kernel - syncache - Fix races due to struct syncache not being stable storage
[dragonfly.git] / sys / netinet / tcp_subr.c
blobc24f49652da8e629f7a9af465bc808b1d3329555
1 /*
2 * Copyright (c) 2003, 2004 Jeffrey M. Hsu. All rights reserved.
3 * Copyright (c) 2003, 2004 The DragonFly Project. All rights reserved.
5 * This code is derived from software contributed to The DragonFly Project
6 * by Jeffrey M. Hsu.
8 * Redistribution and use in source and binary forms, with or without
9 * modification, are permitted provided that the following conditions
10 * are met:
11 * 1. Redistributions of source code must retain the above copyright
12 * notice, this list of conditions and the following disclaimer.
13 * 2. Redistributions in binary form must reproduce the above copyright
14 * notice, this list of conditions and the following disclaimer in the
15 * documentation and/or other materials provided with the distribution.
16 * 3. Neither the name of The DragonFly Project nor the names of its
17 * contributors may be used to endorse or promote products derived
18 * from this software without specific, prior written permission.
20 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
21 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
22 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
23 * FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
24 * COPYRIGHT HOLDERS OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
25 * INCIDENTAL, SPECIAL, EXEMPLARY OR CONSEQUENTIAL DAMAGES (INCLUDING,
26 * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
27 * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
28 * AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
29 * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT
30 * OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
31 * SUCH DAMAGE.
35 * Copyright (c) 1982, 1986, 1988, 1990, 1993, 1995
36 * The Regents of the University of California. All rights reserved.
38 * Redistribution and use in source and binary forms, with or without
39 * modification, are permitted provided that the following conditions
40 * are met:
41 * 1. Redistributions of source code must retain the above copyright
42 * notice, this list of conditions and the following disclaimer.
43 * 2. Redistributions in binary form must reproduce the above copyright
44 * notice, this list of conditions and the following disclaimer in the
45 * documentation and/or other materials provided with the distribution.
46 * 3. All advertising materials mentioning features or use of this software
47 * must display the following acknowledgement:
48 * This product includes software developed by the University of
49 * California, Berkeley and its contributors.
50 * 4. Neither the name of the University nor the names of its contributors
51 * may be used to endorse or promote products derived from this software
52 * without specific prior written permission.
54 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
55 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
56 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
57 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
58 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
59 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
60 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
61 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
62 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
63 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
64 * SUCH DAMAGE.
66 * @(#)tcp_subr.c 8.2 (Berkeley) 5/24/95
67 * $FreeBSD: src/sys/netinet/tcp_subr.c,v 1.73.2.31 2003/01/24 05:11:34 sam Exp $
68 * $DragonFly: src/sys/netinet/tcp_subr.c,v 1.63 2008/11/11 10:46:58 sephe Exp $
71 #include "opt_compat.h"
72 #include "opt_inet6.h"
73 #include "opt_ipsec.h"
74 #include "opt_tcpdebug.h"
76 #include <sys/param.h>
77 #include <sys/systm.h>
78 #include <sys/callout.h>
79 #include <sys/kernel.h>
80 #include <sys/sysctl.h>
81 #include <sys/malloc.h>
82 #include <sys/mpipe.h>
83 #include <sys/mbuf.h>
84 #ifdef INET6
85 #include <sys/domain.h>
86 #endif
87 #include <sys/proc.h>
88 #include <sys/priv.h>
89 #include <sys/socket.h>
90 #include <sys/socketvar.h>
91 #include <sys/protosw.h>
92 #include <sys/random.h>
93 #include <sys/in_cksum.h>
94 #include <sys/ktr.h>
96 #include <net/route.h>
97 #include <net/if.h>
98 #include <net/netisr.h>
100 #define _IP_VHL
101 #include <netinet/in.h>
102 #include <netinet/in_systm.h>
103 #include <netinet/ip.h>
104 #include <netinet/ip6.h>
105 #include <netinet/in_pcb.h>
106 #include <netinet6/in6_pcb.h>
107 #include <netinet/in_var.h>
108 #include <netinet/ip_var.h>
109 #include <netinet6/ip6_var.h>
110 #include <netinet/ip_icmp.h>
111 #ifdef INET6
112 #include <netinet/icmp6.h>
113 #endif
114 #include <netinet/tcp.h>
115 #include <netinet/tcp_fsm.h>
116 #include <netinet/tcp_seq.h>
117 #include <netinet/tcp_timer.h>
118 #include <netinet/tcp_timer2.h>
119 #include <netinet/tcp_var.h>
120 #include <netinet6/tcp6_var.h>
121 #include <netinet/tcpip.h>
122 #ifdef TCPDEBUG
123 #include <netinet/tcp_debug.h>
124 #endif
125 #include <netinet6/ip6protosw.h>
127 #ifdef IPSEC
128 #include <netinet6/ipsec.h>
129 #ifdef INET6
130 #include <netinet6/ipsec6.h>
131 #endif
132 #endif
134 #ifdef FAST_IPSEC
135 #include <netproto/ipsec/ipsec.h>
136 #ifdef INET6
137 #include <netproto/ipsec/ipsec6.h>
138 #endif
139 #define IPSEC
140 #endif
142 #include <sys/md5.h>
143 #include <machine/smp.h>
145 #include <sys/msgport2.h>
146 #include <sys/mplock2.h>
147 #include <net/netmsg2.h>
149 #if !defined(KTR_TCP)
150 #define KTR_TCP KTR_ALL
151 #endif
152 KTR_INFO_MASTER(tcp);
153 KTR_INFO(KTR_TCP, tcp, rxmsg, 0, "tcp getmsg", 0);
154 KTR_INFO(KTR_TCP, tcp, wait, 1, "tcp waitmsg", 0);
155 KTR_INFO(KTR_TCP, tcp, delayed, 2, "tcp execute delayed ops", 0);
156 #define logtcp(name) KTR_LOG(tcp_ ## name)
158 struct inpcbinfo tcbinfo[MAXCPU];
159 struct tcpcbackqhead tcpcbackq[MAXCPU];
161 int tcp_mpsafe_proto = 0;
162 TUNABLE_INT("net.inet.tcp.mpsafe_proto", &tcp_mpsafe_proto);
164 static int tcp_mpsafe_thread = NETMSG_SERVICE_ADAPTIVE;
165 TUNABLE_INT("net.inet.tcp.mpsafe_thread", &tcp_mpsafe_thread);
166 SYSCTL_INT(_net_inet_tcp, OID_AUTO, mpsafe_thread, CTLFLAG_RW,
167 &tcp_mpsafe_thread, 0,
168 "0:BGL, 1:Adaptive BGL, 2:No BGL(experimental)");
170 int tcp_mssdflt = TCP_MSS;
171 SYSCTL_INT(_net_inet_tcp, TCPCTL_MSSDFLT, mssdflt, CTLFLAG_RW,
172 &tcp_mssdflt, 0, "Default TCP Maximum Segment Size");
174 #ifdef INET6
175 int tcp_v6mssdflt = TCP6_MSS;
176 SYSCTL_INT(_net_inet_tcp, TCPCTL_V6MSSDFLT, v6mssdflt, CTLFLAG_RW,
177 &tcp_v6mssdflt, 0, "Default TCP Maximum Segment Size for IPv6");
178 #endif
181 * Minimum MSS we accept and use. This prevents DoS attacks where
182 * we are forced to a ridiculous low MSS like 20 and send hundreds
183 * of packets instead of one. The effect scales with the available
184 * bandwidth and quickly saturates the CPU and network interface
185 * with packet generation and sending. Set to zero to disable MINMSS
186 * checking. This setting prevents us from sending too small packets.
188 int tcp_minmss = TCP_MINMSS;
189 SYSCTL_INT(_net_inet_tcp, OID_AUTO, minmss, CTLFLAG_RW,
190 &tcp_minmss , 0, "Minmum TCP Maximum Segment Size");
192 #if 0
193 static int tcp_rttdflt = TCPTV_SRTTDFLT / PR_SLOWHZ;
194 SYSCTL_INT(_net_inet_tcp, TCPCTL_RTTDFLT, rttdflt, CTLFLAG_RW,
195 &tcp_rttdflt, 0, "Default maximum TCP Round Trip Time");
196 #endif
198 int tcp_do_rfc1323 = 1;
199 SYSCTL_INT(_net_inet_tcp, TCPCTL_DO_RFC1323, rfc1323, CTLFLAG_RW,
200 &tcp_do_rfc1323, 0, "Enable rfc1323 (high performance TCP) extensions");
202 static int tcp_tcbhashsize = 0;
203 SYSCTL_INT(_net_inet_tcp, OID_AUTO, tcbhashsize, CTLFLAG_RD,
204 &tcp_tcbhashsize, 0, "Size of TCP control block hashtable");
206 static int do_tcpdrain = 1;
207 SYSCTL_INT(_net_inet_tcp, OID_AUTO, do_tcpdrain, CTLFLAG_RW, &do_tcpdrain, 0,
208 "Enable tcp_drain routine for extra help when low on mbufs");
210 static int icmp_may_rst = 1;
211 SYSCTL_INT(_net_inet_tcp, OID_AUTO, icmp_may_rst, CTLFLAG_RW, &icmp_may_rst, 0,
212 "Certain ICMP unreachable messages may abort connections in SYN_SENT");
214 static int tcp_isn_reseed_interval = 0;
215 SYSCTL_INT(_net_inet_tcp, OID_AUTO, isn_reseed_interval, CTLFLAG_RW,
216 &tcp_isn_reseed_interval, 0, "Seconds between reseeding of ISN secret");
219 * TCP bandwidth limiting sysctls. The inflight limiter is now turned on
220 * by default, but with generous values which should allow maximal
221 * bandwidth. In particular, the slop defaults to 50 (5 packets).
223 * The reason for doing this is that the limiter is the only mechanism we
224 * have which seems to do a really good job preventing receiver RX rings
225 * on network interfaces from getting blown out. Even though GigE/10GigE
226 * is supposed to flow control it looks like either it doesn't actually
227 * do it or Open Source drivers do not properly enable it.
229 * People using the limiter to reduce bottlenecks on slower WAN connections
230 * should set the slop to 20 (2 packets).
232 static int tcp_inflight_enable = 1;
233 SYSCTL_INT(_net_inet_tcp, OID_AUTO, inflight_enable, CTLFLAG_RW,
234 &tcp_inflight_enable, 0, "Enable automatic TCP inflight data limiting");
236 static int tcp_inflight_debug = 0;
237 SYSCTL_INT(_net_inet_tcp, OID_AUTO, inflight_debug, CTLFLAG_RW,
238 &tcp_inflight_debug, 0, "Debug TCP inflight calculations");
240 static int tcp_inflight_min = 6144;
241 SYSCTL_INT(_net_inet_tcp, OID_AUTO, inflight_min, CTLFLAG_RW,
242 &tcp_inflight_min, 0, "Lower bound for TCP inflight window");
244 static int tcp_inflight_max = TCP_MAXWIN << TCP_MAX_WINSHIFT;
245 SYSCTL_INT(_net_inet_tcp, OID_AUTO, inflight_max, CTLFLAG_RW,
246 &tcp_inflight_max, 0, "Upper bound for TCP inflight window");
248 static int tcp_inflight_stab = 50;
249 SYSCTL_INT(_net_inet_tcp, OID_AUTO, inflight_stab, CTLFLAG_RW,
250 &tcp_inflight_stab, 0, "Slop in maximal packets / 10 (20 = 3 packets)");
252 static MALLOC_DEFINE(M_TCPTEMP, "tcptemp", "TCP Templates for Keepalives");
253 static struct malloc_pipe tcptemp_mpipe;
255 static void tcp_willblock(int);
256 static void tcp_notify (struct inpcb *, int);
258 struct tcp_stats tcpstats_percpu[MAXCPU];
259 #ifdef SMP
260 static int
261 sysctl_tcpstats(SYSCTL_HANDLER_ARGS)
263 int cpu, error = 0;
265 for (cpu = 0; cpu < ncpus; ++cpu) {
266 if ((error = SYSCTL_OUT(req, &tcpstats_percpu[cpu],
267 sizeof(struct tcp_stats))))
268 break;
269 if ((error = SYSCTL_IN(req, &tcpstats_percpu[cpu],
270 sizeof(struct tcp_stats))))
271 break;
274 return (error);
276 SYSCTL_PROC(_net_inet_tcp, TCPCTL_STATS, stats, (CTLTYPE_OPAQUE | CTLFLAG_RW),
277 0, 0, sysctl_tcpstats, "S,tcp_stats", "TCP statistics");
278 #else
279 SYSCTL_STRUCT(_net_inet_tcp, TCPCTL_STATS, stats, CTLFLAG_RW,
280 &tcpstat, tcp_stats, "TCP statistics");
281 #endif
284 * Target size of TCP PCB hash tables. Must be a power of two.
286 * Note that this can be overridden by the kernel environment
287 * variable net.inet.tcp.tcbhashsize
289 #ifndef TCBHASHSIZE
290 #define TCBHASHSIZE 512
291 #endif
294 * This is the actual shape of what we allocate using the zone
295 * allocator. Doing it this way allows us to protect both structures
296 * using the same generation count, and also eliminates the overhead
297 * of allocating tcpcbs separately. By hiding the structure here,
298 * we avoid changing most of the rest of the code (although it needs
299 * to be changed, eventually, for greater efficiency).
301 #define ALIGNMENT 32
302 #define ALIGNM1 (ALIGNMENT - 1)
303 struct inp_tp {
304 union {
305 struct inpcb inp;
306 char align[(sizeof(struct inpcb) + ALIGNM1) & ~ALIGNM1];
307 } inp_tp_u;
308 struct tcpcb tcb;
309 struct tcp_callout inp_tp_rexmt;
310 struct tcp_callout inp_tp_persist;
311 struct tcp_callout inp_tp_keep;
312 struct tcp_callout inp_tp_2msl;
313 struct tcp_callout inp_tp_delack;
314 struct netmsg_tcp_timer inp_tp_timermsg;
316 #undef ALIGNMENT
317 #undef ALIGNM1
320 * Tcp initialization
322 void
323 tcp_init(void)
325 struct inpcbporthead *porthashbase;
326 u_long porthashmask;
327 int hashsize = TCBHASHSIZE;
328 int cpu;
331 * note: tcptemp is used for keepalives, and it is ok for an
332 * allocation to fail so do not specify MPF_INT.
334 mpipe_init(&tcptemp_mpipe, M_TCPTEMP, sizeof(struct tcptemp),
335 25, -1, 0, NULL);
337 tcp_delacktime = TCPTV_DELACK;
338 tcp_keepinit = TCPTV_KEEP_INIT;
339 tcp_keepidle = TCPTV_KEEP_IDLE;
340 tcp_keepintvl = TCPTV_KEEPINTVL;
341 tcp_maxpersistidle = TCPTV_KEEP_IDLE;
342 tcp_msl = TCPTV_MSL;
343 tcp_rexmit_min = TCPTV_MIN;
344 tcp_rexmit_slop = TCPTV_CPU_VAR;
346 TUNABLE_INT_FETCH("net.inet.tcp.tcbhashsize", &hashsize);
347 if (!powerof2(hashsize)) {
348 kprintf("WARNING: TCB hash size not a power of 2\n");
349 hashsize = 512; /* safe default */
351 tcp_tcbhashsize = hashsize;
352 porthashbase = hashinit(hashsize, M_PCB, &porthashmask);
354 for (cpu = 0; cpu < ncpus2; cpu++) {
355 in_pcbinfo_init(&tcbinfo[cpu]);
356 tcbinfo[cpu].cpu = cpu;
357 tcbinfo[cpu].hashbase = hashinit(hashsize, M_PCB,
358 &tcbinfo[cpu].hashmask);
359 tcbinfo[cpu].porthashbase = porthashbase;
360 tcbinfo[cpu].porthashmask = porthashmask;
361 tcbinfo[cpu].wildcardhashbase = hashinit(hashsize, M_PCB,
362 &tcbinfo[cpu].wildcardhashmask);
363 tcbinfo[cpu].ipi_size = sizeof(struct inp_tp);
364 TAILQ_INIT(&tcpcbackq[cpu]);
367 tcp_reass_maxseg = nmbclusters / 16;
368 TUNABLE_INT_FETCH("net.inet.tcp.reass.maxsegments", &tcp_reass_maxseg);
370 #ifdef INET6
371 #define TCP_MINPROTOHDR (sizeof(struct ip6_hdr) + sizeof(struct tcphdr))
372 #else
373 #define TCP_MINPROTOHDR (sizeof(struct tcpiphdr))
374 #endif
375 if (max_protohdr < TCP_MINPROTOHDR)
376 max_protohdr = TCP_MINPROTOHDR;
377 if (max_linkhdr + TCP_MINPROTOHDR > MHLEN)
378 panic("tcp_init");
379 #undef TCP_MINPROTOHDR
382 * Initialize TCP statistics counters for each CPU.
384 #ifdef SMP
385 for (cpu = 0; cpu < ncpus; ++cpu) {
386 bzero(&tcpstats_percpu[cpu], sizeof(struct tcp_stats));
388 #else
389 bzero(&tcpstat, sizeof(struct tcp_stats));
390 #endif
392 syncache_init();
393 tcp_thread_init();
396 void
397 tcpmsg_service_loop(void *dummy)
399 struct netmsg *msg;
400 int mplocked;
403 * Thread was started with TDF_MPSAFE
405 mplocked = 0;
407 while ((msg = lwkt_waitport(&curthread->td_msgport, 0))) {
408 do {
409 logtcp(rxmsg);
410 mplocked = netmsg_service(msg, tcp_mpsafe_thread,
411 mplocked);
412 } while ((msg = lwkt_getport(&curthread->td_msgport)) != NULL);
414 logtcp(delayed);
415 tcp_willblock(mplocked);
416 logtcp(wait);
420 static void
421 tcp_willblock(int mplocked)
423 struct tcpcb *tp;
424 int cpu = mycpu->gd_cpuid;
425 int unlock = 0;
427 if (!mplocked && !tcp_mpsafe_proto) {
428 if (TAILQ_EMPTY(&tcpcbackq[cpu]))
429 return;
431 get_mplock();
432 mplocked = 1;
433 unlock = 1;
436 while ((tp = TAILQ_FIRST(&tcpcbackq[cpu])) != NULL) {
437 KKASSERT(tp->t_flags & TF_ONOUTPUTQ);
438 tp->t_flags &= ~TF_ONOUTPUTQ;
439 TAILQ_REMOVE(&tcpcbackq[cpu], tp, t_outputq);
440 tcp_output(tp);
443 if (unlock)
444 rel_mplock();
449 * Fill in the IP and TCP headers for an outgoing packet, given the tcpcb.
450 * tcp_template used to store this data in mbufs, but we now recopy it out
451 * of the tcpcb each time to conserve mbufs.
453 void
454 tcp_fillheaders(struct tcpcb *tp, void *ip_ptr, void *tcp_ptr)
456 struct inpcb *inp = tp->t_inpcb;
457 struct tcphdr *tcp_hdr = (struct tcphdr *)tcp_ptr;
459 #ifdef INET6
460 if (inp->inp_vflag & INP_IPV6) {
461 struct ip6_hdr *ip6;
463 ip6 = (struct ip6_hdr *)ip_ptr;
464 ip6->ip6_flow = (ip6->ip6_flow & ~IPV6_FLOWINFO_MASK) |
465 (inp->in6p_flowinfo & IPV6_FLOWINFO_MASK);
466 ip6->ip6_vfc = (ip6->ip6_vfc & ~IPV6_VERSION_MASK) |
467 (IPV6_VERSION & IPV6_VERSION_MASK);
468 ip6->ip6_nxt = IPPROTO_TCP;
469 ip6->ip6_plen = sizeof(struct tcphdr);
470 ip6->ip6_src = inp->in6p_laddr;
471 ip6->ip6_dst = inp->in6p_faddr;
472 tcp_hdr->th_sum = 0;
473 } else
474 #endif
476 struct ip *ip = (struct ip *) ip_ptr;
478 ip->ip_vhl = IP_VHL_BORING;
479 ip->ip_tos = 0;
480 ip->ip_len = 0;
481 ip->ip_id = 0;
482 ip->ip_off = 0;
483 ip->ip_ttl = 0;
484 ip->ip_sum = 0;
485 ip->ip_p = IPPROTO_TCP;
486 ip->ip_src = inp->inp_laddr;
487 ip->ip_dst = inp->inp_faddr;
488 tcp_hdr->th_sum = in_pseudo(ip->ip_src.s_addr,
489 ip->ip_dst.s_addr,
490 htons(sizeof(struct tcphdr) + IPPROTO_TCP));
493 tcp_hdr->th_sport = inp->inp_lport;
494 tcp_hdr->th_dport = inp->inp_fport;
495 tcp_hdr->th_seq = 0;
496 tcp_hdr->th_ack = 0;
497 tcp_hdr->th_x2 = 0;
498 tcp_hdr->th_off = 5;
499 tcp_hdr->th_flags = 0;
500 tcp_hdr->th_win = 0;
501 tcp_hdr->th_urp = 0;
505 * Create template to be used to send tcp packets on a connection.
506 * Allocates an mbuf and fills in a skeletal tcp/ip header. The only
507 * use for this function is in keepalives, which use tcp_respond.
509 struct tcptemp *
510 tcp_maketemplate(struct tcpcb *tp)
512 struct tcptemp *tmp;
514 if ((tmp = mpipe_alloc_nowait(&tcptemp_mpipe)) == NULL)
515 return (NULL);
516 tcp_fillheaders(tp, &tmp->tt_ipgen, &tmp->tt_t);
517 return (tmp);
520 void
521 tcp_freetemplate(struct tcptemp *tmp)
523 mpipe_free(&tcptemp_mpipe, tmp);
527 * Send a single message to the TCP at address specified by
528 * the given TCP/IP header. If m == NULL, then we make a copy
529 * of the tcpiphdr at ti and send directly to the addressed host.
530 * This is used to force keep alive messages out using the TCP
531 * template for a connection. If flags are given then we send
532 * a message back to the TCP which originated the * segment ti,
533 * and discard the mbuf containing it and any other attached mbufs.
535 * In any case the ack and sequence number of the transmitted
536 * segment are as specified by the parameters.
538 * NOTE: If m != NULL, then ti must point to *inside* the mbuf.
540 void
541 tcp_respond(struct tcpcb *tp, void *ipgen, struct tcphdr *th, struct mbuf *m,
542 tcp_seq ack, tcp_seq seq, int flags)
544 int tlen;
545 int win = 0;
546 struct route *ro = NULL;
547 struct route sro;
548 struct ip *ip = ipgen;
549 struct tcphdr *nth;
550 int ipflags = 0;
551 struct route_in6 *ro6 = NULL;
552 struct route_in6 sro6;
553 struct ip6_hdr *ip6 = ipgen;
554 boolean_t use_tmpro = TRUE;
555 #ifdef INET6
556 boolean_t isipv6 = (IP_VHL_V(ip->ip_vhl) == 6);
557 #else
558 const boolean_t isipv6 = FALSE;
559 #endif
561 if (tp != NULL) {
562 if (!(flags & TH_RST)) {
563 win = ssb_space(&tp->t_inpcb->inp_socket->so_rcv);
564 if (win < 0)
565 win = 0;
566 if (win > (long)TCP_MAXWIN << tp->rcv_scale)
567 win = (long)TCP_MAXWIN << tp->rcv_scale;
570 * Don't use the route cache of a listen socket,
571 * it is not MPSAFE; use temporary route cache.
573 if (tp->t_state != TCPS_LISTEN) {
574 if (isipv6)
575 ro6 = &tp->t_inpcb->in6p_route;
576 else
577 ro = &tp->t_inpcb->inp_route;
578 use_tmpro = FALSE;
581 if (use_tmpro) {
582 if (isipv6) {
583 ro6 = &sro6;
584 bzero(ro6, sizeof *ro6);
585 } else {
586 ro = &sro;
587 bzero(ro, sizeof *ro);
590 if (m == NULL) {
591 m = m_gethdr(MB_DONTWAIT, MT_HEADER);
592 if (m == NULL)
593 return;
594 tlen = 0;
595 m->m_data += max_linkhdr;
596 if (isipv6) {
597 bcopy(ip6, mtod(m, caddr_t), sizeof(struct ip6_hdr));
598 ip6 = mtod(m, struct ip6_hdr *);
599 nth = (struct tcphdr *)(ip6 + 1);
600 } else {
601 bcopy(ip, mtod(m, caddr_t), sizeof(struct ip));
602 ip = mtod(m, struct ip *);
603 nth = (struct tcphdr *)(ip + 1);
605 bcopy(th, nth, sizeof(struct tcphdr));
606 flags = TH_ACK;
607 } else {
608 m_freem(m->m_next);
609 m->m_next = NULL;
610 m->m_data = (caddr_t)ipgen;
611 /* m_len is set later */
612 tlen = 0;
613 #define xchg(a, b, type) { type t; t = a; a = b; b = t; }
614 if (isipv6) {
615 xchg(ip6->ip6_dst, ip6->ip6_src, struct in6_addr);
616 nth = (struct tcphdr *)(ip6 + 1);
617 } else {
618 xchg(ip->ip_dst.s_addr, ip->ip_src.s_addr, n_long);
619 nth = (struct tcphdr *)(ip + 1);
621 if (th != nth) {
623 * this is usually a case when an extension header
624 * exists between the IPv6 header and the
625 * TCP header.
627 nth->th_sport = th->th_sport;
628 nth->th_dport = th->th_dport;
630 xchg(nth->th_dport, nth->th_sport, n_short);
631 #undef xchg
633 if (isipv6) {
634 ip6->ip6_flow = 0;
635 ip6->ip6_vfc = IPV6_VERSION;
636 ip6->ip6_nxt = IPPROTO_TCP;
637 ip6->ip6_plen = htons((u_short)(sizeof(struct tcphdr) + tlen));
638 tlen += sizeof(struct ip6_hdr) + sizeof(struct tcphdr);
639 } else {
640 tlen += sizeof(struct tcpiphdr);
641 ip->ip_len = tlen;
642 ip->ip_ttl = ip_defttl;
644 m->m_len = tlen;
645 m->m_pkthdr.len = tlen;
646 m->m_pkthdr.rcvif = NULL;
647 nth->th_seq = htonl(seq);
648 nth->th_ack = htonl(ack);
649 nth->th_x2 = 0;
650 nth->th_off = sizeof(struct tcphdr) >> 2;
651 nth->th_flags = flags;
652 if (tp != NULL)
653 nth->th_win = htons((u_short) (win >> tp->rcv_scale));
654 else
655 nth->th_win = htons((u_short)win);
656 nth->th_urp = 0;
657 if (isipv6) {
658 nth->th_sum = 0;
659 nth->th_sum = in6_cksum(m, IPPROTO_TCP,
660 sizeof(struct ip6_hdr),
661 tlen - sizeof(struct ip6_hdr));
662 ip6->ip6_hlim = in6_selecthlim(tp ? tp->t_inpcb : NULL,
663 (ro6 && ro6->ro_rt) ?
664 ro6->ro_rt->rt_ifp : NULL);
665 } else {
666 nth->th_sum = in_pseudo(ip->ip_src.s_addr, ip->ip_dst.s_addr,
667 htons((u_short)(tlen - sizeof(struct ip) + ip->ip_p)));
668 m->m_pkthdr.csum_flags = CSUM_TCP;
669 m->m_pkthdr.csum_data = offsetof(struct tcphdr, th_sum);
671 #ifdef TCPDEBUG
672 if (tp == NULL || (tp->t_inpcb->inp_socket->so_options & SO_DEBUG))
673 tcp_trace(TA_OUTPUT, 0, tp, mtod(m, void *), th, 0);
674 #endif
675 if (isipv6) {
676 ip6_output(m, NULL, ro6, ipflags, NULL, NULL,
677 tp ? tp->t_inpcb : NULL);
678 if ((ro6 == &sro6) && (ro6->ro_rt != NULL)) {
679 RTFREE(ro6->ro_rt);
680 ro6->ro_rt = NULL;
682 } else {
683 ipflags |= IP_DEBUGROUTE;
684 ip_output(m, NULL, ro, ipflags, NULL, tp ? tp->t_inpcb : NULL);
685 if ((ro == &sro) && (ro->ro_rt != NULL)) {
686 RTFREE(ro->ro_rt);
687 ro->ro_rt = NULL;
693 * Create a new TCP control block, making an
694 * empty reassembly queue and hooking it to the argument
695 * protocol control block. The `inp' parameter must have
696 * come from the zone allocator set up in tcp_init().
698 struct tcpcb *
699 tcp_newtcpcb(struct inpcb *inp)
701 struct inp_tp *it;
702 struct tcpcb *tp;
703 #ifdef INET6
704 boolean_t isipv6 = ((inp->inp_vflag & INP_IPV6) != 0);
705 #else
706 const boolean_t isipv6 = FALSE;
707 #endif
709 it = (struct inp_tp *)inp;
710 tp = &it->tcb;
711 bzero(tp, sizeof(struct tcpcb));
712 LIST_INIT(&tp->t_segq);
713 tp->t_maxseg = tp->t_maxopd = isipv6 ? tcp_v6mssdflt : tcp_mssdflt;
715 /* Set up our timeouts. */
716 tp->tt_rexmt = &it->inp_tp_rexmt;
717 tp->tt_persist = &it->inp_tp_persist;
718 tp->tt_keep = &it->inp_tp_keep;
719 tp->tt_2msl = &it->inp_tp_2msl;
720 tp->tt_delack = &it->inp_tp_delack;
721 tcp_inittimers(tp);
724 * Zero out timer message. We don't create it here,
725 * since the current CPU may not be the owner of this
726 * inpcb.
728 tp->tt_msg = &it->inp_tp_timermsg;
729 bzero(tp->tt_msg, sizeof(*tp->tt_msg));
731 if (tcp_do_rfc1323)
732 tp->t_flags = (TF_REQ_SCALE | TF_REQ_TSTMP);
733 tp->t_inpcb = inp; /* XXX */
734 tp->t_state = TCPS_CLOSED;
736 * Init srtt to TCPTV_SRTTBASE (0), so we can tell that we have no
737 * rtt estimate. Set rttvar so that srtt + 4 * rttvar gives
738 * reasonable initial retransmit time.
740 tp->t_srtt = TCPTV_SRTTBASE;
741 tp->t_rttvar =
742 ((TCPTV_RTOBASE - TCPTV_SRTTBASE) << TCP_RTTVAR_SHIFT) / 4;
743 tp->t_rttmin = tcp_rexmit_min;
744 tp->t_rxtcur = TCPTV_RTOBASE;
745 tp->snd_cwnd = TCP_MAXWIN << TCP_MAX_WINSHIFT;
746 tp->snd_bwnd = TCP_MAXWIN << TCP_MAX_WINSHIFT;
747 tp->snd_ssthresh = TCP_MAXWIN << TCP_MAX_WINSHIFT;
748 tp->t_rcvtime = ticks;
750 * IPv4 TTL initialization is necessary for an IPv6 socket as well,
751 * because the socket may be bound to an IPv6 wildcard address,
752 * which may match an IPv4-mapped IPv6 address.
754 inp->inp_ip_ttl = ip_defttl;
755 inp->inp_ppcb = tp;
756 tcp_sack_tcpcb_init(tp);
757 return (tp); /* XXX */
761 * Drop a TCP connection, reporting the specified error.
762 * If connection is synchronized, then send a RST to peer.
764 struct tcpcb *
765 tcp_drop(struct tcpcb *tp, int error)
767 struct socket *so = tp->t_inpcb->inp_socket;
769 if (TCPS_HAVERCVDSYN(tp->t_state)) {
770 tp->t_state = TCPS_CLOSED;
771 tcp_output(tp);
772 tcpstat.tcps_drops++;
773 } else
774 tcpstat.tcps_conndrops++;
775 if (error == ETIMEDOUT && tp->t_softerror)
776 error = tp->t_softerror;
777 so->so_error = error;
778 return (tcp_close(tp));
781 #ifdef SMP
783 struct netmsg_remwildcard {
784 struct netmsg nm_netmsg;
785 struct inpcb *nm_inp;
786 struct inpcbinfo *nm_pcbinfo;
787 #if defined(INET6)
788 int nm_isinet6;
789 #else
790 int nm_unused01;
791 #endif
795 * Wildcard inpcb's on SMP boxes must be removed from all cpus before the
796 * inp can be detached. We do this by cycling through the cpus, ending up
797 * on the cpu controlling the inp last and then doing the disconnect.
799 static void
800 in_pcbremwildcardhash_handler(struct netmsg *msg0)
802 struct netmsg_remwildcard *msg = (struct netmsg_remwildcard *)msg0;
803 int cpu;
805 cpu = msg->nm_pcbinfo->cpu;
807 if (cpu == msg->nm_inp->inp_pcbinfo->cpu) {
808 /* note: detach removes any wildcard hash entry */
809 #ifdef INET6
810 if (msg->nm_isinet6)
811 in6_pcbdetach(msg->nm_inp);
812 else
813 #endif
814 in_pcbdetach(msg->nm_inp);
815 lwkt_replymsg(&msg->nm_netmsg.nm_lmsg, 0);
816 } else {
817 in_pcbremwildcardhash_oncpu(msg->nm_inp, msg->nm_pcbinfo);
818 cpu = (cpu + 1) % ncpus2;
819 msg->nm_pcbinfo = &tcbinfo[cpu];
820 lwkt_forwardmsg(tcp_cport(cpu), &msg->nm_netmsg.nm_lmsg);
824 #endif
827 * Close a TCP control block:
828 * discard all space held by the tcp
829 * discard internet protocol block
830 * wake up any sleepers
832 struct tcpcb *
833 tcp_close(struct tcpcb *tp)
835 struct tseg_qent *q;
836 struct inpcb *inp = tp->t_inpcb;
837 struct socket *so = inp->inp_socket;
838 struct rtentry *rt;
839 boolean_t dosavessthresh;
840 #ifdef SMP
841 int cpu;
842 #endif
843 #ifdef INET6
844 boolean_t isipv6 = ((inp->inp_vflag & INP_IPV6) != 0);
845 boolean_t isafinet6 = (INP_CHECK_SOCKAF(so, AF_INET6) != 0);
846 #else
847 const boolean_t isipv6 = FALSE;
848 #endif
851 * The tp is not instantly destroyed in the wildcard case. Setting
852 * the state to TCPS_TERMINATING will prevent the TCP stack from
853 * messing with it, though it should be noted that this change may
854 * not take effect on other cpus until we have chained the wildcard
855 * hash removal.
857 * XXX we currently depend on the BGL to synchronize the tp->t_state
858 * update and prevent other tcp protocol threads from accepting new
859 * connections on the listen socket we might be trying to close down.
861 KKASSERT(tp->t_state != TCPS_TERMINATING);
862 tp->t_state = TCPS_TERMINATING;
865 * Make sure that all of our timers are stopped before we
866 * delete the PCB. For listen TCP socket (tp->tt_msg == NULL),
867 * timers are never used. If timer message is never created
868 * (tp->tt_msg->tt_tcb == NULL), timers are never used too.
870 if (tp->tt_msg != NULL && tp->tt_msg->tt_tcb != NULL) {
871 tcp_callout_stop(tp, tp->tt_rexmt);
872 tcp_callout_stop(tp, tp->tt_persist);
873 tcp_callout_stop(tp, tp->tt_keep);
874 tcp_callout_stop(tp, tp->tt_2msl);
875 tcp_callout_stop(tp, tp->tt_delack);
878 if (tp->t_flags & TF_ONOUTPUTQ) {
879 KKASSERT(tp->tt_cpu == mycpu->gd_cpuid);
880 TAILQ_REMOVE(&tcpcbackq[tp->tt_cpu], tp, t_outputq);
881 tp->t_flags &= ~TF_ONOUTPUTQ;
885 * If we got enough samples through the srtt filter,
886 * save the rtt and rttvar in the routing entry.
887 * 'Enough' is arbitrarily defined as the 16 samples.
888 * 16 samples is enough for the srtt filter to converge
889 * to within 5% of the correct value; fewer samples and
890 * we could save a very bogus rtt.
892 * Don't update the default route's characteristics and don't
893 * update anything that the user "locked".
895 if (tp->t_rttupdated >= 16) {
896 u_long i = 0;
898 if (isipv6) {
899 struct sockaddr_in6 *sin6;
901 if ((rt = inp->in6p_route.ro_rt) == NULL)
902 goto no_valid_rt;
903 sin6 = (struct sockaddr_in6 *)rt_key(rt);
904 if (IN6_IS_ADDR_UNSPECIFIED(&sin6->sin6_addr))
905 goto no_valid_rt;
906 } else
907 if ((rt = inp->inp_route.ro_rt) == NULL ||
908 ((struct sockaddr_in *)rt_key(rt))->
909 sin_addr.s_addr == INADDR_ANY)
910 goto no_valid_rt;
912 if (!(rt->rt_rmx.rmx_locks & RTV_RTT)) {
913 i = tp->t_srtt * (RTM_RTTUNIT / (hz * TCP_RTT_SCALE));
914 if (rt->rt_rmx.rmx_rtt && i)
916 * filter this update to half the old & half
917 * the new values, converting scale.
918 * See route.h and tcp_var.h for a
919 * description of the scaling constants.
921 rt->rt_rmx.rmx_rtt =
922 (rt->rt_rmx.rmx_rtt + i) / 2;
923 else
924 rt->rt_rmx.rmx_rtt = i;
925 tcpstat.tcps_cachedrtt++;
927 if (!(rt->rt_rmx.rmx_locks & RTV_RTTVAR)) {
928 i = tp->t_rttvar *
929 (RTM_RTTUNIT / (hz * TCP_RTTVAR_SCALE));
930 if (rt->rt_rmx.rmx_rttvar && i)
931 rt->rt_rmx.rmx_rttvar =
932 (rt->rt_rmx.rmx_rttvar + i) / 2;
933 else
934 rt->rt_rmx.rmx_rttvar = i;
935 tcpstat.tcps_cachedrttvar++;
938 * The old comment here said:
939 * update the pipelimit (ssthresh) if it has been updated
940 * already or if a pipesize was specified & the threshhold
941 * got below half the pipesize. I.e., wait for bad news
942 * before we start updating, then update on both good
943 * and bad news.
945 * But we want to save the ssthresh even if no pipesize is
946 * specified explicitly in the route, because such
947 * connections still have an implicit pipesize specified
948 * by the global tcp_sendspace. In the absence of a reliable
949 * way to calculate the pipesize, it will have to do.
951 i = tp->snd_ssthresh;
952 if (rt->rt_rmx.rmx_sendpipe != 0)
953 dosavessthresh = (i < rt->rt_rmx.rmx_sendpipe/2);
954 else
955 dosavessthresh = (i < so->so_snd.ssb_hiwat/2);
956 if (dosavessthresh ||
957 (!(rt->rt_rmx.rmx_locks & RTV_SSTHRESH) && (i != 0) &&
958 (rt->rt_rmx.rmx_ssthresh != 0))) {
960 * convert the limit from user data bytes to
961 * packets then to packet data bytes.
963 i = (i + tp->t_maxseg / 2) / tp->t_maxseg;
964 if (i < 2)
965 i = 2;
966 i *= tp->t_maxseg +
967 (isipv6 ?
968 sizeof(struct ip6_hdr) + sizeof(struct tcphdr) :
969 sizeof(struct tcpiphdr));
970 if (rt->rt_rmx.rmx_ssthresh)
971 rt->rt_rmx.rmx_ssthresh =
972 (rt->rt_rmx.rmx_ssthresh + i) / 2;
973 else
974 rt->rt_rmx.rmx_ssthresh = i;
975 tcpstat.tcps_cachedssthresh++;
979 no_valid_rt:
980 /* free the reassembly queue, if any */
981 while((q = LIST_FIRST(&tp->t_segq)) != NULL) {
982 LIST_REMOVE(q, tqe_q);
983 m_freem(q->tqe_m);
984 FREE(q, M_TSEGQ);
985 tcp_reass_qsize--;
987 /* throw away SACK blocks in scoreboard*/
988 if (TCP_DO_SACK(tp))
989 tcp_sack_cleanup(&tp->scb);
991 inp->inp_ppcb = NULL;
992 soisdisconnected(so);
994 tcp_destroy_timermsg(tp);
995 if (tp->t_flags & TF_SYNCACHE)
996 syncache_destroy(tp);
999 * Discard the inp. In the SMP case a wildcard inp's hash (created
1000 * by a listen socket or an INADDR_ANY udp socket) is replicated
1001 * for each protocol thread and must be removed in the context of
1002 * that thread. This is accomplished by chaining the message
1003 * through the cpus.
1005 * If the inp is not wildcarded we simply detach, which will remove
1006 * the any hashes still present for this inp.
1008 #ifdef SMP
1009 if (inp->inp_flags & INP_WILDCARD_MP) {
1010 struct netmsg_remwildcard *msg;
1012 cpu = (inp->inp_pcbinfo->cpu + 1) % ncpus2;
1013 msg = kmalloc(sizeof(struct netmsg_remwildcard),
1014 M_LWKTMSG, M_INTWAIT);
1015 netmsg_init(&msg->nm_netmsg, NULL, &netisr_afree_rport,
1016 0, in_pcbremwildcardhash_handler);
1017 #ifdef INET6
1018 msg->nm_isinet6 = isafinet6;
1019 #endif
1020 msg->nm_inp = inp;
1021 msg->nm_pcbinfo = &tcbinfo[cpu];
1022 lwkt_sendmsg(tcp_cport(cpu), &msg->nm_netmsg.nm_lmsg);
1023 } else
1024 #endif
1026 /* note: detach removes any wildcard hash entry */
1027 #ifdef INET6
1028 if (isafinet6)
1029 in6_pcbdetach(inp);
1030 else
1031 #endif
1032 in_pcbdetach(inp);
1034 tcpstat.tcps_closed++;
1035 return (NULL);
1038 static __inline void
1039 tcp_drain_oncpu(struct inpcbhead *head)
1041 struct inpcb *inpb;
1042 struct tcpcb *tcpb;
1043 struct tseg_qent *te;
1045 LIST_FOREACH(inpb, head, inp_list) {
1046 if (inpb->inp_flags & INP_PLACEMARKER)
1047 continue;
1048 if ((tcpb = intotcpcb(inpb))) {
1049 while ((te = LIST_FIRST(&tcpb->t_segq)) != NULL) {
1050 LIST_REMOVE(te, tqe_q);
1051 m_freem(te->tqe_m);
1052 FREE(te, M_TSEGQ);
1053 tcp_reass_qsize--;
1059 #ifdef SMP
1060 struct netmsg_tcp_drain {
1061 struct netmsg nm_netmsg;
1062 struct inpcbhead *nm_head;
1065 static void
1066 tcp_drain_handler(netmsg_t netmsg)
1068 struct netmsg_tcp_drain *nm = (void *)netmsg;
1070 tcp_drain_oncpu(nm->nm_head);
1071 lwkt_replymsg(&nm->nm_netmsg.nm_lmsg, 0);
1073 #endif
1075 void
1076 tcp_drain(void)
1078 #ifdef SMP
1079 int cpu;
1080 #endif
1082 if (!do_tcpdrain)
1083 return;
1086 * Walk the tcpbs, if existing, and flush the reassembly queue,
1087 * if there is one...
1088 * XXX: The "Net/3" implementation doesn't imply that the TCP
1089 * reassembly queue should be flushed, but in a situation
1090 * where we're really low on mbufs, this is potentially
1091 * useful.
1093 #ifdef SMP
1094 for (cpu = 0; cpu < ncpus2; cpu++) {
1095 struct netmsg_tcp_drain *msg;
1097 if (cpu == mycpu->gd_cpuid) {
1098 tcp_drain_oncpu(&tcbinfo[cpu].pcblisthead);
1099 } else {
1100 msg = kmalloc(sizeof(struct netmsg_tcp_drain),
1101 M_LWKTMSG, M_NOWAIT);
1102 if (msg == NULL)
1103 continue;
1104 netmsg_init(&msg->nm_netmsg, NULL, &netisr_afree_rport,
1105 0, tcp_drain_handler);
1106 msg->nm_head = &tcbinfo[cpu].pcblisthead;
1107 lwkt_sendmsg(tcp_cport(cpu), &msg->nm_netmsg.nm_lmsg);
1110 #else
1111 tcp_drain_oncpu(&tcbinfo[0].pcblisthead);
1112 #endif
1116 * Notify a tcp user of an asynchronous error;
1117 * store error as soft error, but wake up user
1118 * (for now, won't do anything until can select for soft error).
1120 * Do not wake up user since there currently is no mechanism for
1121 * reporting soft errors (yet - a kqueue filter may be added).
1123 static void
1124 tcp_notify(struct inpcb *inp, int error)
1126 struct tcpcb *tp = intotcpcb(inp);
1129 * Ignore some errors if we are hooked up.
1130 * If connection hasn't completed, has retransmitted several times,
1131 * and receives a second error, give up now. This is better
1132 * than waiting a long time to establish a connection that
1133 * can never complete.
1135 if (tp->t_state == TCPS_ESTABLISHED &&
1136 (error == EHOSTUNREACH || error == ENETUNREACH ||
1137 error == EHOSTDOWN)) {
1138 return;
1139 } else if (tp->t_state < TCPS_ESTABLISHED && tp->t_rxtshift > 3 &&
1140 tp->t_softerror)
1141 tcp_drop(tp, error);
1142 else
1143 tp->t_softerror = error;
1144 #if 0
1145 wakeup(&so->so_timeo);
1146 sorwakeup(so);
1147 sowwakeup(so);
1148 #endif
1151 static int
1152 tcp_pcblist(SYSCTL_HANDLER_ARGS)
1154 int error, i, n;
1155 struct inpcb *marker;
1156 struct inpcb *inp;
1157 inp_gen_t gencnt;
1158 globaldata_t gd;
1159 int origcpu, ccpu;
1161 error = 0;
1162 n = 0;
1165 * The process of preparing the TCB list is too time-consuming and
1166 * resource-intensive to repeat twice on every request.
1168 if (req->oldptr == NULL) {
1169 for (ccpu = 0; ccpu < ncpus; ++ccpu) {
1170 gd = globaldata_find(ccpu);
1171 n += tcbinfo[gd->gd_cpuid].ipi_count;
1173 req->oldidx = (n + n/8 + 10) * sizeof(struct xtcpcb);
1174 return (0);
1177 if (req->newptr != NULL)
1178 return (EPERM);
1180 marker = kmalloc(sizeof(struct inpcb), M_TEMP, M_WAITOK|M_ZERO);
1181 marker->inp_flags |= INP_PLACEMARKER;
1184 * OK, now we're committed to doing something. Run the inpcb list
1185 * for each cpu in the system and construct the output. Use a
1186 * list placemarker to deal with list changes occuring during
1187 * copyout blockages (but otherwise depend on being on the correct
1188 * cpu to avoid races).
1190 origcpu = mycpu->gd_cpuid;
1191 for (ccpu = 1; ccpu <= ncpus && error == 0; ++ccpu) {
1192 globaldata_t rgd;
1193 caddr_t inp_ppcb;
1194 struct xtcpcb xt;
1195 int cpu_id;
1197 cpu_id = (origcpu + ccpu) % ncpus;
1198 if ((smp_active_mask & (1 << cpu_id)) == 0)
1199 continue;
1200 rgd = globaldata_find(cpu_id);
1201 lwkt_setcpu_self(rgd);
1203 gencnt = tcbinfo[cpu_id].ipi_gencnt;
1204 n = tcbinfo[cpu_id].ipi_count;
1206 LIST_INSERT_HEAD(&tcbinfo[cpu_id].pcblisthead, marker, inp_list);
1207 i = 0;
1208 while ((inp = LIST_NEXT(marker, inp_list)) != NULL && i < n) {
1210 * process a snapshot of pcbs, ignoring placemarkers
1211 * and using our own to allow SYSCTL_OUT to block.
1213 LIST_REMOVE(marker, inp_list);
1214 LIST_INSERT_AFTER(inp, marker, inp_list);
1216 if (inp->inp_flags & INP_PLACEMARKER)
1217 continue;
1218 if (inp->inp_gencnt > gencnt)
1219 continue;
1220 if (prison_xinpcb(req->td, inp))
1221 continue;
1223 xt.xt_len = sizeof xt;
1224 bcopy(inp, &xt.xt_inp, sizeof *inp);
1225 inp_ppcb = inp->inp_ppcb;
1226 if (inp_ppcb != NULL)
1227 bcopy(inp_ppcb, &xt.xt_tp, sizeof xt.xt_tp);
1228 else
1229 bzero(&xt.xt_tp, sizeof xt.xt_tp);
1230 if (inp->inp_socket)
1231 sotoxsocket(inp->inp_socket, &xt.xt_socket);
1232 if ((error = SYSCTL_OUT(req, &xt, sizeof xt)) != 0)
1233 break;
1234 ++i;
1236 LIST_REMOVE(marker, inp_list);
1237 if (error == 0 && i < n) {
1238 bzero(&xt, sizeof xt);
1239 xt.xt_len = sizeof xt;
1240 while (i < n) {
1241 error = SYSCTL_OUT(req, &xt, sizeof xt);
1242 if (error)
1243 break;
1244 ++i;
1250 * Make sure we are on the same cpu we were on originally, since
1251 * higher level callers expect this. Also don't pollute caches with
1252 * migrated userland data by (eventually) returning to userland
1253 * on a different cpu.
1255 lwkt_setcpu_self(globaldata_find(origcpu));
1256 kfree(marker, M_TEMP);
1257 return (error);
1260 SYSCTL_PROC(_net_inet_tcp, TCPCTL_PCBLIST, pcblist, CTLFLAG_RD, 0, 0,
1261 tcp_pcblist, "S,xtcpcb", "List of active TCP connections");
1263 static int
1264 tcp_getcred(SYSCTL_HANDLER_ARGS)
1266 struct sockaddr_in addrs[2];
1267 struct inpcb *inp;
1268 int cpu;
1269 int error;
1271 error = priv_check(req->td, PRIV_ROOT);
1272 if (error != 0)
1273 return (error);
1274 error = SYSCTL_IN(req, addrs, sizeof addrs);
1275 if (error != 0)
1276 return (error);
1277 crit_enter();
1278 cpu = tcp_addrcpu(addrs[1].sin_addr.s_addr, addrs[1].sin_port,
1279 addrs[0].sin_addr.s_addr, addrs[0].sin_port);
1280 inp = in_pcblookup_hash(&tcbinfo[cpu], addrs[1].sin_addr,
1281 addrs[1].sin_port, addrs[0].sin_addr, addrs[0].sin_port, 0, NULL);
1282 if (inp == NULL || inp->inp_socket == NULL) {
1283 error = ENOENT;
1284 goto out;
1286 error = SYSCTL_OUT(req, inp->inp_socket->so_cred, sizeof(struct ucred));
1287 out:
1288 crit_exit();
1289 return (error);
1292 SYSCTL_PROC(_net_inet_tcp, OID_AUTO, getcred, (CTLTYPE_OPAQUE | CTLFLAG_RW),
1293 0, 0, tcp_getcred, "S,ucred", "Get the ucred of a TCP connection");
1295 #ifdef INET6
1296 static int
1297 tcp6_getcred(SYSCTL_HANDLER_ARGS)
1299 struct sockaddr_in6 addrs[2];
1300 struct inpcb *inp;
1301 int error;
1302 boolean_t mapped = FALSE;
1304 error = priv_check(req->td, PRIV_ROOT);
1305 if (error != 0)
1306 return (error);
1307 error = SYSCTL_IN(req, addrs, sizeof addrs);
1308 if (error != 0)
1309 return (error);
1310 if (IN6_IS_ADDR_V4MAPPED(&addrs[0].sin6_addr)) {
1311 if (IN6_IS_ADDR_V4MAPPED(&addrs[1].sin6_addr))
1312 mapped = TRUE;
1313 else
1314 return (EINVAL);
1316 crit_enter();
1317 if (mapped) {
1318 inp = in_pcblookup_hash(&tcbinfo[0],
1319 *(struct in_addr *)&addrs[1].sin6_addr.s6_addr[12],
1320 addrs[1].sin6_port,
1321 *(struct in_addr *)&addrs[0].sin6_addr.s6_addr[12],
1322 addrs[0].sin6_port,
1323 0, NULL);
1324 } else {
1325 inp = in6_pcblookup_hash(&tcbinfo[0],
1326 &addrs[1].sin6_addr, addrs[1].sin6_port,
1327 &addrs[0].sin6_addr, addrs[0].sin6_port,
1328 0, NULL);
1330 if (inp == NULL || inp->inp_socket == NULL) {
1331 error = ENOENT;
1332 goto out;
1334 error = SYSCTL_OUT(req, inp->inp_socket->so_cred, sizeof(struct ucred));
1335 out:
1336 crit_exit();
1337 return (error);
1340 SYSCTL_PROC(_net_inet6_tcp6, OID_AUTO, getcred, (CTLTYPE_OPAQUE | CTLFLAG_RW),
1341 0, 0,
1342 tcp6_getcred, "S,ucred", "Get the ucred of a TCP6 connection");
1343 #endif
1345 struct netmsg_tcp_notify {
1346 struct netmsg nm_nmsg;
1347 void (*nm_notify)(struct inpcb *, int);
1348 struct in_addr nm_faddr;
1349 int nm_arg;
1352 static void
1353 tcp_notifyall_oncpu(struct netmsg *netmsg)
1355 struct netmsg_tcp_notify *nmsg = (struct netmsg_tcp_notify *)netmsg;
1356 int nextcpu;
1358 in_pcbnotifyall(&tcbinfo[mycpuid].pcblisthead, nmsg->nm_faddr,
1359 nmsg->nm_arg, nmsg->nm_notify);
1361 nextcpu = mycpuid + 1;
1362 if (nextcpu < ncpus2)
1363 lwkt_forwardmsg(tcp_cport(nextcpu), &netmsg->nm_lmsg);
1364 else
1365 lwkt_replymsg(&netmsg->nm_lmsg, 0);
1368 void
1369 tcp_ctlinput(int cmd, struct sockaddr *sa, void *vip)
1371 struct ip *ip = vip;
1372 struct tcphdr *th;
1373 struct in_addr faddr;
1374 struct inpcb *inp;
1375 struct tcpcb *tp;
1376 void (*notify)(struct inpcb *, int) = tcp_notify;
1377 tcp_seq icmpseq;
1378 int arg, cpu;
1380 if ((unsigned)cmd >= PRC_NCMDS || inetctlerrmap[cmd] == 0) {
1381 return;
1384 faddr = ((struct sockaddr_in *)sa)->sin_addr;
1385 if (sa->sa_family != AF_INET || faddr.s_addr == INADDR_ANY)
1386 return;
1388 arg = inetctlerrmap[cmd];
1389 if (cmd == PRC_QUENCH) {
1390 notify = tcp_quench;
1391 } else if (icmp_may_rst &&
1392 (cmd == PRC_UNREACH_ADMIN_PROHIB ||
1393 cmd == PRC_UNREACH_PORT ||
1394 cmd == PRC_TIMXCEED_INTRANS) &&
1395 ip != NULL) {
1396 notify = tcp_drop_syn_sent;
1397 } else if (cmd == PRC_MSGSIZE) {
1398 struct icmp *icmp = (struct icmp *)
1399 ((caddr_t)ip - offsetof(struct icmp, icmp_ip));
1401 arg = ntohs(icmp->icmp_nextmtu);
1402 notify = tcp_mtudisc;
1403 } else if (PRC_IS_REDIRECT(cmd)) {
1404 ip = NULL;
1405 notify = in_rtchange;
1406 } else if (cmd == PRC_HOSTDEAD) {
1407 ip = NULL;
1410 if (ip != NULL) {
1411 crit_enter();
1412 th = (struct tcphdr *)((caddr_t)ip +
1413 (IP_VHL_HL(ip->ip_vhl) << 2));
1414 cpu = tcp_addrcpu(faddr.s_addr, th->th_dport,
1415 ip->ip_src.s_addr, th->th_sport);
1416 inp = in_pcblookup_hash(&tcbinfo[cpu], faddr, th->th_dport,
1417 ip->ip_src, th->th_sport, 0, NULL);
1418 if ((inp != NULL) && (inp->inp_socket != NULL)) {
1419 icmpseq = htonl(th->th_seq);
1420 tp = intotcpcb(inp);
1421 if (SEQ_GEQ(icmpseq, tp->snd_una) &&
1422 SEQ_LT(icmpseq, tp->snd_max))
1423 (*notify)(inp, arg);
1424 } else {
1425 struct in_conninfo inc;
1427 inc.inc_fport = th->th_dport;
1428 inc.inc_lport = th->th_sport;
1429 inc.inc_faddr = faddr;
1430 inc.inc_laddr = ip->ip_src;
1431 #ifdef INET6
1432 inc.inc_isipv6 = 0;
1433 #endif
1434 syncache_unreach(&inc, th);
1436 crit_exit();
1437 } else {
1438 struct netmsg_tcp_notify nmsg;
1440 KKASSERT(&curthread->td_msgport == cpu_portfn(0));
1441 netmsg_init(&nmsg.nm_nmsg, NULL, &curthread->td_msgport,
1442 0, tcp_notifyall_oncpu);
1443 nmsg.nm_faddr = faddr;
1444 nmsg.nm_arg = arg;
1445 nmsg.nm_notify = notify;
1447 lwkt_domsg(tcp_cport(0), &nmsg.nm_nmsg.nm_lmsg, 0);
1451 #ifdef INET6
1452 void
1453 tcp6_ctlinput(int cmd, struct sockaddr *sa, void *d)
1455 struct tcphdr th;
1456 void (*notify) (struct inpcb *, int) = tcp_notify;
1457 struct ip6_hdr *ip6;
1458 struct mbuf *m;
1459 struct ip6ctlparam *ip6cp = NULL;
1460 const struct sockaddr_in6 *sa6_src = NULL;
1461 int off;
1462 struct tcp_portonly {
1463 u_int16_t th_sport;
1464 u_int16_t th_dport;
1465 } *thp;
1466 int arg;
1468 if (sa->sa_family != AF_INET6 ||
1469 sa->sa_len != sizeof(struct sockaddr_in6))
1470 return;
1472 arg = 0;
1473 if (cmd == PRC_QUENCH)
1474 notify = tcp_quench;
1475 else if (cmd == PRC_MSGSIZE) {
1476 struct ip6ctlparam *ip6cp = d;
1477 struct icmp6_hdr *icmp6 = ip6cp->ip6c_icmp6;
1479 arg = ntohl(icmp6->icmp6_mtu);
1480 notify = tcp_mtudisc;
1481 } else if (!PRC_IS_REDIRECT(cmd) &&
1482 ((unsigned)cmd > PRC_NCMDS || inet6ctlerrmap[cmd] == 0)) {
1483 return;
1486 /* if the parameter is from icmp6, decode it. */
1487 if (d != NULL) {
1488 ip6cp = (struct ip6ctlparam *)d;
1489 m = ip6cp->ip6c_m;
1490 ip6 = ip6cp->ip6c_ip6;
1491 off = ip6cp->ip6c_off;
1492 sa6_src = ip6cp->ip6c_src;
1493 } else {
1494 m = NULL;
1495 ip6 = NULL;
1496 off = 0; /* fool gcc */
1497 sa6_src = &sa6_any;
1500 if (ip6 != NULL) {
1501 struct in_conninfo inc;
1503 * XXX: We assume that when IPV6 is non NULL,
1504 * M and OFF are valid.
1507 /* check if we can safely examine src and dst ports */
1508 if (m->m_pkthdr.len < off + sizeof *thp)
1509 return;
1511 bzero(&th, sizeof th);
1512 m_copydata(m, off, sizeof *thp, (caddr_t)&th);
1514 in6_pcbnotify(&tcbinfo[0].pcblisthead, sa, th.th_dport,
1515 (struct sockaddr *)ip6cp->ip6c_src,
1516 th.th_sport, cmd, arg, notify);
1518 inc.inc_fport = th.th_dport;
1519 inc.inc_lport = th.th_sport;
1520 inc.inc6_faddr = ((struct sockaddr_in6 *)sa)->sin6_addr;
1521 inc.inc6_laddr = ip6cp->ip6c_src->sin6_addr;
1522 inc.inc_isipv6 = 1;
1523 syncache_unreach(&inc, &th);
1524 } else
1525 in6_pcbnotify(&tcbinfo[0].pcblisthead, sa, 0,
1526 (const struct sockaddr *)sa6_src, 0, cmd, arg, notify);
1528 #endif
1531 * Following is where TCP initial sequence number generation occurs.
1533 * There are two places where we must use initial sequence numbers:
1534 * 1. In SYN-ACK packets.
1535 * 2. In SYN packets.
1537 * All ISNs for SYN-ACK packets are generated by the syncache. See
1538 * tcp_syncache.c for details.
1540 * The ISNs in SYN packets must be monotonic; TIME_WAIT recycling
1541 * depends on this property. In addition, these ISNs should be
1542 * unguessable so as to prevent connection hijacking. To satisfy
1543 * the requirements of this situation, the algorithm outlined in
1544 * RFC 1948 is used to generate sequence numbers.
1546 * Implementation details:
1548 * Time is based off the system timer, and is corrected so that it
1549 * increases by one megabyte per second. This allows for proper
1550 * recycling on high speed LANs while still leaving over an hour
1551 * before rollover.
1553 * net.inet.tcp.isn_reseed_interval controls the number of seconds
1554 * between seeding of isn_secret. This is normally set to zero,
1555 * as reseeding should not be necessary.
1559 #define ISN_BYTES_PER_SECOND 1048576
1561 u_char isn_secret[32];
1562 int isn_last_reseed;
1563 MD5_CTX isn_ctx;
1565 tcp_seq
1566 tcp_new_isn(struct tcpcb *tp)
1568 u_int32_t md5_buffer[4];
1569 tcp_seq new_isn;
1571 /* Seed if this is the first use, reseed if requested. */
1572 if ((isn_last_reseed == 0) || ((tcp_isn_reseed_interval > 0) &&
1573 (((u_int)isn_last_reseed + (u_int)tcp_isn_reseed_interval*hz)
1574 < (u_int)ticks))) {
1575 read_random_unlimited(&isn_secret, sizeof isn_secret);
1576 isn_last_reseed = ticks;
1579 /* Compute the md5 hash and return the ISN. */
1580 MD5Init(&isn_ctx);
1581 MD5Update(&isn_ctx, (u_char *)&tp->t_inpcb->inp_fport, sizeof(u_short));
1582 MD5Update(&isn_ctx, (u_char *)&tp->t_inpcb->inp_lport, sizeof(u_short));
1583 #ifdef INET6
1584 if (tp->t_inpcb->inp_vflag & INP_IPV6) {
1585 MD5Update(&isn_ctx, (u_char *) &tp->t_inpcb->in6p_faddr,
1586 sizeof(struct in6_addr));
1587 MD5Update(&isn_ctx, (u_char *) &tp->t_inpcb->in6p_laddr,
1588 sizeof(struct in6_addr));
1589 } else
1590 #endif
1592 MD5Update(&isn_ctx, (u_char *) &tp->t_inpcb->inp_faddr,
1593 sizeof(struct in_addr));
1594 MD5Update(&isn_ctx, (u_char *) &tp->t_inpcb->inp_laddr,
1595 sizeof(struct in_addr));
1597 MD5Update(&isn_ctx, (u_char *) &isn_secret, sizeof(isn_secret));
1598 MD5Final((u_char *) &md5_buffer, &isn_ctx);
1599 new_isn = (tcp_seq) md5_buffer[0];
1600 new_isn += ticks * (ISN_BYTES_PER_SECOND / hz);
1601 return (new_isn);
1605 * When a source quench is received, close congestion window
1606 * to one segment. We will gradually open it again as we proceed.
1608 void
1609 tcp_quench(struct inpcb *inp, int error)
1611 struct tcpcb *tp = intotcpcb(inp);
1613 if (tp != NULL) {
1614 tp->snd_cwnd = tp->t_maxseg;
1615 tp->snd_wacked = 0;
1620 * When a specific ICMP unreachable message is received and the
1621 * connection state is SYN-SENT, drop the connection. This behavior
1622 * is controlled by the icmp_may_rst sysctl.
1624 void
1625 tcp_drop_syn_sent(struct inpcb *inp, int error)
1627 struct tcpcb *tp = intotcpcb(inp);
1629 if ((tp != NULL) && (tp->t_state == TCPS_SYN_SENT))
1630 tcp_drop(tp, error);
1634 * When a `need fragmentation' ICMP is received, update our idea of the MSS
1635 * based on the new value in the route. Also nudge TCP to send something,
1636 * since we know the packet we just sent was dropped.
1637 * This duplicates some code in the tcp_mss() function in tcp_input.c.
1639 void
1640 tcp_mtudisc(struct inpcb *inp, int mtu)
1642 struct tcpcb *tp = intotcpcb(inp);
1643 struct rtentry *rt;
1644 struct socket *so = inp->inp_socket;
1645 int maxopd, mss;
1646 #ifdef INET6
1647 boolean_t isipv6 = ((tp->t_inpcb->inp_vflag & INP_IPV6) != 0);
1648 #else
1649 const boolean_t isipv6 = FALSE;
1650 #endif
1652 if (tp == NULL)
1653 return;
1656 * If no MTU is provided in the ICMP message, use the
1657 * next lower likely value, as specified in RFC 1191.
1659 if (mtu == 0) {
1660 int oldmtu;
1662 oldmtu = tp->t_maxopd +
1663 (isipv6 ?
1664 sizeof(struct ip6_hdr) + sizeof(struct tcphdr) :
1665 sizeof(struct tcpiphdr));
1666 mtu = ip_next_mtu(oldmtu, 0);
1669 if (isipv6)
1670 rt = tcp_rtlookup6(&inp->inp_inc);
1671 else
1672 rt = tcp_rtlookup(&inp->inp_inc);
1673 if (rt != NULL) {
1674 if (rt->rt_rmx.rmx_mtu != 0 && rt->rt_rmx.rmx_mtu < mtu)
1675 mtu = rt->rt_rmx.rmx_mtu;
1677 maxopd = mtu -
1678 (isipv6 ?
1679 sizeof(struct ip6_hdr) + sizeof(struct tcphdr) :
1680 sizeof(struct tcpiphdr));
1683 * XXX - The following conditional probably violates the TCP
1684 * spec. The problem is that, since we don't know the
1685 * other end's MSS, we are supposed to use a conservative
1686 * default. But, if we do that, then MTU discovery will
1687 * never actually take place, because the conservative
1688 * default is much less than the MTUs typically seen
1689 * on the Internet today. For the moment, we'll sweep
1690 * this under the carpet.
1692 * The conservative default might not actually be a problem
1693 * if the only case this occurs is when sending an initial
1694 * SYN with options and data to a host we've never talked
1695 * to before. Then, they will reply with an MSS value which
1696 * will get recorded and the new parameters should get
1697 * recomputed. For Further Study.
1699 if (rt->rt_rmx.rmx_mssopt && rt->rt_rmx.rmx_mssopt < maxopd)
1700 maxopd = rt->rt_rmx.rmx_mssopt;
1701 } else
1702 maxopd = mtu -
1703 (isipv6 ?
1704 sizeof(struct ip6_hdr) + sizeof(struct tcphdr) :
1705 sizeof(struct tcpiphdr));
1707 if (tp->t_maxopd <= maxopd)
1708 return;
1709 tp->t_maxopd = maxopd;
1711 mss = maxopd;
1712 if ((tp->t_flags & (TF_REQ_TSTMP | TF_RCVD_TSTMP | TF_NOOPT)) ==
1713 (TF_REQ_TSTMP | TF_RCVD_TSTMP))
1714 mss -= TCPOLEN_TSTAMP_APPA;
1716 /* round down to multiple of MCLBYTES */
1717 #if (MCLBYTES & (MCLBYTES - 1)) == 0 /* test if MCLBYTES power of 2 */
1718 if (mss > MCLBYTES)
1719 mss &= ~(MCLBYTES - 1);
1720 #else
1721 if (mss > MCLBYTES)
1722 mss = (mss / MCLBYTES) * MCLBYTES;
1723 #endif
1725 if (so->so_snd.ssb_hiwat < mss)
1726 mss = so->so_snd.ssb_hiwat;
1728 tp->t_maxseg = mss;
1729 tp->t_rtttime = 0;
1730 tp->snd_nxt = tp->snd_una;
1731 tcp_output(tp);
1732 tcpstat.tcps_mturesent++;
1736 * Look-up the routing entry to the peer of this inpcb. If no route
1737 * is found and it cannot be allocated the return NULL. This routine
1738 * is called by TCP routines that access the rmx structure and by tcp_mss
1739 * to get the interface MTU.
1741 struct rtentry *
1742 tcp_rtlookup(struct in_conninfo *inc)
1744 struct route *ro = &inc->inc_route;
1746 if (ro->ro_rt == NULL || !(ro->ro_rt->rt_flags & RTF_UP)) {
1747 /* No route yet, so try to acquire one */
1748 if (inc->inc_faddr.s_addr != INADDR_ANY) {
1750 * unused portions of the structure MUST be zero'd
1751 * out because rtalloc() treats it as opaque data
1753 bzero(&ro->ro_dst, sizeof(struct sockaddr_in));
1754 ro->ro_dst.sa_family = AF_INET;
1755 ro->ro_dst.sa_len = sizeof(struct sockaddr_in);
1756 ((struct sockaddr_in *) &ro->ro_dst)->sin_addr =
1757 inc->inc_faddr;
1758 rtalloc(ro);
1761 return (ro->ro_rt);
1764 #ifdef INET6
1765 struct rtentry *
1766 tcp_rtlookup6(struct in_conninfo *inc)
1768 struct route_in6 *ro6 = &inc->inc6_route;
1770 if (ro6->ro_rt == NULL || !(ro6->ro_rt->rt_flags & RTF_UP)) {
1771 /* No route yet, so try to acquire one */
1772 if (!IN6_IS_ADDR_UNSPECIFIED(&inc->inc6_faddr)) {
1774 * unused portions of the structure MUST be zero'd
1775 * out because rtalloc() treats it as opaque data
1777 bzero(&ro6->ro_dst, sizeof(struct sockaddr_in6));
1778 ro6->ro_dst.sin6_family = AF_INET6;
1779 ro6->ro_dst.sin6_len = sizeof(struct sockaddr_in6);
1780 ro6->ro_dst.sin6_addr = inc->inc6_faddr;
1781 rtalloc((struct route *)ro6);
1784 return (ro6->ro_rt);
1786 #endif
1788 #ifdef IPSEC
1789 /* compute ESP/AH header size for TCP, including outer IP header. */
1790 size_t
1791 ipsec_hdrsiz_tcp(struct tcpcb *tp)
1793 struct inpcb *inp;
1794 struct mbuf *m;
1795 size_t hdrsiz;
1796 struct ip *ip;
1797 struct tcphdr *th;
1799 if ((tp == NULL) || ((inp = tp->t_inpcb) == NULL))
1800 return (0);
1801 MGETHDR(m, MB_DONTWAIT, MT_DATA);
1802 if (!m)
1803 return (0);
1805 #ifdef INET6
1806 if (inp->inp_vflag & INP_IPV6) {
1807 struct ip6_hdr *ip6 = mtod(m, struct ip6_hdr *);
1809 th = (struct tcphdr *)(ip6 + 1);
1810 m->m_pkthdr.len = m->m_len =
1811 sizeof(struct ip6_hdr) + sizeof(struct tcphdr);
1812 tcp_fillheaders(tp, ip6, th);
1813 hdrsiz = ipsec6_hdrsiz(m, IPSEC_DIR_OUTBOUND, inp);
1814 } else
1815 #endif
1817 ip = mtod(m, struct ip *);
1818 th = (struct tcphdr *)(ip + 1);
1819 m->m_pkthdr.len = m->m_len = sizeof(struct tcpiphdr);
1820 tcp_fillheaders(tp, ip, th);
1821 hdrsiz = ipsec4_hdrsiz(m, IPSEC_DIR_OUTBOUND, inp);
1824 m_free(m);
1825 return (hdrsiz);
1827 #endif
1830 * TCP BANDWIDTH DELAY PRODUCT WINDOW LIMITING
1832 * This code attempts to calculate the bandwidth-delay product as a
1833 * means of determining the optimal window size to maximize bandwidth,
1834 * minimize RTT, and avoid the over-allocation of buffers on interfaces and
1835 * routers. This code also does a fairly good job keeping RTTs in check
1836 * across slow links like modems. We implement an algorithm which is very
1837 * similar (but not meant to be) TCP/Vegas. The code operates on the
1838 * transmitter side of a TCP connection and so only effects the transmit
1839 * side of the connection.
1841 * BACKGROUND: TCP makes no provision for the management of buffer space
1842 * at the end points or at the intermediate routers and switches. A TCP
1843 * stream, whether using NewReno or not, will eventually buffer as
1844 * many packets as it is able and the only reason this typically works is
1845 * due to the fairly small default buffers made available for a connection
1846 * (typicaly 16K or 32K). As machines use larger windows and/or window
1847 * scaling it is now fairly easy for even a single TCP connection to blow-out
1848 * all available buffer space not only on the local interface, but on
1849 * intermediate routers and switches as well. NewReno makes a misguided
1850 * attempt to 'solve' this problem by waiting for an actual failure to occur,
1851 * then backing off, then steadily increasing the window again until another
1852 * failure occurs, ad-infinitum. This results in terrible oscillation that
1853 * is only made worse as network loads increase and the idea of intentionally
1854 * blowing out network buffers is, frankly, a terrible way to manage network
1855 * resources.
1857 * It is far better to limit the transmit window prior to the failure
1858 * condition being achieved. There are two general ways to do this: First
1859 * you can 'scan' through different transmit window sizes and locate the
1860 * point where the RTT stops increasing, indicating that you have filled the
1861 * pipe, then scan backwards until you note that RTT stops decreasing, then
1862 * repeat ad-infinitum. This method works in principle but has severe
1863 * implementation issues due to RTT variances, timer granularity, and
1864 * instability in the algorithm which can lead to many false positives and
1865 * create oscillations as well as interact badly with other TCP streams
1866 * implementing the same algorithm.
1868 * The second method is to limit the window to the bandwidth delay product
1869 * of the link. This is the method we implement. RTT variances and our
1870 * own manipulation of the congestion window, bwnd, can potentially
1871 * destabilize the algorithm. For this reason we have to stabilize the
1872 * elements used to calculate the window. We do this by using the minimum
1873 * observed RTT, the long term average of the observed bandwidth, and
1874 * by adding two segments worth of slop. It isn't perfect but it is able
1875 * to react to changing conditions and gives us a very stable basis on
1876 * which to extend the algorithm.
1878 void
1879 tcp_xmit_bandwidth_limit(struct tcpcb *tp, tcp_seq ack_seq)
1881 u_long bw;
1882 u_long bwnd;
1883 int save_ticks;
1884 int delta_ticks;
1887 * If inflight_enable is disabled in the middle of a tcp connection,
1888 * make sure snd_bwnd is effectively disabled.
1890 if (!tcp_inflight_enable) {
1891 tp->snd_bwnd = TCP_MAXWIN << TCP_MAX_WINSHIFT;
1892 tp->snd_bandwidth = 0;
1893 return;
1897 * Validate the delta time. If a connection is new or has been idle
1898 * a long time we have to reset the bandwidth calculator.
1900 save_ticks = ticks;
1901 delta_ticks = save_ticks - tp->t_bw_rtttime;
1902 if (tp->t_bw_rtttime == 0 || delta_ticks < 0 || delta_ticks > hz * 10) {
1903 tp->t_bw_rtttime = ticks;
1904 tp->t_bw_rtseq = ack_seq;
1905 if (tp->snd_bandwidth == 0)
1906 tp->snd_bandwidth = tcp_inflight_min;
1907 return;
1909 if (delta_ticks == 0)
1910 return;
1913 * Sanity check, plus ignore pure window update acks.
1915 if ((int)(ack_seq - tp->t_bw_rtseq) <= 0)
1916 return;
1919 * Figure out the bandwidth. Due to the tick granularity this
1920 * is a very rough number and it MUST be averaged over a fairly
1921 * long period of time. XXX we need to take into account a link
1922 * that is not using all available bandwidth, but for now our
1923 * slop will ramp us up if this case occurs and the bandwidth later
1924 * increases.
1926 bw = (int64_t)(ack_seq - tp->t_bw_rtseq) * hz / delta_ticks;
1927 tp->t_bw_rtttime = save_ticks;
1928 tp->t_bw_rtseq = ack_seq;
1929 bw = ((int64_t)tp->snd_bandwidth * 15 + bw) >> 4;
1931 tp->snd_bandwidth = bw;
1934 * Calculate the semi-static bandwidth delay product, plus two maximal
1935 * segments. The additional slop puts us squarely in the sweet
1936 * spot and also handles the bandwidth run-up case. Without the
1937 * slop we could be locking ourselves into a lower bandwidth.
1939 * Situations Handled:
1940 * (1) Prevents over-queueing of packets on LANs, especially on
1941 * high speed LANs, allowing larger TCP buffers to be
1942 * specified, and also does a good job preventing
1943 * over-queueing of packets over choke points like modems
1944 * (at least for the transmit side).
1946 * (2) Is able to handle changing network loads (bandwidth
1947 * drops so bwnd drops, bandwidth increases so bwnd
1948 * increases).
1950 * (3) Theoretically should stabilize in the face of multiple
1951 * connections implementing the same algorithm (this may need
1952 * a little work).
1954 * (4) Stability value (defaults to 20 = 2 maximal packets) can
1955 * be adjusted with a sysctl but typically only needs to be on
1956 * very slow connections. A value no smaller then 5 should
1957 * be used, but only reduce this default if you have no other
1958 * choice.
1961 #define USERTT ((tp->t_srtt + tp->t_rttbest) / 2)
1962 bwnd = (int64_t)bw * USERTT / (hz << TCP_RTT_SHIFT) +
1963 tcp_inflight_stab * (int)tp->t_maxseg / 10;
1964 #undef USERTT
1966 if (tcp_inflight_debug > 0) {
1967 static int ltime;
1968 if ((u_int)(ticks - ltime) >= hz / tcp_inflight_debug) {
1969 ltime = ticks;
1970 kprintf("%p bw %ld rttbest %d srtt %d bwnd %ld\n",
1971 tp, bw, tp->t_rttbest, tp->t_srtt, bwnd);
1974 if ((long)bwnd < tcp_inflight_min)
1975 bwnd = tcp_inflight_min;
1976 if (bwnd > tcp_inflight_max)
1977 bwnd = tcp_inflight_max;
1978 if ((long)bwnd < tp->t_maxseg * 2)
1979 bwnd = tp->t_maxseg * 2;
1980 tp->snd_bwnd = bwnd;