Unify vlan_input() and vlan_input_tag():
[dragonfly.git] / sys / dev / netif / nge / if_nge.c
blob4ba86bc238596422e99d625125e839eac2ca5d3d
1 /*
2 * Copyright (c) 2001 Wind River Systems
3 * Copyright (c) 1997, 1998, 1999, 2000, 2001
4 * Bill Paul <wpaul@bsdi.com>. All rights reserved.
6 * Redistribution and use in source and binary forms, with or without
7 * modification, are permitted provided that the following conditions
8 * are met:
9 * 1. Redistributions of source code must retain the above copyright
10 * notice, this list of conditions and the following disclaimer.
11 * 2. Redistributions in binary form must reproduce the above copyright
12 * notice, this list of conditions and the following disclaimer in the
13 * documentation and/or other materials provided with the distribution.
14 * 3. All advertising materials mentioning features or use of this software
15 * must display the following acknowledgement:
16 * This product includes software developed by Bill Paul.
17 * 4. Neither the name of the author nor the names of any co-contributors
18 * may be used to endorse or promote products derived from this software
19 * without specific prior written permission.
21 * THIS SOFTWARE IS PROVIDED BY Bill Paul AND CONTRIBUTORS ``AS IS'' AND
22 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
23 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
24 * ARE DISCLAIMED. IN NO EVENT SHALL Bill Paul OR THE VOICES IN HIS HEAD
25 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
26 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
27 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
28 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
29 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
30 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
31 * THE POSSIBILITY OF SUCH DAMAGE.
33 * $FreeBSD: src/sys/dev/nge/if_nge.c,v 1.13.2.13 2003/02/05 22:03:57 mbr Exp $
34 * $DragonFly: src/sys/dev/netif/nge/if_nge.c,v 1.48 2008/05/16 13:19:12 sephe Exp $
38 * National Semiconductor DP83820/DP83821 gigabit ethernet driver
39 * for FreeBSD. Datasheets are available from:
41 * http://www.national.com/ds/DP/DP83820.pdf
42 * http://www.national.com/ds/DP/DP83821.pdf
44 * These chips are used on several low cost gigabit ethernet NICs
45 * sold by D-Link, Addtron, SMC and Asante. Both parts are
46 * virtually the same, except the 83820 is a 64-bit/32-bit part,
47 * while the 83821 is 32-bit only.
49 * Many cards also use National gigE transceivers, such as the
50 * DP83891, DP83861 and DP83862 gigPHYTER parts. The DP83861 datasheet
51 * contains a full register description that applies to all of these
52 * components:
54 * http://www.national.com/ds/DP/DP83861.pdf
56 * Written by Bill Paul <wpaul@bsdi.com>
57 * BSDi Open Source Solutions
61 * The NatSemi DP83820 and 83821 controllers are enhanced versions
62 * of the NatSemi MacPHYTER 10/100 devices. They support 10, 100
63 * and 1000Mbps speeds with 1000baseX (ten bit interface), MII and GMII
64 * ports. Other features include 8K TX FIFO and 32K RX FIFO, TCP/IP
65 * hardware checksum offload (IPv4 only), VLAN tagging and filtering,
66 * priority TX and RX queues, a 2048 bit multicast hash filter, 4 RX pattern
67 * matching buffers, one perfect address filter buffer and interrupt
68 * moderation. The 83820 supports both 64-bit and 32-bit addressing
69 * and data transfers: the 64-bit support can be toggled on or off
70 * via software. This affects the size of certain fields in the DMA
71 * descriptors.
73 * There are two bugs/misfeatures in the 83820/83821 that I have
74 * discovered so far:
76 * - Receive buffers must be aligned on 64-bit boundaries, which means
77 * you must resort to copying data in order to fix up the payload
78 * alignment.
80 * - In order to transmit jumbo frames larger than 8170 bytes, you have
81 * to turn off transmit checksum offloading, because the chip can't
82 * compute the checksum on an outgoing frame unless it fits entirely
83 * within the TX FIFO, which is only 8192 bytes in size. If you have
84 * TX checksum offload enabled and you transmit attempt to transmit a
85 * frame larger than 8170 bytes, the transmitter will wedge.
87 * To work around the latter problem, TX checksum offload is disabled
88 * if the user selects an MTU larger than 8152 (8170 - 18).
91 #include "opt_polling.h"
93 #include <sys/param.h>
94 #include <sys/systm.h>
95 #include <sys/sockio.h>
96 #include <sys/mbuf.h>
97 #include <sys/malloc.h>
98 #include <sys/kernel.h>
99 #include <sys/interrupt.h>
100 #include <sys/socket.h>
101 #include <sys/serialize.h>
102 #include <sys/bus.h>
103 #include <sys/rman.h>
104 #include <sys/thread2.h>
106 #include <net/if.h>
107 #include <net/ifq_var.h>
108 #include <net/if_arp.h>
109 #include <net/ethernet.h>
110 #include <net/if_dl.h>
111 #include <net/if_media.h>
112 #include <net/if_types.h>
113 #include <net/vlan/if_vlan_var.h>
114 #include <net/vlan/if_vlan_ether.h>
116 #include <net/bpf.h>
118 #include <vm/vm.h> /* for vtophys */
119 #include <vm/pmap.h> /* for vtophys */
121 #include <dev/netif/mii_layer/mii.h>
122 #include <dev/netif/mii_layer/miivar.h>
124 #include <bus/pci/pcidevs.h>
125 #include <bus/pci/pcireg.h>
126 #include <bus/pci/pcivar.h>
128 #define NGE_USEIOSPACE
130 #include "if_ngereg.h"
133 /* "controller miibus0" required. See GENERIC if you get errors here. */
134 #include "miibus_if.h"
136 #define NGE_CSUM_FEATURES (CSUM_IP | CSUM_TCP | CSUM_UDP)
139 * Various supported device vendors/types and their names.
141 static struct nge_type nge_devs[] = {
142 { PCI_VENDOR_NS, PCI_PRODUCT_NS_DP83820,
143 "National Semiconductor Gigabit Ethernet" },
144 { 0, 0, NULL }
147 static int nge_probe(device_t);
148 static int nge_attach(device_t);
149 static int nge_detach(device_t);
151 static int nge_alloc_jumbo_mem(struct nge_softc *);
152 static struct nge_jslot
153 *nge_jalloc(struct nge_softc *);
154 static void nge_jfree(void *);
155 static void nge_jref(void *);
157 static int nge_newbuf(struct nge_softc *, struct nge_desc *,
158 struct mbuf *);
159 static int nge_encap(struct nge_softc *, struct mbuf *, uint32_t *);
160 static void nge_rxeof(struct nge_softc *);
161 static void nge_txeof(struct nge_softc *);
162 static void nge_intr(void *);
163 static void nge_tick(void *);
164 static void nge_start(struct ifnet *);
165 static int nge_ioctl(struct ifnet *, u_long, caddr_t, struct ucred *);
166 static void nge_init(void *);
167 static void nge_stop(struct nge_softc *);
168 static void nge_watchdog(struct ifnet *);
169 static void nge_shutdown(device_t);
170 static int nge_ifmedia_upd(struct ifnet *);
171 static void nge_ifmedia_sts(struct ifnet *, struct ifmediareq *);
173 static void nge_delay(struct nge_softc *);
174 static void nge_eeprom_idle(struct nge_softc *);
175 static void nge_eeprom_putbyte(struct nge_softc *, int);
176 static void nge_eeprom_getword(struct nge_softc *, int, uint16_t *);
177 static void nge_read_eeprom(struct nge_softc *, void *, int, int);
179 static void nge_mii_sync(struct nge_softc *);
180 static void nge_mii_send(struct nge_softc *, uint32_t, int);
181 static int nge_mii_readreg(struct nge_softc *, struct nge_mii_frame *);
182 static int nge_mii_writereg(struct nge_softc *, struct nge_mii_frame *);
184 static int nge_miibus_readreg(device_t, int, int);
185 static int nge_miibus_writereg(device_t, int, int, int);
186 static void nge_miibus_statchg(device_t);
188 static void nge_setmulti(struct nge_softc *);
189 static void nge_reset(struct nge_softc *);
190 static int nge_list_rx_init(struct nge_softc *);
191 static int nge_list_tx_init(struct nge_softc *);
192 #ifdef DEVICE_POLLING
193 static void nge_poll(struct ifnet *ifp, enum poll_cmd cmd, int count);
194 #endif
196 #ifdef NGE_USEIOSPACE
197 #define NGE_RES SYS_RES_IOPORT
198 #define NGE_RID NGE_PCI_LOIO
199 #else
200 #define NGE_RES SYS_RES_MEMORY
201 #define NGE_RID NGE_PCI_LOMEM
202 #endif
204 static device_method_t nge_methods[] = {
205 /* Device interface */
206 DEVMETHOD(device_probe, nge_probe),
207 DEVMETHOD(device_attach, nge_attach),
208 DEVMETHOD(device_detach, nge_detach),
209 DEVMETHOD(device_shutdown, nge_shutdown),
211 /* bus interface */
212 DEVMETHOD(bus_print_child, bus_generic_print_child),
213 DEVMETHOD(bus_driver_added, bus_generic_driver_added),
215 /* MII interface */
216 DEVMETHOD(miibus_readreg, nge_miibus_readreg),
217 DEVMETHOD(miibus_writereg, nge_miibus_writereg),
218 DEVMETHOD(miibus_statchg, nge_miibus_statchg),
220 { 0, 0 }
223 static DEFINE_CLASS_0(nge, nge_driver, nge_methods, sizeof(struct nge_softc));
224 static devclass_t nge_devclass;
226 DECLARE_DUMMY_MODULE(if_nge);
227 MODULE_DEPEND(if_nge, miibus, 1, 1, 1);
228 DRIVER_MODULE(if_nge, pci, nge_driver, nge_devclass, 0, 0);
229 DRIVER_MODULE(miibus, nge, miibus_driver, miibus_devclass, 0, 0);
231 #define NGE_SETBIT(sc, reg, x) \
232 CSR_WRITE_4(sc, reg, CSR_READ_4(sc, reg) | (x))
234 #define NGE_CLRBIT(sc, reg, x) \
235 CSR_WRITE_4(sc, reg, CSR_READ_4(sc, reg) & ~(x))
237 #define SIO_SET(x) \
238 CSR_WRITE_4(sc, NGE_MEAR, CSR_READ_4(sc, NGE_MEAR) | (x))
240 #define SIO_CLR(x) \
241 CSR_WRITE_4(sc, NGE_MEAR, CSR_READ_4(sc, NGE_MEAR) & ~(x))
243 static void
244 nge_delay(struct nge_softc *sc)
246 int idx;
248 for (idx = (300 / 33) + 1; idx > 0; idx--)
249 CSR_READ_4(sc, NGE_CSR);
252 static void
253 nge_eeprom_idle(struct nge_softc *sc)
255 int i;
257 SIO_SET(NGE_MEAR_EE_CSEL);
258 nge_delay(sc);
259 SIO_SET(NGE_MEAR_EE_CLK);
260 nge_delay(sc);
262 for (i = 0; i < 25; i++) {
263 SIO_CLR(NGE_MEAR_EE_CLK);
264 nge_delay(sc);
265 SIO_SET(NGE_MEAR_EE_CLK);
266 nge_delay(sc);
269 SIO_CLR(NGE_MEAR_EE_CLK);
270 nge_delay(sc);
271 SIO_CLR(NGE_MEAR_EE_CSEL);
272 nge_delay(sc);
273 CSR_WRITE_4(sc, NGE_MEAR, 0x00000000);
277 * Send a read command and address to the EEPROM, check for ACK.
279 static void
280 nge_eeprom_putbyte(struct nge_softc *sc, int addr)
282 int d, i;
284 d = addr | NGE_EECMD_READ;
287 * Feed in each bit and stobe the clock.
289 for (i = 0x400; i; i >>= 1) {
290 if (d & i)
291 SIO_SET(NGE_MEAR_EE_DIN);
292 else
293 SIO_CLR(NGE_MEAR_EE_DIN);
294 nge_delay(sc);
295 SIO_SET(NGE_MEAR_EE_CLK);
296 nge_delay(sc);
297 SIO_CLR(NGE_MEAR_EE_CLK);
298 nge_delay(sc);
303 * Read a word of data stored in the EEPROM at address 'addr.'
305 static void
306 nge_eeprom_getword(struct nge_softc *sc, int addr, uint16_t *dest)
308 int i;
309 uint16_t word = 0;
311 /* Force EEPROM to idle state. */
312 nge_eeprom_idle(sc);
314 /* Enter EEPROM access mode. */
315 nge_delay(sc);
316 SIO_CLR(NGE_MEAR_EE_CLK);
317 nge_delay(sc);
318 SIO_SET(NGE_MEAR_EE_CSEL);
319 nge_delay(sc);
322 * Send address of word we want to read.
324 nge_eeprom_putbyte(sc, addr);
327 * Start reading bits from EEPROM.
329 for (i = 0x8000; i; i >>= 1) {
330 SIO_SET(NGE_MEAR_EE_CLK);
331 nge_delay(sc);
332 if (CSR_READ_4(sc, NGE_MEAR) & NGE_MEAR_EE_DOUT)
333 word |= i;
334 nge_delay(sc);
335 SIO_CLR(NGE_MEAR_EE_CLK);
336 nge_delay(sc);
339 /* Turn off EEPROM access mode. */
340 nge_eeprom_idle(sc);
342 *dest = word;
346 * Read a sequence of words from the EEPROM.
348 static void
349 nge_read_eeprom(struct nge_softc *sc, void *dest, int off, int cnt)
351 int i;
352 uint16_t word = 0, *ptr;
354 for (i = 0; i < cnt; i++) {
355 nge_eeprom_getword(sc, off + i, &word);
356 ptr = (uint16_t *)((uint8_t *)dest + (i * 2));
357 *ptr = word;
362 * Sync the PHYs by setting data bit and strobing the clock 32 times.
364 static void
365 nge_mii_sync(struct nge_softc *sc)
367 int i;
369 SIO_SET(NGE_MEAR_MII_DIR | NGE_MEAR_MII_DATA);
371 for (i = 0; i < 32; i++) {
372 SIO_SET(NGE_MEAR_MII_CLK);
373 DELAY(1);
374 SIO_CLR(NGE_MEAR_MII_CLK);
375 DELAY(1);
380 * Clock a series of bits through the MII.
382 static void
383 nge_mii_send(struct nge_softc *sc, uint32_t bits, int cnt)
385 int i;
387 SIO_CLR(NGE_MEAR_MII_CLK);
389 for (i = (0x1 << (cnt - 1)); i; i >>= 1) {
390 if (bits & i)
391 SIO_SET(NGE_MEAR_MII_DATA);
392 else
393 SIO_CLR(NGE_MEAR_MII_DATA);
394 DELAY(1);
395 SIO_CLR(NGE_MEAR_MII_CLK);
396 DELAY(1);
397 SIO_SET(NGE_MEAR_MII_CLK);
402 * Read an PHY register through the MII.
404 static int
405 nge_mii_readreg(struct nge_softc *sc, struct nge_mii_frame *frame)
407 int ack, i;
410 * Set up frame for RX.
412 frame->mii_stdelim = NGE_MII_STARTDELIM;
413 frame->mii_opcode = NGE_MII_READOP;
414 frame->mii_turnaround = 0;
415 frame->mii_data = 0;
417 CSR_WRITE_4(sc, NGE_MEAR, 0);
420 * Turn on data xmit.
422 SIO_SET(NGE_MEAR_MII_DIR);
424 nge_mii_sync(sc);
427 * Send command/address info.
429 nge_mii_send(sc, frame->mii_stdelim, 2);
430 nge_mii_send(sc, frame->mii_opcode, 2);
431 nge_mii_send(sc, frame->mii_phyaddr, 5);
432 nge_mii_send(sc, frame->mii_regaddr, 5);
434 /* Idle bit */
435 SIO_CLR((NGE_MEAR_MII_CLK | NGE_MEAR_MII_DATA));
436 DELAY(1);
437 SIO_SET(NGE_MEAR_MII_CLK);
438 DELAY(1);
440 /* Turn off xmit. */
441 SIO_CLR(NGE_MEAR_MII_DIR);
442 /* Check for ack */
443 SIO_CLR(NGE_MEAR_MII_CLK);
444 DELAY(1);
445 ack = CSR_READ_4(sc, NGE_MEAR) & NGE_MEAR_MII_DATA;
446 SIO_SET(NGE_MEAR_MII_CLK);
447 DELAY(1);
450 * Now try reading data bits. If the ack failed, we still
451 * need to clock through 16 cycles to keep the PHY(s) in sync.
453 if (ack) {
454 for(i = 0; i < 16; i++) {
455 SIO_CLR(NGE_MEAR_MII_CLK);
456 DELAY(1);
457 SIO_SET(NGE_MEAR_MII_CLK);
458 DELAY(1);
460 goto fail;
463 for (i = 0x8000; i; i >>= 1) {
464 SIO_CLR(NGE_MEAR_MII_CLK);
465 DELAY(1);
466 if (!ack) {
467 if (CSR_READ_4(sc, NGE_MEAR) & NGE_MEAR_MII_DATA)
468 frame->mii_data |= i;
469 DELAY(1);
471 SIO_SET(NGE_MEAR_MII_CLK);
472 DELAY(1);
475 fail:
476 SIO_CLR(NGE_MEAR_MII_CLK);
477 DELAY(1);
478 SIO_SET(NGE_MEAR_MII_CLK);
479 DELAY(1);
481 if (ack)
482 return(1);
483 return(0);
487 * Write to a PHY register through the MII.
489 static int
490 nge_mii_writereg(struct nge_softc *sc, struct nge_mii_frame *frame)
493 * Set up frame for TX.
496 frame->mii_stdelim = NGE_MII_STARTDELIM;
497 frame->mii_opcode = NGE_MII_WRITEOP;
498 frame->mii_turnaround = NGE_MII_TURNAROUND;
501 * Turn on data output.
503 SIO_SET(NGE_MEAR_MII_DIR);
505 nge_mii_sync(sc);
507 nge_mii_send(sc, frame->mii_stdelim, 2);
508 nge_mii_send(sc, frame->mii_opcode, 2);
509 nge_mii_send(sc, frame->mii_phyaddr, 5);
510 nge_mii_send(sc, frame->mii_regaddr, 5);
511 nge_mii_send(sc, frame->mii_turnaround, 2);
512 nge_mii_send(sc, frame->mii_data, 16);
514 /* Idle bit. */
515 SIO_SET(NGE_MEAR_MII_CLK);
516 DELAY(1);
517 SIO_CLR(NGE_MEAR_MII_CLK);
518 DELAY(1);
521 * Turn off xmit.
523 SIO_CLR(NGE_MEAR_MII_DIR);
525 return(0);
528 static int
529 nge_miibus_readreg(device_t dev, int phy, int reg)
531 struct nge_softc *sc = device_get_softc(dev);
532 struct nge_mii_frame frame;
534 bzero((char *)&frame, sizeof(frame));
536 frame.mii_phyaddr = phy;
537 frame.mii_regaddr = reg;
538 nge_mii_readreg(sc, &frame);
540 return(frame.mii_data);
543 static int
544 nge_miibus_writereg(device_t dev, int phy, int reg, int data)
546 struct nge_softc *sc = device_get_softc(dev);
547 struct nge_mii_frame frame;
549 bzero((char *)&frame, sizeof(frame));
551 frame.mii_phyaddr = phy;
552 frame.mii_regaddr = reg;
553 frame.mii_data = data;
554 nge_mii_writereg(sc, &frame);
556 return(0);
559 static void
560 nge_miibus_statchg(device_t dev)
562 struct nge_softc *sc = device_get_softc(dev);
563 struct mii_data *mii;
564 int status;
566 if (sc->nge_tbi) {
567 if (IFM_SUBTYPE(sc->nge_ifmedia.ifm_cur->ifm_media)
568 == IFM_AUTO) {
569 status = CSR_READ_4(sc, NGE_TBI_ANLPAR);
570 if (status == 0 || status & NGE_TBIANAR_FDX) {
571 NGE_SETBIT(sc, NGE_TX_CFG,
572 (NGE_TXCFG_IGN_HBEAT | NGE_TXCFG_IGN_CARR));
573 NGE_SETBIT(sc, NGE_RX_CFG, NGE_RXCFG_RX_FDX);
574 } else {
575 NGE_CLRBIT(sc, NGE_TX_CFG,
576 (NGE_TXCFG_IGN_HBEAT | NGE_TXCFG_IGN_CARR));
577 NGE_CLRBIT(sc, NGE_RX_CFG, NGE_RXCFG_RX_FDX);
579 } else if ((sc->nge_ifmedia.ifm_cur->ifm_media & IFM_GMASK)
580 != IFM_FDX) {
581 NGE_CLRBIT(sc, NGE_TX_CFG,
582 (NGE_TXCFG_IGN_HBEAT | NGE_TXCFG_IGN_CARR));
583 NGE_CLRBIT(sc, NGE_RX_CFG, NGE_RXCFG_RX_FDX);
584 } else {
585 NGE_SETBIT(sc, NGE_TX_CFG,
586 (NGE_TXCFG_IGN_HBEAT | NGE_TXCFG_IGN_CARR));
587 NGE_SETBIT(sc, NGE_RX_CFG, NGE_RXCFG_RX_FDX);
589 } else {
590 mii = device_get_softc(sc->nge_miibus);
592 if ((mii->mii_media_active & IFM_GMASK) == IFM_FDX) {
593 NGE_SETBIT(sc, NGE_TX_CFG,
594 (NGE_TXCFG_IGN_HBEAT | NGE_TXCFG_IGN_CARR));
595 NGE_SETBIT(sc, NGE_RX_CFG, NGE_RXCFG_RX_FDX);
596 } else {
597 NGE_CLRBIT(sc, NGE_TX_CFG,
598 (NGE_TXCFG_IGN_HBEAT | NGE_TXCFG_IGN_CARR));
599 NGE_CLRBIT(sc, NGE_RX_CFG, NGE_RXCFG_RX_FDX);
602 /* If we have a 1000Mbps link, set the mode_1000 bit. */
603 if (IFM_SUBTYPE(mii->mii_media_active) == IFM_1000_T ||
604 IFM_SUBTYPE(mii->mii_media_active) == IFM_1000_SX) {
605 NGE_SETBIT(sc, NGE_CFG, NGE_CFG_MODE_1000);
606 } else {
607 NGE_CLRBIT(sc, NGE_CFG, NGE_CFG_MODE_1000);
612 static void
613 nge_setmulti(struct nge_softc *sc)
615 struct ifnet *ifp = &sc->arpcom.ac_if;
616 struct ifmultiaddr *ifma;
617 uint32_t filtsave, h = 0, i;
618 int bit, index;
620 if (ifp->if_flags & IFF_ALLMULTI || ifp->if_flags & IFF_PROMISC) {
621 NGE_CLRBIT(sc, NGE_RXFILT_CTL,
622 NGE_RXFILTCTL_MCHASH | NGE_RXFILTCTL_UCHASH);
623 NGE_SETBIT(sc, NGE_RXFILT_CTL, NGE_RXFILTCTL_ALLMULTI);
624 return;
628 * We have to explicitly enable the multicast hash table
629 * on the NatSemi chip if we want to use it, which we do.
630 * We also have to tell it that we don't want to use the
631 * hash table for matching unicast addresses.
633 NGE_SETBIT(sc, NGE_RXFILT_CTL, NGE_RXFILTCTL_MCHASH);
634 NGE_CLRBIT(sc, NGE_RXFILT_CTL,
635 NGE_RXFILTCTL_ALLMULTI | NGE_RXFILTCTL_UCHASH);
637 filtsave = CSR_READ_4(sc, NGE_RXFILT_CTL);
639 /* first, zot all the existing hash bits */
640 for (i = 0; i < NGE_MCAST_FILTER_LEN; i += 2) {
641 CSR_WRITE_4(sc, NGE_RXFILT_CTL, NGE_FILTADDR_MCAST_LO + i);
642 CSR_WRITE_4(sc, NGE_RXFILT_DATA, 0);
646 * From the 11 bits returned by the crc routine, the top 7
647 * bits represent the 16-bit word in the mcast hash table
648 * that needs to be updated, and the lower 4 bits represent
649 * which bit within that byte needs to be set.
651 LIST_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) {
652 if (ifma->ifma_addr->sa_family != AF_LINK)
653 continue;
654 h = ether_crc32_be(LLADDR((struct sockaddr_dl *)
655 ifma->ifma_addr), ETHER_ADDR_LEN) >> 21;
656 index = (h >> 4) & 0x7F;
657 bit = h & 0xF;
658 CSR_WRITE_4(sc, NGE_RXFILT_CTL,
659 NGE_FILTADDR_MCAST_LO + (index * 2));
660 NGE_SETBIT(sc, NGE_RXFILT_DATA, (1 << bit));
663 CSR_WRITE_4(sc, NGE_RXFILT_CTL, filtsave);
666 static void
667 nge_reset(struct nge_softc *sc)
669 int i;
671 NGE_SETBIT(sc, NGE_CSR, NGE_CSR_RESET);
673 for (i = 0; i < NGE_TIMEOUT; i++) {
674 if ((CSR_READ_4(sc, NGE_CSR) & NGE_CSR_RESET) == 0)
675 break;
678 if (i == NGE_TIMEOUT)
679 kprintf("nge%d: reset never completed\n", sc->nge_unit);
681 /* Wait a little while for the chip to get its brains in order. */
682 DELAY(1000);
685 * If this is a NetSemi chip, make sure to clear
686 * PME mode.
688 CSR_WRITE_4(sc, NGE_CLKRUN, NGE_CLKRUN_PMESTS);
689 CSR_WRITE_4(sc, NGE_CLKRUN, 0);
693 * Probe for an NatSemi chip. Check the PCI vendor and device
694 * IDs against our list and return a device name if we find a match.
696 static int
697 nge_probe(device_t dev)
699 struct nge_type *t;
700 uint16_t vendor, product;
702 vendor = pci_get_vendor(dev);
703 product = pci_get_device(dev);
705 for (t = nge_devs; t->nge_name != NULL; t++) {
706 if (vendor == t->nge_vid && product == t->nge_did) {
707 device_set_desc(dev, t->nge_name);
708 return(0);
712 return(ENXIO);
716 * Attach the interface. Allocate softc structures, do ifmedia
717 * setup and ethernet/BPF attach.
719 static int
720 nge_attach(device_t dev)
722 struct nge_softc *sc;
723 struct ifnet *ifp;
724 uint8_t eaddr[ETHER_ADDR_LEN];
725 uint32_t command;
726 int error = 0, rid, unit;
727 const char *sep = "";
729 sc = device_get_softc(dev);
730 unit = device_get_unit(dev);
731 callout_init(&sc->nge_stat_timer);
732 lwkt_serialize_init(&sc->nge_jslot_serializer);
735 * Handle power management nonsense.
737 command = pci_read_config(dev, NGE_PCI_CAPID, 4) & 0x000000FF;
738 if (command == 0x01) {
739 command = pci_read_config(dev, NGE_PCI_PWRMGMTCTRL, 4);
740 if (command & NGE_PSTATE_MASK) {
741 uint32_t iobase, membase, irq;
743 /* Save important PCI config data. */
744 iobase = pci_read_config(dev, NGE_PCI_LOIO, 4);
745 membase = pci_read_config(dev, NGE_PCI_LOMEM, 4);
746 irq = pci_read_config(dev, NGE_PCI_INTLINE, 4);
748 /* Reset the power state. */
749 kprintf("nge%d: chip is in D%d power mode "
750 "-- setting to D0\n", unit, command & NGE_PSTATE_MASK);
751 command &= 0xFFFFFFFC;
752 pci_write_config(dev, NGE_PCI_PWRMGMTCTRL, command, 4);
754 /* Restore PCI config data. */
755 pci_write_config(dev, NGE_PCI_LOIO, iobase, 4);
756 pci_write_config(dev, NGE_PCI_LOMEM, membase, 4);
757 pci_write_config(dev, NGE_PCI_INTLINE, irq, 4);
762 * Map control/status registers.
764 command = pci_read_config(dev, PCIR_COMMAND, 4);
765 command |= (PCIM_CMD_PORTEN|PCIM_CMD_MEMEN|PCIM_CMD_BUSMASTEREN);
766 pci_write_config(dev, PCIR_COMMAND, command, 4);
767 command = pci_read_config(dev, PCIR_COMMAND, 4);
769 #ifdef NGE_USEIOSPACE
770 if (!(command & PCIM_CMD_PORTEN)) {
771 kprintf("nge%d: failed to enable I/O ports!\n", unit);
772 error = ENXIO;
773 return(error);
775 #else
776 if (!(command & PCIM_CMD_MEMEN)) {
777 kprintf("nge%d: failed to enable memory mapping!\n", unit);
778 error = ENXIO;
779 return(error);
781 #endif
783 rid = NGE_RID;
784 sc->nge_res = bus_alloc_resource_any(dev, NGE_RES, &rid, RF_ACTIVE);
786 if (sc->nge_res == NULL) {
787 kprintf("nge%d: couldn't map ports/memory\n", unit);
788 error = ENXIO;
789 return(error);
792 sc->nge_btag = rman_get_bustag(sc->nge_res);
793 sc->nge_bhandle = rman_get_bushandle(sc->nge_res);
795 /* Allocate interrupt */
796 rid = 0;
797 sc->nge_irq = bus_alloc_resource_any(dev, SYS_RES_IRQ, &rid,
798 RF_SHAREABLE | RF_ACTIVE);
800 if (sc->nge_irq == NULL) {
801 kprintf("nge%d: couldn't map interrupt\n", unit);
802 error = ENXIO;
803 goto fail;
806 /* Reset the adapter. */
807 nge_reset(sc);
810 * Get station address from the EEPROM.
812 nge_read_eeprom(sc, &eaddr[4], NGE_EE_NODEADDR, 1);
813 nge_read_eeprom(sc, &eaddr[2], NGE_EE_NODEADDR + 1, 1);
814 nge_read_eeprom(sc, &eaddr[0], NGE_EE_NODEADDR + 2, 1);
816 sc->nge_unit = unit;
818 sc->nge_ldata = contigmalloc(sizeof(struct nge_list_data), M_DEVBUF,
819 M_WAITOK | M_ZERO, 0, 0xffffffff, PAGE_SIZE, 0);
821 if (sc->nge_ldata == NULL) {
822 kprintf("nge%d: no memory for list buffers!\n", unit);
823 error = ENXIO;
824 goto fail;
827 /* Try to allocate memory for jumbo buffers. */
828 if (nge_alloc_jumbo_mem(sc)) {
829 kprintf("nge%d: jumbo buffer allocation failed\n",
830 sc->nge_unit);
831 error = ENXIO;
832 goto fail;
835 ifp = &sc->arpcom.ac_if;
836 ifp->if_softc = sc;
837 if_initname(ifp, "nge", unit);
838 ifp->if_mtu = ETHERMTU;
839 ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
840 ifp->if_ioctl = nge_ioctl;
841 ifp->if_start = nge_start;
842 #ifdef DEVICE_POLLING
843 ifp->if_poll = nge_poll;
844 #endif
845 ifp->if_watchdog = nge_watchdog;
846 ifp->if_init = nge_init;
847 ifp->if_baudrate = 1000000000;
848 ifq_set_maxlen(&ifp->if_snd, NGE_TX_LIST_CNT - 1);
849 ifq_set_ready(&ifp->if_snd);
850 ifp->if_hwassist = NGE_CSUM_FEATURES;
851 ifp->if_capabilities = IFCAP_HWCSUM | IFCAP_VLAN_HWTAGGING;
852 ifp->if_capenable = ifp->if_capabilities;
855 * Do MII setup.
857 if (mii_phy_probe(dev, &sc->nge_miibus,
858 nge_ifmedia_upd, nge_ifmedia_sts)) {
859 if (CSR_READ_4(sc, NGE_CFG) & NGE_CFG_TBI_EN) {
860 sc->nge_tbi = 1;
861 device_printf(dev, "Using TBI\n");
863 sc->nge_miibus = dev;
865 ifmedia_init(&sc->nge_ifmedia, 0, nge_ifmedia_upd,
866 nge_ifmedia_sts);
867 #define ADD(m, c) ifmedia_add(&sc->nge_ifmedia, (m), (c), NULL)
868 #define PRINT(s) kprintf("%s%s", sep, s); sep = ", "
869 ADD(IFM_MAKEWORD(IFM_ETHER, IFM_NONE, 0, 0), 0);
870 device_printf(dev, " ");
871 ADD(IFM_MAKEWORD(IFM_ETHER, IFM_1000_SX, 0, 0), 0);
872 PRINT("1000baseSX");
873 ADD(IFM_MAKEWORD(IFM_ETHER, IFM_1000_SX, IFM_FDX, 0),0);
874 PRINT("1000baseSX-FDX");
875 ADD(IFM_MAKEWORD(IFM_ETHER, IFM_AUTO, 0, 0), 0);
876 PRINT("auto");
878 kprintf("\n");
879 #undef ADD
880 #undef PRINT
881 ifmedia_set(&sc->nge_ifmedia,
882 IFM_MAKEWORD(IFM_ETHER, IFM_AUTO, 0, 0));
884 CSR_WRITE_4(sc, NGE_GPIO, CSR_READ_4(sc, NGE_GPIO)
885 | NGE_GPIO_GP4_OUT
886 | NGE_GPIO_GP1_OUTENB | NGE_GPIO_GP2_OUTENB
887 | NGE_GPIO_GP3_OUTENB
888 | NGE_GPIO_GP3_IN | NGE_GPIO_GP4_IN);
890 } else {
891 kprintf("nge%d: MII without any PHY!\n", sc->nge_unit);
892 error = ENXIO;
893 goto fail;
898 * Call MI attach routine.
900 ether_ifattach(ifp, eaddr, NULL);
902 error = bus_setup_intr(dev, sc->nge_irq, INTR_NETSAFE,
903 nge_intr, sc, &sc->nge_intrhand,
904 ifp->if_serializer);
905 if (error) {
906 ether_ifdetach(ifp);
907 device_printf(dev, "couldn't set up irq\n");
908 goto fail;
911 ifp->if_cpuid = ithread_cpuid(rman_get_start(sc->nge_irq));
912 KKASSERT(ifp->if_cpuid >= 0 && ifp->if_cpuid < ncpus);
914 return(0);
915 fail:
916 nge_detach(dev);
917 return(error);
920 static int
921 nge_detach(device_t dev)
923 struct nge_softc *sc = device_get_softc(dev);
924 struct ifnet *ifp = &sc->arpcom.ac_if;
926 if (device_is_attached(dev)) {
927 lwkt_serialize_enter(ifp->if_serializer);
928 nge_reset(sc);
929 nge_stop(sc);
930 bus_teardown_intr(dev, sc->nge_irq, sc->nge_intrhand);
931 lwkt_serialize_exit(ifp->if_serializer);
933 ether_ifdetach(ifp);
936 if (sc->nge_miibus)
937 device_delete_child(dev, sc->nge_miibus);
938 bus_generic_detach(dev);
940 if (sc->nge_irq)
941 bus_release_resource(dev, SYS_RES_IRQ, 0, sc->nge_irq);
942 if (sc->nge_res)
943 bus_release_resource(dev, NGE_RES, NGE_RID, sc->nge_res);
944 if (sc->nge_ldata) {
945 contigfree(sc->nge_ldata, sizeof(struct nge_list_data),
946 M_DEVBUF);
948 if (sc->nge_cdata.nge_jumbo_buf)
949 contigfree(sc->nge_cdata.nge_jumbo_buf, NGE_JMEM, M_DEVBUF);
951 return(0);
955 * Initialize the transmit descriptors.
957 static int
958 nge_list_tx_init(struct nge_softc *sc)
960 struct nge_list_data *ld;
961 struct nge_ring_data *cd;
962 int i;
964 cd = &sc->nge_cdata;
965 ld = sc->nge_ldata;
967 for (i = 0; i < NGE_TX_LIST_CNT; i++) {
968 if (i == (NGE_TX_LIST_CNT - 1)) {
969 ld->nge_tx_list[i].nge_nextdesc =
970 &ld->nge_tx_list[0];
971 ld->nge_tx_list[i].nge_next =
972 vtophys(&ld->nge_tx_list[0]);
973 } else {
974 ld->nge_tx_list[i].nge_nextdesc =
975 &ld->nge_tx_list[i + 1];
976 ld->nge_tx_list[i].nge_next =
977 vtophys(&ld->nge_tx_list[i + 1]);
979 ld->nge_tx_list[i].nge_mbuf = NULL;
980 ld->nge_tx_list[i].nge_ptr = 0;
981 ld->nge_tx_list[i].nge_ctl = 0;
984 cd->nge_tx_prod = cd->nge_tx_cons = cd->nge_tx_cnt = 0;
986 return(0);
991 * Initialize the RX descriptors and allocate mbufs for them. Note that
992 * we arrange the descriptors in a closed ring, so that the last descriptor
993 * points back to the first.
995 static int
996 nge_list_rx_init(struct nge_softc *sc)
998 struct nge_list_data *ld;
999 struct nge_ring_data *cd;
1000 int i;
1002 ld = sc->nge_ldata;
1003 cd = &sc->nge_cdata;
1005 for (i = 0; i < NGE_RX_LIST_CNT; i++) {
1006 if (nge_newbuf(sc, &ld->nge_rx_list[i], NULL) == ENOBUFS)
1007 return(ENOBUFS);
1008 if (i == (NGE_RX_LIST_CNT - 1)) {
1009 ld->nge_rx_list[i].nge_nextdesc =
1010 &ld->nge_rx_list[0];
1011 ld->nge_rx_list[i].nge_next =
1012 vtophys(&ld->nge_rx_list[0]);
1013 } else {
1014 ld->nge_rx_list[i].nge_nextdesc =
1015 &ld->nge_rx_list[i + 1];
1016 ld->nge_rx_list[i].nge_next =
1017 vtophys(&ld->nge_rx_list[i + 1]);
1021 cd->nge_rx_prod = 0;
1023 return(0);
1027 * Initialize an RX descriptor and attach an MBUF cluster.
1029 static int
1030 nge_newbuf(struct nge_softc *sc, struct nge_desc *c, struct mbuf *m)
1032 struct mbuf *m_new = NULL;
1033 struct nge_jslot *buf;
1035 if (m == NULL) {
1036 MGETHDR(m_new, MB_DONTWAIT, MT_DATA);
1037 if (m_new == NULL) {
1038 kprintf("nge%d: no memory for rx list "
1039 "-- packet dropped!\n", sc->nge_unit);
1040 return(ENOBUFS);
1043 /* Allocate the jumbo buffer */
1044 buf = nge_jalloc(sc);
1045 if (buf == NULL) {
1046 #ifdef NGE_VERBOSE
1047 kprintf("nge%d: jumbo allocation failed "
1048 "-- packet dropped!\n", sc->nge_unit);
1049 #endif
1050 m_freem(m_new);
1051 return(ENOBUFS);
1053 /* Attach the buffer to the mbuf */
1054 m_new->m_ext.ext_arg = buf;
1055 m_new->m_ext.ext_buf = buf->nge_buf;
1056 m_new->m_ext.ext_free = nge_jfree;
1057 m_new->m_ext.ext_ref = nge_jref;
1058 m_new->m_ext.ext_size = NGE_JUMBO_FRAMELEN;
1060 m_new->m_data = m_new->m_ext.ext_buf;
1061 m_new->m_flags |= M_EXT;
1062 m_new->m_len = m_new->m_pkthdr.len = m_new->m_ext.ext_size;
1063 } else {
1064 m_new = m;
1065 m_new->m_len = m_new->m_pkthdr.len = NGE_JLEN;
1066 m_new->m_data = m_new->m_ext.ext_buf;
1069 m_adj(m_new, sizeof(uint64_t));
1071 c->nge_mbuf = m_new;
1072 c->nge_ptr = vtophys(mtod(m_new, caddr_t));
1073 c->nge_ctl = m_new->m_len;
1074 c->nge_extsts = 0;
1076 return(0);
1079 static int
1080 nge_alloc_jumbo_mem(struct nge_softc *sc)
1082 caddr_t ptr;
1083 int i;
1084 struct nge_jslot *entry;
1086 /* Grab a big chunk o' storage. */
1087 sc->nge_cdata.nge_jumbo_buf = contigmalloc(NGE_JMEM, M_DEVBUF,
1088 M_WAITOK, 0, 0xffffffff, PAGE_SIZE, 0);
1090 if (sc->nge_cdata.nge_jumbo_buf == NULL) {
1091 kprintf("nge%d: no memory for jumbo buffers!\n", sc->nge_unit);
1092 return(ENOBUFS);
1095 SLIST_INIT(&sc->nge_jfree_listhead);
1098 * Now divide it up into 9K pieces and save the addresses
1099 * in an array.
1101 ptr = sc->nge_cdata.nge_jumbo_buf;
1102 for (i = 0; i < NGE_JSLOTS; i++) {
1103 entry = &sc->nge_cdata.nge_jslots[i];
1104 entry->nge_sc = sc;
1105 entry->nge_buf = ptr;
1106 entry->nge_inuse = 0;
1107 entry->nge_slot = i;
1108 SLIST_INSERT_HEAD(&sc->nge_jfree_listhead, entry, jslot_link);
1109 ptr += NGE_JLEN;
1112 return(0);
1117 * Allocate a jumbo buffer.
1119 static struct nge_jslot *
1120 nge_jalloc(struct nge_softc *sc)
1122 struct nge_jslot *entry;
1124 lwkt_serialize_enter(&sc->nge_jslot_serializer);
1125 entry = SLIST_FIRST(&sc->nge_jfree_listhead);
1126 if (entry) {
1127 SLIST_REMOVE_HEAD(&sc->nge_jfree_listhead, jslot_link);
1128 entry->nge_inuse = 1;
1129 } else {
1130 #ifdef NGE_VERBOSE
1131 kprintf("nge%d: no free jumbo buffers\n", sc->nge_unit);
1132 #endif
1134 lwkt_serialize_exit(&sc->nge_jslot_serializer);
1135 return(entry);
1139 * Adjust usage count on a jumbo buffer. In general this doesn't
1140 * get used much because our jumbo buffers don't get passed around
1141 * a lot, but it's implemented for correctness.
1143 static void
1144 nge_jref(void *arg)
1146 struct nge_jslot *entry = (struct nge_jslot *)arg;
1147 struct nge_softc *sc = entry->nge_sc;
1149 if (sc == NULL)
1150 panic("nge_jref: can't find softc pointer!");
1152 if (&sc->nge_cdata.nge_jslots[entry->nge_slot] != entry)
1153 panic("nge_jref: asked to reference buffer "
1154 "that we don't manage!");
1155 else if (entry->nge_inuse == 0)
1156 panic("nge_jref: buffer already free!");
1157 else
1158 atomic_add_int(&entry->nge_inuse, 1);
1162 * Release a jumbo buffer.
1164 static void
1165 nge_jfree(void *arg)
1167 struct nge_jslot *entry = (struct nge_jslot *)arg;
1168 struct nge_softc *sc = entry->nge_sc;
1170 if (sc == NULL)
1171 panic("nge_jref: can't find softc pointer!");
1173 if (&sc->nge_cdata.nge_jslots[entry->nge_slot] != entry) {
1174 panic("nge_jref: asked to reference buffer "
1175 "that we don't manage!");
1176 } else if (entry->nge_inuse == 0) {
1177 panic("nge_jref: buffer already free!");
1178 } else {
1179 lwkt_serialize_enter(&sc->nge_jslot_serializer);
1180 atomic_subtract_int(&entry->nge_inuse, 1);
1181 if (entry->nge_inuse == 0) {
1182 SLIST_INSERT_HEAD(&sc->nge_jfree_listhead,
1183 entry, jslot_link);
1185 lwkt_serialize_exit(&sc->nge_jslot_serializer);
1189 * A frame has been uploaded: pass the resulting mbuf chain up to
1190 * the higher level protocols.
1192 static void
1193 nge_rxeof(struct nge_softc *sc)
1195 struct mbuf *m;
1196 struct ifnet *ifp = &sc->arpcom.ac_if;
1197 struct nge_desc *cur_rx;
1198 int i, total_len = 0;
1199 uint32_t rxstat;
1201 i = sc->nge_cdata.nge_rx_prod;
1203 while(NGE_OWNDESC(&sc->nge_ldata->nge_rx_list[i])) {
1204 struct mbuf *m0 = NULL;
1205 uint32_t extsts;
1207 #ifdef DEVICE_POLLING
1208 if (ifp->if_flags & IFF_POLLING) {
1209 if (sc->rxcycles <= 0)
1210 break;
1211 sc->rxcycles--;
1213 #endif /* DEVICE_POLLING */
1215 cur_rx = &sc->nge_ldata->nge_rx_list[i];
1216 rxstat = cur_rx->nge_rxstat;
1217 extsts = cur_rx->nge_extsts;
1218 m = cur_rx->nge_mbuf;
1219 cur_rx->nge_mbuf = NULL;
1220 total_len = NGE_RXBYTES(cur_rx);
1221 NGE_INC(i, NGE_RX_LIST_CNT);
1223 * If an error occurs, update stats, clear the
1224 * status word and leave the mbuf cluster in place:
1225 * it should simply get re-used next time this descriptor
1226 * comes up in the ring.
1228 if ((rxstat & NGE_CMDSTS_PKT_OK) == 0) {
1229 ifp->if_ierrors++;
1230 nge_newbuf(sc, cur_rx, m);
1231 continue;
1235 * Ok. NatSemi really screwed up here. This is the
1236 * only gigE chip I know of with alignment constraints
1237 * on receive buffers. RX buffers must be 64-bit aligned.
1239 #ifdef __i386__
1241 * By popular demand, ignore the alignment problems
1242 * on the Intel x86 platform. The performance hit
1243 * incurred due to unaligned accesses is much smaller
1244 * than the hit produced by forcing buffer copies all
1245 * the time, especially with jumbo frames. We still
1246 * need to fix up the alignment everywhere else though.
1248 if (nge_newbuf(sc, cur_rx, NULL) == ENOBUFS) {
1249 #endif
1250 m0 = m_devget(mtod(m, char *) - ETHER_ALIGN,
1251 total_len + ETHER_ALIGN, 0, ifp, NULL);
1252 nge_newbuf(sc, cur_rx, m);
1253 if (m0 == NULL) {
1254 kprintf("nge%d: no receive buffers "
1255 "available -- packet dropped!\n",
1256 sc->nge_unit);
1257 ifp->if_ierrors++;
1258 continue;
1260 m_adj(m0, ETHER_ALIGN);
1261 m = m0;
1262 #ifdef __i386__
1263 } else {
1264 m->m_pkthdr.rcvif = ifp;
1265 m->m_pkthdr.len = m->m_len = total_len;
1267 #endif
1269 ifp->if_ipackets++;
1271 /* Do IP checksum checking. */
1272 if (extsts & NGE_RXEXTSTS_IPPKT)
1273 m->m_pkthdr.csum_flags |= CSUM_IP_CHECKED;
1274 if (!(extsts & NGE_RXEXTSTS_IPCSUMERR))
1275 m->m_pkthdr.csum_flags |= CSUM_IP_VALID;
1276 if ((extsts & NGE_RXEXTSTS_TCPPKT &&
1277 (extsts & NGE_RXEXTSTS_TCPCSUMERR) == 0) ||
1278 (extsts & NGE_RXEXTSTS_UDPPKT &&
1279 (extsts & NGE_RXEXTSTS_UDPCSUMERR) == 0)) {
1280 m->m_pkthdr.csum_flags |=
1281 CSUM_DATA_VALID|CSUM_PSEUDO_HDR|
1282 CSUM_FRAG_NOT_CHECKED;
1283 m->m_pkthdr.csum_data = 0xffff;
1287 * If we received a packet with a vlan tag, pass it
1288 * to vlan_input() instead of ether_input().
1290 if (extsts & NGE_RXEXTSTS_VLANPKT) {
1291 m->m_flags |= M_VLANTAG;
1292 m->m_pkthdr.ether_vlantag =
1293 (extsts & NGE_RXEXTSTS_VTCI);
1295 ifp->if_input(ifp, m);
1298 sc->nge_cdata.nge_rx_prod = i;
1302 * A frame was downloaded to the chip. It's safe for us to clean up
1303 * the list buffers.
1305 static void
1306 nge_txeof(struct nge_softc *sc)
1308 struct ifnet *ifp = &sc->arpcom.ac_if;
1309 struct nge_desc *cur_tx = NULL;
1310 uint32_t idx;
1312 /* Clear the timeout timer. */
1313 ifp->if_timer = 0;
1316 * Go through our tx list and free mbufs for those
1317 * frames that have been transmitted.
1319 idx = sc->nge_cdata.nge_tx_cons;
1320 while (idx != sc->nge_cdata.nge_tx_prod) {
1321 cur_tx = &sc->nge_ldata->nge_tx_list[idx];
1323 if (NGE_OWNDESC(cur_tx))
1324 break;
1326 if (cur_tx->nge_ctl & NGE_CMDSTS_MORE) {
1327 sc->nge_cdata.nge_tx_cnt--;
1328 NGE_INC(idx, NGE_TX_LIST_CNT);
1329 continue;
1332 if (!(cur_tx->nge_ctl & NGE_CMDSTS_PKT_OK)) {
1333 ifp->if_oerrors++;
1334 if (cur_tx->nge_txstat & NGE_TXSTAT_EXCESSCOLLS)
1335 ifp->if_collisions++;
1336 if (cur_tx->nge_txstat & NGE_TXSTAT_OUTOFWINCOLL)
1337 ifp->if_collisions++;
1340 ifp->if_collisions +=
1341 (cur_tx->nge_txstat & NGE_TXSTAT_COLLCNT) >> 16;
1343 ifp->if_opackets++;
1344 if (cur_tx->nge_mbuf != NULL) {
1345 m_freem(cur_tx->nge_mbuf);
1346 cur_tx->nge_mbuf = NULL;
1349 sc->nge_cdata.nge_tx_cnt--;
1350 NGE_INC(idx, NGE_TX_LIST_CNT);
1351 ifp->if_timer = 0;
1354 sc->nge_cdata.nge_tx_cons = idx;
1356 if (cur_tx != NULL)
1357 ifp->if_flags &= ~IFF_OACTIVE;
1360 static void
1361 nge_tick(void *xsc)
1363 struct nge_softc *sc = xsc;
1364 struct ifnet *ifp = &sc->arpcom.ac_if;
1365 struct mii_data *mii;
1367 lwkt_serialize_enter(ifp->if_serializer);
1369 if (sc->nge_tbi) {
1370 if (sc->nge_link == 0) {
1371 if (CSR_READ_4(sc, NGE_TBI_BMSR)
1372 & NGE_TBIBMSR_ANEG_DONE) {
1373 kprintf("nge%d: gigabit link up\n",
1374 sc->nge_unit);
1375 nge_miibus_statchg(sc->nge_miibus);
1376 sc->nge_link++;
1377 if (!ifq_is_empty(&ifp->if_snd))
1378 if_devstart(ifp);
1381 } else {
1382 mii = device_get_softc(sc->nge_miibus);
1383 mii_tick(mii);
1385 if (sc->nge_link == 0) {
1386 if (mii->mii_media_status & IFM_ACTIVE &&
1387 IFM_SUBTYPE(mii->mii_media_active) != IFM_NONE) {
1388 sc->nge_link++;
1389 if (IFM_SUBTYPE(mii->mii_media_active)
1390 == IFM_1000_T)
1391 kprintf("nge%d: gigabit link up\n",
1392 sc->nge_unit);
1393 if (!ifq_is_empty(&ifp->if_snd))
1394 if_devstart(ifp);
1398 callout_reset(&sc->nge_stat_timer, hz, nge_tick, sc);
1400 lwkt_serialize_exit(ifp->if_serializer);
1403 #ifdef DEVICE_POLLING
1405 static void
1406 nge_poll(struct ifnet *ifp, enum poll_cmd cmd, int count)
1408 struct nge_softc *sc = ifp->if_softc;
1410 switch(cmd) {
1411 case POLL_REGISTER:
1412 /* disable interrupts */
1413 CSR_WRITE_4(sc, NGE_IER, 0);
1414 break;
1415 case POLL_DEREGISTER:
1416 /* enable interrupts */
1417 CSR_WRITE_4(sc, NGE_IER, 1);
1418 break;
1419 default:
1421 * On the nge, reading the status register also clears it.
1422 * So before returning to intr mode we must make sure that all
1423 * possible pending sources of interrupts have been served.
1424 * In practice this means run to completion the *eof routines,
1425 * and then call the interrupt routine
1427 sc->rxcycles = count;
1428 nge_rxeof(sc);
1429 nge_txeof(sc);
1430 if (!ifq_is_empty(&ifp->if_snd))
1431 if_devstart(ifp);
1433 if (sc->rxcycles > 0 || cmd == POLL_AND_CHECK_STATUS) {
1434 uint32_t status;
1436 /* Reading the ISR register clears all interrupts. */
1437 status = CSR_READ_4(sc, NGE_ISR);
1439 if (status & (NGE_ISR_RX_ERR|NGE_ISR_RX_OFLOW))
1440 nge_rxeof(sc);
1442 if (status & (NGE_ISR_RX_IDLE))
1443 NGE_SETBIT(sc, NGE_CSR, NGE_CSR_RX_ENABLE);
1445 if (status & NGE_ISR_SYSERR) {
1446 nge_reset(sc);
1447 nge_init(sc);
1450 break;
1454 #endif /* DEVICE_POLLING */
1456 static void
1457 nge_intr(void *arg)
1459 struct nge_softc *sc = arg;
1460 struct ifnet *ifp = &sc->arpcom.ac_if;
1461 uint32_t status;
1463 /* Supress unwanted interrupts */
1464 if (!(ifp->if_flags & IFF_UP)) {
1465 nge_stop(sc);
1466 return;
1469 /* Disable interrupts. */
1470 CSR_WRITE_4(sc, NGE_IER, 0);
1472 /* Data LED on for TBI mode */
1473 if(sc->nge_tbi)
1474 CSR_WRITE_4(sc, NGE_GPIO, CSR_READ_4(sc, NGE_GPIO)
1475 | NGE_GPIO_GP3_OUT);
1477 for (;;) {
1478 /* Reading the ISR register clears all interrupts. */
1479 status = CSR_READ_4(sc, NGE_ISR);
1481 if ((status & NGE_INTRS) == 0)
1482 break;
1484 if ((status & NGE_ISR_TX_DESC_OK) ||
1485 (status & NGE_ISR_TX_ERR) ||
1486 (status & NGE_ISR_TX_OK) ||
1487 (status & NGE_ISR_TX_IDLE))
1488 nge_txeof(sc);
1490 if ((status & NGE_ISR_RX_DESC_OK) ||
1491 (status & NGE_ISR_RX_ERR) ||
1492 (status & NGE_ISR_RX_OFLOW) ||
1493 (status & NGE_ISR_RX_FIFO_OFLOW) ||
1494 (status & NGE_ISR_RX_IDLE) ||
1495 (status & NGE_ISR_RX_OK))
1496 nge_rxeof(sc);
1498 if ((status & NGE_ISR_RX_IDLE))
1499 NGE_SETBIT(sc, NGE_CSR, NGE_CSR_RX_ENABLE);
1501 if (status & NGE_ISR_SYSERR) {
1502 nge_reset(sc);
1503 ifp->if_flags &= ~IFF_RUNNING;
1504 nge_init(sc);
1507 #ifdef notyet
1508 /* mii_tick should only be called once per second */
1509 if (status & NGE_ISR_PHY_INTR) {
1510 sc->nge_link = 0;
1511 nge_tick_serialized(sc);
1513 #endif
1516 /* Re-enable interrupts. */
1517 CSR_WRITE_4(sc, NGE_IER, 1);
1519 if (!ifq_is_empty(&ifp->if_snd))
1520 if_devstart(ifp);
1522 /* Data LED off for TBI mode */
1524 if(sc->nge_tbi)
1525 CSR_WRITE_4(sc, NGE_GPIO, CSR_READ_4(sc, NGE_GPIO)
1526 & ~NGE_GPIO_GP3_OUT);
1530 * Encapsulate an mbuf chain in a descriptor by coupling the mbuf data
1531 * pointers to the fragment pointers.
1533 static int
1534 nge_encap(struct nge_softc *sc, struct mbuf *m_head, uint32_t *txidx)
1536 struct nge_desc *f = NULL;
1537 struct mbuf *m;
1538 int frag, cur, cnt = 0;
1541 * Start packing the mbufs in this chain into
1542 * the fragment pointers. Stop when we run out
1543 * of fragments or hit the end of the mbuf chain.
1545 cur = frag = *txidx;
1547 for (m = m_head; m != NULL; m = m->m_next) {
1548 if (m->m_len != 0) {
1549 if ((NGE_TX_LIST_CNT -
1550 (sc->nge_cdata.nge_tx_cnt + cnt)) < 2)
1551 break;
1552 f = &sc->nge_ldata->nge_tx_list[frag];
1553 f->nge_ctl = NGE_CMDSTS_MORE | m->m_len;
1554 f->nge_ptr = vtophys(mtod(m, vm_offset_t));
1555 if (cnt != 0)
1556 f->nge_ctl |= NGE_CMDSTS_OWN;
1557 cur = frag;
1558 NGE_INC(frag, NGE_TX_LIST_CNT);
1559 cnt++;
1562 /* Caller should make sure that 'm_head' is not excessive fragmented */
1563 KASSERT(m == NULL, ("too many fragments\n"));
1565 sc->nge_ldata->nge_tx_list[*txidx].nge_extsts = 0;
1566 if (m_head->m_pkthdr.csum_flags) {
1567 if (m_head->m_pkthdr.csum_flags & CSUM_IP)
1568 sc->nge_ldata->nge_tx_list[*txidx].nge_extsts |=
1569 NGE_TXEXTSTS_IPCSUM;
1570 if (m_head->m_pkthdr.csum_flags & CSUM_TCP)
1571 sc->nge_ldata->nge_tx_list[*txidx].nge_extsts |=
1572 NGE_TXEXTSTS_TCPCSUM;
1573 if (m_head->m_pkthdr.csum_flags & CSUM_UDP)
1574 sc->nge_ldata->nge_tx_list[*txidx].nge_extsts |=
1575 NGE_TXEXTSTS_UDPCSUM;
1578 if (m_head->m_flags & M_VLANTAG) {
1579 sc->nge_ldata->nge_tx_list[cur].nge_extsts |=
1580 (NGE_TXEXTSTS_VLANPKT|m_head->m_pkthdr.ether_vlantag);
1583 sc->nge_ldata->nge_tx_list[cur].nge_mbuf = m_head;
1584 sc->nge_ldata->nge_tx_list[cur].nge_ctl &= ~NGE_CMDSTS_MORE;
1585 sc->nge_ldata->nge_tx_list[*txidx].nge_ctl |= NGE_CMDSTS_OWN;
1586 sc->nge_cdata.nge_tx_cnt += cnt;
1587 *txidx = frag;
1589 return(0);
1593 * Main transmit routine. To avoid having to do mbuf copies, we put pointers
1594 * to the mbuf data regions directly in the transmit lists. We also save a
1595 * copy of the pointers since the transmit list fragment pointers are
1596 * physical addresses.
1599 static void
1600 nge_start(struct ifnet *ifp)
1602 struct nge_softc *sc = ifp->if_softc;
1603 struct mbuf *m_head = NULL, *m_defragged;
1604 uint32_t idx;
1605 int need_trans;
1607 if (!sc->nge_link) {
1608 ifq_purge(&ifp->if_snd);
1609 return;
1612 idx = sc->nge_cdata.nge_tx_prod;
1614 if ((ifp->if_flags & (IFF_OACTIVE | IFF_RUNNING)) != IFF_RUNNING)
1615 return;
1617 need_trans = 0;
1618 while (sc->nge_ldata->nge_tx_list[idx].nge_mbuf == NULL) {
1619 struct mbuf *m;
1620 int cnt;
1622 m_defragged = NULL;
1623 m_head = ifq_dequeue(&ifp->if_snd, NULL);
1624 if (m_head == NULL)
1625 break;
1627 again:
1628 cnt = 0;
1629 for (m = m_head; m != NULL; m = m->m_next)
1630 ++cnt;
1631 if ((NGE_TX_LIST_CNT -
1632 (sc->nge_cdata.nge_tx_cnt + cnt)) < 2) {
1633 if (m_defragged != NULL) {
1635 * Even after defragmentation, there
1636 * are still too many fragments, so
1637 * drop this packet.
1639 m_freem(m_head);
1640 ifp->if_flags |= IFF_OACTIVE;
1641 break;
1644 m_defragged = m_defrag(m_head, MB_DONTWAIT);
1645 if (m_defragged == NULL) {
1646 m_freem(m_head);
1647 continue;
1649 m_head = m_defragged;
1651 /* Recount # of fragments */
1652 goto again;
1655 nge_encap(sc, m_head, &idx);
1656 need_trans = 1;
1658 ETHER_BPF_MTAP(ifp, m_head);
1661 if (!need_trans)
1662 return;
1664 /* Transmit */
1665 sc->nge_cdata.nge_tx_prod = idx;
1666 NGE_SETBIT(sc, NGE_CSR, NGE_CSR_TX_ENABLE);
1669 * Set a timeout in case the chip goes out to lunch.
1671 ifp->if_timer = 5;
1674 static void
1675 nge_init(void *xsc)
1677 struct nge_softc *sc = xsc;
1678 struct ifnet *ifp = &sc->arpcom.ac_if;
1679 struct mii_data *mii;
1681 if (ifp->if_flags & IFF_RUNNING) {
1682 return;
1686 * Cancel pending I/O and free all RX/TX buffers.
1688 nge_stop(sc);
1689 callout_reset(&sc->nge_stat_timer, hz, nge_tick, sc);
1691 if (sc->nge_tbi)
1692 mii = NULL;
1693 else
1694 mii = device_get_softc(sc->nge_miibus);
1696 /* Set MAC address */
1697 CSR_WRITE_4(sc, NGE_RXFILT_CTL, NGE_FILTADDR_PAR0);
1698 CSR_WRITE_4(sc, NGE_RXFILT_DATA,
1699 ((uint16_t *)sc->arpcom.ac_enaddr)[0]);
1700 CSR_WRITE_4(sc, NGE_RXFILT_CTL, NGE_FILTADDR_PAR1);
1701 CSR_WRITE_4(sc, NGE_RXFILT_DATA,
1702 ((uint16_t *)sc->arpcom.ac_enaddr)[1]);
1703 CSR_WRITE_4(sc, NGE_RXFILT_CTL, NGE_FILTADDR_PAR2);
1704 CSR_WRITE_4(sc, NGE_RXFILT_DATA,
1705 ((uint16_t *)sc->arpcom.ac_enaddr)[2]);
1707 /* Init circular RX list. */
1708 if (nge_list_rx_init(sc) == ENOBUFS) {
1709 kprintf("nge%d: initialization failed: no "
1710 "memory for rx buffers\n", sc->nge_unit);
1711 nge_stop(sc);
1712 return;
1716 * Init tx descriptors.
1718 nge_list_tx_init(sc);
1721 * For the NatSemi chip, we have to explicitly enable the
1722 * reception of ARP frames, as well as turn on the 'perfect
1723 * match' filter where we store the station address, otherwise
1724 * we won't receive unicasts meant for this host.
1726 NGE_SETBIT(sc, NGE_RXFILT_CTL, NGE_RXFILTCTL_ARP);
1727 NGE_SETBIT(sc, NGE_RXFILT_CTL, NGE_RXFILTCTL_PERFECT);
1729 /* If we want promiscuous mode, set the allframes bit. */
1730 if (ifp->if_flags & IFF_PROMISC)
1731 NGE_SETBIT(sc, NGE_RXFILT_CTL, NGE_RXFILTCTL_ALLPHYS);
1732 else
1733 NGE_CLRBIT(sc, NGE_RXFILT_CTL, NGE_RXFILTCTL_ALLPHYS);
1736 * Set the capture broadcast bit to capture broadcast frames.
1738 if (ifp->if_flags & IFF_BROADCAST)
1739 NGE_SETBIT(sc, NGE_RXFILT_CTL, NGE_RXFILTCTL_BROAD);
1740 else
1741 NGE_CLRBIT(sc, NGE_RXFILT_CTL, NGE_RXFILTCTL_BROAD);
1744 * Load the multicast filter.
1746 nge_setmulti(sc);
1748 /* Turn the receive filter on */
1749 NGE_SETBIT(sc, NGE_RXFILT_CTL, NGE_RXFILTCTL_ENABLE);
1752 * Load the address of the RX and TX lists.
1754 CSR_WRITE_4(sc, NGE_RX_LISTPTR,
1755 vtophys(&sc->nge_ldata->nge_rx_list[0]));
1756 CSR_WRITE_4(sc, NGE_TX_LISTPTR,
1757 vtophys(&sc->nge_ldata->nge_tx_list[0]));
1759 /* Set RX configuration */
1760 CSR_WRITE_4(sc, NGE_RX_CFG, NGE_RXCFG);
1762 * Enable hardware checksum validation for all IPv4
1763 * packets, do not reject packets with bad checksums.
1765 CSR_WRITE_4(sc, NGE_VLAN_IP_RXCTL, NGE_VIPRXCTL_IPCSUM_ENB);
1768 * Tell the chip to detect and strip VLAN tag info from
1769 * received frames. The tag will be provided in the extsts
1770 * field in the RX descriptors.
1772 NGE_SETBIT(sc, NGE_VLAN_IP_RXCTL,
1773 NGE_VIPRXCTL_TAG_DETECT_ENB|NGE_VIPRXCTL_TAG_STRIP_ENB);
1775 /* Set TX configuration */
1776 CSR_WRITE_4(sc, NGE_TX_CFG, NGE_TXCFG);
1779 * Enable TX IPv4 checksumming on a per-packet basis.
1781 CSR_WRITE_4(sc, NGE_VLAN_IP_TXCTL, NGE_VIPTXCTL_CSUM_PER_PKT);
1784 * Tell the chip to insert VLAN tags on a per-packet basis as
1785 * dictated by the code in the frame encapsulation routine.
1787 NGE_SETBIT(sc, NGE_VLAN_IP_TXCTL, NGE_VIPTXCTL_TAG_PER_PKT);
1789 /* Set full/half duplex mode. */
1790 if (sc->nge_tbi) {
1791 if ((sc->nge_ifmedia.ifm_cur->ifm_media & IFM_GMASK)
1792 == IFM_FDX) {
1793 NGE_SETBIT(sc, NGE_TX_CFG,
1794 (NGE_TXCFG_IGN_HBEAT | NGE_TXCFG_IGN_CARR));
1795 NGE_SETBIT(sc, NGE_RX_CFG, NGE_RXCFG_RX_FDX);
1796 } else {
1797 NGE_CLRBIT(sc, NGE_TX_CFG,
1798 (NGE_TXCFG_IGN_HBEAT | NGE_TXCFG_IGN_CARR));
1799 NGE_CLRBIT(sc, NGE_RX_CFG, NGE_RXCFG_RX_FDX);
1801 } else {
1802 if ((mii->mii_media_active & IFM_GMASK) == IFM_FDX) {
1803 NGE_SETBIT(sc, NGE_TX_CFG,
1804 (NGE_TXCFG_IGN_HBEAT | NGE_TXCFG_IGN_CARR));
1805 NGE_SETBIT(sc, NGE_RX_CFG, NGE_RXCFG_RX_FDX);
1806 } else {
1807 NGE_CLRBIT(sc, NGE_TX_CFG,
1808 (NGE_TXCFG_IGN_HBEAT | NGE_TXCFG_IGN_CARR));
1809 NGE_CLRBIT(sc, NGE_RX_CFG, NGE_RXCFG_RX_FDX);
1814 * Enable the delivery of PHY interrupts based on
1815 * link/speed/duplex status changes. Also enable the
1816 * extsts field in the DMA descriptors (needed for
1817 * TCP/IP checksum offload on transmit).
1819 NGE_SETBIT(sc, NGE_CFG, NGE_CFG_PHYINTR_SPD |
1820 NGE_CFG_PHYINTR_LNK | NGE_CFG_PHYINTR_DUP | NGE_CFG_EXTSTS_ENB);
1823 * Configure interrupt holdoff (moderation). We can
1824 * have the chip delay interrupt delivery for a certain
1825 * period. Units are in 100us, and the max setting
1826 * is 25500us (0xFF x 100us). Default is a 100us holdoff.
1828 CSR_WRITE_4(sc, NGE_IHR, 0x01);
1831 * Enable interrupts.
1833 CSR_WRITE_4(sc, NGE_IMR, NGE_INTRS);
1834 #ifdef DEVICE_POLLING
1836 * ... only enable interrupts if we are not polling, make sure
1837 * they are off otherwise.
1839 if (ifp->if_flags & IFF_POLLING)
1840 CSR_WRITE_4(sc, NGE_IER, 0);
1841 else
1842 #endif /* DEVICE_POLLING */
1843 CSR_WRITE_4(sc, NGE_IER, 1);
1845 /* Enable receiver and transmitter. */
1846 NGE_CLRBIT(sc, NGE_CSR, NGE_CSR_TX_DISABLE | NGE_CSR_RX_DISABLE);
1847 NGE_SETBIT(sc, NGE_CSR, NGE_CSR_RX_ENABLE);
1849 nge_ifmedia_upd(ifp);
1851 ifp->if_flags |= IFF_RUNNING;
1852 ifp->if_flags &= ~IFF_OACTIVE;
1856 * Set media options.
1858 static int
1859 nge_ifmedia_upd(struct ifnet *ifp)
1861 struct nge_softc *sc = ifp->if_softc;
1862 struct mii_data *mii;
1864 if (sc->nge_tbi) {
1865 if (IFM_SUBTYPE(sc->nge_ifmedia.ifm_cur->ifm_media)
1866 == IFM_AUTO) {
1867 CSR_WRITE_4(sc, NGE_TBI_ANAR,
1868 CSR_READ_4(sc, NGE_TBI_ANAR)
1869 | NGE_TBIANAR_HDX | NGE_TBIANAR_FDX
1870 | NGE_TBIANAR_PS1 | NGE_TBIANAR_PS2);
1871 CSR_WRITE_4(sc, NGE_TBI_BMCR, NGE_TBIBMCR_ENABLE_ANEG
1872 | NGE_TBIBMCR_RESTART_ANEG);
1873 CSR_WRITE_4(sc, NGE_TBI_BMCR, NGE_TBIBMCR_ENABLE_ANEG);
1874 } else if ((sc->nge_ifmedia.ifm_cur->ifm_media
1875 & IFM_GMASK) == IFM_FDX) {
1876 NGE_SETBIT(sc, NGE_TX_CFG,
1877 (NGE_TXCFG_IGN_HBEAT|NGE_TXCFG_IGN_CARR));
1878 NGE_SETBIT(sc, NGE_RX_CFG, NGE_RXCFG_RX_FDX);
1880 CSR_WRITE_4(sc, NGE_TBI_ANAR, 0);
1881 CSR_WRITE_4(sc, NGE_TBI_BMCR, 0);
1882 } else {
1883 NGE_CLRBIT(sc, NGE_TX_CFG,
1884 (NGE_TXCFG_IGN_HBEAT|NGE_TXCFG_IGN_CARR));
1885 NGE_CLRBIT(sc, NGE_RX_CFG, NGE_RXCFG_RX_FDX);
1887 CSR_WRITE_4(sc, NGE_TBI_ANAR, 0);
1888 CSR_WRITE_4(sc, NGE_TBI_BMCR, 0);
1891 CSR_WRITE_4(sc, NGE_GPIO, CSR_READ_4(sc, NGE_GPIO)
1892 & ~NGE_GPIO_GP3_OUT);
1893 } else {
1894 mii = device_get_softc(sc->nge_miibus);
1895 sc->nge_link = 0;
1896 if (mii->mii_instance) {
1897 struct mii_softc *miisc;
1898 for (miisc = LIST_FIRST(&mii->mii_phys); miisc != NULL;
1899 miisc = LIST_NEXT(miisc, mii_list))
1900 mii_phy_reset(miisc);
1902 mii_mediachg(mii);
1905 return(0);
1909 * Report current media status.
1911 static void
1912 nge_ifmedia_sts(struct ifnet *ifp, struct ifmediareq *ifmr)
1914 struct nge_softc *sc = ifp->if_softc;
1915 struct mii_data *mii;
1917 if (sc->nge_tbi) {
1918 ifmr->ifm_status = IFM_AVALID;
1919 ifmr->ifm_active = IFM_ETHER;
1921 if (CSR_READ_4(sc, NGE_TBI_BMSR) & NGE_TBIBMSR_ANEG_DONE)
1922 ifmr->ifm_status |= IFM_ACTIVE;
1923 if (CSR_READ_4(sc, NGE_TBI_BMCR) & NGE_TBIBMCR_LOOPBACK)
1924 ifmr->ifm_active |= IFM_LOOP;
1925 if (!CSR_READ_4(sc, NGE_TBI_BMSR) & NGE_TBIBMSR_ANEG_DONE) {
1926 ifmr->ifm_active |= IFM_NONE;
1927 ifmr->ifm_status = 0;
1928 return;
1930 ifmr->ifm_active |= IFM_1000_SX;
1931 if (IFM_SUBTYPE(sc->nge_ifmedia.ifm_cur->ifm_media)
1932 == IFM_AUTO) {
1933 ifmr->ifm_active |= IFM_AUTO;
1934 if (CSR_READ_4(sc, NGE_TBI_ANLPAR)
1935 & NGE_TBIANAR_FDX) {
1936 ifmr->ifm_active |= IFM_FDX;
1937 }else if (CSR_READ_4(sc, NGE_TBI_ANLPAR)
1938 & NGE_TBIANAR_HDX) {
1939 ifmr->ifm_active |= IFM_HDX;
1941 } else if ((sc->nge_ifmedia.ifm_cur->ifm_media & IFM_GMASK)
1942 == IFM_FDX)
1943 ifmr->ifm_active |= IFM_FDX;
1944 else
1945 ifmr->ifm_active |= IFM_HDX;
1947 } else {
1948 mii = device_get_softc(sc->nge_miibus);
1949 mii_pollstat(mii);
1950 ifmr->ifm_active = mii->mii_media_active;
1951 ifmr->ifm_status = mii->mii_media_status;
1955 static int
1956 nge_ioctl(struct ifnet *ifp, u_long command, caddr_t data, struct ucred *cr)
1958 struct nge_softc *sc = ifp->if_softc;
1959 struct ifreq *ifr = (struct ifreq *) data;
1960 struct mii_data *mii;
1961 int error = 0;
1963 switch(command) {
1964 case SIOCSIFMTU:
1965 if (ifr->ifr_mtu > NGE_JUMBO_MTU) {
1966 error = EINVAL;
1967 } else {
1968 ifp->if_mtu = ifr->ifr_mtu;
1970 * Workaround: if the MTU is larger than
1971 * 8152 (TX FIFO size minus 64 minus 18), turn off
1972 * TX checksum offloading.
1974 if (ifr->ifr_mtu >= 8152)
1975 ifp->if_hwassist = 0;
1976 else
1977 ifp->if_hwassist = NGE_CSUM_FEATURES;
1979 break;
1980 case SIOCSIFFLAGS:
1981 if (ifp->if_flags & IFF_UP) {
1982 if (ifp->if_flags & IFF_RUNNING &&
1983 ifp->if_flags & IFF_PROMISC &&
1984 !(sc->nge_if_flags & IFF_PROMISC)) {
1985 NGE_SETBIT(sc, NGE_RXFILT_CTL,
1986 NGE_RXFILTCTL_ALLPHYS|
1987 NGE_RXFILTCTL_ALLMULTI);
1988 } else if (ifp->if_flags & IFF_RUNNING &&
1989 !(ifp->if_flags & IFF_PROMISC) &&
1990 sc->nge_if_flags & IFF_PROMISC) {
1991 NGE_CLRBIT(sc, NGE_RXFILT_CTL,
1992 NGE_RXFILTCTL_ALLPHYS);
1993 if (!(ifp->if_flags & IFF_ALLMULTI))
1994 NGE_CLRBIT(sc, NGE_RXFILT_CTL,
1995 NGE_RXFILTCTL_ALLMULTI);
1996 } else {
1997 ifp->if_flags &= ~IFF_RUNNING;
1998 nge_init(sc);
2000 } else {
2001 if (ifp->if_flags & IFF_RUNNING)
2002 nge_stop(sc);
2004 sc->nge_if_flags = ifp->if_flags;
2005 error = 0;
2006 break;
2007 case SIOCADDMULTI:
2008 case SIOCDELMULTI:
2009 nge_setmulti(sc);
2010 error = 0;
2011 break;
2012 case SIOCGIFMEDIA:
2013 case SIOCSIFMEDIA:
2014 if (sc->nge_tbi) {
2015 error = ifmedia_ioctl(ifp, ifr, &sc->nge_ifmedia,
2016 command);
2017 } else {
2018 mii = device_get_softc(sc->nge_miibus);
2019 error = ifmedia_ioctl(ifp, ifr, &mii->mii_media,
2020 command);
2022 break;
2023 default:
2024 error = ether_ioctl(ifp, command, data);
2025 break;
2027 return(error);
2030 static void
2031 nge_watchdog(struct ifnet *ifp)
2033 struct nge_softc *sc = ifp->if_softc;
2035 ifp->if_oerrors++;
2036 kprintf("nge%d: watchdog timeout\n", sc->nge_unit);
2038 nge_stop(sc);
2039 nge_reset(sc);
2040 ifp->if_flags &= ~IFF_RUNNING;
2041 nge_init(sc);
2043 if (!ifq_is_empty(&ifp->if_snd))
2044 if_devstart(ifp);
2048 * Stop the adapter and free any mbufs allocated to the
2049 * RX and TX lists.
2051 static void
2052 nge_stop(struct nge_softc *sc)
2054 struct ifnet *ifp = &sc->arpcom.ac_if;
2055 struct ifmedia_entry *ifm;
2056 struct mii_data *mii;
2057 int i, itmp, mtmp, dtmp;
2059 ifp->if_timer = 0;
2060 if (sc->nge_tbi)
2061 mii = NULL;
2062 else
2063 mii = device_get_softc(sc->nge_miibus);
2065 callout_stop(&sc->nge_stat_timer);
2066 CSR_WRITE_4(sc, NGE_IER, 0);
2067 CSR_WRITE_4(sc, NGE_IMR, 0);
2068 NGE_SETBIT(sc, NGE_CSR, NGE_CSR_TX_DISABLE|NGE_CSR_RX_DISABLE);
2069 DELAY(1000);
2070 CSR_WRITE_4(sc, NGE_TX_LISTPTR, 0);
2071 CSR_WRITE_4(sc, NGE_RX_LISTPTR, 0);
2074 * Isolate/power down the PHY, but leave the media selection
2075 * unchanged so that things will be put back to normal when
2076 * we bring the interface back up.
2078 itmp = ifp->if_flags;
2079 ifp->if_flags |= IFF_UP;
2081 if (sc->nge_tbi)
2082 ifm = sc->nge_ifmedia.ifm_cur;
2083 else
2084 ifm = mii->mii_media.ifm_cur;
2086 mtmp = ifm->ifm_media;
2087 dtmp = ifm->ifm_data;
2088 ifm->ifm_media = IFM_ETHER|IFM_NONE;
2089 ifm->ifm_data = MII_MEDIA_NONE;
2091 if (!sc->nge_tbi)
2092 mii_mediachg(mii);
2093 ifm->ifm_media = mtmp;
2094 ifm->ifm_data = dtmp;
2095 ifp->if_flags = itmp;
2097 sc->nge_link = 0;
2100 * Free data in the RX lists.
2102 for (i = 0; i < NGE_RX_LIST_CNT; i++) {
2103 if (sc->nge_ldata->nge_rx_list[i].nge_mbuf != NULL) {
2104 m_freem(sc->nge_ldata->nge_rx_list[i].nge_mbuf);
2105 sc->nge_ldata->nge_rx_list[i].nge_mbuf = NULL;
2108 bzero(&sc->nge_ldata->nge_rx_list,
2109 sizeof(sc->nge_ldata->nge_rx_list));
2112 * Free the TX list buffers.
2114 for (i = 0; i < NGE_TX_LIST_CNT; i++) {
2115 if (sc->nge_ldata->nge_tx_list[i].nge_mbuf != NULL) {
2116 m_freem(sc->nge_ldata->nge_tx_list[i].nge_mbuf);
2117 sc->nge_ldata->nge_tx_list[i].nge_mbuf = NULL;
2121 bzero(&sc->nge_ldata->nge_tx_list,
2122 sizeof(sc->nge_ldata->nge_tx_list));
2124 ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
2128 * Stop all chip I/O so that the kernel's probe routines don't
2129 * get confused by errant DMAs when rebooting.
2131 static void
2132 nge_shutdown(device_t dev)
2134 struct nge_softc *sc = device_get_softc(dev);
2135 struct ifnet *ifp = &sc->arpcom.ac_if;
2137 lwkt_serialize_enter(ifp->if_serializer);
2138 nge_reset(sc);
2139 nge_stop(sc);
2140 lwkt_serialize_exit(ifp->if_serializer);