLETE) != ALLCOMPLETE)
3753 continue;
3754 /* -- fall through -- */
3755 case D_FREEFRAG:
3756 case D_DIRREM:
3757 add_to_worklist(wk);
3758 continue;
3760 default:
3761 lk.lkt_held = NOHOLDER;
3762 panic("handle_written_inodeblock: Unknown type %s",
3763 TYPENAME(wk->wk_type));
3764 /* NOTREACHED */
3767 if (filefree != NULL) {
3768 if (free_inodedep(inodedep) == 0) {
3769 lk.lkt_held = NOHOLDER;
3770 panic("handle_written_inodeblock: live inodedep");
3772 add_to_worklist(filefree);
3773 return (0);
3777 * If no outstanding dependencies, free it.
3779 if (free_inodedep(inodedep) || TAILQ_FIRST(&inodedep->id_inoupdt) == 0)
3780 return (0);
3781 return (hadchanges);
3785 * Process a diradd entry after its dependent inode has been written.
3786 * This routine must be called with splbio interrupts blocked.
3788 static void
3789 diradd_inode_written(struct diradd *dap, struct inodedep *inodedep)
3791 struct pagedep *pagedep;
3793 dap->da_state |= COMPLETE;
3794 if ((dap->da_state & ALLCOMPLETE) == ALLCOMPLETE) {
3795 if (dap->da_state & DIRCHG)
3796 pagedep = dap->da_previous->dm_pagedep;
3797 else
3798 pagedep = dap->da_pagedep;
3799 LIST_REMOVE(dap, da_pdlist);
3800 LIST_INSERT_HEAD(&pagedep->pd_pendinghd, dap, da_pdlist);
3802 WORKLIST_INSERT(&inodedep->id_pendinghd, &dap->da_list);
3806 * Handle the completion of a mkdir dependency.
3808 static void
3809 handle_written_mkdir(struct mkdir *mkdir, int type)
3811 struct diradd *dap;
3812 struct pagedep *pagedep;
3814 if (mkdir->md_state != type) {
3815 lk.lkt_held = NOHOLDER;
3816 panic("handle_written_mkdir: bad type");
3818 dap = mkdir->md_diradd;
3819 dap->da_state &= ~type;
3820 if ((dap->da_state & (MKDIR_PARENT | MKDIR_BODY)) == 0)
3821 dap->da_state |= DEPCOMPLETE;
3822 if ((dap->da_state & ALLCOMPLETE) == ALLCOMPLETE) {
3823 if (dap->da_state & DIRCHG)
3824 pagedep = dap->da_previous->dm_pagedep;
3825 else
3826 pagedep = dap->da_pagedep;
3827 LIST_REMOVE(dap, da_pdlist);
3828 LIST_INSERT_HEAD(&pagedep->pd_pendinghd, dap, da_pdlist);
3830 LIST_REMOVE(mkdir, md_mkdirs);
3831 WORKITEM_FREE(mkdir, D_MKDIR);
3835 * Called from within softdep_disk_write_complete above.
3836 * A write operation was just completed. Removed inodes can
3837 * now be freed and associated block pointers may be committed.
3838 * Note that this routine is always called from interrupt level
3839 * with further splbio interrupts blocked.
3841 * Parameters:
3842 * bp: buffer containing the written page
3844 static int
3845 handle_written_filepage(struct pagedep *pagedep, struct buf *bp)
3847 struct dirrem *dirrem;
3848 struct diradd *dap, *nextdap;
3849 struct direct *ep;
3850 int i, chgs;
3852 if ((pagedep->pd_state & IOSTARTED) == 0) {
3853 lk.lkt_held = NOHOLDER;
3854 panic("handle_written_filepage: not started");
3856 pagedep->pd_state &= ~IOSTARTED;
3858 * Process any directory removals that have been committed.
3860 while ((dirrem = LIST_FIRST(&pagedep->pd_dirremhd)) != NULL) {
3861 LIST_REMOVE(dirrem, dm_next);
3862 dirrem->dm_dirinum = pagedep->pd_ino;
3863 add_to_worklist(&dirrem->dm_list);
3866 * Free any directory additions that have been committed.
3868 while ((dap = LIST_FIRST(&pagedep->pd_pendinghd)) != NULL)
3869 free_diradd(dap);
3871 * Uncommitted directory entries must be restored.
3873 for (chgs = 0, i = 0; i < DAHASHSZ; i++) {
3874 for (dap = LIST_FIRST(&pagedep->pd_diraddhd[i]); dap;
3875 dap = nextdap) {
3876 nextdap = LIST_NEXT(dap, da_pdlist);
3877 if (dap->da_state & ATTACHED) {
3878 lk.lkt_held = NOHOLDER;
3879 panic("handle_written_filepage: attached");
3881 ep = (struct direct *)
3882 ((char *)bp->b_data + dap->da_offset);
3883 ep->d_ino = dap->da_newinum;
3884 dap->da_state &= ~UNDONE;
3885 dap->da_state |= ATTACHED;
3886 chgs = 1;
3888 * If the inode referenced by the directory has
3889 * been written out, then the dependency can be
3890 * moved to the pending list.
3892 if ((dap->da_state & ALLCOMPLETE) == ALLCOMPLETE) {
3893 LIST_REMOVE(dap, da_pdlist);
3894 LIST_INSERT_HEAD(&pagedep->pd_pendinghd, dap,
3895 da_pdlist);
3900 * If there were any rollbacks in the directory, then it must be
3901 * marked dirty so that its will eventually get written back in
3902 * its correct form.
3904 if (chgs) {
3905 if ((bp->b_flags & B_DELWRI) == 0)
3906 stat_dir_entry++;
3907 bdirty(bp);
3910 * If no dependencies remain, the pagedep will be freed.
3911 * Otherwise it will remain to update the page before it
3912 * is written back to disk.
3914 if (LIST_FIRST(&pagedep->pd_pendinghd) == 0) {
3915 for (i = 0; i < DAHASHSZ; i++)
3916 if (LIST_FIRST(&pagedep->pd_diraddhd[i]) != NULL)
3917 break;
3918 if (i == DAHASHSZ) {
3919 LIST_REMOVE(pagedep, pd_hash);
3920 WORKITEM_FREE(pagedep, D_PAGEDEP);
3921 return (0);
3924 return (1);
3928 * Writing back in-core inode structures.
3930 * The filesystem only accesses an inode's contents when it occupies an
3931 * "in-core" inode structure. These "in-core" structures are separate from
3932 * the page frames used to cache inode blocks. Only the latter are
3933 * transferred to/from the disk. So, when the updated contents of the
3934 * "in-core" inode structure are copied to the corresponding in-memory inode
3935 * block, the dependencies are also transferred. The following procedure is
3936 * called when copying a dirty "in-core" inode to a cached inode block.
3940 * Called when an inode is loaded from disk. If the effective link count
3941 * differed from the actual link count when it was last flushed, then we
3942 * need to ensure that the correct effective link count is put back.
3944 * Parameters:
3945 * ip: the "in_core" copy of the inode
3947 void
3948 softdep_load_inodeblock(struct inode *ip)
3950 struct inodedep *inodedep;
3953 * Check for alternate nlink count.
3955 ip->i_effnlink = ip->i_nlink;
3956 ACQUIRE_LOCK(&lk);
3957 if (inodedep_lookup(ip->i_fs, ip->i_number, 0, &inodedep) == 0) {
3958 FREE_LOCK(&lk);
3959 return;
3961 ip->i_effnlink -= inodedep->id_nlinkdelta;
3962 FREE_LOCK(&lk);
3966 * This routine is called just before the "in-core" inode
3967 * information is to be copied to the in-memory inode block.
3968 * Recall that an inode block contains several inodes. If
3969 * the force flag is set, then the dependencies will be
3970 * cleared so that the update can always be made. Note that
3971 * the buffer is locked when this routine is called, so we
3972 * will never be in the middle of writing the inode block
3973 * to disk.
3975 * Parameters:
3976 * ip: the "in_core" copy of the inode
3977 * bp: the buffer containing the inode block
3978 * waitfor: nonzero => update must be allowed
3980 void
3981 softdep_update_inodeblock(struct inode *ip, struct buf *bp,
3982 int waitfor)
3984 struct inodedep *inodedep;
3985 struct worklist *wk;
3986 int error, gotit;
3989 * If the effective link count is not equal to the actual link
3990 * count, then we must track the difference in an inodedep while
3991 * the inode is (potentially) tossed out of the cache. Otherwise,
3992 * if there is no existing inodedep, then there are no dependencies
3993 * to track.
3995 ACQUIRE_LOCK(&lk);
3996 if (inodedep_lookup(ip->i_fs, ip->i_number, 0, &inodedep) == 0) {
3997 FREE_LOCK(&lk);
3998 if (ip->i_effnlink != ip->i_nlink)
3999 panic("softdep_update_inodeblock: bad link count");
4000 return;
4002 if (inodedep->id_nlinkdelta != ip->i_nlink - ip->i_effnlink) {
4003 FREE_LOCK(&lk);
4004 panic("softdep_update_inodeblock: bad delta");
4007 * Changes have been initiated. Anything depending on these
4008 * changes cannot occur until this inode has been written.
4010 inodedep->id_state &= ~COMPLETE;
4011 if ((inodedep->id_state & ONWORKLIST) == 0)
4012 WORKLIST_INSERT_BP(bp, &inodedep->id_list);
4014 * Any new dependencies associated with the incore inode must
4015 * now be moved to the list associated with the buffer holding
4016 * the in-memory copy of the inode. Once merged process any
4017 * allocdirects that are completed by the merger.
4019 merge_inode_lists(inodedep);
4020 if (TAILQ_FIRST(&inodedep->id_inoupdt) != NULL)
4021 handle_allocdirect_partdone(TAILQ_FIRST(&inodedep->id_inoupdt));
4023 * Now that the inode has been pushed into the buffer, the
4024 * operations dependent on the inode being written to disk
4025 * can be moved to the id_bufwait so that they will be
4026 * processed when the buffer I/O completes.
4028 while ((wk = LIST_FIRST(&inodedep->id_inowait)) != NULL) {
4029 WORKLIST_REMOVE(wk);
4030 WORKLIST_INSERT(&inodedep->id_bufwait, wk);
4033 * Newly allocated inodes cannot be written until the bitmap
4034 * that allocates them have been written (indicated by
4035 * DEPCOMPLETE being set in id_state). If we are doing a
4036 * forced sync (e.g., an fsync on a file), we force the bitmap
4037 * to be written so that the update can be done.
4039 if ((inodedep->id_state & DEPCOMPLETE) != 0 || waitfor == 0) {
4040 FREE_LOCK(&lk);
4041 return;
4043 gotit = getdirtybuf(&inodedep->id_buf, MNT_WAIT);
4044 FREE_LOCK(&lk);
4045 if (gotit &&
4046 (error = bwrite(inodedep->id_buf)) != 0)
4047 softdep_error("softdep_update_inodeblock: bwrite", error);
4051 * Merge the new inode dependency list (id_newinoupdt) into the old
4052 * inode dependency list (id_inoupdt). This routine must be called
4053 * with splbio interrupts blocked.
4055 static void
4056 merge_inode_lists(struct inodedep *inodedep)
4058 struct allocdirect *listadp, *newadp;
4060 newadp = TAILQ_FIRST(&inodedep->id_newinoupdt);
4061 for (listadp = TAILQ_FIRST(&inodedep->id_inoupdt); listadp && newadp;) {
4062 if (listadp->ad_lbn < newadp->ad_lbn) {
4063 listadp = TAILQ_NEXT(listadp, ad_next);
4064 continue;
4066 TAILQ_REMOVE(&inodedep->id_newinoupdt, newadp, ad_next);
4067 TAILQ_INSERT_BEFORE(listadp, newadp, ad_next);
4068 if (listadp->ad_lbn == newadp->ad_lbn) {
4069 allocdirect_merge(&inodedep->id_inoupdt, newadp,
4070 listadp);
4071 listadp = newadp;
4073 newadp = TAILQ_FIRST(&inodedep->id_newinoupdt);
4075 while ((newadp = TAILQ_FIRST(&inodedep->id_newinoupdt)) != NULL) {
4076 TAILQ_REMOVE(&inodedep->id_newinoupdt, newadp, ad_next);
4077 TAILQ_INSERT_TAIL(&inodedep->id_inoupdt, newadp, ad_next);
4082 * If we are doing an fsync, then we must ensure that any directory
4083 * entries for the inode have been written after the inode gets to disk.
4085 * Parameters:
4086 * vp: the "in_core" copy of the inode
4088 static int
4089 softdep_fsync(struct vnode *vp)
4091 struct inodedep *inodedep;
4092 struct pagedep *pagedep;
4093 struct worklist *wk;
4094 struct diradd *dap;
4095 struct mount *mnt;
4096 struct vnode *pvp;
4097 struct inode *ip;
4098 struct buf *bp;
4099 struct fs *fs;
4100 int error, flushparent;
4101 ino_t parentino;
4102 ufs_lbn_t lbn;
4105 * Move check from original kernel code, possibly not needed any
4106 * more with the per-mount bioops.
4108 if ((vp->v_mount->mnt_flag & MNT_SOFTDEP) == 0)
4109 return (0);
4111 ip = VTOI(vp);
4112 fs = ip->i_fs;
4113 ACQUIRE_LOCK(&lk);
4114 if (inodedep_lookup(fs, ip->i_number, 0, &inodedep) == 0) {
4115 FREE_LOCK(&lk);
4116 return (0);
4118 if (LIST_FIRST(&inodedep->id_inowait) != NULL ||
4119 LIST_FIRST(&inodedep->id_bufwait) != NULL ||
4120 TAILQ_FIRST(&inodedep->id_inoupdt) != NULL ||
4121 TAILQ_FIRST(&inodedep->id_newinoupdt) != NULL) {
4122 FREE_LOCK(&lk);
4123 panic("softdep_fsync: pending ops");
4125 for (error = 0, flushparent = 0; ; ) {
4126 if ((wk = LIST_FIRST(&inodedep->id_pendinghd)) == NULL)
4127 break;
4128 if (wk->wk_type != D_DIRADD) {
4129 FREE_LOCK(&lk);
4130 panic("softdep_fsync: Unexpected type %s",
4131 TYPENAME(wk->wk_type));
4133 dap = WK_DIRADD(wk);
4135 * Flush our parent if this directory entry
4136 * has a MKDIR_PARENT dependency.
4138 if (dap->da_state & DIRCHG)
4139 pagedep = dap->da_previous->dm_pagedep;
4140 else
4141 pagedep = dap->da_pagedep;
4142 mnt = pagedep->pd_mnt;
4143 parentino = pagedep->pd_ino;
4144 lbn = pagedep->pd_lbn;
4145 if ((dap->da_state & (MKDIR_BODY | COMPLETE)) != COMPLETE) {
4146 FREE_LOCK(&lk);
4147 panic("softdep_fsync: dirty");
4149 flushparent = dap->da_state & MKDIR_PARENT;
4151 * If we are being fsync'ed as part of vgone'ing this vnode,
4152 * then we will not be able to release and recover the
4153 * vnode below, so we just have to give up on writing its
4154 * directory entry out. It will eventually be written, just
4155 * not now, but then the user was not asking to have it
4156 * written, so we are not breaking any promises.
4158 if (vp->v_flag & VRECLAIMED)
4159 break;
4161 * We prevent deadlock by always fetching inodes from the
4162 * root, moving down the directory tree. Thus, when fetching
4163 * our parent directory, we must unlock ourselves before
4164 * requesting the lock on our parent. See the comment in
4165 * ufs_lookup for details on possible races.
4167 FREE_LOCK(&lk);
4168 vn_unlock(vp);
4169 error = VFS_VGET(mnt, parentino, &pvp);
4170 vn_lock(vp, LK_EXCLUSIVE | LK_RETRY);
4171 if (error != 0)
4172 return (error);
4173 if (flushparent) {
4174 if ((error = ffs_update(pvp, 1)) != 0) {
4175 vput(pvp);
4176 return (error);
4180 * Flush directory page containing the inode's name.
4182 error = bread(pvp, lblktodoff(fs, lbn), blksize(fs, VTOI(pvp), lbn), &bp);
4183 if (error == 0)
4184 error = bwrite(bp);
4185 vput(pvp);
4186 if (error != 0)
4187 return (error);
4188 ACQUIRE_LOCK(&lk);
4189 if (inodedep_lookup(fs, ip->i_number, 0, &inodedep) == 0)
4190 break;
4192 FREE_LOCK(&lk);
4193 return (0);
4197 * Flush all the dirty bitmaps associated with the block device
4198 * before flushing the rest of the dirty blocks so as to reduce
4199 * the number of dependencies that will have to be rolled back.
4201 static int softdep_fsync_mountdev_bp(struct buf *bp, void *data);
4203 void
4204 softdep_fsync_mountdev(struct vnode *vp)
4206 if (!vn_isdisk(vp, NULL))
4207 panic("softdep_fsync_mountdev: vnode not a disk");
4208 ACQUIRE_LOCK(&lk);
4209 RB_SCAN(buf_rb_tree, &vp->v_rbdirty_tree, NULL,
4210 softdep_fsync_mountdev_bp, vp);
4211 drain_output(vp, 1);
4212 FREE_LOCK(&lk);
4215 static int
4216 softdep_fsync_mountdev_bp(struct buf *bp, void *data)
4218 struct worklist *wk;
4219 struct vnode *vp = data;
4222 * If it is already scheduled, skip to the next buffer.
4224 if (BUF_LOCK(bp, LK_EXCLUSIVE | LK_NOWAIT))
4225 return(0);
4226 if (bp->b_vp != vp || (bp->b_flags & B_DELWRI) == 0) {
4227 BUF_UNLOCK(bp);
4228 kprintf("softdep_fsync_mountdev_bp: warning, buffer %p ripped out from under vnode %p\n", bp, vp);
4229 return(0);
4232 * We are only interested in bitmaps with outstanding
4233 * dependencies.
4235 if ((wk = LIST_FIRST(&bp->b_dep)) == NULL ||
4236 wk->wk_type != D_BMSAFEMAP) {
4237 BUF_UNLOCK(bp);
4238 return(0);
4240 bremfree(bp);
4241 FREE_LOCK(&lk);
4242 (void) bawrite(bp);
4243 ACQUIRE_LOCK(&lk);
4244 return(0);
4248 * This routine is called when we are trying to synchronously flush a
4249 * file. This routine must eliminate any filesystem metadata dependencies
4250 * so that the syncing routine can succeed by pushing the dirty blocks
4251 * associated with the file. If any I/O errors occur, they are returned.
4253 struct softdep_sync_metadata_info {
4254 struct vnode *vp;
4255 int waitfor;
4258 static int softdep_sync_metadata_bp(struct buf *bp, void *data);
4261 softdep_sync_metadata(struct vnode *vp, struct thread *td)
4263 struct softdep_sync_metadata_info info;
4264 int error, waitfor;
4267 * Check whether this vnode is involved in a filesystem
4268 * that is doing soft dependency processing.
4270 if (!vn_isdisk(vp, NULL)) {
4271 if (!DOINGSOFTDEP(vp))
4272 return (0);
4273 } else
4274 if (vp->v_rdev->si_mountpoint == NULL ||
4275 (vp->v_rdev->si_mountpoint->mnt_flag & MNT_SOFTDEP) == 0)
4276 return (0);
4278 * Ensure that any direct block dependencies have been cleared.
4280 ACQUIRE_LOCK(&lk);
4281 if ((error = flush_inodedep_deps(VTOI(vp)->i_fs, VTOI(vp)->i_number))) {
4282 FREE_LOCK(&lk);
4283 return (error);
4286 * For most files, the only metadata dependencies are the
4287 * cylinder group maps that allocate their inode or blocks.
4288 * The block allocation dependencies can be found by traversing
4289 * the dependency lists for any buffers that remain on their
4290 * dirty buffer list. The inode allocation dependency will
4291 * be resolved when the inode is updated with MNT_WAIT.
4292 * This work is done in two passes. The first pass grabs most
4293 * of the buffers and begins asynchronously writing them. The
4294 * only way to wait for these asynchronous writes is to sleep
4295 * on the filesystem vnode which may stay busy for a long time
4296 * if the filesystem is active. So, instead, we make a second
4297 * pass over the dependencies blocking on each write. In the
4298 * usual case we will be blocking against a write that we
4299 * initiated, so when it is done the dependency will have been
4300 * resolved. Thus the second pass is expected to end quickly.
4302 waitfor = MNT_NOWAIT;
4303 top:
4305 * We must wait for any I/O in progress to finish so that
4306 * all potential buffers on the dirty list will be visible.
4308 drain_output(vp, 1);
4309 info.vp = vp;
4310 info.waitfor = waitfor;
4311 error = RB_SCAN(buf_rb_tree, &vp->v_rbdirty_tree, NULL,
4312 softdep_sync_metadata_bp, &info);
4313 if (error < 0) {
4314 FREE_LOCK(&lk);
4315 return(-error); /* error code */
4319 * The brief unlock is to allow any pent up dependency
4320 * processing to be done. Then proceed with the second pass.
4322 if (waitfor == MNT_NOWAIT) {
4323 waitfor = MNT_WAIT;
4324 FREE_LOCK(&lk);
4325 ACQUIRE_LOCK(&lk);
4326 goto top;
4330 * If we have managed to get rid of all the dirty buffers,
4331 * then we are done. For certain directories and block
4332 * devices, we may need to do further work.
4334 * We must wait for any I/O in progress to finish so that
4335 * all potential buffers on the dirty list will be visible.
4337 drain_output(vp, 1);
4338 if (RB_EMPTY(&vp->v_rbdirty_tree)) {
4339 FREE_LOCK(&lk);
4340 return (0);
4343 FREE_LOCK(&lk);
4345 * If we are trying to sync a block device, some of its buffers may
4346 * contain metadata that cannot be written until the contents of some
4347 * partially written files have been written to disk. The only easy
4348 * way to accomplish this is to sync the entire filesystem (luckily
4349 * this happens rarely).
4351 if (vn_isdisk(vp, NULL) &&
4352 vp->v_rdev &&
4353 vp->v_rdev->si_mountpoint && !vn_islocked(vp) &&
4354 (error = VFS_SYNC(vp->v_rdev->si_mountpoint, MNT_WAIT)) != 0)
4355 return (error);
4356 return (0);
4359 static int
4360 softdep_sync_metadata_bp(struct buf *bp, void *data)
4362 struct softdep_sync_metadata_info *info = data;
4363 struct pagedep *pagedep;
4364 struct allocdirect *adp;
4365 struct allocindir *aip;
4366 struct worklist *wk;
4367 struct buf *nbp;
4368 int error;
4369 int i;
4371 if (getdirtybuf(&bp, MNT_WAIT) == 0) {
4372 kprintf("softdep_sync_metadata_bp(1): caught buf %p going away\n", bp);
4373 return (1);
4375 if (bp->b_vp != info->vp || (bp->b_flags & B_DELWRI) == 0) {
4376 kprintf("softdep_sync_metadata_bp(2): caught buf %p going away vp %p\n", bp, info->vp);
4377 BUF_UNLOCK(bp);
4378 return(1);
4382 * As we hold the buffer locked, none of its dependencies
4383 * will disappear.
4385 LIST_FOREACH(wk, &bp->b_dep, wk_list) {
4386 switch (wk->wk_type) {
4388 case D_ALLOCDIRECT:
4389 adp = WK_ALLOCDIRECT(wk);
4390 if (adp->ad_state & DEPCOMPLETE)
4391 break;
4392 nbp = adp->ad_buf;
4393 if (getdirtybuf(&nbp, info->waitfor) == 0)
4394 break;
4395 FREE_LOCK(&lk);
4396 if (info->waitfor == MNT_NOWAIT) {
4397 bawrite(nbp);
4398 } else if ((error = bwrite(nbp)) != 0) {
4399 bawrite(bp);
4400 ACQUIRE_LOCK(&lk);
4401 return (-error);
4403 ACQUIRE_LOCK(&lk);
4404 break;
4406 case D_ALLOCINDIR:
4407 aip = WK_ALLOCINDIR(wk);
4408 if (aip->ai_state & DEPCOMPLETE)
4409 break;
4410 nbp = aip->ai_buf;
4411 if (getdirtybuf(&nbp, info->waitfor) == 0)
4412 break;
4413 FREE_LOCK(&lk);
4414 if (info->waitfor == MNT_NOWAIT) {
4415 bawrite(nbp);
4416 } else if ((error = bwrite(nbp)) != 0) {
4417 bawrite(bp);
4418 ACQUIRE_LOCK(&lk);
4419 return (-error);
4421 ACQUIRE_LOCK(&lk);
4422 break;
4424 case D_INDIRDEP:
4425 restart:
4427 LIST_FOREACH(aip, &WK_INDIRDEP(wk)->ir_deplisthd, ai_next) {
4428 if (aip->ai_state & DEPCOMPLETE)
4429 continue;
4430 nbp = aip->ai_buf;
4431 if (getdirtybuf(&nbp, MNT_WAIT) == 0)
4432 goto restart;
4433 FREE_LOCK(&lk);
4434 if ((error = bwrite(nbp)) != 0) {
4435 bawrite(bp);
4436 ACQUIRE_LOCK(&lk);
4437 return (-error);
4439 ACQUIRE_LOCK(&lk);
4440 goto restart;
4442 break;
4444 case D_INODEDEP:
4445 if ((error = flush_inodedep_deps(WK_INODEDEP(wk)->id_fs,
4446 WK_INODEDEP(wk)->id_ino)) != 0) {
4447 FREE_LOCK(&lk);
4448 bawrite(bp);
4449 ACQUIRE_LOCK(&lk);
4450 return (-error);
4452 break;
4454 case D_PAGEDEP:
4456 * We are trying to sync a directory that may
4457 * have dependencies on both its own metadata
4458 * and/or dependencies on the inodes of any
4459 * recently allocated files. We walk its diradd
4460 * lists pushing out the associated inode.
4462 pagedep = WK_PAGEDEP(wk);
4463 for (i = 0; i < DAHASHSZ; i++) {
4464 if (LIST_FIRST(&pagedep->pd_diraddhd[i]) == 0)
4465 continue;
4466 if ((error =
4467 flush_pagedep_deps(info->vp,
4468 pagedep->pd_mnt,
4469 &pagedep->pd_diraddhd[i]))) {
4470 FREE_LOCK(&lk);
4471 bawrite(bp);
4472 ACQUIRE_LOCK(&lk);
4473 return (-error);
4476 break;
4478 case D_MKDIR:
4480 * This case should never happen if the vnode has
4481 * been properly sync'ed. However, if this function
4482 * is used at a place where the vnode has not yet
4483 * been sync'ed, this dependency can show up. So,
4484 * rather than panic, just flush it.
4486 nbp = WK_MKDIR(wk)->md_buf;
4487 if (getdirtybuf(&nbp, info->waitfor) == 0)
4488 break;
4489 FREE_LOCK(&lk);
4490 if (info->waitfor == MNT_NOWAIT) {
4491 bawrite(nbp);
4492 } else if ((error = bwrite(nbp)) != 0) {
4493 bawrite(bp);
4494 ACQUIRE_LOCK(&lk);
4495 return (-error);
4497 ACQUIRE_LOCK(&lk);
4498 break;
4500 case D_BMSAFEMAP:
4502 * This case should never happen if the vnode has
4503 * been properly sync'ed. However, if this function
4504 * is used at a place where the vnode has not yet
4505 * been sync'ed, this dependency can show up. So,
4506 * rather than panic, just flush it.
4508 * nbp can wind up == bp if a device node for the
4509 * same filesystem is being fsynced at the same time,
4510 * leading to a panic if we don't catch the case.
4512 nbp = WK_BMSAFEMAP(wk)->sm_buf;
4513 if (nbp == bp)
4514 break;
4515 if (getdirtybuf(&nbp, info->waitfor) == 0)
4516 break;
4517 FREE_LOCK(&lk);
4518 if (info->waitfor == MNT_NOWAIT) {
4519 bawrite(nbp);
4520 } else if ((error = bwrite(nbp)) != 0) {
4521 bawrite(bp);
4522 ACQUIRE_LOCK(&lk);
4523 return (-error);
4525 ACQUIRE_LOCK(&lk);
4526 break;
4528 default:
4529 FREE_LOCK(&lk);
4530 panic("softdep_sync_metadata: Unknown type %s",
4531 TYPENAME(wk->wk_type));
4532 /* NOTREACHED */
4535 FREE_LOCK(&lk);
4536 bawrite(bp);
4537 ACQUIRE_LOCK(&lk);
4538 return(0);
4542 * Flush the dependencies associated with an inodedep.
4543 * Called with splbio blocked.
4545 static int
4546 flush_inodedep_deps(struct fs *fs, ino_t ino)
4548 struct inodedep *inodedep;
4549 struct allocdirect *adp;
4550 int error, waitfor;
4551 struct buf *bp;
4554 * This work is done in two passes. The first pass grabs most
4555 * of the buffers and begins asynchronously writing them. The
4556 * only way to wait for these asynchronous writes is to sleep
4557 * on the filesystem vnode which may stay busy for a long time
4558 * if the filesystem is active. So, instead, we make a second
4559 * pass over the dependencies blocking on each write. In the
4560 * usual case we will be blocking against a write that we
4561 * initiated, so when it is done the dependency will have been
4562 * resolved. Thus the second pass is expected to end quickly.
4563 * We give a brief window at the top of the loop to allow
4564 * any pending I/O to complete.
4566 for (waitfor = MNT_NOWAIT; ; ) {
4567 FREE_LOCK(&lk);
4568 ACQUIRE_LOCK(&lk);
4569 if (inodedep_lookup(fs, ino, 0, &inodedep) == 0)
4570 return (0);
4571 TAILQ_FOREACH(adp, &inodedep->id_inoupdt, ad_next) {
4572 if (adp->ad_state & DEPCOMPLETE)
4573 continue;
4574 bp = adp->ad_buf;
4575 if (getdirtybuf(&bp, waitfor) == 0) {
4576 if (waitfor == MNT_NOWAIT)
4577 continue;
4578 break;
4580 FREE_LOCK(&lk);
4581 if (waitfor == MNT_NOWAIT) {
4582 bawrite(bp);
4583 } else if ((error = bwrite(bp)) != 0) {
4584 ACQUIRE_LOCK(&lk);
4585 return (error);
4587 ACQUIRE_LOCK(&lk);
4588 break;
4590 if (adp != NULL)
4591 continue;
4592 TAILQ_FOREACH(adp, &inodedep->id_newinoupdt, ad_next) {
4593 if (adp->ad_state & DEPCOMPLETE)
4594 continue;
4595 bp = adp->ad_buf;
4596 if (getdirtybuf(&bp, waitfor) == 0) {
4597 if (waitfor == MNT_NOWAIT)
4598 continue;
4599 break;
4601 FREE_LOCK(&lk);
4602 if (waitfor == MNT_NOWAIT) {
4603 bawrite(bp);
4604 } else if ((error = bwrite(bp)) != 0) {
4605 ACQUIRE_LOCK(&lk);
4606 return (error);
4608 ACQUIRE_LOCK(&lk);
4609 break;
4611 if (adp != NULL)
4612 continue;
4614 * If pass2, we are done, otherwise do pass 2.
4616 if (waitfor == MNT_WAIT)
4617 break;
4618 waitfor = MNT_WAIT;
4621 * Try freeing inodedep in case all dependencies have been removed.
4623 if (inodedep_lookup(fs, ino, 0, &inodedep) != 0)
4624 (void) free_inodedep(inodedep);
4625 return (0);
4629 * Eliminate a pagedep dependency by flushing out all its diradd dependencies.
4630 * Called with splbio blocked.
4632 static int
4633 flush_pagedep_deps(struct vnode *pvp, struct mount *mp,
4634 struct diraddhd *diraddhdp)
4636 struct inodedep *inodedep;
4637 struct ufsmount *ump;
4638 struct diradd *dap;
4639 struct vnode *vp;
4640 int gotit, error = 0;
4641 struct buf *bp;
4642 ino_t inum;
4644 ump = VFSTOUFS(mp);
4645 while ((dap = LIST_FIRST(diraddhdp)) != NULL) {
4647 * Flush ourselves if this directory entry
4648 * has a MKDIR_PARENT dependency.
4650 if (dap->da_state & MKDIR_PARENT) {
4651 FREE_LOCK(&lk);
4652 if ((error = ffs_update(pvp, 1)) != 0)
4653 break;
4654 ACQUIRE_LOCK(&lk);
4656 * If that cleared dependencies, go on to next.
4658 if (dap != LIST_FIRST(diraddhdp))
4659 continue;
4660 if (dap->da_state & MKDIR_PARENT) {
4661 FREE_LOCK(&lk);
4662 panic("flush_pagedep_deps: MKDIR_PARENT");
4666 * A newly allocated directory must have its "." and
4667 * ".." entries written out before its name can be
4668 * committed in its parent. We do not want or need
4669 * the full semantics of a synchronous VOP_FSYNC as
4670 * that may end up here again, once for each directory
4671 * level in the filesystem. Instead, we push the blocks
4672 * and wait for them to clear. We have to fsync twice
4673 * because the first call may choose to defer blocks
4674 * that still have dependencies, but deferral will
4675 * happen at most once.
4677 inum = dap->da_newinum;
4678 if (dap->da_state & MKDIR_BODY) {
4679 FREE_LOCK(&lk);
4680 if ((error = VFS_VGET(mp, inum, &vp)) != 0)
4681 break;
4682 if ((error=VOP_FSYNC(vp, MNT_NOWAIT)) ||
4683 (error=VOP_FSYNC(vp, MNT_NOWAIT))) {
4684 vput(vp);
4685 break;
4687 drain_output(vp, 0);
4688 vput(vp);
4689 ACQUIRE_LOCK(&lk);
4691 * If that cleared dependencies, go on to next.
4693 if (dap != LIST_FIRST(diraddhdp))
4694 continue;
4695 if (dap->da_state & MKDIR_BODY) {
4696 FREE_LOCK(&lk);
4697 panic("flush_pagedep_deps: MKDIR_BODY");
4701 * Flush the inode on which the directory entry depends.
4702 * Having accounted for MKDIR_PARENT and MKDIR_BODY above,
4703 * the only remaining dependency is that the updated inode
4704 * count must get pushed to disk. The inode has already
4705 * been pushed into its inode buffer (via VOP_UPDATE) at
4706 * the time of the reference count change. So we need only
4707 * locate that buffer, ensure that there will be no rollback
4708 * caused by a bitmap dependency, then write the inode buffer.
4710 if (inodedep_lookup(ump->um_fs, inum, 0, &inodedep) == 0) {
4711 FREE_LOCK(&lk);
4712 panic("flush_pagedep_deps: lost inode");
4715 * If the inode still has bitmap dependencies,
4716 * push them to disk.
4718 if ((inodedep->id_state & DEPCOMPLETE) == 0) {
4719 gotit = getdirtybuf(&inodedep->id_buf, MNT_WAIT);
4720 FREE_LOCK(&lk);
4721 if (gotit && (error = bwrite(inodedep->id_buf)) != 0)
4722 break;
4723 ACQUIRE_LOCK(&lk);
4724 if (dap != LIST_FIRST(diraddhdp))
4725 continue;
4728 * If the inode is still sitting in a buffer waiting
4729 * to be written, push it to disk.
4731 FREE_LOCK(&lk);
4732 if ((error = bread(ump->um_devvp,
4733 fsbtodoff(ump->um_fs, ino_to_fsba(ump->um_fs, inum)),
4734 (int)ump->um_fs->fs_bsize, &bp)) != 0)
4735 break;
4736 if ((error = bwrite(bp)) != 0)
4737 break;
4738 ACQUIRE_LOCK(&lk);
4740 * If we have failed to get rid of all the dependencies
4741 * then something is seriously wrong.
4743 if (dap == LIST_FIRST(diraddhdp)) {
4744 FREE_LOCK(&lk);
4745 panic("flush_pagedep_deps: flush failed");
4748 if (error)
4749 ACQUIRE_LOCK(&lk);
4750 return (error);
4754 * A large burst of file addition or deletion activity can drive the
4755 * memory load excessively high. First attempt to slow things down
4756 * using the techniques below. If that fails, this routine requests
4757 * the offending operations to fall back to running synchronously
4758 * until the memory load returns to a reasonable level.
4761 softdep_slowdown(struct vnode *vp)
4763 int max_softdeps_hard;
4765 max_softdeps_hard = max_softdeps * 11 / 10;
4766 if (num_dirrem < max_softdeps_hard / 2 &&
4767 num_inodedep < max_softdeps_hard)
4768 return (0);
4769 stat_sync_limit_hit += 1;
4770 return (1);
4774 * If memory utilization has gotten too high, deliberately slow things
4775 * down and speed up the I/O processing.
4777 static int
4778 request_cleanup(int resource, int islocked)
4780 struct thread *td = curthread; /* XXX */
4783 * We never hold up the filesystem syncer process.
4785 if (td == filesys_syncer)
4786 return (0);
4788 * First check to see if the work list has gotten backlogged.
4789 * If it has, co-opt this process to help clean up two entries.
4790 * Because this process may hold inodes locked, we cannot
4791 * handle any remove requests that might block on a locked
4792 * inode as that could lead to deadlock.
4794 if (num_on_worklist > max_softdeps / 10) {
4795 if (islocked)
4796 FREE_LOCK(&lk);
4797 process_worklist_item(NULL, LK_NOWAIT);
4798 process_worklist_item(NULL, LK_NOWAIT);
4799 stat_worklist_push += 2;
4800 if (islocked)
4801 ACQUIRE_LOCK(&lk);
4802 return(1);
4806 * If we are resource constrained on inode dependencies, try
4807 * flushing some dirty inodes. Otherwise, we are constrained
4808 * by file deletions, so try accelerating flushes of directories
4809 * with removal dependencies. We would like to do the cleanup
4810 * here, but we probably hold an inode locked at this point and
4811 * that might deadlock against one that we try to clean. So,
4812 * the best that we can do is request the syncer daemon to do
4813 * the cleanup for us.
4815 switch (resource) {
4817 case FLUSH_INODES:
4818 stat_ino_limit_push += 1;
4819 req_clear_inodedeps += 1;
4820 stat_countp = &stat_ino_limit_hit;
4821 break;
4823 case FLUSH_REMOVE:
4824 stat_blk_limit_push += 1;
4825 req_clear_remove += 1;
4826 stat_countp = &stat_blk_limit_hit;
4827 break;
4829 default:
4830 if (islocked)
4831 FREE_LOCK(&lk);
4832 panic("request_cleanup: unknown type");
4835 * Hopefully the syncer daemon will catch up and awaken us.
4836 * We wait at most tickdelay before proceeding in any case.
4838 if (islocked == 0)
4839 ACQUIRE_LOCK(&lk);
4840 proc_waiting += 1;
4841 if (!callout_active(&handle))
4842 callout_reset(&handle, tickdelay > 2 ? tickdelay : 2,
4843 pause_timer, NULL);
4844 interlocked_sleep(&lk, SLEEP, (caddr_t)&proc_waiting, 0,
4845 "softupdate", 0);
4846 proc_waiting -= 1;
4847 if (islocked == 0)
4848 FREE_LOCK(&lk);
4849 return (1);
4853 * Awaken processes pausing in request_cleanup and clear proc_waiting
4854 * to indicate that there is no longer a timer running.
4856 void
4857 pause_timer(void *arg)
4859 *stat_countp += 1;
4860 wakeup_one(&proc_waiting);
4861 if (proc_waiting > 0)
4862 callout_reset(&handle, tickdelay > 2 ? tickdelay : 2,
4863 pause_timer, NULL);
4864 else
4865 callout_deactivate(&handle);
4869 * Flush out a directory with at least one removal dependency in an effort to
4870 * reduce the number of dirrem, freefile, and freeblks dependency structures.
4872 static void
4873 clear_remove(struct thread *td)
4875 struct pagedep_hashhead *pagedephd;
4876 struct pagedep *pagedep;
4877 static int next = 0;
4878 struct mount *mp;
4879 struct vnode *vp;
4880 int error, cnt;
4881 ino_t ino;
4883 ACQUIRE_LOCK(&lk);
4884 for (cnt = 0; cnt < pagedep_hash; cnt++) {
4885 pagedephd = &pagedep_hashtbl[next++];
4886 if (next >= pagedep_hash)
4887 next = 0;
4888 LIST_FOREACH(pagedep, pagedephd, pd_hash) {
4889 if (LIST_FIRST(&pagedep->pd_dirremhd) == NULL)
4890 continue;
4891 mp = pagedep->pd_mnt;
4892 ino = pagedep->pd_ino;
4893 FREE_LOCK(&lk);
4894 if ((error = VFS_VGET(mp, ino, &vp)) != 0) {
4895 softdep_error("clear_remove: vget", error);
4896 return;
4898 if ((error = VOP_FSYNC(vp, MNT_NOWAIT)))
4899 softdep_error("clear_remove: fsync", error);
4900 drain_output(vp, 0);
4901 vput(vp);
4902 return;
4905 FREE_LOCK(&lk);
4909 * Clear out a block of dirty inodes in an effort to reduce
4910 * the number of inodedep dependency structures.
4912 struct clear_inodedeps_info {
4913 struct fs *fs;
4914 struct mount *mp;
4917 static int
4918 clear_inodedeps_mountlist_callback(struct mount *mp, void *data)
4920 struct clear_inodedeps_info *info = data;
4922 if ((mp->mnt_flag & MNT_SOFTDEP) && info->fs == VFSTOUFS(mp)->um_fs) {
4923 info->mp = mp;
4924 return(-1);
4926 return(0);
4929 static void
4930 clear_inodedeps(struct thread *td)
4932 struct clear_inodedeps_info info;
4933 struct inodedep_hashhead *inodedephd;
4934 struct inodedep *inodedep;
4935 static int next = 0;
4936 struct vnode *vp;
4937 struct fs *fs;
4938 int error, cnt;
4939 ino_t firstino, lastino, ino;
4941 ACQUIRE_LOCK(&lk);
4943 * Pick a random inode dependency to be cleared.
4944 * We will then gather up all the inodes in its block
4945 * that have dependencies and flush them out.
4947 for (cnt = 0; cnt < inodedep_hash; cnt++) {
4948 inodedephd = &inodedep_hashtbl[next++];
4949 if (next >= inodedep_hash)
4950 next = 0;
4951 if ((inodedep = LIST_FIRST(inodedephd)) != NULL)
4952 break;
4954 if (inodedep == NULL) {
4955 FREE_LOCK(&lk);
4956 return;
4959 * Ugly code to find mount point given pointer to superblock.
4961 fs = inodedep->id_fs;
4962 info.mp = NULL;
4963 info.fs = fs;
4964 mountlist_scan(clear_inodedeps_mountlist_callback,
4965 &info, MNTSCAN_FORWARD|MNTSCAN_NOBUSY);
4967 * Find the last inode in the block with dependencies.
4969 firstino = inodedep->id_ino & ~(INOPB(fs) - 1);
4970 for (lastino = firstino + INOPB(fs) - 1; lastino > firstino; lastino--)
4971 if (inodedep_lookup(fs, lastino, 0, &inodedep) != 0)
4972 break;
4974 * Asynchronously push all but the last inode with dependencies.
4975 * Synchronously push the last inode with dependencies to ensure
4976 * that the inode block gets written to free up the inodedeps.
4978 for (ino = firstino; ino <= lastino; ino++) {
4979 if (inodedep_lookup(fs, ino, 0, &inodedep) == 0)
4980 continue;
4981 FREE_LOCK(&lk);
4982 if ((error = VFS_VGET(info.mp, ino, &vp)) != 0) {
4983 softdep_error("clear_inodedeps: vget", error);
4984 return;
4986 if (ino == lastino) {
4987 if ((error = VOP_FSYNC(vp, MNT_WAIT)))
4988 softdep_error("clear_inodedeps: fsync1", error);
4989 } else {
4990 if ((error = VOP_FSYNC(vp, MNT_NOWAIT)))
4991 softdep_error("clear_inodedeps: fsync2", error);
4992 drain_output(vp, 0);
4994 vput(vp);
4995 ACQUIRE_LOCK(&lk);
4997 FREE_LOCK(&lk);
5001 * Function to determine if the buffer has outstanding dependencies
5002 * that will cause a roll-back if the buffer is written. If wantcount
5003 * is set, return number of dependencies, otherwise just yes or no.
5005 static int
5006 softdep_count_dependencies(struct buf *bp, int wantcount)
5008 struct worklist *wk;
5009 struct inodedep *inodedep;
5010 struct indirdep *indirdep;
5011 struct allocindir *aip;
5012 struct pagedep *pagedep;
5013 struct diradd *dap;
5014 int i, retval;
5016 retval = 0;
5017 ACQUIRE_LOCK(&lk);
5018 LIST_FOREACH(wk, &bp->b_dep, wk_list) {
5019 switch (wk->wk_type) {
5021 case D_INODEDEP:
5022 inodedep = WK_INODEDEP(wk);
5023 if ((inodedep->id_state & DEPCOMPLETE) == 0) {
5024 /* bitmap allocation dependency */
5025 retval += 1;
5026 if (!wantcount)
5027 goto out;
5029 if (TAILQ_FIRST(&inodedep->id_inoupdt)) {
5030 /* direct block pointer dependency */
5031 retval += 1;
5032 if (!wantcount)
5033 goto out;
5035 continue;
5037 case D_INDIRDEP:
5038 indirdep = WK_INDIRDEP(wk);
5040 LIST_FOREACH(aip, &indirdep->ir_deplisthd, ai_next) {
5041 /* indirect block pointer dependency */
5042 retval += 1;
5043 if (!wantcount)
5044 goto out;
5046 continue;
5048 case D_PAGEDEP:
5049 pagedep = WK_PAGEDEP(wk);
5050 for (i = 0; i < DAHASHSZ; i++) {
5052 LIST_FOREACH(dap, &pagedep->pd_diraddhd[i], da_pdlist) {
5053 /* directory entry dependency */
5054 retval += 1;
5055 if (!wantcount)
5056 goto out;
5059 continue;
5061 case D_BMSAFEMAP:
5062 case D_ALLOCDIRECT:
5063 case D_ALLOCINDIR:
5064 case D_MKDIR:
5065 /* never a dependency on these blocks */
5066 continue;
5068 default:
5069 FREE_LOCK(&lk);
5070 panic("softdep_check_for_rollback: Unexpected type %s",
5071 TYPENAME(wk->wk_type));
5072 /* NOTREACHED */
5075 out:
5076 FREE_LOCK(&lk);
5077 return retval;
5081 * Acquire exclusive access to a buffer.
5082 * Must be called with splbio blocked.
5083 * Return 1 if buffer was acquired.
5085 static int
5086 getdirtybuf(struct buf **bpp, int waitfor)
5088 struct buf *bp;
5089 int error;
5091 for (;;) {
5092 if ((bp = *bpp) == NULL)
5093 return (0);
5094 if (BUF_LOCK(bp, LK_EXCLUSIVE | LK_NOWAIT) == 0)
5095 break;
5096 if (waitfor != MNT_WAIT)
5097 return (0);
5098 error = interlocked_sleep(&lk, LOCKBUF, bp,
5099 LK_EXCLUSIVE | LK_SLEEPFAIL, 0, 0);
5100 if (error != ENOLCK) {
5101 FREE_LOCK(&lk);
5102 panic("getdirtybuf: inconsistent lock");
5105 if ((bp->b_flags & B_DELWRI) == 0) {
5106 BUF_UNLOCK(bp);
5107 return (0);
5109 bremfree(bp);
5110 return (1);
5114 * Wait for pending output on a vnode to complete.
5115 * Must be called with vnode locked.
5117 static void
5118 drain_output(struct vnode *vp, int islocked)
5121 if (!islocked)
5122 ACQUIRE_LOCK(&lk);
5123 while (vp->v_track_write.bk_active) {
5124 vp->v_track_write.bk_waitflag = 1;
5125 interlocked_sleep(&lk, SLEEP, &vp->v_track_write,
5126 0, "drainvp", 0);
5128 if (!islocked)
5129 FREE_LOCK(&lk);
5133 * Called whenever a buffer that is being invalidated or reallocated
5134 * contains dependencies. This should only happen if an I/O error has
5135 * occurred. The routine is called with the buffer locked.
5137 static void
5138 softdep_deallocate_dependencies(struct buf *bp)
5140 if ((bp->b_flags & B_ERROR) == 0)
5141 panic("softdep_deallocate_dependencies: dangling deps");
5142 softdep_error(bp->b_vp->v_mount->mnt_stat.f_mntfromname, bp->b_error);
5143 panic("softdep_deallocate_dependencies: unrecovered I/O error");
5147 * Function to handle asynchronous write errors in the filesystem.
5149 void
5150 softdep_error(char *func, int error)
5153 /* XXX should do something better! */
5154 kprintf("%s: got error %d while accessing filesystem\n", func, error);