systat - Restrict %rip sampling to root
[dragonfly.git] / sys / kern / kern_clock.c
blobc1dbd96cd13efc2337352204dbb0478c1becf3d9
1 /*
2 * Copyright (c) 2003,2004 The DragonFly Project. All rights reserved.
3 *
4 * This code is derived from software contributed to The DragonFly Project
5 * by Matthew Dillon <dillon@backplane.com>
6 *
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following conditions
9 * are met:
11 * 1. Redistributions of source code must retain the above copyright
12 * notice, this list of conditions and the following disclaimer.
13 * 2. Redistributions in binary form must reproduce the above copyright
14 * notice, this list of conditions and the following disclaimer in
15 * the documentation and/or other materials provided with the
16 * distribution.
17 * 3. Neither the name of The DragonFly Project nor the names of its
18 * contributors may be used to endorse or promote products derived
19 * from this software without specific, prior written permission.
21 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
22 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
23 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
24 * FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
25 * COPYRIGHT HOLDERS OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
26 * INCIDENTAL, SPECIAL, EXEMPLARY OR CONSEQUENTIAL DAMAGES (INCLUDING,
27 * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
28 * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
29 * AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
30 * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT
31 * OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
32 * SUCH DAMAGE.
34 * Copyright (c) 1997, 1998 Poul-Henning Kamp <phk@FreeBSD.org>
35 * Copyright (c) 1982, 1986, 1991, 1993
36 * The Regents of the University of California. All rights reserved.
37 * (c) UNIX System Laboratories, Inc.
38 * All or some portions of this file are derived from material licensed
39 * to the University of California by American Telephone and Telegraph
40 * Co. or Unix System Laboratories, Inc. and are reproduced herein with
41 * the permission of UNIX System Laboratories, Inc.
43 * Redistribution and use in source and binary forms, with or without
44 * modification, are permitted provided that the following conditions
45 * are met:
46 * 1. Redistributions of source code must retain the above copyright
47 * notice, this list of conditions and the following disclaimer.
48 * 2. Redistributions in binary form must reproduce the above copyright
49 * notice, this list of conditions and the following disclaimer in the
50 * documentation and/or other materials provided with the distribution.
51 * 3. Neither the name of the University nor the names of its contributors
52 * may be used to endorse or promote products derived from this software
53 * without specific prior written permission.
55 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
56 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
57 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
58 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
59 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
60 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
61 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
62 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
63 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
64 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
65 * SUCH DAMAGE.
67 * @(#)kern_clock.c 8.5 (Berkeley) 1/21/94
68 * $FreeBSD: src/sys/kern/kern_clock.c,v 1.105.2.10 2002/10/17 13:19:40 maxim Exp $
71 #include "opt_ntp.h"
72 #include "opt_ifpoll.h"
73 #include "opt_pctrack.h"
75 #include <sys/param.h>
76 #include <sys/systm.h>
77 #include <sys/callout.h>
78 #include <sys/kernel.h>
79 #include <sys/kinfo.h>
80 #include <sys/proc.h>
81 #include <sys/malloc.h>
82 #include <sys/resource.h>
83 #include <sys/resourcevar.h>
84 #include <sys/signalvar.h>
85 #include <sys/priv.h>
86 #include <sys/timex.h>
87 #include <sys/timepps.h>
88 #include <sys/upmap.h>
89 #include <vm/vm.h>
90 #include <sys/lock.h>
91 #include <vm/pmap.h>
92 #include <vm/vm_map.h>
93 #include <vm/vm_extern.h>
94 #include <sys/sysctl.h>
96 #include <sys/thread2.h>
97 #include <sys/mplock2.h>
99 #include <machine/cpu.h>
100 #include <machine/limits.h>
101 #include <machine/smp.h>
102 #include <machine/cpufunc.h>
103 #include <machine/specialreg.h>
104 #include <machine/clock.h>
106 #ifdef GPROF
107 #include <sys/gmon.h>
108 #endif
110 #ifdef IFPOLL_ENABLE
111 extern void ifpoll_init_pcpu(int);
112 #endif
114 #ifdef DEBUG_PCTRACK
115 static void do_pctrack(struct intrframe *frame, int which);
116 #endif
118 static void initclocks (void *dummy);
119 SYSINIT(clocks, SI_BOOT2_CLOCKS, SI_ORDER_FIRST, initclocks, NULL);
122 * Some of these don't belong here, but it's easiest to concentrate them.
123 * Note that cpu_time counts in microseconds, but most userland programs
124 * just compare relative times against the total by delta.
126 struct kinfo_cputime cputime_percpu[MAXCPU];
127 #ifdef DEBUG_PCTRACK
128 struct kinfo_pcheader cputime_pcheader = { PCTRACK_SIZE, PCTRACK_ARYSIZE };
129 struct kinfo_pctrack cputime_pctrack[MAXCPU][PCTRACK_SIZE];
130 #endif
132 static int
133 sysctl_cputime(SYSCTL_HANDLER_ARGS)
135 int cpu, error = 0;
136 int root_error;
137 size_t size = sizeof(struct kinfo_cputime);
138 struct kinfo_cputime tmp;
141 * NOTE: For security reasons, only root can sniff %rip
143 root_error = priv_check_cred(curthread->td_ucred, PRIV_ROOT, 0);
145 for (cpu = 0; cpu < ncpus; ++cpu) {
146 tmp = cputime_percpu[cpu];
147 if (root_error == 0) {
148 tmp.cp_sample_pc =
149 (int64_t)globaldata_find(cpu)->gd_sample_pc;
150 tmp.cp_sample_sp =
151 (int64_t)globaldata_find(cpu)->gd_sample_sp;
153 if ((error = SYSCTL_OUT(req, &tmp, size)) != 0)
154 break;
157 if (root_error == 0)
158 smp_sniff();
160 return (error);
162 SYSCTL_PROC(_kern, OID_AUTO, cputime, (CTLTYPE_OPAQUE|CTLFLAG_RD), 0, 0,
163 sysctl_cputime, "S,kinfo_cputime", "CPU time statistics");
165 static int
166 sysctl_cp_time(SYSCTL_HANDLER_ARGS)
168 long cpu_states[5] = {0};
169 int cpu, error = 0;
170 size_t size = sizeof(cpu_states);
172 for (cpu = 0; cpu < ncpus; ++cpu) {
173 cpu_states[CP_USER] += cputime_percpu[cpu].cp_user;
174 cpu_states[CP_NICE] += cputime_percpu[cpu].cp_nice;
175 cpu_states[CP_SYS] += cputime_percpu[cpu].cp_sys;
176 cpu_states[CP_INTR] += cputime_percpu[cpu].cp_intr;
177 cpu_states[CP_IDLE] += cputime_percpu[cpu].cp_idle;
180 error = SYSCTL_OUT(req, cpu_states, size);
182 return (error);
185 SYSCTL_PROC(_kern, OID_AUTO, cp_time, (CTLTYPE_LONG|CTLFLAG_RD), 0, 0,
186 sysctl_cp_time, "LU", "CPU time statistics");
189 * boottime is used to calculate the 'real' uptime. Do not confuse this with
190 * microuptime(). microtime() is not drift compensated. The real uptime
191 * with compensation is nanotime() - bootime. boottime is recalculated
192 * whenever the real time is set based on the compensated elapsed time
193 * in seconds (gd->gd_time_seconds).
195 * The gd_time_seconds and gd_cpuclock_base fields remain fairly monotonic.
196 * Slight adjustments to gd_cpuclock_base are made to phase-lock it to
197 * the real time.
199 * WARNING! time_second can backstep on time corrections. Also, unlike
200 * time_second, time_uptime is not a "real" time_t (seconds
201 * since the Epoch) but seconds since booting.
203 struct timespec boottime; /* boot time (realtime) for reference only */
204 time_t time_second; /* read-only 'passive' realtime in seconds */
205 time_t time_uptime; /* read-only 'passive' uptime in seconds */
208 * basetime is used to calculate the compensated real time of day. The
209 * basetime can be modified on a per-tick basis by the adjtime(),
210 * ntp_adjtime(), and sysctl-based time correction APIs.
212 * Note that frequency corrections can also be made by adjusting
213 * gd_cpuclock_base.
215 * basetime is a tail-chasing FIFO, updated only by cpu #0. The FIFO is
216 * used on both SMP and UP systems to avoid MP races between cpu's and
217 * interrupt races on UP systems.
219 struct hardtime {
220 __uint32_t time_second;
221 sysclock_t cpuclock_base;
224 #define BASETIME_ARYSIZE 16
225 #define BASETIME_ARYMASK (BASETIME_ARYSIZE - 1)
226 static struct timespec basetime[BASETIME_ARYSIZE];
227 static struct hardtime hardtime[BASETIME_ARYSIZE];
228 static volatile int basetime_index;
230 static int
231 sysctl_get_basetime(SYSCTL_HANDLER_ARGS)
233 struct timespec *bt;
234 int error;
235 int index;
238 * Because basetime data and index may be updated by another cpu,
239 * a load fence is required to ensure that the data we read has
240 * not been speculatively read relative to a possibly updated index.
242 index = basetime_index;
243 cpu_lfence();
244 bt = &basetime[index];
245 error = SYSCTL_OUT(req, bt, sizeof(*bt));
246 return (error);
249 SYSCTL_STRUCT(_kern, KERN_BOOTTIME, boottime, CTLFLAG_RD,
250 &boottime, timespec, "System boottime");
251 SYSCTL_PROC(_kern, OID_AUTO, basetime, CTLTYPE_STRUCT|CTLFLAG_RD, 0, 0,
252 sysctl_get_basetime, "S,timespec", "System basetime");
254 static void hardclock(systimer_t info, int, struct intrframe *frame);
255 static void statclock(systimer_t info, int, struct intrframe *frame);
256 static void schedclock(systimer_t info, int, struct intrframe *frame);
257 static void getnanotime_nbt(struct timespec *nbt, struct timespec *tsp);
259 int ticks; /* system master ticks at hz */
260 int clocks_running; /* tsleep/timeout clocks operational */
261 int64_t nsec_adj; /* ntpd per-tick adjustment in nsec << 32 */
262 int64_t nsec_acc; /* accumulator */
263 int sched_ticks; /* global schedule clock ticks */
265 /* NTPD time correction fields */
266 int64_t ntp_tick_permanent; /* per-tick adjustment in nsec << 32 */
267 int64_t ntp_tick_acc; /* accumulator for per-tick adjustment */
268 int64_t ntp_delta; /* one-time correction in nsec */
269 int64_t ntp_big_delta = 1000000000;
270 int32_t ntp_tick_delta; /* current adjustment rate */
271 int32_t ntp_default_tick_delta; /* adjustment rate for ntp_delta */
272 time_t ntp_leap_second; /* time of next leap second */
273 int ntp_leap_insert; /* whether to insert or remove a second */
276 * Finish initializing clock frequencies and start all clocks running.
278 /* ARGSUSED*/
279 static void
280 initclocks(void *dummy)
282 /*psratio = profhz / stathz;*/
283 initclocks_pcpu();
284 clocks_running = 1;
285 if (kpmap) {
286 kpmap->tsc_freq = (uint64_t)tsc_frequency;
287 kpmap->tick_freq = hz;
292 * Called on a per-cpu basis from the idle thread bootstrap on each cpu
293 * during SMP initialization.
295 * This routine is called concurrently during low-level SMP initialization
296 * and may not block in any way. Meaning, among other things, we can't
297 * acquire any tokens.
299 void
300 initclocks_pcpu(void)
302 struct globaldata *gd = mycpu;
304 crit_enter();
305 if (gd->gd_cpuid == 0) {
306 gd->gd_time_seconds = 1;
307 gd->gd_cpuclock_base = sys_cputimer->count();
308 hardtime[0].time_second = gd->gd_time_seconds;
309 hardtime[0].cpuclock_base = gd->gd_cpuclock_base;
310 } else {
311 gd->gd_time_seconds = globaldata_find(0)->gd_time_seconds;
312 gd->gd_cpuclock_base = globaldata_find(0)->gd_cpuclock_base;
315 systimer_intr_enable();
317 crit_exit();
321 * This routine is called on just the BSP, just after SMP initialization
322 * completes to * finish initializing any clocks that might contend/block
323 * (e.g. like on a token). We can't do this in initclocks_pcpu() because
324 * that function is called from the idle thread bootstrap for each cpu and
325 * not allowed to block at all.
327 static
328 void
329 initclocks_other(void *dummy)
331 struct globaldata *ogd = mycpu;
332 struct globaldata *gd;
333 int n;
335 for (n = 0; n < ncpus; ++n) {
336 lwkt_setcpu_self(globaldata_find(n));
337 gd = mycpu;
340 * Use a non-queued periodic systimer to prevent multiple
341 * ticks from building up if the sysclock jumps forward
342 * (8254 gets reset). The sysclock will never jump backwards.
343 * Our time sync is based on the actual sysclock, not the
344 * ticks count.
346 systimer_init_periodic_nq(&gd->gd_hardclock, hardclock,
347 NULL, hz);
348 systimer_init_periodic_nq(&gd->gd_statclock, statclock,
349 NULL, stathz);
350 /* XXX correct the frequency for scheduler / estcpu tests */
351 systimer_init_periodic_nq(&gd->gd_schedclock, schedclock,
352 NULL, ESTCPUFREQ);
353 #ifdef IFPOLL_ENABLE
354 ifpoll_init_pcpu(gd->gd_cpuid);
355 #endif
357 lwkt_setcpu_self(ogd);
359 SYSINIT(clocks2, SI_BOOT2_POST_SMP, SI_ORDER_ANY, initclocks_other, NULL);
362 * This sets the current real time of day. Timespecs are in seconds and
363 * nanoseconds. We do not mess with gd_time_seconds and gd_cpuclock_base,
364 * instead we adjust basetime so basetime + gd_* results in the current
365 * time of day. This way the gd_* fields are guaranteed to represent
366 * a monotonically increasing 'uptime' value.
368 * When set_timeofday() is called from userland, the system call forces it
369 * onto cpu #0 since only cpu #0 can update basetime_index.
371 void
372 set_timeofday(struct timespec *ts)
374 struct timespec *nbt;
375 int ni;
378 * XXX SMP / non-atomic basetime updates
380 crit_enter();
381 ni = (basetime_index + 1) & BASETIME_ARYMASK;
382 cpu_lfence();
383 nbt = &basetime[ni];
384 nanouptime(nbt);
385 nbt->tv_sec = ts->tv_sec - nbt->tv_sec;
386 nbt->tv_nsec = ts->tv_nsec - nbt->tv_nsec;
387 if (nbt->tv_nsec < 0) {
388 nbt->tv_nsec += 1000000000;
389 --nbt->tv_sec;
393 * Note that basetime diverges from boottime as the clock drift is
394 * compensated for, so we cannot do away with boottime. When setting
395 * the absolute time of day the drift is 0 (for an instant) and we
396 * can simply assign boottime to basetime.
398 * Note that nanouptime() is based on gd_time_seconds which is drift
399 * compensated up to a point (it is guaranteed to remain monotonically
400 * increasing). gd_time_seconds is thus our best uptime guess and
401 * suitable for use in the boottime calculation. It is already taken
402 * into account in the basetime calculation above.
404 boottime.tv_sec = nbt->tv_sec;
405 ntp_delta = 0;
408 * We now have a new basetime, make sure all other cpus have it,
409 * then update the index.
411 cpu_sfence();
412 basetime_index = ni;
414 crit_exit();
418 * Each cpu has its own hardclock, but we only increments ticks and softticks
419 * on cpu #0.
421 * NOTE! systimer! the MP lock might not be held here. We can only safely
422 * manipulate objects owned by the current cpu.
424 static void
425 hardclock(systimer_t info, int in_ipi, struct intrframe *frame)
427 sysclock_t cputicks;
428 struct proc *p;
429 struct globaldata *gd = mycpu;
431 if ((gd->gd_reqflags & RQF_IPIQ) == 0 && lwkt_need_ipiq_process(gd)) {
432 /* Defer to doreti on passive IPIQ processing */
433 need_ipiq();
437 * We update the compensation base to calculate fine-grained time
438 * from the sys_cputimer on a per-cpu basis in order to avoid
439 * having to mess around with locks. sys_cputimer is assumed to
440 * be consistent across all cpus. CPU N copies the base state from
441 * CPU 0 using the same FIFO trick that we use for basetime (so we
442 * don't catch a CPU 0 update in the middle).
444 * Note that we never allow info->time (aka gd->gd_hardclock.time)
445 * to reverse index gd_cpuclock_base, but that it is possible for
446 * it to temporarily get behind in the seconds if something in the
447 * system locks interrupts for a long period of time. Since periodic
448 * timers count events, though everything should resynch again
449 * immediately.
451 if (gd->gd_cpuid == 0) {
452 int ni;
454 cputicks = info->time - gd->gd_cpuclock_base;
455 if (cputicks >= sys_cputimer->freq) {
456 cputicks /= sys_cputimer->freq;
457 if (cputicks != 0 && cputicks != 1)
458 kprintf("Warning: hardclock missed > 1 sec\n");
459 gd->gd_time_seconds += cputicks;
460 gd->gd_cpuclock_base += sys_cputimer->freq * cputicks;
461 /* uncorrected monotonic 1-sec gran */
462 time_uptime += cputicks;
464 ni = (basetime_index + 1) & BASETIME_ARYMASK;
465 hardtime[ni].time_second = gd->gd_time_seconds;
466 hardtime[ni].cpuclock_base = gd->gd_cpuclock_base;
467 } else {
468 int ni;
470 ni = basetime_index;
471 cpu_lfence();
472 gd->gd_time_seconds = hardtime[ni].time_second;
473 gd->gd_cpuclock_base = hardtime[ni].cpuclock_base;
477 * The system-wide ticks counter and NTP related timedelta/tickdelta
478 * adjustments only occur on cpu #0. NTP adjustments are accomplished
479 * by updating basetime.
481 if (gd->gd_cpuid == 0) {
482 struct timespec *nbt;
483 struct timespec nts;
484 int leap;
485 int ni;
487 ++ticks;
489 #if 0
490 if (tco->tc_poll_pps)
491 tco->tc_poll_pps(tco);
492 #endif
495 * Calculate the new basetime index. We are in a critical section
496 * on cpu #0 and can safely play with basetime_index. Start
497 * with the current basetime and then make adjustments.
499 ni = (basetime_index + 1) & BASETIME_ARYMASK;
500 nbt = &basetime[ni];
501 *nbt = basetime[basetime_index];
504 * Apply adjtime corrections. (adjtime() API)
506 * adjtime() only runs on cpu #0 so our critical section is
507 * sufficient to access these variables.
509 if (ntp_delta != 0) {
510 nbt->tv_nsec += ntp_tick_delta;
511 ntp_delta -= ntp_tick_delta;
512 if ((ntp_delta > 0 && ntp_delta < ntp_tick_delta) ||
513 (ntp_delta < 0 && ntp_delta > ntp_tick_delta)) {
514 ntp_tick_delta = ntp_delta;
519 * Apply permanent frequency corrections. (sysctl API)
521 if (ntp_tick_permanent != 0) {
522 ntp_tick_acc += ntp_tick_permanent;
523 if (ntp_tick_acc >= (1LL << 32)) {
524 nbt->tv_nsec += ntp_tick_acc >> 32;
525 ntp_tick_acc -= (ntp_tick_acc >> 32) << 32;
526 } else if (ntp_tick_acc <= -(1LL << 32)) {
527 /* Negate ntp_tick_acc to avoid shifting the sign bit. */
528 nbt->tv_nsec -= (-ntp_tick_acc) >> 32;
529 ntp_tick_acc += ((-ntp_tick_acc) >> 32) << 32;
533 if (nbt->tv_nsec >= 1000000000) {
534 nbt->tv_sec++;
535 nbt->tv_nsec -= 1000000000;
536 } else if (nbt->tv_nsec < 0) {
537 nbt->tv_sec--;
538 nbt->tv_nsec += 1000000000;
542 * Another per-tick compensation. (for ntp_adjtime() API)
544 if (nsec_adj != 0) {
545 nsec_acc += nsec_adj;
546 if (nsec_acc >= 0x100000000LL) {
547 nbt->tv_nsec += nsec_acc >> 32;
548 nsec_acc = (nsec_acc & 0xFFFFFFFFLL);
549 } else if (nsec_acc <= -0x100000000LL) {
550 nbt->tv_nsec -= -nsec_acc >> 32;
551 nsec_acc = -(-nsec_acc & 0xFFFFFFFFLL);
553 if (nbt->tv_nsec >= 1000000000) {
554 nbt->tv_nsec -= 1000000000;
555 ++nbt->tv_sec;
556 } else if (nbt->tv_nsec < 0) {
557 nbt->tv_nsec += 1000000000;
558 --nbt->tv_sec;
562 /************************************************************
563 * LEAP SECOND CORRECTION *
564 ************************************************************
566 * Taking into account all the corrections made above, figure
567 * out the new real time. If the seconds field has changed
568 * then apply any pending leap-second corrections.
570 getnanotime_nbt(nbt, &nts);
572 if (time_second != nts.tv_sec) {
574 * Apply leap second (sysctl API). Adjust nts for changes
575 * so we do not have to call getnanotime_nbt again.
577 if (ntp_leap_second) {
578 if (ntp_leap_second == nts.tv_sec) {
579 if (ntp_leap_insert) {
580 nbt->tv_sec++;
581 nts.tv_sec++;
582 } else {
583 nbt->tv_sec--;
584 nts.tv_sec--;
586 ntp_leap_second--;
591 * Apply leap second (ntp_adjtime() API), calculate a new
592 * nsec_adj field. ntp_update_second() returns nsec_adj
593 * as a per-second value but we need it as a per-tick value.
595 leap = ntp_update_second(time_second, &nsec_adj);
596 nsec_adj /= hz;
597 nbt->tv_sec += leap;
598 nts.tv_sec += leap;
601 * Update the time_second 'approximate time' global.
603 time_second = nts.tv_sec;
607 * Finally, our new basetime is ready to go live!
609 cpu_sfence();
610 basetime_index = ni;
613 * Update kpmap on each tick. TS updates are integrated with
614 * fences and upticks allowing userland to read the data
615 * deterministically.
617 if (kpmap) {
618 int w;
620 w = (kpmap->upticks + 1) & 1;
621 getnanouptime(&kpmap->ts_uptime[w]);
622 getnanotime(&kpmap->ts_realtime[w]);
623 cpu_sfence();
624 ++kpmap->upticks;
625 cpu_sfence();
630 * lwkt thread scheduler fair queueing
632 lwkt_schedulerclock(curthread);
635 * softticks are handled for all cpus
637 hardclock_softtick(gd);
640 * ITimer handling is per-tick, per-cpu.
642 * We must acquire the per-process token in order for ksignal()
643 * to be non-blocking. For the moment this requires an AST fault,
644 * the ksignal() cannot be safely issued from this hard interrupt.
646 * XXX Even the trytoken here isn't right, and itimer operation in
647 * a multi threaded environment is going to be weird at the
648 * very least.
650 if ((p = curproc) != NULL && lwkt_trytoken(&p->p_token)) {
651 crit_enter_hard();
652 if (p->p_upmap)
653 ++p->p_upmap->runticks;
655 if (frame && CLKF_USERMODE(frame) &&
656 timevalisset(&p->p_timer[ITIMER_VIRTUAL].it_value) &&
657 itimerdecr(&p->p_timer[ITIMER_VIRTUAL], ustick) == 0) {
658 p->p_flags |= P_SIGVTALRM;
659 need_user_resched();
661 if (timevalisset(&p->p_timer[ITIMER_PROF].it_value) &&
662 itimerdecr(&p->p_timer[ITIMER_PROF], ustick) == 0) {
663 p->p_flags |= P_SIGPROF;
664 need_user_resched();
666 crit_exit_hard();
667 lwkt_reltoken(&p->p_token);
669 setdelayed();
673 * The statistics clock typically runs at a 125Hz rate, and is intended
674 * to be frequency offset from the hardclock (typ 100Hz). It is per-cpu.
676 * NOTE! systimer! the MP lock might not be held here. We can only safely
677 * manipulate objects owned by the current cpu.
679 * The stats clock is responsible for grabbing a profiling sample.
680 * Most of the statistics are only used by user-level statistics programs.
681 * The main exceptions are p->p_uticks, p->p_sticks, p->p_iticks, and
682 * p->p_estcpu.
684 * Like the other clocks, the stat clock is called from what is effectively
685 * a fast interrupt, so the context should be the thread/process that got
686 * interrupted.
688 static void
689 statclock(systimer_t info, int in_ipi, struct intrframe *frame)
691 #ifdef GPROF
692 struct gmonparam *g;
693 int i;
694 #endif
695 thread_t td;
696 struct proc *p;
697 int bump;
698 sysclock_t cv;
699 sysclock_t scv;
702 * How big was our timeslice relative to the last time? Calculate
703 * in microseconds.
705 * NOTE: Use of microuptime() is typically MPSAFE, but usually not
706 * during early boot. Just use the systimer count to be nice
707 * to e.g. qemu. The systimer has a better chance of being
708 * MPSAFE at early boot.
710 cv = sys_cputimer->count();
711 scv = mycpu->statint.gd_statcv;
712 if (scv == 0) {
713 bump = 1;
714 } else {
715 bump = (sys_cputimer->freq64_usec * (cv - scv)) >> 32;
716 if (bump < 0)
717 bump = 0;
718 if (bump > 1000000)
719 bump = 1000000;
721 mycpu->statint.gd_statcv = cv;
723 #if 0
724 stv = &mycpu->gd_stattv;
725 if (stv->tv_sec == 0) {
726 bump = 1;
727 } else {
728 bump = tv.tv_usec - stv->tv_usec +
729 (tv.tv_sec - stv->tv_sec) * 1000000;
730 if (bump < 0)
731 bump = 0;
732 if (bump > 1000000)
733 bump = 1000000;
735 *stv = tv;
736 #endif
738 td = curthread;
739 p = td->td_proc;
741 if (frame && CLKF_USERMODE(frame)) {
743 * Came from userland, handle user time and deal with
744 * possible process.
746 if (p && (p->p_flags & P_PROFIL))
747 addupc_intr(p, CLKF_PC(frame), 1);
748 td->td_uticks += bump;
751 * Charge the time as appropriate
753 if (p && p->p_nice > NZERO)
754 cpu_time.cp_nice += bump;
755 else
756 cpu_time.cp_user += bump;
757 } else {
758 int intr_nest = mycpu->gd_intr_nesting_level;
760 if (in_ipi) {
762 * IPI processing code will bump gd_intr_nesting_level
763 * up by one, which breaks following CLKF_INTR testing,
764 * so we subtract it by one here.
766 --intr_nest;
768 #ifdef GPROF
770 * Kernel statistics are just like addupc_intr, only easier.
772 g = &_gmonparam;
773 if (g->state == GMON_PROF_ON && frame) {
774 i = CLKF_PC(frame) - g->lowpc;
775 if (i < g->textsize) {
776 i /= HISTFRACTION * sizeof(*g->kcount);
777 g->kcount[i]++;
780 #endif
782 #define IS_INTR_RUNNING ((frame && CLKF_INTR(intr_nest)) || CLKF_INTR_TD(td))
785 * Came from kernel mode, so we were:
786 * - handling an interrupt,
787 * - doing syscall or trap work on behalf of the current
788 * user process, or
789 * - spinning in the idle loop.
790 * Whichever it is, charge the time as appropriate.
791 * Note that we charge interrupts to the current process,
792 * regardless of whether they are ``for'' that process,
793 * so that we know how much of its real time was spent
794 * in ``non-process'' (i.e., interrupt) work.
796 * XXX assume system if frame is NULL. A NULL frame
797 * can occur if ipi processing is done from a crit_exit().
799 if (IS_INTR_RUNNING)
800 td->td_iticks += bump;
801 else
802 td->td_sticks += bump;
804 if (IS_INTR_RUNNING) {
806 * If we interrupted an interrupt thread, well,
807 * count it as interrupt time.
809 #ifdef DEBUG_PCTRACK
810 if (frame)
811 do_pctrack(frame, PCTRACK_INT);
812 #endif
813 cpu_time.cp_intr += bump;
814 } else {
815 if (td == &mycpu->gd_idlethread) {
817 * Even if the current thread is the idle
818 * thread it could be due to token contention
819 * in the LWKT scheduler. Count such as
820 * system time.
822 if (mycpu->gd_reqflags & RQF_IDLECHECK_WK_MASK)
823 cpu_time.cp_sys += bump;
824 else
825 cpu_time.cp_idle += bump;
826 } else {
828 * System thread was running.
830 #ifdef DEBUG_PCTRACK
831 if (frame)
832 do_pctrack(frame, PCTRACK_SYS);
833 #endif
834 cpu_time.cp_sys += bump;
838 #undef IS_INTR_RUNNING
842 #ifdef DEBUG_PCTRACK
844 * Sample the PC when in the kernel or in an interrupt. User code can
845 * retrieve the information and generate a histogram or other output.
848 static void
849 do_pctrack(struct intrframe *frame, int which)
851 struct kinfo_pctrack *pctrack;
853 pctrack = &cputime_pctrack[mycpu->gd_cpuid][which];
854 pctrack->pc_array[pctrack->pc_index & PCTRACK_ARYMASK] =
855 (void *)CLKF_PC(frame);
856 ++pctrack->pc_index;
859 static int
860 sysctl_pctrack(SYSCTL_HANDLER_ARGS)
862 struct kinfo_pcheader head;
863 int error;
864 int cpu;
865 int ntrack;
867 head.pc_ntrack = PCTRACK_SIZE;
868 head.pc_arysize = PCTRACK_ARYSIZE;
870 if ((error = SYSCTL_OUT(req, &head, sizeof(head))) != 0)
871 return (error);
873 for (cpu = 0; cpu < ncpus; ++cpu) {
874 for (ntrack = 0; ntrack < PCTRACK_SIZE; ++ntrack) {
875 error = SYSCTL_OUT(req, &cputime_pctrack[cpu][ntrack],
876 sizeof(struct kinfo_pctrack));
877 if (error)
878 break;
880 if (error)
881 break;
883 return (error);
885 SYSCTL_PROC(_kern, OID_AUTO, pctrack, (CTLTYPE_OPAQUE|CTLFLAG_RD), 0, 0,
886 sysctl_pctrack, "S,kinfo_pcheader", "CPU PC tracking");
888 #endif
891 * The scheduler clock typically runs at a 50Hz rate. NOTE! systimer,
892 * the MP lock might not be held. We can safely manipulate parts of curproc
893 * but that's about it.
895 * Each cpu has its own scheduler clock.
897 static void
898 schedclock(systimer_t info, int in_ipi __unused, struct intrframe *frame)
900 struct lwp *lp;
901 struct rusage *ru;
902 struct vmspace *vm;
903 long rss;
905 if ((lp = lwkt_preempted_proc()) != NULL) {
907 * Account for cpu time used and hit the scheduler. Note
908 * that this call MUST BE MP SAFE, and the BGL IS NOT HELD
909 * HERE.
911 ++lp->lwp_cpticks;
912 usched_schedulerclock(lp, info->periodic, info->time);
913 } else {
914 usched_schedulerclock(NULL, info->periodic, info->time);
916 if ((lp = curthread->td_lwp) != NULL) {
918 * Update resource usage integrals and maximums.
920 if ((ru = &lp->lwp_proc->p_ru) &&
921 (vm = lp->lwp_proc->p_vmspace) != NULL) {
922 ru->ru_ixrss += pgtok(vm->vm_tsize);
923 ru->ru_idrss += pgtok(vm->vm_dsize);
924 ru->ru_isrss += pgtok(vm->vm_ssize);
925 if (lwkt_trytoken(&vm->vm_map.token)) {
926 rss = pgtok(vmspace_resident_count(vm));
927 if (ru->ru_maxrss < rss)
928 ru->ru_maxrss = rss;
929 lwkt_reltoken(&vm->vm_map.token);
933 /* Increment the global sched_ticks */
934 if (mycpu->gd_cpuid == 0)
935 ++sched_ticks;
939 * Compute number of ticks for the specified amount of time. The
940 * return value is intended to be used in a clock interrupt timed
941 * operation and guaranteed to meet or exceed the requested time.
942 * If the representation overflows, return INT_MAX. The minimum return
943 * value is 1 ticks and the function will average the calculation up.
944 * If any value greater then 0 microseconds is supplied, a value
945 * of at least 2 will be returned to ensure that a near-term clock
946 * interrupt does not cause the timeout to occur (degenerately) early.
948 * Note that limit checks must take into account microseconds, which is
949 * done simply by using the smaller signed long maximum instead of
950 * the unsigned long maximum.
952 * If ints have 32 bits, then the maximum value for any timeout in
953 * 10ms ticks is 248 days.
956 tvtohz_high(struct timeval *tv)
958 int ticks;
959 long sec, usec;
961 sec = tv->tv_sec;
962 usec = tv->tv_usec;
963 if (usec < 0) {
964 sec--;
965 usec += 1000000;
967 if (sec < 0) {
968 #ifdef DIAGNOSTIC
969 if (usec > 0) {
970 sec++;
971 usec -= 1000000;
973 kprintf("tvtohz_high: negative time difference "
974 "%ld sec %ld usec\n",
975 sec, usec);
976 #endif
977 ticks = 1;
978 } else if (sec <= INT_MAX / hz) {
979 ticks = (int)(sec * hz +
980 ((u_long)usec + (ustick - 1)) / ustick) + 1;
981 } else {
982 ticks = INT_MAX;
984 return (ticks);
988 tstohz_high(struct timespec *ts)
990 int ticks;
991 long sec, nsec;
993 sec = ts->tv_sec;
994 nsec = ts->tv_nsec;
995 if (nsec < 0) {
996 sec--;
997 nsec += 1000000000;
999 if (sec < 0) {
1000 #ifdef DIAGNOSTIC
1001 if (nsec > 0) {
1002 sec++;
1003 nsec -= 1000000000;
1005 kprintf("tstohz_high: negative time difference "
1006 "%ld sec %ld nsec\n",
1007 sec, nsec);
1008 #endif
1009 ticks = 1;
1010 } else if (sec <= INT_MAX / hz) {
1011 ticks = (int)(sec * hz +
1012 ((u_long)nsec + (nstick - 1)) / nstick) + 1;
1013 } else {
1014 ticks = INT_MAX;
1016 return (ticks);
1021 * Compute number of ticks for the specified amount of time, erroring on
1022 * the side of it being too low to ensure that sleeping the returned number
1023 * of ticks will not result in a late return.
1025 * The supplied timeval may not be negative and should be normalized. A
1026 * return value of 0 is possible if the timeval converts to less then
1027 * 1 tick.
1029 * If ints have 32 bits, then the maximum value for any timeout in
1030 * 10ms ticks is 248 days.
1033 tvtohz_low(struct timeval *tv)
1035 int ticks;
1036 long sec;
1038 sec = tv->tv_sec;
1039 if (sec <= INT_MAX / hz)
1040 ticks = (int)(sec * hz + (u_long)tv->tv_usec / ustick);
1041 else
1042 ticks = INT_MAX;
1043 return (ticks);
1047 tstohz_low(struct timespec *ts)
1049 int ticks;
1050 long sec;
1052 sec = ts->tv_sec;
1053 if (sec <= INT_MAX / hz)
1054 ticks = (int)(sec * hz + (u_long)ts->tv_nsec / nstick);
1055 else
1056 ticks = INT_MAX;
1057 return (ticks);
1061 * Start profiling on a process.
1063 * Kernel profiling passes proc0 which never exits and hence
1064 * keeps the profile clock running constantly.
1066 void
1067 startprofclock(struct proc *p)
1069 if ((p->p_flags & P_PROFIL) == 0) {
1070 p->p_flags |= P_PROFIL;
1071 #if 0 /* XXX */
1072 if (++profprocs == 1 && stathz != 0) {
1073 crit_enter();
1074 psdiv = psratio;
1075 setstatclockrate(profhz);
1076 crit_exit();
1078 #endif
1083 * Stop profiling on a process.
1085 * caller must hold p->p_token
1087 void
1088 stopprofclock(struct proc *p)
1090 if (p->p_flags & P_PROFIL) {
1091 p->p_flags &= ~P_PROFIL;
1092 #if 0 /* XXX */
1093 if (--profprocs == 0 && stathz != 0) {
1094 crit_enter();
1095 psdiv = 1;
1096 setstatclockrate(stathz);
1097 crit_exit();
1099 #endif
1104 * Return information about system clocks.
1106 static int
1107 sysctl_kern_clockrate(SYSCTL_HANDLER_ARGS)
1109 struct kinfo_clockinfo clkinfo;
1111 * Construct clockinfo structure.
1113 clkinfo.ci_hz = hz;
1114 clkinfo.ci_tick = ustick;
1115 clkinfo.ci_tickadj = ntp_default_tick_delta / 1000;
1116 clkinfo.ci_profhz = profhz;
1117 clkinfo.ci_stathz = stathz ? stathz : hz;
1118 return (sysctl_handle_opaque(oidp, &clkinfo, sizeof clkinfo, req));
1121 SYSCTL_PROC(_kern, KERN_CLOCKRATE, clockrate, CTLTYPE_STRUCT|CTLFLAG_RD,
1122 0, 0, sysctl_kern_clockrate, "S,clockinfo","");
1125 * We have eight functions for looking at the clock, four for
1126 * microseconds and four for nanoseconds. For each there is fast
1127 * but less precise version "get{nano|micro}[up]time" which will
1128 * return a time which is up to 1/HZ previous to the call, whereas
1129 * the raw version "{nano|micro}[up]time" will return a timestamp
1130 * which is as precise as possible. The "up" variants return the
1131 * time relative to system boot, these are well suited for time
1132 * interval measurements.
1134 * Each cpu independently maintains the current time of day, so all
1135 * we need to do to protect ourselves from changes is to do a loop
1136 * check on the seconds field changing out from under us.
1138 * The system timer maintains a 32 bit count and due to various issues
1139 * it is possible for the calculated delta to occasionally exceed
1140 * sys_cputimer->freq. If this occurs the sys_cputimer->freq64_nsec
1141 * multiplication can easily overflow, so we deal with the case. For
1142 * uniformity we deal with the case in the usec case too.
1144 * All the [get][micro,nano][time,uptime]() routines are MPSAFE.
1146 void
1147 getmicrouptime(struct timeval *tvp)
1149 struct globaldata *gd = mycpu;
1150 sysclock_t delta;
1152 do {
1153 tvp->tv_sec = gd->gd_time_seconds;
1154 delta = gd->gd_hardclock.time - gd->gd_cpuclock_base;
1155 } while (tvp->tv_sec != gd->gd_time_seconds);
1157 if (delta >= sys_cputimer->freq) {
1158 tvp->tv_sec += delta / sys_cputimer->freq;
1159 delta %= sys_cputimer->freq;
1161 tvp->tv_usec = (sys_cputimer->freq64_usec * delta) >> 32;
1162 if (tvp->tv_usec >= 1000000) {
1163 tvp->tv_usec -= 1000000;
1164 ++tvp->tv_sec;
1168 void
1169 getnanouptime(struct timespec *tsp)
1171 struct globaldata *gd = mycpu;
1172 sysclock_t delta;
1174 do {
1175 tsp->tv_sec = gd->gd_time_seconds;
1176 delta = gd->gd_hardclock.time - gd->gd_cpuclock_base;
1177 } while (tsp->tv_sec != gd->gd_time_seconds);
1179 if (delta >= sys_cputimer->freq) {
1180 tsp->tv_sec += delta / sys_cputimer->freq;
1181 delta %= sys_cputimer->freq;
1183 tsp->tv_nsec = (sys_cputimer->freq64_nsec * delta) >> 32;
1186 void
1187 microuptime(struct timeval *tvp)
1189 struct globaldata *gd = mycpu;
1190 sysclock_t delta;
1192 do {
1193 tvp->tv_sec = gd->gd_time_seconds;
1194 delta = sys_cputimer->count() - gd->gd_cpuclock_base;
1195 } while (tvp->tv_sec != gd->gd_time_seconds);
1197 if (delta >= sys_cputimer->freq) {
1198 tvp->tv_sec += delta / sys_cputimer->freq;
1199 delta %= sys_cputimer->freq;
1201 tvp->tv_usec = (sys_cputimer->freq64_usec * delta) >> 32;
1204 void
1205 nanouptime(struct timespec *tsp)
1207 struct globaldata *gd = mycpu;
1208 sysclock_t delta;
1210 do {
1211 tsp->tv_sec = gd->gd_time_seconds;
1212 delta = sys_cputimer->count() - gd->gd_cpuclock_base;
1213 } while (tsp->tv_sec != gd->gd_time_seconds);
1215 if (delta >= sys_cputimer->freq) {
1216 tsp->tv_sec += delta / sys_cputimer->freq;
1217 delta %= sys_cputimer->freq;
1219 tsp->tv_nsec = (sys_cputimer->freq64_nsec * delta) >> 32;
1223 * realtime routines
1225 void
1226 getmicrotime(struct timeval *tvp)
1228 struct globaldata *gd = mycpu;
1229 struct timespec *bt;
1230 sysclock_t delta;
1232 do {
1233 tvp->tv_sec = gd->gd_time_seconds;
1234 delta = gd->gd_hardclock.time - gd->gd_cpuclock_base;
1235 } while (tvp->tv_sec != gd->gd_time_seconds);
1237 if (delta >= sys_cputimer->freq) {
1238 tvp->tv_sec += delta / sys_cputimer->freq;
1239 delta %= sys_cputimer->freq;
1241 tvp->tv_usec = (sys_cputimer->freq64_usec * delta) >> 32;
1243 bt = &basetime[basetime_index];
1244 cpu_lfence();
1245 tvp->tv_sec += bt->tv_sec;
1246 tvp->tv_usec += bt->tv_nsec / 1000;
1247 while (tvp->tv_usec >= 1000000) {
1248 tvp->tv_usec -= 1000000;
1249 ++tvp->tv_sec;
1253 void
1254 getnanotime(struct timespec *tsp)
1256 struct globaldata *gd = mycpu;
1257 struct timespec *bt;
1258 sysclock_t delta;
1260 do {
1261 tsp->tv_sec = gd->gd_time_seconds;
1262 delta = gd->gd_hardclock.time - gd->gd_cpuclock_base;
1263 } while (tsp->tv_sec != gd->gd_time_seconds);
1265 if (delta >= sys_cputimer->freq) {
1266 tsp->tv_sec += delta / sys_cputimer->freq;
1267 delta %= sys_cputimer->freq;
1269 tsp->tv_nsec = (sys_cputimer->freq64_nsec * delta) >> 32;
1271 bt = &basetime[basetime_index];
1272 cpu_lfence();
1273 tsp->tv_sec += bt->tv_sec;
1274 tsp->tv_nsec += bt->tv_nsec;
1275 while (tsp->tv_nsec >= 1000000000) {
1276 tsp->tv_nsec -= 1000000000;
1277 ++tsp->tv_sec;
1281 static void
1282 getnanotime_nbt(struct timespec *nbt, struct timespec *tsp)
1284 struct globaldata *gd = mycpu;
1285 sysclock_t delta;
1287 do {
1288 tsp->tv_sec = gd->gd_time_seconds;
1289 delta = gd->gd_hardclock.time - gd->gd_cpuclock_base;
1290 } while (tsp->tv_sec != gd->gd_time_seconds);
1292 if (delta >= sys_cputimer->freq) {
1293 tsp->tv_sec += delta / sys_cputimer->freq;
1294 delta %= sys_cputimer->freq;
1296 tsp->tv_nsec = (sys_cputimer->freq64_nsec * delta) >> 32;
1298 tsp->tv_sec += nbt->tv_sec;
1299 tsp->tv_nsec += nbt->tv_nsec;
1300 while (tsp->tv_nsec >= 1000000000) {
1301 tsp->tv_nsec -= 1000000000;
1302 ++tsp->tv_sec;
1307 void
1308 microtime(struct timeval *tvp)
1310 struct globaldata *gd = mycpu;
1311 struct timespec *bt;
1312 sysclock_t delta;
1314 do {
1315 tvp->tv_sec = gd->gd_time_seconds;
1316 delta = sys_cputimer->count() - gd->gd_cpuclock_base;
1317 } while (tvp->tv_sec != gd->gd_time_seconds);
1319 if (delta >= sys_cputimer->freq) {
1320 tvp->tv_sec += delta / sys_cputimer->freq;
1321 delta %= sys_cputimer->freq;
1323 tvp->tv_usec = (sys_cputimer->freq64_usec * delta) >> 32;
1325 bt = &basetime[basetime_index];
1326 cpu_lfence();
1327 tvp->tv_sec += bt->tv_sec;
1328 tvp->tv_usec += bt->tv_nsec / 1000;
1329 while (tvp->tv_usec >= 1000000) {
1330 tvp->tv_usec -= 1000000;
1331 ++tvp->tv_sec;
1335 void
1336 nanotime(struct timespec *tsp)
1338 struct globaldata *gd = mycpu;
1339 struct timespec *bt;
1340 sysclock_t delta;
1342 do {
1343 tsp->tv_sec = gd->gd_time_seconds;
1344 delta = sys_cputimer->count() - gd->gd_cpuclock_base;
1345 } while (tsp->tv_sec != gd->gd_time_seconds);
1347 if (delta >= sys_cputimer->freq) {
1348 tsp->tv_sec += delta / sys_cputimer->freq;
1349 delta %= sys_cputimer->freq;
1351 tsp->tv_nsec = (sys_cputimer->freq64_nsec * delta) >> 32;
1353 bt = &basetime[basetime_index];
1354 cpu_lfence();
1355 tsp->tv_sec += bt->tv_sec;
1356 tsp->tv_nsec += bt->tv_nsec;
1357 while (tsp->tv_nsec >= 1000000000) {
1358 tsp->tv_nsec -= 1000000000;
1359 ++tsp->tv_sec;
1364 * Get an approximate time_t. It does not have to be accurate. This
1365 * function is called only from KTR and can be called with the system in
1366 * any state so do not use a critical section or other complex operation
1367 * here.
1369 * NOTE: This is not exactly synchronized with real time. To do that we
1370 * would have to do what microtime does and check for a nanoseconds
1371 * overflow.
1373 time_t
1374 get_approximate_time_t(void)
1376 struct globaldata *gd = mycpu;
1377 struct timespec *bt;
1379 bt = &basetime[basetime_index];
1380 return(gd->gd_time_seconds + bt->tv_sec);
1384 pps_ioctl(u_long cmd, caddr_t data, struct pps_state *pps)
1386 pps_params_t *app;
1387 struct pps_fetch_args *fapi;
1388 #ifdef PPS_SYNC
1389 struct pps_kcbind_args *kapi;
1390 #endif
1392 switch (cmd) {
1393 case PPS_IOC_CREATE:
1394 return (0);
1395 case PPS_IOC_DESTROY:
1396 return (0);
1397 case PPS_IOC_SETPARAMS:
1398 app = (pps_params_t *)data;
1399 if (app->mode & ~pps->ppscap)
1400 return (EINVAL);
1401 pps->ppsparam = *app;
1402 return (0);
1403 case PPS_IOC_GETPARAMS:
1404 app = (pps_params_t *)data;
1405 *app = pps->ppsparam;
1406 app->api_version = PPS_API_VERS_1;
1407 return (0);
1408 case PPS_IOC_GETCAP:
1409 *(int*)data = pps->ppscap;
1410 return (0);
1411 case PPS_IOC_FETCH:
1412 fapi = (struct pps_fetch_args *)data;
1413 if (fapi->tsformat && fapi->tsformat != PPS_TSFMT_TSPEC)
1414 return (EINVAL);
1415 if (fapi->timeout.tv_sec || fapi->timeout.tv_nsec)
1416 return (EOPNOTSUPP);
1417 pps->ppsinfo.current_mode = pps->ppsparam.mode;
1418 fapi->pps_info_buf = pps->ppsinfo;
1419 return (0);
1420 case PPS_IOC_KCBIND:
1421 #ifdef PPS_SYNC
1422 kapi = (struct pps_kcbind_args *)data;
1423 /* XXX Only root should be able to do this */
1424 if (kapi->tsformat && kapi->tsformat != PPS_TSFMT_TSPEC)
1425 return (EINVAL);
1426 if (kapi->kernel_consumer != PPS_KC_HARDPPS)
1427 return (EINVAL);
1428 if (kapi->edge & ~pps->ppscap)
1429 return (EINVAL);
1430 pps->kcmode = kapi->edge;
1431 return (0);
1432 #else
1433 return (EOPNOTSUPP);
1434 #endif
1435 default:
1436 return (ENOTTY);
1440 void
1441 pps_init(struct pps_state *pps)
1443 pps->ppscap |= PPS_TSFMT_TSPEC;
1444 if (pps->ppscap & PPS_CAPTUREASSERT)
1445 pps->ppscap |= PPS_OFFSETASSERT;
1446 if (pps->ppscap & PPS_CAPTURECLEAR)
1447 pps->ppscap |= PPS_OFFSETCLEAR;
1450 void
1451 pps_event(struct pps_state *pps, sysclock_t count, int event)
1453 struct globaldata *gd;
1454 struct timespec *tsp;
1455 struct timespec *osp;
1456 struct timespec *bt;
1457 struct timespec ts;
1458 sysclock_t *pcount;
1459 #ifdef PPS_SYNC
1460 sysclock_t tcount;
1461 #endif
1462 sysclock_t delta;
1463 pps_seq_t *pseq;
1464 int foff;
1465 #ifdef PPS_SYNC
1466 int fhard;
1467 #else
1468 int fhard __unused;
1469 #endif
1470 int ni;
1472 gd = mycpu;
1474 /* Things would be easier with arrays... */
1475 if (event == PPS_CAPTUREASSERT) {
1476 tsp = &pps->ppsinfo.assert_timestamp;
1477 osp = &pps->ppsparam.assert_offset;
1478 foff = pps->ppsparam.mode & PPS_OFFSETASSERT;
1479 fhard = pps->kcmode & PPS_CAPTUREASSERT;
1480 pcount = &pps->ppscount[0];
1481 pseq = &pps->ppsinfo.assert_sequence;
1482 } else {
1483 tsp = &pps->ppsinfo.clear_timestamp;
1484 osp = &pps->ppsparam.clear_offset;
1485 foff = pps->ppsparam.mode & PPS_OFFSETCLEAR;
1486 fhard = pps->kcmode & PPS_CAPTURECLEAR;
1487 pcount = &pps->ppscount[1];
1488 pseq = &pps->ppsinfo.clear_sequence;
1491 /* Nothing really happened */
1492 if (*pcount == count)
1493 return;
1495 *pcount = count;
1497 do {
1498 ts.tv_sec = gd->gd_time_seconds;
1499 delta = count - gd->gd_cpuclock_base;
1500 } while (ts.tv_sec != gd->gd_time_seconds);
1502 if (delta >= sys_cputimer->freq) {
1503 ts.tv_sec += delta / sys_cputimer->freq;
1504 delta %= sys_cputimer->freq;
1506 ts.tv_nsec = (sys_cputimer->freq64_nsec * delta) >> 32;
1507 ni = basetime_index;
1508 cpu_lfence();
1509 bt = &basetime[ni];
1510 ts.tv_sec += bt->tv_sec;
1511 ts.tv_nsec += bt->tv_nsec;
1512 while (ts.tv_nsec >= 1000000000) {
1513 ts.tv_nsec -= 1000000000;
1514 ++ts.tv_sec;
1517 (*pseq)++;
1518 *tsp = ts;
1520 if (foff) {
1521 timespecadd(tsp, osp);
1522 if (tsp->tv_nsec < 0) {
1523 tsp->tv_nsec += 1000000000;
1524 tsp->tv_sec -= 1;
1527 #ifdef PPS_SYNC
1528 if (fhard) {
1529 /* magic, at its best... */
1530 tcount = count - pps->ppscount[2];
1531 pps->ppscount[2] = count;
1532 if (tcount >= sys_cputimer->freq) {
1533 delta = (1000000000 * (tcount / sys_cputimer->freq) +
1534 sys_cputimer->freq64_nsec *
1535 (tcount % sys_cputimer->freq)) >> 32;
1536 } else {
1537 delta = (sys_cputimer->freq64_nsec * tcount) >> 32;
1539 hardpps(tsp, delta);
1541 #endif
1545 * Return the tsc target value for a delay of (ns).
1547 * Returns -1 if the TSC is not supported.
1549 int64_t
1550 tsc_get_target(int ns)
1552 #if defined(_RDTSC_SUPPORTED_)
1553 if (cpu_feature & CPUID_TSC) {
1554 return (rdtsc() + tsc_frequency * ns / (int64_t)1000000000);
1556 #endif
1557 return(-1);
1561 * Compare the tsc against the passed target
1563 * Returns +1 if the target has been reached
1564 * Returns 0 if the target has not yet been reached
1565 * Returns -1 if the TSC is not supported.
1567 * Typical use: while (tsc_test_target(target) == 0) { ...poll... }
1570 tsc_test_target(int64_t target)
1572 #if defined(_RDTSC_SUPPORTED_)
1573 if (cpu_feature & CPUID_TSC) {
1574 if ((int64_t)(target - rdtsc()) <= 0)
1575 return(1);
1576 return(0);
1578 #endif
1579 return(-1);
1583 * Delay the specified number of nanoseconds using the tsc. This function
1584 * returns immediately if the TSC is not supported. At least one cpu_pause()
1585 * will be issued.
1587 void
1588 tsc_delay(int ns)
1590 int64_t clk;
1592 clk = tsc_get_target(ns);
1593 cpu_pause();
1594 while (tsc_test_target(clk) == 0)
1595 cpu_pause();