kernel - Fix a system lockup with vmm
[dragonfly.git] / sys / platform / pc64 / x86_64 / pmap.c
blob7764abc34554b8a2591ec391d6a4bf735c26dde2
1 /*
2 * Copyright (c) 1991 Regents of the University of California.
3 * Copyright (c) 1994 John S. Dyson
4 * Copyright (c) 1994 David Greenman
5 * Copyright (c) 2003 Peter Wemm
6 * Copyright (c) 2005-2008 Alan L. Cox <alc@cs.rice.edu>
7 * Copyright (c) 2008, 2009 The DragonFly Project.
8 * Copyright (c) 2008, 2009 Jordan Gordeev.
9 * Copyright (c) 2011-2012 Matthew Dillon
10 * All rights reserved.
12 * This code is derived from software contributed to Berkeley by
13 * the Systems Programming Group of the University of Utah Computer
14 * Science Department and William Jolitz of UUNET Technologies Inc.
16 * Redistribution and use in source and binary forms, with or without
17 * modification, are permitted provided that the following conditions
18 * are met:
19 * 1. Redistributions of source code must retain the above copyright
20 * notice, this list of conditions and the following disclaimer.
21 * 2. Redistributions in binary form must reproduce the above copyright
22 * notice, this list of conditions and the following disclaimer in the
23 * documentation and/or other materials provided with the distribution.
24 * 3. All advertising materials mentioning features or use of this software
25 * must display the following acknowledgement:
26 * This product includes software developed by the University of
27 * California, Berkeley and its contributors.
28 * 4. Neither the name of the University nor the names of its contributors
29 * may be used to endorse or promote products derived from this software
30 * without specific prior written permission.
32 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
33 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
34 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
35 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
36 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
37 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
38 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
39 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
40 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
41 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
42 * SUCH DAMAGE.
45 * Manage physical address maps for x86-64 systems.
48 #if 0 /* JG */
49 #include "opt_disable_pse.h"
50 #include "opt_pmap.h"
51 #endif
52 #include "opt_msgbuf.h"
54 #include <sys/param.h>
55 #include <sys/kernel.h>
56 #include <sys/proc.h>
57 #include <sys/msgbuf.h>
58 #include <sys/vmmeter.h>
59 #include <sys/mman.h>
60 #include <sys/systm.h>
62 #include <vm/vm.h>
63 #include <vm/vm_param.h>
64 #include <sys/sysctl.h>
65 #include <sys/lock.h>
66 #include <vm/vm_kern.h>
67 #include <vm/vm_page.h>
68 #include <vm/vm_map.h>
69 #include <vm/vm_object.h>
70 #include <vm/vm_extern.h>
71 #include <vm/vm_pageout.h>
72 #include <vm/vm_pager.h>
73 #include <vm/vm_zone.h>
75 #include <sys/user.h>
76 #include <sys/thread2.h>
77 #include <sys/sysref2.h>
78 #include <sys/spinlock2.h>
79 #include <vm/vm_page2.h>
81 #include <machine/cputypes.h>
82 #include <machine/md_var.h>
83 #include <machine/specialreg.h>
84 #include <machine/smp.h>
85 #include <machine_base/apic/apicreg.h>
86 #include <machine/globaldata.h>
87 #include <machine/pmap.h>
88 #include <machine/pmap_inval.h>
89 #include <machine/inttypes.h>
91 #include <ddb/ddb.h>
93 #define PMAP_KEEP_PDIRS
94 #ifndef PMAP_SHPGPERPROC
95 #define PMAP_SHPGPERPROC 2000
96 #endif
98 #if defined(DIAGNOSTIC)
99 #define PMAP_DIAGNOSTIC
100 #endif
102 #define MINPV 2048
105 * pmap debugging will report who owns a pv lock when blocking.
107 #ifdef PMAP_DEBUG
109 #define PMAP_DEBUG_DECL ,const char *func, int lineno
110 #define PMAP_DEBUG_ARGS , __func__, __LINE__
111 #define PMAP_DEBUG_COPY , func, lineno
113 #define pv_get(pmap, pindex) _pv_get(pmap, pindex \
114 PMAP_DEBUG_ARGS)
115 #define pv_lock(pv) _pv_lock(pv \
116 PMAP_DEBUG_ARGS)
117 #define pv_hold_try(pv) _pv_hold_try(pv \
118 PMAP_DEBUG_ARGS)
119 #define pv_alloc(pmap, pindex, isnewp) _pv_alloc(pmap, pindex, isnewp \
120 PMAP_DEBUG_ARGS)
122 #else
124 #define PMAP_DEBUG_DECL
125 #define PMAP_DEBUG_ARGS
126 #define PMAP_DEBUG_COPY
128 #define pv_get(pmap, pindex) _pv_get(pmap, pindex)
129 #define pv_lock(pv) _pv_lock(pv)
130 #define pv_hold_try(pv) _pv_hold_try(pv)
131 #define pv_alloc(pmap, pindex, isnewp) _pv_alloc(pmap, pindex, isnewp)
133 #endif
136 * Get PDEs and PTEs for user/kernel address space
138 #define pdir_pde(m, v) (m[(vm_offset_t)(v) >> PDRSHIFT])
140 #define pmap_pde_v(pmap, pte) ((*(pd_entry_t *)pte & pmap->pmap_bits[PG_V_IDX]) != 0)
141 #define pmap_pte_w(pmap, pte) ((*(pt_entry_t *)pte & pmap->pmap_bits[PG_W_IDX]) != 0)
142 #define pmap_pte_m(pmap, pte) ((*(pt_entry_t *)pte & pmap->pmap_bits[PG_M_IDX]) != 0)
143 #define pmap_pte_u(pmap, pte) ((*(pt_entry_t *)pte & pmap->pmap_bits[PG_U_IDX]) != 0)
144 #define pmap_pte_v(pmap, pte) ((*(pt_entry_t *)pte & pmap->pmap_bits[PG_V_IDX]) != 0)
147 * Given a map and a machine independent protection code,
148 * convert to a vax protection code.
150 #define pte_prot(m, p) \
151 (m->protection_codes[p & (VM_PROT_READ|VM_PROT_WRITE|VM_PROT_EXECUTE)])
152 static int protection_codes[PROTECTION_CODES_SIZE];
154 struct pmap kernel_pmap;
155 static TAILQ_HEAD(,pmap) pmap_list = TAILQ_HEAD_INITIALIZER(pmap_list);
157 MALLOC_DEFINE(M_OBJPMAP, "objpmap", "pmaps associated with VM objects");
159 vm_paddr_t avail_start; /* PA of first available physical page */
160 vm_paddr_t avail_end; /* PA of last available physical page */
161 vm_offset_t virtual2_start; /* cutout free area prior to kernel start */
162 vm_offset_t virtual2_end;
163 vm_offset_t virtual_start; /* VA of first avail page (after kernel bss) */
164 vm_offset_t virtual_end; /* VA of last avail page (end of kernel AS) */
165 vm_offset_t KvaStart; /* VA start of KVA space */
166 vm_offset_t KvaEnd; /* VA end of KVA space (non-inclusive) */
167 vm_offset_t KvaSize; /* max size of kernel virtual address space */
168 static boolean_t pmap_initialized = FALSE; /* Has pmap_init completed? */
169 //static int pgeflag; /* PG_G or-in */
170 //static int pseflag; /* PG_PS or-in */
171 uint64_t PatMsr;
173 static int ndmpdp;
174 static vm_paddr_t dmaplimit;
175 static int nkpt;
176 vm_offset_t kernel_vm_end = VM_MIN_KERNEL_ADDRESS;
178 static pt_entry_t pat_pte_index[PAT_INDEX_SIZE]; /* PAT -> PG_ bits */
179 /*static pt_entry_t pat_pde_index[PAT_INDEX_SIZE];*/ /* PAT -> PG_ bits */
181 static uint64_t KPTbase;
182 static uint64_t KPTphys;
183 static uint64_t KPDphys; /* phys addr of kernel level 2 */
184 static uint64_t KPDbase; /* phys addr of kernel level 2 @ KERNBASE */
185 uint64_t KPDPphys; /* phys addr of kernel level 3 */
186 uint64_t KPML4phys; /* phys addr of kernel level 4 */
188 static uint64_t DMPDphys; /* phys addr of direct mapped level 2 */
189 static uint64_t DMPDPphys; /* phys addr of direct mapped level 3 */
192 * Data for the pv entry allocation mechanism
194 static vm_zone_t pvzone;
195 static struct vm_zone pvzone_store;
196 static struct vm_object pvzone_obj;
197 static int pv_entry_max=0, pv_entry_high_water=0;
198 static int pmap_pagedaemon_waken = 0;
199 static struct pv_entry *pvinit;
202 * All those kernel PT submaps that BSD is so fond of
204 pt_entry_t *CMAP1 = NULL, *ptmmap;
205 caddr_t CADDR1 = NULL, ptvmmap = NULL;
206 static pt_entry_t *msgbufmap;
207 struct msgbuf *msgbufp=NULL;
210 * PMAP default PG_* bits. Needed to be able to add
211 * EPT/NPT pagetable pmap_bits for the VMM module
213 uint64_t pmap_bits_default[] = {
214 REGULAR_PMAP, /* TYPE_IDX 0 */
215 X86_PG_V, /* PG_V_IDX 1 */
216 X86_PG_RW, /* PG_RW_IDX 2 */
217 X86_PG_U, /* PG_U_IDX 3 */
218 X86_PG_A, /* PG_A_IDX 4 */
219 X86_PG_M, /* PG_M_IDX 5 */
220 X86_PG_PS, /* PG_PS_IDX3 6 */
221 X86_PG_G, /* PG_G_IDX 7 */
222 X86_PG_AVAIL1, /* PG_AVAIL1_IDX 8 */
223 X86_PG_AVAIL2, /* PG_AVAIL2_IDX 9 */
224 X86_PG_AVAIL3, /* PG_AVAIL3_IDX 10 */
225 X86_PG_NC_PWT | X86_PG_NC_PCD, /* PG_N_IDX 11 */
228 * Crashdump maps.
230 static pt_entry_t *pt_crashdumpmap;
231 static caddr_t crashdumpmap;
233 #ifdef PMAP_DEBUG2
234 static int pmap_enter_debug = 0;
235 SYSCTL_INT(_machdep, OID_AUTO, pmap_enter_debug, CTLFLAG_RW,
236 &pmap_enter_debug, 0, "Debug pmap_enter's");
237 #endif
238 static int pmap_yield_count = 64;
239 SYSCTL_INT(_machdep, OID_AUTO, pmap_yield_count, CTLFLAG_RW,
240 &pmap_yield_count, 0, "Yield during init_pt/release");
241 static int pmap_mmu_optimize = 0;
242 SYSCTL_INT(_machdep, OID_AUTO, pmap_mmu_optimize, CTLFLAG_RW,
243 &pmap_mmu_optimize, 0, "Share page table pages when possible");
244 int pmap_fast_kernel_cpusync = 0;
245 SYSCTL_INT(_machdep, OID_AUTO, pmap_fast_kernel_cpusync, CTLFLAG_RW,
246 &pmap_fast_kernel_cpusync, 0, "Share page table pages when possible");
248 #define DISABLE_PSE
250 /* Standard user access funtions */
251 extern int std_copyinstr (const void *udaddr, void *kaddr, size_t len,
252 size_t *lencopied);
253 extern int std_copyin (const void *udaddr, void *kaddr, size_t len);
254 extern int std_copyout (const void *kaddr, void *udaddr, size_t len);
255 extern int std_fubyte (const void *base);
256 extern int std_subyte (void *base, int byte);
257 extern long std_fuword (const void *base);
258 extern int std_suword (void *base, long word);
259 extern int std_suword32 (void *base, int word);
261 static void pv_hold(pv_entry_t pv);
262 static int _pv_hold_try(pv_entry_t pv
263 PMAP_DEBUG_DECL);
264 static void pv_drop(pv_entry_t pv);
265 static void _pv_lock(pv_entry_t pv
266 PMAP_DEBUG_DECL);
267 static void pv_unlock(pv_entry_t pv);
268 static pv_entry_t _pv_alloc(pmap_t pmap, vm_pindex_t pindex, int *isnew
269 PMAP_DEBUG_DECL);
270 static pv_entry_t _pv_get(pmap_t pmap, vm_pindex_t pindex
271 PMAP_DEBUG_DECL);
272 static pv_entry_t pv_get_try(pmap_t pmap, vm_pindex_t pindex, int *errorp);
273 static pv_entry_t pv_find(pmap_t pmap, vm_pindex_t pindex);
274 static void pv_put(pv_entry_t pv);
275 static void pv_free(pv_entry_t pv);
276 static void *pv_pte_lookup(pv_entry_t pv, vm_pindex_t pindex);
277 static pv_entry_t pmap_allocpte(pmap_t pmap, vm_pindex_t ptepindex,
278 pv_entry_t *pvpp);
279 static pv_entry_t pmap_allocpte_seg(pmap_t pmap, vm_pindex_t ptepindex,
280 pv_entry_t *pvpp, vm_map_entry_t entry, vm_offset_t va);
281 static void pmap_remove_pv_pte(pv_entry_t pv, pv_entry_t pvp,
282 pmap_inval_bulk_t *bulk);
283 static vm_page_t pmap_remove_pv_page(pv_entry_t pv);
284 static int pmap_release_pv(pv_entry_t pv, pv_entry_t pvp,
285 pmap_inval_bulk_t *bulk);
287 struct pmap_scan_info;
288 static void pmap_remove_callback(pmap_t pmap, struct pmap_scan_info *info,
289 pv_entry_t pte_pv, pv_entry_t pt_pv, int sharept,
290 vm_offset_t va, pt_entry_t *ptep, void *arg __unused);
291 static void pmap_protect_callback(pmap_t pmap, struct pmap_scan_info *info,
292 pv_entry_t pte_pv, pv_entry_t pt_pv, int sharept,
293 vm_offset_t va, pt_entry_t *ptep, void *arg __unused);
295 static void i386_protection_init (void);
296 static void create_pagetables(vm_paddr_t *firstaddr);
297 static void pmap_remove_all (vm_page_t m);
298 static boolean_t pmap_testbit (vm_page_t m, int bit);
300 static pt_entry_t * pmap_pte_quick (pmap_t pmap, vm_offset_t va);
301 static vm_offset_t pmap_kmem_choose(vm_offset_t addr);
303 static void pmap_pinit_defaults(struct pmap *pmap);
305 static unsigned pdir4mb;
307 static int
308 pv_entry_compare(pv_entry_t pv1, pv_entry_t pv2)
310 if (pv1->pv_pindex < pv2->pv_pindex)
311 return(-1);
312 if (pv1->pv_pindex > pv2->pv_pindex)
313 return(1);
314 return(0);
317 RB_GENERATE2(pv_entry_rb_tree, pv_entry, pv_entry,
318 pv_entry_compare, vm_pindex_t, pv_pindex);
320 static __inline
321 void
322 pmap_page_stats_adding(vm_page_t m)
324 globaldata_t gd = mycpu;
326 if (TAILQ_EMPTY(&m->md.pv_list)) {
327 ++gd->gd_vmtotal.t_arm;
328 } else if (TAILQ_FIRST(&m->md.pv_list) ==
329 TAILQ_LAST(&m->md.pv_list, md_page_pv_list)) {
330 ++gd->gd_vmtotal.t_armshr;
331 ++gd->gd_vmtotal.t_avmshr;
332 } else {
333 ++gd->gd_vmtotal.t_avmshr;
337 static __inline
338 void
339 pmap_page_stats_deleting(vm_page_t m)
341 globaldata_t gd = mycpu;
343 if (TAILQ_EMPTY(&m->md.pv_list)) {
344 --gd->gd_vmtotal.t_arm;
345 } else if (TAILQ_FIRST(&m->md.pv_list) ==
346 TAILQ_LAST(&m->md.pv_list, md_page_pv_list)) {
347 --gd->gd_vmtotal.t_armshr;
348 --gd->gd_vmtotal.t_avmshr;
349 } else {
350 --gd->gd_vmtotal.t_avmshr;
355 * Move the kernel virtual free pointer to the next
356 * 2MB. This is used to help improve performance
357 * by using a large (2MB) page for much of the kernel
358 * (.text, .data, .bss)
360 static
361 vm_offset_t
362 pmap_kmem_choose(vm_offset_t addr)
364 vm_offset_t newaddr = addr;
366 newaddr = roundup2(addr, NBPDR);
367 return newaddr;
371 * pmap_pte_quick:
373 * Super fast pmap_pte routine best used when scanning the pv lists.
374 * This eliminates many course-grained invltlb calls. Note that many of
375 * the pv list scans are across different pmaps and it is very wasteful
376 * to do an entire invltlb when checking a single mapping.
378 static __inline pt_entry_t *pmap_pte(pmap_t pmap, vm_offset_t va);
380 static
381 pt_entry_t *
382 pmap_pte_quick(pmap_t pmap, vm_offset_t va)
384 return pmap_pte(pmap, va);
388 * Returns the pindex of a page table entry (representing a terminal page).
389 * There are NUPTE_TOTAL page table entries possible (a huge number)
391 * x86-64 has a 48-bit address space, where bit 47 is sign-extended out.
392 * We want to properly translate negative KVAs.
394 static __inline
395 vm_pindex_t
396 pmap_pte_pindex(vm_offset_t va)
398 return ((va >> PAGE_SHIFT) & (NUPTE_TOTAL - 1));
402 * Returns the pindex of a page table.
404 static __inline
405 vm_pindex_t
406 pmap_pt_pindex(vm_offset_t va)
408 return (NUPTE_TOTAL + ((va >> PDRSHIFT) & (NUPT_TOTAL - 1)));
412 * Returns the pindex of a page directory.
414 static __inline
415 vm_pindex_t
416 pmap_pd_pindex(vm_offset_t va)
418 return (NUPTE_TOTAL + NUPT_TOTAL +
419 ((va >> PDPSHIFT) & (NUPD_TOTAL - 1)));
422 static __inline
423 vm_pindex_t
424 pmap_pdp_pindex(vm_offset_t va)
426 return (NUPTE_TOTAL + NUPT_TOTAL + NUPD_TOTAL +
427 ((va >> PML4SHIFT) & (NUPDP_TOTAL - 1)));
430 static __inline
431 vm_pindex_t
432 pmap_pml4_pindex(void)
434 return (NUPTE_TOTAL + NUPT_TOTAL + NUPD_TOTAL + NUPDP_TOTAL);
438 * Return various clipped indexes for a given VA
440 * Returns the index of a pte in a page table, representing a terminal
441 * page.
443 static __inline
444 vm_pindex_t
445 pmap_pte_index(vm_offset_t va)
447 return ((va >> PAGE_SHIFT) & ((1ul << NPTEPGSHIFT) - 1));
451 * Returns the index of a pt in a page directory, representing a page
452 * table.
454 static __inline
455 vm_pindex_t
456 pmap_pt_index(vm_offset_t va)
458 return ((va >> PDRSHIFT) & ((1ul << NPDEPGSHIFT) - 1));
462 * Returns the index of a pd in a page directory page, representing a page
463 * directory.
465 static __inline
466 vm_pindex_t
467 pmap_pd_index(vm_offset_t va)
469 return ((va >> PDPSHIFT) & ((1ul << NPDPEPGSHIFT) - 1));
473 * Returns the index of a pdp in the pml4 table, representing a page
474 * directory page.
476 static __inline
477 vm_pindex_t
478 pmap_pdp_index(vm_offset_t va)
480 return ((va >> PML4SHIFT) & ((1ul << NPML4EPGSHIFT) - 1));
484 * Generic procedure to index a pte from a pt, pd, or pdp.
486 * NOTE: Normally passed pindex as pmap_xx_index(). pmap_xx_pindex() is NOT
487 * a page table page index but is instead of PV lookup index.
489 static
490 void *
491 pv_pte_lookup(pv_entry_t pv, vm_pindex_t pindex)
493 pt_entry_t *pte;
495 pte = (pt_entry_t *)PHYS_TO_DMAP(VM_PAGE_TO_PHYS(pv->pv_m));
496 return(&pte[pindex]);
500 * Return pointer to PDP slot in the PML4
502 static __inline
503 pml4_entry_t *
504 pmap_pdp(pmap_t pmap, vm_offset_t va)
506 return (&pmap->pm_pml4[pmap_pdp_index(va)]);
510 * Return pointer to PD slot in the PDP given a pointer to the PDP
512 static __inline
513 pdp_entry_t *
514 pmap_pdp_to_pd(pml4_entry_t pdp_pte, vm_offset_t va)
516 pdp_entry_t *pd;
518 pd = (pdp_entry_t *)PHYS_TO_DMAP(pdp_pte & PG_FRAME);
519 return (&pd[pmap_pd_index(va)]);
523 * Return pointer to PD slot in the PDP.
525 static __inline
526 pdp_entry_t *
527 pmap_pd(pmap_t pmap, vm_offset_t va)
529 pml4_entry_t *pdp;
531 pdp = pmap_pdp(pmap, va);
532 if ((*pdp & pmap->pmap_bits[PG_V_IDX]) == 0)
533 return NULL;
534 return (pmap_pdp_to_pd(*pdp, va));
538 * Return pointer to PT slot in the PD given a pointer to the PD
540 static __inline
541 pd_entry_t *
542 pmap_pd_to_pt(pdp_entry_t pd_pte, vm_offset_t va)
544 pd_entry_t *pt;
546 pt = (pd_entry_t *)PHYS_TO_DMAP(pd_pte & PG_FRAME);
547 return (&pt[pmap_pt_index(va)]);
551 * Return pointer to PT slot in the PD
553 * SIMPLE PMAP NOTE: Simple pmaps (embedded in objects) do not have PDPs,
554 * so we cannot lookup the PD via the PDP. Instead we
555 * must look it up via the pmap.
557 static __inline
558 pd_entry_t *
559 pmap_pt(pmap_t pmap, vm_offset_t va)
561 pdp_entry_t *pd;
562 pv_entry_t pv;
563 vm_pindex_t pd_pindex;
565 if (pmap->pm_flags & PMAP_FLAG_SIMPLE) {
566 pd_pindex = pmap_pd_pindex(va);
567 spin_lock(&pmap->pm_spin);
568 pv = pv_entry_rb_tree_RB_LOOKUP(&pmap->pm_pvroot, pd_pindex);
569 spin_unlock(&pmap->pm_spin);
570 if (pv == NULL || pv->pv_m == NULL)
571 return NULL;
572 return (pmap_pd_to_pt(VM_PAGE_TO_PHYS(pv->pv_m), va));
573 } else {
574 pd = pmap_pd(pmap, va);
575 if (pd == NULL || (*pd & pmap->pmap_bits[PG_V_IDX]) == 0)
576 return NULL;
577 return (pmap_pd_to_pt(*pd, va));
582 * Return pointer to PTE slot in the PT given a pointer to the PT
584 static __inline
585 pt_entry_t *
586 pmap_pt_to_pte(pd_entry_t pt_pte, vm_offset_t va)
588 pt_entry_t *pte;
590 pte = (pt_entry_t *)PHYS_TO_DMAP(pt_pte & PG_FRAME);
591 return (&pte[pmap_pte_index(va)]);
595 * Return pointer to PTE slot in the PT
597 static __inline
598 pt_entry_t *
599 pmap_pte(pmap_t pmap, vm_offset_t va)
601 pd_entry_t *pt;
603 pt = pmap_pt(pmap, va);
604 if (pt == NULL || (*pt & pmap->pmap_bits[PG_V_IDX]) == 0)
605 return NULL;
606 if ((*pt & pmap->pmap_bits[PG_PS_IDX]) != 0)
607 return ((pt_entry_t *)pt);
608 return (pmap_pt_to_pte(*pt, va));
612 * Of all the layers (PTE, PT, PD, PDP, PML4) the best one to cache is
613 * the PT layer. This will speed up core pmap operations considerably.
615 * NOTE: The pmap spinlock does not need to be held but the passed-in pv
616 * must be in a known associated state (typically by being locked when
617 * the pmap spinlock isn't held). We allow the race for that case.
619 static __inline
620 void
621 pv_cache(pv_entry_t pv, vm_pindex_t pindex)
623 if (pindex >= pmap_pt_pindex(0) && pindex <= pmap_pd_pindex(0))
624 pv->pv_pmap->pm_pvhint = pv;
629 * Return address of PT slot in PD (KVM only)
631 * Cannot be used for user page tables because it might interfere with
632 * the shared page-table-page optimization (pmap_mmu_optimize).
634 static __inline
635 pd_entry_t *
636 vtopt(vm_offset_t va)
638 uint64_t mask = ((1ul << (NPDEPGSHIFT + NPDPEPGSHIFT +
639 NPML4EPGSHIFT)) - 1);
641 return (PDmap + ((va >> PDRSHIFT) & mask));
645 * KVM - return address of PTE slot in PT
647 static __inline
648 pt_entry_t *
649 vtopte(vm_offset_t va)
651 uint64_t mask = ((1ul << (NPTEPGSHIFT + NPDEPGSHIFT +
652 NPDPEPGSHIFT + NPML4EPGSHIFT)) - 1);
654 return (PTmap + ((va >> PAGE_SHIFT) & mask));
657 static uint64_t
658 allocpages(vm_paddr_t *firstaddr, long n)
660 uint64_t ret;
662 ret = *firstaddr;
663 bzero((void *)ret, n * PAGE_SIZE);
664 *firstaddr += n * PAGE_SIZE;
665 return (ret);
668 static
669 void
670 create_pagetables(vm_paddr_t *firstaddr)
672 long i; /* must be 64 bits */
673 long nkpt_base;
674 long nkpt_phys;
675 int j;
678 * We are running (mostly) V=P at this point
680 * Calculate NKPT - number of kernel page tables. We have to
681 * accomodoate prealloction of the vm_page_array, dump bitmap,
682 * MSGBUF_SIZE, and other stuff. Be generous.
684 * Maxmem is in pages.
686 * ndmpdp is the number of 1GB pages we wish to map.
688 ndmpdp = (ptoa(Maxmem) + NBPDP - 1) >> PDPSHIFT;
689 if (ndmpdp < 4) /* Minimum 4GB of dirmap */
690 ndmpdp = 4;
691 KKASSERT(ndmpdp <= NKPDPE * NPDEPG);
694 * Starting at the beginning of kvm (not KERNBASE).
696 nkpt_phys = (Maxmem * sizeof(struct vm_page) + NBPDR - 1) / NBPDR;
697 nkpt_phys += (Maxmem * sizeof(struct pv_entry) + NBPDR - 1) / NBPDR;
698 nkpt_phys += ((nkpt + nkpt + 1 + NKPML4E + NKPDPE + NDMPML4E +
699 ndmpdp) + 511) / 512;
700 nkpt_phys += 128;
703 * Starting at KERNBASE - map 2G worth of page table pages.
704 * KERNBASE is offset -2G from the end of kvm.
706 nkpt_base = (NPDPEPG - KPDPI) * NPTEPG; /* typically 2 x 512 */
709 * Allocate pages
711 KPTbase = allocpages(firstaddr, nkpt_base);
712 KPTphys = allocpages(firstaddr, nkpt_phys);
713 KPML4phys = allocpages(firstaddr, 1);
714 KPDPphys = allocpages(firstaddr, NKPML4E);
715 KPDphys = allocpages(firstaddr, NKPDPE);
718 * Calculate the page directory base for KERNBASE,
719 * that is where we start populating the page table pages.
720 * Basically this is the end - 2.
722 KPDbase = KPDphys + ((NKPDPE - (NPDPEPG - KPDPI)) << PAGE_SHIFT);
724 DMPDPphys = allocpages(firstaddr, NDMPML4E);
725 if ((amd_feature & AMDID_PAGE1GB) == 0)
726 DMPDphys = allocpages(firstaddr, ndmpdp);
727 dmaplimit = (vm_paddr_t)ndmpdp << PDPSHIFT;
730 * Fill in the underlying page table pages for the area around
731 * KERNBASE. This remaps low physical memory to KERNBASE.
733 * Read-only from zero to physfree
734 * XXX not fully used, underneath 2M pages
736 for (i = 0; (i << PAGE_SHIFT) < *firstaddr; i++) {
737 ((pt_entry_t *)KPTbase)[i] = i << PAGE_SHIFT;
738 ((pt_entry_t *)KPTbase)[i] |=
739 pmap_bits_default[PG_RW_IDX] |
740 pmap_bits_default[PG_V_IDX] |
741 pmap_bits_default[PG_G_IDX];
745 * Now map the initial kernel page tables. One block of page
746 * tables is placed at the beginning of kernel virtual memory,
747 * and another block is placed at KERNBASE to map the kernel binary,
748 * data, bss, and initial pre-allocations.
750 for (i = 0; i < nkpt_base; i++) {
751 ((pd_entry_t *)KPDbase)[i] = KPTbase + (i << PAGE_SHIFT);
752 ((pd_entry_t *)KPDbase)[i] |=
753 pmap_bits_default[PG_RW_IDX] |
754 pmap_bits_default[PG_V_IDX];
756 for (i = 0; i < nkpt_phys; i++) {
757 ((pd_entry_t *)KPDphys)[i] = KPTphys + (i << PAGE_SHIFT);
758 ((pd_entry_t *)KPDphys)[i] |=
759 pmap_bits_default[PG_RW_IDX] |
760 pmap_bits_default[PG_V_IDX];
764 * Map from zero to end of allocations using 2M pages as an
765 * optimization. This will bypass some of the KPTBase pages
766 * above in the KERNBASE area.
768 for (i = 0; (i << PDRSHIFT) < *firstaddr; i++) {
769 ((pd_entry_t *)KPDbase)[i] = i << PDRSHIFT;
770 ((pd_entry_t *)KPDbase)[i] |=
771 pmap_bits_default[PG_RW_IDX] |
772 pmap_bits_default[PG_V_IDX] |
773 pmap_bits_default[PG_PS_IDX] |
774 pmap_bits_default[PG_G_IDX];
778 * And connect up the PD to the PDP. The kernel pmap is expected
779 * to pre-populate all of its PDs. See NKPDPE in vmparam.h.
781 for (i = 0; i < NKPDPE; i++) {
782 ((pdp_entry_t *)KPDPphys)[NPDPEPG - NKPDPE + i] =
783 KPDphys + (i << PAGE_SHIFT);
784 ((pdp_entry_t *)KPDPphys)[NPDPEPG - NKPDPE + i] |=
785 pmap_bits_default[PG_RW_IDX] |
786 pmap_bits_default[PG_V_IDX] |
787 pmap_bits_default[PG_U_IDX];
791 * Now set up the direct map space using either 2MB or 1GB pages
792 * Preset PG_M and PG_A because demotion expects it.
794 * When filling in entries in the PD pages make sure any excess
795 * entries are set to zero as we allocated enough PD pages
797 if ((amd_feature & AMDID_PAGE1GB) == 0) {
798 for (i = 0; i < NPDEPG * ndmpdp; i++) {
799 ((pd_entry_t *)DMPDphys)[i] = i << PDRSHIFT;
800 ((pd_entry_t *)DMPDphys)[i] |=
801 pmap_bits_default[PG_RW_IDX] |
802 pmap_bits_default[PG_V_IDX] |
803 pmap_bits_default[PG_PS_IDX] |
804 pmap_bits_default[PG_G_IDX] |
805 pmap_bits_default[PG_M_IDX] |
806 pmap_bits_default[PG_A_IDX];
810 * And the direct map space's PDP
812 for (i = 0; i < ndmpdp; i++) {
813 ((pdp_entry_t *)DMPDPphys)[i] = DMPDphys +
814 (i << PAGE_SHIFT);
815 ((pdp_entry_t *)DMPDPphys)[i] |=
816 pmap_bits_default[PG_RW_IDX] |
817 pmap_bits_default[PG_V_IDX] |
818 pmap_bits_default[PG_U_IDX];
820 } else {
821 for (i = 0; i < ndmpdp; i++) {
822 ((pdp_entry_t *)DMPDPphys)[i] =
823 (vm_paddr_t)i << PDPSHIFT;
824 ((pdp_entry_t *)DMPDPphys)[i] |=
825 pmap_bits_default[PG_RW_IDX] |
826 pmap_bits_default[PG_V_IDX] |
827 pmap_bits_default[PG_PS_IDX] |
828 pmap_bits_default[PG_G_IDX] |
829 pmap_bits_default[PG_M_IDX] |
830 pmap_bits_default[PG_A_IDX];
834 /* And recursively map PML4 to itself in order to get PTmap */
835 ((pdp_entry_t *)KPML4phys)[PML4PML4I] = KPML4phys;
836 ((pdp_entry_t *)KPML4phys)[PML4PML4I] |=
837 pmap_bits_default[PG_RW_IDX] |
838 pmap_bits_default[PG_V_IDX] |
839 pmap_bits_default[PG_U_IDX];
842 * Connect the Direct Map slots up to the PML4
844 for (j = 0; j < NDMPML4E; ++j) {
845 ((pdp_entry_t *)KPML4phys)[DMPML4I + j] =
846 (DMPDPphys + ((vm_paddr_t)j << PML4SHIFT)) |
847 pmap_bits_default[PG_RW_IDX] |
848 pmap_bits_default[PG_V_IDX] |
849 pmap_bits_default[PG_U_IDX];
853 * Connect the KVA slot up to the PML4
855 ((pdp_entry_t *)KPML4phys)[KPML4I] = KPDPphys;
856 ((pdp_entry_t *)KPML4phys)[KPML4I] |=
857 pmap_bits_default[PG_RW_IDX] |
858 pmap_bits_default[PG_V_IDX] |
859 pmap_bits_default[PG_U_IDX];
863 * Bootstrap the system enough to run with virtual memory.
865 * On the i386 this is called after mapping has already been enabled
866 * and just syncs the pmap module with what has already been done.
867 * [We can't call it easily with mapping off since the kernel is not
868 * mapped with PA == VA, hence we would have to relocate every address
869 * from the linked base (virtual) address "KERNBASE" to the actual
870 * (physical) address starting relative to 0]
872 void
873 pmap_bootstrap(vm_paddr_t *firstaddr)
875 vm_offset_t va;
876 pt_entry_t *pte;
878 KvaStart = VM_MIN_KERNEL_ADDRESS;
879 KvaEnd = VM_MAX_KERNEL_ADDRESS;
880 KvaSize = KvaEnd - KvaStart;
882 avail_start = *firstaddr;
885 * Create an initial set of page tables to run the kernel in.
887 create_pagetables(firstaddr);
889 virtual2_start = KvaStart;
890 virtual2_end = PTOV_OFFSET;
892 virtual_start = (vm_offset_t) PTOV_OFFSET + *firstaddr;
893 virtual_start = pmap_kmem_choose(virtual_start);
895 virtual_end = VM_MAX_KERNEL_ADDRESS;
897 /* XXX do %cr0 as well */
898 load_cr4(rcr4() | CR4_PGE | CR4_PSE);
899 load_cr3(KPML4phys);
902 * Initialize protection array.
904 i386_protection_init();
907 * The kernel's pmap is statically allocated so we don't have to use
908 * pmap_create, which is unlikely to work correctly at this part of
909 * the boot sequence (XXX and which no longer exists).
911 kernel_pmap.pm_pml4 = (pdp_entry_t *) (PTOV_OFFSET + KPML4phys);
912 kernel_pmap.pm_count = 1;
913 CPUMASK_ASSALLONES(kernel_pmap.pm_active);
914 RB_INIT(&kernel_pmap.pm_pvroot);
915 spin_init(&kernel_pmap.pm_spin, "pmapbootstrap");
916 lwkt_token_init(&kernel_pmap.pm_token, "kpmap_tok");
919 * Reserve some special page table entries/VA space for temporary
920 * mapping of pages.
922 #define SYSMAP(c, p, v, n) \
923 v = (c)va; va += ((n)*PAGE_SIZE); p = pte; pte += (n);
925 va = virtual_start;
926 pte = vtopte(va);
929 * CMAP1/CMAP2 are used for zeroing and copying pages.
931 SYSMAP(caddr_t, CMAP1, CADDR1, 1)
934 * Crashdump maps.
936 SYSMAP(caddr_t, pt_crashdumpmap, crashdumpmap, MAXDUMPPGS);
939 * ptvmmap is used for reading arbitrary physical pages via
940 * /dev/mem.
942 SYSMAP(caddr_t, ptmmap, ptvmmap, 1)
945 * msgbufp is used to map the system message buffer.
946 * XXX msgbufmap is not used.
948 SYSMAP(struct msgbuf *, msgbufmap, msgbufp,
949 atop(round_page(MSGBUF_SIZE)))
951 virtual_start = va;
952 virtual_start = pmap_kmem_choose(virtual_start);
954 *CMAP1 = 0;
957 * PG_G is terribly broken on SMP because we IPI invltlb's in some
958 * cases rather then invl1pg. Actually, I don't even know why it
959 * works under UP because self-referential page table mappings
961 // pgeflag = 0;
964 * Initialize the 4MB page size flag
966 // pseflag = 0;
968 * The 4MB page version of the initial
969 * kernel page mapping.
971 pdir4mb = 0;
973 #if !defined(DISABLE_PSE)
974 if (cpu_feature & CPUID_PSE) {
975 pt_entry_t ptditmp;
977 * Note that we have enabled PSE mode
979 // pseflag = kernel_pmap.pmap_bits[PG_PS_IDX];
980 ptditmp = *(PTmap + x86_64_btop(KERNBASE));
981 ptditmp &= ~(NBPDR - 1);
982 ptditmp |= pmap_bits_default[PG_V_IDX] |
983 pmap_bits_default[PG_RW_IDX] |
984 pmap_bits_default[PG_PS_IDX] |
985 pmap_bits_default[PG_U_IDX];
986 // pgeflag;
987 pdir4mb = ptditmp;
989 #endif
990 cpu_invltlb();
992 /* Initialize the PAT MSR */
993 pmap_init_pat();
994 pmap_pinit_defaults(&kernel_pmap);
996 TUNABLE_INT_FETCH("machdep.pmap_fast_kernel_cpusync",
997 &pmap_fast_kernel_cpusync);
1002 * Setup the PAT MSR.
1004 void
1005 pmap_init_pat(void)
1007 uint64_t pat_msr;
1008 u_long cr0, cr4;
1011 * Default values mapping PATi,PCD,PWT bits at system reset.
1012 * The default values effectively ignore the PATi bit by
1013 * repeating the encodings for 0-3 in 4-7, and map the PCD
1014 * and PWT bit combinations to the expected PAT types.
1016 pat_msr = PAT_VALUE(0, PAT_WRITE_BACK) | /* 000 */
1017 PAT_VALUE(1, PAT_WRITE_THROUGH) | /* 001 */
1018 PAT_VALUE(2, PAT_UNCACHED) | /* 010 */
1019 PAT_VALUE(3, PAT_UNCACHEABLE) | /* 011 */
1020 PAT_VALUE(4, PAT_WRITE_BACK) | /* 100 */
1021 PAT_VALUE(5, PAT_WRITE_THROUGH) | /* 101 */
1022 PAT_VALUE(6, PAT_UNCACHED) | /* 110 */
1023 PAT_VALUE(7, PAT_UNCACHEABLE); /* 111 */
1024 pat_pte_index[PAT_WRITE_BACK] = 0;
1025 pat_pte_index[PAT_WRITE_THROUGH]= 0 | X86_PG_NC_PWT;
1026 pat_pte_index[PAT_UNCACHED] = X86_PG_NC_PCD;
1027 pat_pte_index[PAT_UNCACHEABLE] = X86_PG_NC_PCD | X86_PG_NC_PWT;
1028 pat_pte_index[PAT_WRITE_PROTECTED] = pat_pte_index[PAT_UNCACHEABLE];
1029 pat_pte_index[PAT_WRITE_COMBINING] = pat_pte_index[PAT_UNCACHEABLE];
1031 if (cpu_feature & CPUID_PAT) {
1033 * If we support the PAT then set-up entries for
1034 * WRITE_PROTECTED and WRITE_COMBINING using bit patterns
1035 * 4 and 5.
1037 pat_msr = (pat_msr & ~PAT_MASK(4)) |
1038 PAT_VALUE(4, PAT_WRITE_PROTECTED);
1039 pat_msr = (pat_msr & ~PAT_MASK(5)) |
1040 PAT_VALUE(5, PAT_WRITE_COMBINING);
1041 pat_pte_index[PAT_WRITE_PROTECTED] = X86_PG_PTE_PAT | 0;
1042 pat_pte_index[PAT_WRITE_COMBINING] = X86_PG_PTE_PAT | X86_PG_NC_PWT;
1045 * Then enable the PAT
1048 /* Disable PGE. */
1049 cr4 = rcr4();
1050 load_cr4(cr4 & ~CR4_PGE);
1052 /* Disable caches (CD = 1, NW = 0). */
1053 cr0 = rcr0();
1054 load_cr0((cr0 & ~CR0_NW) | CR0_CD);
1056 /* Flushes caches and TLBs. */
1057 wbinvd();
1058 cpu_invltlb();
1060 /* Update PAT and index table. */
1061 wrmsr(MSR_PAT, pat_msr);
1063 /* Flush caches and TLBs again. */
1064 wbinvd();
1065 cpu_invltlb();
1067 /* Restore caches and PGE. */
1068 load_cr0(cr0);
1069 load_cr4(cr4);
1070 PatMsr = pat_msr;
1075 * Set 4mb pdir for mp startup
1077 void
1078 pmap_set_opt(void)
1080 if (cpu_feature & CPUID_PSE) {
1081 load_cr4(rcr4() | CR4_PSE);
1082 if (pdir4mb && mycpu->gd_cpuid == 0) { /* only on BSP */
1083 cpu_invltlb();
1089 * Initialize the pmap module.
1090 * Called by vm_init, to initialize any structures that the pmap
1091 * system needs to map virtual memory.
1092 * pmap_init has been enhanced to support in a fairly consistant
1093 * way, discontiguous physical memory.
1095 void
1096 pmap_init(void)
1098 int i;
1099 int initial_pvs;
1102 * Allocate memory for random pmap data structures. Includes the
1103 * pv_head_table.
1106 for (i = 0; i < vm_page_array_size; i++) {
1107 vm_page_t m;
1109 m = &vm_page_array[i];
1110 TAILQ_INIT(&m->md.pv_list);
1114 * init the pv free list
1116 initial_pvs = vm_page_array_size;
1117 if (initial_pvs < MINPV)
1118 initial_pvs = MINPV;
1119 pvzone = &pvzone_store;
1120 pvinit = (void *)kmem_alloc(&kernel_map,
1121 initial_pvs * sizeof (struct pv_entry));
1122 zbootinit(pvzone, "PV ENTRY", sizeof (struct pv_entry),
1123 pvinit, initial_pvs);
1126 * Now it is safe to enable pv_table recording.
1128 pmap_initialized = TRUE;
1132 * Initialize the address space (zone) for the pv_entries. Set a
1133 * high water mark so that the system can recover from excessive
1134 * numbers of pv entries.
1136 void
1137 pmap_init2(void)
1139 int shpgperproc = PMAP_SHPGPERPROC;
1140 int entry_max;
1142 TUNABLE_INT_FETCH("vm.pmap.shpgperproc", &shpgperproc);
1143 pv_entry_max = shpgperproc * maxproc + vm_page_array_size;
1144 TUNABLE_INT_FETCH("vm.pmap.pv_entries", &pv_entry_max);
1145 pv_entry_high_water = 9 * (pv_entry_max / 10);
1148 * Subtract out pages already installed in the zone (hack)
1150 entry_max = pv_entry_max - vm_page_array_size;
1151 if (entry_max <= 0)
1152 entry_max = 1;
1154 zinitna(pvzone, &pvzone_obj, NULL, 0, entry_max, ZONE_INTERRUPT, 1);
1158 * Typically used to initialize a fictitious page by vm/device_pager.c
1160 void
1161 pmap_page_init(struct vm_page *m)
1163 vm_page_init(m);
1164 TAILQ_INIT(&m->md.pv_list);
1167 /***************************************************
1168 * Low level helper routines.....
1169 ***************************************************/
1172 * this routine defines the region(s) of memory that should
1173 * not be tested for the modified bit.
1175 static __inline
1177 pmap_track_modified(vm_pindex_t pindex)
1179 vm_offset_t va = (vm_offset_t)pindex << PAGE_SHIFT;
1180 if ((va < clean_sva) || (va >= clean_eva))
1181 return 1;
1182 else
1183 return 0;
1187 * Extract the physical page address associated with the map/VA pair.
1188 * The page must be wired for this to work reliably.
1190 * XXX for the moment we're using pv_find() instead of pv_get(), as
1191 * callers might be expecting non-blocking operation.
1193 vm_paddr_t
1194 pmap_extract(pmap_t pmap, vm_offset_t va)
1196 vm_paddr_t rtval;
1197 pv_entry_t pt_pv;
1198 pt_entry_t *ptep;
1200 rtval = 0;
1201 if (va >= VM_MAX_USER_ADDRESS) {
1203 * Kernel page directories might be direct-mapped and
1204 * there is typically no PV tracking of pte's
1206 pd_entry_t *pt;
1208 pt = pmap_pt(pmap, va);
1209 if (pt && (*pt & pmap->pmap_bits[PG_V_IDX])) {
1210 if (*pt & pmap->pmap_bits[PG_PS_IDX]) {
1211 rtval = *pt & PG_PS_FRAME;
1212 rtval |= va & PDRMASK;
1213 } else {
1214 ptep = pmap_pt_to_pte(*pt, va);
1215 if (*pt & pmap->pmap_bits[PG_V_IDX]) {
1216 rtval = *ptep & PG_FRAME;
1217 rtval |= va & PAGE_MASK;
1221 } else {
1223 * User pages currently do not direct-map the page directory
1224 * and some pages might not used managed PVs. But all PT's
1225 * will have a PV.
1227 pt_pv = pv_find(pmap, pmap_pt_pindex(va));
1228 if (pt_pv) {
1229 ptep = pv_pte_lookup(pt_pv, pmap_pte_index(va));
1230 if (*ptep & pmap->pmap_bits[PG_V_IDX]) {
1231 rtval = *ptep & PG_FRAME;
1232 rtval |= va & PAGE_MASK;
1234 pv_drop(pt_pv);
1237 return rtval;
1241 * Similar to extract but checks protections, SMP-friendly short-cut for
1242 * vm_fault_page[_quick](). Can return NULL to cause the caller to
1243 * fall-through to the real fault code.
1245 * The returned page, if not NULL, is held (and not busied).
1247 vm_page_t
1248 pmap_fault_page_quick(pmap_t pmap, vm_offset_t va, vm_prot_t prot)
1250 if (pmap && va < VM_MAX_USER_ADDRESS) {
1251 pv_entry_t pt_pv;
1252 pv_entry_t pte_pv;
1253 pt_entry_t *ptep;
1254 pt_entry_t req;
1255 vm_page_t m;
1256 int error;
1258 req = pmap->pmap_bits[PG_V_IDX] |
1259 pmap->pmap_bits[PG_U_IDX];
1260 if (prot & VM_PROT_WRITE)
1261 req |= pmap->pmap_bits[PG_RW_IDX];
1263 pt_pv = pv_find(pmap, pmap_pt_pindex(va));
1264 if (pt_pv == NULL)
1265 return (NULL);
1266 ptep = pv_pte_lookup(pt_pv, pmap_pte_index(va));
1267 if ((*ptep & req) != req) {
1268 pv_drop(pt_pv);
1269 return (NULL);
1271 pte_pv = pv_get_try(pmap, pmap_pte_pindex(va), &error);
1272 if (pte_pv && error == 0) {
1273 m = pte_pv->pv_m;
1274 vm_page_hold(m);
1275 if (prot & VM_PROT_WRITE)
1276 vm_page_dirty(m);
1277 pv_put(pte_pv);
1278 } else if (pte_pv) {
1279 pv_drop(pte_pv);
1280 m = NULL;
1281 } else {
1282 m = NULL;
1284 pv_drop(pt_pv);
1285 return(m);
1286 } else {
1287 return(NULL);
1292 * Extract the physical page address associated kernel virtual address.
1294 vm_paddr_t
1295 pmap_kextract(vm_offset_t va)
1297 pd_entry_t pt; /* pt entry in pd */
1298 vm_paddr_t pa;
1300 if (va >= DMAP_MIN_ADDRESS && va < DMAP_MAX_ADDRESS) {
1301 pa = DMAP_TO_PHYS(va);
1302 } else {
1303 pt = *vtopt(va);
1304 if (pt & kernel_pmap.pmap_bits[PG_PS_IDX]) {
1305 pa = (pt & PG_PS_FRAME) | (va & PDRMASK);
1306 } else {
1308 * Beware of a concurrent promotion that changes the
1309 * PDE at this point! For example, vtopte() must not
1310 * be used to access the PTE because it would use the
1311 * new PDE. It is, however, safe to use the old PDE
1312 * because the page table page is preserved by the
1313 * promotion.
1315 pa = *pmap_pt_to_pte(pt, va);
1316 pa = (pa & PG_FRAME) | (va & PAGE_MASK);
1319 return pa;
1322 /***************************************************
1323 * Low level mapping routines.....
1324 ***************************************************/
1327 * Routine: pmap_kenter
1328 * Function:
1329 * Add a wired page to the KVA
1330 * NOTE! note that in order for the mapping to take effect -- you
1331 * should do an invltlb after doing the pmap_kenter().
1333 void
1334 pmap_kenter(vm_offset_t va, vm_paddr_t pa)
1336 pt_entry_t *ptep;
1337 pt_entry_t npte;
1339 npte = pa |
1340 kernel_pmap.pmap_bits[PG_RW_IDX] |
1341 kernel_pmap.pmap_bits[PG_V_IDX];
1342 // pgeflag;
1343 ptep = vtopte(va);
1344 #if 1
1345 pmap_inval_smp(&kernel_pmap, va, 1, ptep, npte);
1346 #else
1347 /* FUTURE */
1348 if (*ptep)
1349 pmap_inval_smp(&kernel_pmap, va, ptep, npte);
1350 else
1351 *ptep = npte;
1352 #endif
1356 * Similar to pmap_kenter(), except we only invalidate the mapping on the
1357 * current CPU. Returns 0 if the previous pte was 0, 1 if it wasn't
1358 * (caller can conditionalize calling smp_invltlb()).
1361 pmap_kenter_quick(vm_offset_t va, vm_paddr_t pa)
1363 pt_entry_t *ptep;
1364 pt_entry_t npte;
1365 int res;
1367 npte = pa |
1368 kernel_pmap.pmap_bits[PG_RW_IDX] |
1369 kernel_pmap.pmap_bits[PG_V_IDX];
1370 // pgeflag;
1371 ptep = vtopte(va);
1372 #if 1
1373 res = 1;
1374 #else
1375 /* FUTURE */
1376 res = (*ptep != 0);
1377 #endif
1378 *ptep = npte;
1379 cpu_invlpg((void *)va);
1381 return res;
1385 * Enter addresses into the kernel pmap but don't bother
1386 * doing any tlb invalidations. Caller will do a rollup
1387 * invalidation via pmap_rollup_inval().
1390 pmap_kenter_noinval(vm_offset_t va, vm_paddr_t pa)
1392 pt_entry_t *ptep;
1393 pt_entry_t npte;
1394 int res;
1396 npte = pa |
1397 kernel_pmap.pmap_bits[PG_RW_IDX] |
1398 kernel_pmap.pmap_bits[PG_V_IDX];
1399 // pgeflag;
1400 ptep = vtopte(va);
1401 #if 1
1402 res = 1;
1403 #else
1404 /* FUTURE */
1405 res = (*ptep != 0);
1406 #endif
1407 *ptep = npte;
1408 cpu_invlpg((void *)va);
1410 return res;
1414 * remove a page from the kernel pagetables
1416 void
1417 pmap_kremove(vm_offset_t va)
1419 pt_entry_t *ptep;
1421 ptep = vtopte(va);
1422 pmap_inval_smp(&kernel_pmap, va, 1, ptep, 0);
1425 void
1426 pmap_kremove_quick(vm_offset_t va)
1428 pt_entry_t *ptep;
1430 ptep = vtopte(va);
1431 (void)pte_load_clear(ptep);
1432 cpu_invlpg((void *)va);
1436 * Remove addresses from the kernel pmap but don't bother
1437 * doing any tlb invalidations. Caller will do a rollup
1438 * invalidation via pmap_rollup_inval().
1440 void
1441 pmap_kremove_noinval(vm_offset_t va)
1443 pt_entry_t *ptep;
1445 ptep = vtopte(va);
1446 (void)pte_load_clear(ptep);
1450 * XXX these need to be recoded. They are not used in any critical path.
1452 void
1453 pmap_kmodify_rw(vm_offset_t va)
1455 atomic_set_long(vtopte(va), kernel_pmap.pmap_bits[PG_RW_IDX]);
1456 cpu_invlpg((void *)va);
1459 /* NOT USED
1460 void
1461 pmap_kmodify_nc(vm_offset_t va)
1463 atomic_set_long(vtopte(va), PG_N);
1464 cpu_invlpg((void *)va);
1469 * Used to map a range of physical addresses into kernel virtual
1470 * address space during the low level boot, typically to map the
1471 * dump bitmap, message buffer, and vm_page_array.
1473 * These mappings are typically made at some pointer after the end of the
1474 * kernel text+data.
1476 * We could return PHYS_TO_DMAP(start) here and not allocate any
1477 * via (*virtp), but then kmem from userland and kernel dumps won't
1478 * have access to the related pointers.
1480 vm_offset_t
1481 pmap_map(vm_offset_t *virtp, vm_paddr_t start, vm_paddr_t end, int prot)
1483 vm_offset_t va;
1484 vm_offset_t va_start;
1486 /*return PHYS_TO_DMAP(start);*/
1488 va_start = *virtp;
1489 va = va_start;
1491 while (start < end) {
1492 pmap_kenter_quick(va, start);
1493 va += PAGE_SIZE;
1494 start += PAGE_SIZE;
1496 *virtp = va;
1497 return va_start;
1500 #define PMAP_CLFLUSH_THRESHOLD (2 * 1024 * 1024)
1503 * Remove the specified set of pages from the data and instruction caches.
1505 * In contrast to pmap_invalidate_cache_range(), this function does not
1506 * rely on the CPU's self-snoop feature, because it is intended for use
1507 * when moving pages into a different cache domain.
1509 void
1510 pmap_invalidate_cache_pages(vm_page_t *pages, int count)
1512 vm_offset_t daddr, eva;
1513 int i;
1515 if (count >= PMAP_CLFLUSH_THRESHOLD / PAGE_SIZE ||
1516 (cpu_feature & CPUID_CLFSH) == 0)
1517 wbinvd();
1518 else {
1519 cpu_mfence();
1520 for (i = 0; i < count; i++) {
1521 daddr = PHYS_TO_DMAP(VM_PAGE_TO_PHYS(pages[i]));
1522 eva = daddr + PAGE_SIZE;
1523 for (; daddr < eva; daddr += cpu_clflush_line_size)
1524 clflush(daddr);
1526 cpu_mfence();
1530 void
1531 pmap_invalidate_cache_range(vm_offset_t sva, vm_offset_t eva)
1533 KASSERT((sva & PAGE_MASK) == 0,
1534 ("pmap_invalidate_cache_range: sva not page-aligned"));
1535 KASSERT((eva & PAGE_MASK) == 0,
1536 ("pmap_invalidate_cache_range: eva not page-aligned"));
1538 if (cpu_feature & CPUID_SS) {
1539 ; /* If "Self Snoop" is supported, do nothing. */
1540 } else {
1541 /* Globally invalidate caches */
1542 cpu_wbinvd_on_all_cpus();
1547 * Invalidate the specified range of virtual memory on all cpus associated
1548 * with the pmap.
1550 void
1551 pmap_invalidate_range(pmap_t pmap, vm_offset_t sva, vm_offset_t eva)
1553 pmap_inval_smp(pmap, sva, (eva - sva) >> PAGE_SHIFT, NULL, 0);
1557 * Add a list of wired pages to the kva. This routine is used for temporary
1558 * kernel mappings such as those found in buffer cache buffer. Page
1559 * modifications and accesses are not tracked or recorded.
1561 * NOTE! Old mappings are simply overwritten, and we cannot assume relaxed
1562 * semantics as previous mappings may have been zerod without any
1563 * invalidation.
1565 * The page *must* be wired.
1567 void
1568 pmap_qenter(vm_offset_t beg_va, vm_page_t *m, int count)
1570 vm_offset_t end_va;
1571 vm_offset_t va;
1573 end_va = beg_va + count * PAGE_SIZE;
1575 for (va = beg_va; va < end_va; va += PAGE_SIZE) {
1576 pt_entry_t *pte;
1578 pte = vtopte(va);
1579 *pte = VM_PAGE_TO_PHYS(*m) |
1580 kernel_pmap.pmap_bits[PG_RW_IDX] |
1581 kernel_pmap.pmap_bits[PG_V_IDX] |
1582 kernel_pmap.pmap_cache_bits[(*m)->pat_mode];
1583 // pgeflag;
1584 m++;
1586 pmap_invalidate_range(&kernel_pmap, beg_va, end_va);
1590 * This routine jerks page mappings from the kernel -- it is meant only
1591 * for temporary mappings such as those found in buffer cache buffers.
1592 * No recording modified or access status occurs.
1594 * MPSAFE, INTERRUPT SAFE (cluster callback)
1596 void
1597 pmap_qremove(vm_offset_t beg_va, int count)
1599 vm_offset_t end_va;
1600 vm_offset_t va;
1602 end_va = beg_va + count * PAGE_SIZE;
1604 for (va = beg_va; va < end_va; va += PAGE_SIZE) {
1605 pt_entry_t *pte;
1607 pte = vtopte(va);
1608 (void)pte_load_clear(pte);
1609 cpu_invlpg((void *)va);
1611 pmap_invalidate_range(&kernel_pmap, beg_va, end_va);
1615 * This routine removes temporary kernel mappings, only invalidating them
1616 * on the current cpu. It should only be used under carefully controlled
1617 * conditions.
1619 void
1620 pmap_qremove_quick(vm_offset_t beg_va, int count)
1622 vm_offset_t end_va;
1623 vm_offset_t va;
1625 end_va = beg_va + count * PAGE_SIZE;
1627 for (va = beg_va; va < end_va; va += PAGE_SIZE) {
1628 pt_entry_t *pte;
1630 pte = vtopte(va);
1631 (void)pte_load_clear(pte);
1632 cpu_invlpg((void *)va);
1637 * This routine removes temporary kernel mappings *without* invalidating
1638 * the TLB. It can only be used on permanent kva reservations such as those
1639 * found in buffer cache buffers, under carefully controlled circumstances.
1641 * NOTE: Repopulating these KVAs requires unconditional invalidation.
1642 * (pmap_qenter() does unconditional invalidation).
1644 void
1645 pmap_qremove_noinval(vm_offset_t beg_va, int count)
1647 vm_offset_t end_va;
1648 vm_offset_t va;
1650 end_va = beg_va + count * PAGE_SIZE;
1652 for (va = beg_va; va < end_va; va += PAGE_SIZE) {
1653 pt_entry_t *pte;
1655 pte = vtopte(va);
1656 (void)pte_load_clear(pte);
1661 * Create a new thread and optionally associate it with a (new) process.
1662 * NOTE! the new thread's cpu may not equal the current cpu.
1664 void
1665 pmap_init_thread(thread_t td)
1667 /* enforce pcb placement & alignment */
1668 td->td_pcb = (struct pcb *)(td->td_kstack + td->td_kstack_size) - 1;
1669 td->td_pcb = (struct pcb *)((intptr_t)td->td_pcb & ~(intptr_t)0xF);
1670 td->td_savefpu = &td->td_pcb->pcb_save;
1671 td->td_sp = (char *)td->td_pcb; /* no -16 */
1675 * This routine directly affects the fork perf for a process.
1677 void
1678 pmap_init_proc(struct proc *p)
1682 static void
1683 pmap_pinit_defaults(struct pmap *pmap)
1685 bcopy(pmap_bits_default, pmap->pmap_bits,
1686 sizeof(pmap_bits_default));
1687 bcopy(protection_codes, pmap->protection_codes,
1688 sizeof(protection_codes));
1689 bcopy(pat_pte_index, pmap->pmap_cache_bits,
1690 sizeof(pat_pte_index));
1691 pmap->pmap_cache_mask = X86_PG_NC_PWT | X86_PG_NC_PCD | X86_PG_PTE_PAT;
1692 pmap->copyinstr = std_copyinstr;
1693 pmap->copyin = std_copyin;
1694 pmap->copyout = std_copyout;
1695 pmap->fubyte = std_fubyte;
1696 pmap->subyte = std_subyte;
1697 pmap->fuword = std_fuword;
1698 pmap->suword = std_suword;
1699 pmap->suword32 = std_suword32;
1702 * Initialize pmap0/vmspace0. This pmap is not added to pmap_list because
1703 * it, and IdlePTD, represents the template used to update all other pmaps.
1705 * On architectures where the kernel pmap is not integrated into the user
1706 * process pmap, this pmap represents the process pmap, not the kernel pmap.
1707 * kernel_pmap should be used to directly access the kernel_pmap.
1709 void
1710 pmap_pinit0(struct pmap *pmap)
1712 pmap->pm_pml4 = (pml4_entry_t *)(PTOV_OFFSET + KPML4phys);
1713 pmap->pm_count = 1;
1714 CPUMASK_ASSZERO(pmap->pm_active);
1715 pmap->pm_pvhint = NULL;
1716 RB_INIT(&pmap->pm_pvroot);
1717 spin_init(&pmap->pm_spin, "pmapinit0");
1718 lwkt_token_init(&pmap->pm_token, "pmap_tok");
1719 bzero(&pmap->pm_stats, sizeof pmap->pm_stats);
1720 pmap_pinit_defaults(pmap);
1724 * Initialize a preallocated and zeroed pmap structure,
1725 * such as one in a vmspace structure.
1727 static void
1728 pmap_pinit_simple(struct pmap *pmap)
1731 * Misc initialization
1733 pmap->pm_count = 1;
1734 CPUMASK_ASSZERO(pmap->pm_active);
1735 pmap->pm_pvhint = NULL;
1736 pmap->pm_flags = PMAP_FLAG_SIMPLE;
1738 pmap_pinit_defaults(pmap);
1741 * Don't blow up locks/tokens on re-use (XXX fix/use drop code
1742 * for this).
1744 if (pmap->pm_pmlpv == NULL) {
1745 RB_INIT(&pmap->pm_pvroot);
1746 bzero(&pmap->pm_stats, sizeof pmap->pm_stats);
1747 spin_init(&pmap->pm_spin, "pmapinitsimple");
1748 lwkt_token_init(&pmap->pm_token, "pmap_tok");
1752 void
1753 pmap_pinit(struct pmap *pmap)
1755 pv_entry_t pv;
1756 int j;
1758 if (pmap->pm_pmlpv) {
1759 if (pmap->pmap_bits[TYPE_IDX] != REGULAR_PMAP) {
1760 pmap_puninit(pmap);
1764 pmap_pinit_simple(pmap);
1765 pmap->pm_flags &= ~PMAP_FLAG_SIMPLE;
1768 * No need to allocate page table space yet but we do need a valid
1769 * page directory table.
1771 if (pmap->pm_pml4 == NULL) {
1772 pmap->pm_pml4 =
1773 (pml4_entry_t *)kmem_alloc_pageable(&kernel_map, PAGE_SIZE);
1777 * Allocate the page directory page, which wires it even though
1778 * it isn't being entered into some higher level page table (it
1779 * being the highest level). If one is already cached we don't
1780 * have to do anything.
1782 if ((pv = pmap->pm_pmlpv) == NULL) {
1783 pv = pmap_allocpte(pmap, pmap_pml4_pindex(), NULL);
1784 pmap->pm_pmlpv = pv;
1785 pmap_kenter((vm_offset_t)pmap->pm_pml4,
1786 VM_PAGE_TO_PHYS(pv->pv_m));
1787 pv_put(pv);
1790 * Install DMAP and KMAP.
1792 for (j = 0; j < NDMPML4E; ++j) {
1793 pmap->pm_pml4[DMPML4I + j] =
1794 (DMPDPphys + ((vm_paddr_t)j << PML4SHIFT)) |
1795 pmap->pmap_bits[PG_RW_IDX] |
1796 pmap->pmap_bits[PG_V_IDX] |
1797 pmap->pmap_bits[PG_U_IDX];
1799 pmap->pm_pml4[KPML4I] = KPDPphys |
1800 pmap->pmap_bits[PG_RW_IDX] |
1801 pmap->pmap_bits[PG_V_IDX] |
1802 pmap->pmap_bits[PG_U_IDX];
1805 * install self-referential address mapping entry
1807 pmap->pm_pml4[PML4PML4I] = VM_PAGE_TO_PHYS(pv->pv_m) |
1808 pmap->pmap_bits[PG_V_IDX] |
1809 pmap->pmap_bits[PG_RW_IDX] |
1810 pmap->pmap_bits[PG_A_IDX] |
1811 pmap->pmap_bits[PG_M_IDX];
1812 } else {
1813 KKASSERT(pv->pv_m->flags & PG_MAPPED);
1814 KKASSERT(pv->pv_m->flags & PG_WRITEABLE);
1816 KKASSERT(pmap->pm_pml4[255] == 0);
1817 KKASSERT(RB_ROOT(&pmap->pm_pvroot) == pv);
1818 KKASSERT(pv->pv_entry.rbe_left == NULL);
1819 KKASSERT(pv->pv_entry.rbe_right == NULL);
1823 * Clean up a pmap structure so it can be physically freed. This routine
1824 * is called by the vmspace dtor function. A great deal of pmap data is
1825 * left passively mapped to improve vmspace management so we have a bit
1826 * of cleanup work to do here.
1828 void
1829 pmap_puninit(pmap_t pmap)
1831 pv_entry_t pv;
1832 vm_page_t p;
1834 KKASSERT(CPUMASK_TESTZERO(pmap->pm_active));
1835 if ((pv = pmap->pm_pmlpv) != NULL) {
1836 if (pv_hold_try(pv) == 0)
1837 pv_lock(pv);
1838 KKASSERT(pv == pmap->pm_pmlpv);
1839 p = pmap_remove_pv_page(pv);
1840 pv_free(pv);
1841 pmap_kremove((vm_offset_t)pmap->pm_pml4);
1842 vm_page_busy_wait(p, FALSE, "pgpun");
1843 KKASSERT(p->flags & (PG_FICTITIOUS|PG_UNMANAGED));
1844 vm_page_unwire(p, 0);
1845 vm_page_flag_clear(p, PG_MAPPED | PG_WRITEABLE);
1848 * XXX eventually clean out PML4 static entries and
1849 * use vm_page_free_zero()
1851 vm_page_free(p);
1852 pmap->pm_pmlpv = NULL;
1854 if (pmap->pm_pml4) {
1855 KKASSERT(pmap->pm_pml4 != (void *)(PTOV_OFFSET + KPML4phys));
1856 kmem_free(&kernel_map, (vm_offset_t)pmap->pm_pml4, PAGE_SIZE);
1857 pmap->pm_pml4 = NULL;
1859 KKASSERT(pmap->pm_stats.resident_count == 0);
1860 KKASSERT(pmap->pm_stats.wired_count == 0);
1864 * Wire in kernel global address entries. To avoid a race condition
1865 * between pmap initialization and pmap_growkernel, this procedure
1866 * adds the pmap to the master list (which growkernel scans to update),
1867 * then copies the template.
1869 void
1870 pmap_pinit2(struct pmap *pmap)
1872 spin_lock(&pmap_spin);
1873 TAILQ_INSERT_TAIL(&pmap_list, pmap, pm_pmnode);
1874 spin_unlock(&pmap_spin);
1878 * This routine is called when various levels in the page table need to
1879 * be populated. This routine cannot fail.
1881 * This function returns two locked pv_entry's, one representing the
1882 * requested pv and one representing the requested pv's parent pv. If
1883 * the pv did not previously exist it will be mapped into its parent
1884 * and wired, otherwise no additional wire count will be added.
1886 static
1887 pv_entry_t
1888 pmap_allocpte(pmap_t pmap, vm_pindex_t ptepindex, pv_entry_t *pvpp)
1890 pt_entry_t *ptep;
1891 pv_entry_t pv;
1892 pv_entry_t pvp;
1893 vm_pindex_t pt_pindex;
1894 vm_page_t m;
1895 int isnew;
1896 int ispt;
1899 * If the pv already exists and we aren't being asked for the
1900 * parent page table page we can just return it. A locked+held pv
1901 * is returned. The pv will also have a second hold related to the
1902 * pmap association that we don't have to worry about.
1904 ispt = 0;
1905 pv = pv_alloc(pmap, ptepindex, &isnew);
1906 if (isnew == 0 && pvpp == NULL)
1907 return(pv);
1910 * Special case terminal PVs. These are not page table pages so
1911 * no vm_page is allocated (the caller supplied the vm_page). If
1912 * pvpp is non-NULL we are being asked to also removed the pt_pv
1913 * for this pv.
1915 * Note that pt_pv's are only returned for user VAs. We assert that
1916 * a pt_pv is not being requested for kernel VAs.
1918 if (ptepindex < pmap_pt_pindex(0)) {
1919 if (ptepindex >= NUPTE_USER)
1920 KKASSERT(pvpp == NULL);
1921 else
1922 KKASSERT(pvpp != NULL);
1923 if (pvpp) {
1924 pt_pindex = NUPTE_TOTAL + (ptepindex >> NPTEPGSHIFT);
1925 pvp = pmap_allocpte(pmap, pt_pindex, NULL);
1926 if (isnew)
1927 vm_page_wire_quick(pvp->pv_m);
1928 *pvpp = pvp;
1929 } else {
1930 pvp = NULL;
1932 return(pv);
1936 * Non-terminal PVs allocate a VM page to represent the page table,
1937 * so we have to resolve pvp and calculate ptepindex for the pvp
1938 * and then for the page table entry index in the pvp for
1939 * fall-through.
1941 if (ptepindex < pmap_pd_pindex(0)) {
1943 * pv is PT, pvp is PD
1945 ptepindex = (ptepindex - pmap_pt_pindex(0)) >> NPDEPGSHIFT;
1946 ptepindex += NUPTE_TOTAL + NUPT_TOTAL;
1947 pvp = pmap_allocpte(pmap, ptepindex, NULL);
1948 if (!isnew)
1949 goto notnew;
1952 * PT index in PD
1954 ptepindex = pv->pv_pindex - pmap_pt_pindex(0);
1955 ptepindex &= ((1ul << NPDEPGSHIFT) - 1);
1956 ispt = 1;
1957 } else if (ptepindex < pmap_pdp_pindex(0)) {
1959 * pv is PD, pvp is PDP
1961 * SIMPLE PMAP NOTE: Simple pmaps do not allocate above
1962 * the PD.
1964 ptepindex = (ptepindex - pmap_pd_pindex(0)) >> NPDPEPGSHIFT;
1965 ptepindex += NUPTE_TOTAL + NUPT_TOTAL + NUPD_TOTAL;
1967 if (pmap->pm_flags & PMAP_FLAG_SIMPLE) {
1968 KKASSERT(pvpp == NULL);
1969 pvp = NULL;
1970 } else {
1971 pvp = pmap_allocpte(pmap, ptepindex, NULL);
1973 if (!isnew)
1974 goto notnew;
1977 * PD index in PDP
1979 ptepindex = pv->pv_pindex - pmap_pd_pindex(0);
1980 ptepindex &= ((1ul << NPDPEPGSHIFT) - 1);
1981 } else if (ptepindex < pmap_pml4_pindex()) {
1983 * pv is PDP, pvp is the root pml4 table
1985 pvp = pmap_allocpte(pmap, pmap_pml4_pindex(), NULL);
1986 if (!isnew)
1987 goto notnew;
1990 * PDP index in PML4
1992 ptepindex = pv->pv_pindex - pmap_pdp_pindex(0);
1993 ptepindex &= ((1ul << NPML4EPGSHIFT) - 1);
1994 } else {
1996 * pv represents the top-level PML4, there is no parent.
1998 pvp = NULL;
1999 if (!isnew)
2000 goto notnew;
2004 * This code is only reached if isnew is TRUE and this is not a
2005 * terminal PV. We need to allocate a vm_page for the page table
2006 * at this level and enter it into the parent page table.
2008 * page table pages are marked PG_WRITEABLE and PG_MAPPED.
2010 for (;;) {
2011 m = vm_page_alloc(NULL, pv->pv_pindex,
2012 VM_ALLOC_NORMAL | VM_ALLOC_SYSTEM |
2013 VM_ALLOC_INTERRUPT);
2014 if (m)
2015 break;
2016 vm_wait(0);
2018 vm_page_spin_lock(m);
2019 pmap_page_stats_adding(m);
2020 TAILQ_INSERT_TAIL(&m->md.pv_list, pv, pv_list);
2021 pv->pv_m = m;
2022 vm_page_flag_set(m, PG_MAPPED | PG_WRITEABLE);
2023 vm_page_spin_unlock(m);
2024 vm_page_unmanage(m); /* m must be spinunlocked */
2026 pmap_zero_page(VM_PAGE_TO_PHYS(m));
2027 m->valid = VM_PAGE_BITS_ALL;
2028 vm_page_wire(m); /* wire for mapping in parent */
2031 * Wire the page into pvp, bump the wire-count for pvp's page table
2032 * page. Bump the resident_count for the pmap. There is no pvp
2033 * for the top level, address the pm_pml4[] array directly.
2035 * If the caller wants the parent we return it, otherwise
2036 * we just put it away.
2038 * No interlock is needed for pte 0 -> non-zero.
2040 * In the situation where *ptep is valid we might have an unmanaged
2041 * page table page shared from another page table which we need to
2042 * unshare before installing our private page table page.
2044 if (pvp) {
2045 ptep = pv_pte_lookup(pvp, ptepindex);
2046 if (*ptep & pmap->pmap_bits[PG_V_IDX]) {
2047 pt_entry_t pte;
2049 if (ispt == 0) {
2050 panic("pmap_allocpte: unexpected pte %p/%d",
2051 pvp, (int)ptepindex);
2053 pte = pmap_inval_smp(pmap, (vm_offset_t)-1, 1, ptep, 0);
2054 if (vm_page_unwire_quick(
2055 PHYS_TO_VM_PAGE(pte & PG_FRAME))) {
2056 panic("pmap_allocpte: shared pgtable "
2057 "pg bad wirecount");
2059 atomic_add_long(&pmap->pm_stats.resident_count, -1);
2060 } else {
2061 vm_page_wire_quick(pvp->pv_m);
2063 *ptep = VM_PAGE_TO_PHYS(m) |
2064 (pmap->pmap_bits[PG_U_IDX] |
2065 pmap->pmap_bits[PG_RW_IDX] |
2066 pmap->pmap_bits[PG_V_IDX] |
2067 pmap->pmap_bits[PG_A_IDX] |
2068 pmap->pmap_bits[PG_M_IDX]);
2070 vm_page_wakeup(m);
2071 notnew:
2072 if (pvpp)
2073 *pvpp = pvp;
2074 else if (pvp)
2075 pv_put(pvp);
2076 return (pv);
2080 * This version of pmap_allocpte() checks for possible segment optimizations
2081 * that would allow page-table sharing. It can be called for terminal
2082 * page or page table page ptepindex's.
2084 * The function is called with page table page ptepindex's for fictitious
2085 * and unmanaged terminal pages. That is, we don't want to allocate a
2086 * terminal pv, we just want the pt_pv. pvpp is usually passed as NULL
2087 * for this case.
2089 * This function can return a pv and *pvpp associated with the passed in pmap
2090 * OR a pv and *pvpp associated with the shared pmap. In the latter case
2091 * an unmanaged page table page will be entered into the pass in pmap.
2093 static
2094 pv_entry_t
2095 pmap_allocpte_seg(pmap_t pmap, vm_pindex_t ptepindex, pv_entry_t *pvpp,
2096 vm_map_entry_t entry, vm_offset_t va)
2098 vm_object_t object;
2099 pmap_t obpmap;
2100 pmap_t *obpmapp;
2101 vm_offset_t b;
2102 pv_entry_t pte_pv; /* in original or shared pmap */
2103 pv_entry_t pt_pv; /* in original or shared pmap */
2104 pv_entry_t proc_pd_pv; /* in original pmap */
2105 pv_entry_t proc_pt_pv; /* in original pmap */
2106 pv_entry_t xpv; /* PT in shared pmap */
2107 pd_entry_t *pt; /* PT entry in PD of original pmap */
2108 pd_entry_t opte; /* contents of *pt */
2109 pd_entry_t npte; /* contents of *pt */
2110 vm_page_t m;
2112 retry:
2114 * Basic tests, require a non-NULL vm_map_entry, require proper
2115 * alignment and type for the vm_map_entry, require that the
2116 * underlying object already be allocated.
2118 * We allow almost any type of object to use this optimization.
2119 * The object itself does NOT have to be sized to a multiple of the
2120 * segment size, but the memory mapping does.
2122 * XXX don't handle devices currently, because VM_PAGE_TO_PHYS()
2123 * won't work as expected.
2125 if (entry == NULL ||
2126 pmap_mmu_optimize == 0 || /* not enabled */
2127 (pmap->pm_flags & PMAP_HVM) || /* special pmap */
2128 ptepindex >= pmap_pd_pindex(0) || /* not terminal or pt */
2129 entry->inheritance != VM_INHERIT_SHARE || /* not shared */
2130 entry->maptype != VM_MAPTYPE_NORMAL || /* weird map type */
2131 entry->object.vm_object == NULL || /* needs VM object */
2132 entry->object.vm_object->type == OBJT_DEVICE || /* ick */
2133 entry->object.vm_object->type == OBJT_MGTDEVICE || /* ick */
2134 (entry->offset & SEG_MASK) || /* must be aligned */
2135 (entry->start & SEG_MASK)) {
2136 return(pmap_allocpte(pmap, ptepindex, pvpp));
2140 * Make sure the full segment can be represented.
2142 b = va & ~(vm_offset_t)SEG_MASK;
2143 if (b < entry->start || b + SEG_SIZE > entry->end)
2144 return(pmap_allocpte(pmap, ptepindex, pvpp));
2147 * If the full segment can be represented dive the VM object's
2148 * shared pmap, allocating as required.
2150 object = entry->object.vm_object;
2152 if (entry->protection & VM_PROT_WRITE)
2153 obpmapp = &object->md.pmap_rw;
2154 else
2155 obpmapp = &object->md.pmap_ro;
2157 #ifdef PMAP_DEBUG2
2158 if (pmap_enter_debug > 0) {
2159 --pmap_enter_debug;
2160 kprintf("pmap_allocpte_seg: va=%jx prot %08x o=%p "
2161 "obpmapp %p %p\n",
2162 va, entry->protection, object,
2163 obpmapp, *obpmapp);
2164 kprintf("pmap_allocpte_seg: entry %p %jx-%jx\n",
2165 entry, entry->start, entry->end);
2167 #endif
2170 * We allocate what appears to be a normal pmap but because portions
2171 * of this pmap are shared with other unrelated pmaps we have to
2172 * set pm_active to point to all cpus.
2174 * XXX Currently using pmap_spin to interlock the update, can't use
2175 * vm_object_hold/drop because the token might already be held
2176 * shared OR exclusive and we don't know.
2178 while ((obpmap = *obpmapp) == NULL) {
2179 obpmap = kmalloc(sizeof(*obpmap), M_OBJPMAP, M_WAITOK|M_ZERO);
2180 pmap_pinit_simple(obpmap);
2181 pmap_pinit2(obpmap);
2182 spin_lock(&pmap_spin);
2183 if (*obpmapp != NULL) {
2185 * Handle race
2187 spin_unlock(&pmap_spin);
2188 pmap_release(obpmap);
2189 pmap_puninit(obpmap);
2190 kfree(obpmap, M_OBJPMAP);
2191 obpmap = *obpmapp; /* safety */
2192 } else {
2193 obpmap->pm_active = smp_active_mask;
2194 obpmap->pm_flags |= PMAP_SEGSHARED;
2195 *obpmapp = obpmap;
2196 spin_unlock(&pmap_spin);
2201 * Layering is: PTE, PT, PD, PDP, PML4. We have to return the
2202 * pte/pt using the shared pmap from the object but also adjust
2203 * the process pmap's page table page as a side effect.
2207 * Resolve the terminal PTE and PT in the shared pmap. This is what
2208 * we will return. This is true if ptepindex represents a terminal
2209 * page, otherwise pte_pv is actually the PT and pt_pv is actually
2210 * the PD.
2212 pt_pv = NULL;
2213 pte_pv = pmap_allocpte(obpmap, ptepindex, &pt_pv);
2214 if (ptepindex >= pmap_pt_pindex(0))
2215 xpv = pte_pv;
2216 else
2217 xpv = pt_pv;
2220 * Resolve the PD in the process pmap so we can properly share the
2221 * page table page. Lock order is bottom-up (leaf first)!
2223 * NOTE: proc_pt_pv can be NULL.
2225 proc_pt_pv = pv_get(pmap, pmap_pt_pindex(b));
2226 proc_pd_pv = pmap_allocpte(pmap, pmap_pd_pindex(b), NULL);
2227 #ifdef PMAP_DEBUG2
2228 if (pmap_enter_debug > 0) {
2229 --pmap_enter_debug;
2230 kprintf("proc_pt_pv %p (wc %d) pd_pv %p va=%jx\n",
2231 proc_pt_pv,
2232 (proc_pt_pv ? proc_pt_pv->pv_m->wire_count : -1),
2233 proc_pd_pv,
2234 va);
2236 #endif
2239 * xpv is the page table page pv from the shared object
2240 * (for convenience), from above.
2242 * Calculate the pte value for the PT to load into the process PD.
2243 * If we have to change it we must properly dispose of the previous
2244 * entry.
2246 pt = pv_pte_lookup(proc_pd_pv, pmap_pt_index(b));
2247 npte = VM_PAGE_TO_PHYS(xpv->pv_m) |
2248 (pmap->pmap_bits[PG_U_IDX] |
2249 pmap->pmap_bits[PG_RW_IDX] |
2250 pmap->pmap_bits[PG_V_IDX] |
2251 pmap->pmap_bits[PG_A_IDX] |
2252 pmap->pmap_bits[PG_M_IDX]);
2255 * Dispose of previous page table page if it was local to the
2256 * process pmap. If the old pt is not empty we cannot dispose of it
2257 * until we clean it out. This case should not arise very often so
2258 * it is not optimized.
2260 if (proc_pt_pv) {
2261 pmap_inval_bulk_t bulk;
2263 if (proc_pt_pv->pv_m->wire_count != 1) {
2264 pv_put(proc_pd_pv);
2265 pv_put(proc_pt_pv);
2266 pv_put(pt_pv);
2267 pv_put(pte_pv);
2268 pmap_remove(pmap,
2269 va & ~(vm_offset_t)SEG_MASK,
2270 (va + SEG_SIZE) & ~(vm_offset_t)SEG_MASK);
2271 goto retry;
2275 * The release call will indirectly clean out *pt
2277 pmap_inval_bulk_init(&bulk, proc_pt_pv->pv_pmap);
2278 pmap_release_pv(proc_pt_pv, proc_pd_pv, &bulk);
2279 pmap_inval_bulk_flush(&bulk);
2280 proc_pt_pv = NULL;
2281 /* relookup */
2282 pt = pv_pte_lookup(proc_pd_pv, pmap_pt_index(b));
2286 * Handle remaining cases.
2288 if (*pt == 0) {
2289 *pt = npte;
2290 vm_page_wire_quick(xpv->pv_m);
2291 vm_page_wire_quick(proc_pd_pv->pv_m);
2292 atomic_add_long(&pmap->pm_stats.resident_count, 1);
2293 } else if (*pt != npte) {
2294 opte = pmap_inval_smp(pmap, (vm_offset_t)-1, 1, pt, npte);
2296 #if 0
2297 opte = pte_load_clear(pt);
2298 KKASSERT(opte && opte != npte);
2300 *pt = npte;
2301 #endif
2302 vm_page_wire_quick(xpv->pv_m); /* pgtable pg that is npte */
2305 * Clean up opte, bump the wire_count for the process
2306 * PD page representing the new entry if it was
2307 * previously empty.
2309 * If the entry was not previously empty and we have
2310 * a PT in the proc pmap then opte must match that
2311 * pt. The proc pt must be retired (this is done
2312 * later on in this procedure).
2314 * NOTE: replacing valid pte, wire_count on proc_pd_pv
2315 * stays the same.
2317 KKASSERT(opte & pmap->pmap_bits[PG_V_IDX]);
2318 m = PHYS_TO_VM_PAGE(opte & PG_FRAME);
2319 if (vm_page_unwire_quick(m)) {
2320 panic("pmap_allocpte_seg: "
2321 "bad wire count %p",
2327 * The existing process page table was replaced and must be destroyed
2328 * here.
2330 if (proc_pd_pv)
2331 pv_put(proc_pd_pv);
2332 if (pvpp)
2333 *pvpp = pt_pv;
2334 else
2335 pv_put(pt_pv);
2337 return (pte_pv);
2341 * Release any resources held by the given physical map.
2343 * Called when a pmap initialized by pmap_pinit is being released. Should
2344 * only be called if the map contains no valid mappings.
2346 * Caller must hold pmap->pm_token
2348 struct pmap_release_info {
2349 pmap_t pmap;
2350 int retry;
2353 static int pmap_release_callback(pv_entry_t pv, void *data);
2355 void
2356 pmap_release(struct pmap *pmap)
2358 struct pmap_release_info info;
2360 KASSERT(CPUMASK_TESTZERO(pmap->pm_active),
2361 ("pmap still active! %016jx",
2362 (uintmax_t)CPUMASK_LOWMASK(pmap->pm_active)));
2364 spin_lock(&pmap_spin);
2365 TAILQ_REMOVE(&pmap_list, pmap, pm_pmnode);
2366 spin_unlock(&pmap_spin);
2369 * Pull pv's off the RB tree in order from low to high and release
2370 * each page.
2372 info.pmap = pmap;
2373 do {
2374 info.retry = 0;
2375 spin_lock(&pmap->pm_spin);
2376 RB_SCAN(pv_entry_rb_tree, &pmap->pm_pvroot, NULL,
2377 pmap_release_callback, &info);
2378 spin_unlock(&pmap->pm_spin);
2379 } while (info.retry);
2383 * One resident page (the pml4 page) should remain.
2384 * No wired pages should remain.
2386 KKASSERT(pmap->pm_stats.resident_count ==
2387 ((pmap->pm_flags & PMAP_FLAG_SIMPLE) ? 0 : 1));
2389 KKASSERT(pmap->pm_stats.wired_count == 0);
2392 static int
2393 pmap_release_callback(pv_entry_t pv, void *data)
2395 struct pmap_release_info *info = data;
2396 pmap_t pmap = info->pmap;
2397 int r;
2399 if (pv_hold_try(pv)) {
2400 spin_unlock(&pmap->pm_spin);
2401 } else {
2402 spin_unlock(&pmap->pm_spin);
2403 pv_lock(pv);
2405 if (pv->pv_pmap != pmap) {
2406 pv_put(pv);
2407 spin_lock(&pmap->pm_spin);
2408 info->retry = 1;
2409 return(-1);
2411 r = pmap_release_pv(pv, NULL, NULL);
2412 spin_lock(&pmap->pm_spin);
2413 return(r);
2417 * Called with held (i.e. also locked) pv. This function will dispose of
2418 * the lock along with the pv.
2420 * If the caller already holds the locked parent page table for pv it
2421 * must pass it as pvp, allowing us to avoid a deadlock, else it can
2422 * pass NULL for pvp.
2424 static int
2425 pmap_release_pv(pv_entry_t pv, pv_entry_t pvp, pmap_inval_bulk_t *bulk)
2427 vm_page_t p;
2430 * The pmap is currently not spinlocked, pv is held+locked.
2431 * Remove the pv's page from its parent's page table. The
2432 * parent's page table page's wire_count will be decremented.
2434 * This will clean out the pte at any level of the page table.
2435 * If smp != 0 all cpus are affected.
2437 pmap_remove_pv_pte(pv, pvp, bulk);
2440 * Terminal pvs are unhooked from their vm_pages. Because
2441 * terminal pages aren't page table pages they aren't wired
2442 * by us, so we have to be sure not to unwire them either.
2444 if (pv->pv_pindex < pmap_pt_pindex(0)) {
2445 pmap_remove_pv_page(pv);
2446 goto skip;
2450 * We leave the top-level page table page cached, wired, and
2451 * mapped in the pmap until the dtor function (pmap_puninit())
2452 * gets called.
2454 * Since we are leaving the top-level pv intact we need
2455 * to break out of what would otherwise be an infinite loop.
2457 if (pv->pv_pindex == pmap_pml4_pindex()) {
2458 pv_put(pv);
2459 return(-1);
2463 * For page table pages (other than the top-level page),
2464 * remove and free the vm_page. The representitive mapping
2465 * removed above by pmap_remove_pv_pte() did not undo the
2466 * last wire_count so we have to do that as well.
2468 p = pmap_remove_pv_page(pv);
2469 vm_page_busy_wait(p, FALSE, "pmaprl");
2470 if (p->wire_count != 1) {
2471 kprintf("p->wire_count was %016lx %d\n",
2472 pv->pv_pindex, p->wire_count);
2474 KKASSERT(p->wire_count == 1);
2475 KKASSERT(p->flags & PG_UNMANAGED);
2477 vm_page_unwire(p, 0);
2478 KKASSERT(p->wire_count == 0);
2480 vm_page_free(p);
2481 skip:
2482 pv_free(pv);
2483 return 0;
2487 * This function will remove the pte associated with a pv from its parent.
2488 * Terminal pv's are supported. All cpus are affected if smp != 0.
2490 * The wire count will be dropped on the parent page table. The wire
2491 * count on the page being removed (pv->pv_m) from the parent page table
2492 * is NOT touched. Note that terminal pages will not have any additional
2493 * wire counts while page table pages will have at least one representing
2494 * the mapping, plus others representing sub-mappings.
2496 * NOTE: Cannot be called on kernel page table pages, only KVM terminal
2497 * pages and user page table and terminal pages.
2499 * The pv must be locked.
2501 * XXX must lock parent pv's if they exist to remove pte XXX
2503 static
2504 void
2505 pmap_remove_pv_pte(pv_entry_t pv, pv_entry_t pvp, pmap_inval_bulk_t *bulk)
2507 vm_pindex_t ptepindex = pv->pv_pindex;
2508 pmap_t pmap = pv->pv_pmap;
2509 vm_page_t p;
2510 int gotpvp = 0;
2512 KKASSERT(pmap);
2514 if (ptepindex == pmap_pml4_pindex()) {
2516 * We are the top level pml4 table, there is no parent.
2518 p = pmap->pm_pmlpv->pv_m;
2519 } else if (ptepindex >= pmap_pdp_pindex(0)) {
2521 * Remove a PDP page from the pml4e. This can only occur
2522 * with user page tables. We do not have to lock the
2523 * pml4 PV so just ignore pvp.
2525 vm_pindex_t pml4_pindex;
2526 vm_pindex_t pdp_index;
2527 pml4_entry_t *pdp;
2529 pdp_index = ptepindex - pmap_pdp_pindex(0);
2530 if (pvp == NULL) {
2531 pml4_pindex = pmap_pml4_pindex();
2532 pvp = pv_get(pv->pv_pmap, pml4_pindex);
2533 KKASSERT(pvp);
2534 gotpvp = 1;
2536 pdp = &pmap->pm_pml4[pdp_index & ((1ul << NPML4EPGSHIFT) - 1)];
2537 KKASSERT((*pdp & pmap->pmap_bits[PG_V_IDX]) != 0);
2538 p = PHYS_TO_VM_PAGE(*pdp & PG_FRAME);
2539 pmap_inval_bulk(bulk, (vm_offset_t)-1, pdp, 0);
2540 } else if (ptepindex >= pmap_pd_pindex(0)) {
2542 * Remove a PD page from the pdp
2544 * SIMPLE PMAP NOTE: Non-existant pvp's are ok in the case
2545 * of a simple pmap because it stops at
2546 * the PD page.
2548 vm_pindex_t pdp_pindex;
2549 vm_pindex_t pd_index;
2550 pdp_entry_t *pd;
2552 pd_index = ptepindex - pmap_pd_pindex(0);
2554 if (pvp == NULL) {
2555 pdp_pindex = NUPTE_TOTAL + NUPT_TOTAL + NUPD_TOTAL +
2556 (pd_index >> NPML4EPGSHIFT);
2557 pvp = pv_get(pv->pv_pmap, pdp_pindex);
2558 if (pvp)
2559 gotpvp = 1;
2561 if (pvp) {
2562 pd = pv_pte_lookup(pvp, pd_index &
2563 ((1ul << NPDPEPGSHIFT) - 1));
2564 KKASSERT((*pd & pmap->pmap_bits[PG_V_IDX]) != 0);
2565 p = PHYS_TO_VM_PAGE(*pd & PG_FRAME);
2566 pmap_inval_bulk(bulk, (vm_offset_t)-1, pd, 0);
2567 } else {
2568 KKASSERT(pmap->pm_flags & PMAP_FLAG_SIMPLE);
2569 p = pv->pv_m; /* degenerate test later */
2571 } else if (ptepindex >= pmap_pt_pindex(0)) {
2573 * Remove a PT page from the pd
2575 vm_pindex_t pd_pindex;
2576 vm_pindex_t pt_index;
2577 pd_entry_t *pt;
2579 pt_index = ptepindex - pmap_pt_pindex(0);
2581 if (pvp == NULL) {
2582 pd_pindex = NUPTE_TOTAL + NUPT_TOTAL +
2583 (pt_index >> NPDPEPGSHIFT);
2584 pvp = pv_get(pv->pv_pmap, pd_pindex);
2585 KKASSERT(pvp);
2586 gotpvp = 1;
2588 pt = pv_pte_lookup(pvp, pt_index & ((1ul << NPDPEPGSHIFT) - 1));
2589 KKASSERT((*pt & pmap->pmap_bits[PG_V_IDX]) != 0);
2590 p = PHYS_TO_VM_PAGE(*pt & PG_FRAME);
2591 pmap_inval_bulk(bulk, (vm_offset_t)-1, pt, 0);
2592 } else {
2594 * Remove a PTE from the PT page
2596 * NOTE: pv's must be locked bottom-up to avoid deadlocking.
2597 * pv is a pte_pv so we can safely lock pt_pv.
2599 * NOTE: FICTITIOUS pages may have multiple physical mappings
2600 * so PHYS_TO_VM_PAGE() will not necessarily work for
2601 * terminal ptes.
2603 vm_pindex_t pt_pindex;
2604 pt_entry_t *ptep;
2605 pt_entry_t pte;
2606 vm_offset_t va;
2608 pt_pindex = ptepindex >> NPTEPGSHIFT;
2609 va = (vm_offset_t)ptepindex << PAGE_SHIFT;
2611 if (ptepindex >= NUPTE_USER) {
2612 ptep = vtopte(ptepindex << PAGE_SHIFT);
2613 KKASSERT(pvp == NULL);
2614 } else {
2615 if (pvp == NULL) {
2616 pt_pindex = NUPTE_TOTAL +
2617 (ptepindex >> NPDPEPGSHIFT);
2618 pvp = pv_get(pv->pv_pmap, pt_pindex);
2619 KKASSERT(pvp);
2620 gotpvp = 1;
2622 ptep = pv_pte_lookup(pvp, ptepindex &
2623 ((1ul << NPDPEPGSHIFT) - 1));
2625 pte = pmap_inval_bulk(bulk, va, ptep, 0);
2626 if (bulk == NULL) /* XXX */
2627 cpu_invlpg((void *)va); /* XXX */
2630 * Now update the vm_page_t
2632 if ((pte & (pmap->pmap_bits[PG_MANAGED_IDX] | pmap->pmap_bits[PG_V_IDX])) !=
2633 (pmap->pmap_bits[PG_MANAGED_IDX]|pmap->pmap_bits[PG_V_IDX])) {
2634 kprintf("remove_pte badpte %016lx %016lx %d\n",
2635 pte, pv->pv_pindex,
2636 pv->pv_pindex < pmap_pt_pindex(0));
2638 /* PHYS_TO_VM_PAGE() will not work for FICTITIOUS pages */
2639 /*KKASSERT((pte & (PG_MANAGED|PG_V)) == (PG_MANAGED|PG_V));*/
2640 if (pte & pmap->pmap_bits[PG_DEVICE_IDX])
2641 p = pv->pv_m;
2642 else
2643 p = PHYS_TO_VM_PAGE(pte & PG_FRAME);
2644 /* p = pv->pv_m; */
2646 if (pte & pmap->pmap_bits[PG_M_IDX]) {
2647 if (pmap_track_modified(ptepindex))
2648 vm_page_dirty(p);
2650 if (pte & pmap->pmap_bits[PG_A_IDX]) {
2651 vm_page_flag_set(p, PG_REFERENCED);
2653 if (pte & pmap->pmap_bits[PG_W_IDX])
2654 atomic_add_long(&pmap->pm_stats.wired_count, -1);
2655 if (pte & pmap->pmap_bits[PG_G_IDX])
2656 cpu_invlpg((void *)va);
2660 * Unwire the parent page table page. The wire_count cannot go below
2661 * 1 here because the parent page table page is itself still mapped.
2663 * XXX remove the assertions later.
2665 KKASSERT(pv->pv_m == p);
2666 if (pvp && vm_page_unwire_quick(pvp->pv_m))
2667 panic("pmap_remove_pv_pte: Insufficient wire_count");
2669 if (gotpvp)
2670 pv_put(pvp);
2674 * Remove the vm_page association to a pv. The pv must be locked.
2676 static
2677 vm_page_t
2678 pmap_remove_pv_page(pv_entry_t pv)
2680 vm_page_t m;
2682 m = pv->pv_m;
2683 KKASSERT(m);
2684 vm_page_spin_lock(m);
2685 pv->pv_m = NULL;
2686 TAILQ_REMOVE(&m->md.pv_list, pv, pv_list);
2687 pmap_page_stats_deleting(m);
2689 if (m->object)
2690 atomic_add_int(&m->object->agg_pv_list_count, -1);
2692 if (TAILQ_EMPTY(&m->md.pv_list))
2693 vm_page_flag_clear(m, PG_MAPPED | PG_WRITEABLE);
2694 vm_page_spin_unlock(m);
2695 return(m);
2699 * Grow the number of kernel page table entries, if needed.
2701 * This routine is always called to validate any address space
2702 * beyond KERNBASE (for kldloads). kernel_vm_end only governs the address
2703 * space below KERNBASE.
2705 void
2706 pmap_growkernel(vm_offset_t kstart, vm_offset_t kend)
2708 vm_paddr_t paddr;
2709 vm_offset_t ptppaddr;
2710 vm_page_t nkpg;
2711 pd_entry_t *pt, newpt;
2712 pdp_entry_t newpd;
2713 int update_kernel_vm_end;
2716 * bootstrap kernel_vm_end on first real VM use
2718 if (kernel_vm_end == 0) {
2719 kernel_vm_end = VM_MIN_KERNEL_ADDRESS;
2720 nkpt = 0;
2721 while ((*pmap_pt(&kernel_pmap, kernel_vm_end) & kernel_pmap.pmap_bits[PG_V_IDX]) != 0) {
2722 kernel_vm_end = (kernel_vm_end + PAGE_SIZE * NPTEPG) &
2723 ~(PAGE_SIZE * NPTEPG - 1);
2724 nkpt++;
2725 if (kernel_vm_end - 1 >= kernel_map.max_offset) {
2726 kernel_vm_end = kernel_map.max_offset;
2727 break;
2733 * Fill in the gaps. kernel_vm_end is only adjusted for ranges
2734 * below KERNBASE. Ranges above KERNBASE are kldloaded and we
2735 * do not want to force-fill 128G worth of page tables.
2737 if (kstart < KERNBASE) {
2738 if (kstart > kernel_vm_end)
2739 kstart = kernel_vm_end;
2740 KKASSERT(kend <= KERNBASE);
2741 update_kernel_vm_end = 1;
2742 } else {
2743 update_kernel_vm_end = 0;
2746 kstart = rounddown2(kstart, PAGE_SIZE * NPTEPG);
2747 kend = roundup2(kend, PAGE_SIZE * NPTEPG);
2749 if (kend - 1 >= kernel_map.max_offset)
2750 kend = kernel_map.max_offset;
2752 while (kstart < kend) {
2753 pt = pmap_pt(&kernel_pmap, kstart);
2754 if (pt == NULL) {
2755 /* We need a new PDP entry */
2756 nkpg = vm_page_alloc(NULL, nkpt,
2757 VM_ALLOC_NORMAL |
2758 VM_ALLOC_SYSTEM |
2759 VM_ALLOC_INTERRUPT);
2760 if (nkpg == NULL) {
2761 panic("pmap_growkernel: no memory to grow "
2762 "kernel");
2764 paddr = VM_PAGE_TO_PHYS(nkpg);
2765 pmap_zero_page(paddr);
2766 newpd = (pdp_entry_t)
2767 (paddr |
2768 kernel_pmap.pmap_bits[PG_V_IDX] |
2769 kernel_pmap.pmap_bits[PG_RW_IDX] |
2770 kernel_pmap.pmap_bits[PG_A_IDX] |
2771 kernel_pmap.pmap_bits[PG_M_IDX]);
2772 *pmap_pd(&kernel_pmap, kstart) = newpd;
2773 nkpt++;
2774 continue; /* try again */
2776 if ((*pt & kernel_pmap.pmap_bits[PG_V_IDX]) != 0) {
2777 kstart = (kstart + PAGE_SIZE * NPTEPG) &
2778 ~(PAGE_SIZE * NPTEPG - 1);
2779 if (kstart - 1 >= kernel_map.max_offset) {
2780 kstart = kernel_map.max_offset;
2781 break;
2783 continue;
2787 * This index is bogus, but out of the way
2789 nkpg = vm_page_alloc(NULL, nkpt,
2790 VM_ALLOC_NORMAL |
2791 VM_ALLOC_SYSTEM |
2792 VM_ALLOC_INTERRUPT);
2793 if (nkpg == NULL)
2794 panic("pmap_growkernel: no memory to grow kernel");
2796 vm_page_wire(nkpg);
2797 ptppaddr = VM_PAGE_TO_PHYS(nkpg);
2798 pmap_zero_page(ptppaddr);
2799 newpt = (pd_entry_t) (ptppaddr |
2800 kernel_pmap.pmap_bits[PG_V_IDX] |
2801 kernel_pmap.pmap_bits[PG_RW_IDX] |
2802 kernel_pmap.pmap_bits[PG_A_IDX] |
2803 kernel_pmap.pmap_bits[PG_M_IDX]);
2804 *pmap_pt(&kernel_pmap, kstart) = newpt;
2805 nkpt++;
2807 kstart = (kstart + PAGE_SIZE * NPTEPG) &
2808 ~(PAGE_SIZE * NPTEPG - 1);
2810 if (kstart - 1 >= kernel_map.max_offset) {
2811 kstart = kernel_map.max_offset;
2812 break;
2817 * Only update kernel_vm_end for areas below KERNBASE.
2819 if (update_kernel_vm_end && kernel_vm_end < kstart)
2820 kernel_vm_end = kstart;
2824 * Add a reference to the specified pmap.
2826 void
2827 pmap_reference(pmap_t pmap)
2829 if (pmap != NULL) {
2830 lwkt_gettoken(&pmap->pm_token);
2831 ++pmap->pm_count;
2832 lwkt_reltoken(&pmap->pm_token);
2836 /***************************************************
2837 * page management routines.
2838 ***************************************************/
2841 * Hold a pv without locking it
2843 static void
2844 pv_hold(pv_entry_t pv)
2846 atomic_add_int(&pv->pv_hold, 1);
2850 * Hold a pv_entry, preventing its destruction. TRUE is returned if the pv
2851 * was successfully locked, FALSE if it wasn't. The caller must dispose of
2852 * the pv properly.
2854 * Either the pmap->pm_spin or the related vm_page_spin (if traversing a
2855 * pv list via its page) must be held by the caller.
2857 static int
2858 _pv_hold_try(pv_entry_t pv PMAP_DEBUG_DECL)
2860 u_int count;
2863 * Critical path shortcut expects pv to already have one ref
2864 * (for the pv->pv_pmap).
2866 if (atomic_cmpset_int(&pv->pv_hold, 1, PV_HOLD_LOCKED | 2)) {
2867 #ifdef PMAP_DEBUG
2868 pv->pv_func = func;
2869 pv->pv_line = lineno;
2870 #endif
2871 return TRUE;
2874 for (;;) {
2875 count = pv->pv_hold;
2876 cpu_ccfence();
2877 if ((count & PV_HOLD_LOCKED) == 0) {
2878 if (atomic_cmpset_int(&pv->pv_hold, count,
2879 (count + 1) | PV_HOLD_LOCKED)) {
2880 #ifdef PMAP_DEBUG
2881 pv->pv_func = func;
2882 pv->pv_line = lineno;
2883 #endif
2884 return TRUE;
2886 } else {
2887 if (atomic_cmpset_int(&pv->pv_hold, count, count + 1))
2888 return FALSE;
2890 /* retry */
2895 * Drop a previously held pv_entry which could not be locked, allowing its
2896 * destruction.
2898 * Must not be called with a spinlock held as we might zfree() the pv if it
2899 * is no longer associated with a pmap and this was the last hold count.
2901 static void
2902 pv_drop(pv_entry_t pv)
2904 u_int count;
2906 for (;;) {
2907 count = pv->pv_hold;
2908 cpu_ccfence();
2909 KKASSERT((count & PV_HOLD_MASK) > 0);
2910 KKASSERT((count & (PV_HOLD_LOCKED | PV_HOLD_MASK)) !=
2911 (PV_HOLD_LOCKED | 1));
2912 if (atomic_cmpset_int(&pv->pv_hold, count, count - 1)) {
2913 if ((count & PV_HOLD_MASK) == 1) {
2914 #ifdef PMAP_DEBUG2
2915 if (pmap_enter_debug > 0) {
2916 --pmap_enter_debug;
2917 kprintf("pv_drop: free pv %p\n", pv);
2919 #endif
2920 KKASSERT(count == 1);
2921 KKASSERT(pv->pv_pmap == NULL);
2922 zfree(pvzone, pv);
2924 return;
2926 /* retry */
2931 * Find or allocate the requested PV entry, returning a locked, held pv.
2933 * If (*isnew) is non-zero, the returned pv will have two hold counts, one
2934 * for the caller and one representing the pmap and vm_page association.
2936 * If (*isnew) is zero, the returned pv will have only one hold count.
2938 * Since both associations can only be adjusted while the pv is locked,
2939 * together they represent just one additional hold.
2941 static
2942 pv_entry_t
2943 _pv_alloc(pmap_t pmap, vm_pindex_t pindex, int *isnew PMAP_DEBUG_DECL)
2945 pv_entry_t pv;
2946 pv_entry_t pnew = NULL;
2948 spin_lock(&pmap->pm_spin);
2949 for (;;) {
2950 if ((pv = pmap->pm_pvhint) == NULL || pv->pv_pindex != pindex) {
2951 pv = pv_entry_rb_tree_RB_LOOKUP(&pmap->pm_pvroot,
2952 pindex);
2954 if (pv == NULL) {
2955 if (pnew == NULL) {
2956 spin_unlock(&pmap->pm_spin);
2957 pnew = zalloc(pvzone);
2958 spin_lock(&pmap->pm_spin);
2959 continue;
2961 pnew->pv_pmap = pmap;
2962 pnew->pv_pindex = pindex;
2963 pnew->pv_hold = PV_HOLD_LOCKED | 2;
2964 #ifdef PMAP_DEBUG
2965 pnew->pv_func = func;
2966 pnew->pv_line = lineno;
2967 #endif
2968 pv_entry_rb_tree_RB_INSERT(&pmap->pm_pvroot, pnew);
2969 ++pmap->pm_generation;
2970 atomic_add_long(&pmap->pm_stats.resident_count, 1);
2971 spin_unlock(&pmap->pm_spin);
2972 *isnew = 1;
2973 return(pnew);
2975 if (pnew) {
2976 spin_unlock(&pmap->pm_spin);
2977 zfree(pvzone, pnew);
2978 pnew = NULL;
2979 spin_lock(&pmap->pm_spin);
2980 continue;
2982 if (_pv_hold_try(pv PMAP_DEBUG_COPY)) {
2983 spin_unlock(&pmap->pm_spin);
2984 } else {
2985 spin_unlock(&pmap->pm_spin);
2986 _pv_lock(pv PMAP_DEBUG_COPY);
2988 if (pv->pv_pmap == pmap && pv->pv_pindex == pindex) {
2989 *isnew = 0;
2990 return(pv);
2992 pv_put(pv);
2993 spin_lock(&pmap->pm_spin);
2998 * Find the requested PV entry, returning a locked+held pv or NULL
3000 static
3001 pv_entry_t
3002 _pv_get(pmap_t pmap, vm_pindex_t pindex PMAP_DEBUG_DECL)
3004 pv_entry_t pv;
3006 spin_lock(&pmap->pm_spin);
3007 for (;;) {
3009 * Shortcut cache
3011 if ((pv = pmap->pm_pvhint) == NULL || pv->pv_pindex != pindex) {
3012 pv = pv_entry_rb_tree_RB_LOOKUP(&pmap->pm_pvroot,
3013 pindex);
3015 if (pv == NULL) {
3016 spin_unlock(&pmap->pm_spin);
3017 return NULL;
3019 if (_pv_hold_try(pv PMAP_DEBUG_COPY)) {
3020 spin_unlock(&pmap->pm_spin);
3021 } else {
3022 spin_unlock(&pmap->pm_spin);
3023 _pv_lock(pv PMAP_DEBUG_COPY);
3025 if (pv->pv_pmap == pmap && pv->pv_pindex == pindex) {
3026 pv_cache(pv, pindex);
3027 return(pv);
3029 pv_put(pv);
3030 spin_lock(&pmap->pm_spin);
3035 * Lookup, hold, and attempt to lock (pmap,pindex).
3037 * If the entry does not exist NULL is returned and *errorp is set to 0
3039 * If the entry exists and could be successfully locked it is returned and
3040 * errorp is set to 0.
3042 * If the entry exists but could NOT be successfully locked it is returned
3043 * held and *errorp is set to 1.
3045 static
3046 pv_entry_t
3047 pv_get_try(pmap_t pmap, vm_pindex_t pindex, int *errorp)
3049 pv_entry_t pv;
3051 spin_lock_shared(&pmap->pm_spin);
3052 if ((pv = pmap->pm_pvhint) == NULL || pv->pv_pindex != pindex)
3053 pv = pv_entry_rb_tree_RB_LOOKUP(&pmap->pm_pvroot, pindex);
3054 if (pv == NULL) {
3055 spin_unlock_shared(&pmap->pm_spin);
3056 *errorp = 0;
3057 return NULL;
3059 if (pv_hold_try(pv)) {
3060 pv_cache(pv, pindex);
3061 spin_unlock_shared(&pmap->pm_spin);
3062 *errorp = 0;
3063 KKASSERT(pv->pv_pmap == pmap && pv->pv_pindex == pindex);
3064 return(pv); /* lock succeeded */
3066 spin_unlock_shared(&pmap->pm_spin);
3067 *errorp = 1;
3068 return (pv); /* lock failed */
3072 * Find the requested PV entry, returning a held pv or NULL
3074 static
3075 pv_entry_t
3076 pv_find(pmap_t pmap, vm_pindex_t pindex)
3078 pv_entry_t pv;
3080 spin_lock_shared(&pmap->pm_spin);
3082 if ((pv = pmap->pm_pvhint) == NULL || pv->pv_pindex != pindex)
3083 pv = pv_entry_rb_tree_RB_LOOKUP(&pmap->pm_pvroot, pindex);
3084 if (pv == NULL) {
3085 spin_unlock_shared(&pmap->pm_spin);
3086 return NULL;
3088 pv_hold(pv);
3089 pv_cache(pv, pindex);
3090 spin_unlock_shared(&pmap->pm_spin);
3091 return(pv);
3095 * Lock a held pv, keeping the hold count
3097 static
3098 void
3099 _pv_lock(pv_entry_t pv PMAP_DEBUG_DECL)
3101 u_int count;
3103 for (;;) {
3104 count = pv->pv_hold;
3105 cpu_ccfence();
3106 if ((count & PV_HOLD_LOCKED) == 0) {
3107 if (atomic_cmpset_int(&pv->pv_hold, count,
3108 count | PV_HOLD_LOCKED)) {
3109 #ifdef PMAP_DEBUG
3110 pv->pv_func = func;
3111 pv->pv_line = lineno;
3112 #endif
3113 return;
3115 continue;
3117 tsleep_interlock(pv, 0);
3118 if (atomic_cmpset_int(&pv->pv_hold, count,
3119 count | PV_HOLD_WAITING)) {
3120 #ifdef PMAP_DEBUG
3121 kprintf("pv waiting on %s:%d\n",
3122 pv->pv_func, pv->pv_line);
3123 #endif
3124 tsleep(pv, PINTERLOCKED, "pvwait", hz);
3126 /* retry */
3131 * Unlock a held and locked pv, keeping the hold count.
3133 static
3134 void
3135 pv_unlock(pv_entry_t pv)
3137 u_int count;
3139 for (;;) {
3140 count = pv->pv_hold;
3141 cpu_ccfence();
3142 KKASSERT((count & (PV_HOLD_LOCKED | PV_HOLD_MASK)) >=
3143 (PV_HOLD_LOCKED | 1));
3144 if (atomic_cmpset_int(&pv->pv_hold, count,
3145 count &
3146 ~(PV_HOLD_LOCKED | PV_HOLD_WAITING))) {
3147 if (count & PV_HOLD_WAITING)
3148 wakeup(pv);
3149 break;
3155 * Unlock and drop a pv. If the pv is no longer associated with a pmap
3156 * and the hold count drops to zero we will free it.
3158 * Caller should not hold any spin locks. We are protected from hold races
3159 * by virtue of holds only occuring only with a pmap_spin or vm_page_spin
3160 * lock held. A pv cannot be located otherwise.
3162 static
3163 void
3164 pv_put(pv_entry_t pv)
3166 #ifdef PMAP_DEBUG2
3167 if (pmap_enter_debug > 0) {
3168 --pmap_enter_debug;
3169 kprintf("pv_put pv=%p hold=%08x\n", pv, pv->pv_hold);
3171 #endif
3174 * Fast - shortcut most common condition
3176 if (atomic_cmpset_int(&pv->pv_hold, PV_HOLD_LOCKED | 2, 1))
3177 return;
3180 * Slow
3182 pv_unlock(pv);
3183 pv_drop(pv);
3187 * Remove the pmap association from a pv, require that pv_m already be removed,
3188 * then unlock and drop the pv. Any pte operations must have already been
3189 * completed. This call may result in a last-drop which will physically free
3190 * the pv.
3192 * Removing the pmap association entails an additional drop.
3194 * pv must be exclusively locked on call and will be disposed of on return.
3196 static
3197 void
3198 pv_free(pv_entry_t pv)
3200 pmap_t pmap;
3202 KKASSERT(pv->pv_m == NULL);
3203 KKASSERT((pv->pv_hold & PV_HOLD_MASK) >= 2);
3204 if ((pmap = pv->pv_pmap) != NULL) {
3205 spin_lock(&pmap->pm_spin);
3206 pv_entry_rb_tree_RB_REMOVE(&pmap->pm_pvroot, pv);
3207 ++pmap->pm_generation;
3208 if (pmap->pm_pvhint == pv)
3209 pmap->pm_pvhint = NULL;
3210 atomic_add_long(&pmap->pm_stats.resident_count, -1);
3211 pv->pv_pmap = NULL;
3212 pv->pv_pindex = 0;
3213 spin_unlock(&pmap->pm_spin);
3216 * Try to shortcut three atomic ops, otherwise fall through
3217 * and do it normally. Drop two refs and the lock all in
3218 * one go.
3220 if (atomic_cmpset_int(&pv->pv_hold, PV_HOLD_LOCKED | 2, 0)) {
3221 #ifdef PMAP_DEBUG2
3222 if (pmap_enter_debug > 0) {
3223 --pmap_enter_debug;
3224 kprintf("pv_free: free pv %p\n", pv);
3226 #endif
3227 zfree(pvzone, pv);
3228 return;
3230 pv_drop(pv); /* ref for pv_pmap */
3232 pv_put(pv);
3236 * This routine is very drastic, but can save the system
3237 * in a pinch.
3239 void
3240 pmap_collect(void)
3242 int i;
3243 vm_page_t m;
3244 static int warningdone=0;
3246 if (pmap_pagedaemon_waken == 0)
3247 return;
3248 pmap_pagedaemon_waken = 0;
3249 if (warningdone < 5) {
3250 kprintf("pmap_collect: collecting pv entries -- "
3251 "suggest increasing PMAP_SHPGPERPROC\n");
3252 warningdone++;
3255 for (i = 0; i < vm_page_array_size; i++) {
3256 m = &vm_page_array[i];
3257 if (m->wire_count || m->hold_count)
3258 continue;
3259 if (vm_page_busy_try(m, TRUE) == 0) {
3260 if (m->wire_count == 0 && m->hold_count == 0) {
3261 pmap_remove_all(m);
3263 vm_page_wakeup(m);
3269 * Scan the pmap for active page table entries and issue a callback.
3270 * The callback must dispose of pte_pv, whos PTE entry is at *ptep in
3271 * its parent page table.
3273 * pte_pv will be NULL if the page or page table is unmanaged.
3274 * pt_pv will point to the page table page containing the pte for the page.
3276 * NOTE! If we come across an unmanaged page TABLE (verses an unmanaged page),
3277 * we pass a NULL pte_pv and we pass a pt_pv pointing to the passed
3278 * process pmap's PD and page to the callback function. This can be
3279 * confusing because the pt_pv is really a pd_pv, and the target page
3280 * table page is simply aliased by the pmap and not owned by it.
3282 * It is assumed that the start and end are properly rounded to the page size.
3284 * It is assumed that PD pages and above are managed and thus in the RB tree,
3285 * allowing us to use RB_SCAN from the PD pages down for ranged scans.
3287 struct pmap_scan_info {
3288 struct pmap *pmap;
3289 vm_offset_t sva;
3290 vm_offset_t eva;
3291 vm_pindex_t sva_pd_pindex;
3292 vm_pindex_t eva_pd_pindex;
3293 void (*func)(pmap_t, struct pmap_scan_info *,
3294 pv_entry_t, pv_entry_t, int, vm_offset_t,
3295 pt_entry_t *, void *);
3296 void *arg;
3297 pmap_inval_bulk_t bulk_core;
3298 pmap_inval_bulk_t *bulk;
3299 int count;
3302 static int pmap_scan_cmp(pv_entry_t pv, void *data);
3303 static int pmap_scan_callback(pv_entry_t pv, void *data);
3305 static void
3306 pmap_scan(struct pmap_scan_info *info, int smp_inval)
3308 struct pmap *pmap = info->pmap;
3309 pv_entry_t pd_pv; /* A page directory PV */
3310 pv_entry_t pt_pv; /* A page table PV */
3311 pv_entry_t pte_pv; /* A page table entry PV */
3312 pt_entry_t *ptep;
3313 pt_entry_t oldpte;
3314 struct pv_entry dummy_pv;
3315 int generation;
3317 if (pmap == NULL)
3318 return;
3319 if (smp_inval) {
3320 info->bulk = &info->bulk_core;
3321 pmap_inval_bulk_init(&info->bulk_core, pmap);
3322 } else {
3323 info->bulk = NULL;
3327 * Hold the token for stability; if the pmap is empty we have nothing
3328 * to do.
3330 lwkt_gettoken(&pmap->pm_token);
3331 #if 0
3332 if (pmap->pm_stats.resident_count == 0) {
3333 lwkt_reltoken(&pmap->pm_token);
3334 return;
3336 #endif
3338 info->count = 0;
3340 again:
3342 * Special handling for scanning one page, which is a very common
3343 * operation (it is?).
3345 * NOTE: Locks must be ordered bottom-up. pte,pt,pd,pdp,pml4
3347 if (info->sva + PAGE_SIZE == info->eva) {
3348 generation = pmap->pm_generation;
3349 if (info->sva >= VM_MAX_USER_ADDRESS) {
3351 * Kernel mappings do not track wire counts on
3352 * page table pages and only maintain pd_pv and
3353 * pte_pv levels so pmap_scan() works.
3355 pt_pv = NULL;
3356 pte_pv = pv_get(pmap, pmap_pte_pindex(info->sva));
3357 ptep = vtopte(info->sva);
3358 } else {
3360 * User pages which are unmanaged will not have a
3361 * pte_pv. User page table pages which are unmanaged
3362 * (shared from elsewhere) will also not have a pt_pv.
3363 * The func() callback will pass both pte_pv and pt_pv
3364 * as NULL in that case.
3366 pte_pv = pv_get(pmap, pmap_pte_pindex(info->sva));
3367 pt_pv = pv_get(pmap, pmap_pt_pindex(info->sva));
3368 if (pt_pv == NULL) {
3369 KKASSERT(pte_pv == NULL);
3370 pd_pv = pv_get(pmap, pmap_pd_pindex(info->sva));
3371 if (pd_pv) {
3372 ptep = pv_pte_lookup(pd_pv,
3373 pmap_pt_index(info->sva));
3374 if (*ptep) {
3375 info->func(pmap, info,
3376 NULL, pd_pv, 1,
3377 info->sva, ptep,
3378 info->arg);
3380 pv_put(pd_pv);
3382 goto fast_skip;
3384 ptep = pv_pte_lookup(pt_pv, pmap_pte_index(info->sva));
3388 * NOTE: *ptep can't be ripped out from under us if we hold
3389 * pte_pv locked, but bits can change. However, there is
3390 * a race where another thread may be inserting pte_pv
3391 * and setting *ptep just after our pte_pv lookup fails.
3393 * In this situation we can end up with a NULL pte_pv
3394 * but find that we have a managed *ptep. We explicitly
3395 * check for this race.
3397 oldpte = *ptep;
3398 cpu_ccfence();
3399 if (oldpte == 0) {
3401 * Unlike the pv_find() case below we actually
3402 * acquired a locked pv in this case so any
3403 * race should have been resolved. It is expected
3404 * to not exist.
3406 KKASSERT(pte_pv == NULL);
3407 } else if (pte_pv) {
3408 KASSERT((oldpte & (pmap->pmap_bits[PG_MANAGED_IDX] |
3409 pmap->pmap_bits[PG_V_IDX])) ==
3410 (pmap->pmap_bits[PG_MANAGED_IDX] |
3411 pmap->pmap_bits[PG_V_IDX]),
3412 ("badA *ptep %016lx/%016lx sva %016lx pte_pv %p"
3413 "generation %d/%d",
3414 *ptep, oldpte, info->sva, pte_pv,
3415 generation, pmap->pm_generation));
3416 info->func(pmap, info, pte_pv, pt_pv, 0,
3417 info->sva, ptep, info->arg);
3418 } else {
3420 * Check for insertion race
3422 if ((oldpte & pmap->pmap_bits[PG_MANAGED_IDX]) &&
3423 pt_pv) {
3424 pte_pv = pv_find(pmap,
3425 pmap_pte_pindex(info->sva));
3426 if (pte_pv) {
3427 pv_drop(pte_pv);
3428 pv_put(pt_pv);
3429 kprintf("pmap_scan: RACE1 "
3430 "%016jx, %016lx\n",
3431 info->sva, oldpte);
3432 goto again;
3437 * Didn't race
3439 KASSERT((oldpte & (pmap->pmap_bits[PG_MANAGED_IDX] |
3440 pmap->pmap_bits[PG_V_IDX])) ==
3441 pmap->pmap_bits[PG_V_IDX],
3442 ("badB *ptep %016lx/%016lx sva %016lx pte_pv NULL"
3443 "generation %d/%d",
3444 *ptep, oldpte, info->sva,
3445 generation, pmap->pm_generation));
3446 info->func(pmap, info, NULL, pt_pv, 0,
3447 info->sva, ptep, info->arg);
3449 if (pt_pv)
3450 pv_put(pt_pv);
3451 fast_skip:
3452 pmap_inval_bulk_flush(info->bulk);
3453 lwkt_reltoken(&pmap->pm_token);
3454 return;
3458 * Nominal scan case, RB_SCAN() for PD pages and iterate from
3459 * there.
3461 info->sva_pd_pindex = pmap_pd_pindex(info->sva);
3462 info->eva_pd_pindex = pmap_pd_pindex(info->eva + NBPDP - 1);
3464 if (info->sva >= VM_MAX_USER_ADDRESS) {
3466 * The kernel does not currently maintain any pv_entry's for
3467 * higher-level page tables.
3469 bzero(&dummy_pv, sizeof(dummy_pv));
3470 dummy_pv.pv_pindex = info->sva_pd_pindex;
3471 spin_lock(&pmap->pm_spin);
3472 while (dummy_pv.pv_pindex < info->eva_pd_pindex) {
3473 pmap_scan_callback(&dummy_pv, info);
3474 ++dummy_pv.pv_pindex;
3476 spin_unlock(&pmap->pm_spin);
3477 } else {
3479 * User page tables maintain local PML4, PDP, and PD
3480 * pv_entry's at the very least. PT pv's might be
3481 * unmanaged and thus not exist. PTE pv's might be
3482 * unmanaged and thus not exist.
3484 spin_lock(&pmap->pm_spin);
3485 pv_entry_rb_tree_RB_SCAN(&pmap->pm_pvroot,
3486 pmap_scan_cmp, pmap_scan_callback, info);
3487 spin_unlock(&pmap->pm_spin);
3489 pmap_inval_bulk_flush(info->bulk);
3490 lwkt_reltoken(&pmap->pm_token);
3494 * WARNING! pmap->pm_spin held
3496 static int
3497 pmap_scan_cmp(pv_entry_t pv, void *data)
3499 struct pmap_scan_info *info = data;
3500 if (pv->pv_pindex < info->sva_pd_pindex)
3501 return(-1);
3502 if (pv->pv_pindex >= info->eva_pd_pindex)
3503 return(1);
3504 return(0);
3508 * WARNING! pmap->pm_spin held
3510 static int
3511 pmap_scan_callback(pv_entry_t pv, void *data)
3513 struct pmap_scan_info *info = data;
3514 struct pmap *pmap = info->pmap;
3515 pv_entry_t pd_pv; /* A page directory PV */
3516 pv_entry_t pt_pv; /* A page table PV */
3517 pv_entry_t pte_pv; /* A page table entry PV */
3518 pt_entry_t *ptep;
3519 pt_entry_t oldpte;
3520 vm_offset_t sva;
3521 vm_offset_t eva;
3522 vm_offset_t va_next;
3523 vm_pindex_t pd_pindex;
3524 int error;
3525 int generation;
3528 * Pull the PD pindex from the pv before releasing the spinlock.
3530 * WARNING: pv is faked for kernel pmap scans.
3532 pd_pindex = pv->pv_pindex;
3533 spin_unlock(&pmap->pm_spin);
3534 pv = NULL; /* invalid after spinlock unlocked */
3537 * Calculate the page range within the PD. SIMPLE pmaps are
3538 * direct-mapped for the entire 2^64 address space. Normal pmaps
3539 * reflect the user and kernel address space which requires
3540 * cannonicalization w/regards to converting pd_pindex's back
3541 * into addresses.
3543 sva = (pd_pindex - NUPTE_TOTAL - NUPT_TOTAL) << PDPSHIFT;
3544 if ((pmap->pm_flags & PMAP_FLAG_SIMPLE) == 0 &&
3545 (sva & PML4_SIGNMASK)) {
3546 sva |= PML4_SIGNMASK;
3548 eva = sva + NBPDP; /* can overflow */
3549 if (sva < info->sva)
3550 sva = info->sva;
3551 if (eva < info->sva || eva > info->eva)
3552 eva = info->eva;
3555 * NOTE: kernel mappings do not track page table pages, only
3556 * terminal pages.
3558 * NOTE: Locks must be ordered bottom-up. pte,pt,pd,pdp,pml4.
3559 * However, for the scan to be efficient we try to
3560 * cache items top-down.
3562 pd_pv = NULL;
3563 pt_pv = NULL;
3565 for (; sva < eva; sva = va_next) {
3566 if (sva >= VM_MAX_USER_ADDRESS) {
3567 if (pt_pv) {
3568 pv_put(pt_pv);
3569 pt_pv = NULL;
3571 goto kernel_skip;
3575 * PD cache (degenerate case if we skip). It is possible
3576 * for the PD to not exist due to races. This is ok.
3578 if (pd_pv == NULL) {
3579 pd_pv = pv_get(pmap, pmap_pd_pindex(sva));
3580 } else if (pd_pv->pv_pindex != pmap_pd_pindex(sva)) {
3581 pv_put(pd_pv);
3582 pd_pv = pv_get(pmap, pmap_pd_pindex(sva));
3584 if (pd_pv == NULL) {
3585 va_next = (sva + NBPDP) & ~PDPMASK;
3586 if (va_next < sva)
3587 va_next = eva;
3588 continue;
3592 * PT cache
3594 if (pt_pv == NULL) {
3595 if (pd_pv) {
3596 pv_put(pd_pv);
3597 pd_pv = NULL;
3599 pt_pv = pv_get(pmap, pmap_pt_pindex(sva));
3600 } else if (pt_pv->pv_pindex != pmap_pt_pindex(sva)) {
3601 if (pd_pv) {
3602 pv_put(pd_pv);
3603 pd_pv = NULL;
3605 pv_put(pt_pv);
3606 pt_pv = pv_get(pmap, pmap_pt_pindex(sva));
3610 * If pt_pv is NULL we either have an shared page table
3611 * page and must issue a callback specific to that case,
3612 * or there is no page table page.
3614 * Either way we can skip the page table page.
3616 if (pt_pv == NULL) {
3618 * Possible unmanaged (shared from another pmap)
3619 * page table page.
3621 if (pd_pv == NULL)
3622 pd_pv = pv_get(pmap, pmap_pd_pindex(sva));
3623 KKASSERT(pd_pv != NULL);
3624 ptep = pv_pte_lookup(pd_pv, pmap_pt_index(sva));
3625 if (*ptep & pmap->pmap_bits[PG_V_IDX]) {
3626 info->func(pmap, info, NULL, pd_pv, 1,
3627 sva, ptep, info->arg);
3631 * Done, move to next page table page.
3633 va_next = (sva + NBPDR) & ~PDRMASK;
3634 if (va_next < sva)
3635 va_next = eva;
3636 continue;
3640 * From this point in the loop testing pt_pv for non-NULL
3641 * means we are in UVM, else if it is NULL we are in KVM.
3643 * Limit our scan to either the end of the va represented
3644 * by the current page table page, or to the end of the
3645 * range being removed.
3647 kernel_skip:
3648 va_next = (sva + NBPDR) & ~PDRMASK;
3649 if (va_next < sva)
3650 va_next = eva;
3651 if (va_next > eva)
3652 va_next = eva;
3655 * Scan the page table for pages. Some pages may not be
3656 * managed (might not have a pv_entry).
3658 * There is no page table management for kernel pages so
3659 * pt_pv will be NULL in that case, but otherwise pt_pv
3660 * is non-NULL, locked, and referenced.
3664 * At this point a non-NULL pt_pv means a UVA, and a NULL
3665 * pt_pv means a KVA.
3667 if (pt_pv)
3668 ptep = pv_pte_lookup(pt_pv, pmap_pte_index(sva));
3669 else
3670 ptep = vtopte(sva);
3672 while (sva < va_next) {
3674 * Yield every 64 pages.
3676 if ((++info->count & 63) == 0)
3677 lwkt_user_yield();
3680 * Acquire the related pte_pv, if any. If *ptep == 0
3681 * the related pte_pv should not exist, but if *ptep
3682 * is not zero the pte_pv may or may not exist (e.g.
3683 * will not exist for an unmanaged page).
3685 * However a multitude of races are possible here.
3687 * In addition, the (pt_pv, pte_pv) lock order is
3688 * backwards, so we have to be careful in aquiring
3689 * a properly locked pte_pv.
3691 generation = pmap->pm_generation;
3692 if (pt_pv) {
3693 pte_pv = pv_get_try(pmap, pmap_pte_pindex(sva),
3694 &error);
3695 if (error) {
3696 if (pd_pv) {
3697 pv_put(pd_pv);
3698 pd_pv = NULL;
3700 pv_put(pt_pv); /* must be non-NULL */
3701 pt_pv = NULL;
3702 pv_lock(pte_pv); /* safe to block now */
3703 pv_put(pte_pv);
3704 pte_pv = NULL;
3705 pt_pv = pv_get(pmap,
3706 pmap_pt_pindex(sva));
3708 * pt_pv reloaded, need new ptep
3710 KKASSERT(pt_pv != NULL);
3711 ptep = pv_pte_lookup(pt_pv,
3712 pmap_pte_index(sva));
3713 continue;
3715 } else {
3716 pte_pv = pv_get(pmap, pmap_pte_pindex(sva));
3720 * Ok, if *ptep == 0 we had better NOT have a pte_pv.
3722 oldpte = *ptep;
3723 if (oldpte == 0) {
3724 if (pte_pv) {
3725 kprintf("Unexpected non-NULL pte_pv "
3726 "%p pt_pv %p "
3727 "*ptep = %016lx/%016lx\n",
3728 pte_pv, pt_pv, *ptep, oldpte);
3729 panic("Unexpected non-NULL pte_pv");
3731 sva += PAGE_SIZE;
3732 ++ptep;
3733 continue;
3737 * Ready for the callback. The locked pte_pv (if any)
3738 * is consumed by the callback. pte_pv will exist if
3739 * the page is managed, and will not exist if it
3740 * isn't.
3742 if (pte_pv) {
3743 KASSERT((oldpte & (pmap->pmap_bits[PG_MANAGED_IDX] | pmap->pmap_bits[PG_V_IDX])) ==
3744 (pmap->pmap_bits[PG_MANAGED_IDX] | pmap->pmap_bits[PG_V_IDX]),
3745 ("badC *ptep %016lx/%016lx sva %016lx "
3746 "pte_pv %p pm_generation %d/%d",
3747 *ptep, oldpte, sva, pte_pv,
3748 generation, pmap->pm_generation));
3749 info->func(pmap, info, pte_pv, pt_pv, 0,
3750 sva, ptep, info->arg);
3751 } else {
3753 * Check for insertion race. Since there is no
3754 * pte_pv to guard us it is possible for us
3755 * to race another thread doing an insertion.
3756 * Our lookup misses the pte_pv but our *ptep
3757 * check sees the inserted pte.
3759 * XXX panic case seems to occur within a
3760 * vm_fork() of /bin/sh, which frankly
3761 * shouldn't happen since no other threads
3762 * should be inserting to our pmap in that
3763 * situation. Removing, possibly. Inserting,
3764 * shouldn't happen.
3766 if ((oldpte & pmap->pmap_bits[PG_MANAGED_IDX]) &&
3767 pt_pv) {
3768 pte_pv = pv_find(pmap,
3769 pmap_pte_pindex(sva));
3770 if (pte_pv) {
3771 pv_drop(pte_pv);
3772 kprintf("pmap_scan: RACE2 "
3773 "%016jx, %016lx\n",
3774 sva, oldpte);
3775 continue;
3780 * Didn't race
3782 KASSERT((oldpte & (pmap->pmap_bits[PG_MANAGED_IDX] | pmap->pmap_bits[PG_V_IDX])) ==
3783 pmap->pmap_bits[PG_V_IDX],
3784 ("badD *ptep %016lx/%016lx sva %016lx "
3785 "pte_pv NULL pm_generation %d/%d",
3786 *ptep, oldpte, sva,
3787 generation, pmap->pm_generation));
3788 info->func(pmap, info, NULL, pt_pv, 0,
3789 sva, ptep, info->arg);
3791 pte_pv = NULL;
3792 sva += PAGE_SIZE;
3793 ++ptep;
3796 if (pd_pv) {
3797 pv_put(pd_pv);
3798 pd_pv = NULL;
3800 if (pt_pv) {
3801 pv_put(pt_pv);
3802 pt_pv = NULL;
3804 if ((++info->count & 7) == 0)
3805 lwkt_user_yield();
3808 * Relock before returning.
3810 spin_lock(&pmap->pm_spin);
3811 return (0);
3814 void
3815 pmap_remove(struct pmap *pmap, vm_offset_t sva, vm_offset_t eva)
3817 struct pmap_scan_info info;
3819 info.pmap = pmap;
3820 info.sva = sva;
3821 info.eva = eva;
3822 info.func = pmap_remove_callback;
3823 info.arg = NULL;
3824 pmap_scan(&info, 1);
3827 static void
3828 pmap_remove_noinval(struct pmap *pmap, vm_offset_t sva, vm_offset_t eva)
3830 struct pmap_scan_info info;
3832 info.pmap = pmap;
3833 info.sva = sva;
3834 info.eva = eva;
3835 info.func = pmap_remove_callback;
3836 info.arg = NULL;
3837 pmap_scan(&info, 0);
3840 static void
3841 pmap_remove_callback(pmap_t pmap, struct pmap_scan_info *info,
3842 pv_entry_t pte_pv, pv_entry_t pt_pv, int sharept,
3843 vm_offset_t va, pt_entry_t *ptep, void *arg __unused)
3845 pt_entry_t pte;
3847 if (pte_pv) {
3849 * This will also drop pt_pv's wire_count. Note that
3850 * terminal pages are not wired based on mmu presence.
3852 pmap_remove_pv_pte(pte_pv, pt_pv, info->bulk);
3853 pmap_remove_pv_page(pte_pv);
3854 pv_free(pte_pv);
3855 } else if (sharept == 0) {
3857 * Unmanaged page table (pt, pd, or pdp. Not pte).
3859 * pt_pv's wire_count is still bumped by unmanaged pages
3860 * so we must decrement it manually.
3862 * We have to unwire the target page table page.
3864 * It is unclear how we can invalidate a segment so we
3865 * invalidate -1 which invlidates the tlb.
3867 pte = pmap_inval_bulk(info->bulk, (vm_offset_t)-1, ptep, 0);
3868 if (pte & pmap->pmap_bits[PG_W_IDX])
3869 atomic_add_long(&pmap->pm_stats.wired_count, -1);
3870 atomic_add_long(&pmap->pm_stats.resident_count, -1);
3871 if (vm_page_unwire_quick(pt_pv->pv_m))
3872 panic("pmap_remove: insufficient wirecount");
3873 } else {
3875 * Unmanaged page table (pt, pd, or pdp. Not pte) for
3876 * a shared page table.
3878 * pt_pv is actually the pd_pv for our pmap (not the shared
3879 * object pmap).
3881 * We have to unwire the target page table page and we
3882 * have to unwire our page directory page.
3884 * It is unclear how we can invalidate a segment so we
3885 * invalidate -1 which invlidates the tlb.
3887 pte = pmap_inval_bulk(info->bulk, (vm_offset_t)-1, ptep, 0);
3888 atomic_add_long(&pmap->pm_stats.resident_count, -1);
3889 KKASSERT((pte & pmap->pmap_bits[PG_DEVICE_IDX]) == 0);
3890 if (vm_page_unwire_quick(PHYS_TO_VM_PAGE(pte & PG_FRAME)))
3891 panic("pmap_remove: shared pgtable1 bad wirecount");
3892 if (vm_page_unwire_quick(pt_pv->pv_m))
3893 panic("pmap_remove: shared pgtable2 bad wirecount");
3898 * Removes this physical page from all physical maps in which it resides.
3899 * Reflects back modify bits to the pager.
3901 * This routine may not be called from an interrupt.
3903 static
3904 void
3905 pmap_remove_all(vm_page_t m)
3907 pv_entry_t pv;
3908 pmap_inval_bulk_t bulk;
3910 if (!pmap_initialized /* || (m->flags & PG_FICTITIOUS)*/)
3911 return;
3913 vm_page_spin_lock(m);
3914 while ((pv = TAILQ_FIRST(&m->md.pv_list)) != NULL) {
3915 KKASSERT(pv->pv_m == m);
3916 if (pv_hold_try(pv)) {
3917 vm_page_spin_unlock(m);
3918 } else {
3919 vm_page_spin_unlock(m);
3920 pv_lock(pv);
3922 if (pv->pv_m != m) {
3923 pv_put(pv);
3924 vm_page_spin_lock(m);
3925 continue;
3929 * Holding no spinlocks, pv is locked.
3931 pmap_inval_bulk_init(&bulk, pv->pv_pmap);
3932 pmap_remove_pv_pte(pv, NULL, &bulk);
3933 pmap_inval_bulk_flush(&bulk);
3934 pmap_remove_pv_page(pv);
3935 pv_free(pv);
3936 vm_page_spin_lock(m);
3938 KKASSERT((m->flags & (PG_MAPPED|PG_WRITEABLE)) == 0);
3939 vm_page_spin_unlock(m);
3943 * Set the physical protection on the specified range of this map
3944 * as requested. This function is typically only used for debug watchpoints
3945 * and COW pages.
3947 * This function may not be called from an interrupt if the map is
3948 * not the kernel_pmap.
3950 * NOTE! For shared page table pages we just unmap the page.
3952 void
3953 pmap_protect(pmap_t pmap, vm_offset_t sva, vm_offset_t eva, vm_prot_t prot)
3955 struct pmap_scan_info info;
3956 /* JG review for NX */
3958 if (pmap == NULL)
3959 return;
3960 if ((prot & VM_PROT_READ) == VM_PROT_NONE) {
3961 pmap_remove(pmap, sva, eva);
3962 return;
3964 if (prot & VM_PROT_WRITE)
3965 return;
3966 info.pmap = pmap;
3967 info.sva = sva;
3968 info.eva = eva;
3969 info.func = pmap_protect_callback;
3970 info.arg = &prot;
3971 pmap_scan(&info, 1);
3974 static
3975 void
3976 pmap_protect_callback(pmap_t pmap, struct pmap_scan_info *info,
3977 pv_entry_t pte_pv, pv_entry_t pt_pv, int sharept,
3978 vm_offset_t va, pt_entry_t *ptep, void *arg __unused)
3980 pt_entry_t pbits;
3981 pt_entry_t cbits;
3982 pt_entry_t pte;
3983 vm_page_t m;
3985 again:
3986 pbits = *ptep;
3987 cbits = pbits;
3988 if (pte_pv) {
3989 m = NULL;
3990 if (pbits & pmap->pmap_bits[PG_A_IDX]) {
3991 if ((pbits & pmap->pmap_bits[PG_DEVICE_IDX]) == 0) {
3992 m = PHYS_TO_VM_PAGE(pbits & PG_FRAME);
3993 KKASSERT(m == pte_pv->pv_m);
3994 vm_page_flag_set(m, PG_REFERENCED);
3996 cbits &= ~pmap->pmap_bits[PG_A_IDX];
3998 if (pbits & pmap->pmap_bits[PG_M_IDX]) {
3999 if (pmap_track_modified(pte_pv->pv_pindex)) {
4000 if ((pbits & pmap->pmap_bits[PG_DEVICE_IDX]) == 0) {
4001 if (m == NULL) {
4002 m = PHYS_TO_VM_PAGE(pbits &
4003 PG_FRAME);
4005 vm_page_dirty(m);
4007 cbits &= ~pmap->pmap_bits[PG_M_IDX];
4010 } else if (sharept) {
4012 * Unmanaged page table, pt_pv is actually the pd_pv
4013 * for our pmap (not the object's shared pmap).
4015 * When asked to protect something in a shared page table
4016 * page we just unmap the page table page. We have to
4017 * invalidate the tlb in this situation.
4019 * XXX Warning, shared page tables will not be used for
4020 * OBJT_DEVICE or OBJT_MGTDEVICE (PG_FICTITIOUS) mappings
4021 * so PHYS_TO_VM_PAGE() should be safe here.
4023 pte = pmap_inval_smp(pmap, (vm_offset_t)-1, 1, ptep, 0);
4024 if (vm_page_unwire_quick(PHYS_TO_VM_PAGE(pte & PG_FRAME)))
4025 panic("pmap_protect: pgtable1 pg bad wirecount");
4026 if (vm_page_unwire_quick(pt_pv->pv_m))
4027 panic("pmap_protect: pgtable2 pg bad wirecount");
4028 ptep = NULL;
4030 /* else unmanaged page, adjust bits, no wire changes */
4032 if (ptep) {
4033 cbits &= ~pmap->pmap_bits[PG_RW_IDX];
4034 #ifdef PMAP_DEBUG2
4035 if (pmap_enter_debug > 0) {
4036 --pmap_enter_debug;
4037 kprintf("pmap_protect va=%lx ptep=%p pte_pv=%p "
4038 "pt_pv=%p cbits=%08lx\n",
4039 va, ptep, pte_pv,
4040 pt_pv, cbits
4043 #endif
4044 if (pbits != cbits) {
4045 if (!pmap_inval_smp_cmpset(pmap, (vm_offset_t)-1,
4046 ptep, pbits, cbits)) {
4047 goto again;
4051 if (pte_pv)
4052 pv_put(pte_pv);
4056 * Insert the vm_page (m) at the virtual address (va), replacing any prior
4057 * mapping at that address. Set protection and wiring as requested.
4059 * If entry is non-NULL we check to see if the SEG_SIZE optimization is
4060 * possible. If it is we enter the page into the appropriate shared pmap
4061 * hanging off the related VM object instead of the passed pmap, then we
4062 * share the page table page from the VM object's pmap into the current pmap.
4064 * NOTE: This routine MUST insert the page into the pmap now, it cannot
4065 * lazy-evaluate.
4067 void
4068 pmap_enter(pmap_t pmap, vm_offset_t va, vm_page_t m, vm_prot_t prot,
4069 boolean_t wired, vm_map_entry_t entry)
4071 pv_entry_t pt_pv; /* page table */
4072 pv_entry_t pte_pv; /* page table entry */
4073 pt_entry_t *ptep;
4074 vm_paddr_t opa;
4075 pt_entry_t origpte, newpte;
4076 vm_paddr_t pa;
4078 if (pmap == NULL)
4079 return;
4080 va = trunc_page(va);
4081 #ifdef PMAP_DIAGNOSTIC
4082 if (va >= KvaEnd)
4083 panic("pmap_enter: toobig");
4084 if ((va >= UPT_MIN_ADDRESS) && (va < UPT_MAX_ADDRESS))
4085 panic("pmap_enter: invalid to pmap_enter page table "
4086 "pages (va: 0x%lx)", va);
4087 #endif
4088 if (va < UPT_MAX_ADDRESS && pmap == &kernel_pmap) {
4089 kprintf("Warning: pmap_enter called on UVA with "
4090 "kernel_pmap\n");
4091 #ifdef DDB
4092 db_print_backtrace();
4093 #endif
4095 if (va >= UPT_MAX_ADDRESS && pmap != &kernel_pmap) {
4096 kprintf("Warning: pmap_enter called on KVA without"
4097 "kernel_pmap\n");
4098 #ifdef DDB
4099 db_print_backtrace();
4100 #endif
4104 * Get locked PV entries for our new page table entry (pte_pv)
4105 * and for its parent page table (pt_pv). We need the parent
4106 * so we can resolve the location of the ptep.
4108 * Only hardware MMU actions can modify the ptep out from
4109 * under us.
4111 * if (m) is fictitious or unmanaged we do not create a managing
4112 * pte_pv for it. Any pre-existing page's management state must
4113 * match (avoiding code complexity).
4115 * If the pmap is still being initialized we assume existing
4116 * page tables.
4118 * Kernel mapppings do not track page table pages (i.e. pt_pv).
4120 if (pmap_initialized == FALSE) {
4121 pte_pv = NULL;
4122 pt_pv = NULL;
4123 ptep = vtopte(va);
4124 origpte = *ptep;
4125 } else if (m->flags & (/*PG_FICTITIOUS |*/ PG_UNMANAGED)) { /* XXX */
4126 pte_pv = NULL;
4127 if (va >= VM_MAX_USER_ADDRESS) {
4128 pt_pv = NULL;
4129 ptep = vtopte(va);
4130 } else {
4131 pt_pv = pmap_allocpte_seg(pmap, pmap_pt_pindex(va),
4132 NULL, entry, va);
4133 ptep = pv_pte_lookup(pt_pv, pmap_pte_index(va));
4135 origpte = *ptep;
4136 cpu_ccfence();
4137 KASSERT(origpte == 0 ||
4138 (origpte & pmap->pmap_bits[PG_MANAGED_IDX]) == 0,
4139 ("Invalid PTE 0x%016jx @ 0x%016jx\n", origpte, va));
4140 } else {
4141 if (va >= VM_MAX_USER_ADDRESS) {
4143 * Kernel map, pv_entry-tracked.
4145 pt_pv = NULL;
4146 pte_pv = pmap_allocpte(pmap, pmap_pte_pindex(va), NULL);
4147 ptep = vtopte(va);
4148 } else {
4150 * User map
4152 pte_pv = pmap_allocpte_seg(pmap, pmap_pte_pindex(va),
4153 &pt_pv, entry, va);
4154 ptep = pv_pte_lookup(pt_pv, pmap_pte_index(va));
4156 origpte = *ptep;
4157 cpu_ccfence();
4158 KASSERT(origpte == 0 ||
4159 (origpte & pmap->pmap_bits[PG_MANAGED_IDX]),
4160 ("Invalid PTE 0x%016jx @ 0x%016jx\n", origpte, va));
4163 pa = VM_PAGE_TO_PHYS(m);
4164 opa = origpte & PG_FRAME;
4166 newpte = (pt_entry_t)(pa | pte_prot(pmap, prot) |
4167 pmap->pmap_bits[PG_V_IDX] | pmap->pmap_bits[PG_A_IDX]);
4168 if (wired)
4169 newpte |= pmap->pmap_bits[PG_W_IDX];
4170 if (va < VM_MAX_USER_ADDRESS)
4171 newpte |= pmap->pmap_bits[PG_U_IDX];
4172 if (pte_pv)
4173 newpte |= pmap->pmap_bits[PG_MANAGED_IDX];
4174 // if (pmap == &kernel_pmap)
4175 // newpte |= pgeflag;
4176 newpte |= pmap->pmap_cache_bits[m->pat_mode];
4177 if (m->flags & PG_FICTITIOUS)
4178 newpte |= pmap->pmap_bits[PG_DEVICE_IDX];
4181 * It is possible for multiple faults to occur in threaded
4182 * environments, the existing pte might be correct.
4184 if (((origpte ^ newpte) & ~(pt_entry_t)(pmap->pmap_bits[PG_M_IDX] |
4185 pmap->pmap_bits[PG_A_IDX])) == 0)
4186 goto done;
4189 * Ok, either the address changed or the protection or wiring
4190 * changed.
4192 * Clear the current entry, interlocking the removal. For managed
4193 * pte's this will also flush the modified state to the vm_page.
4194 * Atomic ops are mandatory in order to ensure that PG_M events are
4195 * not lost during any transition.
4197 * WARNING: The caller has busied the new page but not the original
4198 * vm_page which we are trying to replace. Because we hold
4199 * the pte_pv lock, but have not busied the page, PG bits
4200 * can be cleared out from under us.
4202 if (opa) {
4203 if (pte_pv) {
4205 * pmap_remove_pv_pte() unwires pt_pv and assumes
4206 * we will free pte_pv, but since we are reusing
4207 * pte_pv we want to retain the wire count.
4209 * pt_pv won't exist for a kernel page (managed or
4210 * otherwise).
4212 if (pt_pv)
4213 vm_page_wire_quick(pt_pv->pv_m);
4214 if (prot & VM_PROT_NOSYNC) {
4215 pmap_remove_pv_pte(pte_pv, pt_pv, NULL);
4216 } else {
4217 pmap_inval_bulk_t bulk;
4219 pmap_inval_bulk_init(&bulk, pmap);
4220 pmap_remove_pv_pte(pte_pv, pt_pv, &bulk);
4221 pmap_inval_bulk_flush(&bulk);
4223 if (pte_pv->pv_m)
4224 pmap_remove_pv_page(pte_pv);
4225 } else if (prot & VM_PROT_NOSYNC) {
4227 * Unmanaged page, NOSYNC (no mmu sync) requested.
4229 * Leave wire count on PT page intact.
4231 (void)pte_load_clear(ptep);
4232 cpu_invlpg((void *)va);
4233 atomic_add_long(&pmap->pm_stats.resident_count, -1);
4234 } else {
4236 * Unmanaged page, normal enter.
4238 * Leave wire count on PT page intact.
4240 pmap_inval_smp(pmap, va, 1, ptep, 0);
4241 atomic_add_long(&pmap->pm_stats.resident_count, -1);
4243 KKASSERT(*ptep == 0);
4246 #ifdef PMAP_DEBUG2
4247 if (pmap_enter_debug > 0) {
4248 --pmap_enter_debug;
4249 kprintf("pmap_enter: va=%lx m=%p origpte=%lx newpte=%lx ptep=%p"
4250 " pte_pv=%p pt_pv=%p opa=%lx prot=%02x\n",
4251 va, m,
4252 origpte, newpte, ptep,
4253 pte_pv, pt_pv, opa, prot);
4255 #endif
4257 if (pte_pv) {
4259 * Enter on the PV list if part of our managed memory.
4260 * Wiring of the PT page is already handled.
4262 KKASSERT(pte_pv->pv_m == NULL);
4263 vm_page_spin_lock(m);
4264 pte_pv->pv_m = m;
4265 pmap_page_stats_adding(m);
4266 TAILQ_INSERT_TAIL(&m->md.pv_list, pte_pv, pv_list);
4267 vm_page_flag_set(m, PG_MAPPED);
4268 vm_page_spin_unlock(m);
4269 } else if (pt_pv && opa == 0) {
4271 * We have to adjust the wire count on the PT page ourselves
4272 * for unmanaged entries. If opa was non-zero we retained
4273 * the existing wire count from the removal.
4275 vm_page_wire_quick(pt_pv->pv_m);
4279 * Kernel VMAs (pt_pv == NULL) require pmap invalidation interlocks.
4281 * User VMAs do not because those will be zero->non-zero, so no
4282 * stale entries to worry about at this point.
4284 * For KVM there appear to still be issues. Theoretically we
4285 * should be able to scrap the interlocks entirely but we
4286 * get crashes.
4288 if ((prot & VM_PROT_NOSYNC) == 0 && pt_pv == NULL) {
4289 pmap_inval_smp(pmap, va, 1, ptep, newpte);
4290 } else {
4291 *(volatile pt_entry_t *)ptep = newpte;
4292 if (pt_pv == NULL)
4293 cpu_invlpg((void *)va);
4296 if (wired) {
4297 if (pte_pv) {
4298 atomic_add_long(&pte_pv->pv_pmap->pm_stats.wired_count,
4300 } else {
4301 atomic_add_long(&pmap->pm_stats.wired_count, 1);
4304 if (newpte & pmap->pmap_bits[PG_RW_IDX])
4305 vm_page_flag_set(m, PG_WRITEABLE);
4308 * Unmanaged pages need manual resident_count tracking.
4310 if (pte_pv == NULL && pt_pv)
4311 atomic_add_long(&pt_pv->pv_pmap->pm_stats.resident_count, 1);
4314 * Cleanup
4316 done:
4317 KKASSERT((newpte & pmap->pmap_bits[PG_MANAGED_IDX]) == 0 ||
4318 (m->flags & PG_MAPPED));
4321 * Cleanup the pv entry, allowing other accessors.
4323 if (pte_pv)
4324 pv_put(pte_pv);
4325 if (pt_pv)
4326 pv_put(pt_pv);
4330 * This code works like pmap_enter() but assumes VM_PROT_READ and not-wired.
4331 * This code also assumes that the pmap has no pre-existing entry for this
4332 * VA.
4334 * This code currently may only be used on user pmaps, not kernel_pmap.
4336 void
4337 pmap_enter_quick(pmap_t pmap, vm_offset_t va, vm_page_t m)
4339 pmap_enter(pmap, va, m, VM_PROT_READ, FALSE, NULL);
4343 * Make a temporary mapping for a physical address. This is only intended
4344 * to be used for panic dumps.
4346 * The caller is responsible for calling smp_invltlb().
4348 void *
4349 pmap_kenter_temporary(vm_paddr_t pa, long i)
4351 pmap_kenter_quick((vm_offset_t)crashdumpmap + (i * PAGE_SIZE), pa);
4352 return ((void *)crashdumpmap);
4355 #define MAX_INIT_PT (96)
4358 * This routine preloads the ptes for a given object into the specified pmap.
4359 * This eliminates the blast of soft faults on process startup and
4360 * immediately after an mmap.
4362 static int pmap_object_init_pt_callback(vm_page_t p, void *data);
4364 void
4365 pmap_object_init_pt(pmap_t pmap, vm_offset_t addr, vm_prot_t prot,
4366 vm_object_t object, vm_pindex_t pindex,
4367 vm_size_t size, int limit)
4369 struct rb_vm_page_scan_info info;
4370 struct lwp *lp;
4371 vm_size_t psize;
4374 * We can't preinit if read access isn't set or there is no pmap
4375 * or object.
4377 if ((prot & VM_PROT_READ) == 0 || pmap == NULL || object == NULL)
4378 return;
4381 * We can't preinit if the pmap is not the current pmap
4383 lp = curthread->td_lwp;
4384 if (lp == NULL || pmap != vmspace_pmap(lp->lwp_vmspace))
4385 return;
4388 * Misc additional checks
4390 psize = x86_64_btop(size);
4392 if ((object->type != OBJT_VNODE) ||
4393 ((limit & MAP_PREFAULT_PARTIAL) && (psize > MAX_INIT_PT) &&
4394 (object->resident_page_count > MAX_INIT_PT))) {
4395 return;
4398 if (pindex + psize > object->size) {
4399 if (object->size < pindex)
4400 return;
4401 psize = object->size - pindex;
4404 if (psize == 0)
4405 return;
4408 * If everything is segment-aligned do not pre-init here. Instead
4409 * allow the normal vm_fault path to pass a segment hint to
4410 * pmap_enter() which will then use an object-referenced shared
4411 * page table page.
4413 if ((addr & SEG_MASK) == 0 &&
4414 (ctob(psize) & SEG_MASK) == 0 &&
4415 (ctob(pindex) & SEG_MASK) == 0) {
4416 return;
4420 * Use a red-black scan to traverse the requested range and load
4421 * any valid pages found into the pmap.
4423 * We cannot safely scan the object's memq without holding the
4424 * object token.
4426 info.start_pindex = pindex;
4427 info.end_pindex = pindex + psize - 1;
4428 info.limit = limit;
4429 info.mpte = NULL;
4430 info.addr = addr;
4431 info.pmap = pmap;
4433 vm_object_hold_shared(object);
4434 vm_page_rb_tree_RB_SCAN(&object->rb_memq, rb_vm_page_scancmp,
4435 pmap_object_init_pt_callback, &info);
4436 vm_object_drop(object);
4439 static
4441 pmap_object_init_pt_callback(vm_page_t p, void *data)
4443 struct rb_vm_page_scan_info *info = data;
4444 vm_pindex_t rel_index;
4447 * don't allow an madvise to blow away our really
4448 * free pages allocating pv entries.
4450 if ((info->limit & MAP_PREFAULT_MADVISE) &&
4451 vmstats.v_free_count < vmstats.v_free_reserved) {
4452 return(-1);
4456 * Ignore list markers and ignore pages we cannot instantly
4457 * busy (while holding the object token).
4459 if (p->flags & PG_MARKER)
4460 return 0;
4461 if (vm_page_busy_try(p, TRUE))
4462 return 0;
4463 if (((p->valid & VM_PAGE_BITS_ALL) == VM_PAGE_BITS_ALL) &&
4464 (p->flags & PG_FICTITIOUS) == 0) {
4465 if ((p->queue - p->pc) == PQ_CACHE)
4466 vm_page_deactivate(p);
4467 rel_index = p->pindex - info->start_pindex;
4468 pmap_enter_quick(info->pmap,
4469 info->addr + x86_64_ptob(rel_index), p);
4471 vm_page_wakeup(p);
4472 lwkt_yield();
4473 return(0);
4477 * Return TRUE if the pmap is in shape to trivially pre-fault the specified
4478 * address.
4480 * Returns FALSE if it would be non-trivial or if a pte is already loaded
4481 * into the slot.
4483 * XXX This is safe only because page table pages are not freed.
4486 pmap_prefault_ok(pmap_t pmap, vm_offset_t addr)
4488 pt_entry_t *pte;
4490 /*spin_lock(&pmap->pm_spin);*/
4491 if ((pte = pmap_pte(pmap, addr)) != NULL) {
4492 if (*pte & pmap->pmap_bits[PG_V_IDX]) {
4493 /*spin_unlock(&pmap->pm_spin);*/
4494 return FALSE;
4497 /*spin_unlock(&pmap->pm_spin);*/
4498 return TRUE;
4502 * Change the wiring attribute for a pmap/va pair. The mapping must already
4503 * exist in the pmap. The mapping may or may not be managed.
4505 void
4506 pmap_change_wiring(pmap_t pmap, vm_offset_t va, boolean_t wired,
4507 vm_map_entry_t entry)
4509 pt_entry_t *ptep;
4510 pv_entry_t pv;
4512 if (pmap == NULL)
4513 return;
4514 lwkt_gettoken(&pmap->pm_token);
4515 pv = pmap_allocpte_seg(pmap, pmap_pt_pindex(va), NULL, entry, va);
4516 ptep = pv_pte_lookup(pv, pmap_pte_index(va));
4518 if (wired && !pmap_pte_w(pmap, ptep))
4519 atomic_add_long(&pv->pv_pmap->pm_stats.wired_count, 1);
4520 else if (!wired && pmap_pte_w(pmap, ptep))
4521 atomic_add_long(&pv->pv_pmap->pm_stats.wired_count, -1);
4524 * Wiring is not a hardware characteristic so there is no need to
4525 * invalidate TLB. However, in an SMP environment we must use
4526 * a locked bus cycle to update the pte (if we are not using
4527 * the pmap_inval_*() API that is)... it's ok to do this for simple
4528 * wiring changes.
4530 if (wired)
4531 atomic_set_long(ptep, pmap->pmap_bits[PG_W_IDX]);
4532 else
4533 atomic_clear_long(ptep, pmap->pmap_bits[PG_W_IDX]);
4534 pv_put(pv);
4535 lwkt_reltoken(&pmap->pm_token);
4541 * Copy the range specified by src_addr/len from the source map to
4542 * the range dst_addr/len in the destination map.
4544 * This routine is only advisory and need not do anything.
4546 void
4547 pmap_copy(pmap_t dst_pmap, pmap_t src_pmap, vm_offset_t dst_addr,
4548 vm_size_t len, vm_offset_t src_addr)
4553 * pmap_zero_page:
4555 * Zero the specified physical page.
4557 * This function may be called from an interrupt and no locking is
4558 * required.
4560 void
4561 pmap_zero_page(vm_paddr_t phys)
4563 vm_offset_t va = PHYS_TO_DMAP(phys);
4565 pagezero((void *)va);
4569 * pmap_zero_page:
4571 * Zero part of a physical page by mapping it into memory and clearing
4572 * its contents with bzero.
4574 * off and size may not cover an area beyond a single hardware page.
4576 void
4577 pmap_zero_page_area(vm_paddr_t phys, int off, int size)
4579 vm_offset_t virt = PHYS_TO_DMAP(phys);
4581 bzero((char *)virt + off, size);
4585 * pmap_copy_page:
4587 * Copy the physical page from the source PA to the target PA.
4588 * This function may be called from an interrupt. No locking
4589 * is required.
4591 void
4592 pmap_copy_page(vm_paddr_t src, vm_paddr_t dst)
4594 vm_offset_t src_virt, dst_virt;
4596 src_virt = PHYS_TO_DMAP(src);
4597 dst_virt = PHYS_TO_DMAP(dst);
4598 bcopy((void *)src_virt, (void *)dst_virt, PAGE_SIZE);
4602 * pmap_copy_page_frag:
4604 * Copy the physical page from the source PA to the target PA.
4605 * This function may be called from an interrupt. No locking
4606 * is required.
4608 void
4609 pmap_copy_page_frag(vm_paddr_t src, vm_paddr_t dst, size_t bytes)
4611 vm_offset_t src_virt, dst_virt;
4613 src_virt = PHYS_TO_DMAP(src);
4614 dst_virt = PHYS_TO_DMAP(dst);
4616 bcopy((char *)src_virt + (src & PAGE_MASK),
4617 (char *)dst_virt + (dst & PAGE_MASK),
4618 bytes);
4622 * Returns true if the pmap's pv is one of the first 16 pvs linked to from
4623 * this page. This count may be changed upwards or downwards in the future;
4624 * it is only necessary that true be returned for a small subset of pmaps
4625 * for proper page aging.
4627 boolean_t
4628 pmap_page_exists_quick(pmap_t pmap, vm_page_t m)
4630 pv_entry_t pv;
4631 int loops = 0;
4633 if (!pmap_initialized || (m->flags & PG_FICTITIOUS))
4634 return FALSE;
4636 vm_page_spin_lock(m);
4637 TAILQ_FOREACH(pv, &m->md.pv_list, pv_list) {
4638 if (pv->pv_pmap == pmap) {
4639 vm_page_spin_unlock(m);
4640 return TRUE;
4642 loops++;
4643 if (loops >= 16)
4644 break;
4646 vm_page_spin_unlock(m);
4647 return (FALSE);
4651 * Remove all pages from specified address space this aids process exit
4652 * speeds. Also, this code may be special cased for the current process
4653 * only.
4655 void
4656 pmap_remove_pages(pmap_t pmap, vm_offset_t sva, vm_offset_t eva)
4658 pmap_remove_noinval(pmap, sva, eva);
4659 cpu_invltlb();
4663 * pmap_testbit tests bits in pte's note that the testbit/clearbit
4664 * routines are inline, and a lot of things compile-time evaluate.
4666 static
4667 boolean_t
4668 pmap_testbit(vm_page_t m, int bit)
4670 pv_entry_t pv;
4671 pt_entry_t *pte;
4672 pmap_t pmap;
4674 if (!pmap_initialized || (m->flags & PG_FICTITIOUS))
4675 return FALSE;
4677 if (TAILQ_FIRST(&m->md.pv_list) == NULL)
4678 return FALSE;
4679 vm_page_spin_lock(m);
4680 if (TAILQ_FIRST(&m->md.pv_list) == NULL) {
4681 vm_page_spin_unlock(m);
4682 return FALSE;
4685 TAILQ_FOREACH(pv, &m->md.pv_list, pv_list) {
4687 #if defined(PMAP_DIAGNOSTIC)
4688 if (pv->pv_pmap == NULL) {
4689 kprintf("Null pmap (tb) at pindex: %"PRIu64"\n",
4690 pv->pv_pindex);
4691 continue;
4693 #endif
4694 pmap = pv->pv_pmap;
4697 * If the bit being tested is the modified bit, then
4698 * mark clean_map and ptes as never
4699 * modified.
4701 * WARNING! Because we do not lock the pv, *pte can be in a
4702 * state of flux. Despite this the value of *pte
4703 * will still be related to the vm_page in some way
4704 * because the pv cannot be destroyed as long as we
4705 * hold the vm_page spin lock.
4707 if (bit == PG_A_IDX || bit == PG_M_IDX) {
4708 //& (pmap->pmap_bits[PG_A_IDX] | pmap->pmap_bits[PG_M_IDX])) {
4709 if (!pmap_track_modified(pv->pv_pindex))
4710 continue;
4713 pte = pmap_pte_quick(pv->pv_pmap, pv->pv_pindex << PAGE_SHIFT);
4714 if (*pte & pmap->pmap_bits[bit]) {
4715 vm_page_spin_unlock(m);
4716 return TRUE;
4719 vm_page_spin_unlock(m);
4720 return (FALSE);
4724 * This routine is used to modify bits in ptes. Only one bit should be
4725 * specified. PG_RW requires special handling.
4727 * Caller must NOT hold any spin locks
4729 static __inline
4730 void
4731 pmap_clearbit(vm_page_t m, int bit_index)
4733 pv_entry_t pv;
4734 pt_entry_t *pte;
4735 pt_entry_t pbits;
4736 pmap_t pmap;
4738 if (bit_index == PG_RW_IDX)
4739 vm_page_flag_clear(m, PG_WRITEABLE);
4740 if (!pmap_initialized || (m->flags & PG_FICTITIOUS)) {
4741 return;
4745 * PG_M or PG_A case
4747 * Loop over all current mappings setting/clearing as appropos If
4748 * setting RO do we need to clear the VAC?
4750 * NOTE: When clearing PG_M we could also (not implemented) drop
4751 * through to the PG_RW code and clear PG_RW too, forcing
4752 * a fault on write to redetect PG_M for virtual kernels, but
4753 * it isn't necessary since virtual kernels invalidate the
4754 * pte when they clear the VPTE_M bit in their virtual page
4755 * tables.
4757 * NOTE: Does not re-dirty the page when clearing only PG_M.
4759 * NOTE: Because we do not lock the pv, *pte can be in a state of
4760 * flux. Despite this the value of *pte is still somewhat
4761 * related while we hold the vm_page spin lock.
4763 * *pte can be zero due to this race. Since we are clearing
4764 * bits we basically do no harm when this race ccurs.
4766 if (bit_index != PG_RW_IDX) {
4767 vm_page_spin_lock(m);
4768 TAILQ_FOREACH(pv, &m->md.pv_list, pv_list) {
4769 #if defined(PMAP_DIAGNOSTIC)
4770 if (pv->pv_pmap == NULL) {
4771 kprintf("Null pmap (cb) at pindex: %"PRIu64"\n",
4772 pv->pv_pindex);
4773 continue;
4775 #endif
4776 pmap = pv->pv_pmap;
4777 pte = pmap_pte_quick(pv->pv_pmap,
4778 pv->pv_pindex << PAGE_SHIFT);
4779 pbits = *pte;
4780 if (pbits & pmap->pmap_bits[bit_index])
4781 atomic_clear_long(pte, pmap->pmap_bits[bit_index]);
4783 vm_page_spin_unlock(m);
4784 return;
4788 * Clear PG_RW. Also clears PG_M and marks the page dirty if PG_M
4789 * was set.
4791 restart:
4792 vm_page_spin_lock(m);
4793 TAILQ_FOREACH(pv, &m->md.pv_list, pv_list) {
4795 * don't write protect pager mappings
4797 if (!pmap_track_modified(pv->pv_pindex))
4798 continue;
4800 #if defined(PMAP_DIAGNOSTIC)
4801 if (pv->pv_pmap == NULL) {
4802 kprintf("Null pmap (cb) at pindex: %"PRIu64"\n",
4803 pv->pv_pindex);
4804 continue;
4806 #endif
4807 pmap = pv->pv_pmap;
4809 * Skip pages which do not have PG_RW set.
4811 pte = pmap_pte_quick(pv->pv_pmap, pv->pv_pindex << PAGE_SHIFT);
4812 if ((*pte & pmap->pmap_bits[PG_RW_IDX]) == 0)
4813 continue;
4816 * Lock the PV
4818 if (pv_hold_try(pv)) {
4819 vm_page_spin_unlock(m);
4820 } else {
4821 vm_page_spin_unlock(m);
4822 pv_lock(pv); /* held, now do a blocking lock */
4824 if (pv->pv_pmap != pmap || pv->pv_m != m) {
4825 pv_put(pv); /* and release */
4826 goto restart; /* anything could have happened */
4828 KKASSERT(pv->pv_pmap == pmap);
4829 for (;;) {
4830 pt_entry_t nbits;
4832 pbits = *pte;
4833 cpu_ccfence();
4834 nbits = pbits & ~(pmap->pmap_bits[PG_RW_IDX] |
4835 pmap->pmap_bits[PG_M_IDX]);
4836 if (pmap_inval_smp_cmpset(pmap,
4837 ((vm_offset_t)pv->pv_pindex << PAGE_SHIFT),
4838 pte, pbits, nbits)) {
4839 break;
4841 cpu_pause();
4843 vm_page_spin_lock(m);
4846 * If PG_M was found to be set while we were clearing PG_RW
4847 * we also clear PG_M (done above) and mark the page dirty.
4848 * Callers expect this behavior.
4850 if (pbits & pmap->pmap_bits[PG_M_IDX])
4851 vm_page_dirty(m);
4852 pv_put(pv);
4854 vm_page_spin_unlock(m);
4858 * Lower the permission for all mappings to a given page.
4860 * Page must be busied by caller. Because page is busied by caller this
4861 * should not be able to race a pmap_enter().
4863 void
4864 pmap_page_protect(vm_page_t m, vm_prot_t prot)
4866 /* JG NX support? */
4867 if ((prot & VM_PROT_WRITE) == 0) {
4868 if (prot & (VM_PROT_READ | VM_PROT_EXECUTE)) {
4870 * NOTE: pmap_clearbit(.. PG_RW) also clears
4871 * the PG_WRITEABLE flag in (m).
4873 pmap_clearbit(m, PG_RW_IDX);
4874 } else {
4875 pmap_remove_all(m);
4880 vm_paddr_t
4881 pmap_phys_address(vm_pindex_t ppn)
4883 return (x86_64_ptob(ppn));
4887 * Return a count of reference bits for a page, clearing those bits.
4888 * It is not necessary for every reference bit to be cleared, but it
4889 * is necessary that 0 only be returned when there are truly no
4890 * reference bits set.
4892 * XXX: The exact number of bits to check and clear is a matter that
4893 * should be tested and standardized at some point in the future for
4894 * optimal aging of shared pages.
4896 * This routine may not block.
4899 pmap_ts_referenced(vm_page_t m)
4901 pv_entry_t pv;
4902 pt_entry_t *pte;
4903 pmap_t pmap;
4904 int rtval = 0;
4906 if (!pmap_initialized || (m->flags & PG_FICTITIOUS))
4907 return (rtval);
4909 vm_page_spin_lock(m);
4910 TAILQ_FOREACH(pv, &m->md.pv_list, pv_list) {
4911 if (!pmap_track_modified(pv->pv_pindex))
4912 continue;
4913 pmap = pv->pv_pmap;
4914 pte = pmap_pte_quick(pv->pv_pmap, pv->pv_pindex << PAGE_SHIFT);
4915 if (pte && (*pte & pmap->pmap_bits[PG_A_IDX])) {
4916 atomic_clear_long(pte, pmap->pmap_bits[PG_A_IDX]);
4917 rtval++;
4918 if (rtval > 4)
4919 break;
4922 vm_page_spin_unlock(m);
4923 return (rtval);
4927 * pmap_is_modified:
4929 * Return whether or not the specified physical page was modified
4930 * in any physical maps.
4932 boolean_t
4933 pmap_is_modified(vm_page_t m)
4935 boolean_t res;
4937 res = pmap_testbit(m, PG_M_IDX);
4938 return (res);
4942 * Clear the modify bits on the specified physical page.
4944 void
4945 pmap_clear_modify(vm_page_t m)
4947 pmap_clearbit(m, PG_M_IDX);
4951 * pmap_clear_reference:
4953 * Clear the reference bit on the specified physical page.
4955 void
4956 pmap_clear_reference(vm_page_t m)
4958 pmap_clearbit(m, PG_A_IDX);
4962 * Miscellaneous support routines follow
4965 static
4966 void
4967 i386_protection_init(void)
4969 int *kp, prot;
4971 /* JG NX support may go here; No VM_PROT_EXECUTE ==> set NX bit */
4972 kp = protection_codes;
4973 for (prot = 0; prot < PROTECTION_CODES_SIZE; prot++) {
4974 switch (prot) {
4975 case VM_PROT_NONE | VM_PROT_NONE | VM_PROT_NONE:
4977 * Read access is also 0. There isn't any execute bit,
4978 * so just make it readable.
4980 case VM_PROT_READ | VM_PROT_NONE | VM_PROT_NONE:
4981 case VM_PROT_READ | VM_PROT_NONE | VM_PROT_EXECUTE:
4982 case VM_PROT_NONE | VM_PROT_NONE | VM_PROT_EXECUTE:
4983 *kp++ = 0;
4984 break;
4985 case VM_PROT_NONE | VM_PROT_WRITE | VM_PROT_NONE:
4986 case VM_PROT_NONE | VM_PROT_WRITE | VM_PROT_EXECUTE:
4987 case VM_PROT_READ | VM_PROT_WRITE | VM_PROT_NONE:
4988 case VM_PROT_READ | VM_PROT_WRITE | VM_PROT_EXECUTE:
4989 *kp++ = pmap_bits_default[PG_RW_IDX];
4990 break;
4996 * Map a set of physical memory pages into the kernel virtual
4997 * address space. Return a pointer to where it is mapped. This
4998 * routine is intended to be used for mapping device memory,
4999 * NOT real memory.
5001 * NOTE: We can't use pgeflag unless we invalidate the pages one at
5002 * a time.
5004 * NOTE: The PAT attributes {WRITE_BACK, WRITE_THROUGH, UNCACHED, UNCACHEABLE}
5005 * work whether the cpu supports PAT or not. The remaining PAT
5006 * attributes {WRITE_PROTECTED, WRITE_COMBINING} only work if the cpu
5007 * supports PAT.
5009 void *
5010 pmap_mapdev(vm_paddr_t pa, vm_size_t size)
5012 return(pmap_mapdev_attr(pa, size, PAT_WRITE_BACK));
5015 void *
5016 pmap_mapdev_uncacheable(vm_paddr_t pa, vm_size_t size)
5018 return(pmap_mapdev_attr(pa, size, PAT_UNCACHEABLE));
5021 void *
5022 pmap_mapbios(vm_paddr_t pa, vm_size_t size)
5024 return (pmap_mapdev_attr(pa, size, PAT_WRITE_BACK));
5028 * Map a set of physical memory pages into the kernel virtual
5029 * address space. Return a pointer to where it is mapped. This
5030 * routine is intended to be used for mapping device memory,
5031 * NOT real memory.
5033 void *
5034 pmap_mapdev_attr(vm_paddr_t pa, vm_size_t size, int mode)
5036 vm_offset_t va, tmpva, offset;
5037 pt_entry_t *pte;
5038 vm_size_t tmpsize;
5040 offset = pa & PAGE_MASK;
5041 size = roundup(offset + size, PAGE_SIZE);
5043 va = kmem_alloc_nofault(&kernel_map, size, PAGE_SIZE);
5044 if (va == 0)
5045 panic("pmap_mapdev: Couldn't alloc kernel virtual memory");
5047 pa = pa & ~PAGE_MASK;
5048 for (tmpva = va, tmpsize = size; tmpsize > 0;) {
5049 pte = vtopte(tmpva);
5050 *pte = pa |
5051 kernel_pmap.pmap_bits[PG_RW_IDX] |
5052 kernel_pmap.pmap_bits[PG_V_IDX] | /* pgeflag | */
5053 kernel_pmap.pmap_cache_bits[mode];
5054 tmpsize -= PAGE_SIZE;
5055 tmpva += PAGE_SIZE;
5056 pa += PAGE_SIZE;
5058 pmap_invalidate_range(&kernel_pmap, va, va + size);
5059 pmap_invalidate_cache_range(va, va + size);
5061 return ((void *)(va + offset));
5064 void
5065 pmap_unmapdev(vm_offset_t va, vm_size_t size)
5067 vm_offset_t base, offset;
5069 base = va & ~PAGE_MASK;
5070 offset = va & PAGE_MASK;
5071 size = roundup(offset + size, PAGE_SIZE);
5072 pmap_qremove(va, size >> PAGE_SHIFT);
5073 kmem_free(&kernel_map, base, size);
5077 * Sets the memory attribute for the specified page.
5079 void
5080 pmap_page_set_memattr(vm_page_t m, vm_memattr_t ma)
5083 m->pat_mode = ma;
5086 * If "m" is a normal page, update its direct mapping. This update
5087 * can be relied upon to perform any cache operations that are
5088 * required for data coherence.
5090 if ((m->flags & PG_FICTITIOUS) == 0)
5091 pmap_change_attr(PHYS_TO_DMAP(VM_PAGE_TO_PHYS(m)), 1, m->pat_mode);
5095 * Change the PAT attribute on an existing kernel memory map. Caller
5096 * must ensure that the virtual memory in question is not accessed
5097 * during the adjustment.
5099 void
5100 pmap_change_attr(vm_offset_t va, vm_size_t count, int mode)
5102 pt_entry_t *pte;
5103 vm_offset_t base;
5104 int changed = 0;
5106 if (va == 0)
5107 panic("pmap_change_attr: va is NULL");
5108 base = trunc_page(va);
5110 while (count) {
5111 pte = vtopte(va);
5112 *pte = (*pte & ~(pt_entry_t)(kernel_pmap.pmap_cache_mask)) |
5113 kernel_pmap.pmap_cache_bits[mode];
5114 --count;
5115 va += PAGE_SIZE;
5118 changed = 1; /* XXX: not optimal */
5121 * Flush CPU caches if required to make sure any data isn't cached that
5122 * shouldn't be, etc.
5124 if (changed) {
5125 pmap_invalidate_range(&kernel_pmap, base, va);
5126 pmap_invalidate_cache_range(base, va);
5131 * perform the pmap work for mincore
5134 pmap_mincore(pmap_t pmap, vm_offset_t addr)
5136 pt_entry_t *ptep, pte;
5137 vm_page_t m;
5138 int val = 0;
5140 lwkt_gettoken(&pmap->pm_token);
5141 ptep = pmap_pte(pmap, addr);
5143 if (ptep && (pte = *ptep) != 0) {
5144 vm_offset_t pa;
5146 val = MINCORE_INCORE;
5147 if ((pte & pmap->pmap_bits[PG_MANAGED_IDX]) == 0)
5148 goto done;
5150 pa = pte & PG_FRAME;
5152 if (pte & pmap->pmap_bits[PG_DEVICE_IDX])
5153 m = NULL;
5154 else
5155 m = PHYS_TO_VM_PAGE(pa);
5158 * Modified by us
5160 if (pte & pmap->pmap_bits[PG_M_IDX])
5161 val |= MINCORE_MODIFIED|MINCORE_MODIFIED_OTHER;
5163 * Modified by someone
5165 else if (m && (m->dirty || pmap_is_modified(m)))
5166 val |= MINCORE_MODIFIED_OTHER;
5168 * Referenced by us
5170 if (pte & pmap->pmap_bits[PG_A_IDX])
5171 val |= MINCORE_REFERENCED|MINCORE_REFERENCED_OTHER;
5174 * Referenced by someone
5176 else if (m && ((m->flags & PG_REFERENCED) ||
5177 pmap_ts_referenced(m))) {
5178 val |= MINCORE_REFERENCED_OTHER;
5179 vm_page_flag_set(m, PG_REFERENCED);
5182 done:
5183 lwkt_reltoken(&pmap->pm_token);
5185 return val;
5189 * Replace p->p_vmspace with a new one. If adjrefs is non-zero the new
5190 * vmspace will be ref'd and the old one will be deref'd.
5192 * The vmspace for all lwps associated with the process will be adjusted
5193 * and cr3 will be reloaded if any lwp is the current lwp.
5195 * The process must hold the vmspace->vm_map.token for oldvm and newvm
5197 void
5198 pmap_replacevm(struct proc *p, struct vmspace *newvm, int adjrefs)
5200 struct vmspace *oldvm;
5201 struct lwp *lp;
5203 oldvm = p->p_vmspace;
5204 if (oldvm != newvm) {
5205 if (adjrefs)
5206 vmspace_ref(newvm);
5207 p->p_vmspace = newvm;
5208 KKASSERT(p->p_nthreads == 1);
5209 lp = RB_ROOT(&p->p_lwp_tree);
5210 pmap_setlwpvm(lp, newvm);
5211 if (adjrefs)
5212 vmspace_rel(oldvm);
5217 * Set the vmspace for a LWP. The vmspace is almost universally set the
5218 * same as the process vmspace, but virtual kernels need to swap out contexts
5219 * on a per-lwp basis.
5221 * Caller does not necessarily hold any vmspace tokens. Caller must control
5222 * the lwp (typically be in the context of the lwp). We use a critical
5223 * section to protect against statclock and hardclock (statistics collection).
5225 void
5226 pmap_setlwpvm(struct lwp *lp, struct vmspace *newvm)
5228 struct vmspace *oldvm;
5229 struct pmap *pmap;
5231 oldvm = lp->lwp_vmspace;
5233 if (oldvm != newvm) {
5234 crit_enter();
5235 lp->lwp_vmspace = newvm;
5236 if (curthread->td_lwp == lp) {
5237 pmap = vmspace_pmap(newvm);
5238 ATOMIC_CPUMASK_ORBIT(pmap->pm_active, mycpu->gd_cpuid);
5239 if (pmap->pm_active_lock & CPULOCK_EXCL)
5240 pmap_interlock_wait(newvm);
5241 #if defined(SWTCH_OPTIM_STATS)
5242 tlb_flush_count++;
5243 #endif
5244 if (pmap->pmap_bits[TYPE_IDX] == REGULAR_PMAP) {
5245 curthread->td_pcb->pcb_cr3 = vtophys(pmap->pm_pml4);
5246 } else if (pmap->pmap_bits[TYPE_IDX] == EPT_PMAP) {
5247 curthread->td_pcb->pcb_cr3 = KPML4phys;
5248 } else {
5249 panic("pmap_setlwpvm: unknown pmap type\n");
5251 load_cr3(curthread->td_pcb->pcb_cr3);
5252 pmap = vmspace_pmap(oldvm);
5253 ATOMIC_CPUMASK_NANDBIT(pmap->pm_active,
5254 mycpu->gd_cpuid);
5256 crit_exit();
5261 * Called when switching to a locked pmap, used to interlock against pmaps
5262 * undergoing modifications to prevent us from activating the MMU for the
5263 * target pmap until all such modifications have completed. We have to do
5264 * this because the thread making the modifications has already set up its
5265 * SMP synchronization mask.
5267 * This function cannot sleep!
5269 * No requirements.
5271 void
5272 pmap_interlock_wait(struct vmspace *vm)
5274 struct pmap *pmap = &vm->vm_pmap;
5276 if (pmap->pm_active_lock & CPULOCK_EXCL) {
5277 crit_enter();
5278 KKASSERT(curthread->td_critcount >= 2);
5279 DEBUG_PUSH_INFO("pmap_interlock_wait");
5280 while (pmap->pm_active_lock & CPULOCK_EXCL) {
5281 cpu_ccfence();
5282 lwkt_process_ipiq();
5284 DEBUG_POP_INFO();
5285 crit_exit();
5289 vm_offset_t
5290 pmap_addr_hint(vm_object_t obj, vm_offset_t addr, vm_size_t size)
5293 if ((obj == NULL) || (size < NBPDR) ||
5294 ((obj->type != OBJT_DEVICE) && (obj->type != OBJT_MGTDEVICE))) {
5295 return addr;
5298 addr = roundup2(addr, NBPDR);
5299 return addr;
5303 * Used by kmalloc/kfree, page already exists at va
5305 vm_page_t
5306 pmap_kvtom(vm_offset_t va)
5308 pt_entry_t *ptep = vtopte(va);
5310 KKASSERT((*ptep & kernel_pmap.pmap_bits[PG_DEVICE_IDX]) == 0);
5311 return(PHYS_TO_VM_PAGE(*ptep & PG_FRAME));
5315 * Initialize machine-specific shared page directory support. This
5316 * is executed when a VM object is created.
5318 void
5319 pmap_object_init(vm_object_t object)
5321 object->md.pmap_rw = NULL;
5322 object->md.pmap_ro = NULL;
5326 * Clean up machine-specific shared page directory support. This
5327 * is executed when a VM object is destroyed.
5329 void
5330 pmap_object_free(vm_object_t object)
5332 pmap_t pmap;
5334 if ((pmap = object->md.pmap_rw) != NULL) {
5335 object->md.pmap_rw = NULL;
5336 pmap_remove_noinval(pmap,
5337 VM_MIN_USER_ADDRESS, VM_MAX_USER_ADDRESS);
5338 CPUMASK_ASSZERO(pmap->pm_active);
5339 pmap_release(pmap);
5340 pmap_puninit(pmap);
5341 kfree(pmap, M_OBJPMAP);
5343 if ((pmap = object->md.pmap_ro) != NULL) {
5344 object->md.pmap_ro = NULL;
5345 pmap_remove_noinval(pmap,
5346 VM_MIN_USER_ADDRESS, VM_MAX_USER_ADDRESS);
5347 CPUMASK_ASSZERO(pmap->pm_active);
5348 pmap_release(pmap);
5349 pmap_puninit(pmap);
5350 kfree(pmap, M_OBJPMAP);