HAMMER 60I/Many: Mirroring
[dragonfly.git] / sys / opencrypto / crypto.c
blob5747e3566b71167adec8da61c3c926300bfc2dc5
1 /* $FreeBSD: src/sys/opencrypto/crypto.c,v 1.4.2.7 2003/06/03 00:09:02 sam Exp $ */
2 /* $DragonFly: src/sys/opencrypto/crypto.c,v 1.14 2006/12/23 00:27:03 swildner Exp $ */
3 /* $OpenBSD: crypto.c,v 1.38 2002/06/11 11:14:29 beck Exp $ */
4 /*
5 * The author of this code is Angelos D. Keromytis (angelos@cis.upenn.edu)
7 * This code was written by Angelos D. Keromytis in Athens, Greece, in
8 * February 2000. Network Security Technologies Inc. (NSTI) kindly
9 * supported the development of this code.
11 * Copyright (c) 2000, 2001 Angelos D. Keromytis
13 * Permission to use, copy, and modify this software with or without fee
14 * is hereby granted, provided that this entire notice is included in
15 * all source code copies of any software which is or includes a copy or
16 * modification of this software.
18 * THIS SOFTWARE IS BEING PROVIDED "AS IS", WITHOUT ANY EXPRESS OR
19 * IMPLIED WARRANTY. IN PARTICULAR, NONE OF THE AUTHORS MAKES ANY
20 * REPRESENTATION OR WARRANTY OF ANY KIND CONCERNING THE
21 * MERCHANTABILITY OF THIS SOFTWARE OR ITS FITNESS FOR ANY PARTICULAR
22 * PURPOSE.
25 #define CRYPTO_TIMING /* enable cryptop timing stuff */
27 #include <sys/param.h>
28 #include <sys/systm.h>
29 #include <sys/eventhandler.h>
30 #include <sys/kernel.h>
31 #include <sys/kthread.h>
32 #include <sys/malloc.h>
33 #include <sys/proc.h>
34 #include <sys/sysctl.h>
35 #include <sys/interrupt.h>
36 #include <sys/thread2.h>
38 #include <vm/vm_zone.h>
39 #include <opencrypto/cryptodev.h>
40 #include <opencrypto/xform.h> /* XXX for M_XDATA */
42 #define SESID2HID(sid) (((sid) >> 32) & 0xffffffff)
45 * Crypto drivers register themselves by allocating a slot in the
46 * crypto_drivers table with crypto_get_driverid() and then registering
47 * each algorithm they support with crypto_register() and crypto_kregister().
49 static struct cryptocap *crypto_drivers = NULL;
50 static int crypto_drivers_num = 0;
53 * There are two queues for crypto requests; one for symmetric (e.g.
54 * cipher) operations and one for asymmetric (e.g. MOD) operations.
55 * See below for how synchronization is handled.
57 static TAILQ_HEAD(,cryptop) crp_q; /* request queues */
58 static TAILQ_HEAD(,cryptkop) crp_kq;
61 * There are two queues for processing completed crypto requests; one
62 * for the symmetric and one for the asymmetric ops. We only need one
63 * but have two to avoid type futzing (cryptop vs. cryptkop). See below
64 * for how synchronization is handled.
66 static TAILQ_HEAD(,cryptop) crp_ret_q; /* callback queues */
67 static TAILQ_HEAD(,cryptkop) crp_ret_kq;
70 * Crypto op and desciptor data structures are allocated
71 * from separate private zones.
73 static vm_zone_t cryptop_zone;
74 static vm_zone_t cryptodesc_zone;
76 int crypto_usercrypto = 1; /* userland may open /dev/crypto */
77 SYSCTL_INT(_kern, OID_AUTO, usercrypto, CTLFLAG_RW,
78 &crypto_usercrypto, 0,
79 "Enable/disable user-mode access to crypto support");
80 int crypto_userasymcrypto = 1; /* userland may do asym crypto reqs */
81 SYSCTL_INT(_kern, OID_AUTO, userasymcrypto, CTLFLAG_RW,
82 &crypto_userasymcrypto, 0,
83 "Enable/disable user-mode access to asymmetric crypto support");
84 int crypto_devallowsoft = 0; /* only use hardware crypto for asym */
85 SYSCTL_INT(_kern, OID_AUTO, cryptodevallowsoft, CTLFLAG_RW,
86 &crypto_devallowsoft, 0,
87 "Enable/disable use of software asym crypto support");
89 MALLOC_DEFINE(M_CRYPTO_DATA, "crypto", "crypto session records");
92 * Synchronization: read carefully, this is non-trivial.
94 * Crypto requests are submitted via crypto_dispatch. No critical
95 * section or lock/interlock guarentees are made on entry.
97 * Requests are typically passed on the driver directly, but they
98 * may also be queued for processing by a software interrupt thread,
99 * cryptointr, that runs in a critical section. This thread dispatches
100 * the requests to crypto drivers (h/w or s/w) who call crypto_done
101 * when a request is complete. Hardware crypto drivers are assumed
102 * to register their IRQ's as network devices so their interrupt handlers
103 * and subsequent "done callbacks" happen at appropriate protection levels.
105 * Completed crypto ops are queued for a separate kernel thread that
106 * handles the callbacks with no critical section or lock/interlock
107 * guarentees. This decoupling insures the crypto driver interrupt service
108 * routine is not delayed while the callback takes place and that callbacks
109 * are delivered after a context switch (as opposed to a software interrupt
110 * that clients must block).
112 * This scheme is not intended for SMP machines.
114 static inthand2_t cryptointr;
115 static void cryptoret(void); /* kernel thread for callbacks*/
116 static struct thread *cryptothread;
117 static void crypto_destroy(void);
118 static int crypto_invoke(struct cryptop *crp, int hint);
119 static int crypto_kinvoke(struct cryptkop *krp, int hint);
121 static struct cryptostats cryptostats;
122 SYSCTL_STRUCT(_kern, OID_AUTO, crypto_stats, CTLFLAG_RW, &cryptostats,
123 cryptostats, "Crypto system statistics");
125 #ifdef CRYPTO_TIMING
126 static int crypto_timing = 0;
127 SYSCTL_INT(_debug, OID_AUTO, crypto_timing, CTLFLAG_RW,
128 &crypto_timing, 0, "Enable/disable crypto timing support");
129 #endif
131 static void *crypto_int_id;
133 static int
134 crypto_init(void)
136 int error;
138 cryptop_zone = zinit("cryptop", sizeof (struct cryptop), 0, 0, 1);
139 cryptodesc_zone = zinit("cryptodesc", sizeof (struct cryptodesc),
140 0, 0, 1);
141 if (cryptodesc_zone == NULL || cryptop_zone == NULL) {
142 kprintf("crypto_init: cannot setup crypto zones\n");
143 return ENOMEM;
146 crypto_drivers_num = CRYPTO_DRIVERS_INITIAL;
147 crypto_drivers = kmalloc(crypto_drivers_num *
148 sizeof(struct cryptocap), M_CRYPTO_DATA, M_NOWAIT | M_ZERO);
149 if (crypto_drivers == NULL) {
150 kprintf("crypto_init: cannot malloc driver table\n");
151 return ENOMEM;
154 TAILQ_INIT(&crp_q);
155 TAILQ_INIT(&crp_kq);
157 TAILQ_INIT(&crp_ret_q);
158 TAILQ_INIT(&crp_ret_kq);
160 crypto_int_id = register_swi(SWI_CRYPTO, cryptointr, NULL,
161 "swi_crypto", NULL);
162 error = kthread_create((void (*)(void *)) cryptoret, NULL,
163 &cryptothread, "cryptoret");
164 if (error) {
165 kprintf("crypto_init: cannot start cryptoret thread; error %d",
166 error);
167 crypto_destroy();
169 return error;
172 static void
173 crypto_destroy(void)
175 /* XXX no wait to reclaim zones */
176 if (crypto_drivers != NULL)
177 kfree(crypto_drivers, M_CRYPTO_DATA);
178 unregister_swi(crypto_int_id);
182 * Initialization code, both for static and dynamic loading.
184 static int
185 crypto_modevent(module_t mod, int type, void *unused)
187 int error = EINVAL;
189 switch (type) {
190 case MOD_LOAD:
191 error = crypto_init();
192 if (error == 0 && bootverbose)
193 kprintf("crypto: <crypto core>\n");
194 break;
195 case MOD_UNLOAD:
196 /*XXX disallow if active sessions */
197 error = 0;
198 crypto_destroy();
199 break;
201 return error;
204 static moduledata_t crypto_mod = {
205 "crypto",
206 crypto_modevent,
209 MODULE_VERSION(crypto, 1);
210 DECLARE_MODULE(crypto, crypto_mod, SI_SUB_DRIVERS, SI_ORDER_FIRST);
213 * Create a new session.
216 crypto_newsession(u_int64_t *sid, struct cryptoini *cri, int hard)
218 struct cryptoini *cr;
219 u_int32_t hid, lid;
220 int err = EINVAL;
222 crit_enter();
224 if (crypto_drivers == NULL)
225 goto done;
228 * The algorithm we use here is pretty stupid; just use the
229 * first driver that supports all the algorithms we need.
231 * XXX We need more smarts here (in real life too, but that's
232 * XXX another story altogether).
235 for (hid = 0; hid < crypto_drivers_num; hid++) {
237 * If it's not initialized or has remaining sessions
238 * referencing it, skip.
240 if (crypto_drivers[hid].cc_newsession == NULL ||
241 (crypto_drivers[hid].cc_flags & CRYPTOCAP_F_CLEANUP))
242 continue;
244 /* Hardware required -- ignore software drivers. */
245 if (hard > 0 &&
246 (crypto_drivers[hid].cc_flags & CRYPTOCAP_F_SOFTWARE))
247 continue;
248 /* Software required -- ignore hardware drivers. */
249 if (hard < 0 &&
250 (crypto_drivers[hid].cc_flags & CRYPTOCAP_F_SOFTWARE) == 0)
251 continue;
253 /* See if all the algorithms are supported. */
254 for (cr = cri; cr; cr = cr->cri_next)
255 if (crypto_drivers[hid].cc_alg[cr->cri_alg] == 0)
256 break;
258 if (cr == NULL) {
259 /* Ok, all algorithms are supported. */
262 * Can't do everything in one session.
264 * XXX Fix this. We need to inject a "virtual" session layer right
265 * XXX about here.
268 /* Call the driver initialization routine. */
269 lid = hid; /* Pass the driver ID. */
270 err = crypto_drivers[hid].cc_newsession(
271 crypto_drivers[hid].cc_arg, &lid, cri);
272 if (err == 0) {
273 (*sid) = hid;
274 (*sid) <<= 32;
275 (*sid) |= (lid & 0xffffffff);
276 crypto_drivers[hid].cc_sessions++;
278 break;
281 done:
282 crit_exit();
283 return err;
287 * Delete an existing session (or a reserved session on an unregistered
288 * driver).
291 crypto_freesession(u_int64_t sid)
293 u_int32_t hid;
294 int err;
296 crit_enter();
298 if (crypto_drivers == NULL) {
299 err = EINVAL;
300 goto done;
303 /* Determine two IDs. */
304 hid = SESID2HID(sid);
306 if (hid >= crypto_drivers_num) {
307 err = ENOENT;
308 goto done;
311 if (crypto_drivers[hid].cc_sessions)
312 crypto_drivers[hid].cc_sessions--;
314 /* Call the driver cleanup routine, if available. */
315 if (crypto_drivers[hid].cc_freesession)
316 err = crypto_drivers[hid].cc_freesession(
317 crypto_drivers[hid].cc_arg, sid);
318 else
319 err = 0;
322 * If this was the last session of a driver marked as invalid,
323 * make the entry available for reuse.
325 if ((crypto_drivers[hid].cc_flags & CRYPTOCAP_F_CLEANUP) &&
326 crypto_drivers[hid].cc_sessions == 0)
327 bzero(&crypto_drivers[hid], sizeof(struct cryptocap));
329 done:
330 crit_exit();
331 return err;
335 * Return an unused driver id. Used by drivers prior to registering
336 * support for the algorithms they handle.
338 int32_t
339 crypto_get_driverid(u_int32_t flags)
341 struct cryptocap *newdrv;
342 int i;
344 crit_enter();
345 for (i = 0; i < crypto_drivers_num; i++)
346 if (crypto_drivers[i].cc_process == NULL &&
347 (crypto_drivers[i].cc_flags & CRYPTOCAP_F_CLEANUP) == 0 &&
348 crypto_drivers[i].cc_sessions == 0)
349 break;
351 /* Out of entries, allocate some more. */
352 if (i == crypto_drivers_num) {
353 /* Be careful about wrap-around. */
354 if (2 * crypto_drivers_num <= crypto_drivers_num) {
355 crit_exit();
356 kprintf("crypto: driver count wraparound!\n");
357 return -1;
360 newdrv = kmalloc(2 * crypto_drivers_num *
361 sizeof(struct cryptocap), M_CRYPTO_DATA, M_NOWAIT|M_ZERO);
362 if (newdrv == NULL) {
363 crit_exit();
364 kprintf("crypto: no space to expand driver table!\n");
365 return -1;
368 bcopy(crypto_drivers, newdrv,
369 crypto_drivers_num * sizeof(struct cryptocap));
371 crypto_drivers_num *= 2;
373 kfree(crypto_drivers, M_CRYPTO_DATA);
374 crypto_drivers = newdrv;
377 /* NB: state is zero'd on free */
378 crypto_drivers[i].cc_sessions = 1; /* Mark */
379 crypto_drivers[i].cc_flags = flags;
380 if (bootverbose)
381 kprintf("crypto: assign driver %u, flags %u\n", i, flags);
383 crit_exit();
385 return i;
388 static struct cryptocap *
389 crypto_checkdriver(u_int32_t hid)
391 if (crypto_drivers == NULL)
392 return NULL;
393 return (hid >= crypto_drivers_num ? NULL : &crypto_drivers[hid]);
397 * Register support for a key-related algorithm. This routine
398 * is called once for each algorithm supported a driver.
401 crypto_kregister(u_int32_t driverid, int kalg, u_int32_t flags,
402 int (*kprocess)(void*, struct cryptkop *, int),
403 void *karg)
405 struct cryptocap *cap;
406 int err;
408 crit_enter();
410 cap = crypto_checkdriver(driverid);
411 if (cap != NULL &&
412 (CRK_ALGORITM_MIN <= kalg && kalg <= CRK_ALGORITHM_MAX)) {
414 * XXX Do some performance testing to determine placing.
415 * XXX We probably need an auxiliary data structure that
416 * XXX describes relative performances.
419 cap->cc_kalg[kalg] = flags | CRYPTO_ALG_FLAG_SUPPORTED;
420 if (bootverbose)
421 kprintf("crypto: driver %u registers key alg %u flags %u\n"
422 , driverid
423 , kalg
424 , flags
427 if (cap->cc_kprocess == NULL) {
428 cap->cc_karg = karg;
429 cap->cc_kprocess = kprocess;
431 err = 0;
432 } else
433 err = EINVAL;
435 crit_exit();
436 return err;
440 * Register support for a non-key-related algorithm. This routine
441 * is called once for each such algorithm supported by a driver.
444 crypto_register(u_int32_t driverid, int alg, u_int16_t maxoplen,
445 u_int32_t flags,
446 int (*newses)(void*, u_int32_t*, struct cryptoini*),
447 int (*freeses)(void*, u_int64_t),
448 int (*process)(void*, struct cryptop *, int),
449 void *arg)
451 struct cryptocap *cap;
452 int err;
454 crit_enter();
456 cap = crypto_checkdriver(driverid);
457 /* NB: algorithms are in the range [1..max] */
458 if (cap != NULL &&
459 (CRYPTO_ALGORITHM_MIN <= alg && alg <= CRYPTO_ALGORITHM_MAX)) {
461 * XXX Do some performance testing to determine placing.
462 * XXX We probably need an auxiliary data structure that
463 * XXX describes relative performances.
466 cap->cc_alg[alg] = flags | CRYPTO_ALG_FLAG_SUPPORTED;
467 cap->cc_max_op_len[alg] = maxoplen;
468 if (bootverbose)
469 kprintf("crypto: driver %u registers alg %u flags %u maxoplen %u\n"
470 , driverid
471 , alg
472 , flags
473 , maxoplen
476 if (cap->cc_process == NULL) {
477 cap->cc_arg = arg;
478 cap->cc_newsession = newses;
479 cap->cc_process = process;
480 cap->cc_freesession = freeses;
481 cap->cc_sessions = 0; /* Unmark */
483 err = 0;
484 } else
485 err = EINVAL;
487 crit_exit();
488 return err;
492 * Unregister a crypto driver. If there are pending sessions using it,
493 * leave enough information around so that subsequent calls using those
494 * sessions will correctly detect the driver has been unregistered and
495 * reroute requests.
498 crypto_unregister(u_int32_t driverid, int alg)
500 int i, err;
501 u_int32_t ses;
502 struct cryptocap *cap;
504 crit_enter();
506 cap = crypto_checkdriver(driverid);
507 if (cap != NULL &&
508 (CRYPTO_ALGORITHM_MIN <= alg && alg <= CRYPTO_ALGORITHM_MAX) &&
509 cap->cc_alg[alg] != 0) {
510 cap->cc_alg[alg] = 0;
511 cap->cc_max_op_len[alg] = 0;
513 /* Was this the last algorithm ? */
514 for (i = 1; i <= CRYPTO_ALGORITHM_MAX; i++)
515 if (cap->cc_alg[i] != 0)
516 break;
518 if (i == CRYPTO_ALGORITHM_MAX + 1) {
519 ses = cap->cc_sessions;
520 bzero(cap, sizeof(struct cryptocap));
521 if (ses != 0) {
523 * If there are pending sessions, just mark as invalid.
525 cap->cc_flags |= CRYPTOCAP_F_CLEANUP;
526 cap->cc_sessions = ses;
529 err = 0;
530 } else
531 err = EINVAL;
533 crit_exit();
534 return err;
538 * Unregister all algorithms associated with a crypto driver.
539 * If there are pending sessions using it, leave enough information
540 * around so that subsequent calls using those sessions will
541 * correctly detect the driver has been unregistered and reroute
542 * requests.
545 crypto_unregister_all(u_int32_t driverid)
547 int i, err;
548 u_int32_t ses;
549 struct cryptocap *cap;
551 crit_enter();
552 cap = crypto_checkdriver(driverid);
553 if (cap != NULL) {
554 for (i = CRYPTO_ALGORITHM_MIN; i <= CRYPTO_ALGORITHM_MAX; i++) {
555 cap->cc_alg[i] = 0;
556 cap->cc_max_op_len[i] = 0;
558 ses = cap->cc_sessions;
559 bzero(cap, sizeof(struct cryptocap));
560 if (ses != 0) {
562 * If there are pending sessions, just mark as invalid.
564 cap->cc_flags |= CRYPTOCAP_F_CLEANUP;
565 cap->cc_sessions = ses;
567 err = 0;
568 } else
569 err = EINVAL;
571 crit_exit();
572 return err;
576 * Clear blockage on a driver. The what parameter indicates whether
577 * the driver is now ready for cryptop's and/or cryptokop's.
580 crypto_unblock(u_int32_t driverid, int what)
582 struct cryptocap *cap;
583 int needwakeup, err;
585 crit_enter();
586 cap = crypto_checkdriver(driverid);
587 if (cap != NULL) {
588 needwakeup = 0;
589 if (what & CRYPTO_SYMQ) {
590 needwakeup |= cap->cc_qblocked;
591 cap->cc_qblocked = 0;
593 if (what & CRYPTO_ASYMQ) {
594 needwakeup |= cap->cc_kqblocked;
595 cap->cc_kqblocked = 0;
597 if (needwakeup)
598 setsoftcrypto();
599 err = 0;
600 } else
601 err = EINVAL;
602 crit_exit();
604 return err;
608 * Dispatch a crypto request to a driver or queue
609 * it, to be processed by the kernel thread.
612 crypto_dispatch(struct cryptop *crp)
614 u_int32_t hid = SESID2HID(crp->crp_sid);
615 int result;
617 cryptostats.cs_ops++;
619 #ifdef CRYPTO_TIMING
620 if (crypto_timing)
621 nanouptime(&crp->crp_tstamp);
622 #endif
623 crit_enter();
624 if ((crp->crp_flags & CRYPTO_F_BATCH) == 0) {
625 struct cryptocap *cap;
627 * Caller marked the request to be processed
628 * immediately; dispatch it directly to the
629 * driver unless the driver is currently blocked.
631 cap = crypto_checkdriver(hid);
632 if (cap && !cap->cc_qblocked) {
633 result = crypto_invoke(crp, 0);
634 if (result == ERESTART) {
636 * The driver ran out of resources, mark the
637 * driver ``blocked'' for cryptop's and put
638 * the op on the queue.
640 crypto_drivers[hid].cc_qblocked = 1;
641 TAILQ_INSERT_HEAD(&crp_q, crp, crp_next);
642 cryptostats.cs_blocks++;
643 result = 0;
645 } else {
647 * The driver is blocked, just queue the op until
648 * it unblocks and the swi thread gets kicked.
650 TAILQ_INSERT_TAIL(&crp_q, crp, crp_next);
651 result = 0;
653 } else {
654 int wasempty = TAILQ_EMPTY(&crp_q);
656 * Caller marked the request as ``ok to delay'';
657 * queue it for the swi thread. This is desirable
658 * when the operation is low priority and/or suitable
659 * for batching.
661 TAILQ_INSERT_TAIL(&crp_q, crp, crp_next);
662 if (wasempty)
663 setsoftcrypto();
664 result = 0;
666 crit_exit();
668 return result;
672 * Add an asymetric crypto request to a queue,
673 * to be processed by the kernel thread.
676 crypto_kdispatch(struct cryptkop *krp)
678 struct cryptocap *cap;
679 int result;
681 cryptostats.cs_kops++;
683 crit_enter();
684 cap = crypto_checkdriver(krp->krp_hid);
685 if (cap && !cap->cc_kqblocked) {
686 result = crypto_kinvoke(krp, 0);
687 if (result == ERESTART) {
689 * The driver ran out of resources, mark the
690 * driver ``blocked'' for cryptop's and put
691 * the op on the queue.
693 crypto_drivers[krp->krp_hid].cc_kqblocked = 1;
694 TAILQ_INSERT_HEAD(&crp_kq, krp, krp_next);
695 cryptostats.cs_kblocks++;
697 } else {
699 * The driver is blocked, just queue the op until
700 * it unblocks and the swi thread gets kicked.
702 TAILQ_INSERT_TAIL(&crp_kq, krp, krp_next);
703 result = 0;
705 crit_exit();
707 return result;
711 * Dispatch an assymetric crypto request to the appropriate crypto devices.
713 static int
714 crypto_kinvoke(struct cryptkop *krp, int hint)
716 u_int32_t hid;
717 int error;
719 /* Sanity checks. */
720 if (krp == NULL)
721 return EINVAL;
722 if (krp->krp_callback == NULL) {
723 kfree(krp, M_XDATA); /* XXX allocated in cryptodev */
724 return EINVAL;
727 for (hid = 0; hid < crypto_drivers_num; hid++) {
728 if ((crypto_drivers[hid].cc_flags & CRYPTOCAP_F_SOFTWARE) &&
729 !crypto_devallowsoft)
730 continue;
731 if (crypto_drivers[hid].cc_kprocess == NULL)
732 continue;
733 if ((crypto_drivers[hid].cc_kalg[krp->krp_op] &
734 CRYPTO_ALG_FLAG_SUPPORTED) == 0)
735 continue;
736 break;
738 if (hid < crypto_drivers_num) {
739 krp->krp_hid = hid;
740 error = crypto_drivers[hid].cc_kprocess(
741 crypto_drivers[hid].cc_karg, krp, hint);
742 } else
743 error = ENODEV;
745 if (error) {
746 krp->krp_status = error;
747 crypto_kdone(krp);
749 return 0;
752 #ifdef CRYPTO_TIMING
753 static void
754 crypto_tstat(struct cryptotstat *ts, struct timespec *tv)
756 struct timespec now, t;
758 nanouptime(&now);
759 t.tv_sec = now.tv_sec - tv->tv_sec;
760 t.tv_nsec = now.tv_nsec - tv->tv_nsec;
761 if (t.tv_nsec < 0) {
762 t.tv_sec--;
763 t.tv_nsec += 1000000000;
765 timespecadd(&ts->acc, &t);
766 if (timespeccmp(&t, &ts->min, <))
767 ts->min = t;
768 if (timespeccmp(&t, &ts->max, >))
769 ts->max = t;
770 ts->count++;
772 *tv = now;
774 #endif
777 * Dispatch a crypto request to the appropriate crypto devices.
779 static int
780 crypto_invoke(struct cryptop *crp, int hint)
782 u_int32_t hid;
783 int (*process)(void*, struct cryptop *, int);
785 #ifdef CRYPTO_TIMING
786 if (crypto_timing)
787 crypto_tstat(&cryptostats.cs_invoke, &crp->crp_tstamp);
788 #endif
789 /* Sanity checks. */
790 if (crp == NULL)
791 return EINVAL;
792 if (crp->crp_callback == NULL) {
793 crypto_freereq(crp);
794 return EINVAL;
796 if (crp->crp_desc == NULL) {
797 crp->crp_etype = EINVAL;
798 crypto_done(crp);
799 return 0;
802 hid = SESID2HID(crp->crp_sid);
803 if (hid < crypto_drivers_num) {
804 if (crypto_drivers[hid].cc_flags & CRYPTOCAP_F_CLEANUP)
805 crypto_freesession(crp->crp_sid);
806 process = crypto_drivers[hid].cc_process;
807 } else {
808 process = NULL;
811 if (process == NULL) {
812 struct cryptodesc *crd;
813 u_int64_t nid;
816 * Driver has unregistered; migrate the session and return
817 * an error to the caller so they'll resubmit the op.
819 for (crd = crp->crp_desc; crd->crd_next; crd = crd->crd_next)
820 crd->CRD_INI.cri_next = &(crd->crd_next->CRD_INI);
822 if (crypto_newsession(&nid, &(crp->crp_desc->CRD_INI), 0) == 0)
823 crp->crp_sid = nid;
825 crp->crp_etype = EAGAIN;
826 crypto_done(crp);
827 return 0;
828 } else {
830 * Invoke the driver to process the request.
832 return (*process)(crypto_drivers[hid].cc_arg, crp, hint);
837 * Release a set of crypto descriptors.
839 void
840 crypto_freereq(struct cryptop *crp)
842 struct cryptodesc *crd;
844 if (crp) {
845 while ((crd = crp->crp_desc) != NULL) {
846 crp->crp_desc = crd->crd_next;
847 zfree(cryptodesc_zone, crd);
849 zfree(cryptop_zone, crp);
854 * Acquire a set of crypto descriptors. The descriptors are self contained
855 * so no special lock/interlock protection is necessary.
857 struct cryptop *
858 crypto_getreq(int num)
860 struct cryptodesc *crd;
861 struct cryptop *crp;
863 crp = zalloc(cryptop_zone);
864 if (crp != NULL) {
865 bzero(crp, sizeof (*crp));
866 while (num--) {
867 crd = zalloc(cryptodesc_zone);
868 if (crd == NULL) {
869 crypto_freereq(crp);
870 crp = NULL;
871 break;
873 bzero(crd, sizeof (*crd));
874 crd->crd_next = crp->crp_desc;
875 crp->crp_desc = crd;
878 return crp;
882 * Invoke the callback on behalf of the driver.
884 void
885 crypto_done(struct cryptop *crp)
887 KASSERT((crp->crp_flags & CRYPTO_F_DONE) == 0,
888 ("crypto_done: op already done, flags 0x%x", crp->crp_flags));
889 crp->crp_flags |= CRYPTO_F_DONE;
890 if (crp->crp_etype != 0)
891 cryptostats.cs_errs++;
892 #ifdef CRYPTO_TIMING
893 if (crypto_timing)
894 crypto_tstat(&cryptostats.cs_done, &crp->crp_tstamp);
895 #endif
896 if (crp->crp_flags & CRYPTO_F_CBIMM) {
898 * Do the callback directly. This is ok when the
899 * callback routine does very little (e.g. the
900 * /dev/crypto callback method just does a wakeup).
902 #ifdef CRYPTO_TIMING
903 if (crypto_timing) {
905 * NB: We must copy the timestamp before
906 * doing the callback as the cryptop is
907 * likely to be reclaimed.
909 struct timespec t = crp->crp_tstamp;
910 crypto_tstat(&cryptostats.cs_cb, &t);
911 crp->crp_callback(crp);
912 crypto_tstat(&cryptostats.cs_finis, &t);
913 } else
914 #endif
915 crp->crp_callback(crp);
916 } else {
917 int wasempty;
919 * Normal case; queue the callback for the thread.
921 * The return queue is manipulated by the swi thread
922 * and, potentially, by crypto device drivers calling
923 * back to mark operations completed. Thus we need
924 * to mask both while manipulating the return queue.
926 crit_enter();
927 wasempty = TAILQ_EMPTY(&crp_ret_q);
928 TAILQ_INSERT_TAIL(&crp_ret_q, crp, crp_next);
929 if (wasempty)
930 wakeup_one(&crp_ret_q);
931 crit_exit();
936 * Invoke the callback on behalf of the driver.
938 void
939 crypto_kdone(struct cryptkop *krp)
941 int wasempty;
943 if (krp->krp_status != 0)
944 cryptostats.cs_kerrs++;
946 * The return queue is manipulated by the swi thread
947 * and, potentially, by crypto device drivers calling
948 * back to mark operations completed. Thus we need
949 * to mask both while manipulating the return queue.
951 crit_enter();
952 wasempty = TAILQ_EMPTY(&crp_ret_kq);
953 TAILQ_INSERT_TAIL(&crp_ret_kq, krp, krp_next);
954 if (wasempty)
955 wakeup_one(&crp_ret_q);
956 crit_exit();
960 crypto_getfeat(int *featp)
962 int hid, kalg, feat = 0;
964 crit_enter();
965 if (!crypto_userasymcrypto)
966 goto out;
968 for (hid = 0; hid < crypto_drivers_num; hid++) {
969 if ((crypto_drivers[hid].cc_flags & CRYPTOCAP_F_SOFTWARE) &&
970 !crypto_devallowsoft) {
971 continue;
973 if (crypto_drivers[hid].cc_kprocess == NULL)
974 continue;
975 for (kalg = 0; kalg < CRK_ALGORITHM_MAX; kalg++)
976 if ((crypto_drivers[hid].cc_kalg[kalg] &
977 CRYPTO_ALG_FLAG_SUPPORTED) != 0)
978 feat |= 1 << kalg;
980 out:
981 crit_exit();
982 *featp = feat;
983 return (0);
987 * Software interrupt thread to dispatch crypto requests.
989 static void
990 cryptointr(void *dummy, void *frame)
992 struct cryptop *crp, *submit;
993 struct cryptkop *krp;
994 struct cryptocap *cap;
995 int result, hint;
997 cryptostats.cs_intrs++;
998 crit_enter();
999 do {
1001 * Find the first element in the queue that can be
1002 * processed and look-ahead to see if multiple ops
1003 * are ready for the same driver.
1005 submit = NULL;
1006 hint = 0;
1007 TAILQ_FOREACH(crp, &crp_q, crp_next) {
1008 u_int32_t hid = SESID2HID(crp->crp_sid);
1009 cap = crypto_checkdriver(hid);
1010 if (cap == NULL || cap->cc_process == NULL) {
1011 /* Op needs to be migrated, process it. */
1012 if (submit == NULL)
1013 submit = crp;
1014 break;
1016 if (!cap->cc_qblocked) {
1017 if (submit != NULL) {
1019 * We stop on finding another op,
1020 * regardless whether its for the same
1021 * driver or not. We could keep
1022 * searching the queue but it might be
1023 * better to just use a per-driver
1024 * queue instead.
1026 if (SESID2HID(submit->crp_sid) == hid)
1027 hint = CRYPTO_HINT_MORE;
1028 break;
1029 } else {
1030 submit = crp;
1031 if ((submit->crp_flags & CRYPTO_F_BATCH) == 0)
1032 break;
1033 /* keep scanning for more are q'd */
1037 if (submit != NULL) {
1038 TAILQ_REMOVE(&crp_q, submit, crp_next);
1039 result = crypto_invoke(submit, hint);
1040 if (result == ERESTART) {
1042 * The driver ran out of resources, mark the
1043 * driver ``blocked'' for cryptop's and put
1044 * the request back in the queue. It would
1045 * best to put the request back where we got
1046 * it but that's hard so for now we put it
1047 * at the front. This should be ok; putting
1048 * it at the end does not work.
1050 /* XXX validate sid again? */
1051 crypto_drivers[SESID2HID(submit->crp_sid)].cc_qblocked = 1;
1052 TAILQ_INSERT_HEAD(&crp_q, submit, crp_next);
1053 cryptostats.cs_blocks++;
1057 /* As above, but for key ops */
1058 TAILQ_FOREACH(krp, &crp_kq, krp_next) {
1059 cap = crypto_checkdriver(krp->krp_hid);
1060 if (cap == NULL || cap->cc_kprocess == NULL) {
1061 /* Op needs to be migrated, process it. */
1062 break;
1064 if (!cap->cc_kqblocked)
1065 break;
1067 if (krp != NULL) {
1068 TAILQ_REMOVE(&crp_kq, krp, krp_next);
1069 result = crypto_kinvoke(krp, 0);
1070 if (result == ERESTART) {
1072 * The driver ran out of resources, mark the
1073 * driver ``blocked'' for cryptkop's and put
1074 * the request back in the queue. It would
1075 * best to put the request back where we got
1076 * it but that's hard so for now we put it
1077 * at the front. This should be ok; putting
1078 * it at the end does not work.
1080 /* XXX validate sid again? */
1081 crypto_drivers[krp->krp_hid].cc_kqblocked = 1;
1082 TAILQ_INSERT_HEAD(&crp_kq, krp, krp_next);
1083 cryptostats.cs_kblocks++;
1086 } while (submit != NULL || krp != NULL);
1087 crit_exit();
1091 * Kernel thread to do callbacks.
1093 static void
1094 cryptoret(void)
1096 struct cryptop *crp;
1097 struct cryptkop *krp;
1099 crit_enter();
1100 for (;;) {
1101 crp = TAILQ_FIRST(&crp_ret_q);
1102 if (crp != NULL)
1103 TAILQ_REMOVE(&crp_ret_q, crp, crp_next);
1104 krp = TAILQ_FIRST(&crp_ret_kq);
1105 if (krp != NULL)
1106 TAILQ_REMOVE(&crp_ret_kq, krp, krp_next);
1108 if (crp != NULL || krp != NULL) {
1109 crit_exit(); /* lower ipl for callbacks */
1110 if (crp != NULL) {
1111 #ifdef CRYPTO_TIMING
1112 if (crypto_timing) {
1114 * NB: We must copy the timestamp before
1115 * doing the callback as the cryptop is
1116 * likely to be reclaimed.
1118 struct timespec t = crp->crp_tstamp;
1119 crypto_tstat(&cryptostats.cs_cb, &t);
1120 crp->crp_callback(crp);
1121 crypto_tstat(&cryptostats.cs_finis, &t);
1122 } else
1123 #endif
1124 crp->crp_callback(crp);
1126 if (krp != NULL)
1127 krp->krp_callback(krp);
1128 crit_enter();
1129 } else {
1130 (void) tsleep(&crp_ret_q, 0, "crypto_wait", 0);
1131 cryptostats.cs_rets++;
1134 /* CODE NOT REACHED (crit_exit() would go here otherwise) */