syscons - Fix NULL pointer access in 0d7c8a4d1cafae68239
[dragonfly.git] / sys / dev / netif / ix / ixgbe_common.c
blob8dd7f9fdd04967e1dd8cf4cdfb24c0aea686f93d
1 /******************************************************************************
3 Copyright (c) 2001-2017, Intel Corporation
4 All rights reserved.
6 Redistribution and use in source and binary forms, with or without
7 modification, are permitted provided that the following conditions are met:
9 1. Redistributions of source code must retain the above copyright notice,
10 this list of conditions and the following disclaimer.
12 2. Redistributions in binary form must reproduce the above copyright
13 notice, this list of conditions and the following disclaimer in the
14 documentation and/or other materials provided with the distribution.
16 3. Neither the name of the Intel Corporation nor the names of its
17 contributors may be used to endorse or promote products derived from
18 this software without specific prior written permission.
20 THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
21 AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
22 IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
23 ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
24 LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
25 CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
26 SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
27 INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
28 CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
29 ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
30 POSSIBILITY OF SUCH DAMAGE.
32 ******************************************************************************/
33 /*$FreeBSD$*/
35 #include "ixgbe_common.h"
36 #include "ixgbe_phy.h"
37 #include "ixgbe_dcb.h"
38 #include "ixgbe_dcb_82599.h"
39 #include "ixgbe_api.h"
41 static s32 ixgbe_acquire_eeprom(struct ixgbe_hw *hw);
42 static s32 ixgbe_get_eeprom_semaphore(struct ixgbe_hw *hw);
43 static void ixgbe_release_eeprom_semaphore(struct ixgbe_hw *hw);
44 static s32 ixgbe_ready_eeprom(struct ixgbe_hw *hw);
45 static void ixgbe_standby_eeprom(struct ixgbe_hw *hw);
46 static void ixgbe_shift_out_eeprom_bits(struct ixgbe_hw *hw, u16 data,
47 u16 count);
48 static u16 ixgbe_shift_in_eeprom_bits(struct ixgbe_hw *hw, u16 count);
49 static void ixgbe_raise_eeprom_clk(struct ixgbe_hw *hw, u32 *eec);
50 static void ixgbe_lower_eeprom_clk(struct ixgbe_hw *hw, u32 *eec);
51 static void ixgbe_release_eeprom(struct ixgbe_hw *hw);
53 static s32 ixgbe_mta_vector(struct ixgbe_hw *hw, u8 *mc_addr);
54 static s32 ixgbe_get_san_mac_addr_offset(struct ixgbe_hw *hw,
55 u16 *san_mac_offset);
56 static s32 ixgbe_read_eeprom_buffer_bit_bang(struct ixgbe_hw *hw, u16 offset,
57 u16 words, u16 *data);
58 static s32 ixgbe_write_eeprom_buffer_bit_bang(struct ixgbe_hw *hw, u16 offset,
59 u16 words, u16 *data);
60 static s32 ixgbe_detect_eeprom_page_size_generic(struct ixgbe_hw *hw,
61 u16 offset);
63 /**
64 * ixgbe_init_ops_generic - Inits function ptrs
65 * @hw: pointer to the hardware structure
67 * Initialize the function pointers.
68 **/
69 s32 ixgbe_init_ops_generic(struct ixgbe_hw *hw)
71 struct ixgbe_eeprom_info *eeprom = &hw->eeprom;
72 struct ixgbe_mac_info *mac = &hw->mac;
73 u32 eec = IXGBE_READ_REG(hw, IXGBE_EEC_BY_MAC(hw));
75 DEBUGFUNC("ixgbe_init_ops_generic");
77 /* EEPROM */
78 eeprom->ops.init_params = ixgbe_init_eeprom_params_generic;
79 /* If EEPROM is valid (bit 8 = 1), use EERD otherwise use bit bang */
80 if (eec & IXGBE_EEC_PRES) {
81 eeprom->ops.read = ixgbe_read_eerd_generic;
82 eeprom->ops.read_buffer = ixgbe_read_eerd_buffer_generic;
83 } else {
84 eeprom->ops.read = ixgbe_read_eeprom_bit_bang_generic;
85 eeprom->ops.read_buffer =
86 ixgbe_read_eeprom_buffer_bit_bang_generic;
88 eeprom->ops.write = ixgbe_write_eeprom_generic;
89 eeprom->ops.write_buffer = ixgbe_write_eeprom_buffer_bit_bang_generic;
90 eeprom->ops.validate_checksum =
91 ixgbe_validate_eeprom_checksum_generic;
92 eeprom->ops.update_checksum = ixgbe_update_eeprom_checksum_generic;
93 eeprom->ops.calc_checksum = ixgbe_calc_eeprom_checksum_generic;
95 /* MAC */
96 mac->ops.init_hw = ixgbe_init_hw_generic;
97 mac->ops.reset_hw = NULL;
98 mac->ops.start_hw = ixgbe_start_hw_generic;
99 mac->ops.clear_hw_cntrs = ixgbe_clear_hw_cntrs_generic;
100 mac->ops.get_media_type = NULL;
101 mac->ops.get_supported_physical_layer = NULL;
102 mac->ops.enable_rx_dma = ixgbe_enable_rx_dma_generic;
103 mac->ops.get_mac_addr = ixgbe_get_mac_addr_generic;
104 mac->ops.stop_adapter = ixgbe_stop_adapter_generic;
105 mac->ops.get_bus_info = ixgbe_get_bus_info_generic;
106 mac->ops.set_lan_id = ixgbe_set_lan_id_multi_port_pcie;
107 mac->ops.acquire_swfw_sync = ixgbe_acquire_swfw_sync;
108 mac->ops.release_swfw_sync = ixgbe_release_swfw_sync;
109 mac->ops.prot_autoc_read = prot_autoc_read_generic;
110 mac->ops.prot_autoc_write = prot_autoc_write_generic;
112 /* LEDs */
113 mac->ops.led_on = ixgbe_led_on_generic;
114 mac->ops.led_off = ixgbe_led_off_generic;
115 mac->ops.blink_led_start = ixgbe_blink_led_start_generic;
116 mac->ops.blink_led_stop = ixgbe_blink_led_stop_generic;
117 mac->ops.init_led_link_act = ixgbe_init_led_link_act_generic;
119 /* RAR, Multicast, VLAN */
120 mac->ops.set_rar = ixgbe_set_rar_generic;
121 mac->ops.clear_rar = ixgbe_clear_rar_generic;
122 mac->ops.insert_mac_addr = NULL;
123 mac->ops.set_vmdq = NULL;
124 mac->ops.clear_vmdq = NULL;
125 mac->ops.init_rx_addrs = ixgbe_init_rx_addrs_generic;
126 mac->ops.update_uc_addr_list = ixgbe_update_uc_addr_list_generic;
127 mac->ops.update_mc_addr_list = ixgbe_update_mc_addr_list_generic;
128 mac->ops.enable_mc = ixgbe_enable_mc_generic;
129 mac->ops.disable_mc = ixgbe_disable_mc_generic;
130 mac->ops.clear_vfta = NULL;
131 mac->ops.set_vfta = NULL;
132 mac->ops.set_vlvf = NULL;
133 mac->ops.init_uta_tables = NULL;
134 mac->ops.enable_rx = ixgbe_enable_rx_generic;
135 mac->ops.disable_rx = ixgbe_disable_rx_generic;
137 /* Flow Control */
138 mac->ops.fc_enable = ixgbe_fc_enable_generic;
139 mac->ops.setup_fc = ixgbe_setup_fc_generic;
140 mac->ops.fc_autoneg = ixgbe_fc_autoneg;
142 /* Link */
143 mac->ops.get_link_capabilities = NULL;
144 mac->ops.setup_link = NULL;
145 mac->ops.check_link = NULL;
146 mac->ops.dmac_config = NULL;
147 mac->ops.dmac_update_tcs = NULL;
148 mac->ops.dmac_config_tcs = NULL;
150 return IXGBE_SUCCESS;
154 * ixgbe_device_supports_autoneg_fc - Check if device supports autonegotiation
155 * of flow control
156 * @hw: pointer to hardware structure
158 * This function returns TRUE if the device supports flow control
159 * autonegotiation, and FALSE if it does not.
162 bool ixgbe_device_supports_autoneg_fc(struct ixgbe_hw *hw)
164 bool supported = FALSE;
165 ixgbe_link_speed speed;
166 bool link_up;
168 DEBUGFUNC("ixgbe_device_supports_autoneg_fc");
170 switch (hw->phy.media_type) {
171 case ixgbe_media_type_fiber_fixed:
172 case ixgbe_media_type_fiber_qsfp:
173 case ixgbe_media_type_fiber:
174 /* flow control autoneg black list */
175 switch (hw->device_id) {
176 case IXGBE_DEV_ID_X550EM_A_SFP:
177 case IXGBE_DEV_ID_X550EM_A_SFP_N:
178 case IXGBE_DEV_ID_X550EM_A_QSFP:
179 case IXGBE_DEV_ID_X550EM_A_QSFP_N:
180 supported = FALSE;
181 break;
182 default:
183 hw->mac.ops.check_link(hw, &speed, &link_up, FALSE);
184 /* if link is down, assume supported */
185 if (link_up)
186 supported = speed == IXGBE_LINK_SPEED_1GB_FULL ?
187 TRUE : FALSE;
188 else
189 supported = TRUE;
192 break;
193 case ixgbe_media_type_backplane:
194 if (hw->device_id == IXGBE_DEV_ID_X550EM_X_XFI)
195 supported = FALSE;
196 else
197 supported = TRUE;
198 break;
199 case ixgbe_media_type_copper:
200 /* only some copper devices support flow control autoneg */
201 switch (hw->device_id) {
202 case IXGBE_DEV_ID_82599_T3_LOM:
203 case IXGBE_DEV_ID_X540T:
204 case IXGBE_DEV_ID_X540T1:
205 case IXGBE_DEV_ID_X540_BYPASS:
206 case IXGBE_DEV_ID_X550T:
207 case IXGBE_DEV_ID_X550T1:
208 case IXGBE_DEV_ID_X550EM_X_10G_T:
209 case IXGBE_DEV_ID_X550EM_A_10G_T:
210 case IXGBE_DEV_ID_X550EM_A_1G_T:
211 case IXGBE_DEV_ID_X550EM_A_1G_T_L:
212 supported = TRUE;
213 break;
214 default:
215 supported = FALSE;
217 default:
218 break;
221 if (!supported)
222 ERROR_REPORT2(IXGBE_ERROR_UNSUPPORTED,
223 "Device %x does not support flow control autoneg",
224 hw->device_id);
225 return supported;
229 * ixgbe_setup_fc_generic - Set up flow control
230 * @hw: pointer to hardware structure
232 * Called at init time to set up flow control.
234 s32 ixgbe_setup_fc_generic(struct ixgbe_hw *hw)
236 s32 ret_val = IXGBE_SUCCESS;
237 u32 reg = 0, reg_bp = 0;
238 u16 reg_cu = 0;
239 bool locked = FALSE;
241 DEBUGFUNC("ixgbe_setup_fc_generic");
243 /* Validate the requested mode */
244 if (hw->fc.strict_ieee && hw->fc.requested_mode == ixgbe_fc_rx_pause) {
245 ERROR_REPORT1(IXGBE_ERROR_UNSUPPORTED,
246 "ixgbe_fc_rx_pause not valid in strict IEEE mode\n");
247 ret_val = IXGBE_ERR_INVALID_LINK_SETTINGS;
248 goto out;
252 * 10gig parts do not have a word in the EEPROM to determine the
253 * default flow control setting, so we explicitly set it to full.
255 if (hw->fc.requested_mode == ixgbe_fc_default)
256 hw->fc.requested_mode = ixgbe_fc_full;
259 * Set up the 1G and 10G flow control advertisement registers so the
260 * HW will be able to do fc autoneg once the cable is plugged in. If
261 * we link at 10G, the 1G advertisement is harmless and vice versa.
263 switch (hw->phy.media_type) {
264 case ixgbe_media_type_backplane:
265 /* some MAC's need RMW protection on AUTOC */
266 ret_val = hw->mac.ops.prot_autoc_read(hw, &locked, &reg_bp);
267 if (ret_val != IXGBE_SUCCESS)
268 goto out;
270 /* fall through - only backplane uses autoc */
271 case ixgbe_media_type_fiber_fixed:
272 case ixgbe_media_type_fiber_qsfp:
273 case ixgbe_media_type_fiber:
274 reg = IXGBE_READ_REG(hw, IXGBE_PCS1GANA);
276 break;
277 case ixgbe_media_type_copper:
278 hw->phy.ops.read_reg(hw, IXGBE_MDIO_AUTO_NEG_ADVT,
279 IXGBE_MDIO_AUTO_NEG_DEV_TYPE, &reg_cu);
280 break;
281 default:
282 break;
286 * The possible values of fc.requested_mode are:
287 * 0: Flow control is completely disabled
288 * 1: Rx flow control is enabled (we can receive pause frames,
289 * but not send pause frames).
290 * 2: Tx flow control is enabled (we can send pause frames but
291 * we do not support receiving pause frames).
292 * 3: Both Rx and Tx flow control (symmetric) are enabled.
293 * other: Invalid.
295 switch (hw->fc.requested_mode) {
296 case ixgbe_fc_none:
297 /* Flow control completely disabled by software override. */
298 reg &= ~(IXGBE_PCS1GANA_SYM_PAUSE | IXGBE_PCS1GANA_ASM_PAUSE);
299 if (hw->phy.media_type == ixgbe_media_type_backplane)
300 reg_bp &= ~(IXGBE_AUTOC_SYM_PAUSE |
301 IXGBE_AUTOC_ASM_PAUSE);
302 else if (hw->phy.media_type == ixgbe_media_type_copper)
303 reg_cu &= ~(IXGBE_TAF_SYM_PAUSE | IXGBE_TAF_ASM_PAUSE);
304 break;
305 case ixgbe_fc_tx_pause:
307 * Tx Flow control is enabled, and Rx Flow control is
308 * disabled by software override.
310 reg |= IXGBE_PCS1GANA_ASM_PAUSE;
311 reg &= ~IXGBE_PCS1GANA_SYM_PAUSE;
312 if (hw->phy.media_type == ixgbe_media_type_backplane) {
313 reg_bp |= IXGBE_AUTOC_ASM_PAUSE;
314 reg_bp &= ~IXGBE_AUTOC_SYM_PAUSE;
315 } else if (hw->phy.media_type == ixgbe_media_type_copper) {
316 reg_cu |= IXGBE_TAF_ASM_PAUSE;
317 reg_cu &= ~IXGBE_TAF_SYM_PAUSE;
319 break;
320 case ixgbe_fc_rx_pause:
322 * Rx Flow control is enabled and Tx Flow control is
323 * disabled by software override. Since there really
324 * isn't a way to advertise that we are capable of RX
325 * Pause ONLY, we will advertise that we support both
326 * symmetric and asymmetric Rx PAUSE, as such we fall
327 * through to the fc_full statement. Later, we will
328 * disable the adapter's ability to send PAUSE frames.
330 case ixgbe_fc_full:
331 /* Flow control (both Rx and Tx) is enabled by SW override. */
332 reg |= IXGBE_PCS1GANA_SYM_PAUSE | IXGBE_PCS1GANA_ASM_PAUSE;
333 if (hw->phy.media_type == ixgbe_media_type_backplane)
334 reg_bp |= IXGBE_AUTOC_SYM_PAUSE |
335 IXGBE_AUTOC_ASM_PAUSE;
336 else if (hw->phy.media_type == ixgbe_media_type_copper)
337 reg_cu |= IXGBE_TAF_SYM_PAUSE | IXGBE_TAF_ASM_PAUSE;
338 break;
339 default:
340 ERROR_REPORT1(IXGBE_ERROR_ARGUMENT,
341 "Flow control param set incorrectly\n");
342 ret_val = IXGBE_ERR_CONFIG;
343 goto out;
344 break;
347 if (hw->mac.type < ixgbe_mac_X540) {
349 * Enable auto-negotiation between the MAC & PHY;
350 * the MAC will advertise clause 37 flow control.
352 IXGBE_WRITE_REG(hw, IXGBE_PCS1GANA, reg);
353 reg = IXGBE_READ_REG(hw, IXGBE_PCS1GLCTL);
355 /* Disable AN timeout */
356 if (hw->fc.strict_ieee)
357 reg &= ~IXGBE_PCS1GLCTL_AN_1G_TIMEOUT_EN;
359 IXGBE_WRITE_REG(hw, IXGBE_PCS1GLCTL, reg);
360 DEBUGOUT1("Set up FC; PCS1GLCTL = 0x%08X\n", reg);
364 * AUTOC restart handles negotiation of 1G and 10G on backplane
365 * and copper. There is no need to set the PCS1GCTL register.
368 if (hw->phy.media_type == ixgbe_media_type_backplane) {
369 reg_bp |= IXGBE_AUTOC_AN_RESTART;
370 ret_val = hw->mac.ops.prot_autoc_write(hw, reg_bp, locked);
371 if (ret_val)
372 goto out;
373 } else if ((hw->phy.media_type == ixgbe_media_type_copper) &&
374 (ixgbe_device_supports_autoneg_fc(hw))) {
375 hw->phy.ops.write_reg(hw, IXGBE_MDIO_AUTO_NEG_ADVT,
376 IXGBE_MDIO_AUTO_NEG_DEV_TYPE, reg_cu);
379 DEBUGOUT1("Set up FC; PCS1GLCTL = 0x%08X\n", reg);
380 out:
381 return ret_val;
385 * ixgbe_start_hw_generic - Prepare hardware for Tx/Rx
386 * @hw: pointer to hardware structure
388 * Starts the hardware by filling the bus info structure and media type, clears
389 * all on chip counters, initializes receive address registers, multicast
390 * table, VLAN filter table, calls routine to set up link and flow control
391 * settings, and leaves transmit and receive units disabled and uninitialized
393 s32 ixgbe_start_hw_generic(struct ixgbe_hw *hw)
395 s32 ret_val;
396 u32 ctrl_ext;
397 u16 device_caps;
399 DEBUGFUNC("ixgbe_start_hw_generic");
401 /* Set the media type */
402 hw->phy.media_type = hw->mac.ops.get_media_type(hw);
404 /* PHY ops initialization must be done in reset_hw() */
406 /* Clear the VLAN filter table */
407 hw->mac.ops.clear_vfta(hw);
409 /* Clear statistics registers */
410 hw->mac.ops.clear_hw_cntrs(hw);
412 /* Set No Snoop Disable */
413 ctrl_ext = IXGBE_READ_REG(hw, IXGBE_CTRL_EXT);
414 ctrl_ext |= IXGBE_CTRL_EXT_NS_DIS;
415 IXGBE_WRITE_REG(hw, IXGBE_CTRL_EXT, ctrl_ext);
416 IXGBE_WRITE_FLUSH(hw);
418 /* Setup flow control */
419 ret_val = ixgbe_setup_fc(hw);
420 if (ret_val != IXGBE_SUCCESS && ret_val != IXGBE_NOT_IMPLEMENTED) {
421 DEBUGOUT1("Flow control setup failed, returning %d\n", ret_val);
422 return ret_val;
425 /* Cache bit indicating need for crosstalk fix */
426 switch (hw->mac.type) {
427 case ixgbe_mac_82599EB:
428 case ixgbe_mac_X550EM_x:
429 case ixgbe_mac_X550EM_a:
430 hw->mac.ops.get_device_caps(hw, &device_caps);
431 if (device_caps & IXGBE_DEVICE_CAPS_NO_CROSSTALK_WR)
432 hw->need_crosstalk_fix = FALSE;
433 else
434 hw->need_crosstalk_fix = TRUE;
435 break;
436 default:
437 hw->need_crosstalk_fix = FALSE;
438 break;
441 /* Clear adapter stopped flag */
442 hw->adapter_stopped = FALSE;
444 return IXGBE_SUCCESS;
448 * ixgbe_start_hw_gen2 - Init sequence for common device family
449 * @hw: pointer to hw structure
451 * Performs the init sequence common to the second generation
452 * of 10 GbE devices.
453 * Devices in the second generation:
454 * 82599
455 * X540
457 s32 ixgbe_start_hw_gen2(struct ixgbe_hw *hw)
459 u32 i;
460 u32 regval;
462 /* Clear the rate limiters */
463 for (i = 0; i < hw->mac.max_tx_queues; i++) {
464 IXGBE_WRITE_REG(hw, IXGBE_RTTDQSEL, i);
465 IXGBE_WRITE_REG(hw, IXGBE_RTTBCNRC, 0);
467 IXGBE_WRITE_FLUSH(hw);
469 /* Disable relaxed ordering */
470 for (i = 0; i < hw->mac.max_tx_queues; i++) {
471 regval = IXGBE_READ_REG(hw, IXGBE_DCA_TXCTRL_82599(i));
472 regval &= ~IXGBE_DCA_TXCTRL_DESC_WRO_EN;
473 IXGBE_WRITE_REG(hw, IXGBE_DCA_TXCTRL_82599(i), regval);
476 for (i = 0; i < hw->mac.max_rx_queues; i++) {
477 regval = IXGBE_READ_REG(hw, IXGBE_DCA_RXCTRL(i));
478 regval &= ~(IXGBE_DCA_RXCTRL_DATA_WRO_EN |
479 IXGBE_DCA_RXCTRL_HEAD_WRO_EN);
480 IXGBE_WRITE_REG(hw, IXGBE_DCA_RXCTRL(i), regval);
483 return IXGBE_SUCCESS;
487 * ixgbe_init_hw_generic - Generic hardware initialization
488 * @hw: pointer to hardware structure
490 * Initialize the hardware by resetting the hardware, filling the bus info
491 * structure and media type, clears all on chip counters, initializes receive
492 * address registers, multicast table, VLAN filter table, calls routine to set
493 * up link and flow control settings, and leaves transmit and receive units
494 * disabled and uninitialized
496 s32 ixgbe_init_hw_generic(struct ixgbe_hw *hw)
498 s32 status;
500 DEBUGFUNC("ixgbe_init_hw_generic");
502 /* Reset the hardware */
503 status = hw->mac.ops.reset_hw(hw);
505 if (status == IXGBE_SUCCESS || status == IXGBE_ERR_SFP_NOT_PRESENT) {
506 /* Start the HW */
507 status = hw->mac.ops.start_hw(hw);
510 /* Initialize the LED link active for LED blink support */
511 if (hw->mac.ops.init_led_link_act)
512 hw->mac.ops.init_led_link_act(hw);
514 if (status != IXGBE_SUCCESS)
515 DEBUGOUT1("Failed to initialize HW, STATUS = %d\n", status);
517 return status;
521 * ixgbe_clear_hw_cntrs_generic - Generic clear hardware counters
522 * @hw: pointer to hardware structure
524 * Clears all hardware statistics counters by reading them from the hardware
525 * Statistics counters are clear on read.
527 s32 ixgbe_clear_hw_cntrs_generic(struct ixgbe_hw *hw)
529 u16 i = 0;
531 DEBUGFUNC("ixgbe_clear_hw_cntrs_generic");
533 IXGBE_READ_REG(hw, IXGBE_CRCERRS);
534 IXGBE_READ_REG(hw, IXGBE_ILLERRC);
535 IXGBE_READ_REG(hw, IXGBE_ERRBC);
536 IXGBE_READ_REG(hw, IXGBE_MSPDC);
537 for (i = 0; i < 8; i++)
538 IXGBE_READ_REG(hw, IXGBE_MPC(i));
540 IXGBE_READ_REG(hw, IXGBE_MLFC);
541 IXGBE_READ_REG(hw, IXGBE_MRFC);
542 IXGBE_READ_REG(hw, IXGBE_RLEC);
543 IXGBE_READ_REG(hw, IXGBE_LXONTXC);
544 IXGBE_READ_REG(hw, IXGBE_LXOFFTXC);
545 if (hw->mac.type >= ixgbe_mac_82599EB) {
546 IXGBE_READ_REG(hw, IXGBE_LXONRXCNT);
547 IXGBE_READ_REG(hw, IXGBE_LXOFFRXCNT);
548 } else {
549 IXGBE_READ_REG(hw, IXGBE_LXONRXC);
550 IXGBE_READ_REG(hw, IXGBE_LXOFFRXC);
553 for (i = 0; i < 8; i++) {
554 IXGBE_READ_REG(hw, IXGBE_PXONTXC(i));
555 IXGBE_READ_REG(hw, IXGBE_PXOFFTXC(i));
556 if (hw->mac.type >= ixgbe_mac_82599EB) {
557 IXGBE_READ_REG(hw, IXGBE_PXONRXCNT(i));
558 IXGBE_READ_REG(hw, IXGBE_PXOFFRXCNT(i));
559 } else {
560 IXGBE_READ_REG(hw, IXGBE_PXONRXC(i));
561 IXGBE_READ_REG(hw, IXGBE_PXOFFRXC(i));
564 if (hw->mac.type >= ixgbe_mac_82599EB)
565 for (i = 0; i < 8; i++)
566 IXGBE_READ_REG(hw, IXGBE_PXON2OFFCNT(i));
567 IXGBE_READ_REG(hw, IXGBE_PRC64);
568 IXGBE_READ_REG(hw, IXGBE_PRC127);
569 IXGBE_READ_REG(hw, IXGBE_PRC255);
570 IXGBE_READ_REG(hw, IXGBE_PRC511);
571 IXGBE_READ_REG(hw, IXGBE_PRC1023);
572 IXGBE_READ_REG(hw, IXGBE_PRC1522);
573 IXGBE_READ_REG(hw, IXGBE_GPRC);
574 IXGBE_READ_REG(hw, IXGBE_BPRC);
575 IXGBE_READ_REG(hw, IXGBE_MPRC);
576 IXGBE_READ_REG(hw, IXGBE_GPTC);
577 IXGBE_READ_REG(hw, IXGBE_GORCL);
578 IXGBE_READ_REG(hw, IXGBE_GORCH);
579 IXGBE_READ_REG(hw, IXGBE_GOTCL);
580 IXGBE_READ_REG(hw, IXGBE_GOTCH);
581 if (hw->mac.type == ixgbe_mac_82598EB)
582 for (i = 0; i < 8; i++)
583 IXGBE_READ_REG(hw, IXGBE_RNBC(i));
584 IXGBE_READ_REG(hw, IXGBE_RUC);
585 IXGBE_READ_REG(hw, IXGBE_RFC);
586 IXGBE_READ_REG(hw, IXGBE_ROC);
587 IXGBE_READ_REG(hw, IXGBE_RJC);
588 IXGBE_READ_REG(hw, IXGBE_MNGPRC);
589 IXGBE_READ_REG(hw, IXGBE_MNGPDC);
590 IXGBE_READ_REG(hw, IXGBE_MNGPTC);
591 IXGBE_READ_REG(hw, IXGBE_TORL);
592 IXGBE_READ_REG(hw, IXGBE_TORH);
593 IXGBE_READ_REG(hw, IXGBE_TPR);
594 IXGBE_READ_REG(hw, IXGBE_TPT);
595 IXGBE_READ_REG(hw, IXGBE_PTC64);
596 IXGBE_READ_REG(hw, IXGBE_PTC127);
597 IXGBE_READ_REG(hw, IXGBE_PTC255);
598 IXGBE_READ_REG(hw, IXGBE_PTC511);
599 IXGBE_READ_REG(hw, IXGBE_PTC1023);
600 IXGBE_READ_REG(hw, IXGBE_PTC1522);
601 IXGBE_READ_REG(hw, IXGBE_MPTC);
602 IXGBE_READ_REG(hw, IXGBE_BPTC);
603 for (i = 0; i < 16; i++) {
604 IXGBE_READ_REG(hw, IXGBE_QPRC(i));
605 IXGBE_READ_REG(hw, IXGBE_QPTC(i));
606 if (hw->mac.type >= ixgbe_mac_82599EB) {
607 IXGBE_READ_REG(hw, IXGBE_QBRC_L(i));
608 IXGBE_READ_REG(hw, IXGBE_QBRC_H(i));
609 IXGBE_READ_REG(hw, IXGBE_QBTC_L(i));
610 IXGBE_READ_REG(hw, IXGBE_QBTC_H(i));
611 IXGBE_READ_REG(hw, IXGBE_QPRDC(i));
612 } else {
613 IXGBE_READ_REG(hw, IXGBE_QBRC(i));
614 IXGBE_READ_REG(hw, IXGBE_QBTC(i));
618 if (hw->mac.type == ixgbe_mac_X550 || hw->mac.type == ixgbe_mac_X540) {
619 if (hw->phy.id == 0)
620 ixgbe_identify_phy(hw);
621 hw->phy.ops.read_reg(hw, IXGBE_PCRC8ECL,
622 IXGBE_MDIO_PCS_DEV_TYPE, &i);
623 hw->phy.ops.read_reg(hw, IXGBE_PCRC8ECH,
624 IXGBE_MDIO_PCS_DEV_TYPE, &i);
625 hw->phy.ops.read_reg(hw, IXGBE_LDPCECL,
626 IXGBE_MDIO_PCS_DEV_TYPE, &i);
627 hw->phy.ops.read_reg(hw, IXGBE_LDPCECH,
628 IXGBE_MDIO_PCS_DEV_TYPE, &i);
631 return IXGBE_SUCCESS;
635 * ixgbe_read_pba_string_generic - Reads part number string from EEPROM
636 * @hw: pointer to hardware structure
637 * @pba_num: stores the part number string from the EEPROM
638 * @pba_num_size: part number string buffer length
640 * Reads the part number string from the EEPROM.
642 s32 ixgbe_read_pba_string_generic(struct ixgbe_hw *hw, u8 *pba_num,
643 u32 pba_num_size)
645 s32 ret_val;
646 u16 data;
647 u16 pba_ptr;
648 u16 offset;
649 u16 length;
651 DEBUGFUNC("ixgbe_read_pba_string_generic");
653 if (pba_num == NULL) {
654 DEBUGOUT("PBA string buffer was null\n");
655 return IXGBE_ERR_INVALID_ARGUMENT;
658 ret_val = hw->eeprom.ops.read(hw, IXGBE_PBANUM0_PTR, &data);
659 if (ret_val) {
660 DEBUGOUT("NVM Read Error\n");
661 return ret_val;
664 ret_val = hw->eeprom.ops.read(hw, IXGBE_PBANUM1_PTR, &pba_ptr);
665 if (ret_val) {
666 DEBUGOUT("NVM Read Error\n");
667 return ret_val;
671 * if data is not ptr guard the PBA must be in legacy format which
672 * means pba_ptr is actually our second data word for the PBA number
673 * and we can decode it into an ascii string
675 if (data != IXGBE_PBANUM_PTR_GUARD) {
676 DEBUGOUT("NVM PBA number is not stored as string\n");
678 /* we will need 11 characters to store the PBA */
679 if (pba_num_size < 11) {
680 DEBUGOUT("PBA string buffer too small\n");
681 return IXGBE_ERR_NO_SPACE;
684 /* extract hex string from data and pba_ptr */
685 pba_num[0] = (data >> 12) & 0xF;
686 pba_num[1] = (data >> 8) & 0xF;
687 pba_num[2] = (data >> 4) & 0xF;
688 pba_num[3] = data & 0xF;
689 pba_num[4] = (pba_ptr >> 12) & 0xF;
690 pba_num[5] = (pba_ptr >> 8) & 0xF;
691 pba_num[6] = '-';
692 pba_num[7] = 0;
693 pba_num[8] = (pba_ptr >> 4) & 0xF;
694 pba_num[9] = pba_ptr & 0xF;
696 /* put a null character on the end of our string */
697 pba_num[10] = '\0';
699 /* switch all the data but the '-' to hex char */
700 for (offset = 0; offset < 10; offset++) {
701 if (pba_num[offset] < 0xA)
702 pba_num[offset] += '0';
703 else if (pba_num[offset] < 0x10)
704 pba_num[offset] += 'A' - 0xA;
707 return IXGBE_SUCCESS;
710 ret_val = hw->eeprom.ops.read(hw, pba_ptr, &length);
711 if (ret_val) {
712 DEBUGOUT("NVM Read Error\n");
713 return ret_val;
716 if (length == 0xFFFF || length == 0) {
717 DEBUGOUT("NVM PBA number section invalid length\n");
718 return IXGBE_ERR_PBA_SECTION;
721 /* check if pba_num buffer is big enough */
722 if (pba_num_size < (((u32)length * 2) - 1)) {
723 DEBUGOUT("PBA string buffer too small\n");
724 return IXGBE_ERR_NO_SPACE;
727 /* trim pba length from start of string */
728 pba_ptr++;
729 length--;
731 for (offset = 0; offset < length; offset++) {
732 ret_val = hw->eeprom.ops.read(hw, pba_ptr + offset, &data);
733 if (ret_val) {
734 DEBUGOUT("NVM Read Error\n");
735 return ret_val;
737 pba_num[offset * 2] = (u8)(data >> 8);
738 pba_num[(offset * 2) + 1] = (u8)(data & 0xFF);
740 pba_num[offset * 2] = '\0';
742 return IXGBE_SUCCESS;
746 * ixgbe_read_pba_num_generic - Reads part number from EEPROM
747 * @hw: pointer to hardware structure
748 * @pba_num: stores the part number from the EEPROM
750 * Reads the part number from the EEPROM.
752 s32 ixgbe_read_pba_num_generic(struct ixgbe_hw *hw, u32 *pba_num)
754 s32 ret_val;
755 u16 data;
757 DEBUGFUNC("ixgbe_read_pba_num_generic");
759 ret_val = hw->eeprom.ops.read(hw, IXGBE_PBANUM0_PTR, &data);
760 if (ret_val) {
761 DEBUGOUT("NVM Read Error\n");
762 return ret_val;
763 } else if (data == IXGBE_PBANUM_PTR_GUARD) {
764 DEBUGOUT("NVM Not supported\n");
765 return IXGBE_NOT_IMPLEMENTED;
767 *pba_num = (u32)(data << 16);
769 ret_val = hw->eeprom.ops.read(hw, IXGBE_PBANUM1_PTR, &data);
770 if (ret_val) {
771 DEBUGOUT("NVM Read Error\n");
772 return ret_val;
774 *pba_num |= data;
776 return IXGBE_SUCCESS;
780 * ixgbe_read_pba_raw
781 * @hw: pointer to the HW structure
782 * @eeprom_buf: optional pointer to EEPROM image
783 * @eeprom_buf_size: size of EEPROM image in words
784 * @max_pba_block_size: PBA block size limit
785 * @pba: pointer to output PBA structure
787 * Reads PBA from EEPROM image when eeprom_buf is not NULL.
788 * Reads PBA from physical EEPROM device when eeprom_buf is NULL.
791 s32 ixgbe_read_pba_raw(struct ixgbe_hw *hw, u16 *eeprom_buf,
792 u32 eeprom_buf_size, u16 max_pba_block_size,
793 struct ixgbe_pba *pba)
795 s32 ret_val;
796 u16 pba_block_size;
798 if (pba == NULL)
799 return IXGBE_ERR_PARAM;
801 if (eeprom_buf == NULL) {
802 ret_val = hw->eeprom.ops.read_buffer(hw, IXGBE_PBANUM0_PTR, 2,
803 &pba->word[0]);
804 if (ret_val)
805 return ret_val;
806 } else {
807 if (eeprom_buf_size > IXGBE_PBANUM1_PTR) {
808 pba->word[0] = eeprom_buf[IXGBE_PBANUM0_PTR];
809 pba->word[1] = eeprom_buf[IXGBE_PBANUM1_PTR];
810 } else {
811 return IXGBE_ERR_PARAM;
815 if (pba->word[0] == IXGBE_PBANUM_PTR_GUARD) {
816 if (pba->pba_block == NULL)
817 return IXGBE_ERR_PARAM;
819 ret_val = ixgbe_get_pba_block_size(hw, eeprom_buf,
820 eeprom_buf_size,
821 &pba_block_size);
822 if (ret_val)
823 return ret_val;
825 if (pba_block_size > max_pba_block_size)
826 return IXGBE_ERR_PARAM;
828 if (eeprom_buf == NULL) {
829 ret_val = hw->eeprom.ops.read_buffer(hw, pba->word[1],
830 pba_block_size,
831 pba->pba_block);
832 if (ret_val)
833 return ret_val;
834 } else {
835 if (eeprom_buf_size > (u32)(pba->word[1] +
836 pba_block_size)) {
837 memcpy(pba->pba_block,
838 &eeprom_buf[pba->word[1]],
839 pba_block_size * sizeof(u16));
840 } else {
841 return IXGBE_ERR_PARAM;
846 return IXGBE_SUCCESS;
850 * ixgbe_write_pba_raw
851 * @hw: pointer to the HW structure
852 * @eeprom_buf: optional pointer to EEPROM image
853 * @eeprom_buf_size: size of EEPROM image in words
854 * @pba: pointer to PBA structure
856 * Writes PBA to EEPROM image when eeprom_buf is not NULL.
857 * Writes PBA to physical EEPROM device when eeprom_buf is NULL.
860 s32 ixgbe_write_pba_raw(struct ixgbe_hw *hw, u16 *eeprom_buf,
861 u32 eeprom_buf_size, struct ixgbe_pba *pba)
863 s32 ret_val;
865 if (pba == NULL)
866 return IXGBE_ERR_PARAM;
868 if (eeprom_buf == NULL) {
869 ret_val = hw->eeprom.ops.write_buffer(hw, IXGBE_PBANUM0_PTR, 2,
870 &pba->word[0]);
871 if (ret_val)
872 return ret_val;
873 } else {
874 if (eeprom_buf_size > IXGBE_PBANUM1_PTR) {
875 eeprom_buf[IXGBE_PBANUM0_PTR] = pba->word[0];
876 eeprom_buf[IXGBE_PBANUM1_PTR] = pba->word[1];
877 } else {
878 return IXGBE_ERR_PARAM;
882 if (pba->word[0] == IXGBE_PBANUM_PTR_GUARD) {
883 if (pba->pba_block == NULL)
884 return IXGBE_ERR_PARAM;
886 if (eeprom_buf == NULL) {
887 ret_val = hw->eeprom.ops.write_buffer(hw, pba->word[1],
888 pba->pba_block[0],
889 pba->pba_block);
890 if (ret_val)
891 return ret_val;
892 } else {
893 if (eeprom_buf_size > (u32)(pba->word[1] +
894 pba->pba_block[0])) {
895 memcpy(&eeprom_buf[pba->word[1]],
896 pba->pba_block,
897 pba->pba_block[0] * sizeof(u16));
898 } else {
899 return IXGBE_ERR_PARAM;
904 return IXGBE_SUCCESS;
908 * ixgbe_get_pba_block_size
909 * @hw: pointer to the HW structure
910 * @eeprom_buf: optional pointer to EEPROM image
911 * @eeprom_buf_size: size of EEPROM image in words
912 * @pba_data_size: pointer to output variable
914 * Returns the size of the PBA block in words. Function operates on EEPROM
915 * image if the eeprom_buf pointer is not NULL otherwise it accesses physical
916 * EEPROM device.
919 s32 ixgbe_get_pba_block_size(struct ixgbe_hw *hw, u16 *eeprom_buf,
920 u32 eeprom_buf_size, u16 *pba_block_size)
922 s32 ret_val;
923 u16 pba_word[2];
924 u16 length;
926 DEBUGFUNC("ixgbe_get_pba_block_size");
928 if (eeprom_buf == NULL) {
929 ret_val = hw->eeprom.ops.read_buffer(hw, IXGBE_PBANUM0_PTR, 2,
930 &pba_word[0]);
931 if (ret_val)
932 return ret_val;
933 } else {
934 if (eeprom_buf_size > IXGBE_PBANUM1_PTR) {
935 pba_word[0] = eeprom_buf[IXGBE_PBANUM0_PTR];
936 pba_word[1] = eeprom_buf[IXGBE_PBANUM1_PTR];
937 } else {
938 return IXGBE_ERR_PARAM;
942 if (pba_word[0] == IXGBE_PBANUM_PTR_GUARD) {
943 if (eeprom_buf == NULL) {
944 ret_val = hw->eeprom.ops.read(hw, pba_word[1] + 0,
945 &length);
946 if (ret_val)
947 return ret_val;
948 } else {
949 if (eeprom_buf_size > pba_word[1])
950 length = eeprom_buf[pba_word[1] + 0];
951 else
952 return IXGBE_ERR_PARAM;
955 if (length == 0xFFFF || length == 0)
956 return IXGBE_ERR_PBA_SECTION;
957 } else {
958 /* PBA number in legacy format, there is no PBA Block. */
959 length = 0;
962 if (pba_block_size != NULL)
963 *pba_block_size = length;
965 return IXGBE_SUCCESS;
969 * ixgbe_get_mac_addr_generic - Generic get MAC address
970 * @hw: pointer to hardware structure
971 * @mac_addr: Adapter MAC address
973 * Reads the adapter's MAC address from first Receive Address Register (RAR0)
974 * A reset of the adapter must be performed prior to calling this function
975 * in order for the MAC address to have been loaded from the EEPROM into RAR0
977 s32 ixgbe_get_mac_addr_generic(struct ixgbe_hw *hw, u8 *mac_addr)
979 u32 rar_high;
980 u32 rar_low;
981 u16 i;
983 DEBUGFUNC("ixgbe_get_mac_addr_generic");
985 rar_high = IXGBE_READ_REG(hw, IXGBE_RAH(0));
986 rar_low = IXGBE_READ_REG(hw, IXGBE_RAL(0));
988 for (i = 0; i < 4; i++)
989 mac_addr[i] = (u8)(rar_low >> (i*8));
991 for (i = 0; i < 2; i++)
992 mac_addr[i+4] = (u8)(rar_high >> (i*8));
994 return IXGBE_SUCCESS;
998 * ixgbe_set_pci_config_data_generic - Generic store PCI bus info
999 * @hw: pointer to hardware structure
1000 * @link_status: the link status returned by the PCI config space
1002 * Stores the PCI bus info (speed, width, type) within the ixgbe_hw structure
1004 void ixgbe_set_pci_config_data_generic(struct ixgbe_hw *hw, u16 link_status)
1006 struct ixgbe_mac_info *mac = &hw->mac;
1008 if (hw->bus.type == ixgbe_bus_type_unknown)
1009 hw->bus.type = ixgbe_bus_type_pci_express;
1011 switch (link_status & IXGBE_PCI_LINK_WIDTH) {
1012 case IXGBE_PCI_LINK_WIDTH_1:
1013 hw->bus.width = ixgbe_bus_width_pcie_x1;
1014 break;
1015 case IXGBE_PCI_LINK_WIDTH_2:
1016 hw->bus.width = ixgbe_bus_width_pcie_x2;
1017 break;
1018 case IXGBE_PCI_LINK_WIDTH_4:
1019 hw->bus.width = ixgbe_bus_width_pcie_x4;
1020 break;
1021 case IXGBE_PCI_LINK_WIDTH_8:
1022 hw->bus.width = ixgbe_bus_width_pcie_x8;
1023 break;
1024 default:
1025 hw->bus.width = ixgbe_bus_width_unknown;
1026 break;
1029 switch (link_status & IXGBE_PCI_LINK_SPEED) {
1030 case IXGBE_PCI_LINK_SPEED_2500:
1031 hw->bus.speed = ixgbe_bus_speed_2500;
1032 break;
1033 case IXGBE_PCI_LINK_SPEED_5000:
1034 hw->bus.speed = ixgbe_bus_speed_5000;
1035 break;
1036 case IXGBE_PCI_LINK_SPEED_8000:
1037 hw->bus.speed = ixgbe_bus_speed_8000;
1038 break;
1039 default:
1040 hw->bus.speed = ixgbe_bus_speed_unknown;
1041 break;
1044 mac->ops.set_lan_id(hw);
1048 * ixgbe_get_bus_info_generic - Generic set PCI bus info
1049 * @hw: pointer to hardware structure
1051 * Gets the PCI bus info (speed, width, type) then calls helper function to
1052 * store this data within the ixgbe_hw structure.
1054 s32 ixgbe_get_bus_info_generic(struct ixgbe_hw *hw)
1056 u16 link_status;
1058 DEBUGFUNC("ixgbe_get_bus_info_generic");
1060 /* Get the negotiated link width and speed from PCI config space */
1061 link_status = IXGBE_READ_PCIE_WORD(hw, IXGBE_PCI_LINK_STATUS);
1063 ixgbe_set_pci_config_data_generic(hw, link_status);
1065 return IXGBE_SUCCESS;
1069 * ixgbe_set_lan_id_multi_port_pcie - Set LAN id for PCIe multiple port devices
1070 * @hw: pointer to the HW structure
1072 * Determines the LAN function id by reading memory-mapped registers and swaps
1073 * the port value if requested, and set MAC instance for devices that share
1074 * CS4227.
1076 void ixgbe_set_lan_id_multi_port_pcie(struct ixgbe_hw *hw)
1078 struct ixgbe_bus_info *bus = &hw->bus;
1079 u32 reg;
1080 u16 ee_ctrl_4;
1082 DEBUGFUNC("ixgbe_set_lan_id_multi_port_pcie");
1084 reg = IXGBE_READ_REG(hw, IXGBE_STATUS);
1085 bus->func = (reg & IXGBE_STATUS_LAN_ID) >> IXGBE_STATUS_LAN_ID_SHIFT;
1086 bus->lan_id = (u8)bus->func;
1088 /* check for a port swap */
1089 reg = IXGBE_READ_REG(hw, IXGBE_FACTPS_BY_MAC(hw));
1090 if (reg & IXGBE_FACTPS_LFS)
1091 bus->func ^= 0x1;
1093 /* Get MAC instance from EEPROM for configuring CS4227 */
1094 if (hw->device_id == IXGBE_DEV_ID_X550EM_A_SFP) {
1095 hw->eeprom.ops.read(hw, IXGBE_EEPROM_CTRL_4, &ee_ctrl_4);
1096 bus->instance_id = (ee_ctrl_4 & IXGBE_EE_CTRL_4_INST_ID) >>
1097 IXGBE_EE_CTRL_4_INST_ID_SHIFT;
1102 * ixgbe_stop_adapter_generic - Generic stop Tx/Rx units
1103 * @hw: pointer to hardware structure
1105 * Sets the adapter_stopped flag within ixgbe_hw struct. Clears interrupts,
1106 * disables transmit and receive units. The adapter_stopped flag is used by
1107 * the shared code and drivers to determine if the adapter is in a stopped
1108 * state and should not touch the hardware.
1110 s32 ixgbe_stop_adapter_generic(struct ixgbe_hw *hw)
1112 u32 reg_val;
1113 u16 i;
1115 DEBUGFUNC("ixgbe_stop_adapter_generic");
1118 * Set the adapter_stopped flag so other driver functions stop touching
1119 * the hardware
1121 hw->adapter_stopped = TRUE;
1123 /* Disable the receive unit */
1124 ixgbe_disable_rx(hw);
1126 /* Clear interrupt mask to stop interrupts from being generated */
1127 IXGBE_WRITE_REG(hw, IXGBE_EIMC, IXGBE_IRQ_CLEAR_MASK);
1129 /* Clear any pending interrupts, flush previous writes */
1130 IXGBE_READ_REG(hw, IXGBE_EICR);
1132 /* Disable the transmit unit. Each queue must be disabled. */
1133 for (i = 0; i < hw->mac.max_tx_queues; i++)
1134 IXGBE_WRITE_REG(hw, IXGBE_TXDCTL(i), IXGBE_TXDCTL_SWFLSH);
1136 /* Disable the receive unit by stopping each queue */
1137 for (i = 0; i < hw->mac.max_rx_queues; i++) {
1138 reg_val = IXGBE_READ_REG(hw, IXGBE_RXDCTL(i));
1139 reg_val &= ~IXGBE_RXDCTL_ENABLE;
1140 reg_val |= IXGBE_RXDCTL_SWFLSH;
1141 IXGBE_WRITE_REG(hw, IXGBE_RXDCTL(i), reg_val);
1144 /* flush all queues disables */
1145 IXGBE_WRITE_FLUSH(hw);
1146 msec_delay(2);
1149 * Prevent the PCI-E bus from hanging by disabling PCI-E master
1150 * access and verify no pending requests
1152 return ixgbe_disable_pcie_master(hw);
1156 * ixgbe_init_led_link_act_generic - Store the LED index link/activity.
1157 * @hw: pointer to hardware structure
1159 * Store the index for the link active LED. This will be used to support
1160 * blinking the LED.
1162 s32 ixgbe_init_led_link_act_generic(struct ixgbe_hw *hw)
1164 struct ixgbe_mac_info *mac = &hw->mac;
1165 u32 led_reg, led_mode;
1166 u8 i;
1168 led_reg = IXGBE_READ_REG(hw, IXGBE_LEDCTL);
1170 /* Get LED link active from the LEDCTL register */
1171 for (i = 0; i < 4; i++) {
1172 led_mode = led_reg >> IXGBE_LED_MODE_SHIFT(i);
1174 if ((led_mode & IXGBE_LED_MODE_MASK_BASE) ==
1175 IXGBE_LED_LINK_ACTIVE) {
1176 mac->led_link_act = i;
1177 return IXGBE_SUCCESS;
1182 * If LEDCTL register does not have the LED link active set, then use
1183 * known MAC defaults.
1185 switch (hw->mac.type) {
1186 case ixgbe_mac_X550EM_a:
1187 case ixgbe_mac_X550EM_x:
1188 mac->led_link_act = 1;
1189 break;
1190 default:
1191 mac->led_link_act = 2;
1193 return IXGBE_SUCCESS;
1197 * ixgbe_led_on_generic - Turns on the software controllable LEDs.
1198 * @hw: pointer to hardware structure
1199 * @index: led number to turn on
1201 s32 ixgbe_led_on_generic(struct ixgbe_hw *hw, u32 index)
1203 u32 led_reg = IXGBE_READ_REG(hw, IXGBE_LEDCTL);
1205 DEBUGFUNC("ixgbe_led_on_generic");
1207 if (index > 3)
1208 return IXGBE_ERR_PARAM;
1210 /* To turn on the LED, set mode to ON. */
1211 led_reg &= ~IXGBE_LED_MODE_MASK(index);
1212 led_reg |= IXGBE_LED_ON << IXGBE_LED_MODE_SHIFT(index);
1213 IXGBE_WRITE_REG(hw, IXGBE_LEDCTL, led_reg);
1214 IXGBE_WRITE_FLUSH(hw);
1216 return IXGBE_SUCCESS;
1220 * ixgbe_led_off_generic - Turns off the software controllable LEDs.
1221 * @hw: pointer to hardware structure
1222 * @index: led number to turn off
1224 s32 ixgbe_led_off_generic(struct ixgbe_hw *hw, u32 index)
1226 u32 led_reg = IXGBE_READ_REG(hw, IXGBE_LEDCTL);
1228 DEBUGFUNC("ixgbe_led_off_generic");
1230 if (index > 3)
1231 return IXGBE_ERR_PARAM;
1233 /* To turn off the LED, set mode to OFF. */
1234 led_reg &= ~IXGBE_LED_MODE_MASK(index);
1235 led_reg |= IXGBE_LED_OFF << IXGBE_LED_MODE_SHIFT(index);
1236 IXGBE_WRITE_REG(hw, IXGBE_LEDCTL, led_reg);
1237 IXGBE_WRITE_FLUSH(hw);
1239 return IXGBE_SUCCESS;
1243 * ixgbe_init_eeprom_params_generic - Initialize EEPROM params
1244 * @hw: pointer to hardware structure
1246 * Initializes the EEPROM parameters ixgbe_eeprom_info within the
1247 * ixgbe_hw struct in order to set up EEPROM access.
1249 s32 ixgbe_init_eeprom_params_generic(struct ixgbe_hw *hw)
1251 struct ixgbe_eeprom_info *eeprom = &hw->eeprom;
1252 u32 eec;
1253 u16 eeprom_size;
1255 DEBUGFUNC("ixgbe_init_eeprom_params_generic");
1257 if (eeprom->type == ixgbe_eeprom_uninitialized) {
1258 eeprom->type = ixgbe_eeprom_none;
1259 /* Set default semaphore delay to 10ms which is a well
1260 * tested value */
1261 eeprom->semaphore_delay = 10;
1262 /* Clear EEPROM page size, it will be initialized as needed */
1263 eeprom->word_page_size = 0;
1266 * Check for EEPROM present first.
1267 * If not present leave as none
1269 eec = IXGBE_READ_REG(hw, IXGBE_EEC_BY_MAC(hw));
1270 if (eec & IXGBE_EEC_PRES) {
1271 eeprom->type = ixgbe_eeprom_spi;
1274 * SPI EEPROM is assumed here. This code would need to
1275 * change if a future EEPROM is not SPI.
1277 eeprom_size = (u16)((eec & IXGBE_EEC_SIZE) >>
1278 IXGBE_EEC_SIZE_SHIFT);
1279 eeprom->word_size = 1 << (eeprom_size +
1280 IXGBE_EEPROM_WORD_SIZE_SHIFT);
1283 if (eec & IXGBE_EEC_ADDR_SIZE)
1284 eeprom->address_bits = 16;
1285 else
1286 eeprom->address_bits = 8;
1287 DEBUGOUT3("Eeprom params: type = %d, size = %d, address bits: "
1288 "%d\n", eeprom->type, eeprom->word_size,
1289 eeprom->address_bits);
1292 return IXGBE_SUCCESS;
1296 * ixgbe_write_eeprom_buffer_bit_bang_generic - Write EEPROM using bit-bang
1297 * @hw: pointer to hardware structure
1298 * @offset: offset within the EEPROM to write
1299 * @words: number of word(s)
1300 * @data: 16 bit word(s) to write to EEPROM
1302 * Reads 16 bit word(s) from EEPROM through bit-bang method
1304 s32 ixgbe_write_eeprom_buffer_bit_bang_generic(struct ixgbe_hw *hw, u16 offset,
1305 u16 words, u16 *data)
1307 s32 status = IXGBE_SUCCESS;
1308 u16 i, count;
1310 DEBUGFUNC("ixgbe_write_eeprom_buffer_bit_bang_generic");
1312 hw->eeprom.ops.init_params(hw);
1314 if (words == 0) {
1315 status = IXGBE_ERR_INVALID_ARGUMENT;
1316 goto out;
1319 if (offset + words > hw->eeprom.word_size) {
1320 status = IXGBE_ERR_EEPROM;
1321 goto out;
1325 * The EEPROM page size cannot be queried from the chip. We do lazy
1326 * initialization. It is worth to do that when we write large buffer.
1328 if ((hw->eeprom.word_page_size == 0) &&
1329 (words > IXGBE_EEPROM_PAGE_SIZE_MAX))
1330 ixgbe_detect_eeprom_page_size_generic(hw, offset);
1333 * We cannot hold synchronization semaphores for too long
1334 * to avoid other entity starvation. However it is more efficient
1335 * to read in bursts than synchronizing access for each word.
1337 for (i = 0; i < words; i += IXGBE_EEPROM_RD_BUFFER_MAX_COUNT) {
1338 count = (words - i) / IXGBE_EEPROM_RD_BUFFER_MAX_COUNT > 0 ?
1339 IXGBE_EEPROM_RD_BUFFER_MAX_COUNT : (words - i);
1340 status = ixgbe_write_eeprom_buffer_bit_bang(hw, offset + i,
1341 count, &data[i]);
1343 if (status != IXGBE_SUCCESS)
1344 break;
1347 out:
1348 return status;
1352 * ixgbe_write_eeprom_buffer_bit_bang - Writes 16 bit word(s) to EEPROM
1353 * @hw: pointer to hardware structure
1354 * @offset: offset within the EEPROM to be written to
1355 * @words: number of word(s)
1356 * @data: 16 bit word(s) to be written to the EEPROM
1358 * If ixgbe_eeprom_update_checksum is not called after this function, the
1359 * EEPROM will most likely contain an invalid checksum.
1361 static s32 ixgbe_write_eeprom_buffer_bit_bang(struct ixgbe_hw *hw, u16 offset,
1362 u16 words, u16 *data)
1364 s32 status;
1365 u16 word;
1366 u16 page_size;
1367 u16 i;
1368 u8 write_opcode = IXGBE_EEPROM_WRITE_OPCODE_SPI;
1370 DEBUGFUNC("ixgbe_write_eeprom_buffer_bit_bang");
1372 /* Prepare the EEPROM for writing */
1373 status = ixgbe_acquire_eeprom(hw);
1375 if (status == IXGBE_SUCCESS) {
1376 if (ixgbe_ready_eeprom(hw) != IXGBE_SUCCESS) {
1377 ixgbe_release_eeprom(hw);
1378 status = IXGBE_ERR_EEPROM;
1382 if (status == IXGBE_SUCCESS) {
1383 for (i = 0; i < words; i++) {
1384 ixgbe_standby_eeprom(hw);
1386 /* Send the WRITE ENABLE command (8 bit opcode ) */
1387 ixgbe_shift_out_eeprom_bits(hw,
1388 IXGBE_EEPROM_WREN_OPCODE_SPI,
1389 IXGBE_EEPROM_OPCODE_BITS);
1391 ixgbe_standby_eeprom(hw);
1394 * Some SPI eeproms use the 8th address bit embedded
1395 * in the opcode
1397 if ((hw->eeprom.address_bits == 8) &&
1398 ((offset + i) >= 128))
1399 write_opcode |= IXGBE_EEPROM_A8_OPCODE_SPI;
1401 /* Send the Write command (8-bit opcode + addr) */
1402 ixgbe_shift_out_eeprom_bits(hw, write_opcode,
1403 IXGBE_EEPROM_OPCODE_BITS);
1404 ixgbe_shift_out_eeprom_bits(hw, (u16)((offset + i) * 2),
1405 hw->eeprom.address_bits);
1407 page_size = hw->eeprom.word_page_size;
1409 /* Send the data in burst via SPI*/
1410 do {
1411 word = data[i];
1412 word = (word >> 8) | (word << 8);
1413 ixgbe_shift_out_eeprom_bits(hw, word, 16);
1415 if (page_size == 0)
1416 break;
1418 /* do not wrap around page */
1419 if (((offset + i) & (page_size - 1)) ==
1420 (page_size - 1))
1421 break;
1422 } while (++i < words);
1424 ixgbe_standby_eeprom(hw);
1425 msec_delay(10);
1427 /* Done with writing - release the EEPROM */
1428 ixgbe_release_eeprom(hw);
1431 return status;
1435 * ixgbe_write_eeprom_generic - Writes 16 bit value to EEPROM
1436 * @hw: pointer to hardware structure
1437 * @offset: offset within the EEPROM to be written to
1438 * @data: 16 bit word to be written to the EEPROM
1440 * If ixgbe_eeprom_update_checksum is not called after this function, the
1441 * EEPROM will most likely contain an invalid checksum.
1443 s32 ixgbe_write_eeprom_generic(struct ixgbe_hw *hw, u16 offset, u16 data)
1445 s32 status;
1447 DEBUGFUNC("ixgbe_write_eeprom_generic");
1449 hw->eeprom.ops.init_params(hw);
1451 if (offset >= hw->eeprom.word_size) {
1452 status = IXGBE_ERR_EEPROM;
1453 goto out;
1456 status = ixgbe_write_eeprom_buffer_bit_bang(hw, offset, 1, &data);
1458 out:
1459 return status;
1463 * ixgbe_read_eeprom_buffer_bit_bang_generic - Read EEPROM using bit-bang
1464 * @hw: pointer to hardware structure
1465 * @offset: offset within the EEPROM to be read
1466 * @data: read 16 bit words(s) from EEPROM
1467 * @words: number of word(s)
1469 * Reads 16 bit word(s) from EEPROM through bit-bang method
1471 s32 ixgbe_read_eeprom_buffer_bit_bang_generic(struct ixgbe_hw *hw, u16 offset,
1472 u16 words, u16 *data)
1474 s32 status = IXGBE_SUCCESS;
1475 u16 i, count;
1477 DEBUGFUNC("ixgbe_read_eeprom_buffer_bit_bang_generic");
1479 hw->eeprom.ops.init_params(hw);
1481 if (words == 0) {
1482 status = IXGBE_ERR_INVALID_ARGUMENT;
1483 goto out;
1486 if (offset + words > hw->eeprom.word_size) {
1487 status = IXGBE_ERR_EEPROM;
1488 goto out;
1492 * We cannot hold synchronization semaphores for too long
1493 * to avoid other entity starvation. However it is more efficient
1494 * to read in bursts than synchronizing access for each word.
1496 for (i = 0; i < words; i += IXGBE_EEPROM_RD_BUFFER_MAX_COUNT) {
1497 count = (words - i) / IXGBE_EEPROM_RD_BUFFER_MAX_COUNT > 0 ?
1498 IXGBE_EEPROM_RD_BUFFER_MAX_COUNT : (words - i);
1500 status = ixgbe_read_eeprom_buffer_bit_bang(hw, offset + i,
1501 count, &data[i]);
1503 if (status != IXGBE_SUCCESS)
1504 break;
1507 out:
1508 return status;
1512 * ixgbe_read_eeprom_buffer_bit_bang - Read EEPROM using bit-bang
1513 * @hw: pointer to hardware structure
1514 * @offset: offset within the EEPROM to be read
1515 * @words: number of word(s)
1516 * @data: read 16 bit word(s) from EEPROM
1518 * Reads 16 bit word(s) from EEPROM through bit-bang method
1520 static s32 ixgbe_read_eeprom_buffer_bit_bang(struct ixgbe_hw *hw, u16 offset,
1521 u16 words, u16 *data)
1523 s32 status;
1524 u16 word_in;
1525 u8 read_opcode = IXGBE_EEPROM_READ_OPCODE_SPI;
1526 u16 i;
1528 DEBUGFUNC("ixgbe_read_eeprom_buffer_bit_bang");
1530 /* Prepare the EEPROM for reading */
1531 status = ixgbe_acquire_eeprom(hw);
1533 if (status == IXGBE_SUCCESS) {
1534 if (ixgbe_ready_eeprom(hw) != IXGBE_SUCCESS) {
1535 ixgbe_release_eeprom(hw);
1536 status = IXGBE_ERR_EEPROM;
1540 if (status == IXGBE_SUCCESS) {
1541 for (i = 0; i < words; i++) {
1542 ixgbe_standby_eeprom(hw);
1544 * Some SPI eeproms use the 8th address bit embedded
1545 * in the opcode
1547 if ((hw->eeprom.address_bits == 8) &&
1548 ((offset + i) >= 128))
1549 read_opcode |= IXGBE_EEPROM_A8_OPCODE_SPI;
1551 /* Send the READ command (opcode + addr) */
1552 ixgbe_shift_out_eeprom_bits(hw, read_opcode,
1553 IXGBE_EEPROM_OPCODE_BITS);
1554 ixgbe_shift_out_eeprom_bits(hw, (u16)((offset + i) * 2),
1555 hw->eeprom.address_bits);
1557 /* Read the data. */
1558 word_in = ixgbe_shift_in_eeprom_bits(hw, 16);
1559 data[i] = (word_in >> 8) | (word_in << 8);
1562 /* End this read operation */
1563 ixgbe_release_eeprom(hw);
1566 return status;
1570 * ixgbe_read_eeprom_bit_bang_generic - Read EEPROM word using bit-bang
1571 * @hw: pointer to hardware structure
1572 * @offset: offset within the EEPROM to be read
1573 * @data: read 16 bit value from EEPROM
1575 * Reads 16 bit value from EEPROM through bit-bang method
1577 s32 ixgbe_read_eeprom_bit_bang_generic(struct ixgbe_hw *hw, u16 offset,
1578 u16 *data)
1580 s32 status;
1582 DEBUGFUNC("ixgbe_read_eeprom_bit_bang_generic");
1584 hw->eeprom.ops.init_params(hw);
1586 if (offset >= hw->eeprom.word_size) {
1587 status = IXGBE_ERR_EEPROM;
1588 goto out;
1591 status = ixgbe_read_eeprom_buffer_bit_bang(hw, offset, 1, data);
1593 out:
1594 return status;
1598 * ixgbe_read_eerd_buffer_generic - Read EEPROM word(s) using EERD
1599 * @hw: pointer to hardware structure
1600 * @offset: offset of word in the EEPROM to read
1601 * @words: number of word(s)
1602 * @data: 16 bit word(s) from the EEPROM
1604 * Reads a 16 bit word(s) from the EEPROM using the EERD register.
1606 s32 ixgbe_read_eerd_buffer_generic(struct ixgbe_hw *hw, u16 offset,
1607 u16 words, u16 *data)
1609 u32 eerd;
1610 s32 status = IXGBE_SUCCESS;
1611 u32 i;
1613 DEBUGFUNC("ixgbe_read_eerd_buffer_generic");
1615 hw->eeprom.ops.init_params(hw);
1617 if (words == 0) {
1618 status = IXGBE_ERR_INVALID_ARGUMENT;
1619 ERROR_REPORT1(IXGBE_ERROR_ARGUMENT, "Invalid EEPROM words");
1620 goto out;
1623 if (offset >= hw->eeprom.word_size) {
1624 status = IXGBE_ERR_EEPROM;
1625 ERROR_REPORT1(IXGBE_ERROR_ARGUMENT, "Invalid EEPROM offset");
1626 goto out;
1629 for (i = 0; i < words; i++) {
1630 eerd = ((offset + i) << IXGBE_EEPROM_RW_ADDR_SHIFT) |
1631 IXGBE_EEPROM_RW_REG_START;
1633 IXGBE_WRITE_REG(hw, IXGBE_EERD, eerd);
1634 status = ixgbe_poll_eerd_eewr_done(hw, IXGBE_NVM_POLL_READ);
1636 if (status == IXGBE_SUCCESS) {
1637 data[i] = (IXGBE_READ_REG(hw, IXGBE_EERD) >>
1638 IXGBE_EEPROM_RW_REG_DATA);
1639 } else {
1640 DEBUGOUT("Eeprom read timed out\n");
1641 goto out;
1644 out:
1645 return status;
1649 * ixgbe_detect_eeprom_page_size_generic - Detect EEPROM page size
1650 * @hw: pointer to hardware structure
1651 * @offset: offset within the EEPROM to be used as a scratch pad
1653 * Discover EEPROM page size by writing marching data at given offset.
1654 * This function is called only when we are writing a new large buffer
1655 * at given offset so the data would be overwritten anyway.
1657 static s32 ixgbe_detect_eeprom_page_size_generic(struct ixgbe_hw *hw,
1658 u16 offset)
1660 u16 data[IXGBE_EEPROM_PAGE_SIZE_MAX];
1661 s32 status = IXGBE_SUCCESS;
1662 u16 i;
1664 DEBUGFUNC("ixgbe_detect_eeprom_page_size_generic");
1666 for (i = 0; i < IXGBE_EEPROM_PAGE_SIZE_MAX; i++)
1667 data[i] = i;
1669 hw->eeprom.word_page_size = IXGBE_EEPROM_PAGE_SIZE_MAX;
1670 status = ixgbe_write_eeprom_buffer_bit_bang(hw, offset,
1671 IXGBE_EEPROM_PAGE_SIZE_MAX, data);
1672 hw->eeprom.word_page_size = 0;
1673 if (status != IXGBE_SUCCESS)
1674 goto out;
1676 status = ixgbe_read_eeprom_buffer_bit_bang(hw, offset, 1, data);
1677 if (status != IXGBE_SUCCESS)
1678 goto out;
1681 * When writing in burst more than the actual page size
1682 * EEPROM address wraps around current page.
1684 hw->eeprom.word_page_size = IXGBE_EEPROM_PAGE_SIZE_MAX - data[0];
1686 DEBUGOUT1("Detected EEPROM page size = %d words.",
1687 hw->eeprom.word_page_size);
1688 out:
1689 return status;
1693 * ixgbe_read_eerd_generic - Read EEPROM word using EERD
1694 * @hw: pointer to hardware structure
1695 * @offset: offset of word in the EEPROM to read
1696 * @data: word read from the EEPROM
1698 * Reads a 16 bit word from the EEPROM using the EERD register.
1700 s32 ixgbe_read_eerd_generic(struct ixgbe_hw *hw, u16 offset, u16 *data)
1702 return ixgbe_read_eerd_buffer_generic(hw, offset, 1, data);
1706 * ixgbe_write_eewr_buffer_generic - Write EEPROM word(s) using EEWR
1707 * @hw: pointer to hardware structure
1708 * @offset: offset of word in the EEPROM to write
1709 * @words: number of word(s)
1710 * @data: word(s) write to the EEPROM
1712 * Write a 16 bit word(s) to the EEPROM using the EEWR register.
1714 s32 ixgbe_write_eewr_buffer_generic(struct ixgbe_hw *hw, u16 offset,
1715 u16 words, u16 *data)
1717 u32 eewr;
1718 s32 status = IXGBE_SUCCESS;
1719 u16 i;
1721 DEBUGFUNC("ixgbe_write_eewr_generic");
1723 hw->eeprom.ops.init_params(hw);
1725 if (words == 0) {
1726 status = IXGBE_ERR_INVALID_ARGUMENT;
1727 ERROR_REPORT1(IXGBE_ERROR_ARGUMENT, "Invalid EEPROM words");
1728 goto out;
1731 if (offset >= hw->eeprom.word_size) {
1732 status = IXGBE_ERR_EEPROM;
1733 ERROR_REPORT1(IXGBE_ERROR_ARGUMENT, "Invalid EEPROM offset");
1734 goto out;
1737 for (i = 0; i < words; i++) {
1738 eewr = ((offset + i) << IXGBE_EEPROM_RW_ADDR_SHIFT) |
1739 (data[i] << IXGBE_EEPROM_RW_REG_DATA) |
1740 IXGBE_EEPROM_RW_REG_START;
1742 status = ixgbe_poll_eerd_eewr_done(hw, IXGBE_NVM_POLL_WRITE);
1743 if (status != IXGBE_SUCCESS) {
1744 DEBUGOUT("Eeprom write EEWR timed out\n");
1745 goto out;
1748 IXGBE_WRITE_REG(hw, IXGBE_EEWR, eewr);
1750 status = ixgbe_poll_eerd_eewr_done(hw, IXGBE_NVM_POLL_WRITE);
1751 if (status != IXGBE_SUCCESS) {
1752 DEBUGOUT("Eeprom write EEWR timed out\n");
1753 goto out;
1757 out:
1758 return status;
1762 * ixgbe_write_eewr_generic - Write EEPROM word using EEWR
1763 * @hw: pointer to hardware structure
1764 * @offset: offset of word in the EEPROM to write
1765 * @data: word write to the EEPROM
1767 * Write a 16 bit word to the EEPROM using the EEWR register.
1769 s32 ixgbe_write_eewr_generic(struct ixgbe_hw *hw, u16 offset, u16 data)
1771 return ixgbe_write_eewr_buffer_generic(hw, offset, 1, &data);
1775 * ixgbe_poll_eerd_eewr_done - Poll EERD read or EEWR write status
1776 * @hw: pointer to hardware structure
1777 * @ee_reg: EEPROM flag for polling
1779 * Polls the status bit (bit 1) of the EERD or EEWR to determine when the
1780 * read or write is done respectively.
1782 s32 ixgbe_poll_eerd_eewr_done(struct ixgbe_hw *hw, u32 ee_reg)
1784 u32 i;
1785 u32 reg;
1786 s32 status = IXGBE_ERR_EEPROM;
1788 DEBUGFUNC("ixgbe_poll_eerd_eewr_done");
1790 for (i = 0; i < IXGBE_EERD_EEWR_ATTEMPTS; i++) {
1791 if (ee_reg == IXGBE_NVM_POLL_READ)
1792 reg = IXGBE_READ_REG(hw, IXGBE_EERD);
1793 else
1794 reg = IXGBE_READ_REG(hw, IXGBE_EEWR);
1796 if (reg & IXGBE_EEPROM_RW_REG_DONE) {
1797 status = IXGBE_SUCCESS;
1798 break;
1800 usec_delay(5);
1803 if (i == IXGBE_EERD_EEWR_ATTEMPTS)
1804 ERROR_REPORT1(IXGBE_ERROR_POLLING,
1805 "EEPROM read/write done polling timed out");
1807 return status;
1811 * ixgbe_acquire_eeprom - Acquire EEPROM using bit-bang
1812 * @hw: pointer to hardware structure
1814 * Prepares EEPROM for access using bit-bang method. This function should
1815 * be called before issuing a command to the EEPROM.
1817 static s32 ixgbe_acquire_eeprom(struct ixgbe_hw *hw)
1819 s32 status = IXGBE_SUCCESS;
1820 u32 eec;
1821 u32 i;
1823 DEBUGFUNC("ixgbe_acquire_eeprom");
1825 if (hw->mac.ops.acquire_swfw_sync(hw, IXGBE_GSSR_EEP_SM)
1826 != IXGBE_SUCCESS)
1827 status = IXGBE_ERR_SWFW_SYNC;
1829 if (status == IXGBE_SUCCESS) {
1830 eec = IXGBE_READ_REG(hw, IXGBE_EEC_BY_MAC(hw));
1832 /* Request EEPROM Access */
1833 eec |= IXGBE_EEC_REQ;
1834 IXGBE_WRITE_REG(hw, IXGBE_EEC_BY_MAC(hw), eec);
1836 for (i = 0; i < IXGBE_EEPROM_GRANT_ATTEMPTS; i++) {
1837 eec = IXGBE_READ_REG(hw, IXGBE_EEC_BY_MAC(hw));
1838 if (eec & IXGBE_EEC_GNT)
1839 break;
1840 usec_delay(5);
1843 /* Release if grant not acquired */
1844 if (!(eec & IXGBE_EEC_GNT)) {
1845 eec &= ~IXGBE_EEC_REQ;
1846 IXGBE_WRITE_REG(hw, IXGBE_EEC_BY_MAC(hw), eec);
1847 DEBUGOUT("Could not acquire EEPROM grant\n");
1849 hw->mac.ops.release_swfw_sync(hw, IXGBE_GSSR_EEP_SM);
1850 status = IXGBE_ERR_EEPROM;
1853 /* Setup EEPROM for Read/Write */
1854 if (status == IXGBE_SUCCESS) {
1855 /* Clear CS and SK */
1856 eec &= ~(IXGBE_EEC_CS | IXGBE_EEC_SK);
1857 IXGBE_WRITE_REG(hw, IXGBE_EEC_BY_MAC(hw), eec);
1858 IXGBE_WRITE_FLUSH(hw);
1859 usec_delay(1);
1862 return status;
1866 * ixgbe_get_eeprom_semaphore - Get hardware semaphore
1867 * @hw: pointer to hardware structure
1869 * Sets the hardware semaphores so EEPROM access can occur for bit-bang method
1871 static s32 ixgbe_get_eeprom_semaphore(struct ixgbe_hw *hw)
1873 s32 status = IXGBE_ERR_EEPROM;
1874 u32 timeout = 2000;
1875 u32 i;
1876 u32 swsm;
1878 DEBUGFUNC("ixgbe_get_eeprom_semaphore");
1881 /* Get SMBI software semaphore between device drivers first */
1882 for (i = 0; i < timeout; i++) {
1884 * If the SMBI bit is 0 when we read it, then the bit will be
1885 * set and we have the semaphore
1887 swsm = IXGBE_READ_REG(hw, IXGBE_SWSM_BY_MAC(hw));
1888 if (!(swsm & IXGBE_SWSM_SMBI)) {
1889 status = IXGBE_SUCCESS;
1890 break;
1892 usec_delay(50);
1895 if (i == timeout) {
1896 DEBUGOUT("Driver can't access the Eeprom - SMBI Semaphore "
1897 "not granted.\n");
1899 * this release is particularly important because our attempts
1900 * above to get the semaphore may have succeeded, and if there
1901 * was a timeout, we should unconditionally clear the semaphore
1902 * bits to free the driver to make progress
1904 ixgbe_release_eeprom_semaphore(hw);
1906 usec_delay(50);
1908 * one last try
1909 * If the SMBI bit is 0 when we read it, then the bit will be
1910 * set and we have the semaphore
1912 swsm = IXGBE_READ_REG(hw, IXGBE_SWSM_BY_MAC(hw));
1913 if (!(swsm & IXGBE_SWSM_SMBI))
1914 status = IXGBE_SUCCESS;
1917 /* Now get the semaphore between SW/FW through the SWESMBI bit */
1918 if (status == IXGBE_SUCCESS) {
1919 for (i = 0; i < timeout; i++) {
1920 swsm = IXGBE_READ_REG(hw, IXGBE_SWSM_BY_MAC(hw));
1922 /* Set the SW EEPROM semaphore bit to request access */
1923 swsm |= IXGBE_SWSM_SWESMBI;
1924 IXGBE_WRITE_REG(hw, IXGBE_SWSM_BY_MAC(hw), swsm);
1927 * If we set the bit successfully then we got the
1928 * semaphore.
1930 swsm = IXGBE_READ_REG(hw, IXGBE_SWSM_BY_MAC(hw));
1931 if (swsm & IXGBE_SWSM_SWESMBI)
1932 break;
1934 usec_delay(50);
1938 * Release semaphores and return error if SW EEPROM semaphore
1939 * was not granted because we don't have access to the EEPROM
1941 if (i >= timeout) {
1942 ERROR_REPORT1(IXGBE_ERROR_POLLING,
1943 "SWESMBI Software EEPROM semaphore not granted.\n");
1944 ixgbe_release_eeprom_semaphore(hw);
1945 status = IXGBE_ERR_EEPROM;
1947 } else {
1948 ERROR_REPORT1(IXGBE_ERROR_POLLING,
1949 "Software semaphore SMBI between device drivers "
1950 "not granted.\n");
1953 return status;
1957 * ixgbe_release_eeprom_semaphore - Release hardware semaphore
1958 * @hw: pointer to hardware structure
1960 * This function clears hardware semaphore bits.
1962 static void ixgbe_release_eeprom_semaphore(struct ixgbe_hw *hw)
1964 u32 swsm;
1966 DEBUGFUNC("ixgbe_release_eeprom_semaphore");
1968 swsm = IXGBE_READ_REG(hw, IXGBE_SWSM);
1970 /* Release both semaphores by writing 0 to the bits SWESMBI and SMBI */
1971 swsm &= ~(IXGBE_SWSM_SWESMBI | IXGBE_SWSM_SMBI);
1972 IXGBE_WRITE_REG(hw, IXGBE_SWSM, swsm);
1973 IXGBE_WRITE_FLUSH(hw);
1977 * ixgbe_ready_eeprom - Polls for EEPROM ready
1978 * @hw: pointer to hardware structure
1980 static s32 ixgbe_ready_eeprom(struct ixgbe_hw *hw)
1982 s32 status = IXGBE_SUCCESS;
1983 u16 i;
1984 u8 spi_stat_reg;
1986 DEBUGFUNC("ixgbe_ready_eeprom");
1989 * Read "Status Register" repeatedly until the LSB is cleared. The
1990 * EEPROM will signal that the command has been completed by clearing
1991 * bit 0 of the internal status register. If it's not cleared within
1992 * 5 milliseconds, then error out.
1994 for (i = 0; i < IXGBE_EEPROM_MAX_RETRY_SPI; i += 5) {
1995 ixgbe_shift_out_eeprom_bits(hw, IXGBE_EEPROM_RDSR_OPCODE_SPI,
1996 IXGBE_EEPROM_OPCODE_BITS);
1997 spi_stat_reg = (u8)ixgbe_shift_in_eeprom_bits(hw, 8);
1998 if (!(spi_stat_reg & IXGBE_EEPROM_STATUS_RDY_SPI))
1999 break;
2001 usec_delay(5);
2002 ixgbe_standby_eeprom(hw);
2006 * On some parts, SPI write time could vary from 0-20mSec on 3.3V
2007 * devices (and only 0-5mSec on 5V devices)
2009 if (i >= IXGBE_EEPROM_MAX_RETRY_SPI) {
2010 DEBUGOUT("SPI EEPROM Status error\n");
2011 status = IXGBE_ERR_EEPROM;
2014 return status;
2018 * ixgbe_standby_eeprom - Returns EEPROM to a "standby" state
2019 * @hw: pointer to hardware structure
2021 static void ixgbe_standby_eeprom(struct ixgbe_hw *hw)
2023 u32 eec;
2025 DEBUGFUNC("ixgbe_standby_eeprom");
2027 eec = IXGBE_READ_REG(hw, IXGBE_EEC_BY_MAC(hw));
2029 /* Toggle CS to flush commands */
2030 eec |= IXGBE_EEC_CS;
2031 IXGBE_WRITE_REG(hw, IXGBE_EEC_BY_MAC(hw), eec);
2032 IXGBE_WRITE_FLUSH(hw);
2033 usec_delay(1);
2034 eec &= ~IXGBE_EEC_CS;
2035 IXGBE_WRITE_REG(hw, IXGBE_EEC_BY_MAC(hw), eec);
2036 IXGBE_WRITE_FLUSH(hw);
2037 usec_delay(1);
2041 * ixgbe_shift_out_eeprom_bits - Shift data bits out to the EEPROM.
2042 * @hw: pointer to hardware structure
2043 * @data: data to send to the EEPROM
2044 * @count: number of bits to shift out
2046 static void ixgbe_shift_out_eeprom_bits(struct ixgbe_hw *hw, u16 data,
2047 u16 count)
2049 u32 eec;
2050 u32 mask;
2051 u32 i;
2053 DEBUGFUNC("ixgbe_shift_out_eeprom_bits");
2055 eec = IXGBE_READ_REG(hw, IXGBE_EEC_BY_MAC(hw));
2058 * Mask is used to shift "count" bits of "data" out to the EEPROM
2059 * one bit at a time. Determine the starting bit based on count
2061 mask = 0x01 << (count - 1);
2063 for (i = 0; i < count; i++) {
2065 * A "1" is shifted out to the EEPROM by setting bit "DI" to a
2066 * "1", and then raising and then lowering the clock (the SK
2067 * bit controls the clock input to the EEPROM). A "0" is
2068 * shifted out to the EEPROM by setting "DI" to "0" and then
2069 * raising and then lowering the clock.
2071 if (data & mask)
2072 eec |= IXGBE_EEC_DI;
2073 else
2074 eec &= ~IXGBE_EEC_DI;
2076 IXGBE_WRITE_REG(hw, IXGBE_EEC_BY_MAC(hw), eec);
2077 IXGBE_WRITE_FLUSH(hw);
2079 usec_delay(1);
2081 ixgbe_raise_eeprom_clk(hw, &eec);
2082 ixgbe_lower_eeprom_clk(hw, &eec);
2085 * Shift mask to signify next bit of data to shift in to the
2086 * EEPROM
2088 mask = mask >> 1;
2091 /* We leave the "DI" bit set to "0" when we leave this routine. */
2092 eec &= ~IXGBE_EEC_DI;
2093 IXGBE_WRITE_REG(hw, IXGBE_EEC_BY_MAC(hw), eec);
2094 IXGBE_WRITE_FLUSH(hw);
2098 * ixgbe_shift_in_eeprom_bits - Shift data bits in from the EEPROM
2099 * @hw: pointer to hardware structure
2101 static u16 ixgbe_shift_in_eeprom_bits(struct ixgbe_hw *hw, u16 count)
2103 u32 eec;
2104 u32 i;
2105 u16 data = 0;
2107 DEBUGFUNC("ixgbe_shift_in_eeprom_bits");
2110 * In order to read a register from the EEPROM, we need to shift
2111 * 'count' bits in from the EEPROM. Bits are "shifted in" by raising
2112 * the clock input to the EEPROM (setting the SK bit), and then reading
2113 * the value of the "DO" bit. During this "shifting in" process the
2114 * "DI" bit should always be clear.
2116 eec = IXGBE_READ_REG(hw, IXGBE_EEC_BY_MAC(hw));
2118 eec &= ~(IXGBE_EEC_DO | IXGBE_EEC_DI);
2120 for (i = 0; i < count; i++) {
2121 data = data << 1;
2122 ixgbe_raise_eeprom_clk(hw, &eec);
2124 eec = IXGBE_READ_REG(hw, IXGBE_EEC_BY_MAC(hw));
2126 eec &= ~(IXGBE_EEC_DI);
2127 if (eec & IXGBE_EEC_DO)
2128 data |= 1;
2130 ixgbe_lower_eeprom_clk(hw, &eec);
2133 return data;
2137 * ixgbe_raise_eeprom_clk - Raises the EEPROM's clock input.
2138 * @hw: pointer to hardware structure
2139 * @eec: EEC register's current value
2141 static void ixgbe_raise_eeprom_clk(struct ixgbe_hw *hw, u32 *eec)
2143 DEBUGFUNC("ixgbe_raise_eeprom_clk");
2146 * Raise the clock input to the EEPROM
2147 * (setting the SK bit), then delay
2149 *eec = *eec | IXGBE_EEC_SK;
2150 IXGBE_WRITE_REG(hw, IXGBE_EEC_BY_MAC(hw), *eec);
2151 IXGBE_WRITE_FLUSH(hw);
2152 usec_delay(1);
2156 * ixgbe_lower_eeprom_clk - Lowers the EEPROM's clock input.
2157 * @hw: pointer to hardware structure
2158 * @eecd: EECD's current value
2160 static void ixgbe_lower_eeprom_clk(struct ixgbe_hw *hw, u32 *eec)
2162 DEBUGFUNC("ixgbe_lower_eeprom_clk");
2165 * Lower the clock input to the EEPROM (clearing the SK bit), then
2166 * delay
2168 *eec = *eec & ~IXGBE_EEC_SK;
2169 IXGBE_WRITE_REG(hw, IXGBE_EEC_BY_MAC(hw), *eec);
2170 IXGBE_WRITE_FLUSH(hw);
2171 usec_delay(1);
2175 * ixgbe_release_eeprom - Release EEPROM, release semaphores
2176 * @hw: pointer to hardware structure
2178 static void ixgbe_release_eeprom(struct ixgbe_hw *hw)
2180 u32 eec;
2182 DEBUGFUNC("ixgbe_release_eeprom");
2184 eec = IXGBE_READ_REG(hw, IXGBE_EEC_BY_MAC(hw));
2186 eec |= IXGBE_EEC_CS; /* Pull CS high */
2187 eec &= ~IXGBE_EEC_SK; /* Lower SCK */
2189 IXGBE_WRITE_REG(hw, IXGBE_EEC_BY_MAC(hw), eec);
2190 IXGBE_WRITE_FLUSH(hw);
2192 usec_delay(1);
2194 /* Stop requesting EEPROM access */
2195 eec &= ~IXGBE_EEC_REQ;
2196 IXGBE_WRITE_REG(hw, IXGBE_EEC_BY_MAC(hw), eec);
2198 hw->mac.ops.release_swfw_sync(hw, IXGBE_GSSR_EEP_SM);
2200 /* Delay before attempt to obtain semaphore again to allow FW access */
2201 msec_delay(hw->eeprom.semaphore_delay);
2205 * ixgbe_calc_eeprom_checksum_generic - Calculates and returns the checksum
2206 * @hw: pointer to hardware structure
2208 * Returns a negative error code on error, or the 16-bit checksum
2210 s32 ixgbe_calc_eeprom_checksum_generic(struct ixgbe_hw *hw)
2212 u16 i;
2213 u16 j;
2214 u16 checksum = 0;
2215 u16 length = 0;
2216 u16 pointer = 0;
2217 u16 word = 0;
2219 DEBUGFUNC("ixgbe_calc_eeprom_checksum_generic");
2221 /* Include 0x0-0x3F in the checksum */
2222 for (i = 0; i < IXGBE_EEPROM_CHECKSUM; i++) {
2223 if (hw->eeprom.ops.read(hw, i, &word)) {
2224 DEBUGOUT("EEPROM read failed\n");
2225 return IXGBE_ERR_EEPROM;
2227 checksum += word;
2230 /* Include all data from pointers except for the fw pointer */
2231 for (i = IXGBE_PCIE_ANALOG_PTR; i < IXGBE_FW_PTR; i++) {
2232 if (hw->eeprom.ops.read(hw, i, &pointer)) {
2233 DEBUGOUT("EEPROM read failed\n");
2234 return IXGBE_ERR_EEPROM;
2237 /* If the pointer seems invalid */
2238 if (pointer == 0xFFFF || pointer == 0)
2239 continue;
2241 if (hw->eeprom.ops.read(hw, pointer, &length)) {
2242 DEBUGOUT("EEPROM read failed\n");
2243 return IXGBE_ERR_EEPROM;
2246 if (length == 0xFFFF || length == 0)
2247 continue;
2249 for (j = pointer + 1; j <= pointer + length; j++) {
2250 if (hw->eeprom.ops.read(hw, j, &word)) {
2251 DEBUGOUT("EEPROM read failed\n");
2252 return IXGBE_ERR_EEPROM;
2254 checksum += word;
2258 checksum = (u16)IXGBE_EEPROM_SUM - checksum;
2260 return (s32)checksum;
2264 * ixgbe_validate_eeprom_checksum_generic - Validate EEPROM checksum
2265 * @hw: pointer to hardware structure
2266 * @checksum_val: calculated checksum
2268 * Performs checksum calculation and validates the EEPROM checksum. If the
2269 * caller does not need checksum_val, the value can be NULL.
2271 s32 ixgbe_validate_eeprom_checksum_generic(struct ixgbe_hw *hw,
2272 u16 *checksum_val)
2274 s32 status;
2275 u16 checksum;
2276 u16 read_checksum = 0;
2278 DEBUGFUNC("ixgbe_validate_eeprom_checksum_generic");
2280 /* Read the first word from the EEPROM. If this times out or fails, do
2281 * not continue or we could be in for a very long wait while every
2282 * EEPROM read fails
2284 status = hw->eeprom.ops.read(hw, 0, &checksum);
2285 if (status) {
2286 DEBUGOUT("EEPROM read failed\n");
2287 return status;
2290 status = hw->eeprom.ops.calc_checksum(hw);
2291 if (status < 0)
2292 return status;
2294 checksum = (u16)(status & 0xffff);
2296 status = hw->eeprom.ops.read(hw, IXGBE_EEPROM_CHECKSUM, &read_checksum);
2297 if (status) {
2298 DEBUGOUT("EEPROM read failed\n");
2299 return status;
2302 /* Verify read checksum from EEPROM is the same as
2303 * calculated checksum
2305 if (read_checksum != checksum)
2306 status = IXGBE_ERR_EEPROM_CHECKSUM;
2308 /* If the user cares, return the calculated checksum */
2309 if (checksum_val)
2310 *checksum_val = checksum;
2312 return status;
2316 * ixgbe_update_eeprom_checksum_generic - Updates the EEPROM checksum
2317 * @hw: pointer to hardware structure
2319 s32 ixgbe_update_eeprom_checksum_generic(struct ixgbe_hw *hw)
2321 s32 status;
2322 u16 checksum;
2324 DEBUGFUNC("ixgbe_update_eeprom_checksum_generic");
2326 /* Read the first word from the EEPROM. If this times out or fails, do
2327 * not continue or we could be in for a very long wait while every
2328 * EEPROM read fails
2330 status = hw->eeprom.ops.read(hw, 0, &checksum);
2331 if (status) {
2332 DEBUGOUT("EEPROM read failed\n");
2333 return status;
2336 status = hw->eeprom.ops.calc_checksum(hw);
2337 if (status < 0)
2338 return status;
2340 checksum = (u16)(status & 0xffff);
2342 status = hw->eeprom.ops.write(hw, IXGBE_EEPROM_CHECKSUM, checksum);
2344 return status;
2348 * ixgbe_validate_mac_addr - Validate MAC address
2349 * @mac_addr: pointer to MAC address.
2351 * Tests a MAC address to ensure it is a valid Individual Address.
2353 s32 ixgbe_validate_mac_addr(u8 *mac_addr)
2355 s32 status = IXGBE_SUCCESS;
2357 DEBUGFUNC("ixgbe_validate_mac_addr");
2359 /* Make sure it is not a multicast address */
2360 if (IXGBE_IS_MULTICAST(mac_addr)) {
2361 status = IXGBE_ERR_INVALID_MAC_ADDR;
2362 /* Not a broadcast address */
2363 } else if (IXGBE_IS_BROADCAST(mac_addr)) {
2364 status = IXGBE_ERR_INVALID_MAC_ADDR;
2365 /* Reject the zero address */
2366 } else if (mac_addr[0] == 0 && mac_addr[1] == 0 && mac_addr[2] == 0 &&
2367 mac_addr[3] == 0 && mac_addr[4] == 0 && mac_addr[5] == 0) {
2368 status = IXGBE_ERR_INVALID_MAC_ADDR;
2370 return status;
2374 * ixgbe_set_rar_generic - Set Rx address register
2375 * @hw: pointer to hardware structure
2376 * @index: Receive address register to write
2377 * @addr: Address to put into receive address register
2378 * @vmdq: VMDq "set" or "pool" index
2379 * @enable_addr: set flag that address is active
2381 * Puts an ethernet address into a receive address register.
2383 s32 ixgbe_set_rar_generic(struct ixgbe_hw *hw, u32 index, u8 *addr, u32 vmdq,
2384 u32 enable_addr)
2386 u32 rar_low, rar_high;
2387 u32 rar_entries = hw->mac.num_rar_entries;
2389 DEBUGFUNC("ixgbe_set_rar_generic");
2391 /* Make sure we are using a valid rar index range */
2392 if (index >= rar_entries) {
2393 ERROR_REPORT2(IXGBE_ERROR_ARGUMENT,
2394 "RAR index %d is out of range.\n", index);
2395 return IXGBE_ERR_INVALID_ARGUMENT;
2398 /* setup VMDq pool selection before this RAR gets enabled */
2399 hw->mac.ops.set_vmdq(hw, index, vmdq);
2402 * HW expects these in little endian so we reverse the byte
2403 * order from network order (big endian) to little endian
2405 rar_low = ((u32)addr[0] |
2406 ((u32)addr[1] << 8) |
2407 ((u32)addr[2] << 16) |
2408 ((u32)addr[3] << 24));
2410 * Some parts put the VMDq setting in the extra RAH bits,
2411 * so save everything except the lower 16 bits that hold part
2412 * of the address and the address valid bit.
2414 rar_high = IXGBE_READ_REG(hw, IXGBE_RAH(index));
2415 rar_high &= ~(0x0000FFFF | IXGBE_RAH_AV);
2416 rar_high |= ((u32)addr[4] | ((u32)addr[5] << 8));
2418 if (enable_addr != 0)
2419 rar_high |= IXGBE_RAH_AV;
2421 IXGBE_WRITE_REG(hw, IXGBE_RAL(index), rar_low);
2422 IXGBE_WRITE_REG(hw, IXGBE_RAH(index), rar_high);
2424 return IXGBE_SUCCESS;
2428 * ixgbe_clear_rar_generic - Remove Rx address register
2429 * @hw: pointer to hardware structure
2430 * @index: Receive address register to write
2432 * Clears an ethernet address from a receive address register.
2434 s32 ixgbe_clear_rar_generic(struct ixgbe_hw *hw, u32 index)
2436 u32 rar_high;
2437 u32 rar_entries = hw->mac.num_rar_entries;
2439 DEBUGFUNC("ixgbe_clear_rar_generic");
2441 /* Make sure we are using a valid rar index range */
2442 if (index >= rar_entries) {
2443 ERROR_REPORT2(IXGBE_ERROR_ARGUMENT,
2444 "RAR index %d is out of range.\n", index);
2445 return IXGBE_ERR_INVALID_ARGUMENT;
2449 * Some parts put the VMDq setting in the extra RAH bits,
2450 * so save everything except the lower 16 bits that hold part
2451 * of the address and the address valid bit.
2453 rar_high = IXGBE_READ_REG(hw, IXGBE_RAH(index));
2454 rar_high &= ~(0x0000FFFF | IXGBE_RAH_AV);
2456 IXGBE_WRITE_REG(hw, IXGBE_RAL(index), 0);
2457 IXGBE_WRITE_REG(hw, IXGBE_RAH(index), rar_high);
2459 /* clear VMDq pool/queue selection for this RAR */
2460 hw->mac.ops.clear_vmdq(hw, index, IXGBE_CLEAR_VMDQ_ALL);
2462 return IXGBE_SUCCESS;
2466 * ixgbe_init_rx_addrs_generic - Initializes receive address filters.
2467 * @hw: pointer to hardware structure
2469 * Places the MAC address in receive address register 0 and clears the rest
2470 * of the receive address registers. Clears the multicast table. Assumes
2471 * the receiver is in reset when the routine is called.
2473 s32 ixgbe_init_rx_addrs_generic(struct ixgbe_hw *hw)
2475 u32 i;
2476 u32 rar_entries = hw->mac.num_rar_entries;
2478 DEBUGFUNC("ixgbe_init_rx_addrs_generic");
2481 * If the current mac address is valid, assume it is a software override
2482 * to the permanent address.
2483 * Otherwise, use the permanent address from the eeprom.
2485 if (ixgbe_validate_mac_addr(hw->mac.addr) ==
2486 IXGBE_ERR_INVALID_MAC_ADDR) {
2487 /* Get the MAC address from the RAR0 for later reference */
2488 hw->mac.ops.get_mac_addr(hw, hw->mac.addr);
2490 DEBUGOUT3(" Keeping Current RAR0 Addr =%.2X %.2X %.2X ",
2491 hw->mac.addr[0], hw->mac.addr[1],
2492 hw->mac.addr[2]);
2493 DEBUGOUT3("%.2X %.2X %.2X\n", hw->mac.addr[3],
2494 hw->mac.addr[4], hw->mac.addr[5]);
2495 } else {
2496 /* Setup the receive address. */
2497 DEBUGOUT("Overriding MAC Address in RAR[0]\n");
2498 DEBUGOUT3(" New MAC Addr =%.2X %.2X %.2X ",
2499 hw->mac.addr[0], hw->mac.addr[1],
2500 hw->mac.addr[2]);
2501 DEBUGOUT3("%.2X %.2X %.2X\n", hw->mac.addr[3],
2502 hw->mac.addr[4], hw->mac.addr[5]);
2504 hw->mac.ops.set_rar(hw, 0, hw->mac.addr, 0, IXGBE_RAH_AV);
2507 /* clear VMDq pool/queue selection for RAR 0 */
2508 hw->mac.ops.clear_vmdq(hw, 0, IXGBE_CLEAR_VMDQ_ALL);
2510 hw->addr_ctrl.overflow_promisc = 0;
2512 hw->addr_ctrl.rar_used_count = 1;
2514 /* Zero out the other receive addresses. */
2515 DEBUGOUT1("Clearing RAR[1-%d]\n", rar_entries - 1);
2516 for (i = 1; i < rar_entries; i++) {
2517 IXGBE_WRITE_REG(hw, IXGBE_RAL(i), 0);
2518 IXGBE_WRITE_REG(hw, IXGBE_RAH(i), 0);
2521 /* Clear the MTA */
2522 hw->addr_ctrl.mta_in_use = 0;
2523 IXGBE_WRITE_REG(hw, IXGBE_MCSTCTRL, hw->mac.mc_filter_type);
2525 DEBUGOUT(" Clearing MTA\n");
2526 for (i = 0; i < hw->mac.mcft_size; i++)
2527 IXGBE_WRITE_REG(hw, IXGBE_MTA(i), 0);
2529 ixgbe_init_uta_tables(hw);
2531 return IXGBE_SUCCESS;
2535 * ixgbe_add_uc_addr - Adds a secondary unicast address.
2536 * @hw: pointer to hardware structure
2537 * @addr: new address
2539 * Adds it to unused receive address register or goes into promiscuous mode.
2541 void ixgbe_add_uc_addr(struct ixgbe_hw *hw, u8 *addr, u32 vmdq)
2543 u32 rar_entries = hw->mac.num_rar_entries;
2544 u32 rar;
2546 DEBUGFUNC("ixgbe_add_uc_addr");
2548 DEBUGOUT6(" UC Addr = %.2X %.2X %.2X %.2X %.2X %.2X\n",
2549 addr[0], addr[1], addr[2], addr[3], addr[4], addr[5]);
2552 * Place this address in the RAR if there is room,
2553 * else put the controller into promiscuous mode
2555 if (hw->addr_ctrl.rar_used_count < rar_entries) {
2556 rar = hw->addr_ctrl.rar_used_count;
2557 hw->mac.ops.set_rar(hw, rar, addr, vmdq, IXGBE_RAH_AV);
2558 DEBUGOUT1("Added a secondary address to RAR[%d]\n", rar);
2559 hw->addr_ctrl.rar_used_count++;
2560 } else {
2561 hw->addr_ctrl.overflow_promisc++;
2564 DEBUGOUT("ixgbe_add_uc_addr Complete\n");
2568 * ixgbe_update_uc_addr_list_generic - Updates MAC list of secondary addresses
2569 * @hw: pointer to hardware structure
2570 * @addr_list: the list of new addresses
2571 * @addr_count: number of addresses
2572 * @next: iterator function to walk the address list
2574 * The given list replaces any existing list. Clears the secondary addrs from
2575 * receive address registers. Uses unused receive address registers for the
2576 * first secondary addresses, and falls back to promiscuous mode as needed.
2578 * Drivers using secondary unicast addresses must set user_set_promisc when
2579 * manually putting the device into promiscuous mode.
2581 s32 ixgbe_update_uc_addr_list_generic(struct ixgbe_hw *hw, u8 *addr_list,
2582 u32 addr_count, ixgbe_mc_addr_itr next)
2584 u8 *addr;
2585 u32 i;
2586 u32 old_promisc_setting = hw->addr_ctrl.overflow_promisc;
2587 u32 uc_addr_in_use;
2588 u32 fctrl;
2589 u32 vmdq;
2591 DEBUGFUNC("ixgbe_update_uc_addr_list_generic");
2594 * Clear accounting of old secondary address list,
2595 * don't count RAR[0]
2597 uc_addr_in_use = hw->addr_ctrl.rar_used_count - 1;
2598 hw->addr_ctrl.rar_used_count -= uc_addr_in_use;
2599 hw->addr_ctrl.overflow_promisc = 0;
2601 /* Zero out the other receive addresses */
2602 DEBUGOUT1("Clearing RAR[1-%d]\n", uc_addr_in_use+1);
2603 for (i = 0; i < uc_addr_in_use; i++) {
2604 IXGBE_WRITE_REG(hw, IXGBE_RAL(1+i), 0);
2605 IXGBE_WRITE_REG(hw, IXGBE_RAH(1+i), 0);
2608 /* Add the new addresses */
2609 for (i = 0; i < addr_count; i++) {
2610 DEBUGOUT(" Adding the secondary addresses:\n");
2611 addr = next(hw, &addr_list, &vmdq);
2612 ixgbe_add_uc_addr(hw, addr, vmdq);
2615 if (hw->addr_ctrl.overflow_promisc) {
2616 /* enable promisc if not already in overflow or set by user */
2617 if (!old_promisc_setting && !hw->addr_ctrl.user_set_promisc) {
2618 DEBUGOUT(" Entering address overflow promisc mode\n");
2619 fctrl = IXGBE_READ_REG(hw, IXGBE_FCTRL);
2620 fctrl |= IXGBE_FCTRL_UPE;
2621 IXGBE_WRITE_REG(hw, IXGBE_FCTRL, fctrl);
2623 } else {
2624 /* only disable if set by overflow, not by user */
2625 if (old_promisc_setting && !hw->addr_ctrl.user_set_promisc) {
2626 DEBUGOUT(" Leaving address overflow promisc mode\n");
2627 fctrl = IXGBE_READ_REG(hw, IXGBE_FCTRL);
2628 fctrl &= ~IXGBE_FCTRL_UPE;
2629 IXGBE_WRITE_REG(hw, IXGBE_FCTRL, fctrl);
2633 DEBUGOUT("ixgbe_update_uc_addr_list_generic Complete\n");
2634 return IXGBE_SUCCESS;
2638 * ixgbe_mta_vector - Determines bit-vector in multicast table to set
2639 * @hw: pointer to hardware structure
2640 * @mc_addr: the multicast address
2642 * Extracts the 12 bits, from a multicast address, to determine which
2643 * bit-vector to set in the multicast table. The hardware uses 12 bits, from
2644 * incoming rx multicast addresses, to determine the bit-vector to check in
2645 * the MTA. Which of the 4 combination, of 12-bits, the hardware uses is set
2646 * by the MO field of the MCSTCTRL. The MO field is set during initialization
2647 * to mc_filter_type.
2649 static s32 ixgbe_mta_vector(struct ixgbe_hw *hw, u8 *mc_addr)
2651 u32 vector = 0;
2653 DEBUGFUNC("ixgbe_mta_vector");
2655 switch (hw->mac.mc_filter_type) {
2656 case 0: /* use bits [47:36] of the address */
2657 vector = ((mc_addr[4] >> 4) | (((u16)mc_addr[5]) << 4));
2658 break;
2659 case 1: /* use bits [46:35] of the address */
2660 vector = ((mc_addr[4] >> 3) | (((u16)mc_addr[5]) << 5));
2661 break;
2662 case 2: /* use bits [45:34] of the address */
2663 vector = ((mc_addr[4] >> 2) | (((u16)mc_addr[5]) << 6));
2664 break;
2665 case 3: /* use bits [43:32] of the address */
2666 vector = ((mc_addr[4]) | (((u16)mc_addr[5]) << 8));
2667 break;
2668 default: /* Invalid mc_filter_type */
2669 DEBUGOUT("MC filter type param set incorrectly\n");
2670 ASSERT(0);
2671 break;
2674 /* vector can only be 12-bits or boundary will be exceeded */
2675 vector &= 0xFFF;
2676 return vector;
2680 * ixgbe_set_mta - Set bit-vector in multicast table
2681 * @hw: pointer to hardware structure
2682 * @hash_value: Multicast address hash value
2684 * Sets the bit-vector in the multicast table.
2686 void ixgbe_set_mta(struct ixgbe_hw *hw, u8 *mc_addr)
2688 u32 vector;
2689 u32 vector_bit;
2690 u32 vector_reg;
2692 DEBUGFUNC("ixgbe_set_mta");
2694 hw->addr_ctrl.mta_in_use++;
2696 vector = ixgbe_mta_vector(hw, mc_addr);
2697 DEBUGOUT1(" bit-vector = 0x%03X\n", vector);
2700 * The MTA is a register array of 128 32-bit registers. It is treated
2701 * like an array of 4096 bits. We want to set bit
2702 * BitArray[vector_value]. So we figure out what register the bit is
2703 * in, read it, OR in the new bit, then write back the new value. The
2704 * register is determined by the upper 7 bits of the vector value and
2705 * the bit within that register are determined by the lower 5 bits of
2706 * the value.
2708 vector_reg = (vector >> 5) & 0x7F;
2709 vector_bit = vector & 0x1F;
2710 hw->mac.mta_shadow[vector_reg] |= (1 << vector_bit);
2714 * ixgbe_update_mc_addr_list_generic - Updates MAC list of multicast addresses
2715 * @hw: pointer to hardware structure
2716 * @mc_addr_list: the list of new multicast addresses
2717 * @mc_addr_count: number of addresses
2718 * @next: iterator function to walk the multicast address list
2719 * @clear: flag, when set clears the table beforehand
2721 * When the clear flag is set, the given list replaces any existing list.
2722 * Hashes the given addresses into the multicast table.
2724 s32 ixgbe_update_mc_addr_list_generic(struct ixgbe_hw *hw, u8 *mc_addr_list,
2725 u32 mc_addr_count, ixgbe_mc_addr_itr next,
2726 bool clear)
2728 u32 i;
2729 u32 vmdq;
2731 DEBUGFUNC("ixgbe_update_mc_addr_list_generic");
2734 * Set the new number of MC addresses that we are being requested to
2735 * use.
2737 hw->addr_ctrl.num_mc_addrs = mc_addr_count;
2738 hw->addr_ctrl.mta_in_use = 0;
2740 /* Clear mta_shadow */
2741 if (clear) {
2742 DEBUGOUT(" Clearing MTA\n");
2743 memset(&hw->mac.mta_shadow, 0, sizeof(hw->mac.mta_shadow));
2746 /* Update mta_shadow */
2747 for (i = 0; i < mc_addr_count; i++) {
2748 DEBUGOUT(" Adding the multicast addresses:\n");
2749 ixgbe_set_mta(hw, next(hw, &mc_addr_list, &vmdq));
2752 /* Enable mta */
2753 for (i = 0; i < hw->mac.mcft_size; i++)
2754 IXGBE_WRITE_REG_ARRAY(hw, IXGBE_MTA(0), i,
2755 hw->mac.mta_shadow[i]);
2757 if (hw->addr_ctrl.mta_in_use > 0)
2758 IXGBE_WRITE_REG(hw, IXGBE_MCSTCTRL,
2759 IXGBE_MCSTCTRL_MFE | hw->mac.mc_filter_type);
2761 DEBUGOUT("ixgbe_update_mc_addr_list_generic Complete\n");
2762 return IXGBE_SUCCESS;
2766 * ixgbe_enable_mc_generic - Enable multicast address in RAR
2767 * @hw: pointer to hardware structure
2769 * Enables multicast address in RAR and the use of the multicast hash table.
2771 s32 ixgbe_enable_mc_generic(struct ixgbe_hw *hw)
2773 struct ixgbe_addr_filter_info *a = &hw->addr_ctrl;
2775 DEBUGFUNC("ixgbe_enable_mc_generic");
2777 if (a->mta_in_use > 0)
2778 IXGBE_WRITE_REG(hw, IXGBE_MCSTCTRL, IXGBE_MCSTCTRL_MFE |
2779 hw->mac.mc_filter_type);
2781 return IXGBE_SUCCESS;
2785 * ixgbe_disable_mc_generic - Disable multicast address in RAR
2786 * @hw: pointer to hardware structure
2788 * Disables multicast address in RAR and the use of the multicast hash table.
2790 s32 ixgbe_disable_mc_generic(struct ixgbe_hw *hw)
2792 struct ixgbe_addr_filter_info *a = &hw->addr_ctrl;
2794 DEBUGFUNC("ixgbe_disable_mc_generic");
2796 if (a->mta_in_use > 0)
2797 IXGBE_WRITE_REG(hw, IXGBE_MCSTCTRL, hw->mac.mc_filter_type);
2799 return IXGBE_SUCCESS;
2803 * ixgbe_fc_enable_generic - Enable flow control
2804 * @hw: pointer to hardware structure
2806 * Enable flow control according to the current settings.
2808 s32 ixgbe_fc_enable_generic(struct ixgbe_hw *hw)
2810 s32 ret_val = IXGBE_SUCCESS;
2811 u32 mflcn_reg, fccfg_reg;
2812 u32 reg;
2813 u32 fcrtl, fcrth;
2814 int i;
2816 DEBUGFUNC("ixgbe_fc_enable_generic");
2818 /* Validate the water mark configuration */
2819 if (!hw->fc.pause_time) {
2820 ret_val = IXGBE_ERR_INVALID_LINK_SETTINGS;
2821 goto out;
2824 /* Low water mark of zero causes XOFF floods */
2825 for (i = 0; i < IXGBE_DCB_MAX_TRAFFIC_CLASS; i++) {
2826 if ((hw->fc.current_mode & ixgbe_fc_tx_pause) &&
2827 hw->fc.high_water[i]) {
2828 if (!hw->fc.low_water[i] ||
2829 hw->fc.low_water[i] >= hw->fc.high_water[i]) {
2830 DEBUGOUT("Invalid water mark configuration\n");
2831 ret_val = IXGBE_ERR_INVALID_LINK_SETTINGS;
2832 goto out;
2837 /* Negotiate the fc mode to use */
2838 hw->mac.ops.fc_autoneg(hw);
2840 /* Disable any previous flow control settings */
2841 mflcn_reg = IXGBE_READ_REG(hw, IXGBE_MFLCN);
2842 mflcn_reg &= ~(IXGBE_MFLCN_RPFCE_MASK | IXGBE_MFLCN_RFCE);
2844 fccfg_reg = IXGBE_READ_REG(hw, IXGBE_FCCFG);
2845 fccfg_reg &= ~(IXGBE_FCCFG_TFCE_802_3X | IXGBE_FCCFG_TFCE_PRIORITY);
2848 * The possible values of fc.current_mode are:
2849 * 0: Flow control is completely disabled
2850 * 1: Rx flow control is enabled (we can receive pause frames,
2851 * but not send pause frames).
2852 * 2: Tx flow control is enabled (we can send pause frames but
2853 * we do not support receiving pause frames).
2854 * 3: Both Rx and Tx flow control (symmetric) are enabled.
2855 * other: Invalid.
2857 switch (hw->fc.current_mode) {
2858 case ixgbe_fc_none:
2860 * Flow control is disabled by software override or autoneg.
2861 * The code below will actually disable it in the HW.
2863 break;
2864 case ixgbe_fc_rx_pause:
2866 * Rx Flow control is enabled and Tx Flow control is
2867 * disabled by software override. Since there really
2868 * isn't a way to advertise that we are capable of RX
2869 * Pause ONLY, we will advertise that we support both
2870 * symmetric and asymmetric Rx PAUSE. Later, we will
2871 * disable the adapter's ability to send PAUSE frames.
2873 mflcn_reg |= IXGBE_MFLCN_RFCE;
2874 break;
2875 case ixgbe_fc_tx_pause:
2877 * Tx Flow control is enabled, and Rx Flow control is
2878 * disabled by software override.
2880 fccfg_reg |= IXGBE_FCCFG_TFCE_802_3X;
2881 break;
2882 case ixgbe_fc_full:
2883 /* Flow control (both Rx and Tx) is enabled by SW override. */
2884 mflcn_reg |= IXGBE_MFLCN_RFCE;
2885 fccfg_reg |= IXGBE_FCCFG_TFCE_802_3X;
2886 break;
2887 default:
2888 ERROR_REPORT1(IXGBE_ERROR_ARGUMENT,
2889 "Flow control param set incorrectly\n");
2890 ret_val = IXGBE_ERR_CONFIG;
2891 goto out;
2892 break;
2895 /* Set 802.3x based flow control settings. */
2896 mflcn_reg |= IXGBE_MFLCN_DPF;
2897 IXGBE_WRITE_REG(hw, IXGBE_MFLCN, mflcn_reg);
2898 IXGBE_WRITE_REG(hw, IXGBE_FCCFG, fccfg_reg);
2901 /* Set up and enable Rx high/low water mark thresholds, enable XON. */
2902 for (i = 0; i < IXGBE_DCB_MAX_TRAFFIC_CLASS; i++) {
2903 if ((hw->fc.current_mode & ixgbe_fc_tx_pause) &&
2904 hw->fc.high_water[i]) {
2905 fcrtl = (hw->fc.low_water[i] << 10) | IXGBE_FCRTL_XONE;
2906 IXGBE_WRITE_REG(hw, IXGBE_FCRTL_82599(i), fcrtl);
2907 fcrth = (hw->fc.high_water[i] << 10) | IXGBE_FCRTH_FCEN;
2908 } else {
2909 IXGBE_WRITE_REG(hw, IXGBE_FCRTL_82599(i), 0);
2911 * In order to prevent Tx hangs when the internal Tx
2912 * switch is enabled we must set the high water mark
2913 * to the Rx packet buffer size - 24KB. This allows
2914 * the Tx switch to function even under heavy Rx
2915 * workloads.
2917 fcrth = IXGBE_READ_REG(hw, IXGBE_RXPBSIZE(i)) - 24576;
2920 IXGBE_WRITE_REG(hw, IXGBE_FCRTH_82599(i), fcrth);
2923 /* Configure pause time (2 TCs per register) */
2924 reg = hw->fc.pause_time * 0x00010001;
2925 for (i = 0; i < (IXGBE_DCB_MAX_TRAFFIC_CLASS / 2); i++)
2926 IXGBE_WRITE_REG(hw, IXGBE_FCTTV(i), reg);
2928 /* Configure flow control refresh threshold value */
2929 IXGBE_WRITE_REG(hw, IXGBE_FCRTV, hw->fc.pause_time / 2);
2931 out:
2932 return ret_val;
2936 * ixgbe_negotiate_fc - Negotiate flow control
2937 * @hw: pointer to hardware structure
2938 * @adv_reg: flow control advertised settings
2939 * @lp_reg: link partner's flow control settings
2940 * @adv_sym: symmetric pause bit in advertisement
2941 * @adv_asm: asymmetric pause bit in advertisement
2942 * @lp_sym: symmetric pause bit in link partner advertisement
2943 * @lp_asm: asymmetric pause bit in link partner advertisement
2945 * Find the intersection between advertised settings and link partner's
2946 * advertised settings
2948 s32 ixgbe_negotiate_fc(struct ixgbe_hw *hw, u32 adv_reg, u32 lp_reg,
2949 u32 adv_sym, u32 adv_asm, u32 lp_sym, u32 lp_asm)
2951 if ((!(adv_reg)) || (!(lp_reg))) {
2952 ERROR_REPORT3(IXGBE_ERROR_UNSUPPORTED,
2953 "Local or link partner's advertised flow control "
2954 "settings are NULL. Local: %x, link partner: %x\n",
2955 adv_reg, lp_reg);
2956 return IXGBE_ERR_FC_NOT_NEGOTIATED;
2959 if ((adv_reg & adv_sym) && (lp_reg & lp_sym)) {
2961 * Now we need to check if the user selected Rx ONLY
2962 * of pause frames. In this case, we had to advertise
2963 * FULL flow control because we could not advertise RX
2964 * ONLY. Hence, we must now check to see if we need to
2965 * turn OFF the TRANSMISSION of PAUSE frames.
2967 if (hw->fc.requested_mode == ixgbe_fc_full) {
2968 hw->fc.current_mode = ixgbe_fc_full;
2969 DEBUGOUT("Flow Control = FULL.\n");
2970 } else {
2971 hw->fc.current_mode = ixgbe_fc_rx_pause;
2972 DEBUGOUT("Flow Control=RX PAUSE frames only\n");
2974 } else if (!(adv_reg & adv_sym) && (adv_reg & adv_asm) &&
2975 (lp_reg & lp_sym) && (lp_reg & lp_asm)) {
2976 hw->fc.current_mode = ixgbe_fc_tx_pause;
2977 DEBUGOUT("Flow Control = TX PAUSE frames only.\n");
2978 } else if ((adv_reg & adv_sym) && (adv_reg & adv_asm) &&
2979 !(lp_reg & lp_sym) && (lp_reg & lp_asm)) {
2980 hw->fc.current_mode = ixgbe_fc_rx_pause;
2981 DEBUGOUT("Flow Control = RX PAUSE frames only.\n");
2982 } else {
2983 hw->fc.current_mode = ixgbe_fc_none;
2984 DEBUGOUT("Flow Control = NONE.\n");
2986 return IXGBE_SUCCESS;
2990 * ixgbe_fc_autoneg_fiber - Enable flow control on 1 gig fiber
2991 * @hw: pointer to hardware structure
2993 * Enable flow control according on 1 gig fiber.
2995 static s32 ixgbe_fc_autoneg_fiber(struct ixgbe_hw *hw)
2997 u32 pcs_anadv_reg, pcs_lpab_reg, linkstat;
2998 s32 ret_val = IXGBE_ERR_FC_NOT_NEGOTIATED;
3001 * On multispeed fiber at 1g, bail out if
3002 * - link is up but AN did not complete, or if
3003 * - link is up and AN completed but timed out
3006 linkstat = IXGBE_READ_REG(hw, IXGBE_PCS1GLSTA);
3007 if ((!!(linkstat & IXGBE_PCS1GLSTA_AN_COMPLETE) == 0) ||
3008 (!!(linkstat & IXGBE_PCS1GLSTA_AN_TIMED_OUT) == 1)) {
3009 DEBUGOUT("Auto-Negotiation did not complete or timed out\n");
3010 goto out;
3013 pcs_anadv_reg = IXGBE_READ_REG(hw, IXGBE_PCS1GANA);
3014 pcs_lpab_reg = IXGBE_READ_REG(hw, IXGBE_PCS1GANLP);
3016 ret_val = ixgbe_negotiate_fc(hw, pcs_anadv_reg,
3017 pcs_lpab_reg, IXGBE_PCS1GANA_SYM_PAUSE,
3018 IXGBE_PCS1GANA_ASM_PAUSE,
3019 IXGBE_PCS1GANA_SYM_PAUSE,
3020 IXGBE_PCS1GANA_ASM_PAUSE);
3022 out:
3023 return ret_val;
3027 * ixgbe_fc_autoneg_backplane - Enable flow control IEEE clause 37
3028 * @hw: pointer to hardware structure
3030 * Enable flow control according to IEEE clause 37.
3032 static s32 ixgbe_fc_autoneg_backplane(struct ixgbe_hw *hw)
3034 u32 links2, anlp1_reg, autoc_reg, links;
3035 s32 ret_val = IXGBE_ERR_FC_NOT_NEGOTIATED;
3038 * On backplane, bail out if
3039 * - backplane autoneg was not completed, or if
3040 * - we are 82599 and link partner is not AN enabled
3042 links = IXGBE_READ_REG(hw, IXGBE_LINKS);
3043 if ((links & IXGBE_LINKS_KX_AN_COMP) == 0) {
3044 DEBUGOUT("Auto-Negotiation did not complete\n");
3045 goto out;
3048 if (hw->mac.type == ixgbe_mac_82599EB) {
3049 links2 = IXGBE_READ_REG(hw, IXGBE_LINKS2);
3050 if ((links2 & IXGBE_LINKS2_AN_SUPPORTED) == 0) {
3051 DEBUGOUT("Link partner is not AN enabled\n");
3052 goto out;
3056 * Read the 10g AN autoc and LP ability registers and resolve
3057 * local flow control settings accordingly
3059 autoc_reg = IXGBE_READ_REG(hw, IXGBE_AUTOC);
3060 anlp1_reg = IXGBE_READ_REG(hw, IXGBE_ANLP1);
3062 ret_val = ixgbe_negotiate_fc(hw, autoc_reg,
3063 anlp1_reg, IXGBE_AUTOC_SYM_PAUSE, IXGBE_AUTOC_ASM_PAUSE,
3064 IXGBE_ANLP1_SYM_PAUSE, IXGBE_ANLP1_ASM_PAUSE);
3066 out:
3067 return ret_val;
3071 * ixgbe_fc_autoneg_copper - Enable flow control IEEE clause 37
3072 * @hw: pointer to hardware structure
3074 * Enable flow control according to IEEE clause 37.
3076 static s32 ixgbe_fc_autoneg_copper(struct ixgbe_hw *hw)
3078 u16 technology_ability_reg = 0;
3079 u16 lp_technology_ability_reg = 0;
3081 hw->phy.ops.read_reg(hw, IXGBE_MDIO_AUTO_NEG_ADVT,
3082 IXGBE_MDIO_AUTO_NEG_DEV_TYPE,
3083 &technology_ability_reg);
3084 hw->phy.ops.read_reg(hw, IXGBE_MDIO_AUTO_NEG_LP,
3085 IXGBE_MDIO_AUTO_NEG_DEV_TYPE,
3086 &lp_technology_ability_reg);
3088 return ixgbe_negotiate_fc(hw, (u32)technology_ability_reg,
3089 (u32)lp_technology_ability_reg,
3090 IXGBE_TAF_SYM_PAUSE, IXGBE_TAF_ASM_PAUSE,
3091 IXGBE_TAF_SYM_PAUSE, IXGBE_TAF_ASM_PAUSE);
3095 * ixgbe_fc_autoneg - Configure flow control
3096 * @hw: pointer to hardware structure
3098 * Compares our advertised flow control capabilities to those advertised by
3099 * our link partner, and determines the proper flow control mode to use.
3101 void ixgbe_fc_autoneg(struct ixgbe_hw *hw)
3103 s32 ret_val = IXGBE_ERR_FC_NOT_NEGOTIATED;
3104 ixgbe_link_speed speed;
3105 bool link_up;
3107 DEBUGFUNC("ixgbe_fc_autoneg");
3110 * AN should have completed when the cable was plugged in.
3111 * Look for reasons to bail out. Bail out if:
3112 * - FC autoneg is disabled, or if
3113 * - link is not up.
3115 if (hw->fc.disable_fc_autoneg) {
3116 ERROR_REPORT1(IXGBE_ERROR_UNSUPPORTED,
3117 "Flow control autoneg is disabled");
3118 goto out;
3121 hw->mac.ops.check_link(hw, &speed, &link_up, FALSE);
3122 if (!link_up) {
3123 ERROR_REPORT1(IXGBE_ERROR_SOFTWARE, "The link is down");
3124 goto out;
3127 switch (hw->phy.media_type) {
3128 /* Autoneg flow control on fiber adapters */
3129 case ixgbe_media_type_fiber_fixed:
3130 case ixgbe_media_type_fiber_qsfp:
3131 case ixgbe_media_type_fiber:
3132 if (speed == IXGBE_LINK_SPEED_1GB_FULL)
3133 ret_val = ixgbe_fc_autoneg_fiber(hw);
3134 break;
3136 /* Autoneg flow control on backplane adapters */
3137 case ixgbe_media_type_backplane:
3138 ret_val = ixgbe_fc_autoneg_backplane(hw);
3139 break;
3141 /* Autoneg flow control on copper adapters */
3142 case ixgbe_media_type_copper:
3143 if (ixgbe_device_supports_autoneg_fc(hw))
3144 ret_val = ixgbe_fc_autoneg_copper(hw);
3145 break;
3147 default:
3148 break;
3151 out:
3152 if (ret_val == IXGBE_SUCCESS) {
3153 hw->fc.fc_was_autonegged = TRUE;
3154 } else {
3155 hw->fc.fc_was_autonegged = FALSE;
3156 hw->fc.current_mode = hw->fc.requested_mode;
3161 * ixgbe_pcie_timeout_poll - Return number of times to poll for completion
3162 * @hw: pointer to hardware structure
3164 * System-wide timeout range is encoded in PCIe Device Control2 register.
3166 * Add 10% to specified maximum and return the number of times to poll for
3167 * completion timeout, in units of 100 microsec. Never return less than
3168 * 800 = 80 millisec.
3170 static u32 ixgbe_pcie_timeout_poll(struct ixgbe_hw *hw)
3172 s16 devctl2;
3173 u32 pollcnt;
3175 devctl2 = IXGBE_READ_PCIE_WORD(hw, IXGBE_PCI_DEVICE_CONTROL2);
3176 devctl2 &= IXGBE_PCIDEVCTRL2_TIMEO_MASK;
3178 switch (devctl2) {
3179 case IXGBE_PCIDEVCTRL2_65_130ms:
3180 pollcnt = 1300; /* 130 millisec */
3181 break;
3182 case IXGBE_PCIDEVCTRL2_260_520ms:
3183 pollcnt = 5200; /* 520 millisec */
3184 break;
3185 case IXGBE_PCIDEVCTRL2_1_2s:
3186 pollcnt = 20000; /* 2 sec */
3187 break;
3188 case IXGBE_PCIDEVCTRL2_4_8s:
3189 pollcnt = 80000; /* 8 sec */
3190 break;
3191 case IXGBE_PCIDEVCTRL2_17_34s:
3192 pollcnt = 34000; /* 34 sec */
3193 break;
3194 case IXGBE_PCIDEVCTRL2_50_100us: /* 100 microsecs */
3195 case IXGBE_PCIDEVCTRL2_1_2ms: /* 2 millisecs */
3196 case IXGBE_PCIDEVCTRL2_16_32ms: /* 32 millisec */
3197 case IXGBE_PCIDEVCTRL2_16_32ms_def: /* 32 millisec default */
3198 default:
3199 pollcnt = 800; /* 80 millisec minimum */
3200 break;
3203 /* add 10% to spec maximum */
3204 return (pollcnt * 11) / 10;
3208 * ixgbe_disable_pcie_master - Disable PCI-express master access
3209 * @hw: pointer to hardware structure
3211 * Disables PCI-Express master access and verifies there are no pending
3212 * requests. IXGBE_ERR_MASTER_REQUESTS_PENDING is returned if master disable
3213 * bit hasn't caused the master requests to be disabled, else IXGBE_SUCCESS
3214 * is returned signifying master requests disabled.
3216 s32 ixgbe_disable_pcie_master(struct ixgbe_hw *hw)
3218 s32 status = IXGBE_SUCCESS;
3219 u32 i, poll;
3220 u16 value;
3222 DEBUGFUNC("ixgbe_disable_pcie_master");
3224 /* Always set this bit to ensure any future transactions are blocked */
3225 IXGBE_WRITE_REG(hw, IXGBE_CTRL, IXGBE_CTRL_GIO_DIS);
3227 /* Exit if master requests are blocked */
3228 if (!(IXGBE_READ_REG(hw, IXGBE_STATUS) & IXGBE_STATUS_GIO) ||
3229 IXGBE_REMOVED(hw->hw_addr))
3230 goto out;
3232 /* Poll for master request bit to clear */
3233 for (i = 0; i < IXGBE_PCI_MASTER_DISABLE_TIMEOUT; i++) {
3234 usec_delay(100);
3235 if (!(IXGBE_READ_REG(hw, IXGBE_STATUS) & IXGBE_STATUS_GIO))
3236 goto out;
3240 * Two consecutive resets are required via CTRL.RST per datasheet
3241 * 5.2.5.3.2 Master Disable. We set a flag to inform the reset routine
3242 * of this need. The first reset prevents new master requests from
3243 * being issued by our device. We then must wait 1usec or more for any
3244 * remaining completions from the PCIe bus to trickle in, and then reset
3245 * again to clear out any effects they may have had on our device.
3247 DEBUGOUT("GIO Master Disable bit didn't clear - requesting resets\n");
3248 hw->mac.flags |= IXGBE_FLAGS_DOUBLE_RESET_REQUIRED;
3250 if (hw->mac.type >= ixgbe_mac_X550)
3251 goto out;
3254 * Before proceeding, make sure that the PCIe block does not have
3255 * transactions pending.
3257 poll = ixgbe_pcie_timeout_poll(hw);
3258 for (i = 0; i < poll; i++) {
3259 usec_delay(100);
3260 value = IXGBE_READ_PCIE_WORD(hw, IXGBE_PCI_DEVICE_STATUS);
3261 if (IXGBE_REMOVED(hw->hw_addr))
3262 goto out;
3263 if (!(value & IXGBE_PCI_DEVICE_STATUS_TRANSACTION_PENDING))
3264 goto out;
3267 ERROR_REPORT1(IXGBE_ERROR_POLLING,
3268 "PCIe transaction pending bit also did not clear.\n");
3269 status = IXGBE_ERR_MASTER_REQUESTS_PENDING;
3271 out:
3272 return status;
3276 * ixgbe_acquire_swfw_sync - Acquire SWFW semaphore
3277 * @hw: pointer to hardware structure
3278 * @mask: Mask to specify which semaphore to acquire
3280 * Acquires the SWFW semaphore through the GSSR register for the specified
3281 * function (CSR, PHY0, PHY1, EEPROM, Flash)
3283 s32 ixgbe_acquire_swfw_sync(struct ixgbe_hw *hw, u32 mask)
3285 u32 gssr = 0;
3286 u32 swmask = mask;
3287 u32 fwmask = mask << 5;
3288 u32 timeout = 200;
3289 u32 i;
3291 DEBUGFUNC("ixgbe_acquire_swfw_sync");
3293 for (i = 0; i < timeout; i++) {
3295 * SW NVM semaphore bit is used for access to all
3296 * SW_FW_SYNC bits (not just NVM)
3298 if (ixgbe_get_eeprom_semaphore(hw))
3299 return IXGBE_ERR_SWFW_SYNC;
3301 gssr = IXGBE_READ_REG(hw, IXGBE_GSSR);
3302 if (!(gssr & (fwmask | swmask))) {
3303 gssr |= swmask;
3304 IXGBE_WRITE_REG(hw, IXGBE_GSSR, gssr);
3305 ixgbe_release_eeprom_semaphore(hw);
3306 return IXGBE_SUCCESS;
3307 } else {
3308 /* Resource is currently in use by FW or SW */
3309 ixgbe_release_eeprom_semaphore(hw);
3310 msec_delay(5);
3314 /* If time expired clear the bits holding the lock and retry */
3315 if (gssr & (fwmask | swmask))
3316 ixgbe_release_swfw_sync(hw, gssr & (fwmask | swmask));
3318 msec_delay(5);
3319 return IXGBE_ERR_SWFW_SYNC;
3323 * ixgbe_release_swfw_sync - Release SWFW semaphore
3324 * @hw: pointer to hardware structure
3325 * @mask: Mask to specify which semaphore to release
3327 * Releases the SWFW semaphore through the GSSR register for the specified
3328 * function (CSR, PHY0, PHY1, EEPROM, Flash)
3330 void ixgbe_release_swfw_sync(struct ixgbe_hw *hw, u32 mask)
3332 u32 gssr;
3333 u32 swmask = mask;
3335 DEBUGFUNC("ixgbe_release_swfw_sync");
3337 ixgbe_get_eeprom_semaphore(hw);
3339 gssr = IXGBE_READ_REG(hw, IXGBE_GSSR);
3340 gssr &= ~swmask;
3341 IXGBE_WRITE_REG(hw, IXGBE_GSSR, gssr);
3343 ixgbe_release_eeprom_semaphore(hw);
3347 * ixgbe_disable_sec_rx_path_generic - Stops the receive data path
3348 * @hw: pointer to hardware structure
3350 * Stops the receive data path and waits for the HW to internally empty
3351 * the Rx security block
3353 s32 ixgbe_disable_sec_rx_path_generic(struct ixgbe_hw *hw)
3355 #define IXGBE_MAX_SECRX_POLL 4000
3357 int i;
3358 int secrxreg;
3360 DEBUGFUNC("ixgbe_disable_sec_rx_path_generic");
3363 secrxreg = IXGBE_READ_REG(hw, IXGBE_SECRXCTRL);
3364 secrxreg |= IXGBE_SECRXCTRL_RX_DIS;
3365 IXGBE_WRITE_REG(hw, IXGBE_SECRXCTRL, secrxreg);
3366 for (i = 0; i < IXGBE_MAX_SECRX_POLL; i++) {
3367 secrxreg = IXGBE_READ_REG(hw, IXGBE_SECRXSTAT);
3368 if (secrxreg & IXGBE_SECRXSTAT_SECRX_RDY)
3369 break;
3370 else
3371 /* Use interrupt-safe sleep just in case */
3372 usec_delay(10);
3375 /* For informational purposes only */
3376 if (i >= IXGBE_MAX_SECRX_POLL)
3377 DEBUGOUT("Rx unit being enabled before security "
3378 "path fully disabled. Continuing with init.\n");
3380 return IXGBE_SUCCESS;
3384 * prot_autoc_read_generic - Hides MAC differences needed for AUTOC read
3385 * @hw: pointer to hardware structure
3386 * @reg_val: Value we read from AUTOC
3388 * The default case requires no protection so just to the register read.
3390 s32 prot_autoc_read_generic(struct ixgbe_hw *hw, bool *locked, u32 *reg_val)
3392 *locked = FALSE;
3393 *reg_val = IXGBE_READ_REG(hw, IXGBE_AUTOC);
3394 return IXGBE_SUCCESS;
3398 * prot_autoc_write_generic - Hides MAC differences needed for AUTOC write
3399 * @hw: pointer to hardware structure
3400 * @reg_val: value to write to AUTOC
3401 * @locked: bool to indicate whether the SW/FW lock was already taken by
3402 * previous read.
3404 * The default case requires no protection so just to the register write.
3406 s32 prot_autoc_write_generic(struct ixgbe_hw *hw, u32 reg_val, bool locked)
3408 UNREFERENCED_1PARAMETER(locked);
3410 IXGBE_WRITE_REG(hw, IXGBE_AUTOC, reg_val);
3411 return IXGBE_SUCCESS;
3415 * ixgbe_enable_sec_rx_path_generic - Enables the receive data path
3416 * @hw: pointer to hardware structure
3418 * Enables the receive data path.
3420 s32 ixgbe_enable_sec_rx_path_generic(struct ixgbe_hw *hw)
3422 u32 secrxreg;
3424 DEBUGFUNC("ixgbe_enable_sec_rx_path_generic");
3426 secrxreg = IXGBE_READ_REG(hw, IXGBE_SECRXCTRL);
3427 secrxreg &= ~IXGBE_SECRXCTRL_RX_DIS;
3428 IXGBE_WRITE_REG(hw, IXGBE_SECRXCTRL, secrxreg);
3429 IXGBE_WRITE_FLUSH(hw);
3431 return IXGBE_SUCCESS;
3435 * ixgbe_enable_rx_dma_generic - Enable the Rx DMA unit
3436 * @hw: pointer to hardware structure
3437 * @regval: register value to write to RXCTRL
3439 * Enables the Rx DMA unit
3441 s32 ixgbe_enable_rx_dma_generic(struct ixgbe_hw *hw, u32 regval)
3443 DEBUGFUNC("ixgbe_enable_rx_dma_generic");
3445 if (regval & IXGBE_RXCTRL_RXEN)
3446 ixgbe_enable_rx(hw);
3447 else
3448 ixgbe_disable_rx(hw);
3450 return IXGBE_SUCCESS;
3454 * ixgbe_blink_led_start_generic - Blink LED based on index.
3455 * @hw: pointer to hardware structure
3456 * @index: led number to blink
3458 s32 ixgbe_blink_led_start_generic(struct ixgbe_hw *hw, u32 index)
3460 ixgbe_link_speed speed = 0;
3461 bool link_up = 0;
3462 u32 autoc_reg = 0;
3463 u32 led_reg = IXGBE_READ_REG(hw, IXGBE_LEDCTL);
3464 s32 ret_val = IXGBE_SUCCESS;
3465 bool locked = FALSE;
3467 DEBUGFUNC("ixgbe_blink_led_start_generic");
3469 if (index > 3)
3470 return IXGBE_ERR_PARAM;
3473 * Link must be up to auto-blink the LEDs;
3474 * Force it if link is down.
3476 hw->mac.ops.check_link(hw, &speed, &link_up, FALSE);
3478 if (!link_up) {
3479 ret_val = hw->mac.ops.prot_autoc_read(hw, &locked, &autoc_reg);
3480 if (ret_val != IXGBE_SUCCESS)
3481 goto out;
3483 autoc_reg |= IXGBE_AUTOC_AN_RESTART;
3484 autoc_reg |= IXGBE_AUTOC_FLU;
3486 ret_val = hw->mac.ops.prot_autoc_write(hw, autoc_reg, locked);
3487 if (ret_val != IXGBE_SUCCESS)
3488 goto out;
3490 IXGBE_WRITE_FLUSH(hw);
3491 msec_delay(10);
3494 led_reg &= ~IXGBE_LED_MODE_MASK(index);
3495 led_reg |= IXGBE_LED_BLINK(index);
3496 IXGBE_WRITE_REG(hw, IXGBE_LEDCTL, led_reg);
3497 IXGBE_WRITE_FLUSH(hw);
3499 out:
3500 return ret_val;
3504 * ixgbe_blink_led_stop_generic - Stop blinking LED based on index.
3505 * @hw: pointer to hardware structure
3506 * @index: led number to stop blinking
3508 s32 ixgbe_blink_led_stop_generic(struct ixgbe_hw *hw, u32 index)
3510 u32 autoc_reg = 0;
3511 u32 led_reg = IXGBE_READ_REG(hw, IXGBE_LEDCTL);
3512 s32 ret_val = IXGBE_SUCCESS;
3513 bool locked = FALSE;
3515 DEBUGFUNC("ixgbe_blink_led_stop_generic");
3517 if (index > 3)
3518 return IXGBE_ERR_PARAM;
3521 ret_val = hw->mac.ops.prot_autoc_read(hw, &locked, &autoc_reg);
3522 if (ret_val != IXGBE_SUCCESS)
3523 goto out;
3525 autoc_reg &= ~IXGBE_AUTOC_FLU;
3526 autoc_reg |= IXGBE_AUTOC_AN_RESTART;
3528 ret_val = hw->mac.ops.prot_autoc_write(hw, autoc_reg, locked);
3529 if (ret_val != IXGBE_SUCCESS)
3530 goto out;
3532 led_reg &= ~IXGBE_LED_MODE_MASK(index);
3533 led_reg &= ~IXGBE_LED_BLINK(index);
3534 led_reg |= IXGBE_LED_LINK_ACTIVE << IXGBE_LED_MODE_SHIFT(index);
3535 IXGBE_WRITE_REG(hw, IXGBE_LEDCTL, led_reg);
3536 IXGBE_WRITE_FLUSH(hw);
3538 out:
3539 return ret_val;
3543 * ixgbe_get_san_mac_addr_offset - Get SAN MAC address offset from the EEPROM
3544 * @hw: pointer to hardware structure
3545 * @san_mac_offset: SAN MAC address offset
3547 * This function will read the EEPROM location for the SAN MAC address
3548 * pointer, and returns the value at that location. This is used in both
3549 * get and set mac_addr routines.
3551 static s32 ixgbe_get_san_mac_addr_offset(struct ixgbe_hw *hw,
3552 u16 *san_mac_offset)
3554 s32 ret_val;
3556 DEBUGFUNC("ixgbe_get_san_mac_addr_offset");
3559 * First read the EEPROM pointer to see if the MAC addresses are
3560 * available.
3562 ret_val = hw->eeprom.ops.read(hw, IXGBE_SAN_MAC_ADDR_PTR,
3563 san_mac_offset);
3564 if (ret_val) {
3565 ERROR_REPORT2(IXGBE_ERROR_INVALID_STATE,
3566 "eeprom at offset %d failed",
3567 IXGBE_SAN_MAC_ADDR_PTR);
3570 return ret_val;
3574 * ixgbe_get_san_mac_addr_generic - SAN MAC address retrieval from the EEPROM
3575 * @hw: pointer to hardware structure
3576 * @san_mac_addr: SAN MAC address
3578 * Reads the SAN MAC address from the EEPROM, if it's available. This is
3579 * per-port, so set_lan_id() must be called before reading the addresses.
3580 * set_lan_id() is called by identify_sfp(), but this cannot be relied
3581 * upon for non-SFP connections, so we must call it here.
3583 s32 ixgbe_get_san_mac_addr_generic(struct ixgbe_hw *hw, u8 *san_mac_addr)
3585 u16 san_mac_data, san_mac_offset;
3586 u8 i;
3587 s32 ret_val;
3589 DEBUGFUNC("ixgbe_get_san_mac_addr_generic");
3592 * First read the EEPROM pointer to see if the MAC addresses are
3593 * available. If they're not, no point in calling set_lan_id() here.
3595 ret_val = ixgbe_get_san_mac_addr_offset(hw, &san_mac_offset);
3596 if (ret_val || san_mac_offset == 0 || san_mac_offset == 0xFFFF)
3597 goto san_mac_addr_out;
3599 /* make sure we know which port we need to program */
3600 hw->mac.ops.set_lan_id(hw);
3601 /* apply the port offset to the address offset */
3602 (hw->bus.func) ? (san_mac_offset += IXGBE_SAN_MAC_ADDR_PORT1_OFFSET) :
3603 (san_mac_offset += IXGBE_SAN_MAC_ADDR_PORT0_OFFSET);
3604 for (i = 0; i < 3; i++) {
3605 ret_val = hw->eeprom.ops.read(hw, san_mac_offset,
3606 &san_mac_data);
3607 if (ret_val) {
3608 ERROR_REPORT2(IXGBE_ERROR_INVALID_STATE,
3609 "eeprom read at offset %d failed",
3610 san_mac_offset);
3611 goto san_mac_addr_out;
3613 san_mac_addr[i * 2] = (u8)(san_mac_data);
3614 san_mac_addr[i * 2 + 1] = (u8)(san_mac_data >> 8);
3615 san_mac_offset++;
3617 return IXGBE_SUCCESS;
3619 san_mac_addr_out:
3621 * No addresses available in this EEPROM. It's not an
3622 * error though, so just wipe the local address and return.
3624 for (i = 0; i < 6; i++)
3625 san_mac_addr[i] = 0xFF;
3626 return IXGBE_SUCCESS;
3630 * ixgbe_set_san_mac_addr_generic - Write the SAN MAC address to the EEPROM
3631 * @hw: pointer to hardware structure
3632 * @san_mac_addr: SAN MAC address
3634 * Write a SAN MAC address to the EEPROM.
3636 s32 ixgbe_set_san_mac_addr_generic(struct ixgbe_hw *hw, u8 *san_mac_addr)
3638 s32 ret_val;
3639 u16 san_mac_data, san_mac_offset;
3640 u8 i;
3642 DEBUGFUNC("ixgbe_set_san_mac_addr_generic");
3644 /* Look for SAN mac address pointer. If not defined, return */
3645 ret_val = ixgbe_get_san_mac_addr_offset(hw, &san_mac_offset);
3646 if (ret_val || san_mac_offset == 0 || san_mac_offset == 0xFFFF)
3647 return IXGBE_ERR_NO_SAN_ADDR_PTR;
3649 /* Make sure we know which port we need to write */
3650 hw->mac.ops.set_lan_id(hw);
3651 /* Apply the port offset to the address offset */
3652 (hw->bus.func) ? (san_mac_offset += IXGBE_SAN_MAC_ADDR_PORT1_OFFSET) :
3653 (san_mac_offset += IXGBE_SAN_MAC_ADDR_PORT0_OFFSET);
3655 for (i = 0; i < 3; i++) {
3656 san_mac_data = (u16)((u16)(san_mac_addr[i * 2 + 1]) << 8);
3657 san_mac_data |= (u16)(san_mac_addr[i * 2]);
3658 hw->eeprom.ops.write(hw, san_mac_offset, san_mac_data);
3659 san_mac_offset++;
3662 return IXGBE_SUCCESS;
3666 * ixgbe_get_pcie_msix_count_generic - Gets MSI-X vector count
3667 * @hw: pointer to hardware structure
3669 * Read PCIe configuration space, and get the MSI-X vector count from
3670 * the capabilities table.
3672 u16 ixgbe_get_pcie_msix_count_generic(struct ixgbe_hw *hw)
3674 u16 msix_count = 1;
3675 u16 max_msix_count;
3676 u16 pcie_offset;
3678 switch (hw->mac.type) {
3679 case ixgbe_mac_82598EB:
3680 pcie_offset = IXGBE_PCIE_MSIX_82598_CAPS;
3681 max_msix_count = IXGBE_MAX_MSIX_VECTORS_82598;
3682 break;
3683 case ixgbe_mac_82599EB:
3684 case ixgbe_mac_X540:
3685 case ixgbe_mac_X550:
3686 case ixgbe_mac_X550EM_x:
3687 case ixgbe_mac_X550EM_a:
3688 pcie_offset = IXGBE_PCIE_MSIX_82599_CAPS;
3689 max_msix_count = IXGBE_MAX_MSIX_VECTORS_82599;
3690 break;
3691 default:
3692 return msix_count;
3695 DEBUGFUNC("ixgbe_get_pcie_msix_count_generic");
3696 msix_count = IXGBE_READ_PCIE_WORD(hw, pcie_offset);
3697 if (IXGBE_REMOVED(hw->hw_addr))
3698 msix_count = 0;
3699 msix_count &= IXGBE_PCIE_MSIX_TBL_SZ_MASK;
3701 /* MSI-X count is zero-based in HW */
3702 msix_count++;
3704 if (msix_count > max_msix_count)
3705 msix_count = max_msix_count;
3707 return msix_count;
3711 * ixgbe_insert_mac_addr_generic - Find a RAR for this mac address
3712 * @hw: pointer to hardware structure
3713 * @addr: Address to put into receive address register
3714 * @vmdq: VMDq pool to assign
3716 * Puts an ethernet address into a receive address register, or
3717 * finds the rar that it is aleady in; adds to the pool list
3719 s32 ixgbe_insert_mac_addr_generic(struct ixgbe_hw *hw, u8 *addr, u32 vmdq)
3721 static const u32 NO_EMPTY_RAR_FOUND = 0xFFFFFFFF;
3722 u32 first_empty_rar = NO_EMPTY_RAR_FOUND;
3723 u32 rar;
3724 u32 rar_low, rar_high;
3725 u32 addr_low, addr_high;
3727 DEBUGFUNC("ixgbe_insert_mac_addr_generic");
3729 /* swap bytes for HW little endian */
3730 addr_low = addr[0] | (addr[1] << 8)
3731 | (addr[2] << 16)
3732 | (addr[3] << 24);
3733 addr_high = addr[4] | (addr[5] << 8);
3736 * Either find the mac_id in rar or find the first empty space.
3737 * rar_highwater points to just after the highest currently used
3738 * rar in order to shorten the search. It grows when we add a new
3739 * rar to the top.
3741 for (rar = 0; rar < hw->mac.rar_highwater; rar++) {
3742 rar_high = IXGBE_READ_REG(hw, IXGBE_RAH(rar));
3744 if (((IXGBE_RAH_AV & rar_high) == 0)
3745 && first_empty_rar == NO_EMPTY_RAR_FOUND) {
3746 first_empty_rar = rar;
3747 } else if ((rar_high & 0xFFFF) == addr_high) {
3748 rar_low = IXGBE_READ_REG(hw, IXGBE_RAL(rar));
3749 if (rar_low == addr_low)
3750 break; /* found it already in the rars */
3754 if (rar < hw->mac.rar_highwater) {
3755 /* already there so just add to the pool bits */
3756 ixgbe_set_vmdq(hw, rar, vmdq);
3757 } else if (first_empty_rar != NO_EMPTY_RAR_FOUND) {
3758 /* stick it into first empty RAR slot we found */
3759 rar = first_empty_rar;
3760 ixgbe_set_rar(hw, rar, addr, vmdq, IXGBE_RAH_AV);
3761 } else if (rar == hw->mac.rar_highwater) {
3762 /* add it to the top of the list and inc the highwater mark */
3763 ixgbe_set_rar(hw, rar, addr, vmdq, IXGBE_RAH_AV);
3764 hw->mac.rar_highwater++;
3765 } else if (rar >= hw->mac.num_rar_entries) {
3766 return IXGBE_ERR_INVALID_MAC_ADDR;
3770 * If we found rar[0], make sure the default pool bit (we use pool 0)
3771 * remains cleared to be sure default pool packets will get delivered
3773 if (rar == 0)
3774 ixgbe_clear_vmdq(hw, rar, 0);
3776 return rar;
3780 * ixgbe_clear_vmdq_generic - Disassociate a VMDq pool index from a rx address
3781 * @hw: pointer to hardware struct
3782 * @rar: receive address register index to disassociate
3783 * @vmdq: VMDq pool index to remove from the rar
3785 s32 ixgbe_clear_vmdq_generic(struct ixgbe_hw *hw, u32 rar, u32 vmdq)
3787 u32 mpsar_lo, mpsar_hi;
3788 u32 rar_entries = hw->mac.num_rar_entries;
3790 DEBUGFUNC("ixgbe_clear_vmdq_generic");
3792 /* Make sure we are using a valid rar index range */
3793 if (rar >= rar_entries) {
3794 ERROR_REPORT2(IXGBE_ERROR_ARGUMENT,
3795 "RAR index %d is out of range.\n", rar);
3796 return IXGBE_ERR_INVALID_ARGUMENT;
3799 mpsar_lo = IXGBE_READ_REG(hw, IXGBE_MPSAR_LO(rar));
3800 mpsar_hi = IXGBE_READ_REG(hw, IXGBE_MPSAR_HI(rar));
3802 if (IXGBE_REMOVED(hw->hw_addr))
3803 goto done;
3805 if (!mpsar_lo && !mpsar_hi)
3806 goto done;
3808 if (vmdq == IXGBE_CLEAR_VMDQ_ALL) {
3809 if (mpsar_lo) {
3810 IXGBE_WRITE_REG(hw, IXGBE_MPSAR_LO(rar), 0);
3811 mpsar_lo = 0;
3813 if (mpsar_hi) {
3814 IXGBE_WRITE_REG(hw, IXGBE_MPSAR_HI(rar), 0);
3815 mpsar_hi = 0;
3817 } else if (vmdq < 32) {
3818 mpsar_lo &= ~(1 << vmdq);
3819 IXGBE_WRITE_REG(hw, IXGBE_MPSAR_LO(rar), mpsar_lo);
3820 } else {
3821 mpsar_hi &= ~(1 << (vmdq - 32));
3822 IXGBE_WRITE_REG(hw, IXGBE_MPSAR_HI(rar), mpsar_hi);
3825 /* was that the last pool using this rar? */
3826 if (mpsar_lo == 0 && mpsar_hi == 0 &&
3827 rar != 0 && rar != hw->mac.san_mac_rar_index)
3828 hw->mac.ops.clear_rar(hw, rar);
3829 done:
3830 return IXGBE_SUCCESS;
3834 * ixgbe_set_vmdq_generic - Associate a VMDq pool index with a rx address
3835 * @hw: pointer to hardware struct
3836 * @rar: receive address register index to associate with a VMDq index
3837 * @vmdq: VMDq pool index
3839 s32 ixgbe_set_vmdq_generic(struct ixgbe_hw *hw, u32 rar, u32 vmdq)
3841 u32 mpsar;
3842 u32 rar_entries = hw->mac.num_rar_entries;
3844 DEBUGFUNC("ixgbe_set_vmdq_generic");
3846 /* Make sure we are using a valid rar index range */
3847 if (rar >= rar_entries) {
3848 ERROR_REPORT2(IXGBE_ERROR_ARGUMENT,
3849 "RAR index %d is out of range.\n", rar);
3850 return IXGBE_ERR_INVALID_ARGUMENT;
3853 if (vmdq < 32) {
3854 mpsar = IXGBE_READ_REG(hw, IXGBE_MPSAR_LO(rar));
3855 mpsar |= 1 << vmdq;
3856 IXGBE_WRITE_REG(hw, IXGBE_MPSAR_LO(rar), mpsar);
3857 } else {
3858 mpsar = IXGBE_READ_REG(hw, IXGBE_MPSAR_HI(rar));
3859 mpsar |= 1 << (vmdq - 32);
3860 IXGBE_WRITE_REG(hw, IXGBE_MPSAR_HI(rar), mpsar);
3862 return IXGBE_SUCCESS;
3866 * This function should only be involved in the IOV mode.
3867 * In IOV mode, Default pool is next pool after the number of
3868 * VFs advertized and not 0.
3869 * MPSAR table needs to be updated for SAN_MAC RAR [hw->mac.san_mac_rar_index]
3871 * ixgbe_set_vmdq_san_mac - Associate default VMDq pool index with a rx address
3872 * @hw: pointer to hardware struct
3873 * @vmdq: VMDq pool index
3875 s32 ixgbe_set_vmdq_san_mac_generic(struct ixgbe_hw *hw, u32 vmdq)
3877 u32 rar = hw->mac.san_mac_rar_index;
3879 DEBUGFUNC("ixgbe_set_vmdq_san_mac");
3881 if (vmdq < 32) {
3882 IXGBE_WRITE_REG(hw, IXGBE_MPSAR_LO(rar), 1 << vmdq);
3883 IXGBE_WRITE_REG(hw, IXGBE_MPSAR_HI(rar), 0);
3884 } else {
3885 IXGBE_WRITE_REG(hw, IXGBE_MPSAR_LO(rar), 0);
3886 IXGBE_WRITE_REG(hw, IXGBE_MPSAR_HI(rar), 1 << (vmdq - 32));
3889 return IXGBE_SUCCESS;
3893 * ixgbe_init_uta_tables_generic - Initialize the Unicast Table Array
3894 * @hw: pointer to hardware structure
3896 s32 ixgbe_init_uta_tables_generic(struct ixgbe_hw *hw)
3898 int i;
3900 DEBUGFUNC("ixgbe_init_uta_tables_generic");
3901 DEBUGOUT(" Clearing UTA\n");
3903 for (i = 0; i < 128; i++)
3904 IXGBE_WRITE_REG(hw, IXGBE_UTA(i), 0);
3906 return IXGBE_SUCCESS;
3910 * ixgbe_find_vlvf_slot - find the vlanid or the first empty slot
3911 * @hw: pointer to hardware structure
3912 * @vlan: VLAN id to write to VLAN filter
3914 * return the VLVF index where this VLAN id should be placed
3917 s32 ixgbe_find_vlvf_slot(struct ixgbe_hw *hw, u32 vlan, bool vlvf_bypass)
3919 s32 regindex, first_empty_slot;
3920 u32 bits;
3922 /* short cut the special case */
3923 if (vlan == 0)
3924 return 0;
3926 /* if vlvf_bypass is set we don't want to use an empty slot, we
3927 * will simply bypass the VLVF if there are no entries present in the
3928 * VLVF that contain our VLAN
3930 first_empty_slot = vlvf_bypass ? IXGBE_ERR_NO_SPACE : 0;
3932 /* add VLAN enable bit for comparison */
3933 vlan |= IXGBE_VLVF_VIEN;
3935 /* Search for the vlan id in the VLVF entries. Save off the first empty
3936 * slot found along the way.
3938 * pre-decrement loop covering (IXGBE_VLVF_ENTRIES - 1) .. 1
3940 for (regindex = IXGBE_VLVF_ENTRIES; --regindex;) {
3941 bits = IXGBE_READ_REG(hw, IXGBE_VLVF(regindex));
3942 if (bits == vlan)
3943 return regindex;
3944 if (!first_empty_slot && !bits)
3945 first_empty_slot = regindex;
3948 /* If we are here then we didn't find the VLAN. Return first empty
3949 * slot we found during our search, else error.
3951 if (!first_empty_slot)
3952 ERROR_REPORT1(IXGBE_ERROR_SOFTWARE, "No space in VLVF.\n");
3954 return first_empty_slot ? first_empty_slot : IXGBE_ERR_NO_SPACE;
3958 * ixgbe_set_vfta_generic - Set VLAN filter table
3959 * @hw: pointer to hardware structure
3960 * @vlan: VLAN id to write to VLAN filter
3961 * @vind: VMDq output index that maps queue to VLAN id in VLVFB
3962 * @vlan_on: boolean flag to turn on/off VLAN
3963 * @vlvf_bypass: boolean flag indicating updating default pool is okay
3965 * Turn on/off specified VLAN in the VLAN filter table.
3967 s32 ixgbe_set_vfta_generic(struct ixgbe_hw *hw, u32 vlan, u32 vind,
3968 bool vlan_on, bool vlvf_bypass)
3970 u32 regidx, vfta_delta, vfta;
3971 s32 ret_val;
3973 DEBUGFUNC("ixgbe_set_vfta_generic");
3975 if (vlan > 4095 || vind > 63)
3976 return IXGBE_ERR_PARAM;
3979 * this is a 2 part operation - first the VFTA, then the
3980 * VLVF and VLVFB if VT Mode is set
3981 * We don't write the VFTA until we know the VLVF part succeeded.
3984 /* Part 1
3985 * The VFTA is a bitstring made up of 128 32-bit registers
3986 * that enable the particular VLAN id, much like the MTA:
3987 * bits[11-5]: which register
3988 * bits[4-0]: which bit in the register
3990 regidx = vlan / 32;
3991 vfta_delta = 1 << (vlan % 32);
3992 vfta = IXGBE_READ_REG(hw, IXGBE_VFTA(regidx));
3995 * vfta_delta represents the difference between the current value
3996 * of vfta and the value we want in the register. Since the diff
3997 * is an XOR mask we can just update the vfta using an XOR
3999 vfta_delta &= vlan_on ? ~vfta : vfta;
4000 vfta ^= vfta_delta;
4002 /* Part 2
4003 * Call ixgbe_set_vlvf_generic to set VLVFB and VLVF
4005 ret_val = ixgbe_set_vlvf_generic(hw, vlan, vind, vlan_on, &vfta_delta,
4006 vfta, vlvf_bypass);
4007 if (ret_val != IXGBE_SUCCESS) {
4008 if (vlvf_bypass)
4009 goto vfta_update;
4010 return ret_val;
4013 vfta_update:
4014 /* Update VFTA now that we are ready for traffic */
4015 if (vfta_delta)
4016 IXGBE_WRITE_REG(hw, IXGBE_VFTA(regidx), vfta);
4018 return IXGBE_SUCCESS;
4022 * ixgbe_set_vlvf_generic - Set VLAN Pool Filter
4023 * @hw: pointer to hardware structure
4024 * @vlan: VLAN id to write to VLAN filter
4025 * @vind: VMDq output index that maps queue to VLAN id in VLVFB
4026 * @vlan_on: boolean flag to turn on/off VLAN in VLVF
4027 * @vfta_delta: pointer to the difference between the current value of VFTA
4028 * and the desired value
4029 * @vfta: the desired value of the VFTA
4030 * @vlvf_bypass: boolean flag indicating updating default pool is okay
4032 * Turn on/off specified bit in VLVF table.
4034 s32 ixgbe_set_vlvf_generic(struct ixgbe_hw *hw, u32 vlan, u32 vind,
4035 bool vlan_on, u32 *vfta_delta, u32 vfta,
4036 bool vlvf_bypass)
4038 u32 bits;
4039 s32 vlvf_index;
4041 DEBUGFUNC("ixgbe_set_vlvf_generic");
4043 if (vlan > 4095 || vind > 63)
4044 return IXGBE_ERR_PARAM;
4046 /* If VT Mode is set
4047 * Either vlan_on
4048 * make sure the vlan is in VLVF
4049 * set the vind bit in the matching VLVFB
4050 * Or !vlan_on
4051 * clear the pool bit and possibly the vind
4053 if (!(IXGBE_READ_REG(hw, IXGBE_VT_CTL) & IXGBE_VT_CTL_VT_ENABLE))
4054 return IXGBE_SUCCESS;
4056 vlvf_index = ixgbe_find_vlvf_slot(hw, vlan, vlvf_bypass);
4057 if (vlvf_index < 0)
4058 return vlvf_index;
4060 bits = IXGBE_READ_REG(hw, IXGBE_VLVFB(vlvf_index * 2 + vind / 32));
4062 /* set the pool bit */
4063 bits |= 1 << (vind % 32);
4064 if (vlan_on)
4065 goto vlvf_update;
4067 /* clear the pool bit */
4068 bits ^= 1 << (vind % 32);
4070 if (!bits &&
4071 !IXGBE_READ_REG(hw, IXGBE_VLVFB(vlvf_index * 2 + 1 - vind / 32))) {
4072 /* Clear VFTA first, then disable VLVF. Otherwise
4073 * we run the risk of stray packets leaking into
4074 * the PF via the default pool
4076 if (*vfta_delta)
4077 IXGBE_WRITE_REG(hw, IXGBE_VFTA(vlan / 32), vfta);
4079 /* disable VLVF and clear remaining bit from pool */
4080 IXGBE_WRITE_REG(hw, IXGBE_VLVF(vlvf_index), 0);
4081 IXGBE_WRITE_REG(hw, IXGBE_VLVFB(vlvf_index * 2 + vind / 32), 0);
4083 return IXGBE_SUCCESS;
4086 /* If there are still bits set in the VLVFB registers
4087 * for the VLAN ID indicated we need to see if the
4088 * caller is requesting that we clear the VFTA entry bit.
4089 * If the caller has requested that we clear the VFTA
4090 * entry bit but there are still pools/VFs using this VLAN
4091 * ID entry then ignore the request. We're not worried
4092 * about the case where we're turning the VFTA VLAN ID
4093 * entry bit on, only when requested to turn it off as
4094 * there may be multiple pools and/or VFs using the
4095 * VLAN ID entry. In that case we cannot clear the
4096 * VFTA bit until all pools/VFs using that VLAN ID have also
4097 * been cleared. This will be indicated by "bits" being
4098 * zero.
4100 *vfta_delta = 0;
4102 vlvf_update:
4103 /* record pool change and enable VLAN ID if not already enabled */
4104 IXGBE_WRITE_REG(hw, IXGBE_VLVFB(vlvf_index * 2 + vind / 32), bits);
4105 IXGBE_WRITE_REG(hw, IXGBE_VLVF(vlvf_index), IXGBE_VLVF_VIEN | vlan);
4107 return IXGBE_SUCCESS;
4111 * ixgbe_clear_vfta_generic - Clear VLAN filter table
4112 * @hw: pointer to hardware structure
4114 * Clears the VLAN filer table, and the VMDq index associated with the filter
4116 s32 ixgbe_clear_vfta_generic(struct ixgbe_hw *hw)
4118 u32 offset;
4120 DEBUGFUNC("ixgbe_clear_vfta_generic");
4122 for (offset = 0; offset < hw->mac.vft_size; offset++)
4123 IXGBE_WRITE_REG(hw, IXGBE_VFTA(offset), 0);
4125 for (offset = 0; offset < IXGBE_VLVF_ENTRIES; offset++) {
4126 IXGBE_WRITE_REG(hw, IXGBE_VLVF(offset), 0);
4127 IXGBE_WRITE_REG(hw, IXGBE_VLVFB(offset * 2), 0);
4128 IXGBE_WRITE_REG(hw, IXGBE_VLVFB(offset * 2 + 1), 0);
4131 return IXGBE_SUCCESS;
4135 * ixgbe_need_crosstalk_fix - Determine if we need to do cross talk fix
4136 * @hw: pointer to hardware structure
4138 * Contains the logic to identify if we need to verify link for the
4139 * crosstalk fix
4141 static bool ixgbe_need_crosstalk_fix(struct ixgbe_hw *hw)
4144 /* Does FW say we need the fix */
4145 if (!hw->need_crosstalk_fix)
4146 return FALSE;
4148 /* Only consider SFP+ PHYs i.e. media type fiber */
4149 switch (hw->mac.ops.get_media_type(hw)) {
4150 case ixgbe_media_type_fiber:
4151 case ixgbe_media_type_fiber_qsfp:
4152 break;
4153 default:
4154 return FALSE;
4157 return TRUE;
4161 * ixgbe_check_mac_link_generic - Determine link and speed status
4162 * @hw: pointer to hardware structure
4163 * @speed: pointer to link speed
4164 * @link_up: TRUE when link is up
4165 * @link_up_wait_to_complete: bool used to wait for link up or not
4167 * Reads the links register to determine if link is up and the current speed
4169 s32 ixgbe_check_mac_link_generic(struct ixgbe_hw *hw, ixgbe_link_speed *speed,
4170 bool *link_up, bool link_up_wait_to_complete)
4172 u32 links_reg, links_orig;
4173 u32 i;
4175 DEBUGFUNC("ixgbe_check_mac_link_generic");
4177 /* If Crosstalk fix enabled do the sanity check of making sure
4178 * the SFP+ cage is full.
4180 if (ixgbe_need_crosstalk_fix(hw)) {
4181 u32 sfp_cage_full;
4183 switch (hw->mac.type) {
4184 case ixgbe_mac_82599EB:
4185 sfp_cage_full = IXGBE_READ_REG(hw, IXGBE_ESDP) &
4186 IXGBE_ESDP_SDP2;
4187 break;
4188 case ixgbe_mac_X550EM_x:
4189 case ixgbe_mac_X550EM_a:
4190 sfp_cage_full = IXGBE_READ_REG(hw, IXGBE_ESDP) &
4191 IXGBE_ESDP_SDP0;
4192 break;
4193 default:
4194 /* sanity check - No SFP+ devices here */
4195 sfp_cage_full = FALSE;
4196 break;
4199 if (!sfp_cage_full) {
4200 *link_up = FALSE;
4201 *speed = IXGBE_LINK_SPEED_UNKNOWN;
4202 return IXGBE_SUCCESS;
4206 /* clear the old state */
4207 links_orig = IXGBE_READ_REG(hw, IXGBE_LINKS);
4209 links_reg = IXGBE_READ_REG(hw, IXGBE_LINKS);
4211 if (links_orig != links_reg) {
4212 DEBUGOUT2("LINKS changed from %08X to %08X\n",
4213 links_orig, links_reg);
4216 if (link_up_wait_to_complete) {
4217 for (i = 0; i < hw->mac.max_link_up_time; i++) {
4218 if (links_reg & IXGBE_LINKS_UP) {
4219 *link_up = TRUE;
4220 break;
4221 } else {
4222 *link_up = FALSE;
4224 msec_delay(100);
4225 links_reg = IXGBE_READ_REG(hw, IXGBE_LINKS);
4227 } else {
4228 if (links_reg & IXGBE_LINKS_UP)
4229 *link_up = TRUE;
4230 else
4231 *link_up = FALSE;
4234 switch (links_reg & IXGBE_LINKS_SPEED_82599) {
4235 case IXGBE_LINKS_SPEED_10G_82599:
4236 *speed = IXGBE_LINK_SPEED_10GB_FULL;
4237 if (hw->mac.type >= ixgbe_mac_X550) {
4238 if (links_reg & IXGBE_LINKS_SPEED_NON_STD)
4239 *speed = IXGBE_LINK_SPEED_2_5GB_FULL;
4241 break;
4242 case IXGBE_LINKS_SPEED_1G_82599:
4243 *speed = IXGBE_LINK_SPEED_1GB_FULL;
4244 break;
4245 case IXGBE_LINKS_SPEED_100_82599:
4246 *speed = IXGBE_LINK_SPEED_100_FULL;
4247 if (hw->mac.type == ixgbe_mac_X550) {
4248 if (links_reg & IXGBE_LINKS_SPEED_NON_STD)
4249 *speed = IXGBE_LINK_SPEED_5GB_FULL;
4251 break;
4252 case IXGBE_LINKS_SPEED_10_X550EM_A:
4253 *speed = IXGBE_LINK_SPEED_UNKNOWN;
4254 if (hw->device_id == IXGBE_DEV_ID_X550EM_A_1G_T ||
4255 hw->device_id == IXGBE_DEV_ID_X550EM_A_1G_T_L)
4256 *speed = IXGBE_LINK_SPEED_10_FULL;
4257 break;
4258 default:
4259 *speed = IXGBE_LINK_SPEED_UNKNOWN;
4262 return IXGBE_SUCCESS;
4266 * ixgbe_get_wwn_prefix_generic - Get alternative WWNN/WWPN prefix from
4267 * the EEPROM
4268 * @hw: pointer to hardware structure
4269 * @wwnn_prefix: the alternative WWNN prefix
4270 * @wwpn_prefix: the alternative WWPN prefix
4272 * This function will read the EEPROM from the alternative SAN MAC address
4273 * block to check the support for the alternative WWNN/WWPN prefix support.
4275 s32 ixgbe_get_wwn_prefix_generic(struct ixgbe_hw *hw, u16 *wwnn_prefix,
4276 u16 *wwpn_prefix)
4278 u16 offset, caps;
4279 u16 alt_san_mac_blk_offset;
4281 DEBUGFUNC("ixgbe_get_wwn_prefix_generic");
4283 /* clear output first */
4284 *wwnn_prefix = 0xFFFF;
4285 *wwpn_prefix = 0xFFFF;
4287 /* check if alternative SAN MAC is supported */
4288 offset = IXGBE_ALT_SAN_MAC_ADDR_BLK_PTR;
4289 if (hw->eeprom.ops.read(hw, offset, &alt_san_mac_blk_offset))
4290 goto wwn_prefix_err;
4292 if ((alt_san_mac_blk_offset == 0) ||
4293 (alt_san_mac_blk_offset == 0xFFFF))
4294 goto wwn_prefix_out;
4296 /* check capability in alternative san mac address block */
4297 offset = alt_san_mac_blk_offset + IXGBE_ALT_SAN_MAC_ADDR_CAPS_OFFSET;
4298 if (hw->eeprom.ops.read(hw, offset, &caps))
4299 goto wwn_prefix_err;
4300 if (!(caps & IXGBE_ALT_SAN_MAC_ADDR_CAPS_ALTWWN))
4301 goto wwn_prefix_out;
4303 /* get the corresponding prefix for WWNN/WWPN */
4304 offset = alt_san_mac_blk_offset + IXGBE_ALT_SAN_MAC_ADDR_WWNN_OFFSET;
4305 if (hw->eeprom.ops.read(hw, offset, wwnn_prefix)) {
4306 ERROR_REPORT2(IXGBE_ERROR_INVALID_STATE,
4307 "eeprom read at offset %d failed", offset);
4310 offset = alt_san_mac_blk_offset + IXGBE_ALT_SAN_MAC_ADDR_WWPN_OFFSET;
4311 if (hw->eeprom.ops.read(hw, offset, wwpn_prefix))
4312 goto wwn_prefix_err;
4314 wwn_prefix_out:
4315 return IXGBE_SUCCESS;
4317 wwn_prefix_err:
4318 ERROR_REPORT2(IXGBE_ERROR_INVALID_STATE,
4319 "eeprom read at offset %d failed", offset);
4320 return IXGBE_SUCCESS;
4324 * ixgbe_get_fcoe_boot_status_generic - Get FCOE boot status from EEPROM
4325 * @hw: pointer to hardware structure
4326 * @bs: the fcoe boot status
4328 * This function will read the FCOE boot status from the iSCSI FCOE block
4330 s32 ixgbe_get_fcoe_boot_status_generic(struct ixgbe_hw *hw, u16 *bs)
4332 u16 offset, caps, flags;
4333 s32 status;
4335 DEBUGFUNC("ixgbe_get_fcoe_boot_status_generic");
4337 /* clear output first */
4338 *bs = ixgbe_fcoe_bootstatus_unavailable;
4340 /* check if FCOE IBA block is present */
4341 offset = IXGBE_FCOE_IBA_CAPS_BLK_PTR;
4342 status = hw->eeprom.ops.read(hw, offset, &caps);
4343 if (status != IXGBE_SUCCESS)
4344 goto out;
4346 if (!(caps & IXGBE_FCOE_IBA_CAPS_FCOE))
4347 goto out;
4349 /* check if iSCSI FCOE block is populated */
4350 status = hw->eeprom.ops.read(hw, IXGBE_ISCSI_FCOE_BLK_PTR, &offset);
4351 if (status != IXGBE_SUCCESS)
4352 goto out;
4354 if ((offset == 0) || (offset == 0xFFFF))
4355 goto out;
4357 /* read fcoe flags in iSCSI FCOE block */
4358 offset = offset + IXGBE_ISCSI_FCOE_FLAGS_OFFSET;
4359 status = hw->eeprom.ops.read(hw, offset, &flags);
4360 if (status != IXGBE_SUCCESS)
4361 goto out;
4363 if (flags & IXGBE_ISCSI_FCOE_FLAGS_ENABLE)
4364 *bs = ixgbe_fcoe_bootstatus_enabled;
4365 else
4366 *bs = ixgbe_fcoe_bootstatus_disabled;
4368 out:
4369 return status;
4373 * ixgbe_set_mac_anti_spoofing - Enable/Disable MAC anti-spoofing
4374 * @hw: pointer to hardware structure
4375 * @enable: enable or disable switch for MAC anti-spoofing
4376 * @vf: Virtual Function pool - VF Pool to set for MAC anti-spoofing
4379 void ixgbe_set_mac_anti_spoofing(struct ixgbe_hw *hw, bool enable, int vf)
4381 int vf_target_reg = vf >> 3;
4382 int vf_target_shift = vf % 8;
4383 u32 pfvfspoof;
4385 if (hw->mac.type == ixgbe_mac_82598EB)
4386 return;
4388 pfvfspoof = IXGBE_READ_REG(hw, IXGBE_PFVFSPOOF(vf_target_reg));
4389 if (enable)
4390 pfvfspoof |= (1 << vf_target_shift);
4391 else
4392 pfvfspoof &= ~(1 << vf_target_shift);
4393 IXGBE_WRITE_REG(hw, IXGBE_PFVFSPOOF(vf_target_reg), pfvfspoof);
4397 * ixgbe_set_vlan_anti_spoofing - Enable/Disable VLAN anti-spoofing
4398 * @hw: pointer to hardware structure
4399 * @enable: enable or disable switch for VLAN anti-spoofing
4400 * @vf: Virtual Function pool - VF Pool to set for VLAN anti-spoofing
4403 void ixgbe_set_vlan_anti_spoofing(struct ixgbe_hw *hw, bool enable, int vf)
4405 int vf_target_reg = vf >> 3;
4406 int vf_target_shift = vf % 8 + IXGBE_SPOOF_VLANAS_SHIFT;
4407 u32 pfvfspoof;
4409 if (hw->mac.type == ixgbe_mac_82598EB)
4410 return;
4412 pfvfspoof = IXGBE_READ_REG(hw, IXGBE_PFVFSPOOF(vf_target_reg));
4413 if (enable)
4414 pfvfspoof |= (1 << vf_target_shift);
4415 else
4416 pfvfspoof &= ~(1 << vf_target_shift);
4417 IXGBE_WRITE_REG(hw, IXGBE_PFVFSPOOF(vf_target_reg), pfvfspoof);
4421 * ixgbe_get_device_caps_generic - Get additional device capabilities
4422 * @hw: pointer to hardware structure
4423 * @device_caps: the EEPROM word with the extra device capabilities
4425 * This function will read the EEPROM location for the device capabilities,
4426 * and return the word through device_caps.
4428 s32 ixgbe_get_device_caps_generic(struct ixgbe_hw *hw, u16 *device_caps)
4430 DEBUGFUNC("ixgbe_get_device_caps_generic");
4432 hw->eeprom.ops.read(hw, IXGBE_DEVICE_CAPS, device_caps);
4434 return IXGBE_SUCCESS;
4438 * ixgbe_enable_relaxed_ordering_gen2 - Enable relaxed ordering
4439 * @hw: pointer to hardware structure
4442 void ixgbe_enable_relaxed_ordering_gen2(struct ixgbe_hw *hw)
4444 u32 regval;
4445 u32 i;
4447 DEBUGFUNC("ixgbe_enable_relaxed_ordering_gen2");
4449 /* Enable relaxed ordering */
4450 for (i = 0; i < hw->mac.max_tx_queues; i++) {
4451 regval = IXGBE_READ_REG(hw, IXGBE_DCA_TXCTRL_82599(i));
4452 regval |= IXGBE_DCA_TXCTRL_DESC_WRO_EN;
4453 IXGBE_WRITE_REG(hw, IXGBE_DCA_TXCTRL_82599(i), regval);
4456 for (i = 0; i < hw->mac.max_rx_queues; i++) {
4457 regval = IXGBE_READ_REG(hw, IXGBE_DCA_RXCTRL(i));
4458 regval |= IXGBE_DCA_RXCTRL_DATA_WRO_EN |
4459 IXGBE_DCA_RXCTRL_HEAD_WRO_EN;
4460 IXGBE_WRITE_REG(hw, IXGBE_DCA_RXCTRL(i), regval);
4466 * ixgbe_calculate_checksum - Calculate checksum for buffer
4467 * @buffer: pointer to EEPROM
4468 * @length: size of EEPROM to calculate a checksum for
4469 * Calculates the checksum for some buffer on a specified length. The
4470 * checksum calculated is returned.
4472 u8 ixgbe_calculate_checksum(u8 *buffer, u32 length)
4474 u32 i;
4475 u8 sum = 0;
4477 DEBUGFUNC("ixgbe_calculate_checksum");
4479 if (!buffer)
4480 return 0;
4482 for (i = 0; i < length; i++)
4483 sum += buffer[i];
4485 return (u8) (0 - sum);
4489 * ixgbe_hic_unlocked - Issue command to manageability block unlocked
4490 * @hw: pointer to the HW structure
4491 * @buffer: command to write and where the return status will be placed
4492 * @length: length of buffer, must be multiple of 4 bytes
4493 * @timeout: time in ms to wait for command completion
4495 * Communicates with the manageability block. On success return IXGBE_SUCCESS
4496 * else returns semaphore error when encountering an error acquiring
4497 * semaphore or IXGBE_ERR_HOST_INTERFACE_COMMAND when command fails.
4499 * This function assumes that the IXGBE_GSSR_SW_MNG_SM semaphore is held
4500 * by the caller.
4502 s32 ixgbe_hic_unlocked(struct ixgbe_hw *hw, u32 *buffer, u32 length,
4503 u32 timeout)
4505 u32 hicr, i, fwsts;
4506 u16 dword_len;
4508 DEBUGFUNC("ixgbe_hic_unlocked");
4510 if (!length || length > IXGBE_HI_MAX_BLOCK_BYTE_LENGTH) {
4511 DEBUGOUT1("Buffer length failure buffersize=%d.\n", length);
4512 return IXGBE_ERR_HOST_INTERFACE_COMMAND;
4515 /* Set bit 9 of FWSTS clearing FW reset indication */
4516 fwsts = IXGBE_READ_REG(hw, IXGBE_FWSTS);
4517 IXGBE_WRITE_REG(hw, IXGBE_FWSTS, fwsts | IXGBE_FWSTS_FWRI);
4519 /* Check that the host interface is enabled. */
4520 hicr = IXGBE_READ_REG(hw, IXGBE_HICR);
4521 if (!(hicr & IXGBE_HICR_EN)) {
4522 DEBUGOUT("IXGBE_HOST_EN bit disabled.\n");
4523 return IXGBE_ERR_HOST_INTERFACE_COMMAND;
4526 /* Calculate length in DWORDs. We must be DWORD aligned */
4527 if (length % sizeof(u32)) {
4528 DEBUGOUT("Buffer length failure, not aligned to dword");
4529 return IXGBE_ERR_INVALID_ARGUMENT;
4532 dword_len = length >> 2;
4534 /* The device driver writes the relevant command block
4535 * into the ram area.
4537 for (i = 0; i < dword_len; i++)
4538 IXGBE_WRITE_REG_ARRAY(hw, IXGBE_FLEX_MNG,
4539 i, IXGBE_CPU_TO_LE32(buffer[i]));
4541 /* Setting this bit tells the ARC that a new command is pending. */
4542 IXGBE_WRITE_REG(hw, IXGBE_HICR, hicr | IXGBE_HICR_C);
4544 for (i = 0; i < timeout; i++) {
4545 hicr = IXGBE_READ_REG(hw, IXGBE_HICR);
4546 if (!(hicr & IXGBE_HICR_C))
4547 break;
4548 msec_delay(1);
4551 /* Check command completion */
4552 if ((timeout && i == timeout) ||
4553 !(IXGBE_READ_REG(hw, IXGBE_HICR) & IXGBE_HICR_SV)) {
4554 ERROR_REPORT1(IXGBE_ERROR_CAUTION,
4555 "Command has failed with no status valid.\n");
4556 return IXGBE_ERR_HOST_INTERFACE_COMMAND;
4559 return IXGBE_SUCCESS;
4563 * ixgbe_host_interface_command - Issue command to manageability block
4564 * @hw: pointer to the HW structure
4565 * @buffer: contains the command to write and where the return status will
4566 * be placed
4567 * @length: length of buffer, must be multiple of 4 bytes
4568 * @timeout: time in ms to wait for command completion
4569 * @return_data: read and return data from the buffer (TRUE) or not (FALSE)
4570 * Needed because FW structures are big endian and decoding of
4571 * these fields can be 8 bit or 16 bit based on command. Decoding
4572 * is not easily understood without making a table of commands.
4573 * So we will leave this up to the caller to read back the data
4574 * in these cases.
4576 * Communicates with the manageability block. On success return IXGBE_SUCCESS
4577 * else returns semaphore error when encountering an error acquiring
4578 * semaphore or IXGBE_ERR_HOST_INTERFACE_COMMAND when command fails.
4580 s32 ixgbe_host_interface_command(struct ixgbe_hw *hw, u32 *buffer,
4581 u32 length, u32 timeout, bool return_data)
4583 u32 hdr_size = sizeof(struct ixgbe_hic_hdr);
4584 u16 dword_len;
4585 u16 buf_len;
4586 s32 status;
4587 u32 bi;
4589 DEBUGFUNC("ixgbe_host_interface_command");
4591 if (length == 0 || length > IXGBE_HI_MAX_BLOCK_BYTE_LENGTH) {
4592 DEBUGOUT1("Buffer length failure buffersize=%d.\n", length);
4593 return IXGBE_ERR_HOST_INTERFACE_COMMAND;
4596 /* Take management host interface semaphore */
4597 status = hw->mac.ops.acquire_swfw_sync(hw, IXGBE_GSSR_SW_MNG_SM);
4598 if (status)
4599 return status;
4601 status = ixgbe_hic_unlocked(hw, buffer, length, timeout);
4602 if (status)
4603 goto rel_out;
4605 if (!return_data)
4606 goto rel_out;
4608 /* Calculate length in DWORDs */
4609 dword_len = hdr_size >> 2;
4611 /* first pull in the header so we know the buffer length */
4612 for (bi = 0; bi < dword_len; bi++) {
4613 buffer[bi] = IXGBE_READ_REG_ARRAY(hw, IXGBE_FLEX_MNG, bi);
4614 IXGBE_LE32_TO_CPUS(&buffer[bi]);
4617 /* If there is any thing in data position pull it in */
4618 buf_len = ((struct ixgbe_hic_hdr *)buffer)->buf_len;
4619 if (!buf_len)
4620 goto rel_out;
4622 if (length < buf_len + hdr_size) {
4623 DEBUGOUT("Buffer not large enough for reply message.\n");
4624 status = IXGBE_ERR_HOST_INTERFACE_COMMAND;
4625 goto rel_out;
4628 /* Calculate length in DWORDs, add 3 for odd lengths */
4629 dword_len = (buf_len + 3) >> 2;
4631 /* Pull in the rest of the buffer (bi is where we left off) */
4632 for (; bi <= dword_len; bi++) {
4633 buffer[bi] = IXGBE_READ_REG_ARRAY(hw, IXGBE_FLEX_MNG, bi);
4634 IXGBE_LE32_TO_CPUS(&buffer[bi]);
4637 rel_out:
4638 hw->mac.ops.release_swfw_sync(hw, IXGBE_GSSR_SW_MNG_SM);
4640 return status;
4644 * ixgbe_set_fw_drv_ver_generic - Sends driver version to firmware
4645 * @hw: pointer to the HW structure
4646 * @maj: driver version major number
4647 * @min: driver version minor number
4648 * @build: driver version build number
4649 * @sub: driver version sub build number
4651 * Sends driver version number to firmware through the manageability
4652 * block. On success return IXGBE_SUCCESS
4653 * else returns IXGBE_ERR_SWFW_SYNC when encountering an error acquiring
4654 * semaphore or IXGBE_ERR_HOST_INTERFACE_COMMAND when command fails.
4656 s32 ixgbe_set_fw_drv_ver_generic(struct ixgbe_hw *hw, u8 maj, u8 min,
4657 u8 build, u8 sub, u16 len,
4658 const char *driver_ver)
4660 struct ixgbe_hic_drv_info fw_cmd;
4661 int i;
4662 s32 ret_val = IXGBE_SUCCESS;
4664 DEBUGFUNC("ixgbe_set_fw_drv_ver_generic");
4665 UNREFERENCED_2PARAMETER(len, driver_ver);
4667 fw_cmd.hdr.cmd = FW_CEM_CMD_DRIVER_INFO;
4668 fw_cmd.hdr.buf_len = FW_CEM_CMD_DRIVER_INFO_LEN;
4669 fw_cmd.hdr.cmd_or_resp.cmd_resv = FW_CEM_CMD_RESERVED;
4670 fw_cmd.port_num = (u8)hw->bus.func;
4671 fw_cmd.ver_maj = maj;
4672 fw_cmd.ver_min = min;
4673 fw_cmd.ver_build = build;
4674 fw_cmd.ver_sub = sub;
4675 fw_cmd.hdr.checksum = 0;
4676 fw_cmd.pad = 0;
4677 fw_cmd.pad2 = 0;
4678 fw_cmd.hdr.checksum = ixgbe_calculate_checksum((u8 *)&fw_cmd,
4679 (FW_CEM_HDR_LEN + fw_cmd.hdr.buf_len));
4681 for (i = 0; i <= FW_CEM_MAX_RETRIES; i++) {
4682 ret_val = ixgbe_host_interface_command(hw, (u32 *)&fw_cmd,
4683 sizeof(fw_cmd),
4684 IXGBE_HI_COMMAND_TIMEOUT,
4685 TRUE);
4686 if (ret_val != IXGBE_SUCCESS)
4687 continue;
4689 if (fw_cmd.hdr.cmd_or_resp.ret_status ==
4690 FW_CEM_RESP_STATUS_SUCCESS)
4691 ret_val = IXGBE_SUCCESS;
4692 else
4693 ret_val = IXGBE_ERR_HOST_INTERFACE_COMMAND;
4695 break;
4698 return ret_val;
4702 * ixgbe_set_rxpba_generic - Initialize Rx packet buffer
4703 * @hw: pointer to hardware structure
4704 * @num_pb: number of packet buffers to allocate
4705 * @headroom: reserve n KB of headroom
4706 * @strategy: packet buffer allocation strategy
4708 void ixgbe_set_rxpba_generic(struct ixgbe_hw *hw, int num_pb, u32 headroom,
4709 int strategy)
4711 u32 pbsize = hw->mac.rx_pb_size;
4712 int i = 0;
4713 u32 rxpktsize, txpktsize, txpbthresh;
4715 /* Reserve headroom */
4716 pbsize -= headroom;
4718 if (!num_pb)
4719 num_pb = 1;
4721 /* Divide remaining packet buffer space amongst the number of packet
4722 * buffers requested using supplied strategy.
4724 switch (strategy) {
4725 case PBA_STRATEGY_WEIGHTED:
4726 /* ixgbe_dcb_pba_80_48 strategy weight first half of packet
4727 * buffer with 5/8 of the packet buffer space.
4729 rxpktsize = (pbsize * 5) / (num_pb * 4);
4730 pbsize -= rxpktsize * (num_pb / 2);
4731 rxpktsize <<= IXGBE_RXPBSIZE_SHIFT;
4732 for (; i < (num_pb / 2); i++)
4733 IXGBE_WRITE_REG(hw, IXGBE_RXPBSIZE(i), rxpktsize);
4734 /* fall through - configure remaining packet buffers */
4735 case PBA_STRATEGY_EQUAL:
4736 rxpktsize = (pbsize / (num_pb - i)) << IXGBE_RXPBSIZE_SHIFT;
4737 for (; i < num_pb; i++)
4738 IXGBE_WRITE_REG(hw, IXGBE_RXPBSIZE(i), rxpktsize);
4739 break;
4740 default:
4741 break;
4744 /* Only support an equally distributed Tx packet buffer strategy. */
4745 txpktsize = IXGBE_TXPBSIZE_MAX / num_pb;
4746 txpbthresh = (txpktsize / 1024) - IXGBE_TXPKT_SIZE_MAX;
4747 for (i = 0; i < num_pb; i++) {
4748 IXGBE_WRITE_REG(hw, IXGBE_TXPBSIZE(i), txpktsize);
4749 IXGBE_WRITE_REG(hw, IXGBE_TXPBTHRESH(i), txpbthresh);
4752 /* Clear unused TCs, if any, to zero buffer size*/
4753 for (; i < IXGBE_MAX_PB; i++) {
4754 IXGBE_WRITE_REG(hw, IXGBE_RXPBSIZE(i), 0);
4755 IXGBE_WRITE_REG(hw, IXGBE_TXPBSIZE(i), 0);
4756 IXGBE_WRITE_REG(hw, IXGBE_TXPBTHRESH(i), 0);
4761 * ixgbe_clear_tx_pending - Clear pending TX work from the PCIe fifo
4762 * @hw: pointer to the hardware structure
4764 * The 82599 and x540 MACs can experience issues if TX work is still pending
4765 * when a reset occurs. This function prevents this by flushing the PCIe
4766 * buffers on the system.
4768 void ixgbe_clear_tx_pending(struct ixgbe_hw *hw)
4770 u32 gcr_ext, hlreg0, i, poll;
4771 u16 value;
4774 * If double reset is not requested then all transactions should
4775 * already be clear and as such there is no work to do
4777 if (!(hw->mac.flags & IXGBE_FLAGS_DOUBLE_RESET_REQUIRED))
4778 return;
4781 * Set loopback enable to prevent any transmits from being sent
4782 * should the link come up. This assumes that the RXCTRL.RXEN bit
4783 * has already been cleared.
4785 hlreg0 = IXGBE_READ_REG(hw, IXGBE_HLREG0);
4786 IXGBE_WRITE_REG(hw, IXGBE_HLREG0, hlreg0 | IXGBE_HLREG0_LPBK);
4788 /* Wait for a last completion before clearing buffers */
4789 IXGBE_WRITE_FLUSH(hw);
4790 msec_delay(3);
4793 * Before proceeding, make sure that the PCIe block does not have
4794 * transactions pending.
4796 poll = ixgbe_pcie_timeout_poll(hw);
4797 for (i = 0; i < poll; i++) {
4798 usec_delay(100);
4799 value = IXGBE_READ_PCIE_WORD(hw, IXGBE_PCI_DEVICE_STATUS);
4800 if (IXGBE_REMOVED(hw->hw_addr))
4801 goto out;
4802 if (!(value & IXGBE_PCI_DEVICE_STATUS_TRANSACTION_PENDING))
4803 goto out;
4806 out:
4807 /* initiate cleaning flow for buffers in the PCIe transaction layer */
4808 gcr_ext = IXGBE_READ_REG(hw, IXGBE_GCR_EXT);
4809 IXGBE_WRITE_REG(hw, IXGBE_GCR_EXT,
4810 gcr_ext | IXGBE_GCR_EXT_BUFFERS_CLEAR);
4812 /* Flush all writes and allow 20usec for all transactions to clear */
4813 IXGBE_WRITE_FLUSH(hw);
4814 usec_delay(20);
4816 /* restore previous register values */
4817 IXGBE_WRITE_REG(hw, IXGBE_GCR_EXT, gcr_ext);
4818 IXGBE_WRITE_REG(hw, IXGBE_HLREG0, hlreg0);
4822 * ixgbe_bypass_rw_generic - Bit bang data into by_pass FW
4824 * @hw: pointer to hardware structure
4825 * @cmd: Command we send to the FW
4826 * @status: The reply from the FW
4828 * Bit-bangs the cmd to the by_pass FW status points to what is returned.
4830 #define IXGBE_BYPASS_BB_WAIT 1
4831 s32 ixgbe_bypass_rw_generic(struct ixgbe_hw *hw, u32 cmd, u32 *status)
4833 int i;
4834 u32 sck, sdi, sdo, dir_sck, dir_sdi, dir_sdo;
4835 u32 esdp;
4837 if (!status)
4838 return IXGBE_ERR_PARAM;
4840 *status = 0;
4842 /* SDP vary by MAC type */
4843 switch (hw->mac.type) {
4844 case ixgbe_mac_82599EB:
4845 sck = IXGBE_ESDP_SDP7;
4846 sdi = IXGBE_ESDP_SDP0;
4847 sdo = IXGBE_ESDP_SDP6;
4848 dir_sck = IXGBE_ESDP_SDP7_DIR;
4849 dir_sdi = IXGBE_ESDP_SDP0_DIR;
4850 dir_sdo = IXGBE_ESDP_SDP6_DIR;
4851 break;
4852 case ixgbe_mac_X540:
4853 sck = IXGBE_ESDP_SDP2;
4854 sdi = IXGBE_ESDP_SDP0;
4855 sdo = IXGBE_ESDP_SDP1;
4856 dir_sck = IXGBE_ESDP_SDP2_DIR;
4857 dir_sdi = IXGBE_ESDP_SDP0_DIR;
4858 dir_sdo = IXGBE_ESDP_SDP1_DIR;
4859 break;
4860 default:
4861 return IXGBE_ERR_DEVICE_NOT_SUPPORTED;
4864 /* Set SDP pins direction */
4865 esdp = IXGBE_READ_REG(hw, IXGBE_ESDP);
4866 esdp |= dir_sck; /* SCK as output */
4867 esdp |= dir_sdi; /* SDI as output */
4868 esdp &= ~dir_sdo; /* SDO as input */
4869 esdp |= sck;
4870 esdp |= sdi;
4871 IXGBE_WRITE_REG(hw, IXGBE_ESDP, esdp);
4872 IXGBE_WRITE_FLUSH(hw);
4873 msec_delay(IXGBE_BYPASS_BB_WAIT);
4875 /* Generate start condition */
4876 esdp &= ~sdi;
4877 IXGBE_WRITE_REG(hw, IXGBE_ESDP, esdp);
4878 IXGBE_WRITE_FLUSH(hw);
4879 msec_delay(IXGBE_BYPASS_BB_WAIT);
4881 esdp &= ~sck;
4882 IXGBE_WRITE_REG(hw, IXGBE_ESDP, esdp);
4883 IXGBE_WRITE_FLUSH(hw);
4884 msec_delay(IXGBE_BYPASS_BB_WAIT);
4886 /* Clock out the new control word and clock in the status */
4887 for (i = 0; i < 32; i++) {
4888 if ((cmd >> (31 - i)) & 0x01) {
4889 esdp |= sdi;
4890 IXGBE_WRITE_REG(hw, IXGBE_ESDP, esdp);
4891 } else {
4892 esdp &= ~sdi;
4893 IXGBE_WRITE_REG(hw, IXGBE_ESDP, esdp);
4895 IXGBE_WRITE_FLUSH(hw);
4896 msec_delay(IXGBE_BYPASS_BB_WAIT);
4898 esdp |= sck;
4899 IXGBE_WRITE_REG(hw, IXGBE_ESDP, esdp);
4900 IXGBE_WRITE_FLUSH(hw);
4901 msec_delay(IXGBE_BYPASS_BB_WAIT);
4903 esdp &= ~sck;
4904 IXGBE_WRITE_REG(hw, IXGBE_ESDP, esdp);
4905 IXGBE_WRITE_FLUSH(hw);
4906 msec_delay(IXGBE_BYPASS_BB_WAIT);
4908 esdp = IXGBE_READ_REG(hw, IXGBE_ESDP);
4909 if (esdp & sdo)
4910 *status = (*status << 1) | 0x01;
4911 else
4912 *status = (*status << 1) | 0x00;
4913 msec_delay(IXGBE_BYPASS_BB_WAIT);
4916 /* stop condition */
4917 esdp |= sck;
4918 esdp &= ~sdi;
4919 IXGBE_WRITE_REG(hw, IXGBE_ESDP, esdp);
4920 IXGBE_WRITE_FLUSH(hw);
4921 msec_delay(IXGBE_BYPASS_BB_WAIT);
4923 esdp |= sdi;
4924 IXGBE_WRITE_REG(hw, IXGBE_ESDP, esdp);
4925 IXGBE_WRITE_FLUSH(hw);
4927 /* set the page bits to match the cmd that the status it belongs to */
4928 *status = (*status & 0x3fffffff) | (cmd & 0xc0000000);
4930 return IXGBE_SUCCESS;
4934 * ixgbe_bypass_valid_rd_generic - Verify valid return from bit-bang.
4936 * If we send a write we can't be sure it took until we can read back
4937 * that same register. It can be a problem as some of the feilds may
4938 * for valid reasons change inbetween the time wrote the register and
4939 * we read it again to verify. So this function check everything we
4940 * can check and then assumes it worked.
4942 * @u32 in_reg - The register cmd for the bit-bang read.
4943 * @u32 out_reg - The register returned from a bit-bang read.
4945 bool ixgbe_bypass_valid_rd_generic(u32 in_reg, u32 out_reg)
4947 u32 mask;
4949 /* Page must match for all control pages */
4950 if ((in_reg & BYPASS_PAGE_M) != (out_reg & BYPASS_PAGE_M))
4951 return FALSE;
4953 switch (in_reg & BYPASS_PAGE_M) {
4954 case BYPASS_PAGE_CTL0:
4955 /* All the following can't change since the last write
4956 * - All the event actions
4957 * - The timeout value
4959 mask = BYPASS_AUX_ON_M | BYPASS_MAIN_ON_M |
4960 BYPASS_MAIN_OFF_M | BYPASS_AUX_OFF_M |
4961 BYPASS_WDTIMEOUT_M |
4962 BYPASS_WDT_VALUE_M;
4963 if ((out_reg & mask) != (in_reg & mask))
4964 return FALSE;
4966 /* 0x0 is never a valid value for bypass status */
4967 if (!(out_reg & BYPASS_STATUS_OFF_M))
4968 return FALSE;
4969 break;
4970 case BYPASS_PAGE_CTL1:
4971 /* All the following can't change since the last write
4972 * - time valid bit
4973 * - time we last sent
4975 mask = BYPASS_CTL1_VALID_M | BYPASS_CTL1_TIME_M;
4976 if ((out_reg & mask) != (in_reg & mask))
4977 return FALSE;
4978 break;
4979 case BYPASS_PAGE_CTL2:
4980 /* All we can check in this page is control number
4981 * which is already done above.
4983 break;
4986 /* We are as sure as we can be return TRUE */
4987 return TRUE;
4991 * ixgbe_bypass_set_generic - Set a bypass field in the FW CTRL Regiter.
4993 * @hw: pointer to hardware structure
4994 * @cmd: The control word we are setting.
4995 * @event: The event we are setting in the FW. This also happens to
4996 * be the mask for the event we are setting (handy)
4997 * @action: The action we set the event to in the FW. This is in a
4998 * bit field that happens to be what we want to put in
4999 * the event spot (also handy)
5001 s32 ixgbe_bypass_set_generic(struct ixgbe_hw *hw, u32 ctrl, u32 event,
5002 u32 action)
5004 u32 by_ctl = 0;
5005 u32 cmd, verify;
5006 u32 count = 0;
5008 /* Get current values */
5009 cmd = ctrl; /* just reading only need control number */
5010 if (ixgbe_bypass_rw_generic(hw, cmd, &by_ctl))
5011 return IXGBE_ERR_INVALID_ARGUMENT;
5013 /* Set to new action */
5014 cmd = (by_ctl & ~event) | BYPASS_WE | action;
5015 if (ixgbe_bypass_rw_generic(hw, cmd, &by_ctl))
5016 return IXGBE_ERR_INVALID_ARGUMENT;
5018 /* Page 0 force a FW eeprom write which is slow so verify */
5019 if ((cmd & BYPASS_PAGE_M) == BYPASS_PAGE_CTL0) {
5020 verify = BYPASS_PAGE_CTL0;
5021 do {
5022 if (count++ > 5)
5023 return IXGBE_BYPASS_FW_WRITE_FAILURE;
5025 if (ixgbe_bypass_rw_generic(hw, verify, &by_ctl))
5026 return IXGBE_ERR_INVALID_ARGUMENT;
5027 } while (!ixgbe_bypass_valid_rd_generic(cmd, by_ctl));
5028 } else {
5029 /* We have give the FW time for the write to stick */
5030 msec_delay(100);
5033 return IXGBE_SUCCESS;
5037 * ixgbe_bypass_rd_eep_generic - Read the bypass FW eeprom addres.
5039 * @hw: pointer to hardware structure
5040 * @addr: The bypass eeprom address to read.
5041 * @value: The 8b of data at the address above.
5043 s32 ixgbe_bypass_rd_eep_generic(struct ixgbe_hw *hw, u32 addr, u8 *value)
5045 u32 cmd;
5046 u32 status;
5049 /* send the request */
5050 cmd = BYPASS_PAGE_CTL2 | BYPASS_WE;
5051 cmd |= (addr << BYPASS_CTL2_OFFSET_SHIFT) & BYPASS_CTL2_OFFSET_M;
5052 if (ixgbe_bypass_rw_generic(hw, cmd, &status))
5053 return IXGBE_ERR_INVALID_ARGUMENT;
5055 /* We have give the FW time for the write to stick */
5056 msec_delay(100);
5058 /* now read the results */
5059 cmd &= ~BYPASS_WE;
5060 if (ixgbe_bypass_rw_generic(hw, cmd, &status))
5061 return IXGBE_ERR_INVALID_ARGUMENT;
5063 *value = status & BYPASS_CTL2_DATA_M;
5065 return IXGBE_SUCCESS;
5069 * ixgbe_get_orom_version - Return option ROM from EEPROM
5071 * @hw: pointer to hardware structure
5072 * @nvm_ver: pointer to output structure
5074 * if valid option ROM version, nvm_ver->or_valid set to TRUE
5075 * else nvm_ver->or_valid is FALSE.
5077 void ixgbe_get_orom_version(struct ixgbe_hw *hw,
5078 struct ixgbe_nvm_version *nvm_ver)
5080 u16 offset, eeprom_cfg_blkh, eeprom_cfg_blkl;
5082 nvm_ver->or_valid = FALSE;
5083 /* Option Rom may or may not be present. Start with pointer */
5084 hw->eeprom.ops.read(hw, NVM_OROM_OFFSET, &offset);
5086 /* make sure offset is valid */
5087 if ((offset == 0x0) || (offset == NVM_INVALID_PTR))
5088 return;
5090 hw->eeprom.ops.read(hw, offset + NVM_OROM_BLK_HI, &eeprom_cfg_blkh);
5091 hw->eeprom.ops.read(hw, offset + NVM_OROM_BLK_LOW, &eeprom_cfg_blkl);
5093 /* option rom exists and is valid */
5094 if ((eeprom_cfg_blkl | eeprom_cfg_blkh) == 0x0 ||
5095 eeprom_cfg_blkl == NVM_VER_INVALID ||
5096 eeprom_cfg_blkh == NVM_VER_INVALID)
5097 return;
5099 nvm_ver->or_valid = TRUE;
5100 nvm_ver->or_major = eeprom_cfg_blkl >> NVM_OROM_SHIFT;
5101 nvm_ver->or_build = (eeprom_cfg_blkl << NVM_OROM_SHIFT) |
5102 (eeprom_cfg_blkh >> NVM_OROM_SHIFT);
5103 nvm_ver->or_patch = eeprom_cfg_blkh & NVM_OROM_PATCH_MASK;
5107 * ixgbe_get_oem_prod_version - Return OEM Product version
5109 * @hw: pointer to hardware structure
5110 * @nvm_ver: pointer to output structure
5112 * if valid OEM product version, nvm_ver->oem_valid set to TRUE
5113 * else nvm_ver->oem_valid is FALSE.
5115 void ixgbe_get_oem_prod_version(struct ixgbe_hw *hw,
5116 struct ixgbe_nvm_version *nvm_ver)
5118 u16 rel_num, prod_ver, mod_len, cap, offset;
5120 nvm_ver->oem_valid = FALSE;
5121 hw->eeprom.ops.read(hw, NVM_OEM_PROD_VER_PTR, &offset);
5123 /* Return is offset to OEM Product Version block is invalid */
5124 if (offset == 0x0 && offset == NVM_INVALID_PTR)
5125 return;
5127 /* Read product version block */
5128 hw->eeprom.ops.read(hw, offset, &mod_len);
5129 hw->eeprom.ops.read(hw, offset + NVM_OEM_PROD_VER_CAP_OFF, &cap);
5131 /* Return if OEM product version block is invalid */
5132 if (mod_len != NVM_OEM_PROD_VER_MOD_LEN ||
5133 (cap & NVM_OEM_PROD_VER_CAP_MASK) != 0x0)
5134 return;
5136 hw->eeprom.ops.read(hw, offset + NVM_OEM_PROD_VER_OFF_L, &prod_ver);
5137 hw->eeprom.ops.read(hw, offset + NVM_OEM_PROD_VER_OFF_H, &rel_num);
5139 /* Return if version is invalid */
5140 if ((rel_num | prod_ver) == 0x0 ||
5141 rel_num == NVM_VER_INVALID || prod_ver == NVM_VER_INVALID)
5142 return;
5144 nvm_ver->oem_major = prod_ver >> NVM_VER_SHIFT;
5145 nvm_ver->oem_minor = prod_ver & NVM_VER_MASK;
5146 nvm_ver->oem_release = rel_num;
5147 nvm_ver->oem_valid = TRUE;
5151 * ixgbe_get_etk_id - Return Etrack ID from EEPROM
5153 * @hw: pointer to hardware structure
5154 * @nvm_ver: pointer to output structure
5156 * word read errors will return 0xFFFF
5158 void ixgbe_get_etk_id(struct ixgbe_hw *hw, struct ixgbe_nvm_version *nvm_ver)
5160 u16 etk_id_l, etk_id_h;
5162 if (hw->eeprom.ops.read(hw, NVM_ETK_OFF_LOW, &etk_id_l))
5163 etk_id_l = NVM_VER_INVALID;
5164 if (hw->eeprom.ops.read(hw, NVM_ETK_OFF_HI, &etk_id_h))
5165 etk_id_h = NVM_VER_INVALID;
5167 /* The word order for the version format is determined by high order
5168 * word bit 15.
5170 if ((etk_id_h & NVM_ETK_VALID) == 0) {
5171 nvm_ver->etk_id = etk_id_h;
5172 nvm_ver->etk_id |= (etk_id_l << NVM_ETK_SHIFT);
5173 } else {
5174 nvm_ver->etk_id = etk_id_l;
5175 nvm_ver->etk_id |= (etk_id_h << NVM_ETK_SHIFT);
5181 * ixgbe_dcb_get_rtrup2tc_generic - read rtrup2tc reg
5182 * @hw: pointer to hardware structure
5183 * @map: pointer to u8 arr for returning map
5185 * Read the rtrup2tc HW register and resolve its content into map
5187 void ixgbe_dcb_get_rtrup2tc_generic(struct ixgbe_hw *hw, u8 *map)
5189 u32 reg, i;
5191 reg = IXGBE_READ_REG(hw, IXGBE_RTRUP2TC);
5192 for (i = 0; i < IXGBE_DCB_MAX_USER_PRIORITY; i++)
5193 map[i] = IXGBE_RTRUP2TC_UP_MASK &
5194 (reg >> (i * IXGBE_RTRUP2TC_UP_SHIFT));
5195 return;
5198 void ixgbe_disable_rx_generic(struct ixgbe_hw *hw)
5200 u32 pfdtxgswc;
5201 u32 rxctrl;
5203 rxctrl = IXGBE_READ_REG(hw, IXGBE_RXCTRL);
5204 if (rxctrl & IXGBE_RXCTRL_RXEN) {
5205 if (hw->mac.type != ixgbe_mac_82598EB) {
5206 pfdtxgswc = IXGBE_READ_REG(hw, IXGBE_PFDTXGSWC);
5207 if (pfdtxgswc & IXGBE_PFDTXGSWC_VT_LBEN) {
5208 pfdtxgswc &= ~IXGBE_PFDTXGSWC_VT_LBEN;
5209 IXGBE_WRITE_REG(hw, IXGBE_PFDTXGSWC, pfdtxgswc);
5210 hw->mac.set_lben = TRUE;
5211 } else {
5212 hw->mac.set_lben = FALSE;
5215 rxctrl &= ~IXGBE_RXCTRL_RXEN;
5216 IXGBE_WRITE_REG(hw, IXGBE_RXCTRL, rxctrl);
5220 void ixgbe_enable_rx_generic(struct ixgbe_hw *hw)
5222 u32 pfdtxgswc;
5223 u32 rxctrl;
5225 rxctrl = IXGBE_READ_REG(hw, IXGBE_RXCTRL);
5226 IXGBE_WRITE_REG(hw, IXGBE_RXCTRL, (rxctrl | IXGBE_RXCTRL_RXEN));
5228 if (hw->mac.type != ixgbe_mac_82598EB) {
5229 if (hw->mac.set_lben) {
5230 pfdtxgswc = IXGBE_READ_REG(hw, IXGBE_PFDTXGSWC);
5231 pfdtxgswc |= IXGBE_PFDTXGSWC_VT_LBEN;
5232 IXGBE_WRITE_REG(hw, IXGBE_PFDTXGSWC, pfdtxgswc);
5233 hw->mac.set_lben = FALSE;
5239 * ixgbe_mng_present - returns TRUE when management capability is present
5240 * @hw: pointer to hardware structure
5242 bool ixgbe_mng_present(struct ixgbe_hw *hw)
5244 u32 fwsm;
5246 if (hw->mac.type < ixgbe_mac_82599EB)
5247 return FALSE;
5249 fwsm = IXGBE_READ_REG(hw, IXGBE_FWSM_BY_MAC(hw));
5251 return !!(fwsm & IXGBE_FWSM_FW_MODE_PT);
5255 * ixgbe_mng_enabled - Is the manageability engine enabled?
5256 * @hw: pointer to hardware structure
5258 * Returns TRUE if the manageability engine is enabled.
5260 bool ixgbe_mng_enabled(struct ixgbe_hw *hw)
5262 u32 fwsm, manc, factps;
5264 fwsm = IXGBE_READ_REG(hw, IXGBE_FWSM_BY_MAC(hw));
5265 if ((fwsm & IXGBE_FWSM_MODE_MASK) != IXGBE_FWSM_FW_MODE_PT)
5266 return FALSE;
5268 manc = IXGBE_READ_REG(hw, IXGBE_MANC);
5269 if (!(manc & IXGBE_MANC_RCV_TCO_EN))
5270 return FALSE;
5272 if (hw->mac.type <= ixgbe_mac_X540) {
5273 factps = IXGBE_READ_REG(hw, IXGBE_FACTPS_BY_MAC(hw));
5274 if (factps & IXGBE_FACTPS_MNGCG)
5275 return FALSE;
5278 return TRUE;
5282 * ixgbe_setup_mac_link_multispeed_fiber - Set MAC link speed
5283 * @hw: pointer to hardware structure
5284 * @speed: new link speed
5285 * @autoneg_wait_to_complete: TRUE when waiting for completion is needed
5287 * Set the link speed in the MAC and/or PHY register and restarts link.
5289 s32 ixgbe_setup_mac_link_multispeed_fiber(struct ixgbe_hw *hw,
5290 ixgbe_link_speed speed,
5291 bool autoneg_wait_to_complete)
5293 ixgbe_link_speed link_speed = IXGBE_LINK_SPEED_UNKNOWN;
5294 ixgbe_link_speed highest_link_speed = IXGBE_LINK_SPEED_UNKNOWN;
5295 s32 status = IXGBE_SUCCESS;
5296 u32 speedcnt = 0;
5297 u32 i = 0;
5298 bool autoneg, link_up = FALSE;
5300 DEBUGFUNC("ixgbe_setup_mac_link_multispeed_fiber");
5302 /* Mask off requested but non-supported speeds */
5303 status = ixgbe_get_link_capabilities(hw, &link_speed, &autoneg);
5304 if (status != IXGBE_SUCCESS)
5305 return status;
5307 speed &= link_speed;
5309 /* Try each speed one by one, highest priority first. We do this in
5310 * software because 10Gb fiber doesn't support speed autonegotiation.
5312 if (speed & IXGBE_LINK_SPEED_10GB_FULL) {
5313 speedcnt++;
5314 highest_link_speed = IXGBE_LINK_SPEED_10GB_FULL;
5316 /* Set the module link speed */
5317 switch (hw->phy.media_type) {
5318 case ixgbe_media_type_fiber_fixed:
5319 case ixgbe_media_type_fiber:
5320 ixgbe_set_rate_select_speed(hw,
5321 IXGBE_LINK_SPEED_10GB_FULL);
5322 break;
5323 case ixgbe_media_type_fiber_qsfp:
5324 /* QSFP module automatically detects MAC link speed */
5325 break;
5326 default:
5327 DEBUGOUT("Unexpected media type.\n");
5328 break;
5331 /* Allow module to change analog characteristics (1G->10G) */
5332 msec_delay(40);
5334 status = ixgbe_setup_mac_link(hw,
5335 IXGBE_LINK_SPEED_10GB_FULL,
5336 autoneg_wait_to_complete);
5337 if (status != IXGBE_SUCCESS)
5338 return status;
5340 /* Flap the Tx laser if it has not already been done */
5341 ixgbe_flap_tx_laser(hw);
5343 /* Wait for the controller to acquire link. Per IEEE 802.3ap,
5344 * Section 73.10.2, we may have to wait up to 500ms if KR is
5345 * attempted. 82599 uses the same timing for 10g SFI.
5347 for (i = 0; i < 5; i++) {
5348 /* Wait for the link partner to also set speed */
5349 msec_delay(100);
5351 /* If we have link, just jump out */
5352 status = ixgbe_check_link(hw, &link_speed,
5353 &link_up, FALSE);
5354 if (status != IXGBE_SUCCESS)
5355 return status;
5357 if (link_up)
5358 goto out;
5362 if (speed & IXGBE_LINK_SPEED_1GB_FULL) {
5363 speedcnt++;
5364 if (highest_link_speed == IXGBE_LINK_SPEED_UNKNOWN)
5365 highest_link_speed = IXGBE_LINK_SPEED_1GB_FULL;
5367 /* Set the module link speed */
5368 switch (hw->phy.media_type) {
5369 case ixgbe_media_type_fiber_fixed:
5370 case ixgbe_media_type_fiber:
5371 ixgbe_set_rate_select_speed(hw,
5372 IXGBE_LINK_SPEED_1GB_FULL);
5373 break;
5374 case ixgbe_media_type_fiber_qsfp:
5375 /* QSFP module automatically detects link speed */
5376 break;
5377 default:
5378 DEBUGOUT("Unexpected media type.\n");
5379 break;
5382 /* Allow module to change analog characteristics (10G->1G) */
5383 msec_delay(40);
5385 status = ixgbe_setup_mac_link(hw,
5386 IXGBE_LINK_SPEED_1GB_FULL,
5387 autoneg_wait_to_complete);
5388 if (status != IXGBE_SUCCESS)
5389 return status;
5391 /* Flap the Tx laser if it has not already been done */
5392 ixgbe_flap_tx_laser(hw);
5394 /* Wait for the link partner to also set speed */
5395 msec_delay(100);
5397 /* If we have link, just jump out */
5398 status = ixgbe_check_link(hw, &link_speed, &link_up, FALSE);
5399 if (status != IXGBE_SUCCESS)
5400 return status;
5402 if (link_up)
5403 goto out;
5406 /* We didn't get link. Configure back to the highest speed we tried,
5407 * (if there was more than one). We call ourselves back with just the
5408 * single highest speed that the user requested.
5410 if (speedcnt > 1)
5411 status = ixgbe_setup_mac_link_multispeed_fiber(hw,
5412 highest_link_speed,
5413 autoneg_wait_to_complete);
5415 out:
5416 /* Set autoneg_advertised value based on input link speed */
5417 hw->phy.autoneg_advertised = 0;
5419 if (speed & IXGBE_LINK_SPEED_10GB_FULL)
5420 hw->phy.autoneg_advertised |= IXGBE_LINK_SPEED_10GB_FULL;
5422 if (speed & IXGBE_LINK_SPEED_1GB_FULL)
5423 hw->phy.autoneg_advertised |= IXGBE_LINK_SPEED_1GB_FULL;
5425 return status;
5429 * ixgbe_set_soft_rate_select_speed - Set module link speed
5430 * @hw: pointer to hardware structure
5431 * @speed: link speed to set
5433 * Set module link speed via the soft rate select.
5435 void ixgbe_set_soft_rate_select_speed(struct ixgbe_hw *hw,
5436 ixgbe_link_speed speed)
5438 s32 status;
5439 u8 rs, eeprom_data;
5441 switch (speed) {
5442 case IXGBE_LINK_SPEED_10GB_FULL:
5443 /* one bit mask same as setting on */
5444 rs = IXGBE_SFF_SOFT_RS_SELECT_10G;
5445 break;
5446 case IXGBE_LINK_SPEED_1GB_FULL:
5447 rs = IXGBE_SFF_SOFT_RS_SELECT_1G;
5448 break;
5449 default:
5450 DEBUGOUT("Invalid fixed module speed\n");
5451 return;
5454 /* Set RS0 */
5455 status = hw->phy.ops.read_i2c_byte(hw, IXGBE_SFF_SFF_8472_OSCB,
5456 IXGBE_I2C_EEPROM_DEV_ADDR2,
5457 &eeprom_data);
5458 if (status) {
5459 DEBUGOUT("Failed to read Rx Rate Select RS0\n");
5460 goto out;
5463 eeprom_data = (eeprom_data & ~IXGBE_SFF_SOFT_RS_SELECT_MASK) | rs;
5465 status = hw->phy.ops.write_i2c_byte(hw, IXGBE_SFF_SFF_8472_OSCB,
5466 IXGBE_I2C_EEPROM_DEV_ADDR2,
5467 eeprom_data);
5468 if (status) {
5469 DEBUGOUT("Failed to write Rx Rate Select RS0\n");
5470 goto out;
5473 /* Set RS1 */
5474 status = hw->phy.ops.read_i2c_byte(hw, IXGBE_SFF_SFF_8472_ESCB,
5475 IXGBE_I2C_EEPROM_DEV_ADDR2,
5476 &eeprom_data);
5477 if (status) {
5478 DEBUGOUT("Failed to read Rx Rate Select RS1\n");
5479 goto out;
5482 eeprom_data = (eeprom_data & ~IXGBE_SFF_SOFT_RS_SELECT_MASK) | rs;
5484 status = hw->phy.ops.write_i2c_byte(hw, IXGBE_SFF_SFF_8472_ESCB,
5485 IXGBE_I2C_EEPROM_DEV_ADDR2,
5486 eeprom_data);
5487 if (status) {
5488 DEBUGOUT("Failed to write Rx Rate Select RS1\n");
5489 goto out;
5491 out:
5492 return;