kernel - Fix a vty switch/history bug
[dragonfly.git] / sys / net / if_ethersubr.c
blob71dc0e4db699a7a05c564b478815ddec194b63c7
1 /*
2 * Copyright (c) 1982, 1989, 1993
3 * The Regents of the University of California. All rights reserved.
5 * Redistribution and use in source and binary forms, with or without
6 * modification, are permitted provided that the following conditions
7 * are met:
8 * 1. Redistributions of source code must retain the above copyright
9 * notice, this list of conditions and the following disclaimer.
10 * 2. Redistributions in binary form must reproduce the above copyright
11 * notice, this list of conditions and the following disclaimer in the
12 * documentation and/or other materials provided with the distribution.
13 * 3. Neither the name of the University nor the names of its contributors
14 * may be used to endorse or promote products derived from this software
15 * without specific prior written permission.
17 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
18 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
19 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
20 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
21 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
22 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
23 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
24 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
25 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
26 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
27 * SUCH DAMAGE.
29 * @(#)if_ethersubr.c 8.1 (Berkeley) 6/10/93
30 * $FreeBSD: src/sys/net/if_ethersubr.c,v 1.70.2.33 2003/04/28 15:45:53 archie Exp $
33 #include "opt_inet.h"
34 #include "opt_inet6.h"
35 #include "opt_mpls.h"
36 #include "opt_netgraph.h"
37 #include "opt_carp.h"
38 #include "opt_rss.h"
40 #include <sys/param.h>
41 #include <sys/systm.h>
42 #include <sys/globaldata.h>
43 #include <sys/kernel.h>
44 #include <sys/ktr.h>
45 #include <sys/lock.h>
46 #include <sys/malloc.h>
47 #include <sys/mbuf.h>
48 #include <sys/msgport.h>
49 #include <sys/socket.h>
50 #include <sys/sockio.h>
51 #include <sys/sysctl.h>
52 #include <sys/thread.h>
54 #include <sys/thread2.h>
55 #include <sys/mplock2.h>
57 #include <net/if.h>
58 #include <net/netisr.h>
59 #include <net/route.h>
60 #include <net/if_llc.h>
61 #include <net/if_dl.h>
62 #include <net/if_types.h>
63 #include <net/ifq_var.h>
64 #include <net/bpf.h>
65 #include <net/ethernet.h>
66 #include <net/vlan/if_vlan_ether.h>
67 #include <net/vlan/if_vlan_var.h>
68 #include <net/netmsg2.h>
69 #include <net/netisr2.h>
71 #if defined(INET) || defined(INET6)
72 #include <netinet/in.h>
73 #include <netinet/ip_var.h>
74 #include <netinet/tcp_var.h>
75 #include <netinet/if_ether.h>
76 #include <netinet/ip_flow.h>
77 #include <net/ipfw/ip_fw.h>
78 #include <net/ipfw3/ip_fw.h>
79 #include <net/dummynet/ip_dummynet.h>
80 #endif
81 #ifdef INET6
82 #include <netinet6/nd6.h>
83 #endif
85 #ifdef CARP
86 #include <netinet/ip_carp.h>
87 #endif
89 #ifdef MPLS
90 #include <netproto/mpls/mpls.h>
91 #endif
93 /* netgraph node hooks for ng_ether(4) */
94 void (*ng_ether_input_p)(struct ifnet *ifp, struct mbuf **mp);
95 void (*ng_ether_input_orphan_p)(struct ifnet *ifp, struct mbuf *m);
96 int (*ng_ether_output_p)(struct ifnet *ifp, struct mbuf **mp);
97 void (*ng_ether_attach_p)(struct ifnet *ifp);
98 void (*ng_ether_detach_p)(struct ifnet *ifp);
100 void (*vlan_input_p)(struct mbuf *);
102 static int ether_output(struct ifnet *, struct mbuf *, struct sockaddr *,
103 struct rtentry *);
104 static void ether_restore_header(struct mbuf **, const struct ether_header *,
105 const struct ether_header *);
106 static int ether_characterize(struct mbuf **);
107 static void ether_dispatch(int, struct mbuf *, int);
110 * if_bridge support
112 struct mbuf *(*bridge_input_p)(struct ifnet *, struct mbuf *);
113 int (*bridge_output_p)(struct ifnet *, struct mbuf *);
114 void (*bridge_dn_p)(struct mbuf *, struct ifnet *);
115 struct ifnet *(*bridge_interface_p)(void *if_bridge);
117 static int ether_resolvemulti(struct ifnet *, struct sockaddr **,
118 struct sockaddr *);
121 * if_lagg(4) support
123 void (*lagg_input_p)(struct ifnet *, struct mbuf *);
124 int (*lagg_output_p)(struct ifnet *, struct mbuf *);
126 const uint8_t etherbroadcastaddr[ETHER_ADDR_LEN] = {
127 0xff, 0xff, 0xff, 0xff, 0xff, 0xff
130 #define gotoerr(e) do { error = (e); goto bad; } while (0)
131 #define IFP2AC(ifp) ((struct arpcom *)(ifp))
133 static boolean_t ether_ipfw_chk(struct mbuf **m0, struct ifnet *dst,
134 struct ip_fw **rule,
135 const struct ether_header *eh);
137 static int ether_ipfw;
138 static u_long ether_restore_hdr;
139 static u_long ether_prepend_hdr;
140 static u_long ether_input_wronghash;
141 static int ether_debug;
143 #ifdef RSS_DEBUG
144 static u_long ether_pktinfo_try;
145 static u_long ether_pktinfo_hit;
146 static u_long ether_rss_nopi;
147 static u_long ether_rss_nohash;
148 static u_long ether_input_requeue;
149 #endif
150 static u_long ether_input_wronghwhash;
151 static int ether_input_ckhash;
153 #define ETHER_TSOLEN_DEFAULT (4 * ETHERMTU)
155 #define ETHER_NMBCLUSTERS_DEFMIN 32
156 #define ETHER_NMBCLUSTERS_DEFAULT 256
158 static int ether_tsolen_default = ETHER_TSOLEN_DEFAULT;
159 TUNABLE_INT("net.link.ether.tsolen", &ether_tsolen_default);
161 static int ether_nmbclusters_default = ETHER_NMBCLUSTERS_DEFAULT;
162 TUNABLE_INT("net.link.ether.nmbclusters", &ether_nmbclusters_default);
164 SYSCTL_DECL(_net_link);
165 SYSCTL_NODE(_net_link, IFT_ETHER, ether, CTLFLAG_RW, 0, "Ethernet");
166 SYSCTL_INT(_net_link_ether, OID_AUTO, debug, CTLFLAG_RW,
167 &ether_debug, 0, "Ether debug");
168 SYSCTL_INT(_net_link_ether, OID_AUTO, ipfw, CTLFLAG_RW,
169 &ether_ipfw, 0, "Pass ether pkts through firewall");
170 SYSCTL_ULONG(_net_link_ether, OID_AUTO, restore_hdr, CTLFLAG_RW,
171 &ether_restore_hdr, 0, "# of ether header restoration");
172 SYSCTL_ULONG(_net_link_ether, OID_AUTO, prepend_hdr, CTLFLAG_RW,
173 &ether_prepend_hdr, 0,
174 "# of ether header restoration which prepends mbuf");
175 SYSCTL_ULONG(_net_link_ether, OID_AUTO, input_wronghash, CTLFLAG_RW,
176 &ether_input_wronghash, 0, "# of input packets with wrong hash");
177 SYSCTL_INT(_net_link_ether, OID_AUTO, tsolen, CTLFLAG_RW,
178 &ether_tsolen_default, 0, "Default max TSO length");
180 #ifdef RSS_DEBUG
181 SYSCTL_ULONG(_net_link_ether, OID_AUTO, rss_nopi, CTLFLAG_RW,
182 &ether_rss_nopi, 0, "# of packets do not have pktinfo");
183 SYSCTL_ULONG(_net_link_ether, OID_AUTO, rss_nohash, CTLFLAG_RW,
184 &ether_rss_nohash, 0, "# of packets do not have hash");
185 SYSCTL_ULONG(_net_link_ether, OID_AUTO, pktinfo_try, CTLFLAG_RW,
186 &ether_pktinfo_try, 0,
187 "# of tries to find packets' msgport using pktinfo");
188 SYSCTL_ULONG(_net_link_ether, OID_AUTO, pktinfo_hit, CTLFLAG_RW,
189 &ether_pktinfo_hit, 0,
190 "# of packets whose msgport are found using pktinfo");
191 SYSCTL_ULONG(_net_link_ether, OID_AUTO, input_requeue, CTLFLAG_RW,
192 &ether_input_requeue, 0, "# of input packets gets requeued");
193 #endif
194 SYSCTL_ULONG(_net_link_ether, OID_AUTO, input_wronghwhash, CTLFLAG_RW,
195 &ether_input_wronghwhash, 0, "# of input packets with wrong hw hash");
196 SYSCTL_INT(_net_link_ether, OID_AUTO, always_ckhash, CTLFLAG_RW,
197 &ether_input_ckhash, 0, "always check hash");
199 #define ETHER_KTR_STR "ifp=%p"
200 #define ETHER_KTR_ARGS struct ifnet *ifp
201 #ifndef KTR_ETHERNET
202 #define KTR_ETHERNET KTR_ALL
203 #endif
204 KTR_INFO_MASTER(ether);
205 KTR_INFO(KTR_ETHERNET, ether, pkt_beg, 0, ETHER_KTR_STR, ETHER_KTR_ARGS);
206 KTR_INFO(KTR_ETHERNET, ether, pkt_end, 1, ETHER_KTR_STR, ETHER_KTR_ARGS);
207 KTR_INFO(KTR_ETHERNET, ether, disp_beg, 2, ETHER_KTR_STR, ETHER_KTR_ARGS);
208 KTR_INFO(KTR_ETHERNET, ether, disp_end, 3, ETHER_KTR_STR, ETHER_KTR_ARGS);
209 #define logether(name, arg) KTR_LOG(ether_ ## name, arg)
212 * Ethernet output routine.
213 * Encapsulate a packet of type family for the local net.
214 * Use trailer local net encapsulation if enough data in first
215 * packet leaves a multiple of 512 bytes of data in remainder.
216 * Assumes that ifp is actually pointer to arpcom structure.
218 static int
219 ether_output(struct ifnet *ifp, struct mbuf *m, struct sockaddr *dst,
220 struct rtentry *rt)
222 struct ether_header *eh, *deh;
223 u_char *edst;
224 int loop_copy = 0;
225 int hlen = ETHER_HDR_LEN; /* link layer header length */
226 struct arpcom *ac = IFP2AC(ifp);
227 int error;
229 ASSERT_IFNET_NOT_SERIALIZED_ALL(ifp);
231 if (ifp->if_flags & IFF_MONITOR)
232 gotoerr(ENETDOWN);
233 if ((ifp->if_flags & (IFF_UP | IFF_RUNNING)) != (IFF_UP | IFF_RUNNING))
234 gotoerr(ENETDOWN);
236 M_PREPEND(m, sizeof(struct ether_header), M_NOWAIT);
237 if (m == NULL)
238 return (ENOBUFS);
239 m->m_pkthdr.csum_lhlen = sizeof(struct ether_header);
240 eh = mtod(m, struct ether_header *);
241 edst = eh->ether_dhost;
244 * Fill in the destination ethernet address and frame type.
246 switch (dst->sa_family) {
247 #ifdef INET
248 case AF_INET:
249 if (!arpresolve(ifp, rt, m, dst, edst))
250 return (0); /* if not yet resolved */
251 #ifdef MPLS
252 if (m->m_flags & M_MPLSLABELED)
253 eh->ether_type = htons(ETHERTYPE_MPLS);
254 else
255 #endif
256 eh->ether_type = htons(ETHERTYPE_IP);
257 break;
258 #endif
259 #ifdef INET6
260 case AF_INET6:
261 if (!nd6_storelladdr(&ac->ac_if, rt, m, dst, edst))
262 return (0); /* Something bad happenned. */
263 eh->ether_type = htons(ETHERTYPE_IPV6);
264 break;
265 #endif
266 case pseudo_AF_HDRCMPLT:
267 case AF_UNSPEC:
268 loop_copy = -1; /* if this is for us, don't do it */
269 deh = (struct ether_header *)dst->sa_data;
270 memcpy(edst, deh->ether_dhost, ETHER_ADDR_LEN);
271 eh->ether_type = deh->ether_type;
272 break;
274 default:
275 if_printf(ifp, "can't handle af%d\n", dst->sa_family);
276 gotoerr(EAFNOSUPPORT);
279 if (dst->sa_family == pseudo_AF_HDRCMPLT) /* unlikely */
280 memcpy(eh->ether_shost,
281 ((struct ether_header *)dst->sa_data)->ether_shost,
282 ETHER_ADDR_LEN);
283 else
284 memcpy(eh->ether_shost, ac->ac_enaddr, ETHER_ADDR_LEN);
287 * Bridges require special output handling.
289 if (ifp->if_bridge) {
290 KASSERT(bridge_output_p != NULL,
291 ("%s: if_bridge not loaded!", __func__));
292 return bridge_output_p(ifp, m);
294 #if 0 /* XXX */
295 if (ifp->if_lagg) {
296 KASSERT(lagg_output_p != NULL,
297 ("%s: if_lagg not loaded!", __func__));
298 return lagg_output_p(ifp, m);
300 #endif
303 * If a simplex interface, and the packet is being sent to our
304 * Ethernet address or a broadcast address, loopback a copy.
305 * XXX To make a simplex device behave exactly like a duplex
306 * device, we should copy in the case of sending to our own
307 * ethernet address (thus letting the original actually appear
308 * on the wire). However, we don't do that here for security
309 * reasons and compatibility with the original behavior.
311 if ((ifp->if_flags & IFF_SIMPLEX) && (loop_copy != -1)) {
312 int csum_flags = 0;
314 if (m->m_pkthdr.csum_flags & CSUM_IP)
315 csum_flags |= (CSUM_IP_CHECKED | CSUM_IP_VALID);
316 if (m->m_pkthdr.csum_flags & CSUM_DELAY_DATA)
317 csum_flags |= (CSUM_DATA_VALID | CSUM_PSEUDO_HDR);
318 if ((m->m_flags & M_BCAST) || (loop_copy > 0)) {
319 struct mbuf *n;
321 if ((n = m_copypacket(m, M_NOWAIT)) != NULL) {
322 n->m_pkthdr.csum_flags |= csum_flags;
323 if (csum_flags & CSUM_DATA_VALID)
324 n->m_pkthdr.csum_data = 0xffff;
325 if_simloop(ifp, n, dst->sa_family, hlen);
326 } else
327 IFNET_STAT_INC(ifp, iqdrops, 1);
328 } else if (bcmp(eh->ether_dhost, eh->ether_shost,
329 ETHER_ADDR_LEN) == 0) {
330 m->m_pkthdr.csum_flags |= csum_flags;
331 if (csum_flags & CSUM_DATA_VALID)
332 m->m_pkthdr.csum_data = 0xffff;
333 if_simloop(ifp, m, dst->sa_family, hlen);
334 return (0); /* XXX */
338 #ifdef CARP
339 if (ifp->if_type == IFT_CARP) {
340 ifp = carp_parent(ifp);
341 if (ifp == NULL)
342 gotoerr(ENETUNREACH);
344 ac = IFP2AC(ifp);
347 * Check precondition again
349 ASSERT_IFNET_NOT_SERIALIZED_ALL(ifp);
351 if (ifp->if_flags & IFF_MONITOR)
352 gotoerr(ENETDOWN);
353 if ((ifp->if_flags & (IFF_UP | IFF_RUNNING)) !=
354 (IFF_UP | IFF_RUNNING))
355 gotoerr(ENETDOWN);
357 #endif
359 /* Handle ng_ether(4) processing, if any */
360 if (ng_ether_output_p != NULL) {
362 * Hold BGL and recheck ng_ether_output_p
364 get_mplock();
365 if (ng_ether_output_p != NULL) {
366 if ((error = ng_ether_output_p(ifp, &m)) != 0) {
367 rel_mplock();
368 goto bad;
370 if (m == NULL) {
371 rel_mplock();
372 return (0);
375 rel_mplock();
378 /* Continue with link-layer output */
379 return ether_output_frame(ifp, m);
381 bad:
382 m_freem(m);
383 return (error);
387 * Returns the bridge interface an ifp is associated
388 * with.
390 * Only call if ifp->if_bridge != NULL.
392 struct ifnet *
393 ether_bridge_interface(struct ifnet *ifp)
395 if (bridge_interface_p)
396 return(bridge_interface_p(ifp->if_bridge));
397 return (ifp);
401 * Ethernet link layer output routine to send a raw frame to the device.
403 * This assumes that the 14 byte Ethernet header is present and contiguous
404 * in the first mbuf.
407 ether_output_frame(struct ifnet *ifp, struct mbuf *m)
409 struct ip_fw *rule = NULL;
410 int error = 0;
411 struct altq_pktattr pktattr;
413 ASSERT_IFNET_NOT_SERIALIZED_ALL(ifp);
415 if (m->m_pkthdr.fw_flags & DUMMYNET_MBUF_TAGGED) {
416 struct m_tag *mtag;
418 /* Extract info from dummynet tag */
419 mtag = m_tag_find(m, PACKET_TAG_DUMMYNET, NULL);
420 KKASSERT(mtag != NULL);
421 rule = ((struct dn_pkt *)m_tag_data(mtag))->dn_priv;
422 KKASSERT(rule != NULL);
424 m_tag_delete(m, mtag);
425 m->m_pkthdr.fw_flags &= ~DUMMYNET_MBUF_TAGGED;
428 if (ifq_is_enabled(&ifp->if_snd))
429 altq_etherclassify(&ifp->if_snd, m, &pktattr);
430 crit_enter();
431 if ((IPFW_LOADED || IPFW3_LOADED) && ether_ipfw != 0) {
432 struct ether_header save_eh, *eh;
434 eh = mtod(m, struct ether_header *);
435 save_eh = *eh;
436 m_adj(m, ETHER_HDR_LEN);
437 if (!ether_ipfw_chk(&m, ifp, &rule, eh)) {
438 crit_exit();
439 if (m != NULL) {
440 m_freem(m);
441 return ENOBUFS; /* pkt dropped */
442 } else
443 return 0; /* consumed e.g. in a pipe */
446 /* packet was ok, restore the ethernet header */
447 ether_restore_header(&m, eh, &save_eh);
448 if (m == NULL) {
449 crit_exit();
450 return ENOBUFS;
453 crit_exit();
456 * Queue message on interface, update output statistics if
457 * successful, and start output if interface not yet active.
459 error = ifq_dispatch(ifp, m, &pktattr);
460 return (error);
464 * ipfw processing for ethernet packets (in and out).
465 * The second parameter is NULL from ether_demux(), and ifp from
466 * ether_output_frame().
468 static boolean_t
469 ether_ipfw_chk(struct mbuf **m0, struct ifnet *dst, struct ip_fw **rule,
470 const struct ether_header *eh)
472 struct ether_header save_eh = *eh; /* might be a ptr in *m0 */
473 struct ip_fw_args args;
474 struct m_tag *mtag;
475 struct mbuf *m;
476 int i;
478 if (*rule != NULL && fw_one_pass)
479 return TRUE; /* dummynet packet, already partially processed */
482 * I need some amount of data to be contiguous.
484 i = min((*m0)->m_pkthdr.len, max_protohdr);
485 if ((*m0)->m_len < i) {
486 *m0 = m_pullup(*m0, i);
487 if (*m0 == NULL)
488 return FALSE;
492 * Clean up tags
494 if ((mtag = m_tag_find(*m0, PACKET_TAG_IPFW_DIVERT, NULL)) != NULL)
495 m_tag_delete(*m0, mtag);
496 if ((*m0)->m_pkthdr.fw_flags & IPFORWARD_MBUF_TAGGED) {
497 mtag = m_tag_find(*m0, PACKET_TAG_IPFORWARD, NULL);
498 KKASSERT(mtag != NULL);
499 m_tag_delete(*m0, mtag);
500 (*m0)->m_pkthdr.fw_flags &= ~IPFORWARD_MBUF_TAGGED;
503 args.m = *m0; /* the packet we are looking at */
504 args.oif = dst; /* destination, if any */
505 args.rule = *rule; /* matching rule to restart */
506 args.eh = &save_eh; /* MAC header for bridged/MAC packets */
507 i = ip_fw_chk_ptr(&args);
508 *m0 = args.m;
509 *rule = args.rule;
511 if (*m0 == NULL)
512 return FALSE;
514 switch (i) {
515 case IP_FW_PASS:
516 return TRUE;
518 case IP_FW_DIVERT:
519 case IP_FW_TEE:
520 case IP_FW_DENY:
522 * XXX at some point add support for divert/forward actions.
523 * If none of the above matches, we have to drop the pkt.
525 return FALSE;
527 case IP_FW_DUMMYNET:
529 * Pass the pkt to dummynet, which consumes it.
531 m = *m0; /* pass the original to dummynet */
532 *m0 = NULL; /* and nothing back to the caller */
534 ether_restore_header(&m, eh, &save_eh);
535 if (m == NULL)
536 return FALSE;
538 ip_fw_dn_io_ptr(m, args.cookie,
539 dst ? DN_TO_ETH_OUT: DN_TO_ETH_DEMUX, &args);
540 ip_dn_queue(m);
541 return FALSE;
543 default:
544 panic("unknown ipfw return value: %d", i);
549 * Perform common duties while attaching to interface list
551 void
552 ether_ifattach(struct ifnet *ifp, const uint8_t *lla,
553 lwkt_serialize_t serializer)
555 ether_ifattach_bpf(ifp, lla, DLT_EN10MB, sizeof(struct ether_header),
556 serializer);
559 void
560 ether_ifattach_bpf(struct ifnet *ifp, const uint8_t *lla,
561 u_int dlt, u_int hdrlen, lwkt_serialize_t serializer)
563 struct sockaddr_dl *sdl;
564 char ethstr[ETHER_ADDRSTRLEN + 1];
565 struct ifaltq *ifq;
566 int i;
569 * If driver does not configure # of mbuf clusters/jclusters
570 * that could sit on the device queues for quite some time,
571 * we then assume:
572 * - The device queues only consume mbuf clusters.
573 * - No more than ether_nmbclusters_default (by default 256)
574 * mbuf clusters will sit on the device queues for quite
575 * some time.
577 if (ifp->if_nmbclusters <= 0 && ifp->if_nmbjclusters <= 0) {
578 if (ether_nmbclusters_default < ETHER_NMBCLUSTERS_DEFMIN) {
579 kprintf("ether nmbclusters %d -> %d\n",
580 ether_nmbclusters_default,
581 ETHER_NMBCLUSTERS_DEFAULT);
582 ether_nmbclusters_default = ETHER_NMBCLUSTERS_DEFAULT;
584 ifp->if_nmbclusters = ether_nmbclusters_default;
587 ifp->if_type = IFT_ETHER;
588 ifp->if_addrlen = ETHER_ADDR_LEN;
589 ifp->if_hdrlen = ETHER_HDR_LEN;
590 if_attach(ifp, serializer);
591 ifq = &ifp->if_snd;
592 for (i = 0; i < ifq->altq_subq_cnt; ++i) {
593 struct ifaltq_subque *ifsq = ifq_get_subq(ifq, i);
595 ifsq->ifsq_maxbcnt = ifsq->ifsq_maxlen *
596 (ETHER_MAX_LEN - ETHER_CRC_LEN);
598 ifp->if_mtu = ETHERMTU;
599 if (ifp->if_tsolen <= 0) {
600 if ((ether_tsolen_default / ETHERMTU) < 2) {
601 kprintf("ether TSO maxlen %d -> %d\n",
602 ether_tsolen_default, ETHER_TSOLEN_DEFAULT);
603 ether_tsolen_default = ETHER_TSOLEN_DEFAULT;
605 ifp->if_tsolen = ether_tsolen_default;
607 if (ifp->if_baudrate == 0)
608 ifp->if_baudrate = 10000000;
609 ifp->if_output = ether_output;
610 ifp->if_input = ether_input;
611 ifp->if_resolvemulti = ether_resolvemulti;
612 ifp->if_broadcastaddr = etherbroadcastaddr;
613 sdl = IF_LLSOCKADDR(ifp);
614 sdl->sdl_type = IFT_ETHER;
615 sdl->sdl_alen = ifp->if_addrlen;
616 bcopy(lla, LLADDR(sdl), ifp->if_addrlen);
618 * XXX Keep the current drivers happy.
619 * XXX Remove once all drivers have been cleaned up
621 if (lla != IFP2AC(ifp)->ac_enaddr)
622 bcopy(lla, IFP2AC(ifp)->ac_enaddr, ifp->if_addrlen);
623 bpfattach(ifp, dlt, hdrlen);
624 if (ng_ether_attach_p != NULL)
625 (*ng_ether_attach_p)(ifp);
627 if_printf(ifp, "MAC address: %s\n", kether_ntoa(lla, ethstr));
631 * Perform common duties while detaching an Ethernet interface
633 void
634 ether_ifdetach(struct ifnet *ifp)
636 if_down(ifp);
638 if (ng_ether_detach_p != NULL)
639 (*ng_ether_detach_p)(ifp);
640 bpfdetach(ifp);
641 if_detach(ifp);
645 ether_ioctl(struct ifnet *ifp, u_long command, caddr_t data)
647 struct ifaddr *ifa = (struct ifaddr *) data;
648 struct ifreq *ifr = (struct ifreq *) data;
649 int error = 0;
651 #define IF_INIT(ifp) \
652 do { \
653 if (((ifp)->if_flags & IFF_UP) == 0) { \
654 (ifp)->if_flags |= IFF_UP; \
655 (ifp)->if_init((ifp)->if_softc); \
657 } while (0)
659 ASSERT_IFNET_SERIALIZED_ALL(ifp);
661 switch (command) {
662 case SIOCSIFADDR:
663 switch (ifa->ifa_addr->sa_family) {
664 #ifdef INET
665 case AF_INET:
666 IF_INIT(ifp); /* before arpwhohas */
667 arp_ifinit(ifp, ifa);
668 break;
669 #endif
670 default:
671 IF_INIT(ifp);
672 break;
674 break;
676 case SIOCGIFADDR:
677 bcopy(IFP2AC(ifp)->ac_enaddr,
678 ((struct sockaddr *)ifr->ifr_data)->sa_data,
679 ETHER_ADDR_LEN);
680 break;
682 case SIOCSIFMTU:
684 * Set the interface MTU.
686 if (ifr->ifr_mtu > ETHERMTU) {
687 error = EINVAL;
688 } else {
689 ifp->if_mtu = ifr->ifr_mtu;
691 break;
692 default:
693 error = EINVAL;
694 break;
696 return (error);
698 #undef IF_INIT
701 static int
702 ether_resolvemulti(
703 struct ifnet *ifp,
704 struct sockaddr **llsa,
705 struct sockaddr *sa)
707 struct sockaddr_dl *sdl;
708 #ifdef INET
709 struct sockaddr_in *sin;
710 #endif
711 #ifdef INET6
712 struct sockaddr_in6 *sin6;
713 #endif
714 u_char *e_addr;
716 switch(sa->sa_family) {
717 case AF_LINK:
719 * No mapping needed. Just check that it's a valid MC address.
721 sdl = (struct sockaddr_dl *)sa;
722 e_addr = LLADDR(sdl);
723 if ((e_addr[0] & 1) != 1)
724 return EADDRNOTAVAIL;
725 *llsa = NULL;
726 return 0;
728 #ifdef INET
729 case AF_INET:
730 sin = (struct sockaddr_in *)sa;
731 if (!IN_MULTICAST(ntohl(sin->sin_addr.s_addr)))
732 return EADDRNOTAVAIL;
733 sdl = kmalloc(sizeof *sdl, M_IFMADDR, M_WAITOK | M_ZERO);
734 sdl->sdl_len = sizeof *sdl;
735 sdl->sdl_family = AF_LINK;
736 sdl->sdl_index = ifp->if_index;
737 sdl->sdl_type = IFT_ETHER;
738 sdl->sdl_alen = ETHER_ADDR_LEN;
739 e_addr = LLADDR(sdl);
740 ETHER_MAP_IP_MULTICAST(&sin->sin_addr, e_addr);
741 *llsa = (struct sockaddr *)sdl;
742 return 0;
743 #endif
744 #ifdef INET6
745 case AF_INET6:
746 sin6 = (struct sockaddr_in6 *)sa;
747 if (IN6_IS_ADDR_UNSPECIFIED(&sin6->sin6_addr)) {
749 * An IP6 address of 0 means listen to all
750 * of the Ethernet multicast address used for IP6.
751 * (This is used for multicast routers.)
753 ifp->if_flags |= IFF_ALLMULTI;
754 *llsa = NULL;
755 return 0;
757 if (!IN6_IS_ADDR_MULTICAST(&sin6->sin6_addr))
758 return EADDRNOTAVAIL;
759 sdl = kmalloc(sizeof *sdl, M_IFMADDR, M_WAITOK | M_ZERO);
760 sdl->sdl_len = sizeof *sdl;
761 sdl->sdl_family = AF_LINK;
762 sdl->sdl_index = ifp->if_index;
763 sdl->sdl_type = IFT_ETHER;
764 sdl->sdl_alen = ETHER_ADDR_LEN;
765 e_addr = LLADDR(sdl);
766 ETHER_MAP_IPV6_MULTICAST(&sin6->sin6_addr, e_addr);
767 *llsa = (struct sockaddr *)sdl;
768 return 0;
769 #endif
771 default:
773 * Well, the text isn't quite right, but it's the name
774 * that counts...
776 return EAFNOSUPPORT;
780 #if 0
782 * This is for reference. We have a table-driven version
783 * of the little-endian crc32 generator, which is faster
784 * than the double-loop.
786 uint32_t
787 ether_crc32_le(const uint8_t *buf, size_t len)
789 uint32_t c, crc, carry;
790 size_t i, j;
792 crc = 0xffffffffU; /* initial value */
794 for (i = 0; i < len; i++) {
795 c = buf[i];
796 for (j = 0; j < 8; j++) {
797 carry = ((crc & 0x01) ? 1 : 0) ^ (c & 0x01);
798 crc >>= 1;
799 c >>= 1;
800 if (carry)
801 crc = (crc ^ ETHER_CRC_POLY_LE);
805 return (crc);
807 #else
808 uint32_t
809 ether_crc32_le(const uint8_t *buf, size_t len)
811 static const uint32_t crctab[] = {
812 0x00000000, 0x1db71064, 0x3b6e20c8, 0x26d930ac,
813 0x76dc4190, 0x6b6b51f4, 0x4db26158, 0x5005713c,
814 0xedb88320, 0xf00f9344, 0xd6d6a3e8, 0xcb61b38c,
815 0x9b64c2b0, 0x86d3d2d4, 0xa00ae278, 0xbdbdf21c
817 uint32_t crc;
818 size_t i;
820 crc = 0xffffffffU; /* initial value */
822 for (i = 0; i < len; i++) {
823 crc ^= buf[i];
824 crc = (crc >> 4) ^ crctab[crc & 0xf];
825 crc = (crc >> 4) ^ crctab[crc & 0xf];
828 return (crc);
830 #endif
832 uint32_t
833 ether_crc32_be(const uint8_t *buf, size_t len)
835 uint32_t c, crc, carry;
836 size_t i, j;
838 crc = 0xffffffffU; /* initial value */
840 for (i = 0; i < len; i++) {
841 c = buf[i];
842 for (j = 0; j < 8; j++) {
843 carry = ((crc & 0x80000000U) ? 1 : 0) ^ (c & 0x01);
844 crc <<= 1;
845 c >>= 1;
846 if (carry)
847 crc = (crc ^ ETHER_CRC_POLY_BE) | carry;
851 return (crc);
855 * find the size of ethernet header, and call classifier
857 void
858 altq_etherclassify(struct ifaltq *ifq, struct mbuf *m,
859 struct altq_pktattr *pktattr)
861 struct ether_header *eh;
862 uint16_t ether_type;
863 int hlen, af, hdrsize;
865 hlen = sizeof(struct ether_header);
866 eh = mtod(m, struct ether_header *);
868 ether_type = ntohs(eh->ether_type);
869 if (ether_type < ETHERMTU) {
870 /* ick! LLC/SNAP */
871 struct llc *llc = (struct llc *)(eh + 1);
872 hlen += 8;
874 if (m->m_len < hlen ||
875 llc->llc_dsap != LLC_SNAP_LSAP ||
876 llc->llc_ssap != LLC_SNAP_LSAP ||
877 llc->llc_control != LLC_UI)
878 goto bad; /* not snap! */
880 ether_type = ntohs(llc->llc_un.type_snap.ether_type);
883 if (ether_type == ETHERTYPE_IP) {
884 af = AF_INET;
885 hdrsize = 20; /* sizeof(struct ip) */
886 #ifdef INET6
887 } else if (ether_type == ETHERTYPE_IPV6) {
888 af = AF_INET6;
889 hdrsize = 40; /* sizeof(struct ip6_hdr) */
890 #endif
891 } else
892 goto bad;
894 while (m->m_len <= hlen) {
895 hlen -= m->m_len;
896 m = m->m_next;
898 if (m->m_len < hlen + hdrsize) {
900 * ip header is not in a single mbuf. this should not
901 * happen in the current code.
902 * (todo: use m_pulldown in the future)
904 goto bad;
906 m->m_data += hlen;
907 m->m_len -= hlen;
908 ifq_classify(ifq, m, af, pktattr);
909 m->m_data -= hlen;
910 m->m_len += hlen;
912 return;
914 bad:
915 pktattr->pattr_class = NULL;
916 pktattr->pattr_hdr = NULL;
917 pktattr->pattr_af = AF_UNSPEC;
920 static void
921 ether_restore_header(struct mbuf **m0, const struct ether_header *eh,
922 const struct ether_header *save_eh)
924 struct mbuf *m = *m0;
926 ether_restore_hdr++;
929 * Prepend the header, optimize for the common case of
930 * eh pointing into the mbuf.
932 if ((const void *)(eh + 1) == (void *)m->m_data) {
933 m->m_data -= ETHER_HDR_LEN;
934 m->m_len += ETHER_HDR_LEN;
935 m->m_pkthdr.len += ETHER_HDR_LEN;
936 } else {
937 ether_prepend_hdr++;
939 M_PREPEND(m, ETHER_HDR_LEN, M_NOWAIT);
940 if (m != NULL) {
941 bcopy(save_eh, mtod(m, struct ether_header *),
942 ETHER_HDR_LEN);
945 *m0 = m;
949 * Upper layer processing for a received Ethernet packet.
951 void
952 ether_demux_oncpu(struct ifnet *ifp, struct mbuf *m)
954 struct ether_header *eh;
955 int isr, discard = 0;
956 u_short ether_type;
957 struct ip_fw *rule = NULL;
959 M_ASSERTPKTHDR(m);
960 KASSERT(m->m_len >= ETHER_HDR_LEN,
961 ("ether header is not contiguous!"));
963 eh = mtod(m, struct ether_header *);
965 if (m->m_pkthdr.fw_flags & DUMMYNET_MBUF_TAGGED) {
966 struct m_tag *mtag;
968 /* Extract info from dummynet tag */
969 mtag = m_tag_find(m, PACKET_TAG_DUMMYNET, NULL);
970 KKASSERT(mtag != NULL);
971 rule = ((struct dn_pkt *)m_tag_data(mtag))->dn_priv;
972 KKASSERT(rule != NULL);
974 m_tag_delete(m, mtag);
975 m->m_pkthdr.fw_flags &= ~DUMMYNET_MBUF_TAGGED;
977 /* packet is passing the second time */
978 goto post_stats;
982 * We got a packet which was unicast to a different Ethernet
983 * address. If the driver is working properly, then this
984 * situation can only happen when the interface is in
985 * promiscuous mode. We defer the packet discarding until the
986 * vlan processing is done, so that vlan/bridge or vlan/netgraph
987 * could work.
989 if (((ifp->if_flags & (IFF_PROMISC | IFF_PPROMISC)) == IFF_PROMISC) &&
990 !ETHER_IS_MULTICAST(eh->ether_dhost) &&
991 bcmp(eh->ether_dhost, IFP2AC(ifp)->ac_enaddr, ETHER_ADDR_LEN)) {
992 if (ether_debug & 1) {
993 kprintf("%02x:%02x:%02x:%02x:%02x:%02x "
994 "%02x:%02x:%02x:%02x:%02x:%02x "
995 "%04x vs %02x:%02x:%02x:%02x:%02x:%02x\n",
996 eh->ether_dhost[0],
997 eh->ether_dhost[1],
998 eh->ether_dhost[2],
999 eh->ether_dhost[3],
1000 eh->ether_dhost[4],
1001 eh->ether_dhost[5],
1002 eh->ether_shost[0],
1003 eh->ether_shost[1],
1004 eh->ether_shost[2],
1005 eh->ether_shost[3],
1006 eh->ether_shost[4],
1007 eh->ether_shost[5],
1008 eh->ether_type,
1009 ((u_char *)IFP2AC(ifp)->ac_enaddr)[0],
1010 ((u_char *)IFP2AC(ifp)->ac_enaddr)[1],
1011 ((u_char *)IFP2AC(ifp)->ac_enaddr)[2],
1012 ((u_char *)IFP2AC(ifp)->ac_enaddr)[3],
1013 ((u_char *)IFP2AC(ifp)->ac_enaddr)[4],
1014 ((u_char *)IFP2AC(ifp)->ac_enaddr)[5]
1017 if ((ether_debug & 2) == 0)
1018 discard = 1;
1021 post_stats:
1022 if ((IPFW_LOADED || IPFW3_LOADED) && ether_ipfw != 0 && !discard) {
1023 struct ether_header save_eh = *eh;
1025 /* XXX old crufty stuff, needs to be removed */
1026 m_adj(m, sizeof(struct ether_header));
1028 if (!ether_ipfw_chk(&m, NULL, &rule, eh)) {
1029 m_freem(m);
1030 return;
1033 ether_restore_header(&m, eh, &save_eh);
1034 if (m == NULL)
1035 return;
1036 eh = mtod(m, struct ether_header *);
1039 ether_type = ntohs(eh->ether_type);
1040 KKASSERT(ether_type != ETHERTYPE_VLAN);
1042 /* Handle input from a lagg(4) port */
1043 if (ifp->if_type == IFT_IEEE8023ADLAG) {
1044 KASSERT(lagg_input_p != NULL,
1045 ("%s: if_lagg not loaded!", __func__));
1046 (*lagg_input_p)(ifp, m);
1047 return;
1050 if (m->m_flags & M_VLANTAG) {
1051 void (*vlan_input_func)(struct mbuf *);
1053 vlan_input_func = vlan_input_p;
1054 if (vlan_input_func != NULL) {
1055 vlan_input_func(m);
1056 } else {
1057 IFNET_STAT_INC(m->m_pkthdr.rcvif, noproto, 1);
1058 m_freem(m);
1060 return;
1064 * If we have been asked to discard this packet
1065 * (e.g. not for us), drop it before entering
1066 * the upper layer.
1068 if (discard) {
1069 m_freem(m);
1070 return;
1074 * Clear protocol specific flags,
1075 * before entering the upper layer.
1077 m->m_flags &= ~M_ETHER_FLAGS;
1079 /* Strip ethernet header. */
1080 m_adj(m, sizeof(struct ether_header));
1082 switch (ether_type) {
1083 #ifdef INET
1084 case ETHERTYPE_IP:
1085 if ((m->m_flags & M_LENCHECKED) == 0) {
1086 if (!ip_lengthcheck(&m, 0))
1087 return;
1089 if (ipflow_fastforward(m))
1090 return;
1091 isr = NETISR_IP;
1092 break;
1094 case ETHERTYPE_ARP:
1095 if (ifp->if_flags & IFF_NOARP) {
1096 /* Discard packet if ARP is disabled on interface */
1097 m_freem(m);
1098 return;
1100 isr = NETISR_ARP;
1101 break;
1102 #endif
1104 #ifdef INET6
1105 case ETHERTYPE_IPV6:
1106 isr = NETISR_IPV6;
1107 break;
1108 #endif
1110 #ifdef MPLS
1111 case ETHERTYPE_MPLS:
1112 case ETHERTYPE_MPLS_MCAST:
1113 /* Should have been set by ether_input(). */
1114 KKASSERT(m->m_flags & M_MPLSLABELED);
1115 isr = NETISR_MPLS;
1116 break;
1117 #endif
1119 default:
1121 * The accurate msgport is not determined before
1122 * we reach here, so recharacterize packet.
1124 m->m_flags &= ~M_HASH;
1125 if (ng_ether_input_orphan_p != NULL) {
1127 * Put back the ethernet header so netgraph has a
1128 * consistent view of inbound packets.
1130 M_PREPEND(m, ETHER_HDR_LEN, M_NOWAIT);
1131 if (m == NULL) {
1133 * M_PREPEND frees the mbuf in case of failure.
1135 return;
1138 * Hold BGL and recheck ng_ether_input_orphan_p
1140 get_mplock();
1141 if (ng_ether_input_orphan_p != NULL) {
1142 ng_ether_input_orphan_p(ifp, m);
1143 rel_mplock();
1144 return;
1146 rel_mplock();
1148 m_freem(m);
1149 return;
1152 if (m->m_flags & M_HASH) {
1153 if (&curthread->td_msgport ==
1154 netisr_hashport(m->m_pkthdr.hash)) {
1155 netisr_handle(isr, m);
1156 return;
1157 } else {
1159 * XXX Something is wrong,
1160 * we probably should panic here!
1162 m->m_flags &= ~M_HASH;
1163 atomic_add_long(&ether_input_wronghash, 1);
1166 #ifdef RSS_DEBUG
1167 atomic_add_long(&ether_input_requeue, 1);
1168 #endif
1169 netisr_queue(isr, m);
1173 * First we perform any link layer operations, then continue to the
1174 * upper layers with ether_demux_oncpu().
1176 static void
1177 ether_input_oncpu(struct ifnet *ifp, struct mbuf *m)
1179 #ifdef CARP
1180 void *carp;
1181 #endif
1183 if ((ifp->if_flags & (IFF_UP | IFF_MONITOR)) != IFF_UP) {
1185 * Receiving interface's flags are changed, when this
1186 * packet is waiting for processing; discard it.
1188 m_freem(m);
1189 return;
1193 * Tap the packet off here for a bridge. bridge_input()
1194 * will return NULL if it has consumed the packet, otherwise
1195 * it gets processed as normal. Note that bridge_input()
1196 * will always return the original packet if we need to
1197 * process it locally.
1199 if (ifp->if_bridge) {
1200 KASSERT(bridge_input_p != NULL,
1201 ("%s: if_bridge not loaded!", __func__));
1203 if(m->m_flags & M_ETHER_BRIDGED) {
1204 m->m_flags &= ~M_ETHER_BRIDGED;
1205 } else {
1206 m = bridge_input_p(ifp, m);
1207 if (m == NULL)
1208 return;
1210 KASSERT(ifp == m->m_pkthdr.rcvif,
1211 ("bridge_input_p changed rcvif"));
1215 #ifdef CARP
1216 carp = ifp->if_carp;
1217 if (carp) {
1218 m = carp_input(carp, m);
1219 if (m == NULL)
1220 return;
1221 KASSERT(ifp == m->m_pkthdr.rcvif,
1222 ("carp_input changed rcvif"));
1224 #endif
1226 /* Handle ng_ether(4) processing, if any */
1227 if (ng_ether_input_p != NULL) {
1229 * Hold BGL and recheck ng_ether_input_p
1231 get_mplock();
1232 if (ng_ether_input_p != NULL)
1233 ng_ether_input_p(ifp, &m);
1234 rel_mplock();
1236 if (m == NULL)
1237 return;
1240 /* Continue with upper layer processing */
1241 ether_demux_oncpu(ifp, m);
1245 * Perform certain functions of ether_input():
1246 * - Test IFF_UP
1247 * - Update statistics
1248 * - Run bpf(4) tap if requested
1249 * Then pass the packet to ether_input_oncpu().
1251 * This function should be used by pseudo interface (e.g. vlan(4)),
1252 * when it tries to claim that the packet is received by it.
1254 * REINPUT_KEEPRCVIF
1255 * REINPUT_RUNBPF
1257 void
1258 ether_reinput_oncpu(struct ifnet *ifp, struct mbuf *m, int reinput_flags)
1260 /* Discard packet if interface is not up */
1261 if (!(ifp->if_flags & IFF_UP)) {
1262 m_freem(m);
1263 return;
1267 * Change receiving interface. The bridge will often pass a flag to
1268 * ask that this not be done so ARPs get applied to the correct
1269 * side.
1271 if ((reinput_flags & REINPUT_KEEPRCVIF) == 0 ||
1272 m->m_pkthdr.rcvif == NULL) {
1273 m->m_pkthdr.rcvif = ifp;
1276 /* Update statistics */
1277 IFNET_STAT_INC(ifp, ipackets, 1);
1278 IFNET_STAT_INC(ifp, ibytes, m->m_pkthdr.len);
1279 if (m->m_flags & (M_MCAST | M_BCAST))
1280 IFNET_STAT_INC(ifp, imcasts, 1);
1282 if (reinput_flags & REINPUT_RUNBPF)
1283 BPF_MTAP(ifp, m);
1285 ether_input_oncpu(ifp, m);
1288 static __inline boolean_t
1289 ether_vlancheck(struct mbuf **m0)
1291 struct mbuf *m = *m0;
1292 struct ether_header *eh;
1293 uint16_t ether_type;
1295 eh = mtod(m, struct ether_header *);
1296 ether_type = ntohs(eh->ether_type);
1298 if (ether_type == ETHERTYPE_VLAN && (m->m_flags & M_VLANTAG) == 0) {
1300 * Extract vlan tag if hardware does not do it for us
1302 vlan_ether_decap(&m);
1303 if (m == NULL)
1304 goto failed;
1306 eh = mtod(m, struct ether_header *);
1307 ether_type = ntohs(eh->ether_type);
1310 if (ether_type == ETHERTYPE_VLAN && (m->m_flags & M_VLANTAG)) {
1312 * To prevent possible dangerous recursion,
1313 * we don't do vlan-in-vlan
1315 IFNET_STAT_INC(m->m_pkthdr.rcvif, noproto, 1);
1316 goto failed;
1318 KKASSERT(ether_type != ETHERTYPE_VLAN);
1320 m->m_flags |= M_ETHER_VLANCHECKED;
1321 *m0 = m;
1322 return TRUE;
1323 failed:
1324 if (m != NULL)
1325 m_freem(m);
1326 *m0 = NULL;
1327 return FALSE;
1330 static void
1331 ether_input_handler(netmsg_t nmsg)
1333 struct netmsg_packet *nmp = &nmsg->packet; /* actual size */
1334 struct ether_header *eh;
1335 struct ifnet *ifp;
1336 struct mbuf *m;
1338 m = nmp->nm_packet;
1339 M_ASSERTPKTHDR(m);
1341 if ((m->m_flags & M_ETHER_VLANCHECKED) == 0) {
1342 if (!ether_vlancheck(&m)) {
1343 KKASSERT(m == NULL);
1344 return;
1347 if ((m->m_flags & (M_HASH | M_CKHASH)) == (M_HASH | M_CKHASH) ||
1348 __predict_false(ether_input_ckhash)) {
1349 int isr;
1352 * Need to verify the hash supplied by the hardware
1353 * which could be wrong.
1355 m->m_flags &= ~(M_HASH | M_CKHASH);
1356 isr = ether_characterize(&m);
1357 if (m == NULL)
1358 return;
1359 KKASSERT(m->m_flags & M_HASH);
1361 if (netisr_hashcpu(m->m_pkthdr.hash) != mycpuid) {
1363 * Wrong hardware supplied hash; redispatch
1365 ether_dispatch(isr, m, -1);
1366 if (__predict_false(ether_input_ckhash))
1367 atomic_add_long(&ether_input_wronghwhash, 1);
1368 return;
1371 ifp = m->m_pkthdr.rcvif;
1373 eh = mtod(m, struct ether_header *);
1374 if (ETHER_IS_MULTICAST(eh->ether_dhost)) {
1375 if (bcmp(ifp->if_broadcastaddr, eh->ether_dhost,
1376 ifp->if_addrlen) == 0)
1377 m->m_flags |= M_BCAST;
1378 else
1379 m->m_flags |= M_MCAST;
1380 IFNET_STAT_INC(ifp, imcasts, 1);
1383 ether_input_oncpu(ifp, m);
1387 * Send the packet to the target netisr msgport
1389 * At this point the packet must be characterized (M_HASH set),
1390 * so we know which netisr to send it to.
1392 static void
1393 ether_dispatch(int isr, struct mbuf *m, int cpuid)
1395 struct netmsg_packet *pmsg;
1396 int target_cpuid;
1398 KKASSERT(m->m_flags & M_HASH);
1399 target_cpuid = netisr_hashcpu(m->m_pkthdr.hash);
1401 pmsg = &m->m_hdr.mh_netmsg;
1402 netmsg_init(&pmsg->base, NULL, &netisr_apanic_rport,
1403 0, ether_input_handler);
1404 pmsg->nm_packet = m;
1405 pmsg->base.lmsg.u.ms_result = isr;
1407 logether(disp_beg, NULL);
1408 if (target_cpuid == cpuid) {
1409 lwkt_sendmsg_oncpu(netisr_cpuport(target_cpuid),
1410 &pmsg->base.lmsg);
1411 } else {
1412 lwkt_sendmsg(netisr_cpuport(target_cpuid),
1413 &pmsg->base.lmsg);
1415 logether(disp_end, NULL);
1419 * Process a received Ethernet packet.
1421 * The ethernet header is assumed to be in the mbuf so the caller
1422 * MUST MAKE SURE that there are at least sizeof(struct ether_header)
1423 * bytes in the first mbuf.
1425 * If the caller knows that the current thread is stick to the current
1426 * cpu, e.g. the interrupt thread or the netisr thread, the current cpuid
1427 * (mycpuid) should be passed through 'cpuid' argument. Else -1 should
1428 * be passed as 'cpuid' argument.
1430 void
1431 ether_input(struct ifnet *ifp, struct mbuf *m, const struct pktinfo *pi,
1432 int cpuid)
1434 int isr;
1436 M_ASSERTPKTHDR(m);
1438 /* Discard packet if interface is not up */
1439 if (!(ifp->if_flags & IFF_UP)) {
1440 m_freem(m);
1441 return;
1444 if (m->m_len < sizeof(struct ether_header)) {
1445 /* XXX error in the caller. */
1446 m_freem(m);
1447 return;
1450 m->m_pkthdr.rcvif = ifp;
1452 logether(pkt_beg, ifp);
1454 ETHER_BPF_MTAP(ifp, m);
1456 IFNET_STAT_INC(ifp, ibytes, m->m_pkthdr.len);
1458 if (ifp->if_flags & IFF_MONITOR) {
1459 struct ether_header *eh;
1461 eh = mtod(m, struct ether_header *);
1462 if (ETHER_IS_MULTICAST(eh->ether_dhost))
1463 IFNET_STAT_INC(ifp, imcasts, 1);
1466 * Interface marked for monitoring; discard packet.
1468 m_freem(m);
1470 logether(pkt_end, ifp);
1471 return;
1475 * If the packet has been characterized (pi->pi_netisr / M_HASH)
1476 * we can dispatch it immediately with trivial checks.
1478 if (pi != NULL && (m->m_flags & M_HASH)) {
1479 #ifdef RSS_DEBUG
1480 atomic_add_long(&ether_pktinfo_try, 1);
1481 #endif
1482 netisr_hashcheck(pi->pi_netisr, m, pi);
1483 if (m->m_flags & M_HASH) {
1484 ether_dispatch(pi->pi_netisr, m, cpuid);
1485 #ifdef RSS_DEBUG
1486 atomic_add_long(&ether_pktinfo_hit, 1);
1487 #endif
1488 logether(pkt_end, ifp);
1489 return;
1492 #ifdef RSS_DEBUG
1493 else if (ifp->if_capenable & IFCAP_RSS) {
1494 if (pi == NULL)
1495 atomic_add_long(&ether_rss_nopi, 1);
1496 else
1497 atomic_add_long(&ether_rss_nohash, 1);
1499 #endif
1502 * Packet hash will be recalculated by software, so clear
1503 * the M_HASH and M_CKHASH flag set by the driver; the hash
1504 * value calculated by the hardware may not be exactly what
1505 * we want.
1507 m->m_flags &= ~(M_HASH | M_CKHASH);
1509 if (!ether_vlancheck(&m)) {
1510 KKASSERT(m == NULL);
1511 logether(pkt_end, ifp);
1512 return;
1515 isr = ether_characterize(&m);
1516 if (m == NULL) {
1517 logether(pkt_end, ifp);
1518 return;
1522 * Finally dispatch it
1524 ether_dispatch(isr, m, cpuid);
1526 logether(pkt_end, ifp);
1529 static int
1530 ether_characterize(struct mbuf **m0)
1532 struct mbuf *m = *m0;
1533 struct ether_header *eh;
1534 uint16_t ether_type;
1535 int isr;
1537 eh = mtod(m, struct ether_header *);
1538 ether_type = ntohs(eh->ether_type);
1541 * Map ether type to netisr id.
1543 switch (ether_type) {
1544 #ifdef INET
1545 case ETHERTYPE_IP:
1546 isr = NETISR_IP;
1547 break;
1549 case ETHERTYPE_ARP:
1550 isr = NETISR_ARP;
1551 break;
1552 #endif
1554 #ifdef INET6
1555 case ETHERTYPE_IPV6:
1556 isr = NETISR_IPV6;
1557 break;
1558 #endif
1560 #ifdef MPLS
1561 case ETHERTYPE_MPLS:
1562 case ETHERTYPE_MPLS_MCAST:
1563 m->m_flags |= M_MPLSLABELED;
1564 isr = NETISR_MPLS;
1565 break;
1566 #endif
1568 default:
1570 * NETISR_MAX is an invalid value; it is chosen to let
1571 * netisr_characterize() know that we have no clear
1572 * idea where this packet should go.
1574 isr = NETISR_MAX;
1575 break;
1579 * Ask the isr to characterize the packet since we couldn't.
1580 * This is an attempt to optimally get us onto the correct protocol
1581 * thread.
1583 netisr_characterize(isr, &m, sizeof(struct ether_header));
1585 *m0 = m;
1586 return isr;
1589 static void
1590 ether_demux_handler(netmsg_t nmsg)
1592 struct netmsg_packet *nmp = &nmsg->packet; /* actual size */
1593 struct ifnet *ifp;
1594 struct mbuf *m;
1596 m = nmp->nm_packet;
1597 M_ASSERTPKTHDR(m);
1598 ifp = m->m_pkthdr.rcvif;
1600 ether_demux_oncpu(ifp, m);
1603 void
1604 ether_demux(struct mbuf *m)
1606 struct netmsg_packet *pmsg;
1607 int isr;
1609 isr = ether_characterize(&m);
1610 if (m == NULL)
1611 return;
1613 KKASSERT(m->m_flags & M_HASH);
1614 pmsg = &m->m_hdr.mh_netmsg;
1615 netmsg_init(&pmsg->base, NULL, &netisr_apanic_rport,
1616 0, ether_demux_handler);
1617 pmsg->nm_packet = m;
1618 pmsg->base.lmsg.u.ms_result = isr;
1620 lwkt_sendmsg(netisr_hashport(m->m_pkthdr.hash), &pmsg->base.lmsg);
1623 u_char *
1624 kether_aton(const char *macstr, u_char *addr)
1626 unsigned int o0, o1, o2, o3, o4, o5;
1627 int n;
1629 if (macstr == NULL || addr == NULL)
1630 return NULL;
1632 n = ksscanf(macstr, "%x:%x:%x:%x:%x:%x", &o0, &o1, &o2,
1633 &o3, &o4, &o5);
1634 if (n != 6)
1635 return NULL;
1637 addr[0] = o0;
1638 addr[1] = o1;
1639 addr[2] = o2;
1640 addr[3] = o3;
1641 addr[4] = o4;
1642 addr[5] = o5;
1644 return addr;
1647 char *
1648 kether_ntoa(const u_char *addr, char *buf)
1650 int len = ETHER_ADDRSTRLEN + 1;
1651 int n;
1653 n = ksnprintf(buf, len, "%02x:%02x:%02x:%02x:%02x:%02x", addr[0],
1654 addr[1], addr[2], addr[3], addr[4], addr[5]);
1656 if (n < 17)
1657 return NULL;
1659 return buf;
1662 MODULE_VERSION(ether, 1);