syscons - Fix NULL pointer access in 0d7c8a4d1cafae68239
[dragonfly.git] / sys / vm / vm_swapcache.c
blob3d2b1d49dfdebbfb9dc25504f443ddc3f0718a97
1 /*
2 * (MPSAFE)
4 * Copyright (c) 2010 The DragonFly Project. All rights reserved.
6 * This code is derived from software contributed to The DragonFly Project
7 * by Matthew Dillon <dillon@backplane.com>
9 * Redistribution and use in source and binary forms, with or without
10 * modification, are permitted provided that the following conditions
11 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 * notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in
17 * the documentation and/or other materials provided with the
18 * distribution.
19 * 3. Neither the name of The DragonFly Project nor the names of its
20 * contributors may be used to endorse or promote products derived
21 * from this software without specific, prior written permission.
23 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
24 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
25 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
26 * FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
27 * COPYRIGHT HOLDERS OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
28 * INCIDENTAL, SPECIAL, EXEMPLARY OR CONSEQUENTIAL DAMAGES (INCLUDING,
29 * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
30 * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
31 * AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
32 * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT
33 * OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
34 * SUCH DAMAGE.
38 * Implement the swapcache daemon. When enabled swap is assumed to be
39 * configured on a fast storage device such as a SSD. Swap is assigned
40 * to clean vnode-backed pages in the inactive queue, clustered by object
41 * if possible, and written out. The swap assignment sticks around even
42 * after the underlying pages have been recycled.
44 * The daemon manages write bandwidth based on sysctl settings to control
45 * wear on the SSD.
47 * The vnode strategy code will check for the swap assignments and divert
48 * reads to the swap device when the data is present in the swapcache.
50 * This operates on both regular files and the block device vnodes used by
51 * filesystems to manage meta-data.
54 #include "opt_vm.h"
55 #include <sys/param.h>
56 #include <sys/systm.h>
57 #include <sys/kernel.h>
58 #include <sys/proc.h>
59 #include <sys/kthread.h>
60 #include <sys/resourcevar.h>
61 #include <sys/signalvar.h>
62 #include <sys/vnode.h>
63 #include <sys/vmmeter.h>
64 #include <sys/sysctl.h>
65 #include <sys/eventhandler.h>
67 #include <vm/vm.h>
68 #include <vm/vm_param.h>
69 #include <sys/lock.h>
70 #include <vm/vm_object.h>
71 #include <vm/vm_page.h>
72 #include <vm/vm_map.h>
73 #include <vm/vm_pageout.h>
74 #include <vm/vm_pager.h>
75 #include <vm/swap_pager.h>
76 #include <vm/vm_extern.h>
78 #include <sys/thread2.h>
79 #include <sys/spinlock2.h>
80 #include <vm/vm_page2.h>
82 /* the kernel process "vm_pageout"*/
83 static int vm_swapcached_flush (vm_page_t m, int isblkdev);
84 static int vm_swapcache_test(vm_page_t m);
85 static int vm_swapcache_writing_heuristic(void);
86 static int vm_swapcache_writing(vm_page_t marker, int count, int scount);
87 static void vm_swapcache_cleaning(vm_object_t marker,
88 struct vm_object_hash **swindexp);
89 static void vm_swapcache_movemarker(vm_object_t marker,
90 struct vm_object_hash *swindex, vm_object_t object);
91 struct thread *swapcached_thread;
93 SYSCTL_NODE(_vm, OID_AUTO, swapcache, CTLFLAG_RW, NULL, NULL);
95 int vm_swapcache_read_enable;
96 int vm_swapcache_inactive_heuristic;
97 static int vm_swapcache_sleep;
98 static int vm_swapcache_maxscan = PQ_L2_SIZE * 8;
99 static int vm_swapcache_maxlaunder = PQ_L2_SIZE * 4;
100 static int vm_swapcache_data_enable = 0;
101 static int vm_swapcache_meta_enable = 0;
102 static int vm_swapcache_maxswappct = 75;
103 static int vm_swapcache_hysteresis;
104 static int vm_swapcache_min_hysteresis;
105 int vm_swapcache_use_chflags = 0; /* require chflags cache */
106 static int64_t vm_swapcache_minburst = 10000000LL; /* 10MB */
107 static int64_t vm_swapcache_curburst = 4000000000LL; /* 4G after boot */
108 static int64_t vm_swapcache_maxburst = 2000000000LL; /* 2G nominal max */
109 static int64_t vm_swapcache_accrate = 100000LL; /* 100K/s */
110 static int64_t vm_swapcache_write_count;
111 static int64_t vm_swapcache_maxfilesize;
112 static int64_t vm_swapcache_cleanperobj = 16*1024*1024;
114 SYSCTL_INT(_vm_swapcache, OID_AUTO, maxlaunder,
115 CTLFLAG_RW, &vm_swapcache_maxlaunder, 0, "");
116 SYSCTL_INT(_vm_swapcache, OID_AUTO, maxscan,
117 CTLFLAG_RW, &vm_swapcache_maxscan, 0, "");
119 SYSCTL_INT(_vm_swapcache, OID_AUTO, data_enable,
120 CTLFLAG_RW, &vm_swapcache_data_enable, 0, "");
121 SYSCTL_INT(_vm_swapcache, OID_AUTO, meta_enable,
122 CTLFLAG_RW, &vm_swapcache_meta_enable, 0, "");
123 SYSCTL_INT(_vm_swapcache, OID_AUTO, read_enable,
124 CTLFLAG_RW, &vm_swapcache_read_enable, 0, "");
125 SYSCTL_INT(_vm_swapcache, OID_AUTO, maxswappct,
126 CTLFLAG_RW, &vm_swapcache_maxswappct, 0, "");
127 SYSCTL_INT(_vm_swapcache, OID_AUTO, hysteresis,
128 CTLFLAG_RD, &vm_swapcache_hysteresis, 0, "");
129 SYSCTL_INT(_vm_swapcache, OID_AUTO, min_hysteresis,
130 CTLFLAG_RW, &vm_swapcache_min_hysteresis, 0, "");
131 SYSCTL_INT(_vm_swapcache, OID_AUTO, use_chflags,
132 CTLFLAG_RW, &vm_swapcache_use_chflags, 0, "");
134 SYSCTL_QUAD(_vm_swapcache, OID_AUTO, minburst,
135 CTLFLAG_RW, &vm_swapcache_minburst, 0, "");
136 SYSCTL_QUAD(_vm_swapcache, OID_AUTO, curburst,
137 CTLFLAG_RW, &vm_swapcache_curburst, 0, "");
138 SYSCTL_QUAD(_vm_swapcache, OID_AUTO, maxburst,
139 CTLFLAG_RW, &vm_swapcache_maxburst, 0, "");
140 SYSCTL_QUAD(_vm_swapcache, OID_AUTO, maxfilesize,
141 CTLFLAG_RW, &vm_swapcache_maxfilesize, 0, "");
142 SYSCTL_QUAD(_vm_swapcache, OID_AUTO, accrate,
143 CTLFLAG_RW, &vm_swapcache_accrate, 0, "");
144 SYSCTL_QUAD(_vm_swapcache, OID_AUTO, write_count,
145 CTLFLAG_RW, &vm_swapcache_write_count, 0, "");
146 SYSCTL_QUAD(_vm_swapcache, OID_AUTO, cleanperobj,
147 CTLFLAG_RW, &vm_swapcache_cleanperobj, 0, "");
149 #define SWAPMAX(adj) \
150 ((int64_t)vm_swap_max * (vm_swapcache_maxswappct + (adj)) / 100)
153 * When shutting down the machine we want to stop swapcache operation
154 * immediately so swap is not accessed after devices have been shuttered.
156 static void
157 shutdown_swapcache(void *arg __unused)
159 vm_swapcache_read_enable = 0;
160 vm_swapcache_data_enable = 0;
161 vm_swapcache_meta_enable = 0;
162 wakeup(&vm_swapcache_sleep); /* shortcut 5-second wait */
166 * vm_swapcached is the high level pageout daemon.
168 * No requirements.
170 static void
171 vm_swapcached_thread(void)
173 enum { SWAPC_WRITING, SWAPC_CLEANING } state = SWAPC_WRITING;
174 enum { SWAPB_BURSTING, SWAPB_RECOVERING } burst = SWAPB_BURSTING;
175 static struct vm_page page_marker[PQ_L2_SIZE];
176 static struct vm_object swmarker;
177 static struct vm_object_hash *swindex;
178 int q;
181 * Thread setup
183 curthread->td_flags |= TDF_SYSTHREAD;
184 EVENTHANDLER_REGISTER(shutdown_pre_sync, shutdown_kproc,
185 swapcached_thread, SHUTDOWN_PRI_FIRST);
186 EVENTHANDLER_REGISTER(shutdown_pre_sync, shutdown_swapcache,
187 NULL, SHUTDOWN_PRI_SECOND);
190 * Initialize our marker for the inactive scan (SWAPC_WRITING)
192 bzero(&page_marker, sizeof(page_marker));
193 for (q = 0; q < PQ_L2_SIZE; ++q) {
194 page_marker[q].flags = PG_FICTITIOUS | PG_MARKER;
195 page_marker[q].busy_count = PBUSY_LOCKED;
196 page_marker[q].queue = PQ_INACTIVE + q;
197 page_marker[q].pc = q;
198 page_marker[q].wire_count = 1;
199 vm_page_queues_spin_lock(PQ_INACTIVE + q);
200 TAILQ_INSERT_HEAD(
201 &vm_page_queues[PQ_INACTIVE + q].pl,
202 &page_marker[q], pageq);
203 vm_page_queues_spin_unlock(PQ_INACTIVE + q);
206 vm_swapcache_min_hysteresis = 1024;
207 vm_swapcache_hysteresis = vm_swapcache_min_hysteresis;
208 vm_swapcache_inactive_heuristic = -vm_swapcache_hysteresis;
211 * Initialize our marker for the vm_object scan (SWAPC_CLEANING)
213 bzero(&swmarker, sizeof(swmarker));
214 swmarker.type = OBJT_MARKER;
215 swindex = &vm_object_hash[0];
216 lwkt_gettoken(&swindex->token);
217 TAILQ_INSERT_HEAD(&swindex->list, &swmarker, object_list);
218 lwkt_reltoken(&swindex->token);
220 for (;;) {
221 int reached_end;
222 int scount;
223 int count;
226 * Handle shutdown
228 kproc_suspend_loop();
231 * Check every 5 seconds when not enabled or if no swap
232 * is present.
234 if ((vm_swapcache_data_enable == 0 &&
235 vm_swapcache_meta_enable == 0 &&
236 vm_swap_cache_use <= SWAPMAX(0)) ||
237 vm_swap_max == 0) {
238 tsleep(&vm_swapcache_sleep, 0, "csleep", hz * 5);
239 continue;
243 * Polling rate when enabled is approximately 10 hz.
245 tsleep(&vm_swapcache_sleep, 0, "csleep", hz / 10);
248 * State hysteresis. Generate write activity up to 75% of
249 * swap, then clean out swap assignments down to 70%, then
250 * repeat.
252 if (state == SWAPC_WRITING) {
253 if (vm_swap_cache_use > SWAPMAX(0))
254 state = SWAPC_CLEANING;
255 } else {
256 if (vm_swap_cache_use < SWAPMAX(-10))
257 state = SWAPC_WRITING;
261 * We are allowed to continue accumulating burst value
262 * in either state. Allow the user to set curburst > maxburst
263 * for the initial load-in.
265 if (vm_swapcache_curburst < vm_swapcache_maxburst) {
266 vm_swapcache_curburst += vm_swapcache_accrate / 10;
267 if (vm_swapcache_curburst > vm_swapcache_maxburst)
268 vm_swapcache_curburst = vm_swapcache_maxburst;
272 * We don't want to nickle-and-dime the scan as that will
273 * create unnecessary fragmentation. The minimum burst
274 * is one-seconds worth of accumulation.
276 if (state != SWAPC_WRITING) {
277 vm_swapcache_cleaning(&swmarker, &swindex);
278 continue;
280 if (vm_swapcache_curburst < vm_swapcache_accrate)
281 continue;
283 reached_end = 0;
284 count = vm_swapcache_maxlaunder / PQ_L2_SIZE + 2;
285 scount = vm_swapcache_maxscan / PQ_L2_SIZE + 2;
287 if (burst == SWAPB_BURSTING) {
288 if (vm_swapcache_writing_heuristic()) {
289 for (q = 0; q < PQ_L2_SIZE; ++q) {
290 reached_end +=
291 vm_swapcache_writing(
292 &page_marker[q],
293 count,
294 scount);
297 if (vm_swapcache_curburst <= 0)
298 burst = SWAPB_RECOVERING;
299 } else if (vm_swapcache_curburst > vm_swapcache_minburst) {
300 if (vm_swapcache_writing_heuristic()) {
301 for (q = 0; q < PQ_L2_SIZE; ++q) {
302 reached_end +=
303 vm_swapcache_writing(
304 &page_marker[q],
305 count,
306 scount);
309 burst = SWAPB_BURSTING;
311 if (reached_end == PQ_L2_SIZE) {
312 vm_swapcache_inactive_heuristic =
313 -vm_swapcache_hysteresis;
318 * Cleanup (NOT REACHED)
320 for (q = 0; q < PQ_L2_SIZE; ++q) {
321 vm_page_queues_spin_lock(PQ_INACTIVE + q);
322 TAILQ_REMOVE(
323 &vm_page_queues[PQ_INACTIVE + q].pl,
324 &page_marker[q], pageq);
325 vm_page_queues_spin_unlock(PQ_INACTIVE + q);
328 lwkt_gettoken(&swindex->token);
329 TAILQ_REMOVE(&swindex->list, &swmarker, object_list);
330 lwkt_reltoken(&swindex->token);
333 static struct kproc_desc swpc_kp = {
334 "swapcached",
335 vm_swapcached_thread,
336 &swapcached_thread
338 SYSINIT(swapcached, SI_SUB_KTHREAD_PAGE, SI_ORDER_SECOND, kproc_start, &swpc_kp);
341 * Deal with an overflow of the heuristic counter or if the user
342 * manually changes the hysteresis.
344 * Try to avoid small incremental pageouts by waiting for enough
345 * pages to buildup in the inactive queue to hopefully get a good
346 * burst in. This heuristic is bumped by the VM system and reset
347 * when our scan hits the end of the queue.
349 * Return TRUE if we need to take a writing pass.
351 static int
352 vm_swapcache_writing_heuristic(void)
354 int hyst;
356 hyst = vmstats.v_inactive_count / 4;
357 if (hyst < vm_swapcache_min_hysteresis)
358 hyst = vm_swapcache_min_hysteresis;
359 cpu_ccfence();
360 vm_swapcache_hysteresis = hyst;
362 if (vm_swapcache_inactive_heuristic < -hyst)
363 vm_swapcache_inactive_heuristic = -hyst;
365 return (vm_swapcache_inactive_heuristic >= 0);
369 * Take a writing pass on one of the inactive queues, return non-zero if
370 * we hit the end of the queue.
372 static int
373 vm_swapcache_writing(vm_page_t marker, int count, int scount)
375 vm_object_t object;
376 struct vnode *vp;
377 vm_page_t m;
378 int isblkdev;
381 * Scan the inactive queue from our marker to locate
382 * suitable pages to push to the swap cache.
384 * We are looking for clean vnode-backed pages.
386 vm_page_queues_spin_lock(marker->queue);
387 while ((m = TAILQ_NEXT(marker, pageq)) != NULL &&
388 count > 0 && scount-- > 0) {
389 KKASSERT(m->queue == marker->queue);
392 * Stop using swap if paniced, dumping, or dumped.
393 * Don't try to write if our curburst has been exhausted.
395 if (panicstr || dumping)
396 break;
397 if (vm_swapcache_curburst < 0)
398 break;
401 * Move marker
403 TAILQ_REMOVE(
404 &vm_page_queues[marker->queue].pl, marker, pageq);
405 TAILQ_INSERT_AFTER(
406 &vm_page_queues[marker->queue].pl, m, marker, pageq);
409 * Ignore markers and ignore pages that already have a swap
410 * assignment.
412 if (m->flags & (PG_MARKER | PG_SWAPPED))
413 continue;
414 if (vm_page_busy_try(m, TRUE))
415 continue;
416 vm_page_queues_spin_unlock(marker->queue);
418 if ((object = m->object) == NULL) {
419 vm_page_wakeup(m);
420 vm_page_queues_spin_lock(marker->queue);
421 continue;
423 vm_object_hold(object);
424 if (m->object != object) {
425 vm_object_drop(object);
426 vm_page_wakeup(m);
427 vm_page_queues_spin_lock(marker->queue);
428 continue;
430 if (vm_swapcache_test(m)) {
431 vm_object_drop(object);
432 vm_page_wakeup(m);
433 vm_page_queues_spin_lock(marker->queue);
434 continue;
437 vp = object->handle;
438 if (vp == NULL) {
439 vm_object_drop(object);
440 vm_page_wakeup(m);
441 vm_page_queues_spin_lock(marker->queue);
442 continue;
445 switch(vp->v_type) {
446 case VREG:
448 * PG_NOTMETA generically means 'don't swapcache this',
449 * and HAMMER will set this for regular data buffers
450 * (and leave it unset for meta-data buffers) as
451 * appropriate when double buffering is enabled.
453 if (m->flags & PG_NOTMETA) {
454 vm_object_drop(object);
455 vm_page_wakeup(m);
456 vm_page_queues_spin_lock(marker->queue);
457 continue;
461 * If data_enable is 0 do not try to swapcache data.
462 * If use_chflags is set then only swapcache data for
463 * VSWAPCACHE marked vnodes, otherwise any vnode.
465 if (vm_swapcache_data_enable == 0 ||
466 ((vp->v_flag & VSWAPCACHE) == 0 &&
467 vm_swapcache_use_chflags)) {
468 vm_object_drop(object);
469 vm_page_wakeup(m);
470 vm_page_queues_spin_lock(marker->queue);
471 continue;
473 if (vm_swapcache_maxfilesize &&
474 object->size >
475 (vm_swapcache_maxfilesize >> PAGE_SHIFT)) {
476 vm_object_drop(object);
477 vm_page_wakeup(m);
478 vm_page_queues_spin_lock(marker->queue);
479 continue;
481 isblkdev = 0;
482 break;
483 case VCHR:
485 * PG_NOTMETA generically means 'don't swapcache this',
486 * and HAMMER will set this for regular data buffers
487 * (and leave it unset for meta-data buffers) as
488 * appropriate when double buffering is enabled.
490 if (m->flags & PG_NOTMETA) {
491 vm_object_drop(object);
492 vm_page_wakeup(m);
493 vm_page_queues_spin_lock(marker->queue);
494 continue;
496 if (vm_swapcache_meta_enable == 0) {
497 vm_object_drop(object);
498 vm_page_wakeup(m);
499 vm_page_queues_spin_lock(marker->queue);
500 continue;
502 isblkdev = 1;
503 break;
504 default:
505 vm_object_drop(object);
506 vm_page_wakeup(m);
507 vm_page_queues_spin_lock(marker->queue);
508 continue;
513 * Assign swap and initiate I/O.
515 * (adjust for the --count which also occurs in the loop)
517 count -= vm_swapcached_flush(m, isblkdev);
520 * Setup for next loop using marker.
522 vm_object_drop(object);
523 vm_page_queues_spin_lock(marker->queue);
527 * The marker could wind up at the end, which is ok. If we hit the
528 * end of the list adjust the heuristic.
530 * Earlier inactive pages that were dirty and become clean
531 * are typically moved to the end of PQ_INACTIVE by virtue
532 * of vfs_vmio_release() when they become unwired from the
533 * buffer cache.
535 vm_page_queues_spin_unlock(marker->queue);
538 * m invalid but can be used to test for NULL
540 return (m == NULL);
544 * Flush the specified page using the swap_pager. The page
545 * must be busied by the caller and its disposition will become
546 * the responsibility of this function.
548 * Try to collect surrounding pages, including pages which may
549 * have already been assigned swap. Try to cluster within a
550 * contiguous aligned SMAP_META_PAGES (typ 16 x PAGE_SIZE) block
551 * to match what swap_pager_putpages() can do.
553 * We also want to try to match against the buffer cache blocksize
554 * but we don't really know what it is here. Since the buffer cache
555 * wires and unwires pages in groups the fact that we skip wired pages
556 * should be sufficient.
558 * Returns a count of pages we might have flushed (minimum 1)
560 static
562 vm_swapcached_flush(vm_page_t m, int isblkdev)
564 vm_object_t object;
565 vm_page_t marray[SWAP_META_PAGES];
566 vm_pindex_t basei;
567 int rtvals[SWAP_META_PAGES];
568 int x;
569 int i;
570 int j;
571 int count;
572 int error;
574 vm_page_io_start(m);
575 vm_page_protect(m, VM_PROT_READ);
576 object = m->object;
577 vm_object_hold(object);
580 * Try to cluster around (m), keeping in mind that the swap pager
581 * can only do SMAP_META_PAGES worth of continguous write.
583 x = (int)m->pindex & SWAP_META_MASK;
584 marray[x] = m;
585 basei = m->pindex;
586 vm_page_wakeup(m);
588 for (i = x - 1; i >= 0; --i) {
589 m = vm_page_lookup_busy_try(object, basei - x + i,
590 TRUE, &error);
591 if (error || m == NULL)
592 break;
593 if (vm_swapcache_test(m)) {
594 vm_page_wakeup(m);
595 break;
597 if (isblkdev && (m->flags & PG_NOTMETA)) {
598 vm_page_wakeup(m);
599 break;
601 vm_page_io_start(m);
602 vm_page_protect(m, VM_PROT_READ);
603 if (m->queue - m->pc == PQ_CACHE) {
604 vm_page_unqueue_nowakeup(m);
605 vm_page_deactivate(m);
607 marray[i] = m;
608 vm_page_wakeup(m);
610 ++i;
612 for (j = x + 1; j < SWAP_META_PAGES; ++j) {
613 m = vm_page_lookup_busy_try(object, basei - x + j,
614 TRUE, &error);
615 if (error || m == NULL)
616 break;
617 if (vm_swapcache_test(m)) {
618 vm_page_wakeup(m);
619 break;
621 if (isblkdev && (m->flags & PG_NOTMETA)) {
622 vm_page_wakeup(m);
623 break;
625 vm_page_io_start(m);
626 vm_page_protect(m, VM_PROT_READ);
627 if (m->queue - m->pc == PQ_CACHE) {
628 vm_page_unqueue_nowakeup(m);
629 vm_page_deactivate(m);
631 marray[j] = m;
632 vm_page_wakeup(m);
635 count = j - i;
636 vm_object_pip_add(object, count);
637 swap_pager_putpages(object, marray + i, count, FALSE, rtvals + i);
638 vm_swapcache_write_count += count * PAGE_SIZE;
639 vm_swapcache_curburst -= count * PAGE_SIZE;
641 while (i < j) {
642 if (rtvals[i] != VM_PAGER_PEND) {
643 vm_page_busy_wait(marray[i], FALSE, "swppgfd");
644 vm_page_io_finish(marray[i]);
645 vm_page_wakeup(marray[i]);
646 vm_object_pip_wakeup(object);
648 ++i;
650 vm_object_drop(object);
651 return(count);
655 * Test whether a VM page is suitable for writing to the swapcache.
656 * Does not test m->queue, PG_MARKER, or PG_SWAPPED.
658 * Returns 0 on success, 1 on failure
660 static int
661 vm_swapcache_test(vm_page_t m)
663 vm_object_t object;
665 if (m->flags & PG_UNMANAGED)
666 return(1);
667 if (m->hold_count || m->wire_count)
668 return(1);
669 if (m->valid != VM_PAGE_BITS_ALL)
670 return(1);
671 if (m->dirty & m->valid)
672 return(1);
673 if ((object = m->object) == NULL)
674 return(1);
675 if (object->type != OBJT_VNODE ||
676 (object->flags & OBJ_DEAD)) {
677 return(1);
679 vm_page_test_dirty(m);
680 if (m->dirty & m->valid)
681 return(1);
682 return(0);
686 * Cleaning pass.
688 * We clean whole objects up to 16MB
690 static
691 void
692 vm_swapcache_cleaning(vm_object_t marker, struct vm_object_hash **swindexp)
694 vm_object_t object;
695 struct vnode *vp;
696 int count;
697 int scount;
698 int n;
700 count = vm_swapcache_maxlaunder;
701 scount = vm_swapcache_maxscan;
704 * Look for vnode objects
706 lwkt_gettoken(&(*swindexp)->token);
708 outerloop:
709 while ((object = TAILQ_NEXT(marker, object_list)) != NULL) {
711 * We have to skip markers. We cannot hold/drop marker
712 * objects!
714 if (object->type == OBJT_MARKER) {
715 vm_swapcache_movemarker(marker, *swindexp, object);
716 continue;
720 * Safety, or in case there are millions of VM objects
721 * without swapcache backing.
723 if (--scount <= 0)
724 goto breakout;
727 * We must hold the object before potentially yielding.
729 vm_object_hold(object);
730 lwkt_yield();
733 * Only operate on live VNODE objects that are either
734 * VREG or VCHR (VCHR for meta-data).
736 if ((object->type != OBJT_VNODE) ||
737 ((object->flags & OBJ_DEAD) ||
738 object->swblock_count == 0) ||
739 ((vp = object->handle) == NULL) ||
740 (vp->v_type != VREG && vp->v_type != VCHR)) {
741 vm_object_drop(object);
742 /* object may be invalid now */
743 vm_swapcache_movemarker(marker, *swindexp, object);
744 continue;
748 * Reset the object pindex stored in the marker if the
749 * working object has changed.
751 if (marker->backing_object != object) {
752 marker->size = 0;
753 marker->backing_object_offset = 0;
754 marker->backing_object = object;
758 * Look for swblocks starting at our iterator.
760 * The swap_pager_condfree() function attempts to free
761 * swap space starting at the specified index. The index
762 * will be updated on return. The function will return
763 * a scan factor (NOT the number of blocks freed).
765 * If it must cut its scan of the object short due to an
766 * excessive number of swblocks, or is able to free the
767 * requested number of blocks, it will return n >= count
768 * and we break and pick it back up on a future attempt.
770 * Scan the object linearly and try to batch large sets of
771 * blocks that are likely to clean out entire swap radix
772 * tree leafs.
774 lwkt_token_swap();
775 lwkt_reltoken(&(*swindexp)->token);
777 n = swap_pager_condfree(object, &marker->size,
778 (count + SWAP_META_MASK) & ~SWAP_META_MASK);
780 vm_object_drop(object); /* object may be invalid now */
781 lwkt_gettoken(&(*swindexp)->token);
784 * If we have exhausted the object or deleted our per-pass
785 * page limit then move us to the next object. Note that
786 * the current object may no longer be on the vm_object_list.
788 if (n <= 0 ||
789 marker->backing_object_offset > vm_swapcache_cleanperobj) {
790 vm_swapcache_movemarker(marker, *swindexp, object);
794 * If we have exhausted our max-launder stop for now.
796 count -= n;
797 marker->backing_object_offset += n * PAGE_SIZE;
798 if (count < 0)
799 goto breakout;
803 * Iterate vm_object_lists[] hash table
805 TAILQ_REMOVE(&(*swindexp)->list, marker, object_list);
806 lwkt_reltoken(&(*swindexp)->token);
807 if (++*swindexp >= &vm_object_hash[VMOBJ_HSIZE])
808 *swindexp = &vm_object_hash[0];
809 lwkt_gettoken(&(*swindexp)->token);
810 TAILQ_INSERT_HEAD(&(*swindexp)->list, marker, object_list);
812 if (*swindexp != &vm_object_hash[0])
813 goto outerloop;
815 breakout:
816 lwkt_reltoken(&(*swindexp)->token);
820 * Move the marker past the current object. Object can be stale, but we
821 * still need it to determine if the marker has to be moved. If the object
822 * is still the 'current object' (object after the marker), we hop-scotch
823 * the marker past it.
825 static void
826 vm_swapcache_movemarker(vm_object_t marker, struct vm_object_hash *swindex,
827 vm_object_t object)
829 if (TAILQ_NEXT(marker, object_list) == object) {
830 TAILQ_REMOVE(&swindex->list, marker, object_list);
831 TAILQ_INSERT_AFTER(&swindex->list, object, marker, object_list);