2 * Copyright (c) 2003,2004,2009 The DragonFly Project. All rights reserved.
4 * This code is derived from software contributed to The DragonFly Project
5 * by Matthew Dillon <dillon@backplane.com>
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following conditions
11 * 1. Redistributions of source code must retain the above copyright
12 * notice, this list of conditions and the following disclaimer.
13 * 2. Redistributions in binary form must reproduce the above copyright
14 * notice, this list of conditions and the following disclaimer in
15 * the documentation and/or other materials provided with the
17 * 3. Neither the name of The DragonFly Project nor the names of its
18 * contributors may be used to endorse or promote products derived
19 * from this software without specific, prior written permission.
21 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
22 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
23 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
24 * FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
25 * COPYRIGHT HOLDERS OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
26 * INCIDENTAL, SPECIAL, EXEMPLARY OR CONSEQUENTIAL DAMAGES (INCLUDING,
27 * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
28 * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
29 * AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
30 * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT
31 * OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
34 * ----------------------------------------------------------------------------
35 * "THE BEER-WARE LICENSE" (Revision 42):
36 * <phk@FreeBSD.ORG> wrote this file. As long as you retain this notice you
37 * can do whatever you want with this stuff. If we meet some day, and you think
38 * this stuff is worth it, you can buy me a beer in return. Poul-Henning Kamp
39 * ----------------------------------------------------------------------------
41 * Copyright (c) 1982, 1986, 1988, 1993
42 * The Regents of the University of California. All rights reserved.
43 * (c) UNIX System Laboratories, Inc.
44 * All or some portions of this file are derived from material licensed
45 * to the University of California by American Telephone and Telegraph
46 * Co. or Unix System Laboratories, Inc. and are reproduced herein with
47 * the permission of UNIX System Laboratories, Inc.
49 * Redistribution and use in source and binary forms, with or without
50 * modification, are permitted provided that the following conditions
52 * 1. Redistributions of source code must retain the above copyright
53 * notice, this list of conditions and the following disclaimer.
54 * 2. Redistributions in binary form must reproduce the above copyright
55 * notice, this list of conditions and the following disclaimer in the
56 * documentation and/or other materials provided with the distribution.
57 * 3. All advertising materials mentioning features or use of this software
58 * must display the following acknowledgement:
59 * This product includes software developed by the University of
60 * California, Berkeley and its contributors.
61 * 4. Neither the name of the University nor the names of its contributors
62 * may be used to endorse or promote products derived from this software
63 * without specific prior written permission.
65 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
66 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
67 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
68 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
69 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
70 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
71 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
72 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
73 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
74 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
77 * @(#)ufs_disksubr.c 8.5 (Berkeley) 1/21/94
78 * $FreeBSD: src/sys/kern/subr_disk.c,v 1.20.2.6 2001/10/05 07:14:57 peter Exp $
79 * $FreeBSD: src/sys/ufs/ufs/ufs_disksubr.c,v 1.44.2.3 2001/03/05 05:42:19 obrien Exp $
80 * $DragonFly: src/sys/kern/subr_disk.c,v 1.40 2008/06/05 18:06:32 swildner Exp $
83 #include <sys/param.h>
84 #include <sys/systm.h>
85 #include <sys/kernel.h>
87 #include <sys/sysctl.h>
90 #include <sys/disklabel.h>
91 #include <sys/disklabel32.h>
92 #include <sys/disklabel64.h>
93 #include <sys/diskslice.h>
94 #include <sys/diskmbr.h>
96 #include <sys/malloc.h>
97 #include <sys/sysctl.h>
98 #include <machine/md_var.h>
99 #include <sys/ctype.h>
100 #include <sys/syslog.h>
101 #include <sys/device.h>
102 #include <sys/msgport.h>
103 #include <sys/msgport2.h>
104 #include <sys/buf2.h>
105 #include <sys/devfs.h>
106 #include <sys/thread.h>
107 #include <sys/thread2.h>
109 #include <sys/queue.h>
110 #include <sys/lock.h>
112 static MALLOC_DEFINE(M_DISK
, "disk", "disk data");
114 static void disk_msg_autofree_reply(lwkt_port_t
, lwkt_msg_t
);
115 static void disk_msg_core(void *);
116 static int disk_probe_slice(struct disk
*dp
, cdev_t dev
, int slice
, int reprobe
);
117 static void disk_probe(struct disk
*dp
, int reprobe
);
118 static void _setdiskinfo(struct disk
*disk
, struct disk_info
*info
);
119 static void bioqwritereorder(struct bio_queue_head
*bioq
);
121 static d_open_t diskopen
;
122 static d_close_t diskclose
;
123 static d_ioctl_t diskioctl
;
124 static d_strategy_t diskstrategy
;
125 static d_psize_t diskpsize
;
126 static d_clone_t diskclone
;
127 static d_dump_t diskdump
;
129 static LIST_HEAD(, disk
) disklist
= LIST_HEAD_INITIALIZER(&disklist
);
130 static struct lwkt_token disklist_token
;
132 static struct dev_ops disk_ops
= {
133 { "disk", 0, D_DISK
},
135 .d_close
= diskclose
,
137 .d_write
= physwrite
,
138 .d_ioctl
= diskioctl
,
139 .d_strategy
= diskstrategy
,
141 .d_psize
= diskpsize
,
145 static struct objcache
*disk_msg_cache
;
147 struct objcache_malloc_args disk_msg_malloc_args
= {
148 sizeof(struct disk_msg
), M_DISK
};
150 static struct lwkt_port disk_dispose_port
;
151 static struct lwkt_port disk_msg_port
;
155 disk_probe_slice(struct disk
*dp
, cdev_t dev
, int slice
, int reprobe
)
157 struct disk_info
*info
= &dp
->d_info
;
158 struct diskslice
*sp
= &dp
->d_slice
->dss_slices
[slice
];
160 struct partinfo part
;
166 sno
= slice
? slice
- 1 : 0;
168 ops
= &disklabel32_ops
;
169 msg
= ops
->op_readdisklabel(dev
, sp
, &sp
->ds_label
, info
);
170 if (msg
&& !strcmp(msg
, "no disk label")) {
171 ops
= &disklabel64_ops
;
172 msg
= ops
->op_readdisklabel(dev
, sp
, &sp
->ds_label
, info
);
175 if (slice
!= WHOLE_DISK_SLICE
)
176 ops
->op_adjust_label_reserved(dp
->d_slice
, slice
, sp
);
181 for (i
= 0; i
< ops
->op_getnumparts(sp
->ds_label
); i
++) {
182 ops
->op_loadpartinfo(sp
->ds_label
, i
, &part
);
185 (ndev
= devfs_find_device_by_name("%s%c",
186 dev
->si_name
, 'a' + i
))
189 * Device already exists and
192 ndev
->si_flags
|= SI_REPROBE_TEST
;
194 ndev
= make_dev(&disk_ops
,
195 dkmakeminor(dkunit(dp
->d_cdev
),
197 UID_ROOT
, GID_OPERATOR
, 0640,
198 "%s%c", dev
->si_name
, 'a'+ i
);
200 if (dp
->d_info
.d_serialno
) {
203 dp
->d_info
.d_serialno
,
206 ndev
->si_flags
|= SI_REPROBE_TEST
;
210 } else if (info
->d_dsflags
& DSO_COMPATLABEL
) {
212 if (sp
->ds_size
>= 0x100000000ULL
)
213 ops
= &disklabel64_ops
;
215 ops
= &disklabel32_ops
;
216 sp
->ds_label
= ops
->op_clone_label(info
, sp
);
218 if (sp
->ds_type
== DOSPTYP_386BSD
/* XXX */) {
219 log(LOG_WARNING
, "%s: cannot find label (%s)\n",
225 sp
->ds_wlabel
= FALSE
;
228 return (msg
? EINVAL
: 0);
233 disk_probe(struct disk
*dp
, int reprobe
)
235 struct disk_info
*info
= &dp
->d_info
;
236 cdev_t dev
= dp
->d_cdev
;
239 struct diskslice
*sp
;
241 KKASSERT (info
->d_media_blksize
!= 0);
243 dp
->d_slice
= dsmakeslicestruct(BASE_SLICE
, info
);
245 error
= mbrinit(dev
, info
, &(dp
->d_slice
));
249 for (i
= 0; i
< dp
->d_slice
->dss_nslices
; i
++) {
251 * Ignore the whole-disk slice, it has already been created.
253 if (i
== WHOLE_DISK_SLICE
)
255 sp
= &dp
->d_slice
->dss_slices
[i
];
258 * Handle s0. s0 is a compatibility slice if there are no
259 * other slices and it has not otherwise been set up, else
262 if (i
== COMPATIBILITY_SLICE
) {
264 if (sp
->ds_type
== 0 &&
265 dp
->d_slice
->dss_nslices
== BASE_SLICE
) {
266 sp
->ds_size
= info
->d_media_blocks
;
275 * Ignore 0-length slices
277 if (sp
->ds_size
== 0)
281 (ndev
= devfs_find_device_by_name("%ss%d",
282 dev
->si_name
, sno
))) {
284 * Device already exists and is still valid
286 ndev
->si_flags
|= SI_REPROBE_TEST
;
289 * Else create new device
291 ndev
= make_dev(&disk_ops
,
292 dkmakewholeslice(dkunit(dev
), i
),
293 UID_ROOT
, GID_OPERATOR
, 0640,
294 "%ss%d", dev
->si_name
, sno
);
295 if (dp
->d_info
.d_serialno
) {
296 make_dev_alias(ndev
, "serno/%s.s%d",
297 dp
->d_info
.d_serialno
, sno
);
300 ndev
->si_flags
|= SI_REPROBE_TEST
;
305 * Probe appropriate slices for a disklabel
307 * XXX slice type 1 used by our gpt probe code.
308 * XXX slice type 0 used by mbr compat slice.
310 if (sp
->ds_type
== DOSPTYP_386BSD
|| sp
->ds_type
== 0 ||
312 if (dp
->d_slice
->dss_first_bsd_slice
== 0)
313 dp
->d_slice
->dss_first_bsd_slice
= i
;
314 disk_probe_slice(dp
, ndev
, i
, reprobe
);
321 disk_msg_core(void *arg
)
324 struct diskslice
*sp
;
329 lwkt_initport_thread(&disk_msg_port
, curthread
);
334 msg
= (disk_msg_t
)lwkt_waitport(&disk_msg_port
, 0);
336 switch (msg
->hdr
.u
.ms_result
) {
337 case DISK_DISK_PROBE
:
338 dp
= (struct disk
*)msg
->load
;
341 case DISK_DISK_DESTROY
:
342 dp
= (struct disk
*)msg
->load
;
343 devfs_destroy_subnames(dp
->d_cdev
->si_name
);
344 devfs_destroy_dev(dp
->d_cdev
);
345 lwkt_gettoken(&ilock
, &disklist_token
);
346 LIST_REMOVE(dp
, d_list
);
347 lwkt_reltoken(&ilock
);
348 if (dp
->d_info
.d_serialno
) {
349 kfree(dp
->d_info
.d_serialno
, M_TEMP
);
350 dp
->d_info
.d_serialno
= NULL
;
354 dp
= (struct disk
*)msg
->load
;
355 devfs_destroy_subnames(dp
->d_cdev
->si_name
);
357 case DISK_SLICE_REPROBE
:
358 dp
= (struct disk
*)msg
->load
;
359 sp
= (struct diskslice
*)msg
->load2
;
360 devfs_clr_subnames_flag(sp
->ds_dev
->si_name
,
362 devfs_debug(DEVFS_DEBUG_DEBUG
,
363 "DISK_SLICE_REPROBE: %s\n",
364 sp
->ds_dev
->si_name
);
365 disk_probe_slice(dp
, sp
->ds_dev
,
366 dkslice(sp
->ds_dev
), 1);
367 devfs_destroy_subnames_without_flag(
368 sp
->ds_dev
->si_name
, SI_REPROBE_TEST
);
370 case DISK_DISK_REPROBE
:
371 dp
= (struct disk
*)msg
->load
;
372 devfs_clr_subnames_flag(dp
->d_cdev
->si_name
, SI_REPROBE_TEST
);
373 devfs_debug(DEVFS_DEBUG_DEBUG
,
374 "DISK_DISK_REPROBE: %s\n",
375 dp
->d_cdev
->si_name
);
377 devfs_destroy_subnames_without_flag(
378 dp
->d_cdev
->si_name
, SI_REPROBE_TEST
);
383 devfs_debug(DEVFS_DEBUG_WARNING
,
384 "disk_msg_core: unknown message "
385 "received at core\n");
388 lwkt_replymsg((lwkt_msg_t
)msg
, 0);
395 * Acts as a message drain. Any message that is replied to here gets
396 * destroyed and the memory freed.
399 disk_msg_autofree_reply(lwkt_port_t port
, lwkt_msg_t msg
)
401 objcache_put(disk_msg_cache
, msg
);
406 disk_msg_send(uint32_t cmd
, void *load
, void *load2
)
409 lwkt_port_t port
= &disk_msg_port
;
411 disk_msg
= objcache_get(disk_msg_cache
, M_WAITOK
);
413 lwkt_initmsg(&disk_msg
->hdr
, &disk_dispose_port
, 0);
415 disk_msg
->hdr
.u
.ms_result
= cmd
;
416 disk_msg
->load
= load
;
417 disk_msg
->load2
= load2
;
419 lwkt_sendmsg(port
, (lwkt_msg_t
)disk_msg
);
423 disk_msg_send_sync(uint32_t cmd
, void *load
, void *load2
)
425 struct lwkt_port rep_port
;
426 disk_msg_t disk_msg
= objcache_get(disk_msg_cache
, M_WAITOK
);
427 disk_msg_t msg_incoming
;
428 lwkt_port_t port
= &disk_msg_port
;
430 lwkt_initport_thread(&rep_port
, curthread
);
431 lwkt_initmsg(&disk_msg
->hdr
, &rep_port
, 0);
433 disk_msg
->hdr
.u
.ms_result
= cmd
;
434 disk_msg
->load
= load
;
435 disk_msg
->load2
= load2
;
438 lwkt_sendmsg(port
, (lwkt_msg_t
)disk_msg
);
439 msg_incoming
= lwkt_waitport(&rep_port
, 0);
443 * Create a raw device for the dev_ops template (which is returned). Also
444 * create a slice and unit managed disk and overload the user visible
445 * device space with it.
447 * NOTE: The returned raw device is NOT a slice and unit managed device.
448 * It is an actual raw device representing the raw disk as specified by
449 * the passed dev_ops. The disk layer not only returns such a raw device,
450 * it also uses it internally when passing (modified) commands through.
453 disk_create(int unit
, struct disk
*dp
, struct dev_ops
*raw_ops
)
458 rawdev
= make_only_dev(raw_ops
, dkmakewholedisk(unit
),
459 UID_ROOT
, GID_OPERATOR
, 0640,
460 "%s%d", raw_ops
->head
.name
, unit
);
462 bzero(dp
, sizeof(*dp
));
464 dp
->d_rawdev
= rawdev
;
465 dp
->d_raw_ops
= raw_ops
;
466 dp
->d_dev_ops
= &disk_ops
;
467 dp
->d_cdev
= make_dev(&disk_ops
,
468 dkmakewholedisk(unit
),
469 UID_ROOT
, GID_OPERATOR
, 0640,
470 "%s%d", raw_ops
->head
.name
, unit
);
472 dp
->d_cdev
->si_disk
= dp
;
474 lwkt_gettoken(&ilock
, &disklist_token
);
475 LIST_INSERT_HEAD(&disklist
, dp
, d_list
);
476 lwkt_reltoken(&ilock
);
477 return (dp
->d_rawdev
);
482 _setdiskinfo(struct disk
*disk
, struct disk_info
*info
)
486 oldserialno
= disk
->d_info
.d_serialno
;
487 bcopy(info
, &disk
->d_info
, sizeof(disk
->d_info
));
488 info
= &disk
->d_info
;
491 * The serial number is duplicated so the caller can throw
494 if (info
->d_serialno
&& info
->d_serialno
[0]) {
495 info
->d_serialno
= kstrdup(info
->d_serialno
, M_TEMP
);
497 make_dev_alias(disk
->d_cdev
, "serno/%s",
501 info
->d_serialno
= NULL
;
504 kfree(oldserialno
, M_TEMP
);
507 * The caller may set d_media_size or d_media_blocks and we
508 * calculate the other.
510 KKASSERT(info
->d_media_size
== 0 || info
->d_media_blksize
== 0);
511 if (info
->d_media_size
== 0 && info
->d_media_blocks
) {
512 info
->d_media_size
= (u_int64_t
)info
->d_media_blocks
*
513 info
->d_media_blksize
;
514 } else if (info
->d_media_size
&& info
->d_media_blocks
== 0 &&
515 info
->d_media_blksize
) {
516 info
->d_media_blocks
= info
->d_media_size
/
517 info
->d_media_blksize
;
521 * The si_* fields for rawdev are not set until after the
522 * disk_create() call, so someone using the cooked version
523 * of the raw device (i.e. da0s0) will not get the right
524 * si_iosize_max unless we fix it up here.
526 if (disk
->d_cdev
&& disk
->d_rawdev
&&
527 disk
->d_cdev
->si_iosize_max
== 0) {
528 disk
->d_cdev
->si_iosize_max
= disk
->d_rawdev
->si_iosize_max
;
529 disk
->d_cdev
->si_bsize_phys
= disk
->d_rawdev
->si_bsize_phys
;
530 disk
->d_cdev
->si_bsize_best
= disk
->d_rawdev
->si_bsize_best
;
535 * Disk drivers must call this routine when media parameters are available
539 disk_setdiskinfo(struct disk
*disk
, struct disk_info
*info
)
541 _setdiskinfo(disk
, info
);
542 disk_msg_send(DISK_DISK_PROBE
, disk
, NULL
);
546 disk_setdiskinfo_sync(struct disk
*disk
, struct disk_info
*info
)
548 _setdiskinfo(disk
, info
);
549 disk_msg_send_sync(DISK_DISK_PROBE
, disk
, NULL
);
553 * This routine is called when an adapter detaches. The higher level
554 * managed disk device is destroyed while the lower level raw device is
558 disk_destroy(struct disk
*disk
)
560 disk_msg_send_sync(DISK_DISK_DESTROY
, disk
, NULL
);
565 disk_dumpcheck(cdev_t dev
, u_int64_t
*count
, u_int64_t
*blkno
, u_int
*secsize
)
567 struct partinfo pinfo
;
570 bzero(&pinfo
, sizeof(pinfo
));
571 error
= dev_dioctl(dev
, DIOCGPART
, (void *)&pinfo
, 0, proc0
.p_ucred
);
574 if (pinfo
.media_blksize
== 0)
576 *count
= (u_int64_t
)Maxmem
* PAGE_SIZE
/ pinfo
.media_blksize
;
577 if (dumplo64
< pinfo
.reserved_blocks
||
578 dumplo64
+ *count
> pinfo
.media_blocks
) {
581 *blkno
= dumplo64
+ pinfo
.media_offset
/ pinfo
.media_blksize
;
582 *secsize
= pinfo
.media_blksize
;
587 disk_unprobe(struct disk
*disk
)
592 disk_msg_send_sync(DISK_UNPROBE
, disk
, NULL
);
596 disk_invalidate (struct disk
*disk
)
599 dsgone(&disk
->d_slice
);
603 disk_enumerate(struct disk
*disk
)
608 lwkt_gettoken(&ilock
, &disklist_token
);
610 dp
= (LIST_FIRST(&disklist
));
612 dp
= (LIST_NEXT(disk
, d_list
));
613 lwkt_reltoken(&ilock
);
620 sysctl_disks(SYSCTL_HANDLER_ARGS
)
628 while ((disk
= disk_enumerate(disk
))) {
630 error
= SYSCTL_OUT(req
, " ", 1);
636 error
= SYSCTL_OUT(req
, disk
->d_rawdev
->si_name
,
637 strlen(disk
->d_rawdev
->si_name
));
641 error
= SYSCTL_OUT(req
, "", 1);
645 SYSCTL_PROC(_kern
, OID_AUTO
, disks
, CTLTYPE_STRING
| CTLFLAG_RD
, NULL
, 0,
646 sysctl_disks
, "A", "names of available disks");
649 * Open a disk device or partition.
653 diskopen(struct dev_open_args
*ap
)
655 cdev_t dev
= ap
->a_head
.a_dev
;
660 * dp can't be NULL here XXX.
662 * d_slice will be NULL if setdiskinfo() has not been called yet.
663 * setdiskinfo() is typically called whether the disk is present
664 * or not (e.g. CD), but the base disk device is created first
665 * and there may be a race.
668 if (dp
== NULL
|| dp
->d_slice
== NULL
)
673 * Deal with open races
675 while (dp
->d_flags
& DISKFLAG_LOCK
) {
676 dp
->d_flags
|= DISKFLAG_WANTED
;
677 error
= tsleep(dp
, PCATCH
, "diskopen", hz
);
681 dp
->d_flags
|= DISKFLAG_LOCK
;
684 * Open the underlying raw device.
686 if (!dsisopen(dp
->d_slice
)) {
688 if (!pdev
->si_iosize_max
)
689 pdev
->si_iosize_max
= dev
->si_iosize_max
;
691 error
= dev_dopen(dp
->d_rawdev
, ap
->a_oflags
,
692 ap
->a_devtype
, ap
->a_cred
);
696 * Inherit properties from the underlying device now that it is
704 error
= dsopen(dev
, ap
->a_devtype
, dp
->d_info
.d_dsflags
,
705 &dp
->d_slice
, &dp
->d_info
);
706 if (!dsisopen(dp
->d_slice
)) {
707 dev_dclose(dp
->d_rawdev
, ap
->a_oflags
, ap
->a_devtype
);
710 dp
->d_flags
&= ~DISKFLAG_LOCK
;
711 if (dp
->d_flags
& DISKFLAG_WANTED
) {
712 dp
->d_flags
&= ~DISKFLAG_WANTED
;
720 * Close a disk device or partition
724 diskclose(struct dev_close_args
*ap
)
726 cdev_t dev
= ap
->a_head
.a_dev
;
733 dsclose(dev
, ap
->a_devtype
, dp
->d_slice
);
734 if (!dsisopen(dp
->d_slice
)) {
735 error
= dev_dclose(dp
->d_rawdev
, ap
->a_fflag
, ap
->a_devtype
);
741 * First execute the ioctl on the disk device, and if it isn't supported
742 * try running it on the backing device.
746 diskioctl(struct dev_ioctl_args
*ap
)
748 cdev_t dev
= ap
->a_head
.a_dev
;
756 devfs_debug(DEVFS_DEBUG_DEBUG
,
757 "diskioctl: cmd is: %x (name: %s)\n",
758 ap
->a_cmd
, dev
->si_name
);
759 devfs_debug(DEVFS_DEBUG_DEBUG
,
760 "diskioctl: &dp->d_slice is: %x, %x\n",
761 &dp
->d_slice
, dp
->d_slice
);
763 error
= dsioctl(dev
, ap
->a_cmd
, ap
->a_data
, ap
->a_fflag
,
764 &dp
->d_slice
, &dp
->d_info
);
766 if (error
== ENOIOCTL
) {
767 error
= dev_dioctl(dp
->d_rawdev
, ap
->a_cmd
, ap
->a_data
,
768 ap
->a_fflag
, ap
->a_cred
);
774 * Execute strategy routine
778 diskstrategy(struct dev_strategy_args
*ap
)
780 cdev_t dev
= ap
->a_head
.a_dev
;
781 struct bio
*bio
= ap
->a_bio
;
788 bio
->bio_buf
->b_error
= ENXIO
;
789 bio
->bio_buf
->b_flags
|= B_ERROR
;
793 KKASSERT(dev
->si_disk
== dp
);
796 * The dscheck() function will also transform the slice relative
797 * block number i.e. bio->bio_offset into a block number that can be
798 * passed directly to the underlying raw device. If dscheck()
799 * returns NULL it will have handled the bio for us (e.g. EOF
800 * or error due to being beyond the device size).
802 if ((nbio
= dscheck(dev
, bio
, dp
->d_slice
)) != NULL
) {
803 dev_dstrategy(dp
->d_rawdev
, nbio
);
811 * Return the partition size in ?blocks?
815 diskpsize(struct dev_psize_args
*ap
)
817 cdev_t dev
= ap
->a_head
.a_dev
;
823 ap
->a_result
= dssize(dev
, &dp
->d_slice
);
828 * When new device entries are instantiated, make sure they inherit our
829 * si_disk structure and block and iosize limits from the raw device.
831 * This routine is always called synchronously in the context of the
834 * XXX The various io and block size constraints are not always initialized
835 * properly by devices.
839 diskclone(struct dev_clone_args
*ap
)
841 cdev_t dev
= ap
->a_head
.a_dev
;
845 KKASSERT(dp
!= NULL
);
847 dev
->si_iosize_max
= dp
->d_rawdev
->si_iosize_max
;
848 dev
->si_bsize_phys
= dp
->d_rawdev
->si_bsize_phys
;
849 dev
->si_bsize_best
= dp
->d_rawdev
->si_bsize_best
;
854 diskdump(struct dev_dump_args
*ap
)
856 cdev_t dev
= ap
->a_head
.a_dev
;
857 struct disk
*dp
= dev
->si_disk
;
860 error
= disk_dumpcheck(dev
, &ap
->a_count
, &ap
->a_blkno
, &ap
->a_secsize
);
862 ap
->a_head
.a_dev
= dp
->d_rawdev
;
863 error
= dev_doperate(&ap
->a_head
);
870 SYSCTL_INT(_debug_sizeof
, OID_AUTO
, diskslices
, CTLFLAG_RD
,
871 0, sizeof(struct diskslices
), "sizeof(struct diskslices)");
873 SYSCTL_INT(_debug_sizeof
, OID_AUTO
, disk
, CTLFLAG_RD
,
874 0, sizeof(struct disk
), "sizeof(struct disk)");
877 * Reorder interval for burst write allowance and minor write
880 * We always want to trickle some writes in to make use of the
881 * disk's zone cache. Bursting occurs on a longer interval and only
882 * runningbufspace is well over the hirunningspace limit.
884 int bioq_reorder_burst_interval
= 60; /* should be multiple of minor */
885 SYSCTL_INT(_kern
, OID_AUTO
, bioq_reorder_burst_interval
,
886 CTLFLAG_RW
, &bioq_reorder_burst_interval
, 0, "");
887 int bioq_reorder_minor_interval
= 5;
888 SYSCTL_INT(_kern
, OID_AUTO
, bioq_reorder_minor_interval
,
889 CTLFLAG_RW
, &bioq_reorder_minor_interval
, 0, "");
891 int bioq_reorder_burst_bytes
= 3000000;
892 SYSCTL_INT(_kern
, OID_AUTO
, bioq_reorder_burst_bytes
,
893 CTLFLAG_RW
, &bioq_reorder_burst_bytes
, 0, "");
894 int bioq_reorder_minor_bytes
= 262144;
895 SYSCTL_INT(_kern
, OID_AUTO
, bioq_reorder_minor_bytes
,
896 CTLFLAG_RW
, &bioq_reorder_minor_bytes
, 0, "");
900 * Order I/Os. Generally speaking this code is designed to make better
901 * use of drive zone caches. A drive zone cache can typically track linear
902 * reads or writes for around 16 zones simultaniously.
904 * Read prioritization issues: It is possible for hundreds of megabytes worth
905 * of writes to be queued asynchronously. This creates a huge bottleneck
906 * for reads which reduce read bandwidth to a trickle.
908 * To solve this problem we generally reorder reads before writes.
910 * However, a large number of random reads can also starve writes and
911 * make poor use of the drive zone cache so we allow writes to trickle
915 bioqdisksort(struct bio_queue_head
*bioq
, struct bio
*bio
)
918 * The BIO wants to be ordered. Adding to the tail also
919 * causes transition to be set to NULL, forcing the ordering
920 * of all prior I/O's.
922 if (bio
->bio_buf
->b_flags
& B_ORDERED
) {
923 bioq_insert_tail(bioq
, bio
);
927 switch(bio
->bio_buf
->b_cmd
) {
929 if (bioq
->transition
) {
931 * Insert before the first write. Bleedover writes
932 * based on reorder intervals to prevent starvation.
934 TAILQ_INSERT_BEFORE(bioq
->transition
, bio
, bio_act
);
936 if (bioq
->reorder
% bioq_reorder_minor_interval
== 0) {
937 bioqwritereorder(bioq
);
939 bioq_reorder_burst_interval
) {
945 * No writes queued (or ordering was forced),
948 TAILQ_INSERT_TAIL(&bioq
->queue
, bio
, bio_act
);
953 * Writes are always appended. If no writes were previously
954 * queued or an ordered tail insertion occured the transition
955 * field will be NULL.
957 TAILQ_INSERT_TAIL(&bioq
->queue
, bio
, bio_act
);
958 if (bioq
->transition
== NULL
)
959 bioq
->transition
= bio
;
963 * All other request types are forced to be ordered.
965 bioq_insert_tail(bioq
, bio
);
971 * Move the read-write transition point to prevent reads from
972 * completely starving our writes. This brings a number of writes into
973 * the fold every N reads.
975 * We bring a few linear writes into the fold on a minor interval
976 * and we bring a non-linear burst of writes into the fold on a major
977 * interval. Bursting only occurs if runningbufspace is really high
978 * (typically from syncs, fsyncs, or HAMMER flushes).
982 bioqwritereorder(struct bio_queue_head
*bioq
)
990 if (bioq
->reorder
< bioq_reorder_burst_interval
||
991 !buf_runningbufspace_severe()) {
992 left
= (size_t)bioq_reorder_minor_bytes
;
995 left
= (size_t)bioq_reorder_burst_bytes
;
999 next_offset
= bioq
->transition
->bio_offset
;
1000 while ((bio
= bioq
->transition
) != NULL
&&
1001 (check_off
== 0 || next_offset
== bio
->bio_offset
)
1003 n
= bio
->bio_buf
->b_bcount
;
1004 next_offset
= bio
->bio_offset
+ n
;
1005 bioq
->transition
= TAILQ_NEXT(bio
, bio_act
);
1013 * Disk error is the preface to plaintive error messages
1014 * about failing disk transfers. It prints messages of the form
1016 hp0g: hard error reading fsbn 12345 of 12344-12347 (hp0 bn %d cn %d tn %d sn %d)
1018 * if the offset of the error in the transfer and a disk label
1019 * are both available. blkdone should be -1 if the position of the error
1020 * is unknown; the disklabel pointer may be null from drivers that have not
1021 * been converted to use them. The message is printed with kprintf
1022 * if pri is LOG_PRINTF, otherwise it uses log at the specified priority.
1023 * The message should be completed (with at least a newline) with kprintf
1024 * or log(-1, ...), respectively. There is no trailing space.
1027 diskerr(struct bio
*bio
, cdev_t dev
, const char *what
, int pri
, int donecnt
)
1029 struct buf
*bp
= bio
->bio_buf
;
1043 kprintf("%s: %s %sing ", dev
->si_name
, what
, term
);
1044 kprintf("offset %012llx for %d",
1045 (long long)bio
->bio_offset
,
1049 kprintf(" (%d bytes completed)", donecnt
);
1053 * Locate a disk device
1056 disk_locate(const char *devname
)
1058 return devfs_find_device_by_name(devname
);
1062 disk_config(void *arg
)
1064 disk_msg_send_sync(DISK_SYNC
, NULL
, NULL
);
1070 struct thread
* td_core
;
1072 disk_msg_cache
= objcache_create("disk-msg-cache", 0, 0,
1074 objcache_malloc_alloc
,
1075 objcache_malloc_free
,
1076 &disk_msg_malloc_args
);
1078 lwkt_token_init(&disklist_token
);
1081 * Initialize the reply-only port which acts as a message drain
1083 lwkt_initport_replyonly(&disk_dispose_port
, disk_msg_autofree_reply
);
1085 lwkt_create(disk_msg_core
, /*args*/NULL
, &td_core
, NULL
,
1086 0, 0, "disk_msg_core");
1088 tsleep(td_core
, 0, "diskcore", 0);
1094 objcache_destroy(disk_msg_cache
);
1097 SYSINIT(disk_register
, SI_SUB_PRE_DRIVERS
, SI_ORDER_FIRST
, disk_init
, NULL
);
1098 SYSUNINIT(disk_register
, SI_SUB_PRE_DRIVERS
, SI_ORDER_ANY
, disk_uninit
, NULL
);