HAMMER 60I/Many: Mirroring
[dragonfly.git] / sys / dev / agp / agp.c
blob04308c1d2bbf156faceeed842cec60c50a951444
1 /*-
2 * Copyright (c) 2000 Doug Rabson
3 * All rights reserved.
5 * Redistribution and use in source and binary forms, with or without
6 * modification, are permitted provided that the following conditions
7 * are met:
8 * 1. Redistributions of source code must retain the above copyright
9 * notice, this list of conditions and the following disclaimer.
10 * 2. Redistributions in binary form must reproduce the above copyright
11 * notice, this list of conditions and the following disclaimer in the
12 * documentation and/or other materials provided with the distribution.
14 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
15 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
16 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
17 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
18 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
19 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
20 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
21 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
22 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
23 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
24 * SUCH DAMAGE.
26 * $FreeBSD: src/sys/dev/agp/agp.c,v 1.58 2007/11/12 21:51:36 jhb Exp $
27 * $DragonFly: src/sys/dev/agp/agp.c,v 1.30 2008/01/07 01:34:58 corecode Exp $
30 #include "opt_bus.h"
31 #include "opt_pci.h"
33 #include <sys/param.h>
34 #include <sys/systm.h>
35 #include <sys/device.h>
36 #include <sys/conf.h>
37 #include <sys/malloc.h>
38 #include <sys/kernel.h>
39 #include <sys/bus.h>
40 #include <sys/ioccom.h>
41 #include <sys/agpio.h>
42 #include <sys/lock.h>
43 #include <sys/proc.h>
44 #include <sys/rman.h>
46 #include <bus/pci/pcivar.h>
47 #include <bus/pci/pcireg.h>
48 #include "agppriv.h"
49 #include "agpvar.h"
50 #include "agpreg.h"
52 #include <vm/vm.h>
53 #include <vm/vm_object.h>
54 #include <vm/vm_page.h>
55 #include <vm/vm_pageout.h>
56 #include <vm/pmap.h>
58 #include <machine/md_var.h>
60 MODULE_VERSION(agp, 1);
62 MALLOC_DEFINE(M_AGP, "agp", "AGP data structures");
64 #define CDEV_MAJOR 148
65 /* agp_drv.c */
66 static d_open_t agp_open;
67 static d_close_t agp_close;
68 static d_ioctl_t agp_ioctl;
69 static d_mmap_t agp_mmap;
71 static struct dev_ops agp_ops = {
72 { "agp", CDEV_MAJOR, D_TTY },
73 .d_open = agp_open,
74 .d_close = agp_close,
75 .d_ioctl = agp_ioctl,
76 .d_mmap = agp_mmap,
79 static devclass_t agp_devclass;
80 #define KDEV2DEV(kdev) devclass_get_device(agp_devclass, minor(kdev))
82 /* Helper functions for implementing chipset mini drivers. */
84 void
85 agp_flush_cache(void)
87 #if defined(__i386__) || defined(__amd64__)
88 wbinvd();
89 #endif
92 u_int8_t
93 agp_find_caps(device_t dev)
95 u_int32_t status;
96 u_int8_t ptr, next;
99 * Check the CAP_LIST bit of the PCI status register first.
101 status = pci_read_config(dev, PCIR_STATUS, 2);
102 if (!(status & 0x10))
103 return 0;
106 * Traverse the capabilities list.
108 for (ptr = pci_read_config(dev, AGP_CAPPTR, 1);
109 ptr != 0;
110 ptr = next) {
111 u_int32_t capid = pci_read_config(dev, ptr, 4);
112 next = AGP_CAPID_GET_NEXT_PTR(capid);
115 * If this capability entry ID is 2, then we are done.
117 if (AGP_CAPID_GET_CAP_ID(capid) == 2)
118 return ptr;
121 return 0;
125 * Find an AGP display device (if any).
127 static device_t
128 agp_find_display(void)
130 devclass_t pci = devclass_find("pci");
131 device_t bus, dev = 0;
132 device_t *kids;
133 int busnum, numkids, i;
135 for (busnum = 0; busnum < devclass_get_maxunit(pci); busnum++) {
136 bus = devclass_get_device(pci, busnum);
137 if (!bus)
138 continue;
139 device_get_children(bus, &kids, &numkids);
140 for (i = 0; i < numkids; i++) {
141 dev = kids[i];
142 if (pci_get_class(dev) == PCIC_DISPLAY
143 && pci_get_subclass(dev) == PCIS_DISPLAY_VGA)
144 if (agp_find_caps(dev)) {
145 kfree(kids, M_TEMP);
146 return dev;
150 kfree(kids, M_TEMP);
153 return 0;
156 struct agp_gatt *
157 agp_alloc_gatt(device_t dev)
159 u_int32_t apsize = AGP_GET_APERTURE(dev);
160 u_int32_t entries = apsize >> AGP_PAGE_SHIFT;
161 struct agp_gatt *gatt;
163 if (bootverbose)
164 device_printf(dev,
165 "allocating GATT for aperture of size %dM\n",
166 apsize / (1024*1024));
168 if (entries == 0) {
169 device_printf(dev, "bad aperture size\n");
170 return NULL;
173 gatt = kmalloc(sizeof(struct agp_gatt), M_AGP, M_INTWAIT);
174 gatt->ag_entries = entries;
175 gatt->ag_virtual = contigmalloc(entries * sizeof(u_int32_t), M_AGP,
176 M_WAITOK|M_ZERO, 0, ~0, PAGE_SIZE, 0);
177 if (!gatt->ag_virtual) {
178 if (bootverbose)
179 device_printf(dev, "contiguous allocation failed\n");
180 kfree(gatt, M_AGP);
181 return 0;
183 gatt->ag_physical = vtophys((vm_offset_t) gatt->ag_virtual);
184 agp_flush_cache();
186 return gatt;
189 void
190 agp_free_gatt(struct agp_gatt *gatt)
192 contigfree(gatt->ag_virtual,
193 gatt->ag_entries * sizeof(u_int32_t), M_AGP);
194 kfree(gatt, M_AGP);
197 static u_int agp_max[][2] = {
198 {0, 0},
199 {32, 4},
200 {64, 28},
201 {128, 96},
202 {256, 204},
203 {512, 440},
204 {1024, 942},
205 {2048, 1920},
206 {4096, 3932}
208 #define agp_max_size (sizeof(agp_max) / sizeof(agp_max[0]))
211 * Sets the PCI resource which represents the AGP aperture.
213 * If not called, the default AGP aperture resource of AGP_APBASE will
214 * be used. Must be called before agp_generic_attach().
216 void
217 agp_set_aperture_resource(device_t dev, int rid)
219 struct agp_softc *sc = device_get_softc(dev);
221 sc->as_aperture_rid = rid;
225 agp_generic_attach(device_t dev)
227 struct agp_softc *sc = device_get_softc(dev);
228 int i;
229 u_int memsize;
232 * Find and map the aperture, RF_SHAREABLE for DRM but not RF_ACTIVE
233 * because the kernel doesn't need to map it.
235 if (sc->as_aperture_rid == 0)
236 sc->as_aperture_rid = AGP_APBASE;
238 sc->as_aperture = bus_alloc_resource_any(dev, SYS_RES_MEMORY,
239 &sc->as_aperture_rid, RF_SHAREABLE);
240 if (!sc->as_aperture)
241 return ENOMEM;
244 * Work out an upper bound for agp memory allocation. This
245 * uses a heurisitc table from the Linux driver.
247 memsize = ptoa(Maxmem) >> 20;
248 for (i = 0; i < agp_max_size; i++) {
249 if (memsize <= agp_max[i][0])
250 break;
252 if (i == agp_max_size) i = agp_max_size - 1;
253 sc->as_maxmem = agp_max[i][1] << 20U;
256 * The lock is used to prevent re-entry to
257 * agp_generic_bind_memory() since that function can sleep.
259 lockinit(&sc->as_lock, "agplk", 0, 0);
262 * Initialise stuff for the userland device.
264 agp_devclass = devclass_find("agp");
265 TAILQ_INIT(&sc->as_memory);
266 sc->as_nextid = 1;
268 dev_ops_add(&agp_ops, -1, device_get_unit(dev));
269 make_dev(&agp_ops, device_get_unit(dev), UID_ROOT, GID_WHEEL,
270 0600, "agpgart");
272 return 0;
275 void
276 agp_free_cdev(device_t dev)
278 dev_ops_remove(&agp_ops, -1, device_get_unit(dev));
281 void
282 agp_free_res(device_t dev)
284 struct agp_softc *sc = device_get_softc(dev);
286 bus_release_resource(dev, SYS_RES_MEMORY, sc->as_aperture_rid,
287 sc->as_aperture);
288 agp_flush_cache();
292 agp_generic_detach(device_t dev)
294 agp_free_cdev(dev);
295 agp_free_res(dev);
296 return 0;
300 * Default AGP aperture size detection which simply returns the size of
301 * the aperture's PCI resource.
304 agp_generic_get_aperture(device_t dev)
306 struct agp_softc *sc = device_get_softc(dev);
308 return rman_get_size(sc->as_aperture);
312 * Default AGP aperture size setting function, which simply doesn't allow
313 * changes to resource size.
316 agp_generic_set_aperture(device_t dev, u_int32_t aperture)
318 u_int32_t current_aperture;
320 current_aperture = AGP_GET_APERTURE(dev);
321 if (current_aperture != aperture)
322 return EINVAL;
323 else
324 return 0;
328 * This does the enable logic for v3, with the same topology
329 * restrictions as in place for v2 -- one bus, one device on the bus.
331 static int
332 agp_v3_enable(device_t dev, device_t mdev, u_int32_t mode)
334 u_int32_t tstatus, mstatus;
335 u_int32_t command;
336 int rq, sba, fw, rate, arqsz, cal;
338 tstatus = pci_read_config(dev, agp_find_caps(dev) + AGP_STATUS, 4);
339 mstatus = pci_read_config(mdev, agp_find_caps(mdev) + AGP_STATUS, 4);
341 /* Set RQ to the min of mode, tstatus and mstatus */
342 rq = AGP_MODE_GET_RQ(mode);
343 if (AGP_MODE_GET_RQ(tstatus) < rq)
344 rq = AGP_MODE_GET_RQ(tstatus);
345 if (AGP_MODE_GET_RQ(mstatus) < rq)
346 rq = AGP_MODE_GET_RQ(mstatus);
349 * ARQSZ - Set the value to the maximum one.
350 * Don't allow the mode register to override values.
352 arqsz = AGP_MODE_GET_ARQSZ(mode);
353 if (AGP_MODE_GET_ARQSZ(tstatus) > rq)
354 rq = AGP_MODE_GET_ARQSZ(tstatus);
355 if (AGP_MODE_GET_ARQSZ(mstatus) > rq)
356 rq = AGP_MODE_GET_ARQSZ(mstatus);
358 /* Calibration cycle - don't allow override by mode register */
359 cal = AGP_MODE_GET_CAL(tstatus);
360 if (AGP_MODE_GET_CAL(mstatus) < cal)
361 cal = AGP_MODE_GET_CAL(mstatus);
363 /* SBA must be supported for AGP v3. */
364 sba = 1;
366 /* Set FW if all three support it. */
367 fw = (AGP_MODE_GET_FW(tstatus)
368 & AGP_MODE_GET_FW(mstatus)
369 & AGP_MODE_GET_FW(mode));
371 /* Figure out the max rate */
372 rate = (AGP_MODE_GET_RATE(tstatus)
373 & AGP_MODE_GET_RATE(mstatus)
374 & AGP_MODE_GET_RATE(mode));
375 if (rate & AGP_MODE_V3_RATE_8x)
376 rate = AGP_MODE_V3_RATE_8x;
377 else
378 rate = AGP_MODE_V3_RATE_4x;
379 if (bootverbose)
380 device_printf(dev, "Setting AGP v3 mode %d\n", rate * 4);
382 pci_write_config(dev, agp_find_caps(dev) + AGP_COMMAND, 0, 4);
384 /* Construct the new mode word and tell the hardware */
385 command = 0;
386 command = AGP_MODE_SET_RQ(0, rq);
387 command = AGP_MODE_SET_ARQSZ(command, arqsz);
388 command = AGP_MODE_SET_CAL(command, cal);
389 command = AGP_MODE_SET_SBA(command, sba);
390 command = AGP_MODE_SET_FW(command, fw);
391 command = AGP_MODE_SET_RATE(command, rate);
392 command = AGP_MODE_SET_MODE_3(command, 1);
393 command = AGP_MODE_SET_AGP(command, 1);
394 pci_write_config(dev, agp_find_caps(dev) + AGP_COMMAND, command, 4);
395 pci_write_config(mdev, agp_find_caps(mdev) + AGP_COMMAND, command, 4);
397 return 0;
400 static int
401 agp_v2_enable(device_t dev, device_t mdev, u_int32_t mode)
403 u_int32_t tstatus, mstatus;
404 u_int32_t command;
405 int rq, sba, fw, rate;
407 tstatus = pci_read_config(dev, agp_find_caps(dev) + AGP_STATUS, 4);
408 mstatus = pci_read_config(mdev, agp_find_caps(mdev) + AGP_STATUS, 4);
410 /* Set RQ to the min of mode, tstatus and mstatus */
411 rq = AGP_MODE_GET_RQ(mode);
412 if (AGP_MODE_GET_RQ(tstatus) < rq)
413 rq = AGP_MODE_GET_RQ(tstatus);
414 if (AGP_MODE_GET_RQ(mstatus) < rq)
415 rq = AGP_MODE_GET_RQ(mstatus);
417 /* Set SBA if all three can deal with SBA */
418 sba = (AGP_MODE_GET_SBA(tstatus)
419 & AGP_MODE_GET_SBA(mstatus)
420 & AGP_MODE_GET_SBA(mode));
422 /* Similar for FW */
423 fw = (AGP_MODE_GET_FW(tstatus)
424 & AGP_MODE_GET_FW(mstatus)
425 & AGP_MODE_GET_FW(mode));
427 /* Figure out the max rate */
428 rate = (AGP_MODE_GET_RATE(tstatus)
429 & AGP_MODE_GET_RATE(mstatus)
430 & AGP_MODE_GET_RATE(mode));
431 if (rate & AGP_MODE_V2_RATE_4x)
432 rate = AGP_MODE_V2_RATE_4x;
433 else if (rate & AGP_MODE_V2_RATE_2x)
434 rate = AGP_MODE_V2_RATE_2x;
435 else
436 rate = AGP_MODE_V2_RATE_1x;
437 if (bootverbose)
438 device_printf(dev, "Setting AGP v2 mode %d\n", rate);
440 /* Construct the new mode word and tell the hardware */
441 command = 0;
442 command = AGP_MODE_SET_RQ(0, rq);
443 command = AGP_MODE_SET_SBA(command, sba);
444 command = AGP_MODE_SET_FW(command, fw);
445 command = AGP_MODE_SET_RATE(command, rate);
446 command = AGP_MODE_SET_AGP(command, 1);
447 pci_write_config(dev, agp_find_caps(dev) + AGP_COMMAND, command, 4);
448 pci_write_config(mdev, agp_find_caps(mdev) + AGP_COMMAND, command, 4);
450 return 0;
454 agp_generic_enable(device_t dev, u_int32_t mode)
456 device_t mdev = agp_find_display();
457 u_int32_t tstatus, mstatus;
459 if (!mdev) {
460 AGP_DPF("can't find display\n");
461 return ENXIO;
464 tstatus = pci_read_config(dev, agp_find_caps(dev) + AGP_STATUS, 4);
465 mstatus = pci_read_config(mdev, agp_find_caps(mdev) + AGP_STATUS, 4);
468 * Check display and bridge for AGP v3 support. AGP v3 allows
469 * more variety in topology than v2, e.g. multiple AGP devices
470 * attached to one bridge, or multiple AGP bridges in one
471 * system. This doesn't attempt to address those situations,
472 * but should work fine for a classic single AGP slot system
473 * with AGP v3.
475 if (AGP_MODE_GET_MODE_3(mode) &&
476 AGP_MODE_GET_MODE_3(tstatus) &&
477 AGP_MODE_GET_MODE_3(mstatus))
478 return (agp_v3_enable(dev, mdev, mode));
479 else
480 return (agp_v2_enable(dev, mdev, mode));
483 struct agp_memory *
484 agp_generic_alloc_memory(device_t dev, int type, vm_size_t size)
486 struct agp_softc *sc = device_get_softc(dev);
487 struct agp_memory *mem;
489 if ((size & (AGP_PAGE_SIZE - 1)) != 0)
490 return 0;
492 if (sc->as_allocated + size > sc->as_maxmem)
493 return 0;
495 if (type != 0) {
496 kprintf("agp_generic_alloc_memory: unsupported type %d\n",
497 type);
498 return 0;
501 mem = kmalloc(sizeof *mem, M_AGP, M_INTWAIT);
502 mem->am_id = sc->as_nextid++;
503 mem->am_size = size;
504 mem->am_type = 0;
505 mem->am_obj = vm_object_allocate(OBJT_DEFAULT, atop(round_page(size)));
506 mem->am_physical = 0;
507 mem->am_offset = 0;
508 mem->am_is_bound = 0;
509 TAILQ_INSERT_TAIL(&sc->as_memory, mem, am_link);
510 sc->as_allocated += size;
512 return mem;
516 agp_generic_free_memory(device_t dev, struct agp_memory *mem)
518 struct agp_softc *sc = device_get_softc(dev);
520 if (mem->am_is_bound)
521 return EBUSY;
523 sc->as_allocated -= mem->am_size;
524 TAILQ_REMOVE(&sc->as_memory, mem, am_link);
525 vm_object_deallocate(mem->am_obj);
526 kfree(mem, M_AGP);
527 return 0;
531 agp_generic_bind_memory(device_t dev, struct agp_memory *mem,
532 vm_offset_t offset)
534 struct agp_softc *sc = device_get_softc(dev);
535 vm_offset_t i, j, k;
536 vm_page_t m;
537 int error;
539 lockmgr(&sc->as_lock, LK_EXCLUSIVE);
541 if (mem->am_is_bound) {
542 device_printf(dev, "memory already bound\n");
543 lockmgr(&sc->as_lock, LK_RELEASE);
544 return EINVAL;
547 if (offset < 0
548 || (offset & (AGP_PAGE_SIZE - 1)) != 0
549 || offset + mem->am_size > AGP_GET_APERTURE(dev)) {
550 device_printf(dev, "binding memory at bad offset %#x,%#x,%#x\n",
551 (int) offset, (int)mem->am_size,
552 (int)AGP_GET_APERTURE(dev));
553 kprintf("Check BIOS's aperature size vs X\n");
554 lockmgr(&sc->as_lock, LK_RELEASE);
555 return EINVAL;
559 * Bind the individual pages and flush the chipset's
560 * TLB.
562 for (i = 0; i < mem->am_size; i += PAGE_SIZE) {
564 * Find a page from the object and wire it
565 * down. This page will be mapped using one or more
566 * entries in the GATT (assuming that PAGE_SIZE >=
567 * AGP_PAGE_SIZE. If this is the first call to bind,
568 * the pages will be allocated and zeroed.
570 m = vm_page_grab(mem->am_obj, OFF_TO_IDX(i),
571 VM_ALLOC_NORMAL | VM_ALLOC_ZERO | VM_ALLOC_RETRY);
572 if ((m->flags & PG_ZERO) == 0)
573 vm_page_zero_fill(m);
574 AGP_DPF("found page pa=%#x\n", VM_PAGE_TO_PHYS(m));
575 vm_page_wire(m);
578 * Install entries in the GATT, making sure that if
579 * AGP_PAGE_SIZE < PAGE_SIZE and mem->am_size is not
580 * aligned to PAGE_SIZE, we don't modify too many GATT
581 * entries.
583 for (j = 0; j < PAGE_SIZE && i + j < mem->am_size;
584 j += AGP_PAGE_SIZE) {
585 vm_offset_t pa = VM_PAGE_TO_PHYS(m) + j;
586 AGP_DPF("binding offset %#x to pa %#x\n",
587 offset + i + j, pa);
588 error = AGP_BIND_PAGE(dev, offset + i + j, pa);
589 if (error) {
591 * Bail out. Reverse all the mappings
592 * and unwire the pages.
594 vm_page_wakeup(m);
595 for (k = 0; k < i + j; k += AGP_PAGE_SIZE)
596 AGP_UNBIND_PAGE(dev, offset + k);
597 for (k = 0; k <= i; k += PAGE_SIZE) {
598 m = vm_page_lookup(mem->am_obj,
599 OFF_TO_IDX(k));
600 vm_page_unwire(m, 0);
602 lockmgr(&sc->as_lock, LK_RELEASE);
603 return error;
606 vm_page_wakeup(m);
610 * Flush the cpu cache since we are providing a new mapping
611 * for these pages.
613 agp_flush_cache();
616 * Make sure the chipset gets the new mappings.
618 AGP_FLUSH_TLB(dev);
620 mem->am_offset = offset;
621 mem->am_is_bound = 1;
623 lockmgr(&sc->as_lock, LK_RELEASE);
625 return 0;
629 agp_generic_unbind_memory(device_t dev, struct agp_memory *mem)
631 struct agp_softc *sc = device_get_softc(dev);
632 vm_page_t m;
633 int i;
635 lockmgr(&sc->as_lock, LK_EXCLUSIVE);
637 if (!mem->am_is_bound) {
638 device_printf(dev, "memory is not bound\n");
639 lockmgr(&sc->as_lock, LK_RELEASE);
640 return EINVAL;
645 * Unbind the individual pages and flush the chipset's
646 * TLB. Unwire the pages so they can be swapped.
648 for (i = 0; i < mem->am_size; i += AGP_PAGE_SIZE)
649 AGP_UNBIND_PAGE(dev, mem->am_offset + i);
650 for (i = 0; i < mem->am_size; i += PAGE_SIZE) {
651 m = vm_page_lookup(mem->am_obj, atop(i));
652 vm_page_unwire(m, 0);
655 agp_flush_cache();
656 AGP_FLUSH_TLB(dev);
658 mem->am_offset = 0;
659 mem->am_is_bound = 0;
661 lockmgr(&sc->as_lock, LK_RELEASE);
663 return 0;
666 /* Helper functions for implementing user/kernel api */
668 static int
669 agp_acquire_helper(device_t dev, enum agp_acquire_state state)
671 struct agp_softc *sc = device_get_softc(dev);
673 if (sc->as_state != AGP_ACQUIRE_FREE)
674 return EBUSY;
675 sc->as_state = state;
677 return 0;
680 static int
681 agp_release_helper(device_t dev, enum agp_acquire_state state)
683 struct agp_softc *sc = device_get_softc(dev);
685 if (sc->as_state == AGP_ACQUIRE_FREE)
686 return 0;
688 if (sc->as_state != state)
689 return EBUSY;
691 sc->as_state = AGP_ACQUIRE_FREE;
692 return 0;
695 static struct agp_memory *
696 agp_find_memory(device_t dev, int id)
698 struct agp_softc *sc = device_get_softc(dev);
699 struct agp_memory *mem;
701 AGP_DPF("searching for memory block %d\n", id);
702 TAILQ_FOREACH(mem, &sc->as_memory, am_link) {
703 AGP_DPF("considering memory block %d\n", mem->am_id);
704 if (mem->am_id == id)
705 return mem;
707 return 0;
710 /* Implementation of the userland ioctl api */
712 static int
713 agp_info_user(device_t dev, agp_info *info)
715 struct agp_softc *sc = device_get_softc(dev);
717 bzero(info, sizeof *info);
718 info->bridge_id = pci_get_devid(dev);
719 info->agp_mode =
720 pci_read_config(dev, agp_find_caps(dev) + AGP_STATUS, 4);
721 info->aper_base = rman_get_start(sc->as_aperture);
722 info->aper_size = AGP_GET_APERTURE(dev) >> 20;
723 info->pg_total = info->pg_system = sc->as_maxmem >> AGP_PAGE_SHIFT;
724 info->pg_used = sc->as_allocated >> AGP_PAGE_SHIFT;
726 return 0;
729 static int
730 agp_setup_user(device_t dev, agp_setup *setup)
732 return AGP_ENABLE(dev, setup->agp_mode);
735 static int
736 agp_allocate_user(device_t dev, agp_allocate *alloc)
738 struct agp_memory *mem;
740 mem = AGP_ALLOC_MEMORY(dev,
741 alloc->type,
742 alloc->pg_count << AGP_PAGE_SHIFT);
743 if (mem) {
744 alloc->key = mem->am_id;
745 alloc->physical = mem->am_physical;
746 return 0;
747 } else {
748 return ENOMEM;
752 static int
753 agp_deallocate_user(device_t dev, int id)
755 struct agp_memory *mem = agp_find_memory(dev, id);
757 if (mem) {
758 AGP_FREE_MEMORY(dev, mem);
759 return 0;
760 } else {
761 return ENOENT;
765 static int
766 agp_bind_user(device_t dev, agp_bind *bind)
768 struct agp_memory *mem = agp_find_memory(dev, bind->key);
770 if (!mem)
771 return ENOENT;
773 return AGP_BIND_MEMORY(dev, mem, bind->pg_start << AGP_PAGE_SHIFT);
776 static int
777 agp_unbind_user(device_t dev, agp_unbind *unbind)
779 struct agp_memory *mem = agp_find_memory(dev, unbind->key);
781 if (!mem)
782 return ENOENT;
784 return AGP_UNBIND_MEMORY(dev, mem);
787 static int
788 agp_open(struct dev_open_args *ap)
790 cdev_t kdev = ap->a_head.a_dev;
791 device_t dev = KDEV2DEV(kdev);
792 struct agp_softc *sc = device_get_softc(dev);
794 if (!sc->as_isopen) {
795 sc->as_isopen = 1;
796 device_busy(dev);
799 return 0;
802 static int
803 agp_close(struct dev_close_args *ap)
805 cdev_t kdev = ap->a_head.a_dev;
806 device_t dev = KDEV2DEV(kdev);
807 struct agp_softc *sc = device_get_softc(dev);
808 struct agp_memory *mem;
811 * Clear the GATT and force release on last close
813 while ((mem = TAILQ_FIRST(&sc->as_memory)) != 0) {
814 if (mem->am_is_bound)
815 AGP_UNBIND_MEMORY(dev, mem);
816 AGP_FREE_MEMORY(dev, mem);
818 if (sc->as_state == AGP_ACQUIRE_USER)
819 agp_release_helper(dev, AGP_ACQUIRE_USER);
820 sc->as_isopen = 0;
821 device_unbusy(dev);
823 return 0;
826 static int
827 agp_ioctl(struct dev_ioctl_args *ap)
829 cdev_t kdev = ap->a_head.a_dev;
830 device_t dev = KDEV2DEV(kdev);
832 switch (ap->a_cmd) {
833 case AGPIOC_INFO:
834 return agp_info_user(dev, (agp_info *)ap->a_data);
836 case AGPIOC_ACQUIRE:
837 return agp_acquire_helper(dev, AGP_ACQUIRE_USER);
839 case AGPIOC_RELEASE:
840 return agp_release_helper(dev, AGP_ACQUIRE_USER);
842 case AGPIOC_SETUP:
843 return agp_setup_user(dev, (agp_setup *)ap->a_data);
845 case AGPIOC_ALLOCATE:
846 return agp_allocate_user(dev, (agp_allocate *)ap->a_data);
848 case AGPIOC_DEALLOCATE:
849 return agp_deallocate_user(dev, *(int *)ap->a_data);
851 case AGPIOC_BIND:
852 return agp_bind_user(dev, (agp_bind *)ap->a_data);
854 case AGPIOC_UNBIND:
855 return agp_unbind_user(dev, (agp_unbind *)ap->a_data);
859 return EINVAL;
862 static int
863 agp_mmap(struct dev_mmap_args *ap)
865 cdev_t kdev = ap->a_head.a_dev;
866 device_t dev = KDEV2DEV(kdev);
867 struct agp_softc *sc = device_get_softc(dev);
869 if (ap->a_offset > AGP_GET_APERTURE(dev))
870 return EINVAL;
871 ap->a_result = atop(rman_get_start(sc->as_aperture) + ap->a_offset);
872 return 0;
875 /* Implementation of the kernel api */
877 device_t
878 agp_find_device(void)
880 device_t *children, child;
881 int i, count;
883 if (!agp_devclass)
884 return NULL;
885 if (devclass_get_devices(agp_devclass, &children, &count) != 0)
886 return NULL;
887 child = NULL;
888 for (i = 0; i < count; i++) {
889 if (device_is_attached(children[i])) {
890 child = children[i];
891 break;
894 kfree(children, M_TEMP);
895 return child;
898 enum agp_acquire_state
899 agp_state(device_t dev)
901 struct agp_softc *sc = device_get_softc(dev);
902 return sc->as_state;
905 void
906 agp_get_info(device_t dev, struct agp_info *info)
908 struct agp_softc *sc = device_get_softc(dev);
910 info->ai_mode =
911 pci_read_config(dev, agp_find_caps(dev) + AGP_STATUS, 4);
912 info->ai_aperture_base = rman_get_start(sc->as_aperture);
913 info->ai_aperture_size = rman_get_size(sc->as_aperture);
914 info->ai_memory_allowed = sc->as_maxmem;
915 info->ai_memory_used = sc->as_allocated;
919 agp_acquire(device_t dev)
921 return agp_acquire_helper(dev, AGP_ACQUIRE_KERNEL);
925 agp_release(device_t dev)
927 return agp_release_helper(dev, AGP_ACQUIRE_KERNEL);
931 agp_enable(device_t dev, u_int32_t mode)
933 return AGP_ENABLE(dev, mode);
936 void *agp_alloc_memory(device_t dev, int type, vm_size_t bytes)
938 return (void *) AGP_ALLOC_MEMORY(dev, type, bytes);
941 void agp_free_memory(device_t dev, void *handle)
943 struct agp_memory *mem = (struct agp_memory *) handle;
944 AGP_FREE_MEMORY(dev, mem);
947 int agp_bind_memory(device_t dev, void *handle, vm_offset_t offset)
949 struct agp_memory *mem = (struct agp_memory *) handle;
950 return AGP_BIND_MEMORY(dev, mem, offset);
953 int agp_unbind_memory(device_t dev, void *handle)
955 struct agp_memory *mem = (struct agp_memory *) handle;
956 return AGP_UNBIND_MEMORY(dev, mem);
959 void agp_memory_info(device_t dev, void *handle, struct
960 agp_memory_info *mi)
962 struct agp_memory *mem = (struct agp_memory *) handle;
964 mi->ami_size = mem->am_size;
965 mi->ami_physical = mem->am_physical;
966 mi->ami_offset = mem->am_offset;
967 mi->ami_is_bound = mem->am_is_bound;