clock: Piggyback passive IPIQ processing
[dragonfly.git] / sys / kern / kern_clock.c
blob040de78cf2ccc8de9df95903c6dd386c829d4b3d
1 /*
2 * Copyright (c) 2003,2004 The DragonFly Project. All rights reserved.
3 *
4 * This code is derived from software contributed to The DragonFly Project
5 * by Matthew Dillon <dillon@backplane.com>
6 *
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following conditions
9 * are met:
11 * 1. Redistributions of source code must retain the above copyright
12 * notice, this list of conditions and the following disclaimer.
13 * 2. Redistributions in binary form must reproduce the above copyright
14 * notice, this list of conditions and the following disclaimer in
15 * the documentation and/or other materials provided with the
16 * distribution.
17 * 3. Neither the name of The DragonFly Project nor the names of its
18 * contributors may be used to endorse or promote products derived
19 * from this software without specific, prior written permission.
21 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
22 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
23 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
24 * FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
25 * COPYRIGHT HOLDERS OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
26 * INCIDENTAL, SPECIAL, EXEMPLARY OR CONSEQUENTIAL DAMAGES (INCLUDING,
27 * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
28 * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
29 * AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
30 * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT
31 * OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
32 * SUCH DAMAGE.
34 * Copyright (c) 1997, 1998 Poul-Henning Kamp <phk@FreeBSD.org>
35 * Copyright (c) 1982, 1986, 1991, 1993
36 * The Regents of the University of California. All rights reserved.
37 * (c) UNIX System Laboratories, Inc.
38 * All or some portions of this file are derived from material licensed
39 * to the University of California by American Telephone and Telegraph
40 * Co. or Unix System Laboratories, Inc. and are reproduced herein with
41 * the permission of UNIX System Laboratories, Inc.
43 * Redistribution and use in source and binary forms, with or without
44 * modification, are permitted provided that the following conditions
45 * are met:
46 * 1. Redistributions of source code must retain the above copyright
47 * notice, this list of conditions and the following disclaimer.
48 * 2. Redistributions in binary form must reproduce the above copyright
49 * notice, this list of conditions and the following disclaimer in the
50 * documentation and/or other materials provided with the distribution.
51 * 3. Neither the name of the University nor the names of its contributors
52 * may be used to endorse or promote products derived from this software
53 * without specific prior written permission.
55 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
56 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
57 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
58 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
59 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
60 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
61 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
62 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
63 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
64 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
65 * SUCH DAMAGE.
67 * @(#)kern_clock.c 8.5 (Berkeley) 1/21/94
68 * $FreeBSD: src/sys/kern/kern_clock.c,v 1.105.2.10 2002/10/17 13:19:40 maxim Exp $
71 #include "opt_ntp.h"
72 #include "opt_ifpoll.h"
73 #include "opt_pctrack.h"
75 #include <sys/param.h>
76 #include <sys/systm.h>
77 #include <sys/callout.h>
78 #include <sys/kernel.h>
79 #include <sys/kinfo.h>
80 #include <sys/proc.h>
81 #include <sys/malloc.h>
82 #include <sys/resource.h>
83 #include <sys/resourcevar.h>
84 #include <sys/signalvar.h>
85 #include <sys/timex.h>
86 #include <sys/timepps.h>
87 #include <sys/upmap.h>
88 #include <vm/vm.h>
89 #include <sys/lock.h>
90 #include <vm/pmap.h>
91 #include <vm/vm_map.h>
92 #include <vm/vm_extern.h>
93 #include <sys/sysctl.h>
95 #include <sys/thread2.h>
96 #include <sys/mplock2.h>
98 #include <machine/cpu.h>
99 #include <machine/limits.h>
100 #include <machine/smp.h>
101 #include <machine/cpufunc.h>
102 #include <machine/specialreg.h>
103 #include <machine/clock.h>
105 #ifdef GPROF
106 #include <sys/gmon.h>
107 #endif
109 #ifdef IFPOLL_ENABLE
110 extern void ifpoll_init_pcpu(int);
111 #endif
113 #ifdef DEBUG_PCTRACK
114 static void do_pctrack(struct intrframe *frame, int which);
115 #endif
117 static void initclocks (void *dummy);
118 SYSINIT(clocks, SI_BOOT2_CLOCKS, SI_ORDER_FIRST, initclocks, NULL);
121 * Some of these don't belong here, but it's easiest to concentrate them.
122 * Note that cpu_time counts in microseconds, but most userland programs
123 * just compare relative times against the total by delta.
125 struct kinfo_cputime cputime_percpu[MAXCPU];
126 #ifdef DEBUG_PCTRACK
127 struct kinfo_pcheader cputime_pcheader = { PCTRACK_SIZE, PCTRACK_ARYSIZE };
128 struct kinfo_pctrack cputime_pctrack[MAXCPU][PCTRACK_SIZE];
129 #endif
131 static int
132 sysctl_cputime(SYSCTL_HANDLER_ARGS)
134 int cpu, error = 0;
135 size_t size = sizeof(struct kinfo_cputime);
137 for (cpu = 0; cpu < ncpus; ++cpu) {
138 if ((error = SYSCTL_OUT(req, &cputime_percpu[cpu], size)))
139 break;
142 return (error);
144 SYSCTL_PROC(_kern, OID_AUTO, cputime, (CTLTYPE_OPAQUE|CTLFLAG_RD), 0, 0,
145 sysctl_cputime, "S,kinfo_cputime", "CPU time statistics");
147 static int
148 sysctl_cp_time(SYSCTL_HANDLER_ARGS)
150 long cpu_states[5] = {0};
151 int cpu, error = 0;
152 size_t size = sizeof(cpu_states);
154 for (cpu = 0; cpu < ncpus; ++cpu) {
155 cpu_states[CP_USER] += cputime_percpu[cpu].cp_user;
156 cpu_states[CP_NICE] += cputime_percpu[cpu].cp_nice;
157 cpu_states[CP_SYS] += cputime_percpu[cpu].cp_sys;
158 cpu_states[CP_INTR] += cputime_percpu[cpu].cp_intr;
159 cpu_states[CP_IDLE] += cputime_percpu[cpu].cp_idle;
162 error = SYSCTL_OUT(req, cpu_states, size);
164 return (error);
167 SYSCTL_PROC(_kern, OID_AUTO, cp_time, (CTLTYPE_LONG|CTLFLAG_RD), 0, 0,
168 sysctl_cp_time, "LU", "CPU time statistics");
171 * boottime is used to calculate the 'real' uptime. Do not confuse this with
172 * microuptime(). microtime() is not drift compensated. The real uptime
173 * with compensation is nanotime() - bootime. boottime is recalculated
174 * whenever the real time is set based on the compensated elapsed time
175 * in seconds (gd->gd_time_seconds).
177 * The gd_time_seconds and gd_cpuclock_base fields remain fairly monotonic.
178 * Slight adjustments to gd_cpuclock_base are made to phase-lock it to
179 * the real time.
181 * WARNING! time_second can backstep on time corrections. Also, unlike
182 * time second, time_uptime is not a "real" time_t (seconds
183 * since the Epoch) but seconds since booting.
185 struct timespec boottime; /* boot time (realtime) for reference only */
186 time_t time_second; /* read-only 'passive' realtime in seconds */
187 time_t time_uptime; /* read-only 'passive' uptime in seconds */
190 * basetime is used to calculate the compensated real time of day. The
191 * basetime can be modified on a per-tick basis by the adjtime(),
192 * ntp_adjtime(), and sysctl-based time correction APIs.
194 * Note that frequency corrections can also be made by adjusting
195 * gd_cpuclock_base.
197 * basetime is a tail-chasing FIFO, updated only by cpu #0. The FIFO is
198 * used on both SMP and UP systems to avoid MP races between cpu's and
199 * interrupt races on UP systems.
201 #define BASETIME_ARYSIZE 16
202 #define BASETIME_ARYMASK (BASETIME_ARYSIZE - 1)
203 static struct timespec basetime[BASETIME_ARYSIZE];
204 static volatile int basetime_index;
206 static int
207 sysctl_get_basetime(SYSCTL_HANDLER_ARGS)
209 struct timespec *bt;
210 int error;
211 int index;
214 * Because basetime data and index may be updated by another cpu,
215 * a load fence is required to ensure that the data we read has
216 * not been speculatively read relative to a possibly updated index.
218 index = basetime_index;
219 cpu_lfence();
220 bt = &basetime[index];
221 error = SYSCTL_OUT(req, bt, sizeof(*bt));
222 return (error);
225 SYSCTL_STRUCT(_kern, KERN_BOOTTIME, boottime, CTLFLAG_RD,
226 &boottime, timespec, "System boottime");
227 SYSCTL_PROC(_kern, OID_AUTO, basetime, CTLTYPE_STRUCT|CTLFLAG_RD, 0, 0,
228 sysctl_get_basetime, "S,timespec", "System basetime");
230 static void hardclock(systimer_t info, int, struct intrframe *frame);
231 static void statclock(systimer_t info, int, struct intrframe *frame);
232 static void schedclock(systimer_t info, int, struct intrframe *frame);
233 static void getnanotime_nbt(struct timespec *nbt, struct timespec *tsp);
235 int ticks; /* system master ticks at hz */
236 int clocks_running; /* tsleep/timeout clocks operational */
237 int64_t nsec_adj; /* ntpd per-tick adjustment in nsec << 32 */
238 int64_t nsec_acc; /* accumulator */
239 int sched_ticks; /* global schedule clock ticks */
241 /* NTPD time correction fields */
242 int64_t ntp_tick_permanent; /* per-tick adjustment in nsec << 32 */
243 int64_t ntp_tick_acc; /* accumulator for per-tick adjustment */
244 int64_t ntp_delta; /* one-time correction in nsec */
245 int64_t ntp_big_delta = 1000000000;
246 int32_t ntp_tick_delta; /* current adjustment rate */
247 int32_t ntp_default_tick_delta; /* adjustment rate for ntp_delta */
248 time_t ntp_leap_second; /* time of next leap second */
249 int ntp_leap_insert; /* whether to insert or remove a second */
252 * Finish initializing clock frequencies and start all clocks running.
254 /* ARGSUSED*/
255 static void
256 initclocks(void *dummy)
258 /*psratio = profhz / stathz;*/
259 initclocks_pcpu();
260 clocks_running = 1;
261 if (kpmap) {
262 kpmap->tsc_freq = (uint64_t)tsc_frequency;
263 kpmap->tick_freq = hz;
268 * Called on a per-cpu basis from the idle thread bootstrap on each cpu
269 * during SMP initialization.
271 * This routine is called concurrently during low-level SMP initialization
272 * and may not block in any way. Meaning, among other things, we can't
273 * acquire any tokens.
275 void
276 initclocks_pcpu(void)
278 struct globaldata *gd = mycpu;
280 crit_enter();
281 if (gd->gd_cpuid == 0) {
282 gd->gd_time_seconds = 1;
283 gd->gd_cpuclock_base = sys_cputimer->count();
284 } else {
285 /* XXX */
286 gd->gd_time_seconds = globaldata_find(0)->gd_time_seconds;
287 gd->gd_cpuclock_base = globaldata_find(0)->gd_cpuclock_base;
290 systimer_intr_enable();
292 crit_exit();
296 * This routine is called on just the BSP, just after SMP initialization
297 * completes to * finish initializing any clocks that might contend/block
298 * (e.g. like on a token). We can't do this in initclocks_pcpu() because
299 * that function is called from the idle thread bootstrap for each cpu and
300 * not allowed to block at all.
302 static
303 void
304 initclocks_other(void *dummy)
306 struct globaldata *ogd = mycpu;
307 struct globaldata *gd;
308 int n;
310 for (n = 0; n < ncpus; ++n) {
311 lwkt_setcpu_self(globaldata_find(n));
312 gd = mycpu;
315 * Use a non-queued periodic systimer to prevent multiple
316 * ticks from building up if the sysclock jumps forward
317 * (8254 gets reset). The sysclock will never jump backwards.
318 * Our time sync is based on the actual sysclock, not the
319 * ticks count.
321 systimer_init_periodic_nq(&gd->gd_hardclock, hardclock,
322 NULL, hz);
323 systimer_init_periodic_nq(&gd->gd_statclock, statclock,
324 NULL, stathz);
325 /* XXX correct the frequency for scheduler / estcpu tests */
326 systimer_init_periodic_nq(&gd->gd_schedclock, schedclock,
327 NULL, ESTCPUFREQ);
328 #ifdef IFPOLL_ENABLE
329 ifpoll_init_pcpu(gd->gd_cpuid);
330 #endif
332 lwkt_setcpu_self(ogd);
334 SYSINIT(clocks2, SI_BOOT2_POST_SMP, SI_ORDER_ANY, initclocks_other, NULL);
337 * This sets the current real time of day. Timespecs are in seconds and
338 * nanoseconds. We do not mess with gd_time_seconds and gd_cpuclock_base,
339 * instead we adjust basetime so basetime + gd_* results in the current
340 * time of day. This way the gd_* fields are guaranteed to represent
341 * a monotonically increasing 'uptime' value.
343 * When set_timeofday() is called from userland, the system call forces it
344 * onto cpu #0 since only cpu #0 can update basetime_index.
346 void
347 set_timeofday(struct timespec *ts)
349 struct timespec *nbt;
350 int ni;
353 * XXX SMP / non-atomic basetime updates
355 crit_enter();
356 ni = (basetime_index + 1) & BASETIME_ARYMASK;
357 nbt = &basetime[ni];
358 nanouptime(nbt);
359 nbt->tv_sec = ts->tv_sec - nbt->tv_sec;
360 nbt->tv_nsec = ts->tv_nsec - nbt->tv_nsec;
361 if (nbt->tv_nsec < 0) {
362 nbt->tv_nsec += 1000000000;
363 --nbt->tv_sec;
367 * Note that basetime diverges from boottime as the clock drift is
368 * compensated for, so we cannot do away with boottime. When setting
369 * the absolute time of day the drift is 0 (for an instant) and we
370 * can simply assign boottime to basetime.
372 * Note that nanouptime() is based on gd_time_seconds which is drift
373 * compensated up to a point (it is guaranteed to remain monotonically
374 * increasing). gd_time_seconds is thus our best uptime guess and
375 * suitable for use in the boottime calculation. It is already taken
376 * into account in the basetime calculation above.
378 boottime.tv_sec = nbt->tv_sec;
379 ntp_delta = 0;
382 * We now have a new basetime, make sure all other cpus have it,
383 * then update the index.
385 cpu_sfence();
386 basetime_index = ni;
388 crit_exit();
392 * Each cpu has its own hardclock, but we only increments ticks and softticks
393 * on cpu #0.
395 * NOTE! systimer! the MP lock might not be held here. We can only safely
396 * manipulate objects owned by the current cpu.
398 static void
399 hardclock(systimer_t info, int in_ipi, struct intrframe *frame)
401 sysclock_t cputicks;
402 struct proc *p;
403 struct globaldata *gd = mycpu;
405 if ((gd->gd_reqflags & RQF_IPIQ) == 0 && lwkt_need_ipiq_process(gd)) {
406 /* Defer to doreti on passive IPIQ processing */
407 need_ipiq();
411 * Realtime updates are per-cpu. Note that timer corrections as
412 * returned by microtime() and friends make an additional adjustment
413 * using a system-wise 'basetime', but the running time is always
414 * taken from the per-cpu globaldata area. Since the same clock
415 * is distributing (XXX SMP) to all cpus, the per-cpu timebases
416 * stay in synch.
418 * Note that we never allow info->time (aka gd->gd_hardclock.time)
419 * to reverse index gd_cpuclock_base, but that it is possible for
420 * it to temporarily get behind in the seconds if something in the
421 * system locks interrupts for a long period of time. Since periodic
422 * timers count events, though everything should resynch again
423 * immediately.
425 cputicks = info->time - gd->gd_cpuclock_base;
426 if (cputicks >= sys_cputimer->freq) {
427 ++gd->gd_time_seconds;
428 gd->gd_cpuclock_base += sys_cputimer->freq;
429 if (gd->gd_cpuid == 0)
430 ++time_uptime; /* uncorrected monotonic 1-sec gran */
434 * The system-wide ticks counter and NTP related timedelta/tickdelta
435 * adjustments only occur on cpu #0. NTP adjustments are accomplished
436 * by updating basetime.
438 if (gd->gd_cpuid == 0) {
439 struct timespec *nbt;
440 struct timespec nts;
441 int leap;
442 int ni;
444 ++ticks;
446 #if 0
447 if (tco->tc_poll_pps)
448 tco->tc_poll_pps(tco);
449 #endif
452 * Calculate the new basetime index. We are in a critical section
453 * on cpu #0 and can safely play with basetime_index. Start
454 * with the current basetime and then make adjustments.
456 ni = (basetime_index + 1) & BASETIME_ARYMASK;
457 nbt = &basetime[ni];
458 *nbt = basetime[basetime_index];
461 * Apply adjtime corrections. (adjtime() API)
463 * adjtime() only runs on cpu #0 so our critical section is
464 * sufficient to access these variables.
466 if (ntp_delta != 0) {
467 nbt->tv_nsec += ntp_tick_delta;
468 ntp_delta -= ntp_tick_delta;
469 if ((ntp_delta > 0 && ntp_delta < ntp_tick_delta) ||
470 (ntp_delta < 0 && ntp_delta > ntp_tick_delta)) {
471 ntp_tick_delta = ntp_delta;
476 * Apply permanent frequency corrections. (sysctl API)
478 if (ntp_tick_permanent != 0) {
479 ntp_tick_acc += ntp_tick_permanent;
480 if (ntp_tick_acc >= (1LL << 32)) {
481 nbt->tv_nsec += ntp_tick_acc >> 32;
482 ntp_tick_acc -= (ntp_tick_acc >> 32) << 32;
483 } else if (ntp_tick_acc <= -(1LL << 32)) {
484 /* Negate ntp_tick_acc to avoid shifting the sign bit. */
485 nbt->tv_nsec -= (-ntp_tick_acc) >> 32;
486 ntp_tick_acc += ((-ntp_tick_acc) >> 32) << 32;
490 if (nbt->tv_nsec >= 1000000000) {
491 nbt->tv_sec++;
492 nbt->tv_nsec -= 1000000000;
493 } else if (nbt->tv_nsec < 0) {
494 nbt->tv_sec--;
495 nbt->tv_nsec += 1000000000;
499 * Another per-tick compensation. (for ntp_adjtime() API)
501 if (nsec_adj != 0) {
502 nsec_acc += nsec_adj;
503 if (nsec_acc >= 0x100000000LL) {
504 nbt->tv_nsec += nsec_acc >> 32;
505 nsec_acc = (nsec_acc & 0xFFFFFFFFLL);
506 } else if (nsec_acc <= -0x100000000LL) {
507 nbt->tv_nsec -= -nsec_acc >> 32;
508 nsec_acc = -(-nsec_acc & 0xFFFFFFFFLL);
510 if (nbt->tv_nsec >= 1000000000) {
511 nbt->tv_nsec -= 1000000000;
512 ++nbt->tv_sec;
513 } else if (nbt->tv_nsec < 0) {
514 nbt->tv_nsec += 1000000000;
515 --nbt->tv_sec;
519 /************************************************************
520 * LEAP SECOND CORRECTION *
521 ************************************************************
523 * Taking into account all the corrections made above, figure
524 * out the new real time. If the seconds field has changed
525 * then apply any pending leap-second corrections.
527 getnanotime_nbt(nbt, &nts);
529 if (time_second != nts.tv_sec) {
531 * Apply leap second (sysctl API). Adjust nts for changes
532 * so we do not have to call getnanotime_nbt again.
534 if (ntp_leap_second) {
535 if (ntp_leap_second == nts.tv_sec) {
536 if (ntp_leap_insert) {
537 nbt->tv_sec++;
538 nts.tv_sec++;
539 } else {
540 nbt->tv_sec--;
541 nts.tv_sec--;
543 ntp_leap_second--;
548 * Apply leap second (ntp_adjtime() API), calculate a new
549 * nsec_adj field. ntp_update_second() returns nsec_adj
550 * as a per-second value but we need it as a per-tick value.
552 leap = ntp_update_second(time_second, &nsec_adj);
553 nsec_adj /= hz;
554 nbt->tv_sec += leap;
555 nts.tv_sec += leap;
558 * Update the time_second 'approximate time' global.
560 time_second = nts.tv_sec;
564 * Finally, our new basetime is ready to go live!
566 cpu_sfence();
567 basetime_index = ni;
570 * Update kpmap on each tick. TS updates are integrated with
571 * fences and upticks allowing userland to read the data
572 * deterministically.
574 if (kpmap) {
575 int w;
577 w = (kpmap->upticks + 1) & 1;
578 getnanouptime(&kpmap->ts_uptime[w]);
579 getnanotime(&kpmap->ts_realtime[w]);
580 cpu_sfence();
581 ++kpmap->upticks;
582 cpu_sfence();
587 * lwkt thread scheduler fair queueing
589 lwkt_schedulerclock(curthread);
592 * softticks are handled for all cpus
594 hardclock_softtick(gd);
597 * ITimer handling is per-tick, per-cpu.
599 * We must acquire the per-process token in order for ksignal()
600 * to be non-blocking. For the moment this requires an AST fault,
601 * the ksignal() cannot be safely issued from this hard interrupt.
603 * XXX Even the trytoken here isn't right, and itimer operation in
604 * a multi threaded environment is going to be weird at the
605 * very least.
607 if ((p = curproc) != NULL && lwkt_trytoken(&p->p_token)) {
608 crit_enter_hard();
609 if (p->p_upmap)
610 ++p->p_upmap->runticks;
612 if (frame && CLKF_USERMODE(frame) &&
613 timevalisset(&p->p_timer[ITIMER_VIRTUAL].it_value) &&
614 itimerdecr(&p->p_timer[ITIMER_VIRTUAL], ustick) == 0) {
615 p->p_flags |= P_SIGVTALRM;
616 need_user_resched();
618 if (timevalisset(&p->p_timer[ITIMER_PROF].it_value) &&
619 itimerdecr(&p->p_timer[ITIMER_PROF], ustick) == 0) {
620 p->p_flags |= P_SIGPROF;
621 need_user_resched();
623 crit_exit_hard();
624 lwkt_reltoken(&p->p_token);
626 setdelayed();
630 * The statistics clock typically runs at a 125Hz rate, and is intended
631 * to be frequency offset from the hardclock (typ 100Hz). It is per-cpu.
633 * NOTE! systimer! the MP lock might not be held here. We can only safely
634 * manipulate objects owned by the current cpu.
636 * The stats clock is responsible for grabbing a profiling sample.
637 * Most of the statistics are only used by user-level statistics programs.
638 * The main exceptions are p->p_uticks, p->p_sticks, p->p_iticks, and
639 * p->p_estcpu.
641 * Like the other clocks, the stat clock is called from what is effectively
642 * a fast interrupt, so the context should be the thread/process that got
643 * interrupted.
645 static void
646 statclock(systimer_t info, int in_ipi, struct intrframe *frame)
648 #ifdef GPROF
649 struct gmonparam *g;
650 int i;
651 #endif
652 thread_t td;
653 struct proc *p;
654 int bump;
655 sysclock_t cv;
656 sysclock_t scv;
659 * How big was our timeslice relative to the last time? Calculate
660 * in microseconds.
662 * NOTE: Use of microuptime() is typically MPSAFE, but usually not
663 * during early boot. Just use the systimer count to be nice
664 * to e.g. qemu. The systimer has a better chance of being
665 * MPSAFE at early boot.
667 cv = sys_cputimer->count();
668 scv = mycpu->statint.gd_statcv;
669 if (scv == 0) {
670 bump = 1;
671 } else {
672 bump = (sys_cputimer->freq64_usec * (cv - scv)) >> 32;
673 if (bump < 0)
674 bump = 0;
675 if (bump > 1000000)
676 bump = 1000000;
678 mycpu->statint.gd_statcv = cv;
680 #if 0
681 stv = &mycpu->gd_stattv;
682 if (stv->tv_sec == 0) {
683 bump = 1;
684 } else {
685 bump = tv.tv_usec - stv->tv_usec +
686 (tv.tv_sec - stv->tv_sec) * 1000000;
687 if (bump < 0)
688 bump = 0;
689 if (bump > 1000000)
690 bump = 1000000;
692 *stv = tv;
693 #endif
695 td = curthread;
696 p = td->td_proc;
698 if (frame && CLKF_USERMODE(frame)) {
700 * Came from userland, handle user time and deal with
701 * possible process.
703 if (p && (p->p_flags & P_PROFIL))
704 addupc_intr(p, CLKF_PC(frame), 1);
705 td->td_uticks += bump;
708 * Charge the time as appropriate
710 if (p && p->p_nice > NZERO)
711 cpu_time.cp_nice += bump;
712 else
713 cpu_time.cp_user += bump;
714 } else {
715 int intr_nest = mycpu->gd_intr_nesting_level;
717 if (in_ipi) {
719 * IPI processing code will bump gd_intr_nesting_level
720 * up by one, which breaks following CLKF_INTR testing,
721 * so we subtract it by one here.
723 --intr_nest;
725 #ifdef GPROF
727 * Kernel statistics are just like addupc_intr, only easier.
729 g = &_gmonparam;
730 if (g->state == GMON_PROF_ON && frame) {
731 i = CLKF_PC(frame) - g->lowpc;
732 if (i < g->textsize) {
733 i /= HISTFRACTION * sizeof(*g->kcount);
734 g->kcount[i]++;
737 #endif
739 #define IS_INTR_RUNNING ((frame && CLKF_INTR(intr_nest)) || CLKF_INTR_TD(td))
742 * Came from kernel mode, so we were:
743 * - handling an interrupt,
744 * - doing syscall or trap work on behalf of the current
745 * user process, or
746 * - spinning in the idle loop.
747 * Whichever it is, charge the time as appropriate.
748 * Note that we charge interrupts to the current process,
749 * regardless of whether they are ``for'' that process,
750 * so that we know how much of its real time was spent
751 * in ``non-process'' (i.e., interrupt) work.
753 * XXX assume system if frame is NULL. A NULL frame
754 * can occur if ipi processing is done from a crit_exit().
756 if (IS_INTR_RUNNING)
757 td->td_iticks += bump;
758 else
759 td->td_sticks += bump;
761 if (IS_INTR_RUNNING) {
763 * If we interrupted an interrupt thread, well,
764 * count it as interrupt time.
766 #ifdef DEBUG_PCTRACK
767 if (frame)
768 do_pctrack(frame, PCTRACK_INT);
769 #endif
770 cpu_time.cp_intr += bump;
771 } else {
772 if (td == &mycpu->gd_idlethread) {
774 * Even if the current thread is the idle
775 * thread it could be due to token contention
776 * in the LWKT scheduler. Count such as
777 * system time.
779 if (mycpu->gd_reqflags & RQF_IDLECHECK_WK_MASK)
780 cpu_time.cp_sys += bump;
781 else
782 cpu_time.cp_idle += bump;
783 } else {
785 * System thread was running.
787 #ifdef DEBUG_PCTRACK
788 if (frame)
789 do_pctrack(frame, PCTRACK_SYS);
790 #endif
791 cpu_time.cp_sys += bump;
795 #undef IS_INTR_RUNNING
799 #ifdef DEBUG_PCTRACK
801 * Sample the PC when in the kernel or in an interrupt. User code can
802 * retrieve the information and generate a histogram or other output.
805 static void
806 do_pctrack(struct intrframe *frame, int which)
808 struct kinfo_pctrack *pctrack;
810 pctrack = &cputime_pctrack[mycpu->gd_cpuid][which];
811 pctrack->pc_array[pctrack->pc_index & PCTRACK_ARYMASK] =
812 (void *)CLKF_PC(frame);
813 ++pctrack->pc_index;
816 static int
817 sysctl_pctrack(SYSCTL_HANDLER_ARGS)
819 struct kinfo_pcheader head;
820 int error;
821 int cpu;
822 int ntrack;
824 head.pc_ntrack = PCTRACK_SIZE;
825 head.pc_arysize = PCTRACK_ARYSIZE;
827 if ((error = SYSCTL_OUT(req, &head, sizeof(head))) != 0)
828 return (error);
830 for (cpu = 0; cpu < ncpus; ++cpu) {
831 for (ntrack = 0; ntrack < PCTRACK_SIZE; ++ntrack) {
832 error = SYSCTL_OUT(req, &cputime_pctrack[cpu][ntrack],
833 sizeof(struct kinfo_pctrack));
834 if (error)
835 break;
837 if (error)
838 break;
840 return (error);
842 SYSCTL_PROC(_kern, OID_AUTO, pctrack, (CTLTYPE_OPAQUE|CTLFLAG_RD), 0, 0,
843 sysctl_pctrack, "S,kinfo_pcheader", "CPU PC tracking");
845 #endif
848 * The scheduler clock typically runs at a 50Hz rate. NOTE! systimer,
849 * the MP lock might not be held. We can safely manipulate parts of curproc
850 * but that's about it.
852 * Each cpu has its own scheduler clock.
854 static void
855 schedclock(systimer_t info, int in_ipi __unused, struct intrframe *frame)
857 struct lwp *lp;
858 struct rusage *ru;
859 struct vmspace *vm;
860 long rss;
862 if ((lp = lwkt_preempted_proc()) != NULL) {
864 * Account for cpu time used and hit the scheduler. Note
865 * that this call MUST BE MP SAFE, and the BGL IS NOT HELD
866 * HERE.
868 ++lp->lwp_cpticks;
869 usched_schedulerclock(lp, info->periodic, info->time);
870 } else {
871 usched_schedulerclock(NULL, info->periodic, info->time);
873 if ((lp = curthread->td_lwp) != NULL) {
875 * Update resource usage integrals and maximums.
877 if ((ru = &lp->lwp_proc->p_ru) &&
878 (vm = lp->lwp_proc->p_vmspace) != NULL) {
879 ru->ru_ixrss += pgtok(vm->vm_tsize);
880 ru->ru_idrss += pgtok(vm->vm_dsize);
881 ru->ru_isrss += pgtok(vm->vm_ssize);
882 if (lwkt_trytoken(&vm->vm_map.token)) {
883 rss = pgtok(vmspace_resident_count(vm));
884 if (ru->ru_maxrss < rss)
885 ru->ru_maxrss = rss;
886 lwkt_reltoken(&vm->vm_map.token);
890 /* Increment the global sched_ticks */
891 if (mycpu->gd_cpuid == 0)
892 ++sched_ticks;
896 * Compute number of ticks for the specified amount of time. The
897 * return value is intended to be used in a clock interrupt timed
898 * operation and guaranteed to meet or exceed the requested time.
899 * If the representation overflows, return INT_MAX. The minimum return
900 * value is 1 ticks and the function will average the calculation up.
901 * If any value greater then 0 microseconds is supplied, a value
902 * of at least 2 will be returned to ensure that a near-term clock
903 * interrupt does not cause the timeout to occur (degenerately) early.
905 * Note that limit checks must take into account microseconds, which is
906 * done simply by using the smaller signed long maximum instead of
907 * the unsigned long maximum.
909 * If ints have 32 bits, then the maximum value for any timeout in
910 * 10ms ticks is 248 days.
913 tvtohz_high(struct timeval *tv)
915 int ticks;
916 long sec, usec;
918 sec = tv->tv_sec;
919 usec = tv->tv_usec;
920 if (usec < 0) {
921 sec--;
922 usec += 1000000;
924 if (sec < 0) {
925 #ifdef DIAGNOSTIC
926 if (usec > 0) {
927 sec++;
928 usec -= 1000000;
930 kprintf("tvtohz_high: negative time difference "
931 "%ld sec %ld usec\n",
932 sec, usec);
933 #endif
934 ticks = 1;
935 } else if (sec <= INT_MAX / hz) {
936 ticks = (int)(sec * hz +
937 ((u_long)usec + (ustick - 1)) / ustick) + 1;
938 } else {
939 ticks = INT_MAX;
941 return (ticks);
945 tstohz_high(struct timespec *ts)
947 int ticks;
948 long sec, nsec;
950 sec = ts->tv_sec;
951 nsec = ts->tv_nsec;
952 if (nsec < 0) {
953 sec--;
954 nsec += 1000000000;
956 if (sec < 0) {
957 #ifdef DIAGNOSTIC
958 if (nsec > 0) {
959 sec++;
960 nsec -= 1000000000;
962 kprintf("tstohz_high: negative time difference "
963 "%ld sec %ld nsec\n",
964 sec, nsec);
965 #endif
966 ticks = 1;
967 } else if (sec <= INT_MAX / hz) {
968 ticks = (int)(sec * hz +
969 ((u_long)nsec + (nstick - 1)) / nstick) + 1;
970 } else {
971 ticks = INT_MAX;
973 return (ticks);
978 * Compute number of ticks for the specified amount of time, erroring on
979 * the side of it being too low to ensure that sleeping the returned number
980 * of ticks will not result in a late return.
982 * The supplied timeval may not be negative and should be normalized. A
983 * return value of 0 is possible if the timeval converts to less then
984 * 1 tick.
986 * If ints have 32 bits, then the maximum value for any timeout in
987 * 10ms ticks is 248 days.
990 tvtohz_low(struct timeval *tv)
992 int ticks;
993 long sec;
995 sec = tv->tv_sec;
996 if (sec <= INT_MAX / hz)
997 ticks = (int)(sec * hz + (u_long)tv->tv_usec / ustick);
998 else
999 ticks = INT_MAX;
1000 return (ticks);
1004 tstohz_low(struct timespec *ts)
1006 int ticks;
1007 long sec;
1009 sec = ts->tv_sec;
1010 if (sec <= INT_MAX / hz)
1011 ticks = (int)(sec * hz + (u_long)ts->tv_nsec / nstick);
1012 else
1013 ticks = INT_MAX;
1014 return (ticks);
1018 * Start profiling on a process.
1020 * Kernel profiling passes proc0 which never exits and hence
1021 * keeps the profile clock running constantly.
1023 void
1024 startprofclock(struct proc *p)
1026 if ((p->p_flags & P_PROFIL) == 0) {
1027 p->p_flags |= P_PROFIL;
1028 #if 0 /* XXX */
1029 if (++profprocs == 1 && stathz != 0) {
1030 crit_enter();
1031 psdiv = psratio;
1032 setstatclockrate(profhz);
1033 crit_exit();
1035 #endif
1040 * Stop profiling on a process.
1042 * caller must hold p->p_token
1044 void
1045 stopprofclock(struct proc *p)
1047 if (p->p_flags & P_PROFIL) {
1048 p->p_flags &= ~P_PROFIL;
1049 #if 0 /* XXX */
1050 if (--profprocs == 0 && stathz != 0) {
1051 crit_enter();
1052 psdiv = 1;
1053 setstatclockrate(stathz);
1054 crit_exit();
1056 #endif
1061 * Return information about system clocks.
1063 static int
1064 sysctl_kern_clockrate(SYSCTL_HANDLER_ARGS)
1066 struct kinfo_clockinfo clkinfo;
1068 * Construct clockinfo structure.
1070 clkinfo.ci_hz = hz;
1071 clkinfo.ci_tick = ustick;
1072 clkinfo.ci_tickadj = ntp_default_tick_delta / 1000;
1073 clkinfo.ci_profhz = profhz;
1074 clkinfo.ci_stathz = stathz ? stathz : hz;
1075 return (sysctl_handle_opaque(oidp, &clkinfo, sizeof clkinfo, req));
1078 SYSCTL_PROC(_kern, KERN_CLOCKRATE, clockrate, CTLTYPE_STRUCT|CTLFLAG_RD,
1079 0, 0, sysctl_kern_clockrate, "S,clockinfo","");
1082 * We have eight functions for looking at the clock, four for
1083 * microseconds and four for nanoseconds. For each there is fast
1084 * but less precise version "get{nano|micro}[up]time" which will
1085 * return a time which is up to 1/HZ previous to the call, whereas
1086 * the raw version "{nano|micro}[up]time" will return a timestamp
1087 * which is as precise as possible. The "up" variants return the
1088 * time relative to system boot, these are well suited for time
1089 * interval measurements.
1091 * Each cpu independently maintains the current time of day, so all
1092 * we need to do to protect ourselves from changes is to do a loop
1093 * check on the seconds field changing out from under us.
1095 * The system timer maintains a 32 bit count and due to various issues
1096 * it is possible for the calculated delta to occasionally exceed
1097 * sys_cputimer->freq. If this occurs the sys_cputimer->freq64_nsec
1098 * multiplication can easily overflow, so we deal with the case. For
1099 * uniformity we deal with the case in the usec case too.
1101 * All the [get][micro,nano][time,uptime]() routines are MPSAFE.
1103 void
1104 getmicrouptime(struct timeval *tvp)
1106 struct globaldata *gd = mycpu;
1107 sysclock_t delta;
1109 do {
1110 tvp->tv_sec = gd->gd_time_seconds;
1111 delta = gd->gd_hardclock.time - gd->gd_cpuclock_base;
1112 } while (tvp->tv_sec != gd->gd_time_seconds);
1114 if (delta >= sys_cputimer->freq) {
1115 tvp->tv_sec += delta / sys_cputimer->freq;
1116 delta %= sys_cputimer->freq;
1118 tvp->tv_usec = (sys_cputimer->freq64_usec * delta) >> 32;
1119 if (tvp->tv_usec >= 1000000) {
1120 tvp->tv_usec -= 1000000;
1121 ++tvp->tv_sec;
1125 void
1126 getnanouptime(struct timespec *tsp)
1128 struct globaldata *gd = mycpu;
1129 sysclock_t delta;
1131 do {
1132 tsp->tv_sec = gd->gd_time_seconds;
1133 delta = gd->gd_hardclock.time - gd->gd_cpuclock_base;
1134 } while (tsp->tv_sec != gd->gd_time_seconds);
1136 if (delta >= sys_cputimer->freq) {
1137 tsp->tv_sec += delta / sys_cputimer->freq;
1138 delta %= sys_cputimer->freq;
1140 tsp->tv_nsec = (sys_cputimer->freq64_nsec * delta) >> 32;
1143 void
1144 microuptime(struct timeval *tvp)
1146 struct globaldata *gd = mycpu;
1147 sysclock_t delta;
1149 do {
1150 tvp->tv_sec = gd->gd_time_seconds;
1151 delta = sys_cputimer->count() - gd->gd_cpuclock_base;
1152 } while (tvp->tv_sec != gd->gd_time_seconds);
1154 if (delta >= sys_cputimer->freq) {
1155 tvp->tv_sec += delta / sys_cputimer->freq;
1156 delta %= sys_cputimer->freq;
1158 tvp->tv_usec = (sys_cputimer->freq64_usec * delta) >> 32;
1161 void
1162 nanouptime(struct timespec *tsp)
1164 struct globaldata *gd = mycpu;
1165 sysclock_t delta;
1167 do {
1168 tsp->tv_sec = gd->gd_time_seconds;
1169 delta = sys_cputimer->count() - gd->gd_cpuclock_base;
1170 } while (tsp->tv_sec != gd->gd_time_seconds);
1172 if (delta >= sys_cputimer->freq) {
1173 tsp->tv_sec += delta / sys_cputimer->freq;
1174 delta %= sys_cputimer->freq;
1176 tsp->tv_nsec = (sys_cputimer->freq64_nsec * delta) >> 32;
1180 * realtime routines
1182 void
1183 getmicrotime(struct timeval *tvp)
1185 struct globaldata *gd = mycpu;
1186 struct timespec *bt;
1187 sysclock_t delta;
1189 do {
1190 tvp->tv_sec = gd->gd_time_seconds;
1191 delta = gd->gd_hardclock.time - gd->gd_cpuclock_base;
1192 } while (tvp->tv_sec != gd->gd_time_seconds);
1194 if (delta >= sys_cputimer->freq) {
1195 tvp->tv_sec += delta / sys_cputimer->freq;
1196 delta %= sys_cputimer->freq;
1198 tvp->tv_usec = (sys_cputimer->freq64_usec * delta) >> 32;
1200 bt = &basetime[basetime_index];
1201 tvp->tv_sec += bt->tv_sec;
1202 tvp->tv_usec += bt->tv_nsec / 1000;
1203 while (tvp->tv_usec >= 1000000) {
1204 tvp->tv_usec -= 1000000;
1205 ++tvp->tv_sec;
1209 void
1210 getnanotime(struct timespec *tsp)
1212 struct globaldata *gd = mycpu;
1213 struct timespec *bt;
1214 sysclock_t delta;
1216 do {
1217 tsp->tv_sec = gd->gd_time_seconds;
1218 delta = gd->gd_hardclock.time - gd->gd_cpuclock_base;
1219 } while (tsp->tv_sec != gd->gd_time_seconds);
1221 if (delta >= sys_cputimer->freq) {
1222 tsp->tv_sec += delta / sys_cputimer->freq;
1223 delta %= sys_cputimer->freq;
1225 tsp->tv_nsec = (sys_cputimer->freq64_nsec * delta) >> 32;
1227 bt = &basetime[basetime_index];
1228 tsp->tv_sec += bt->tv_sec;
1229 tsp->tv_nsec += bt->tv_nsec;
1230 while (tsp->tv_nsec >= 1000000000) {
1231 tsp->tv_nsec -= 1000000000;
1232 ++tsp->tv_sec;
1236 static void
1237 getnanotime_nbt(struct timespec *nbt, struct timespec *tsp)
1239 struct globaldata *gd = mycpu;
1240 sysclock_t delta;
1242 do {
1243 tsp->tv_sec = gd->gd_time_seconds;
1244 delta = gd->gd_hardclock.time - gd->gd_cpuclock_base;
1245 } while (tsp->tv_sec != gd->gd_time_seconds);
1247 if (delta >= sys_cputimer->freq) {
1248 tsp->tv_sec += delta / sys_cputimer->freq;
1249 delta %= sys_cputimer->freq;
1251 tsp->tv_nsec = (sys_cputimer->freq64_nsec * delta) >> 32;
1253 tsp->tv_sec += nbt->tv_sec;
1254 tsp->tv_nsec += nbt->tv_nsec;
1255 while (tsp->tv_nsec >= 1000000000) {
1256 tsp->tv_nsec -= 1000000000;
1257 ++tsp->tv_sec;
1262 void
1263 microtime(struct timeval *tvp)
1265 struct globaldata *gd = mycpu;
1266 struct timespec *bt;
1267 sysclock_t delta;
1269 do {
1270 tvp->tv_sec = gd->gd_time_seconds;
1271 delta = sys_cputimer->count() - gd->gd_cpuclock_base;
1272 } while (tvp->tv_sec != gd->gd_time_seconds);
1274 if (delta >= sys_cputimer->freq) {
1275 tvp->tv_sec += delta / sys_cputimer->freq;
1276 delta %= sys_cputimer->freq;
1278 tvp->tv_usec = (sys_cputimer->freq64_usec * delta) >> 32;
1280 bt = &basetime[basetime_index];
1281 tvp->tv_sec += bt->tv_sec;
1282 tvp->tv_usec += bt->tv_nsec / 1000;
1283 while (tvp->tv_usec >= 1000000) {
1284 tvp->tv_usec -= 1000000;
1285 ++tvp->tv_sec;
1289 void
1290 nanotime(struct timespec *tsp)
1292 struct globaldata *gd = mycpu;
1293 struct timespec *bt;
1294 sysclock_t delta;
1296 do {
1297 tsp->tv_sec = gd->gd_time_seconds;
1298 delta = sys_cputimer->count() - gd->gd_cpuclock_base;
1299 } while (tsp->tv_sec != gd->gd_time_seconds);
1301 if (delta >= sys_cputimer->freq) {
1302 tsp->tv_sec += delta / sys_cputimer->freq;
1303 delta %= sys_cputimer->freq;
1305 tsp->tv_nsec = (sys_cputimer->freq64_nsec * delta) >> 32;
1307 bt = &basetime[basetime_index];
1308 tsp->tv_sec += bt->tv_sec;
1309 tsp->tv_nsec += bt->tv_nsec;
1310 while (tsp->tv_nsec >= 1000000000) {
1311 tsp->tv_nsec -= 1000000000;
1312 ++tsp->tv_sec;
1317 * note: this is not exactly synchronized with real time. To do that we
1318 * would have to do what microtime does and check for a nanoseconds overflow.
1320 time_t
1321 get_approximate_time_t(void)
1323 struct globaldata *gd = mycpu;
1324 struct timespec *bt;
1326 bt = &basetime[basetime_index];
1327 return(gd->gd_time_seconds + bt->tv_sec);
1331 pps_ioctl(u_long cmd, caddr_t data, struct pps_state *pps)
1333 pps_params_t *app;
1334 struct pps_fetch_args *fapi;
1335 #ifdef PPS_SYNC
1336 struct pps_kcbind_args *kapi;
1337 #endif
1339 switch (cmd) {
1340 case PPS_IOC_CREATE:
1341 return (0);
1342 case PPS_IOC_DESTROY:
1343 return (0);
1344 case PPS_IOC_SETPARAMS:
1345 app = (pps_params_t *)data;
1346 if (app->mode & ~pps->ppscap)
1347 return (EINVAL);
1348 pps->ppsparam = *app;
1349 return (0);
1350 case PPS_IOC_GETPARAMS:
1351 app = (pps_params_t *)data;
1352 *app = pps->ppsparam;
1353 app->api_version = PPS_API_VERS_1;
1354 return (0);
1355 case PPS_IOC_GETCAP:
1356 *(int*)data = pps->ppscap;
1357 return (0);
1358 case PPS_IOC_FETCH:
1359 fapi = (struct pps_fetch_args *)data;
1360 if (fapi->tsformat && fapi->tsformat != PPS_TSFMT_TSPEC)
1361 return (EINVAL);
1362 if (fapi->timeout.tv_sec || fapi->timeout.tv_nsec)
1363 return (EOPNOTSUPP);
1364 pps->ppsinfo.current_mode = pps->ppsparam.mode;
1365 fapi->pps_info_buf = pps->ppsinfo;
1366 return (0);
1367 case PPS_IOC_KCBIND:
1368 #ifdef PPS_SYNC
1369 kapi = (struct pps_kcbind_args *)data;
1370 /* XXX Only root should be able to do this */
1371 if (kapi->tsformat && kapi->tsformat != PPS_TSFMT_TSPEC)
1372 return (EINVAL);
1373 if (kapi->kernel_consumer != PPS_KC_HARDPPS)
1374 return (EINVAL);
1375 if (kapi->edge & ~pps->ppscap)
1376 return (EINVAL);
1377 pps->kcmode = kapi->edge;
1378 return (0);
1379 #else
1380 return (EOPNOTSUPP);
1381 #endif
1382 default:
1383 return (ENOTTY);
1387 void
1388 pps_init(struct pps_state *pps)
1390 pps->ppscap |= PPS_TSFMT_TSPEC;
1391 if (pps->ppscap & PPS_CAPTUREASSERT)
1392 pps->ppscap |= PPS_OFFSETASSERT;
1393 if (pps->ppscap & PPS_CAPTURECLEAR)
1394 pps->ppscap |= PPS_OFFSETCLEAR;
1397 void
1398 pps_event(struct pps_state *pps, sysclock_t count, int event)
1400 struct globaldata *gd;
1401 struct timespec *tsp;
1402 struct timespec *osp;
1403 struct timespec *bt;
1404 struct timespec ts;
1405 sysclock_t *pcount;
1406 #ifdef PPS_SYNC
1407 sysclock_t tcount;
1408 #endif
1409 sysclock_t delta;
1410 pps_seq_t *pseq;
1411 int foff;
1412 #ifdef PPS_SYNC
1413 int fhard;
1414 #else
1415 int fhard __unused;
1416 #endif
1418 gd = mycpu;
1420 /* Things would be easier with arrays... */
1421 if (event == PPS_CAPTUREASSERT) {
1422 tsp = &pps->ppsinfo.assert_timestamp;
1423 osp = &pps->ppsparam.assert_offset;
1424 foff = pps->ppsparam.mode & PPS_OFFSETASSERT;
1425 fhard = pps->kcmode & PPS_CAPTUREASSERT;
1426 pcount = &pps->ppscount[0];
1427 pseq = &pps->ppsinfo.assert_sequence;
1428 } else {
1429 tsp = &pps->ppsinfo.clear_timestamp;
1430 osp = &pps->ppsparam.clear_offset;
1431 foff = pps->ppsparam.mode & PPS_OFFSETCLEAR;
1432 fhard = pps->kcmode & PPS_CAPTURECLEAR;
1433 pcount = &pps->ppscount[1];
1434 pseq = &pps->ppsinfo.clear_sequence;
1437 /* Nothing really happened */
1438 if (*pcount == count)
1439 return;
1441 *pcount = count;
1443 do {
1444 ts.tv_sec = gd->gd_time_seconds;
1445 delta = count - gd->gd_cpuclock_base;
1446 } while (ts.tv_sec != gd->gd_time_seconds);
1448 if (delta >= sys_cputimer->freq) {
1449 ts.tv_sec += delta / sys_cputimer->freq;
1450 delta %= sys_cputimer->freq;
1452 ts.tv_nsec = (sys_cputimer->freq64_nsec * delta) >> 32;
1453 bt = &basetime[basetime_index];
1454 ts.tv_sec += bt->tv_sec;
1455 ts.tv_nsec += bt->tv_nsec;
1456 while (ts.tv_nsec >= 1000000000) {
1457 ts.tv_nsec -= 1000000000;
1458 ++ts.tv_sec;
1461 (*pseq)++;
1462 *tsp = ts;
1464 if (foff) {
1465 timespecadd(tsp, osp);
1466 if (tsp->tv_nsec < 0) {
1467 tsp->tv_nsec += 1000000000;
1468 tsp->tv_sec -= 1;
1471 #ifdef PPS_SYNC
1472 if (fhard) {
1473 /* magic, at its best... */
1474 tcount = count - pps->ppscount[2];
1475 pps->ppscount[2] = count;
1476 if (tcount >= sys_cputimer->freq) {
1477 delta = (1000000000 * (tcount / sys_cputimer->freq) +
1478 sys_cputimer->freq64_nsec *
1479 (tcount % sys_cputimer->freq)) >> 32;
1480 } else {
1481 delta = (sys_cputimer->freq64_nsec * tcount) >> 32;
1483 hardpps(tsp, delta);
1485 #endif
1489 * Return the tsc target value for a delay of (ns).
1491 * Returns -1 if the TSC is not supported.
1493 int64_t
1494 tsc_get_target(int ns)
1496 #if defined(_RDTSC_SUPPORTED_)
1497 if (cpu_feature & CPUID_TSC) {
1498 return (rdtsc() + tsc_frequency * ns / (int64_t)1000000000);
1500 #endif
1501 return(-1);
1505 * Compare the tsc against the passed target
1507 * Returns +1 if the target has been reached
1508 * Returns 0 if the target has not yet been reached
1509 * Returns -1 if the TSC is not supported.
1511 * Typical use: while (tsc_test_target(target) == 0) { ...poll... }
1514 tsc_test_target(int64_t target)
1516 #if defined(_RDTSC_SUPPORTED_)
1517 if (cpu_feature & CPUID_TSC) {
1518 if ((int64_t)(target - rdtsc()) <= 0)
1519 return(1);
1520 return(0);
1522 #endif
1523 return(-1);
1527 * Delay the specified number of nanoseconds using the tsc. This function
1528 * returns immediately if the TSC is not supported. At least one cpu_pause()
1529 * will be issued.
1531 void
1532 tsc_delay(int ns)
1534 int64_t clk;
1536 clk = tsc_get_target(ns);
1537 cpu_pause();
1538 while (tsc_test_target(clk) == 0)
1539 cpu_pause();