HAMMER 60I/Many: Mirroring
[dragonfly.git] / sys / kern / kern_fork.c
blob5fc63913494b927c12d7fe2657def00aec253888
1 /*
2 * Copyright (c) 1982, 1986, 1989, 1991, 1993
3 * The Regents of the University of California. All rights reserved.
4 * (c) UNIX System Laboratories, Inc.
5 * All or some portions of this file are derived from material licensed
6 * to the University of California by American Telephone and Telegraph
7 * Co. or Unix System Laboratories, Inc. and are reproduced herein with
8 * the permission of UNIX System Laboratories, Inc.
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 * notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in the
17 * documentation and/or other materials provided with the distribution.
18 * 3. All advertising materials mentioning features or use of this software
19 * must display the following acknowledgement:
20 * This product includes software developed by the University of
21 * California, Berkeley and its contributors.
22 * 4. Neither the name of the University nor the names of its contributors
23 * may be used to endorse or promote products derived from this software
24 * without specific prior written permission.
26 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
27 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
28 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
29 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
30 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
31 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
32 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
33 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
34 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
35 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
36 * SUCH DAMAGE.
38 * @(#)kern_fork.c 8.6 (Berkeley) 4/8/94
39 * $FreeBSD: src/sys/kern/kern_fork.c,v 1.72.2.14 2003/06/26 04:15:10 silby Exp $
40 * $DragonFly: src/sys/kern/kern_fork.c,v 1.77 2008/05/18 20:02:02 nth Exp $
43 #include "opt_ktrace.h"
45 #include <sys/param.h>
46 #include <sys/systm.h>
47 #include <sys/sysproto.h>
48 #include <sys/filedesc.h>
49 #include <sys/kernel.h>
50 #include <sys/sysctl.h>
51 #include <sys/malloc.h>
52 #include <sys/proc.h>
53 #include <sys/resourcevar.h>
54 #include <sys/vnode.h>
55 #include <sys/acct.h>
56 #include <sys/ktrace.h>
57 #include <sys/unistd.h>
58 #include <sys/jail.h>
59 #include <sys/caps.h>
61 #include <vm/vm.h>
62 #include <sys/lock.h>
63 #include <vm/pmap.h>
64 #include <vm/vm_map.h>
65 #include <vm/vm_extern.h>
67 #include <sys/vmmeter.h>
68 #include <sys/thread2.h>
69 #include <sys/signal2.h>
70 #include <sys/spinlock2.h>
72 static MALLOC_DEFINE(M_ATFORK, "atfork", "atfork callback");
75 * These are the stuctures used to create a callout list for things to do
76 * when forking a process
78 struct forklist {
79 forklist_fn function;
80 TAILQ_ENTRY(forklist) next;
83 TAILQ_HEAD(forklist_head, forklist);
84 static struct forklist_head fork_list = TAILQ_HEAD_INITIALIZER(fork_list);
86 static struct lwp *lwp_fork(struct lwp *, struct proc *, int flags);
88 int forksleep; /* Place for fork1() to sleep on. */
91 * Red-Black tree support for LWPs
94 static int
95 rb_lwp_compare(struct lwp *lp1, struct lwp *lp2)
97 if (lp1->lwp_tid < lp2->lwp_tid)
98 return(-1);
99 if (lp1->lwp_tid > lp2->lwp_tid)
100 return(1);
101 return(0);
104 RB_GENERATE2(lwp_rb_tree, lwp, u.lwp_rbnode, rb_lwp_compare, lwpid_t, lwp_tid);
107 /* ARGSUSED */
109 sys_fork(struct fork_args *uap)
111 struct lwp *lp = curthread->td_lwp;
112 struct proc *p2;
113 int error;
115 error = fork1(lp, RFFDG | RFPROC | RFPGLOCK, &p2);
116 if (error == 0) {
117 start_forked_proc(lp, p2);
118 uap->sysmsg_fds[0] = p2->p_pid;
119 uap->sysmsg_fds[1] = 0;
121 return error;
124 /* ARGSUSED */
126 sys_vfork(struct vfork_args *uap)
128 struct lwp *lp = curthread->td_lwp;
129 struct proc *p2;
130 int error;
132 error = fork1(lp, RFFDG | RFPROC | RFPPWAIT | RFMEM | RFPGLOCK, &p2);
133 if (error == 0) {
134 start_forked_proc(lp, p2);
135 uap->sysmsg_fds[0] = p2->p_pid;
136 uap->sysmsg_fds[1] = 0;
138 return error;
142 * Handle rforks. An rfork may (1) operate on the current process without
143 * creating a new, (2) create a new process that shared the current process's
144 * vmspace, signals, and/or descriptors, or (3) create a new process that does
145 * not share these things (normal fork).
147 * Note that we only call start_forked_proc() if a new process is actually
148 * created.
150 * rfork { int flags }
153 sys_rfork(struct rfork_args *uap)
155 struct lwp *lp = curthread->td_lwp;
156 struct proc *p2;
157 int error;
159 if ((uap->flags & RFKERNELONLY) != 0)
160 return (EINVAL);
162 error = fork1(lp, uap->flags | RFPGLOCK, &p2);
163 if (error == 0) {
164 if (p2)
165 start_forked_proc(lp, p2);
166 uap->sysmsg_fds[0] = p2 ? p2->p_pid : 0;
167 uap->sysmsg_fds[1] = 0;
169 return error;
173 sys_lwp_create(struct lwp_create_args *uap)
175 struct proc *p = curproc;
176 struct lwp *lp;
177 struct lwp_params params;
178 int error;
180 error = copyin(uap->params, &params, sizeof(params));
181 if (error)
182 goto fail2;
184 plimit_lwp_fork(p); /* force exclusive access */
185 lp = lwp_fork(curthread->td_lwp, p, RFPROC);
186 error = cpu_prepare_lwp(lp, &params);
187 if (params.tid1 != NULL &&
188 (error = copyout(&lp->lwp_tid, params.tid1, sizeof(lp->lwp_tid))))
189 goto fail;
190 if (params.tid2 != NULL &&
191 (error = copyout(&lp->lwp_tid, params.tid2, sizeof(lp->lwp_tid))))
192 goto fail;
195 * Now schedule the new lwp.
197 p->p_usched->resetpriority(lp);
198 crit_enter();
199 lp->lwp_stat = LSRUN;
200 p->p_usched->setrunqueue(lp);
201 crit_exit();
203 return (0);
205 fail:
206 lwp_rb_tree_RB_REMOVE(&p->p_lwp_tree, lp);
207 --p->p_nthreads;
208 /* lwp_dispose expects an exited lwp, and a held proc */
209 lp->lwp_flag |= LWP_WEXIT;
210 lp->lwp_thread->td_flags |= TDF_EXITING;
211 PHOLD(p);
212 lwp_dispose(lp);
213 fail2:
214 return (error);
217 int nprocs = 1; /* process 0 */
220 fork1(struct lwp *lp1, int flags, struct proc **procp)
222 struct proc *p1 = lp1->lwp_proc;
223 struct proc *p2, *pptr;
224 struct pgrp *pgrp;
225 uid_t uid;
226 int ok, error;
227 static int curfail = 0;
228 static struct timeval lastfail;
229 struct forklist *ep;
230 struct filedesc_to_leader *fdtol;
232 if ((flags & (RFFDG|RFCFDG)) == (RFFDG|RFCFDG))
233 return (EINVAL);
236 * Here we don't create a new process, but we divorce
237 * certain parts of a process from itself.
239 if ((flags & RFPROC) == 0) {
241 * This kind of stunt does not work anymore if
242 * there are native threads (lwps) running
244 if (p1->p_nthreads != 1)
245 return (EINVAL);
247 vm_fork(p1, 0, flags);
250 * Close all file descriptors.
252 if (flags & RFCFDG) {
253 struct filedesc *fdtmp;
254 fdtmp = fdinit(p1);
255 fdfree(p1);
256 p1->p_fd = fdtmp;
260 * Unshare file descriptors (from parent.)
262 if (flags & RFFDG) {
263 if (p1->p_fd->fd_refcnt > 1) {
264 struct filedesc *newfd;
265 newfd = fdcopy(p1);
266 fdfree(p1);
267 p1->p_fd = newfd;
270 *procp = NULL;
271 return (0);
275 * Interlock against process group signal delivery. If signals
276 * are pending after the interlock is obtained we have to restart
277 * the system call to process the signals. If we don't the child
278 * can miss a pgsignal (such as ^C) sent during the fork.
280 * We can't use CURSIG() here because it will process any STOPs
281 * and cause the process group lock to be held indefinitely. If
282 * a STOP occurs, the fork will be restarted after the CONT.
284 error = 0;
285 pgrp = NULL;
286 if ((flags & RFPGLOCK) && (pgrp = p1->p_pgrp) != NULL) {
287 lockmgr(&pgrp->pg_lock, LK_SHARED);
288 if (CURSIGNB(lp1)) {
289 error = ERESTART;
290 goto done;
295 * Although process entries are dynamically created, we still keep
296 * a global limit on the maximum number we will create. Don't allow
297 * a nonprivileged user to use the last ten processes; don't let root
298 * exceed the limit. The variable nprocs is the current number of
299 * processes, maxproc is the limit.
301 uid = p1->p_ucred->cr_ruid;
302 if ((nprocs >= maxproc - 10 && uid != 0) || nprocs >= maxproc) {
303 if (ppsratecheck(&lastfail, &curfail, 1))
304 kprintf("maxproc limit exceeded by uid %d, please "
305 "see tuning(7) and login.conf(5).\n", uid);
306 tsleep(&forksleep, 0, "fork", hz / 2);
307 error = EAGAIN;
308 goto done;
311 * Increment the nprocs resource before blocking can occur. There
312 * are hard-limits as to the number of processes that can run.
314 nprocs++;
317 * Increment the count of procs running with this uid. Don't allow
318 * a nonprivileged user to exceed their current limit.
320 ok = chgproccnt(p1->p_ucred->cr_ruidinfo, 1,
321 (uid != 0) ? p1->p_rlimit[RLIMIT_NPROC].rlim_cur : 0);
322 if (!ok) {
324 * Back out the process count
326 nprocs--;
327 if (ppsratecheck(&lastfail, &curfail, 1))
328 kprintf("maxproc limit exceeded by uid %d, please "
329 "see tuning(7) and login.conf(5).\n", uid);
330 tsleep(&forksleep, 0, "fork", hz / 2);
331 error = EAGAIN;
332 goto done;
335 /* Allocate new proc. */
336 p2 = kmalloc(sizeof(struct proc), M_PROC, M_WAITOK|M_ZERO);
339 * Setup linkage for kernel based threading XXX lwp
341 if (flags & RFTHREAD) {
342 p2->p_peers = p1->p_peers;
343 p1->p_peers = p2;
344 p2->p_leader = p1->p_leader;
345 } else {
346 p2->p_leader = p2;
349 RB_INIT(&p2->p_lwp_tree);
350 spin_init(&p2->p_spin);
351 p2->p_lasttid = -1; /* first tid will be 0 */
354 * Setting the state to SIDL protects the partially initialized
355 * process once it starts getting hooked into the rest of the system.
357 p2->p_stat = SIDL;
358 proc_add_allproc(p2);
361 * Make a proc table entry for the new process.
362 * The whole structure was zeroed above, so copy the section that is
363 * copied directly from the parent.
365 bcopy(&p1->p_startcopy, &p2->p_startcopy,
366 (unsigned) ((caddr_t)&p2->p_endcopy - (caddr_t)&p2->p_startcopy));
369 * Duplicate sub-structures as needed.
370 * Increase reference counts on shared objects.
372 if (p1->p_flag & P_PROFIL)
373 startprofclock(p2);
374 p2->p_ucred = crhold(p1->p_ucred);
376 if (jailed(p2->p_ucred))
377 p2->p_flag |= P_JAILED;
379 if (p2->p_args)
380 p2->p_args->ar_ref++;
382 p2->p_usched = p1->p_usched;
384 if (flags & RFSIGSHARE) {
385 p2->p_sigacts = p1->p_sigacts;
386 p2->p_sigacts->ps_refcnt++;
387 } else {
388 p2->p_sigacts = (struct sigacts *)kmalloc(sizeof(*p2->p_sigacts),
389 M_SUBPROC, M_WAITOK);
390 bcopy(p1->p_sigacts, p2->p_sigacts, sizeof(*p2->p_sigacts));
391 p2->p_sigacts->ps_refcnt = 1;
393 if (flags & RFLINUXTHPN)
394 p2->p_sigparent = SIGUSR1;
395 else
396 p2->p_sigparent = SIGCHLD;
398 /* bump references to the text vnode (for procfs) */
399 p2->p_textvp = p1->p_textvp;
400 if (p2->p_textvp)
401 vref(p2->p_textvp);
404 * Handle file descriptors
406 if (flags & RFCFDG) {
407 p2->p_fd = fdinit(p1);
408 fdtol = NULL;
409 } else if (flags & RFFDG) {
410 p2->p_fd = fdcopy(p1);
411 fdtol = NULL;
412 } else {
413 p2->p_fd = fdshare(p1);
414 if (p1->p_fdtol == NULL)
415 p1->p_fdtol =
416 filedesc_to_leader_alloc(NULL,
417 p1->p_leader);
418 if ((flags & RFTHREAD) != 0) {
420 * Shared file descriptor table and
421 * shared process leaders.
423 fdtol = p1->p_fdtol;
424 fdtol->fdl_refcount++;
425 } else {
427 * Shared file descriptor table, and
428 * different process leaders
430 fdtol = filedesc_to_leader_alloc(p1->p_fdtol, p2);
433 p2->p_fdtol = fdtol;
434 p2->p_limit = plimit_fork(p1);
437 * Preserve some more flags in subprocess. P_PROFIL has already
438 * been preserved.
440 p2->p_flag |= p1->p_flag & P_SUGID;
441 if (p1->p_session->s_ttyvp != NULL && p1->p_flag & P_CONTROLT)
442 p2->p_flag |= P_CONTROLT;
443 if (flags & RFPPWAIT)
444 p2->p_flag |= P_PPWAIT;
447 * Inherit the virtual kernel structure (allows a virtual kernel
448 * to fork to simulate multiple cpus).
450 if (p1->p_vkernel)
451 vkernel_inherit(p1, p2);
454 * Once we are on a pglist we may receive signals. XXX we might
455 * race a ^C being sent to the process group by not receiving it
456 * at all prior to this line.
458 LIST_INSERT_AFTER(p1, p2, p_pglist);
461 * Attach the new process to its parent.
463 * If RFNOWAIT is set, the newly created process becomes a child
464 * of init. This effectively disassociates the child from the
465 * parent.
467 if (flags & RFNOWAIT)
468 pptr = initproc;
469 else
470 pptr = p1;
471 p2->p_pptr = pptr;
472 LIST_INSERT_HEAD(&pptr->p_children, p2, p_sibling);
473 LIST_INIT(&p2->p_children);
474 varsymset_init(&p2->p_varsymset, &p1->p_varsymset);
475 callout_init(&p2->p_ithandle);
477 #ifdef KTRACE
479 * Copy traceflag and tracefile if enabled. If not inherited,
480 * these were zeroed above but we still could have a trace race
481 * so make sure p2's p_tracenode is NULL.
483 if ((p1->p_traceflag & KTRFAC_INHERIT) && p2->p_tracenode == NULL) {
484 p2->p_traceflag = p1->p_traceflag;
485 p2->p_tracenode = ktrinherit(p1->p_tracenode);
487 #endif
490 * This begins the section where we must prevent the parent
491 * from being swapped.
493 * Gets PRELE'd in the caller in start_forked_proc().
495 PHOLD(p1);
497 vm_fork(p1, p2, flags);
500 * Create the first lwp associated with the new proc.
501 * It will return via a different execution path later, directly
502 * into userland, after it was put on the runq by
503 * start_forked_proc().
505 lwp_fork(lp1, p2, flags);
507 if (flags == (RFFDG | RFPROC | RFPGLOCK)) {
508 mycpu->gd_cnt.v_forks++;
509 mycpu->gd_cnt.v_forkpages += p2->p_vmspace->vm_dsize + p2->p_vmspace->vm_ssize;
510 } else if (flags == (RFFDG | RFPROC | RFPPWAIT | RFMEM | RFPGLOCK)) {
511 mycpu->gd_cnt.v_vforks++;
512 mycpu->gd_cnt.v_vforkpages += p2->p_vmspace->vm_dsize + p2->p_vmspace->vm_ssize;
513 } else if (p1 == &proc0) {
514 mycpu->gd_cnt.v_kthreads++;
515 mycpu->gd_cnt.v_kthreadpages += p2->p_vmspace->vm_dsize + p2->p_vmspace->vm_ssize;
516 } else {
517 mycpu->gd_cnt.v_rforks++;
518 mycpu->gd_cnt.v_rforkpages += p2->p_vmspace->vm_dsize + p2->p_vmspace->vm_ssize;
522 * Both processes are set up, now check if any loadable modules want
523 * to adjust anything.
524 * What if they have an error? XXX
526 TAILQ_FOREACH(ep, &fork_list, next) {
527 (*ep->function)(p1, p2, flags);
531 * Set the start time. Note that the process is not runnable. The
532 * caller is responsible for making it runnable.
534 microtime(&p2->p_start);
535 p2->p_acflag = AFORK;
538 * tell any interested parties about the new process
540 KNOTE(&p1->p_klist, NOTE_FORK | p2->p_pid);
543 * Return child proc pointer to parent.
545 *procp = p2;
546 done:
547 if (pgrp)
548 lockmgr(&pgrp->pg_lock, LK_RELEASE);
549 return (error);
552 static struct lwp *
553 lwp_fork(struct lwp *origlp, struct proc *destproc, int flags)
555 struct lwp *lp;
556 struct thread *td;
558 lp = kmalloc(sizeof(struct lwp), M_LWP, M_WAITOK|M_ZERO);
560 lp->lwp_proc = destproc;
561 lp->lwp_vmspace = destproc->p_vmspace;
562 lp->lwp_stat = LSRUN;
563 bcopy(&origlp->lwp_startcopy, &lp->lwp_startcopy,
564 (unsigned) ((caddr_t)&lp->lwp_endcopy -
565 (caddr_t)&lp->lwp_startcopy));
566 lp->lwp_flag |= origlp->lwp_flag & LWP_ALTSTACK;
568 * Set cpbase to the last timeout that occured (not the upcoming
569 * timeout).
571 * A critical section is required since a timer IPI can update
572 * scheduler specific data.
574 crit_enter();
575 lp->lwp_cpbase = mycpu->gd_schedclock.time -
576 mycpu->gd_schedclock.periodic;
577 destproc->p_usched->heuristic_forking(origlp, lp);
578 crit_exit();
579 lp->lwp_cpumask &= usched_mastermask;
582 * Assign a TID to the lp. Loop until the insert succeeds (returns
583 * NULL).
585 lp->lwp_tid = destproc->p_lasttid;
586 do {
587 if (++lp->lwp_tid < 0)
588 lp->lwp_tid = 1;
589 } while (lwp_rb_tree_RB_INSERT(&destproc->p_lwp_tree, lp) != NULL);
590 destproc->p_lasttid = lp->lwp_tid;
591 destproc->p_nthreads++;
593 td = lwkt_alloc_thread(NULL, LWKT_THREAD_STACK, -1, 0);
594 lp->lwp_thread = td;
595 td->td_proc = destproc;
596 td->td_lwp = lp;
597 td->td_switch = cpu_heavy_switch;
598 #ifdef SMP
599 KKASSERT(td->td_mpcount == 1);
600 #endif
601 lwkt_setpri(td, TDPRI_KERN_USER);
602 lwkt_set_comm(td, "%s", destproc->p_comm);
605 * cpu_fork will copy and update the pcb, set up the kernel stack,
606 * and make the child ready to run.
608 cpu_fork(origlp, lp, flags);
609 caps_fork(origlp->lwp_thread, lp->lwp_thread);
611 return (lp);
615 * The next two functionms are general routines to handle adding/deleting
616 * items on the fork callout list.
618 * at_fork():
619 * Take the arguments given and put them onto the fork callout list,
620 * However first make sure that it's not already there.
621 * Returns 0 on success or a standard error number.
624 at_fork(forklist_fn function)
626 struct forklist *ep;
628 #ifdef INVARIANTS
629 /* let the programmer know if he's been stupid */
630 if (rm_at_fork(function)) {
631 kprintf("WARNING: fork callout entry (%p) already present\n",
632 function);
634 #endif
635 ep = kmalloc(sizeof(*ep), M_ATFORK, M_WAITOK|M_ZERO);
636 ep->function = function;
637 TAILQ_INSERT_TAIL(&fork_list, ep, next);
638 return (0);
642 * Scan the exit callout list for the given item and remove it..
643 * Returns the number of items removed (0 or 1)
646 rm_at_fork(forklist_fn function)
648 struct forklist *ep;
650 TAILQ_FOREACH(ep, &fork_list, next) {
651 if (ep->function == function) {
652 TAILQ_REMOVE(&fork_list, ep, next);
653 kfree(ep, M_ATFORK);
654 return(1);
657 return (0);
661 * Add a forked process to the run queue after any remaining setup, such
662 * as setting the fork handler, has been completed.
664 void
665 start_forked_proc(struct lwp *lp1, struct proc *p2)
667 struct lwp *lp2 = ONLY_LWP_IN_PROC(p2);
670 * Move from SIDL to RUN queue, and activate the process's thread.
671 * Activation of the thread effectively makes the process "a"
672 * current process, so we do not setrunqueue().
674 * YYY setrunqueue works here but we should clean up the trampoline
675 * code so we just schedule the LWKT thread and let the trampoline
676 * deal with the userland scheduler on return to userland.
678 KASSERT(p2->p_stat == SIDL,
679 ("cannot start forked process, bad status: %p", p2));
680 p2->p_usched->resetpriority(lp2);
681 crit_enter();
682 p2->p_stat = SACTIVE;
683 lp2->lwp_stat = LSRUN;
684 p2->p_usched->setrunqueue(lp2);
685 crit_exit();
688 * Now can be swapped.
690 PRELE(lp1->lwp_proc);
693 * Preserve synchronization semantics of vfork. If waiting for
694 * child to exec or exit, set P_PPWAIT on child, and sleep on our
695 * proc (in case of exit).
697 while (p2->p_flag & P_PPWAIT)
698 tsleep(lp1->lwp_proc, 0, "ppwait", 0);