Rename msleep() to ssleep().
[dragonfly.git] / sys / sys / tree.h
blobf4d7807e8d4f5cb25b24775198c5c49486b29bab
1 /* $NetBSD: tree.h,v 1.8 2004/03/28 19:38:30 provos Exp $ */
2 /* $OpenBSD: tree.h,v 1.7 2002/10/17 21:51:54 art Exp $ */
3 /* $DragonFly: src/sys/sys/tree.h,v 1.11 2008/01/07 01:22:30 corecode Exp $ */
4 /*
5 * Copyright 2002 Niels Provos <provos@citi.umich.edu>
6 * All rights reserved.
8 * Redistribution and use in source and binary forms, with or without
9 * modification, are permitted provided that the following conditions
10 * are met:
11 * 1. Redistributions of source code must retain the above copyright
12 * notice, this list of conditions and the following disclaimer.
13 * 2. Redistributions in binary form must reproduce the above copyright
14 * notice, this list of conditions and the following disclaimer in the
15 * documentation and/or other materials provided with the distribution.
17 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
18 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
19 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
20 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
21 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
22 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
23 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
24 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
25 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
26 * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
29 #ifndef _SYS_TREE_H_
30 #define _SYS_TREE_H_
33 * This file defines data structures for different types of trees:
34 * splay trees and red-black trees.
36 * A splay tree is a self-organizing data structure. Every operation
37 * on the tree causes a splay to happen. The splay moves the requested
38 * node to the root of the tree and partly rebalances it.
40 * This has the benefit that request locality causes faster lookups as
41 * the requested nodes move to the top of the tree. On the other hand,
42 * every lookup causes memory writes.
44 * The Balance Theorem bounds the total access time for m operations
45 * and n inserts on an initially empty tree as O((m + n)lg n). The
46 * amortized cost for a sequence of m accesses to a splay tree is O(lg n);
48 * A red-black tree is a binary search tree with the node color as an
49 * extra attribute. It fulfills a set of conditions:
50 * - every search path from the root to a leaf consists of the
51 * same number of black nodes,
52 * - each red node (except for the root) has a black parent,
53 * - each leaf node is black.
55 * Every operation on a red-black tree is bounded as O(lg n).
56 * The maximum height of a red-black tree is 2lg (n+1).
59 #define SPLAY_HEAD(name, type) \
60 struct name { \
61 struct type *sph_root; /* root of the tree */ \
64 #define SPLAY_INITIALIZER(root) \
65 { NULL }
67 #define SPLAY_INIT(root) do { \
68 (root)->sph_root = NULL; \
69 } while (/*CONSTCOND*/ 0)
71 #define SPLAY_ENTRY(type) \
72 struct { \
73 struct type *spe_left; /* left element */ \
74 struct type *spe_right; /* right element */ \
77 #define SPLAY_LEFT(elm, field) (elm)->field.spe_left
78 #define SPLAY_RIGHT(elm, field) (elm)->field.spe_right
79 #define SPLAY_ROOT(head) (head)->sph_root
80 #define SPLAY_EMPTY(head) (SPLAY_ROOT(head) == NULL)
82 /* SPLAY_ROTATE_{LEFT,RIGHT} expect that tmp hold SPLAY_{RIGHT,LEFT} */
83 #define SPLAY_ROTATE_RIGHT(head, tmp, field) do { \
84 SPLAY_LEFT((head)->sph_root, field) = SPLAY_RIGHT(tmp, field); \
85 SPLAY_RIGHT(tmp, field) = (head)->sph_root; \
86 (head)->sph_root = tmp; \
87 } while (/*CONSTCOND*/ 0)
89 #define SPLAY_ROTATE_LEFT(head, tmp, field) do { \
90 SPLAY_RIGHT((head)->sph_root, field) = SPLAY_LEFT(tmp, field); \
91 SPLAY_LEFT(tmp, field) = (head)->sph_root; \
92 (head)->sph_root = tmp; \
93 } while (/*CONSTCOND*/ 0)
95 #define SPLAY_LINKLEFT(head, tmp, field) do { \
96 SPLAY_LEFT(tmp, field) = (head)->sph_root; \
97 tmp = (head)->sph_root; \
98 (head)->sph_root = SPLAY_LEFT((head)->sph_root, field); \
99 } while (/*CONSTCOND*/ 0)
101 #define SPLAY_LINKRIGHT(head, tmp, field) do { \
102 SPLAY_RIGHT(tmp, field) = (head)->sph_root; \
103 tmp = (head)->sph_root; \
104 (head)->sph_root = SPLAY_RIGHT((head)->sph_root, field); \
105 } while (/*CONSTCOND*/ 0)
107 #define SPLAY_ASSEMBLE(head, node, left, right, field) do { \
108 SPLAY_RIGHT(left, field) = SPLAY_LEFT((head)->sph_root, field); \
109 SPLAY_LEFT(right, field) = SPLAY_RIGHT((head)->sph_root, field);\
110 SPLAY_LEFT((head)->sph_root, field) = SPLAY_RIGHT(node, field); \
111 SPLAY_RIGHT((head)->sph_root, field) = SPLAY_LEFT(node, field); \
112 } while (/*CONSTCOND*/ 0)
114 /* Generates prototypes and inline functions */
116 #define SPLAY_PROTOTYPE(name, type, field, cmp) \
117 void name##_SPLAY(struct name *, struct type *); \
118 void name##_SPLAY_MINMAX(struct name *, int); \
119 struct type *name##_SPLAY_INSERT(struct name *, struct type *); \
120 struct type *name##_SPLAY_REMOVE(struct name *, struct type *); \
122 /* Finds the node with the same key as elm */ \
123 static __inline struct type * \
124 name##_SPLAY_FIND(struct name *head, struct type *elm) \
126 if (SPLAY_EMPTY(head)) \
127 return(NULL); \
128 name##_SPLAY(head, elm); \
129 if ((cmp)(elm, (head)->sph_root) == 0) \
130 return (head->sph_root); \
131 return (NULL); \
134 static __inline struct type * \
135 name##_SPLAY_NEXT(struct name *head, struct type *elm) \
137 name##_SPLAY(head, elm); \
138 if (SPLAY_RIGHT(elm, field) != NULL) { \
139 elm = SPLAY_RIGHT(elm, field); \
140 while (SPLAY_LEFT(elm, field) != NULL) { \
141 elm = SPLAY_LEFT(elm, field); \
143 } else \
144 elm = NULL; \
145 return (elm); \
148 static __inline struct type * \
149 name##_SPLAY_MIN_MAX(struct name *head, int val) \
151 name##_SPLAY_MINMAX(head, val); \
152 return (SPLAY_ROOT(head)); \
155 /* Main splay operation.
156 * Moves node close to the key of elm to top
158 #define SPLAY_GENERATE(name, type, field, cmp) \
159 struct type * \
160 name##_SPLAY_INSERT(struct name *head, struct type *elm) \
162 if (SPLAY_EMPTY(head)) { \
163 SPLAY_LEFT(elm, field) = SPLAY_RIGHT(elm, field) = NULL; \
164 } else { \
165 int __comp; \
166 name##_SPLAY(head, elm); \
167 __comp = (cmp)(elm, (head)->sph_root); \
168 if(__comp < 0) { \
169 SPLAY_LEFT(elm, field) = SPLAY_LEFT((head)->sph_root, field);\
170 SPLAY_RIGHT(elm, field) = (head)->sph_root; \
171 SPLAY_LEFT((head)->sph_root, field) = NULL; \
172 } else if (__comp > 0) { \
173 SPLAY_RIGHT(elm, field) = SPLAY_RIGHT((head)->sph_root, field);\
174 SPLAY_LEFT(elm, field) = (head)->sph_root; \
175 SPLAY_RIGHT((head)->sph_root, field) = NULL; \
176 } else \
177 return ((head)->sph_root); \
179 (head)->sph_root = (elm); \
180 return (NULL); \
183 struct type * \
184 name##_SPLAY_REMOVE(struct name *head, struct type *elm) \
186 struct type *__tmp; \
187 if (SPLAY_EMPTY(head)) \
188 return (NULL); \
189 name##_SPLAY(head, elm); \
190 if ((cmp)(elm, (head)->sph_root) == 0) { \
191 if (SPLAY_LEFT((head)->sph_root, field) == NULL) { \
192 (head)->sph_root = SPLAY_RIGHT((head)->sph_root, field);\
193 } else { \
194 __tmp = SPLAY_RIGHT((head)->sph_root, field); \
195 (head)->sph_root = SPLAY_LEFT((head)->sph_root, field);\
196 name##_SPLAY(head, elm); \
197 SPLAY_RIGHT((head)->sph_root, field) = __tmp; \
199 return (elm); \
201 return (NULL); \
204 void \
205 name##_SPLAY(struct name *head, struct type *elm) \
207 struct type __node, *__left, *__right, *__tmp; \
208 int __comp; \
210 SPLAY_LEFT(&__node, field) = SPLAY_RIGHT(&__node, field) = NULL;\
211 __left = __right = &__node; \
213 while ((__comp = (cmp)(elm, (head)->sph_root)) != 0) { \
214 if (__comp < 0) { \
215 __tmp = SPLAY_LEFT((head)->sph_root, field); \
216 if (__tmp == NULL) \
217 break; \
218 if ((cmp)(elm, __tmp) < 0){ \
219 SPLAY_ROTATE_RIGHT(head, __tmp, field); \
220 if (SPLAY_LEFT((head)->sph_root, field) == NULL)\
221 break; \
223 SPLAY_LINKLEFT(head, __right, field); \
224 } else if (__comp > 0) { \
225 __tmp = SPLAY_RIGHT((head)->sph_root, field); \
226 if (__tmp == NULL) \
227 break; \
228 if ((cmp)(elm, __tmp) > 0){ \
229 SPLAY_ROTATE_LEFT(head, __tmp, field); \
230 if (SPLAY_RIGHT((head)->sph_root, field) == NULL)\
231 break; \
233 SPLAY_LINKRIGHT(head, __left, field); \
236 SPLAY_ASSEMBLE(head, &__node, __left, __right, field); \
239 /* Splay with either the minimum or the maximum element \
240 * Used to find minimum or maximum element in tree. \
241 */ \
242 void name##_SPLAY_MINMAX(struct name *head, int __comp) \
244 struct type __node, *__left, *__right, *__tmp; \
246 SPLAY_LEFT(&__node, field) = SPLAY_RIGHT(&__node, field) = NULL;\
247 __left = __right = &__node; \
249 while (1) { \
250 if (__comp < 0) { \
251 __tmp = SPLAY_LEFT((head)->sph_root, field); \
252 if (__tmp == NULL) \
253 break; \
254 if (__comp < 0){ \
255 SPLAY_ROTATE_RIGHT(head, __tmp, field); \
256 if (SPLAY_LEFT((head)->sph_root, field) == NULL)\
257 break; \
259 SPLAY_LINKLEFT(head, __right, field); \
260 } else if (__comp > 0) { \
261 __tmp = SPLAY_RIGHT((head)->sph_root, field); \
262 if (__tmp == NULL) \
263 break; \
264 if (__comp > 0) { \
265 SPLAY_ROTATE_LEFT(head, __tmp, field); \
266 if (SPLAY_RIGHT((head)->sph_root, field) == NULL)\
267 break; \
269 SPLAY_LINKRIGHT(head, __left, field); \
272 SPLAY_ASSEMBLE(head, &__node, __left, __right, field); \
275 #define SPLAY_NEGINF -1
276 #define SPLAY_INF 1
278 #define SPLAY_INSERT(name, x, y) name##_SPLAY_INSERT(x, y)
279 #define SPLAY_REMOVE(name, x, y) name##_SPLAY_REMOVE(x, y)
280 #define SPLAY_FIND(name, x, y) name##_SPLAY_FIND(x, y)
281 #define SPLAY_NEXT(name, x, y) name##_SPLAY_NEXT(x, y)
282 #define SPLAY_MIN(name, x) (SPLAY_EMPTY(x) ? NULL \
283 : name##_SPLAY_MIN_MAX(x, SPLAY_NEGINF))
284 #define SPLAY_MAX(name, x) (SPLAY_EMPTY(x) ? NULL \
285 : name##_SPLAY_MIN_MAX(x, SPLAY_INF))
287 #define SPLAY_FOREACH(x, name, head) \
288 for ((x) = SPLAY_MIN(name, head); \
289 (x) != NULL; \
290 (x) = SPLAY_NEXT(name, head, x))
292 /* Macros that define a red-black tree */
294 #define RB_SCAN_INFO(name, type) \
295 struct name##_scan_info { \
296 struct name##_scan_info *link; \
297 struct type *node; \
300 #define RB_HEAD(name, type) \
301 struct name { \
302 struct type *rbh_root; /* root of the tree */ \
303 struct name##_scan_info *rbh_inprog; /* scans in progress */ \
306 #define RB_INITIALIZER(root) \
307 { NULL, NULL }
309 #define RB_INIT(root) do { \
310 (root)->rbh_root = NULL; \
311 (root)->rbh_inprog = NULL; \
312 } while (/*CONSTCOND*/ 0)
314 #define RB_BLACK 0
315 #define RB_RED 1
316 #define RB_ENTRY(type) \
317 struct { \
318 struct type *rbe_left; /* left element */ \
319 struct type *rbe_right; /* right element */ \
320 struct type *rbe_parent; /* parent element */ \
321 int rbe_color; /* node color */ \
324 #define RB_LEFT(elm, field) (elm)->field.rbe_left
325 #define RB_RIGHT(elm, field) (elm)->field.rbe_right
326 #define RB_PARENT(elm, field) (elm)->field.rbe_parent
327 #define RB_COLOR(elm, field) (elm)->field.rbe_color
328 #define RB_ROOT(head) (head)->rbh_root
329 #define RB_INPROG(head) (head)->rbh_inprog
330 #define RB_EMPTY(head) (RB_ROOT(head) == NULL)
332 #define RB_SET(elm, parent, field) do { \
333 RB_PARENT(elm, field) = parent; \
334 RB_LEFT(elm, field) = RB_RIGHT(elm, field) = NULL; \
335 RB_COLOR(elm, field) = RB_RED; \
336 } while (/*CONSTCOND*/ 0)
338 #define RB_SET_BLACKRED(black, red, field) do { \
339 RB_COLOR(black, field) = RB_BLACK; \
340 RB_COLOR(red, field) = RB_RED; \
341 } while (/*CONSTCOND*/ 0)
343 #ifdef RB_AUGMENT
344 #error "RB_AUGMENT not supported by DragonFly"
345 #endif
347 #define RB_ROTATE_LEFT(head, elm, tmp, field) do { \
348 (tmp) = RB_RIGHT(elm, field); \
349 if ((RB_RIGHT(elm, field) = RB_LEFT(tmp, field)) != NULL) { \
350 RB_PARENT(RB_LEFT(tmp, field), field) = (elm); \
352 if ((RB_PARENT(tmp, field) = RB_PARENT(elm, field)) != NULL) { \
353 if ((elm) == RB_LEFT(RB_PARENT(elm, field), field)) \
354 RB_LEFT(RB_PARENT(elm, field), field) = (tmp); \
355 else \
356 RB_RIGHT(RB_PARENT(elm, field), field) = (tmp); \
357 } else \
358 (head)->rbh_root = (tmp); \
359 RB_LEFT(tmp, field) = (elm); \
360 RB_PARENT(elm, field) = (tmp); \
361 } while (/*CONSTCOND*/ 0)
363 #define RB_ROTATE_RIGHT(head, elm, tmp, field) do { \
364 (tmp) = RB_LEFT(elm, field); \
365 if ((RB_LEFT(elm, field) = RB_RIGHT(tmp, field)) != NULL) { \
366 RB_PARENT(RB_RIGHT(tmp, field), field) = (elm); \
368 if ((RB_PARENT(tmp, field) = RB_PARENT(elm, field)) != NULL) { \
369 if ((elm) == RB_LEFT(RB_PARENT(elm, field), field)) \
370 RB_LEFT(RB_PARENT(elm, field), field) = (tmp); \
371 else \
372 RB_RIGHT(RB_PARENT(elm, field), field) = (tmp); \
373 } else \
374 (head)->rbh_root = (tmp); \
375 RB_RIGHT(tmp, field) = (elm); \
376 RB_PARENT(elm, field) = (tmp); \
377 } while (/*CONSTCOND*/ 0)
379 /* Generates prototypes and inline functions */
380 #define RB_PROTOTYPE(name, type, field, cmp) \
381 _RB_PROTOTYPE(name, type, field, cmp,)
382 #define RB_PROTOTYPE_STATIC(name, type, field, cmp) \
383 _RB_PROTOTYPE(name, type, field, cmp, __unused static)
385 #define _RB_PROTOTYPE(name, type, field, cmp, STORQUAL) \
386 STORQUAL struct type *name##_RB_REMOVE(struct name *, struct type *); \
387 STORQUAL struct type *name##_RB_INSERT(struct name *, struct type *); \
388 STORQUAL struct type *name##_RB_FIND(struct name *, struct type *); \
389 STORQUAL int name##_RB_SCAN(struct name *, int (*)(struct type *, void *),\
390 int (*)(struct type *, void *), void *); \
391 STORQUAL struct type *name##_RB_NEXT(struct type *); \
392 STORQUAL struct type *name##_RB_PREV(struct type *); \
393 STORQUAL struct type *name##_RB_MINMAX(struct name *, int); \
394 RB_SCAN_INFO(name, type) \
397 * A version which supplies a fast lookup routine for an exact match
398 * on a numeric field.
400 #define RB_PROTOTYPE2(name, type, field, cmp, datatype) \
401 RB_PROTOTYPE(name, type, field, cmp); \
402 struct type *name##_RB_LOOKUP(struct name *, datatype) \
405 * A version which supplies a fast lookup routine for a numeric
406 * field which resides within a ranged object, either using (begin,end),
407 * or using (begin,size).
409 #define RB_PROTOTYPE3(name, type, field, cmp, datatype) \
410 RB_PROTOTYPE2(name, type, field, cmp, datatype); \
411 struct type *name##_RB_RLOOKUP(struct name *, datatype) \
413 #define RB_PROTOTYPE4(name, type, field, cmp, datatype) \
414 RB_PROTOTYPE2(name, type, field, cmp, datatype); \
415 struct type *name##_RB_RLOOKUP(struct name *, datatype) \
417 #define RB_PROTOTYPEX(name, ext, type, field, cmp, datatype) \
418 RB_PROTOTYPE(name, type, field, cmp); \
419 struct type *name##_RB_LOOKUP_##ext (struct name *, datatype) \
421 /* Main rb operation.
422 * Moves node close to the key of elm to top
424 #define RB_GENERATE(name, type, field, cmp) \
425 _RB_GENERATE(name, type, field, cmp,)
427 #define RB_GENERATE_STATIC(name, type, field, cmp) \
428 _RB_GENERATE(name, type, field, cmp, __unused static)
430 #define _RB_GENERATE(name, type, field, cmp, STORQUAL) \
431 static void \
432 name##_RB_INSERT_COLOR(struct name *head, struct type *elm) \
434 struct type *parent, *gparent, *tmp; \
435 while ((parent = RB_PARENT(elm, field)) != NULL && \
436 RB_COLOR(parent, field) == RB_RED) { \
437 gparent = RB_PARENT(parent, field); \
438 if (parent == RB_LEFT(gparent, field)) { \
439 tmp = RB_RIGHT(gparent, field); \
440 if (tmp && RB_COLOR(tmp, field) == RB_RED) { \
441 RB_COLOR(tmp, field) = RB_BLACK; \
442 RB_SET_BLACKRED(parent, gparent, field);\
443 elm = gparent; \
444 continue; \
446 if (RB_RIGHT(parent, field) == elm) { \
447 RB_ROTATE_LEFT(head, parent, tmp, field);\
448 tmp = parent; \
449 parent = elm; \
450 elm = tmp; \
452 RB_SET_BLACKRED(parent, gparent, field); \
453 RB_ROTATE_RIGHT(head, gparent, tmp, field); \
454 } else { \
455 tmp = RB_LEFT(gparent, field); \
456 if (tmp && RB_COLOR(tmp, field) == RB_RED) { \
457 RB_COLOR(tmp, field) = RB_BLACK; \
458 RB_SET_BLACKRED(parent, gparent, field);\
459 elm = gparent; \
460 continue; \
462 if (RB_LEFT(parent, field) == elm) { \
463 RB_ROTATE_RIGHT(head, parent, tmp, field);\
464 tmp = parent; \
465 parent = elm; \
466 elm = tmp; \
468 RB_SET_BLACKRED(parent, gparent, field); \
469 RB_ROTATE_LEFT(head, gparent, tmp, field); \
472 RB_COLOR(head->rbh_root, field) = RB_BLACK; \
475 static void \
476 name##_RB_REMOVE_COLOR(struct name *head, struct type *parent, \
477 struct type *elm) \
479 struct type *tmp; \
480 while ((elm == NULL || RB_COLOR(elm, field) == RB_BLACK) && \
481 elm != RB_ROOT(head)) { \
482 if (RB_LEFT(parent, field) == elm) { \
483 tmp = RB_RIGHT(parent, field); \
484 if (RB_COLOR(tmp, field) == RB_RED) { \
485 RB_SET_BLACKRED(tmp, parent, field); \
486 RB_ROTATE_LEFT(head, parent, tmp, field);\
487 tmp = RB_RIGHT(parent, field); \
489 if ((RB_LEFT(tmp, field) == NULL || \
490 RB_COLOR(RB_LEFT(tmp, field), field) == RB_BLACK) &&\
491 (RB_RIGHT(tmp, field) == NULL || \
492 RB_COLOR(RB_RIGHT(tmp, field), field) == RB_BLACK)) {\
493 RB_COLOR(tmp, field) = RB_RED; \
494 elm = parent; \
495 parent = RB_PARENT(elm, field); \
496 } else { \
497 if (RB_RIGHT(tmp, field) == NULL || \
498 RB_COLOR(RB_RIGHT(tmp, field), field) == RB_BLACK) {\
499 struct type *oleft; \
500 if ((oleft = RB_LEFT(tmp, field)) \
501 != NULL) \
502 RB_COLOR(oleft, field) = RB_BLACK;\
503 RB_COLOR(tmp, field) = RB_RED; \
504 RB_ROTATE_RIGHT(head, tmp, oleft, field);\
505 tmp = RB_RIGHT(parent, field); \
507 RB_COLOR(tmp, field) = RB_COLOR(parent, field);\
508 RB_COLOR(parent, field) = RB_BLACK; \
509 if (RB_RIGHT(tmp, field)) \
510 RB_COLOR(RB_RIGHT(tmp, field), field) = RB_BLACK;\
511 RB_ROTATE_LEFT(head, parent, tmp, field);\
512 elm = RB_ROOT(head); \
513 break; \
515 } else { \
516 tmp = RB_LEFT(parent, field); \
517 if (RB_COLOR(tmp, field) == RB_RED) { \
518 RB_SET_BLACKRED(tmp, parent, field); \
519 RB_ROTATE_RIGHT(head, parent, tmp, field);\
520 tmp = RB_LEFT(parent, field); \
522 if ((RB_LEFT(tmp, field) == NULL || \
523 RB_COLOR(RB_LEFT(tmp, field), field) == RB_BLACK) &&\
524 (RB_RIGHT(tmp, field) == NULL || \
525 RB_COLOR(RB_RIGHT(tmp, field), field) == RB_BLACK)) {\
526 RB_COLOR(tmp, field) = RB_RED; \
527 elm = parent; \
528 parent = RB_PARENT(elm, field); \
529 } else { \
530 if (RB_LEFT(tmp, field) == NULL || \
531 RB_COLOR(RB_LEFT(tmp, field), field) == RB_BLACK) {\
532 struct type *oright; \
533 if ((oright = RB_RIGHT(tmp, field)) \
534 != NULL) \
535 RB_COLOR(oright, field) = RB_BLACK;\
536 RB_COLOR(tmp, field) = RB_RED; \
537 RB_ROTATE_LEFT(head, tmp, oright, field);\
538 tmp = RB_LEFT(parent, field); \
540 RB_COLOR(tmp, field) = RB_COLOR(parent, field);\
541 RB_COLOR(parent, field) = RB_BLACK; \
542 if (RB_LEFT(tmp, field)) \
543 RB_COLOR(RB_LEFT(tmp, field), field) = RB_BLACK;\
544 RB_ROTATE_RIGHT(head, parent, tmp, field);\
545 elm = RB_ROOT(head); \
546 break; \
550 if (elm) \
551 RB_COLOR(elm, field) = RB_BLACK; \
554 STORQUAL struct type * \
555 name##_RB_REMOVE(struct name *head, struct type *elm) \
557 struct type *child, *parent, *old; \
558 struct name##_scan_info *inprog; \
559 int color; \
561 for (inprog = RB_INPROG(head); inprog; inprog = inprog->link) { \
562 if (inprog->node == elm) \
563 inprog->node = RB_NEXT(name, head, elm); \
566 old = elm; \
567 if (RB_LEFT(elm, field) == NULL) \
568 child = RB_RIGHT(elm, field); \
569 else if (RB_RIGHT(elm, field) == NULL) \
570 child = RB_LEFT(elm, field); \
571 else { \
572 struct type *left; \
573 elm = RB_RIGHT(elm, field); \
574 while ((left = RB_LEFT(elm, field)) != NULL) \
575 elm = left; \
576 child = RB_RIGHT(elm, field); \
577 parent = RB_PARENT(elm, field); \
578 color = RB_COLOR(elm, field); \
579 if (child) \
580 RB_PARENT(child, field) = parent; \
581 if (parent) { \
582 if (RB_LEFT(parent, field) == elm) \
583 RB_LEFT(parent, field) = child; \
584 else \
585 RB_RIGHT(parent, field) = child; \
586 } else \
587 RB_ROOT(head) = child; \
588 if (RB_PARENT(elm, field) == old) \
589 parent = elm; \
590 (elm)->field = (old)->field; \
591 if (RB_PARENT(old, field)) { \
592 if (RB_LEFT(RB_PARENT(old, field), field) == old)\
593 RB_LEFT(RB_PARENT(old, field), field) = elm;\
594 else \
595 RB_RIGHT(RB_PARENT(old, field), field) = elm;\
596 } else \
597 RB_ROOT(head) = elm; \
598 RB_PARENT(RB_LEFT(old, field), field) = elm; \
599 if (RB_RIGHT(old, field)) \
600 RB_PARENT(RB_RIGHT(old, field), field) = elm; \
601 goto color; \
603 parent = RB_PARENT(elm, field); \
604 color = RB_COLOR(elm, field); \
605 if (child) \
606 RB_PARENT(child, field) = parent; \
607 if (parent) { \
608 if (RB_LEFT(parent, field) == elm) \
609 RB_LEFT(parent, field) = child; \
610 else \
611 RB_RIGHT(parent, field) = child; \
612 } else \
613 RB_ROOT(head) = child; \
614 color: \
615 if (color == RB_BLACK) \
616 name##_RB_REMOVE_COLOR(head, parent, child); \
617 return (old); \
620 /* Inserts a node into the RB tree */ \
621 STORQUAL struct type * \
622 name##_RB_INSERT(struct name *head, struct type *elm) \
624 struct type *tmp; \
625 struct type *parent = NULL; \
626 int comp = 0; \
627 tmp = RB_ROOT(head); \
628 while (tmp) { \
629 parent = tmp; \
630 comp = (cmp)(elm, parent); \
631 if (comp < 0) \
632 tmp = RB_LEFT(tmp, field); \
633 else if (comp > 0) \
634 tmp = RB_RIGHT(tmp, field); \
635 else \
636 return(tmp); \
638 RB_SET(elm, parent, field); \
639 if (parent != NULL) { \
640 if (comp < 0) \
641 RB_LEFT(parent, field) = elm; \
642 else \
643 RB_RIGHT(parent, field) = elm; \
644 } else \
645 RB_ROOT(head) = elm; \
646 name##_RB_INSERT_COLOR(head, elm); \
647 return (NULL); \
650 /* Finds the node with the same key as elm */ \
651 STORQUAL struct type * \
652 name##_RB_FIND(struct name *head, struct type *elm) \
654 struct type *tmp = RB_ROOT(head); \
655 int comp; \
656 while (tmp) { \
657 comp = cmp(elm, tmp); \
658 if (comp < 0) \
659 tmp = RB_LEFT(tmp, field); \
660 else if (comp > 0) \
661 tmp = RB_RIGHT(tmp, field); \
662 else \
663 return (tmp); \
665 return (NULL); \
668 /* \
669 * Issue a callback for all matching items. The scan function must \
670 * return < 0 for items below the desired range, 0 for items within \
671 * the range, and > 0 for items beyond the range. Any item may be \
672 * deleted while the scan is in progress. \
673 */ \
674 static int \
675 name##_SCANCMP_ALL(struct type *type __unused, void *data __unused) \
677 return(0); \
680 static __inline void \
681 name##_scan_info_link(struct name##_scan_info *scan, struct name *head) \
683 scan->link = RB_INPROG(head); \
684 RB_INPROG(head) = scan; \
687 static __inline void \
688 name##_scan_info_done(struct name##_scan_info *scan, struct name *head) \
690 struct name##_scan_info **infopp; \
692 infopp = &RB_INPROG(head); \
693 while (*infopp != scan) \
694 infopp = &(*infopp)->link; \
695 *infopp = scan->link; \
698 STORQUAL int \
699 name##_RB_SCAN(struct name *head, \
700 int (*scancmp)(struct type *, void *), \
701 int (*callback)(struct type *, void *), \
702 void *data) \
704 struct name##_scan_info info; \
705 struct type *best; \
706 struct type *tmp; \
707 int count; \
708 int comp; \
710 if (scancmp == NULL) \
711 scancmp = name##_SCANCMP_ALL; \
713 /* \
714 * Locate the first element. \
715 */ \
716 tmp = RB_ROOT(head); \
717 best = NULL; \
718 while (tmp) { \
719 comp = scancmp(tmp, data); \
720 if (comp < 0) { \
721 tmp = RB_RIGHT(tmp, field); \
722 } else if (comp > 0) { \
723 tmp = RB_LEFT(tmp, field); \
724 } else { \
725 best = tmp; \
726 if (RB_LEFT(tmp, field) == NULL) \
727 break; \
728 tmp = RB_LEFT(tmp, field); \
731 count = 0; \
732 if (best) { \
733 info.node = RB_NEXT(name, head, best); \
734 name##_scan_info_link(&info, head); \
735 while ((comp = callback(best, data)) >= 0) { \
736 count += comp; \
737 best = info.node; \
738 if (best == NULL || scancmp(best, data) != 0) \
739 break; \
740 info.node = RB_NEXT(name, head, best); \
742 name##_scan_info_done(&info, head); \
743 if (comp < 0) /* error or termination */ \
744 count = comp; \
746 return(count); \
749 /* ARGSUSED */ \
750 STORQUAL struct type * \
751 name##_RB_NEXT(struct type *elm) \
753 if (RB_RIGHT(elm, field)) { \
754 elm = RB_RIGHT(elm, field); \
755 while (RB_LEFT(elm, field)) \
756 elm = RB_LEFT(elm, field); \
757 } else { \
758 if (RB_PARENT(elm, field) && \
759 (elm == RB_LEFT(RB_PARENT(elm, field), field))) \
760 elm = RB_PARENT(elm, field); \
761 else { \
762 while (RB_PARENT(elm, field) && \
763 (elm == RB_RIGHT(RB_PARENT(elm, field), field)))\
764 elm = RB_PARENT(elm, field); \
765 elm = RB_PARENT(elm, field); \
768 return (elm); \
771 /* ARGSUSED */ \
772 STORQUAL struct type * \
773 name##_RB_PREV(struct type *elm) \
775 if (RB_LEFT(elm, field)) { \
776 elm = RB_LEFT(elm, field); \
777 while (RB_RIGHT(elm, field)) \
778 elm = RB_RIGHT(elm, field); \
779 } else { \
780 if (RB_PARENT(elm, field) && \
781 (elm == RB_RIGHT(RB_PARENT(elm, field), field))) \
782 elm = RB_PARENT(elm, field); \
783 else { \
784 while (RB_PARENT(elm, field) && \
785 (elm == RB_LEFT(RB_PARENT(elm, field), field)))\
786 elm = RB_PARENT(elm, field); \
787 elm = RB_PARENT(elm, field); \
790 return (elm); \
793 STORQUAL struct type * \
794 name##_RB_MINMAX(struct name *head, int val) \
796 struct type *tmp = RB_ROOT(head); \
797 struct type *parent = NULL; \
798 while (tmp) { \
799 parent = tmp; \
800 if (val < 0) \
801 tmp = RB_LEFT(tmp, field); \
802 else \
803 tmp = RB_RIGHT(tmp, field); \
805 return (parent); \
809 * This extended version implements a fast LOOKUP function given
810 * a numeric data type.
812 * The element whos index/offset field is exactly the specified value
813 * will be returned, or NULL.
815 #define RB_GENERATE2(name, type, field, cmp, datatype, indexfield) \
816 RB_GENERATE(name, type, field, cmp) \
818 struct type * \
819 name##_RB_LOOKUP(struct name *head, datatype value) \
821 struct type *tmp; \
823 tmp = RB_ROOT(head); \
824 while (tmp) { \
825 if (value > tmp->indexfield) \
826 tmp = RB_RIGHT(tmp, field); \
827 else if (value < tmp->indexfield) \
828 tmp = RB_LEFT(tmp, field); \
829 else \
830 return(tmp); \
832 return(NULL); \
836 * This extended version implements a fast ranged-based LOOKUP function
837 * given a numeric data type, for data types with a beginning and end
838 * (end is inclusive).
840 * The element whos range contains the specified value is returned, or NULL
842 #define RB_GENERATE3(name, type, field, cmp, datatype, begfield, endfield) \
843 RB_GENERATE2(name, type, field, cmp, datatype, begfield) \
845 struct type * \
846 name##_RB_RLOOKUP(struct name *head, datatype value) \
848 struct type *tmp; \
850 tmp = RB_ROOT(head); \
851 while (tmp) { \
852 if (value >= tmp->begfield && value <= tmp->endfield) \
853 return(tmp); \
854 if (value > tmp->begfield) \
855 tmp = RB_RIGHT(tmp, field); \
856 else \
857 tmp = RB_LEFT(tmp, field); \
859 return(NULL); \
863 * This extended version implements a fast ranged-based LOOKUP function
864 * given a numeric data type, for data types with a beginning and size.
866 * WARNING: The full range of the data type is not supported due to a
867 * boundary condition at the end, where (beginning + size) might overflow.
869 * The element whos range contains the specified value is returned, or NULL
871 #define RB_GENERATE4(name, type, field, cmp, datatype, begfield, sizefield) \
872 RB_GENERATE2(name, type, field, cmp, datatype, begfield) \
874 struct type * \
875 name##_RB_RLOOKUP(struct name *head, datatype value) \
877 struct type *tmp; \
879 tmp = RB_ROOT(head); \
880 while (tmp) { \
881 if (value >= tmp->begfield && \
882 value < tmp->begfield + tmp->sizefield) { \
883 return(tmp); \
885 if (value > tmp->begfield) \
886 tmp = RB_RIGHT(tmp, field); \
887 else \
888 tmp = RB_LEFT(tmp, field); \
890 return(NULL); \
894 * This generates a custom lookup function for a red-black tree.
895 * Note that the macro may be used with a storage qualifier.
898 #define RB_GENERATE_XLOOKUP(name, ext, type, field, xcmp, datatype) \
899 _RB_GENERATE_XLOOKUP(name, ext, type, field, xcmp, datatype,)
900 #define RB_GENERATE_XLOOKUP_STATIC(name, ext, type, field, xcmp, datatype) \
901 _RB_GENERATE_XLOOKUP(name, ext, type, field, xcmp, datatype, __unused static)
903 #define _RB_GENERATE_XLOOKUP(name, ext, type, field, xcmp, datatype, STORQUAL)\
905 STORQUAL struct type * \
906 name##_RB_LOOKUP_##ext (struct name *head, datatype value) \
908 struct type *tmp; \
909 int r; \
911 tmp = RB_ROOT(head); \
912 while (tmp) { \
913 r = xcmp(value, tmp); \
914 if (r == 0) \
915 return(tmp); \
916 if (r > 0) \
917 tmp = RB_RIGHT(tmp, field); \
918 else \
919 tmp = RB_LEFT(tmp, field); \
921 return(NULL); \
925 #define RB_NEGINF -1
926 #define RB_INF 1
928 #define RB_INSERT(name, root, elm) name##_RB_INSERT(root, elm)
929 #define RB_REMOVE(name, root, elm) name##_RB_REMOVE(root, elm)
930 #define RB_FIND(name, root, elm) name##_RB_FIND(root, elm)
931 #define RB_LOOKUP(name, root, value) name##_RB_LOOKUP(root, value)
932 #define RB_RLOOKUP(name, root, value) name##_RB_RLOOKUP(root, value)
933 #define RB_SCAN(name, root, cmp, callback, data) \
934 name##_RB_SCAN(root, cmp, callback, data)
935 #define RB_FIRST(name, root) name##_RB_MINMAX(root, RB_NEGINF)
936 #define RB_NEXT(name, root, elm) name##_RB_NEXT(elm)
937 #define RB_PREV(name, root, elm) name##_RB_PREV(elm)
938 #define RB_MIN(name, root) name##_RB_MINMAX(root, RB_NEGINF)
939 #define RB_MAX(name, root) name##_RB_MINMAX(root, RB_INF)
941 #define RB_FOREACH(x, name, head) \
942 for ((x) = RB_MIN(name, head); \
943 (x) != NULL; \
944 (x) = name##_RB_NEXT(x))
946 #endif /* _SYS_TREE_H_ */