hammer2 - Refactor frontend part 14/many
[dragonfly.git] / sys / vm / vm_fault.c
blobfc70b42b05d471ae44d8a4d3bfcde0e30a46d5dc
1 /*
2 * Copyright (c) 2003-2014 The DragonFly Project. All rights reserved.
4 * This code is derived from software contributed to The DragonFly Project
5 * by Matthew Dillon <dillon@backplane.com>
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following conditions
9 * are met:
11 * 1. Redistributions of source code must retain the above copyright
12 * notice, this list of conditions and the following disclaimer.
13 * 2. Redistributions in binary form must reproduce the above copyright
14 * notice, this list of conditions and the following disclaimer in
15 * the documentation and/or other materials provided with the
16 * distribution.
17 * 3. Neither the name of The DragonFly Project nor the names of its
18 * contributors may be used to endorse or promote products derived
19 * from this software without specific, prior written permission.
21 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
22 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
23 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
24 * FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
25 * COPYRIGHT HOLDERS OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
26 * INCIDENTAL, SPECIAL, EXEMPLARY OR CONSEQUENTIAL DAMAGES (INCLUDING,
27 * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
28 * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
29 * AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
30 * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT
31 * OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
32 * SUCH DAMAGE.
34 * ---
36 * Copyright (c) 1991, 1993
37 * The Regents of the University of California. All rights reserved.
38 * Copyright (c) 1994 John S. Dyson
39 * All rights reserved.
40 * Copyright (c) 1994 David Greenman
41 * All rights reserved.
44 * This code is derived from software contributed to Berkeley by
45 * The Mach Operating System project at Carnegie-Mellon University.
47 * Redistribution and use in source and binary forms, with or without
48 * modification, are permitted provided that the following conditions
49 * are met:
50 * 1. Redistributions of source code must retain the above copyright
51 * notice, this list of conditions and the following disclaimer.
52 * 2. Redistributions in binary form must reproduce the above copyright
53 * notice, this list of conditions and the following disclaimer in the
54 * documentation and/or other materials provided with the distribution.
55 * 3. Neither the name of the University nor the names of its contributors
56 * may be used to endorse or promote products derived from this software
57 * without specific prior written permission.
59 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
60 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
61 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
62 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
63 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
64 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
65 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
66 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
67 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
68 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
69 * SUCH DAMAGE.
71 * ---
73 * Copyright (c) 1987, 1990 Carnegie-Mellon University.
74 * All rights reserved.
76 * Authors: Avadis Tevanian, Jr., Michael Wayne Young
78 * Permission to use, copy, modify and distribute this software and
79 * its documentation is hereby granted, provided that both the copyright
80 * notice and this permission notice appear in all copies of the
81 * software, derivative works or modified versions, and any portions
82 * thereof, and that both notices appear in supporting documentation.
84 * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
85 * CONDITION. CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
86 * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
88 * Carnegie Mellon requests users of this software to return to
90 * Software Distribution Coordinator or Software.Distribution@CS.CMU.EDU
91 * School of Computer Science
92 * Carnegie Mellon University
93 * Pittsburgh PA 15213-3890
95 * any improvements or extensions that they make and grant Carnegie the
96 * rights to redistribute these changes.
100 * Page fault handling module.
103 #include <sys/param.h>
104 #include <sys/systm.h>
105 #include <sys/kernel.h>
106 #include <sys/proc.h>
107 #include <sys/vnode.h>
108 #include <sys/resourcevar.h>
109 #include <sys/vmmeter.h>
110 #include <sys/vkernel.h>
111 #include <sys/lock.h>
112 #include <sys/sysctl.h>
114 #include <cpu/lwbuf.h>
116 #include <vm/vm.h>
117 #include <vm/vm_param.h>
118 #include <vm/pmap.h>
119 #include <vm/vm_map.h>
120 #include <vm/vm_object.h>
121 #include <vm/vm_page.h>
122 #include <vm/vm_pageout.h>
123 #include <vm/vm_kern.h>
124 #include <vm/vm_pager.h>
125 #include <vm/vnode_pager.h>
126 #include <vm/vm_extern.h>
128 #include <sys/thread2.h>
129 #include <vm/vm_page2.h>
131 struct faultstate {
132 vm_page_t m;
133 vm_object_t object;
134 vm_pindex_t pindex;
135 vm_prot_t prot;
136 vm_page_t first_m;
137 vm_object_t first_object;
138 vm_prot_t first_prot;
139 vm_map_t map;
140 vm_map_entry_t entry;
141 int lookup_still_valid;
142 int hardfault;
143 int fault_flags;
144 int map_generation;
145 int shared;
146 int first_shared;
147 boolean_t wired;
148 struct vnode *vp;
151 static int debug_fault = 0;
152 SYSCTL_INT(_vm, OID_AUTO, debug_fault, CTLFLAG_RW, &debug_fault, 0, "");
153 static int debug_cluster = 0;
154 SYSCTL_INT(_vm, OID_AUTO, debug_cluster, CTLFLAG_RW, &debug_cluster, 0, "");
155 int vm_shared_fault = 1;
156 TUNABLE_INT("vm.shared_fault", &vm_shared_fault);
157 SYSCTL_INT(_vm, OID_AUTO, shared_fault, CTLFLAG_RW, &vm_shared_fault, 0,
158 "Allow shared token on vm_object");
159 static long vm_shared_hit = 0;
160 SYSCTL_LONG(_vm, OID_AUTO, shared_hit, CTLFLAG_RW, &vm_shared_hit, 0,
161 "Successful shared faults");
162 static long vm_shared_count = 0;
163 SYSCTL_LONG(_vm, OID_AUTO, shared_count, CTLFLAG_RW, &vm_shared_count, 0,
164 "Shared fault attempts");
165 static long vm_shared_miss = 0;
166 SYSCTL_LONG(_vm, OID_AUTO, shared_miss, CTLFLAG_RW, &vm_shared_miss, 0,
167 "Unsuccessful shared faults");
169 static int vm_fault_object(struct faultstate *, vm_pindex_t, vm_prot_t, int);
170 static int vm_fault_vpagetable(struct faultstate *, vm_pindex_t *,
171 vpte_t, int, int);
172 #if 0
173 static int vm_fault_additional_pages (vm_page_t, int, int, vm_page_t *, int *);
174 #endif
175 static void vm_set_nosync(vm_page_t m, vm_map_entry_t entry);
176 static void vm_prefault(pmap_t pmap, vm_offset_t addra,
177 vm_map_entry_t entry, int prot, int fault_flags);
178 static void vm_prefault_quick(pmap_t pmap, vm_offset_t addra,
179 vm_map_entry_t entry, int prot, int fault_flags);
181 static __inline void
182 release_page(struct faultstate *fs)
184 vm_page_deactivate(fs->m);
185 vm_page_wakeup(fs->m);
186 fs->m = NULL;
190 * NOTE: Once unlocked any cached fs->entry becomes invalid, any reuse
191 * requires relocking and then checking the timestamp.
193 * NOTE: vm_map_lock_read() does not bump fs->map->timestamp so we do
194 * not have to update fs->map_generation here.
196 * NOTE: This function can fail due to a deadlock against the caller's
197 * holding of a vm_page BUSY.
199 static __inline int
200 relock_map(struct faultstate *fs)
202 int error;
204 if (fs->lookup_still_valid == FALSE && fs->map) {
205 error = vm_map_lock_read_to(fs->map);
206 if (error == 0)
207 fs->lookup_still_valid = TRUE;
208 } else {
209 error = 0;
211 return error;
214 static __inline void
215 unlock_map(struct faultstate *fs)
217 if (fs->lookup_still_valid && fs->map) {
218 vm_map_lookup_done(fs->map, fs->entry, 0);
219 fs->lookup_still_valid = FALSE;
224 * Clean up after a successful call to vm_fault_object() so another call
225 * to vm_fault_object() can be made.
227 static void
228 _cleanup_successful_fault(struct faultstate *fs, int relock)
231 * We allocated a junk page for a COW operation that did
232 * not occur, the page must be freed.
234 if (fs->object != fs->first_object) {
235 KKASSERT(fs->first_shared == 0);
236 vm_page_free(fs->first_m);
237 vm_object_pip_wakeup(fs->object);
238 fs->first_m = NULL;
242 * Reset fs->object.
244 fs->object = fs->first_object;
245 if (relock && fs->lookup_still_valid == FALSE) {
246 if (fs->map)
247 vm_map_lock_read(fs->map);
248 fs->lookup_still_valid = TRUE;
252 static void
253 _unlock_things(struct faultstate *fs, int dealloc)
255 _cleanup_successful_fault(fs, 0);
256 if (dealloc) {
257 /*vm_object_deallocate(fs->first_object);*/
258 /*fs->first_object = NULL; drop used later on */
260 unlock_map(fs);
261 if (fs->vp != NULL) {
262 vput(fs->vp);
263 fs->vp = NULL;
267 #define unlock_things(fs) _unlock_things(fs, 0)
268 #define unlock_and_deallocate(fs) _unlock_things(fs, 1)
269 #define cleanup_successful_fault(fs) _cleanup_successful_fault(fs, 1)
272 * TRYPAGER
274 * Determine if the pager for the current object *might* contain the page.
276 * We only need to try the pager if this is not a default object (default
277 * objects are zero-fill and have no real pager), and if we are not taking
278 * a wiring fault or if the FS entry is wired.
280 #define TRYPAGER(fs) \
281 (fs->object->type != OBJT_DEFAULT && \
282 (((fs->fault_flags & VM_FAULT_WIRE_MASK) == 0) || fs->wired))
285 * vm_fault:
287 * Handle a page fault occuring at the given address, requiring the given
288 * permissions, in the map specified. If successful, the page is inserted
289 * into the associated physical map.
291 * NOTE: The given address should be truncated to the proper page address.
293 * KERN_SUCCESS is returned if the page fault is handled; otherwise,
294 * a standard error specifying why the fault is fatal is returned.
296 * The map in question must be referenced, and remains so.
297 * The caller may hold no locks.
298 * No other requirements.
301 vm_fault(vm_map_t map, vm_offset_t vaddr, vm_prot_t fault_type, int fault_flags)
303 int result;
304 vm_pindex_t first_pindex;
305 struct faultstate fs;
306 struct lwp *lp;
307 int growstack;
308 int retry = 0;
309 int inherit_prot;
311 inherit_prot = fault_type & VM_PROT_NOSYNC;
312 vm_page_pcpu_cache();
313 fs.hardfault = 0;
314 fs.fault_flags = fault_flags;
315 fs.vp = NULL;
316 fs.shared = vm_shared_fault;
317 fs.first_shared = vm_shared_fault;
318 growstack = 1;
319 if (vm_shared_fault)
320 ++vm_shared_count;
323 * vm_map interactions
325 if ((lp = curthread->td_lwp) != NULL)
326 lp->lwp_flags |= LWP_PAGING;
327 lwkt_gettoken(&map->token);
329 RetryFault:
331 * Find the vm_map_entry representing the backing store and resolve
332 * the top level object and page index. This may have the side
333 * effect of executing a copy-on-write on the map entry and/or
334 * creating a shadow object, but will not COW any actual VM pages.
336 * On success fs.map is left read-locked and various other fields
337 * are initialized but not otherwise referenced or locked.
339 * NOTE! vm_map_lookup will try to upgrade the fault_type to
340 * VM_FAULT_WRITE if the map entry is a virtual page table and also
341 * writable, so we can set the 'A'accessed bit in the virtual page
342 * table entry.
344 fs.map = map;
345 result = vm_map_lookup(&fs.map, vaddr, fault_type,
346 &fs.entry, &fs.first_object,
347 &first_pindex, &fs.first_prot, &fs.wired);
350 * If the lookup failed or the map protections are incompatible,
351 * the fault generally fails.
353 * The failure could be due to TDF_NOFAULT if vm_map_lookup()
354 * tried to do a COW fault.
356 * If the caller is trying to do a user wiring we have more work
357 * to do.
359 if (result != KERN_SUCCESS) {
360 if (result == KERN_FAILURE_NOFAULT) {
361 result = KERN_FAILURE;
362 goto done;
364 if (result != KERN_PROTECTION_FAILURE ||
365 (fs.fault_flags & VM_FAULT_WIRE_MASK) != VM_FAULT_USER_WIRE)
367 if (result == KERN_INVALID_ADDRESS && growstack &&
368 map != &kernel_map && curproc != NULL) {
369 result = vm_map_growstack(curproc, vaddr);
370 if (result == KERN_SUCCESS) {
371 growstack = 0;
372 ++retry;
373 goto RetryFault;
375 result = KERN_FAILURE;
377 goto done;
381 * If we are user-wiring a r/w segment, and it is COW, then
382 * we need to do the COW operation. Note that we don't
383 * currently COW RO sections now, because it is NOT desirable
384 * to COW .text. We simply keep .text from ever being COW'ed
385 * and take the heat that one cannot debug wired .text sections.
387 result = vm_map_lookup(&fs.map, vaddr,
388 VM_PROT_READ|VM_PROT_WRITE|
389 VM_PROT_OVERRIDE_WRITE,
390 &fs.entry, &fs.first_object,
391 &first_pindex, &fs.first_prot,
392 &fs.wired);
393 if (result != KERN_SUCCESS) {
394 /* could also be KERN_FAILURE_NOFAULT */
395 result = KERN_FAILURE;
396 goto done;
400 * If we don't COW now, on a user wire, the user will never
401 * be able to write to the mapping. If we don't make this
402 * restriction, the bookkeeping would be nearly impossible.
404 * XXX We have a shared lock, this will have a MP race but
405 * I don't see how it can hurt anything.
407 if ((fs.entry->protection & VM_PROT_WRITE) == 0)
408 fs.entry->max_protection &= ~VM_PROT_WRITE;
412 * fs.map is read-locked
414 * Misc checks. Save the map generation number to detect races.
416 fs.map_generation = fs.map->timestamp;
417 fs.lookup_still_valid = TRUE;
418 fs.first_m = NULL;
419 fs.object = fs.first_object; /* so unlock_and_deallocate works */
420 fs.prot = fs.first_prot; /* default (used by uksmap) */
422 if (fs.entry->eflags & (MAP_ENTRY_NOFAULT | MAP_ENTRY_KSTACK)) {
423 if (fs.entry->eflags & MAP_ENTRY_NOFAULT) {
424 panic("vm_fault: fault on nofault entry, addr: %p",
425 (void *)vaddr);
427 if ((fs.entry->eflags & MAP_ENTRY_KSTACK) &&
428 vaddr >= fs.entry->start &&
429 vaddr < fs.entry->start + PAGE_SIZE) {
430 panic("vm_fault: fault on stack guard, addr: %p",
431 (void *)vaddr);
436 * A user-kernel shared map has no VM object and bypasses
437 * everything. We execute the uksmap function with a temporary
438 * fictitious vm_page. The address is directly mapped with no
439 * management.
441 if (fs.entry->maptype == VM_MAPTYPE_UKSMAP) {
442 struct vm_page fakem;
444 bzero(&fakem, sizeof(fakem));
445 fakem.pindex = first_pindex;
446 fakem.flags = PG_BUSY | PG_FICTITIOUS | PG_UNMANAGED;
447 fakem.valid = VM_PAGE_BITS_ALL;
448 fakem.pat_mode = VM_MEMATTR_DEFAULT;
449 if (fs.entry->object.uksmap(fs.entry->aux.dev, &fakem)) {
450 result = KERN_FAILURE;
451 unlock_things(&fs);
452 goto done2;
454 pmap_enter(fs.map->pmap, vaddr, &fakem, fs.prot | inherit_prot,
455 fs.wired, fs.entry);
456 goto done_success;
460 * A system map entry may return a NULL object. No object means
461 * no pager means an unrecoverable kernel fault.
463 if (fs.first_object == NULL) {
464 panic("vm_fault: unrecoverable fault at %p in entry %p",
465 (void *)vaddr, fs.entry);
469 * Fail here if not a trivial anonymous page fault and TDF_NOFAULT
470 * is set.
472 if ((curthread->td_flags & TDF_NOFAULT) &&
473 (retry ||
474 fs.first_object->type == OBJT_VNODE ||
475 fs.first_object->backing_object)) {
476 result = KERN_FAILURE;
477 unlock_things(&fs);
478 goto done2;
482 * If the entry is wired we cannot change the page protection.
484 if (fs.wired)
485 fault_type = fs.first_prot;
488 * We generally want to avoid unnecessary exclusive modes on backing
489 * and terminal objects because this can seriously interfere with
490 * heavily fork()'d processes (particularly /bin/sh scripts).
492 * However, we also want to avoid unnecessary retries due to needed
493 * shared->exclusive promotion for common faults. Exclusive mode is
494 * always needed if any page insertion, rename, or free occurs in an
495 * object (and also indirectly if any I/O is done).
497 * The main issue here is going to be fs.first_shared. If the
498 * first_object has a backing object which isn't shadowed and the
499 * process is single-threaded we might as well use an exclusive
500 * lock/chain right off the bat.
502 if (fs.first_shared && fs.first_object->backing_object &&
503 LIST_EMPTY(&fs.first_object->shadow_head) &&
504 curthread->td_proc && curthread->td_proc->p_nthreads == 1) {
505 fs.first_shared = 0;
509 * swap_pager_unswapped() needs an exclusive object
511 if (fault_flags & (VM_FAULT_UNSWAP | VM_FAULT_DIRTY)) {
512 fs.first_shared = 0;
516 * Obtain a top-level object lock, shared or exclusive depending
517 * on fs.first_shared. If a shared lock winds up being insufficient
518 * we will retry with an exclusive lock.
520 * The vnode pager lock is always shared.
522 if (fs.first_shared)
523 vm_object_hold_shared(fs.first_object);
524 else
525 vm_object_hold(fs.first_object);
526 if (fs.vp == NULL)
527 fs.vp = vnode_pager_lock(fs.first_object);
530 * The page we want is at (first_object, first_pindex), but if the
531 * vm_map_entry is VM_MAPTYPE_VPAGETABLE we have to traverse the
532 * page table to figure out the actual pindex.
534 * NOTE! DEVELOPMENT IN PROGRESS, THIS IS AN INITIAL IMPLEMENTATION
535 * ONLY
537 if (fs.entry->maptype == VM_MAPTYPE_VPAGETABLE) {
538 result = vm_fault_vpagetable(&fs, &first_pindex,
539 fs.entry->aux.master_pde,
540 fault_type, 1);
541 if (result == KERN_TRY_AGAIN) {
542 vm_object_drop(fs.first_object);
543 ++retry;
544 goto RetryFault;
546 if (result != KERN_SUCCESS)
547 goto done;
551 * Now we have the actual (object, pindex), fault in the page. If
552 * vm_fault_object() fails it will unlock and deallocate the FS
553 * data. If it succeeds everything remains locked and fs->object
554 * will have an additional PIP count if it is not equal to
555 * fs->first_object
557 * vm_fault_object will set fs->prot for the pmap operation. It is
558 * allowed to set VM_PROT_WRITE if fault_type == VM_PROT_READ if the
559 * page can be safely written. However, it will force a read-only
560 * mapping for a read fault if the memory is managed by a virtual
561 * page table.
563 * If the fault code uses the shared object lock shortcut
564 * we must not try to burst (we can't allocate VM pages).
566 result = vm_fault_object(&fs, first_pindex, fault_type, 1);
568 if (debug_fault > 0) {
569 --debug_fault;
570 kprintf("VM_FAULT result %d addr=%jx type=%02x flags=%02x "
571 "fs.m=%p fs.prot=%02x fs.wired=%02x fs.entry=%p\n",
572 result, (intmax_t)vaddr, fault_type, fault_flags,
573 fs.m, fs.prot, fs.wired, fs.entry);
576 if (result == KERN_TRY_AGAIN) {
577 vm_object_drop(fs.first_object);
578 ++retry;
579 goto RetryFault;
581 if (result != KERN_SUCCESS)
582 goto done;
585 * On success vm_fault_object() does not unlock or deallocate, and fs.m
586 * will contain a busied page.
588 * Enter the page into the pmap and do pmap-related adjustments.
590 KKASSERT(fs.lookup_still_valid == TRUE);
591 vm_page_flag_set(fs.m, PG_REFERENCED);
592 pmap_enter(fs.map->pmap, vaddr, fs.m, fs.prot | inherit_prot,
593 fs.wired, fs.entry);
595 /*KKASSERT(fs.m->queue == PQ_NONE); page-in op may deactivate page */
596 KKASSERT(fs.m->flags & PG_BUSY);
599 * If the page is not wired down, then put it where the pageout daemon
600 * can find it.
602 if (fs.fault_flags & VM_FAULT_WIRE_MASK) {
603 if (fs.wired)
604 vm_page_wire(fs.m);
605 else
606 vm_page_unwire(fs.m, 1);
607 } else {
608 vm_page_activate(fs.m);
610 vm_page_wakeup(fs.m);
613 * Burst in a few more pages if possible. The fs.map should still
614 * be locked. To avoid interlocking against a vnode->getblk
615 * operation we had to be sure to unbusy our primary vm_page above
616 * first.
618 * A normal burst can continue down backing store, only execute
619 * if we are holding an exclusive lock, otherwise the exclusive
620 * locks the burst code gets might cause excessive SMP collisions.
622 * A quick burst can be utilized when there is no backing object
623 * (i.e. a shared file mmap).
625 if ((fault_flags & VM_FAULT_BURST) &&
626 (fs.fault_flags & VM_FAULT_WIRE_MASK) == 0 &&
627 fs.wired == 0) {
628 if (fs.first_shared == 0 && fs.shared == 0) {
629 vm_prefault(fs.map->pmap, vaddr,
630 fs.entry, fs.prot, fault_flags);
631 } else {
632 vm_prefault_quick(fs.map->pmap, vaddr,
633 fs.entry, fs.prot, fault_flags);
637 done_success:
638 mycpu->gd_cnt.v_vm_faults++;
639 if (curthread->td_lwp)
640 ++curthread->td_lwp->lwp_ru.ru_minflt;
643 * Unlock everything, and return
645 unlock_things(&fs);
647 if (curthread->td_lwp) {
648 if (fs.hardfault) {
649 curthread->td_lwp->lwp_ru.ru_majflt++;
650 } else {
651 curthread->td_lwp->lwp_ru.ru_minflt++;
655 /*vm_object_deallocate(fs.first_object);*/
656 /*fs.m = NULL; */
657 /*fs.first_object = NULL; must still drop later */
659 result = KERN_SUCCESS;
660 done:
661 if (fs.first_object)
662 vm_object_drop(fs.first_object);
663 done2:
664 lwkt_reltoken(&map->token);
665 if (lp)
666 lp->lwp_flags &= ~LWP_PAGING;
667 if (vm_shared_fault && fs.shared == 0)
668 ++vm_shared_miss;
669 return (result);
673 * Fault in the specified virtual address in the current process map,
674 * returning a held VM page or NULL. See vm_fault_page() for more
675 * information.
677 * No requirements.
679 vm_page_t
680 vm_fault_page_quick(vm_offset_t va, vm_prot_t fault_type, int *errorp)
682 struct lwp *lp = curthread->td_lwp;
683 vm_page_t m;
685 m = vm_fault_page(&lp->lwp_vmspace->vm_map, va,
686 fault_type, VM_FAULT_NORMAL, errorp);
687 return(m);
691 * Fault in the specified virtual address in the specified map, doing all
692 * necessary manipulation of the object store and all necessary I/O. Return
693 * a held VM page or NULL, and set *errorp. The related pmap is not
694 * updated.
696 * The returned page will be properly dirtied if VM_PROT_WRITE was specified,
697 * and marked PG_REFERENCED as well.
699 * If the page cannot be faulted writable and VM_PROT_WRITE was specified, an
700 * error will be returned.
702 * No requirements.
704 vm_page_t
705 vm_fault_page(vm_map_t map, vm_offset_t vaddr, vm_prot_t fault_type,
706 int fault_flags, int *errorp)
708 vm_pindex_t first_pindex;
709 struct faultstate fs;
710 int result;
711 int retry = 0;
712 vm_prot_t orig_fault_type = fault_type;
714 fs.hardfault = 0;
715 fs.fault_flags = fault_flags;
716 KKASSERT((fault_flags & VM_FAULT_WIRE_MASK) == 0);
719 * Dive the pmap (concurrency possible). If we find the
720 * appropriate page we can terminate early and quickly.
722 fs.m = pmap_fault_page_quick(map->pmap, vaddr, fault_type);
723 if (fs.m) {
724 *errorp = 0;
725 return(fs.m);
729 * Otherwise take a concurrency hit and do a formal page
730 * fault.
732 fs.shared = vm_shared_fault;
733 fs.first_shared = vm_shared_fault;
734 fs.vp = NULL;
735 lwkt_gettoken(&map->token);
738 * swap_pager_unswapped() needs an exclusive object
740 if (fault_flags & (VM_FAULT_UNSWAP | VM_FAULT_DIRTY)) {
741 fs.first_shared = 0;
744 RetryFault:
746 * Find the vm_map_entry representing the backing store and resolve
747 * the top level object and page index. This may have the side
748 * effect of executing a copy-on-write on the map entry and/or
749 * creating a shadow object, but will not COW any actual VM pages.
751 * On success fs.map is left read-locked and various other fields
752 * are initialized but not otherwise referenced or locked.
754 * NOTE! vm_map_lookup will upgrade the fault_type to VM_FAULT_WRITE
755 * if the map entry is a virtual page table and also writable,
756 * so we can set the 'A'accessed bit in the virtual page table entry.
758 fs.map = map;
759 result = vm_map_lookup(&fs.map, vaddr, fault_type,
760 &fs.entry, &fs.first_object,
761 &first_pindex, &fs.first_prot, &fs.wired);
763 if (result != KERN_SUCCESS) {
764 *errorp = result;
765 fs.m = NULL;
766 goto done;
770 * fs.map is read-locked
772 * Misc checks. Save the map generation number to detect races.
774 fs.map_generation = fs.map->timestamp;
775 fs.lookup_still_valid = TRUE;
776 fs.first_m = NULL;
777 fs.object = fs.first_object; /* so unlock_and_deallocate works */
779 if (fs.entry->eflags & MAP_ENTRY_NOFAULT) {
780 panic("vm_fault: fault on nofault entry, addr: %lx",
781 (u_long)vaddr);
785 * A user-kernel shared map has no VM object and bypasses
786 * everything. We execute the uksmap function with a temporary
787 * fictitious vm_page. The address is directly mapped with no
788 * management.
790 if (fs.entry->maptype == VM_MAPTYPE_UKSMAP) {
791 struct vm_page fakem;
793 bzero(&fakem, sizeof(fakem));
794 fakem.pindex = first_pindex;
795 fakem.flags = PG_BUSY | PG_FICTITIOUS | PG_UNMANAGED;
796 fakem.valid = VM_PAGE_BITS_ALL;
797 fakem.pat_mode = VM_MEMATTR_DEFAULT;
798 if (fs.entry->object.uksmap(fs.entry->aux.dev, &fakem)) {
799 *errorp = KERN_FAILURE;
800 fs.m = NULL;
801 unlock_things(&fs);
802 goto done2;
804 fs.m = PHYS_TO_VM_PAGE(fakem.phys_addr);
805 vm_page_hold(fs.m);
807 unlock_things(&fs);
808 *errorp = 0;
809 goto done;
814 * A system map entry may return a NULL object. No object means
815 * no pager means an unrecoverable kernel fault.
817 if (fs.first_object == NULL) {
818 panic("vm_fault: unrecoverable fault at %p in entry %p",
819 (void *)vaddr, fs.entry);
823 * Fail here if not a trivial anonymous page fault and TDF_NOFAULT
824 * is set.
826 if ((curthread->td_flags & TDF_NOFAULT) &&
827 (retry ||
828 fs.first_object->type == OBJT_VNODE ||
829 fs.first_object->backing_object)) {
830 *errorp = KERN_FAILURE;
831 unlock_things(&fs);
832 goto done2;
836 * If the entry is wired we cannot change the page protection.
838 if (fs.wired)
839 fault_type = fs.first_prot;
842 * Make a reference to this object to prevent its disposal while we
843 * are messing with it. Once we have the reference, the map is free
844 * to be diddled. Since objects reference their shadows (and copies),
845 * they will stay around as well.
847 * The reference should also prevent an unexpected collapse of the
848 * parent that might move pages from the current object into the
849 * parent unexpectedly, resulting in corruption.
851 * Bump the paging-in-progress count to prevent size changes (e.g.
852 * truncation operations) during I/O. This must be done after
853 * obtaining the vnode lock in order to avoid possible deadlocks.
855 if (fs.first_shared)
856 vm_object_hold_shared(fs.first_object);
857 else
858 vm_object_hold(fs.first_object);
859 if (fs.vp == NULL)
860 fs.vp = vnode_pager_lock(fs.first_object); /* shared */
863 * The page we want is at (first_object, first_pindex), but if the
864 * vm_map_entry is VM_MAPTYPE_VPAGETABLE we have to traverse the
865 * page table to figure out the actual pindex.
867 * NOTE! DEVELOPMENT IN PROGRESS, THIS IS AN INITIAL IMPLEMENTATION
868 * ONLY
870 if (fs.entry->maptype == VM_MAPTYPE_VPAGETABLE) {
871 result = vm_fault_vpagetable(&fs, &first_pindex,
872 fs.entry->aux.master_pde,
873 fault_type, 1);
874 if (result == KERN_TRY_AGAIN) {
875 vm_object_drop(fs.first_object);
876 ++retry;
877 goto RetryFault;
879 if (result != KERN_SUCCESS) {
880 *errorp = result;
881 fs.m = NULL;
882 goto done;
887 * Now we have the actual (object, pindex), fault in the page. If
888 * vm_fault_object() fails it will unlock and deallocate the FS
889 * data. If it succeeds everything remains locked and fs->object
890 * will have an additinal PIP count if it is not equal to
891 * fs->first_object
893 fs.m = NULL;
894 result = vm_fault_object(&fs, first_pindex, fault_type, 1);
896 if (result == KERN_TRY_AGAIN) {
897 vm_object_drop(fs.first_object);
898 ++retry;
899 goto RetryFault;
901 if (result != KERN_SUCCESS) {
902 *errorp = result;
903 fs.m = NULL;
904 goto done;
907 if ((orig_fault_type & VM_PROT_WRITE) &&
908 (fs.prot & VM_PROT_WRITE) == 0) {
909 *errorp = KERN_PROTECTION_FAILURE;
910 unlock_and_deallocate(&fs);
911 fs.m = NULL;
912 goto done;
916 * DO NOT UPDATE THE PMAP!!! This function may be called for
917 * a pmap unrelated to the current process pmap, in which case
918 * the current cpu core will not be listed in the pmap's pm_active
919 * mask. Thus invalidation interlocks will fail to work properly.
921 * (for example, 'ps' uses procfs to read program arguments from
922 * each process's stack).
924 * In addition to the above this function will be called to acquire
925 * a page that might already be faulted in, re-faulting it
926 * continuously is a waste of time.
928 * XXX could this have been the cause of our random seg-fault
929 * issues? procfs accesses user stacks.
931 vm_page_flag_set(fs.m, PG_REFERENCED);
932 #if 0
933 pmap_enter(fs.map->pmap, vaddr, fs.m, fs.prot, fs.wired, NULL);
934 mycpu->gd_cnt.v_vm_faults++;
935 if (curthread->td_lwp)
936 ++curthread->td_lwp->lwp_ru.ru_minflt;
937 #endif
940 * On success vm_fault_object() does not unlock or deallocate, and fs.m
941 * will contain a busied page. So we must unlock here after having
942 * messed with the pmap.
944 unlock_things(&fs);
947 * Return a held page. We are not doing any pmap manipulation so do
948 * not set PG_MAPPED. However, adjust the page flags according to
949 * the fault type because the caller may not use a managed pmapping
950 * (so we don't want to lose the fact that the page will be dirtied
951 * if a write fault was specified).
953 vm_page_hold(fs.m);
954 vm_page_activate(fs.m);
955 if (fault_type & VM_PROT_WRITE)
956 vm_page_dirty(fs.m);
958 if (curthread->td_lwp) {
959 if (fs.hardfault) {
960 curthread->td_lwp->lwp_ru.ru_majflt++;
961 } else {
962 curthread->td_lwp->lwp_ru.ru_minflt++;
967 * Unlock everything, and return the held page.
969 vm_page_wakeup(fs.m);
970 /*vm_object_deallocate(fs.first_object);*/
971 /*fs.first_object = NULL; */
972 *errorp = 0;
974 done:
975 if (fs.first_object)
976 vm_object_drop(fs.first_object);
977 done2:
978 lwkt_reltoken(&map->token);
979 return(fs.m);
983 * Fault in the specified (object,offset), dirty the returned page as
984 * needed. If the requested fault_type cannot be done NULL and an
985 * error is returned.
987 * A held (but not busied) page is returned.
989 * The passed in object must be held as specified by the shared
990 * argument.
992 vm_page_t
993 vm_fault_object_page(vm_object_t object, vm_ooffset_t offset,
994 vm_prot_t fault_type, int fault_flags,
995 int *sharedp, int *errorp)
997 int result;
998 vm_pindex_t first_pindex;
999 struct faultstate fs;
1000 struct vm_map_entry entry;
1002 ASSERT_LWKT_TOKEN_HELD(vm_object_token(object));
1003 bzero(&entry, sizeof(entry));
1004 entry.object.vm_object = object;
1005 entry.maptype = VM_MAPTYPE_NORMAL;
1006 entry.protection = entry.max_protection = fault_type;
1008 fs.hardfault = 0;
1009 fs.fault_flags = fault_flags;
1010 fs.map = NULL;
1011 fs.shared = vm_shared_fault;
1012 fs.first_shared = *sharedp;
1013 fs.vp = NULL;
1014 KKASSERT((fault_flags & VM_FAULT_WIRE_MASK) == 0);
1017 * Might require swap block adjustments
1019 if (fs.first_shared && (fault_flags & (VM_FAULT_UNSWAP | VM_FAULT_DIRTY))) {
1020 fs.first_shared = 0;
1021 vm_object_upgrade(object);
1025 * Retry loop as needed (typically for shared->exclusive transitions)
1027 RetryFault:
1028 *sharedp = fs.first_shared;
1029 first_pindex = OFF_TO_IDX(offset);
1030 fs.first_object = object;
1031 fs.entry = &entry;
1032 fs.first_prot = fault_type;
1033 fs.wired = 0;
1034 /*fs.map_generation = 0; unused */
1037 * Make a reference to this object to prevent its disposal while we
1038 * are messing with it. Once we have the reference, the map is free
1039 * to be diddled. Since objects reference their shadows (and copies),
1040 * they will stay around as well.
1042 * The reference should also prevent an unexpected collapse of the
1043 * parent that might move pages from the current object into the
1044 * parent unexpectedly, resulting in corruption.
1046 * Bump the paging-in-progress count to prevent size changes (e.g.
1047 * truncation operations) during I/O. This must be done after
1048 * obtaining the vnode lock in order to avoid possible deadlocks.
1050 if (fs.vp == NULL)
1051 fs.vp = vnode_pager_lock(fs.first_object);
1053 fs.lookup_still_valid = TRUE;
1054 fs.first_m = NULL;
1055 fs.object = fs.first_object; /* so unlock_and_deallocate works */
1057 #if 0
1058 /* XXX future - ability to operate on VM object using vpagetable */
1059 if (fs.entry->maptype == VM_MAPTYPE_VPAGETABLE) {
1060 result = vm_fault_vpagetable(&fs, &first_pindex,
1061 fs.entry->aux.master_pde,
1062 fault_type, 0);
1063 if (result == KERN_TRY_AGAIN) {
1064 if (fs.first_shared == 0 && *sharedp)
1065 vm_object_upgrade(object);
1066 goto RetryFault;
1068 if (result != KERN_SUCCESS) {
1069 *errorp = result;
1070 return (NULL);
1073 #endif
1076 * Now we have the actual (object, pindex), fault in the page. If
1077 * vm_fault_object() fails it will unlock and deallocate the FS
1078 * data. If it succeeds everything remains locked and fs->object
1079 * will have an additinal PIP count if it is not equal to
1080 * fs->first_object
1082 * On KERN_TRY_AGAIN vm_fault_object() leaves fs.first_object intact.
1083 * We may have to upgrade its lock to handle the requested fault.
1085 result = vm_fault_object(&fs, first_pindex, fault_type, 0);
1087 if (result == KERN_TRY_AGAIN) {
1088 if (fs.first_shared == 0 && *sharedp)
1089 vm_object_upgrade(object);
1090 goto RetryFault;
1092 if (result != KERN_SUCCESS) {
1093 *errorp = result;
1094 return(NULL);
1097 if ((fault_type & VM_PROT_WRITE) && (fs.prot & VM_PROT_WRITE) == 0) {
1098 *errorp = KERN_PROTECTION_FAILURE;
1099 unlock_and_deallocate(&fs);
1100 return(NULL);
1104 * On success vm_fault_object() does not unlock or deallocate, so we
1105 * do it here. Note that the returned fs.m will be busied.
1107 unlock_things(&fs);
1110 * Return a held page. We are not doing any pmap manipulation so do
1111 * not set PG_MAPPED. However, adjust the page flags according to
1112 * the fault type because the caller may not use a managed pmapping
1113 * (so we don't want to lose the fact that the page will be dirtied
1114 * if a write fault was specified).
1116 vm_page_hold(fs.m);
1117 vm_page_activate(fs.m);
1118 if ((fault_type & VM_PROT_WRITE) || (fault_flags & VM_FAULT_DIRTY))
1119 vm_page_dirty(fs.m);
1120 if (fault_flags & VM_FAULT_UNSWAP)
1121 swap_pager_unswapped(fs.m);
1124 * Indicate that the page was accessed.
1126 vm_page_flag_set(fs.m, PG_REFERENCED);
1128 if (curthread->td_lwp) {
1129 if (fs.hardfault) {
1130 curthread->td_lwp->lwp_ru.ru_majflt++;
1131 } else {
1132 curthread->td_lwp->lwp_ru.ru_minflt++;
1137 * Unlock everything, and return the held page.
1139 vm_page_wakeup(fs.m);
1140 /*vm_object_deallocate(fs.first_object);*/
1141 /*fs.first_object = NULL; */
1143 *errorp = 0;
1144 return(fs.m);
1148 * Translate the virtual page number (first_pindex) that is relative
1149 * to the address space into a logical page number that is relative to the
1150 * backing object. Use the virtual page table pointed to by (vpte).
1152 * This implements an N-level page table. Any level can terminate the
1153 * scan by setting VPTE_PS. A linear mapping is accomplished by setting
1154 * VPTE_PS in the master page directory entry set via mcontrol(MADV_SETMAP).
1156 static
1158 vm_fault_vpagetable(struct faultstate *fs, vm_pindex_t *pindex,
1159 vpte_t vpte, int fault_type, int allow_nofault)
1161 struct lwbuf *lwb;
1162 struct lwbuf lwb_cache;
1163 int vshift = VPTE_FRAME_END - PAGE_SHIFT; /* index bits remaining */
1164 int result = KERN_SUCCESS;
1165 vpte_t *ptep;
1167 ASSERT_LWKT_TOKEN_HELD(vm_object_token(fs->first_object));
1168 for (;;) {
1170 * We cannot proceed if the vpte is not valid, not readable
1171 * for a read fault, or not writable for a write fault.
1173 if ((vpte & VPTE_V) == 0) {
1174 unlock_and_deallocate(fs);
1175 return (KERN_FAILURE);
1177 if ((fault_type & VM_PROT_WRITE) && (vpte & VPTE_RW) == 0) {
1178 unlock_and_deallocate(fs);
1179 return (KERN_FAILURE);
1181 if ((vpte & VPTE_PS) || vshift == 0)
1182 break;
1183 KKASSERT(vshift >= VPTE_PAGE_BITS);
1186 * Get the page table page. Nominally we only read the page
1187 * table, but since we are actively setting VPTE_M and VPTE_A,
1188 * tell vm_fault_object() that we are writing it.
1190 * There is currently no real need to optimize this.
1192 result = vm_fault_object(fs, (vpte & VPTE_FRAME) >> PAGE_SHIFT,
1193 VM_PROT_READ|VM_PROT_WRITE,
1194 allow_nofault);
1195 if (result != KERN_SUCCESS)
1196 return (result);
1199 * Process the returned fs.m and look up the page table
1200 * entry in the page table page.
1202 vshift -= VPTE_PAGE_BITS;
1203 lwb = lwbuf_alloc(fs->m, &lwb_cache);
1204 ptep = ((vpte_t *)lwbuf_kva(lwb) +
1205 ((*pindex >> vshift) & VPTE_PAGE_MASK));
1206 vpte = *ptep;
1209 * Page table write-back. If the vpte is valid for the
1210 * requested operation, do a write-back to the page table.
1212 * XXX VPTE_M is not set properly for page directory pages.
1213 * It doesn't get set in the page directory if the page table
1214 * is modified during a read access.
1216 vm_page_activate(fs->m);
1217 if ((fault_type & VM_PROT_WRITE) && (vpte & VPTE_V) &&
1218 (vpte & VPTE_RW)) {
1219 if ((vpte & (VPTE_M|VPTE_A)) != (VPTE_M|VPTE_A)) {
1220 atomic_set_long(ptep, VPTE_M | VPTE_A);
1221 vm_page_dirty(fs->m);
1224 if ((fault_type & VM_PROT_READ) && (vpte & VPTE_V)) {
1225 if ((vpte & VPTE_A) == 0) {
1226 atomic_set_long(ptep, VPTE_A);
1227 vm_page_dirty(fs->m);
1230 lwbuf_free(lwb);
1231 vm_page_flag_set(fs->m, PG_REFERENCED);
1232 vm_page_wakeup(fs->m);
1233 fs->m = NULL;
1234 cleanup_successful_fault(fs);
1237 * Combine remaining address bits with the vpte.
1239 /* JG how many bits from each? */
1240 *pindex = ((vpte & VPTE_FRAME) >> PAGE_SHIFT) +
1241 (*pindex & ((1L << vshift) - 1));
1242 return (KERN_SUCCESS);
1247 * This is the core of the vm_fault code.
1249 * Do all operations required to fault-in (fs.first_object, pindex). Run
1250 * through the shadow chain as necessary and do required COW or virtual
1251 * copy operations. The caller has already fully resolved the vm_map_entry
1252 * and, if appropriate, has created a copy-on-write layer. All we need to
1253 * do is iterate the object chain.
1255 * On failure (fs) is unlocked and deallocated and the caller may return or
1256 * retry depending on the failure code. On success (fs) is NOT unlocked or
1257 * deallocated, fs.m will contained a resolved, busied page, and fs.object
1258 * will have an additional PIP count if it is not equal to fs.first_object.
1260 * If locks based on fs->first_shared or fs->shared are insufficient,
1261 * clear the appropriate field(s) and return RETRY. COWs require that
1262 * first_shared be 0, while page allocations (or frees) require that
1263 * shared be 0. Renames require that both be 0.
1265 * fs->first_object must be held on call.
1267 static
1269 vm_fault_object(struct faultstate *fs, vm_pindex_t first_pindex,
1270 vm_prot_t fault_type, int allow_nofault)
1272 vm_object_t next_object;
1273 vm_pindex_t pindex;
1274 int error;
1276 ASSERT_LWKT_TOKEN_HELD(vm_object_token(fs->first_object));
1277 fs->prot = fs->first_prot;
1278 fs->object = fs->first_object;
1279 pindex = first_pindex;
1281 vm_object_chain_acquire(fs->first_object, fs->shared);
1282 vm_object_pip_add(fs->first_object, 1);
1285 * If a read fault occurs we try to make the page writable if
1286 * possible. There are three cases where we cannot make the
1287 * page mapping writable:
1289 * (1) The mapping is read-only or the VM object is read-only,
1290 * fs->prot above will simply not have VM_PROT_WRITE set.
1292 * (2) If the mapping is a virtual page table we need to be able
1293 * to detect writes so we can set VPTE_M in the virtual page
1294 * table.
1296 * (3) If the VM page is read-only or copy-on-write, upgrading would
1297 * just result in an unnecessary COW fault.
1299 * VM_PROT_VPAGED is set if faulting via a virtual page table and
1300 * causes adjustments to the 'M'odify bit to also turn off write
1301 * access to force a re-fault.
1303 if (fs->entry->maptype == VM_MAPTYPE_VPAGETABLE) {
1304 if ((fault_type & VM_PROT_WRITE) == 0)
1305 fs->prot &= ~VM_PROT_WRITE;
1308 if (curthread->td_lwp && curthread->td_lwp->lwp_vmspace &&
1309 pmap_emulate_ad_bits(&curthread->td_lwp->lwp_vmspace->vm_pmap)) {
1310 if ((fault_type & VM_PROT_WRITE) == 0)
1311 fs->prot &= ~VM_PROT_WRITE;
1314 /* vm_object_hold(fs->object); implied b/c object == first_object */
1316 for (;;) {
1318 * The entire backing chain from first_object to object
1319 * inclusive is chainlocked.
1321 * If the object is dead, we stop here
1323 if (fs->object->flags & OBJ_DEAD) {
1324 vm_object_pip_wakeup(fs->first_object);
1325 vm_object_chain_release_all(fs->first_object,
1326 fs->object);
1327 if (fs->object != fs->first_object)
1328 vm_object_drop(fs->object);
1329 unlock_and_deallocate(fs);
1330 return (KERN_PROTECTION_FAILURE);
1334 * See if the page is resident. Wait/Retry if the page is
1335 * busy (lots of stuff may have changed so we can't continue
1336 * in that case).
1338 * We can theoretically allow the soft-busy case on a read
1339 * fault if the page is marked valid, but since such
1340 * pages are typically already pmap'd, putting that
1341 * special case in might be more effort then it is
1342 * worth. We cannot under any circumstances mess
1343 * around with a vm_page_t->busy page except, perhaps,
1344 * to pmap it.
1346 fs->m = vm_page_lookup_busy_try(fs->object, pindex,
1347 TRUE, &error);
1348 if (error) {
1349 vm_object_pip_wakeup(fs->first_object);
1350 vm_object_chain_release_all(fs->first_object,
1351 fs->object);
1352 if (fs->object != fs->first_object)
1353 vm_object_drop(fs->object);
1354 unlock_things(fs);
1355 vm_page_sleep_busy(fs->m, TRUE, "vmpfw");
1356 mycpu->gd_cnt.v_intrans++;
1357 /*vm_object_deallocate(fs->first_object);*/
1358 /*fs->first_object = NULL;*/
1359 fs->m = NULL;
1360 return (KERN_TRY_AGAIN);
1362 if (fs->m) {
1364 * The page is busied for us.
1366 * If reactivating a page from PQ_CACHE we may have
1367 * to rate-limit.
1369 int queue = fs->m->queue;
1370 vm_page_unqueue_nowakeup(fs->m);
1372 if ((queue - fs->m->pc) == PQ_CACHE &&
1373 vm_page_count_severe()) {
1374 vm_page_activate(fs->m);
1375 vm_page_wakeup(fs->m);
1376 fs->m = NULL;
1377 vm_object_pip_wakeup(fs->first_object);
1378 vm_object_chain_release_all(fs->first_object,
1379 fs->object);
1380 if (fs->object != fs->first_object)
1381 vm_object_drop(fs->object);
1382 unlock_and_deallocate(fs);
1383 if (allow_nofault == 0 ||
1384 (curthread->td_flags & TDF_NOFAULT) == 0) {
1385 vm_wait_pfault();
1387 return (KERN_TRY_AGAIN);
1391 * If it still isn't completely valid (readable),
1392 * or if a read-ahead-mark is set on the VM page,
1393 * jump to readrest, else we found the page and
1394 * can return.
1396 * We can release the spl once we have marked the
1397 * page busy.
1399 if (fs->m->object != &kernel_object) {
1400 if ((fs->m->valid & VM_PAGE_BITS_ALL) !=
1401 VM_PAGE_BITS_ALL) {
1402 goto readrest;
1404 if (fs->m->flags & PG_RAM) {
1405 if (debug_cluster)
1406 kprintf("R");
1407 vm_page_flag_clear(fs->m, PG_RAM);
1408 goto readrest;
1411 break; /* break to PAGE HAS BEEN FOUND */
1415 * Page is not resident, If this is the search termination
1416 * or the pager might contain the page, allocate a new page.
1418 if (TRYPAGER(fs) || fs->object == fs->first_object) {
1420 * Allocating, must be exclusive.
1422 if (fs->object == fs->first_object &&
1423 fs->first_shared) {
1424 fs->first_shared = 0;
1425 vm_object_pip_wakeup(fs->first_object);
1426 vm_object_chain_release_all(fs->first_object,
1427 fs->object);
1428 if (fs->object != fs->first_object)
1429 vm_object_drop(fs->object);
1430 unlock_and_deallocate(fs);
1431 return (KERN_TRY_AGAIN);
1433 if (fs->object != fs->first_object &&
1434 fs->shared) {
1435 fs->first_shared = 0;
1436 fs->shared = 0;
1437 vm_object_pip_wakeup(fs->first_object);
1438 vm_object_chain_release_all(fs->first_object,
1439 fs->object);
1440 if (fs->object != fs->first_object)
1441 vm_object_drop(fs->object);
1442 unlock_and_deallocate(fs);
1443 return (KERN_TRY_AGAIN);
1447 * If the page is beyond the object size we fail
1449 if (pindex >= fs->object->size) {
1450 vm_object_pip_wakeup(fs->first_object);
1451 vm_object_chain_release_all(fs->first_object,
1452 fs->object);
1453 if (fs->object != fs->first_object)
1454 vm_object_drop(fs->object);
1455 unlock_and_deallocate(fs);
1456 return (KERN_PROTECTION_FAILURE);
1460 * Allocate a new page for this object/offset pair.
1462 * It is possible for the allocation to race, so
1463 * handle the case.
1465 fs->m = NULL;
1466 if (!vm_page_count_severe()) {
1467 fs->m = vm_page_alloc(fs->object, pindex,
1468 ((fs->vp || fs->object->backing_object) ?
1469 VM_ALLOC_NULL_OK | VM_ALLOC_NORMAL :
1470 VM_ALLOC_NULL_OK | VM_ALLOC_NORMAL |
1471 VM_ALLOC_USE_GD | VM_ALLOC_ZERO));
1473 if (fs->m == NULL) {
1474 vm_object_pip_wakeup(fs->first_object);
1475 vm_object_chain_release_all(fs->first_object,
1476 fs->object);
1477 if (fs->object != fs->first_object)
1478 vm_object_drop(fs->object);
1479 unlock_and_deallocate(fs);
1480 if (allow_nofault == 0 ||
1481 (curthread->td_flags & TDF_NOFAULT) == 0) {
1482 vm_wait_pfault();
1484 return (KERN_TRY_AGAIN);
1488 * Fall through to readrest. We have a new page which
1489 * will have to be paged (since m->valid will be 0).
1493 readrest:
1495 * We have found an invalid or partially valid page, a
1496 * page with a read-ahead mark which might be partially or
1497 * fully valid (and maybe dirty too), or we have allocated
1498 * a new page.
1500 * Attempt to fault-in the page if there is a chance that the
1501 * pager has it, and potentially fault in additional pages
1502 * at the same time.
1504 * If TRYPAGER is true then fs.m will be non-NULL and busied
1505 * for us.
1507 if (TRYPAGER(fs)) {
1508 int rv;
1509 int seqaccess;
1510 u_char behavior = vm_map_entry_behavior(fs->entry);
1512 if (behavior == MAP_ENTRY_BEHAV_RANDOM)
1513 seqaccess = 0;
1514 else
1515 seqaccess = -1;
1518 * Doing I/O may synchronously insert additional
1519 * pages so we can't be shared at this point either.
1521 * NOTE: We can't free fs->m here in the allocated
1522 * case (fs->object != fs->first_object) as
1523 * this would require an exclusively locked
1524 * VM object.
1526 if (fs->object == fs->first_object &&
1527 fs->first_shared) {
1528 vm_page_deactivate(fs->m);
1529 vm_page_wakeup(fs->m);
1530 fs->m = NULL;
1531 fs->first_shared = 0;
1532 vm_object_pip_wakeup(fs->first_object);
1533 vm_object_chain_release_all(fs->first_object,
1534 fs->object);
1535 if (fs->object != fs->first_object)
1536 vm_object_drop(fs->object);
1537 unlock_and_deallocate(fs);
1538 return (KERN_TRY_AGAIN);
1540 if (fs->object != fs->first_object &&
1541 fs->shared) {
1542 vm_page_deactivate(fs->m);
1543 vm_page_wakeup(fs->m);
1544 fs->m = NULL;
1545 fs->first_shared = 0;
1546 fs->shared = 0;
1547 vm_object_pip_wakeup(fs->first_object);
1548 vm_object_chain_release_all(fs->first_object,
1549 fs->object);
1550 if (fs->object != fs->first_object)
1551 vm_object_drop(fs->object);
1552 unlock_and_deallocate(fs);
1553 return (KERN_TRY_AGAIN);
1557 * Avoid deadlocking against the map when doing I/O.
1558 * fs.object and the page is PG_BUSY'd.
1560 * NOTE: Once unlocked, fs->entry can become stale
1561 * so this will NULL it out.
1563 * NOTE: fs->entry is invalid until we relock the
1564 * map and verify that the timestamp has not
1565 * changed.
1567 unlock_map(fs);
1570 * Acquire the page data. We still hold a ref on
1571 * fs.object and the page has been PG_BUSY's.
1573 * The pager may replace the page (for example, in
1574 * order to enter a fictitious page into the
1575 * object). If it does so it is responsible for
1576 * cleaning up the passed page and properly setting
1577 * the new page PG_BUSY.
1579 * If we got here through a PG_RAM read-ahead
1580 * mark the page may be partially dirty and thus
1581 * not freeable. Don't bother checking to see
1582 * if the pager has the page because we can't free
1583 * it anyway. We have to depend on the get_page
1584 * operation filling in any gaps whether there is
1585 * backing store or not.
1587 rv = vm_pager_get_page(fs->object, &fs->m, seqaccess);
1589 if (rv == VM_PAGER_OK) {
1591 * Relookup in case pager changed page. Pager
1592 * is responsible for disposition of old page
1593 * if moved.
1595 * XXX other code segments do relookups too.
1596 * It's a bad abstraction that needs to be
1597 * fixed/removed.
1599 fs->m = vm_page_lookup(fs->object, pindex);
1600 if (fs->m == NULL) {
1601 vm_object_pip_wakeup(fs->first_object);
1602 vm_object_chain_release_all(
1603 fs->first_object, fs->object);
1604 if (fs->object != fs->first_object)
1605 vm_object_drop(fs->object);
1606 unlock_and_deallocate(fs);
1607 return (KERN_TRY_AGAIN);
1609 ++fs->hardfault;
1610 break; /* break to PAGE HAS BEEN FOUND */
1614 * Remove the bogus page (which does not exist at this
1615 * object/offset); before doing so, we must get back
1616 * our object lock to preserve our invariant.
1618 * Also wake up any other process that may want to bring
1619 * in this page.
1621 * If this is the top-level object, we must leave the
1622 * busy page to prevent another process from rushing
1623 * past us, and inserting the page in that object at
1624 * the same time that we are.
1626 if (rv == VM_PAGER_ERROR) {
1627 if (curproc) {
1628 kprintf("vm_fault: pager read error, "
1629 "pid %d (%s)\n",
1630 curproc->p_pid,
1631 curproc->p_comm);
1632 } else {
1633 kprintf("vm_fault: pager read error, "
1634 "thread %p (%s)\n",
1635 curthread,
1636 curproc->p_comm);
1641 * Data outside the range of the pager or an I/O error
1643 * The page may have been wired during the pagein,
1644 * e.g. by the buffer cache, and cannot simply be
1645 * freed. Call vnode_pager_freepage() to deal with it.
1647 * Also note that we cannot free the page if we are
1648 * holding the related object shared. XXX not sure
1649 * what to do in that case.
1651 if (fs->object != fs->first_object) {
1652 vnode_pager_freepage(fs->m);
1653 fs->m = NULL;
1655 * XXX - we cannot just fall out at this
1656 * point, m has been freed and is invalid!
1660 * XXX - the check for kernel_map is a kludge to work
1661 * around having the machine panic on a kernel space
1662 * fault w/ I/O error.
1664 if (((fs->map != &kernel_map) &&
1665 (rv == VM_PAGER_ERROR)) || (rv == VM_PAGER_BAD)) {
1666 if (fs->m) {
1667 if (fs->first_shared) {
1668 vm_page_deactivate(fs->m);
1669 vm_page_wakeup(fs->m);
1670 } else {
1671 vnode_pager_freepage(fs->m);
1673 fs->m = NULL;
1675 vm_object_pip_wakeup(fs->first_object);
1676 vm_object_chain_release_all(fs->first_object,
1677 fs->object);
1678 if (fs->object != fs->first_object)
1679 vm_object_drop(fs->object);
1680 unlock_and_deallocate(fs);
1681 if (rv == VM_PAGER_ERROR)
1682 return (KERN_FAILURE);
1683 else
1684 return (KERN_PROTECTION_FAILURE);
1685 /* NOT REACHED */
1690 * We get here if the object has a default pager (or unwiring)
1691 * or the pager doesn't have the page.
1693 * fs->first_m will be used for the COW unless we find a
1694 * deeper page to be mapped read-only, in which case the
1695 * unlock*(fs) will free first_m.
1697 if (fs->object == fs->first_object)
1698 fs->first_m = fs->m;
1701 * Move on to the next object. The chain lock should prevent
1702 * the backing_object from getting ripped out from under us.
1704 * The object lock for the next object is governed by
1705 * fs->shared.
1707 if ((next_object = fs->object->backing_object) != NULL) {
1708 if (fs->shared)
1709 vm_object_hold_shared(next_object);
1710 else
1711 vm_object_hold(next_object);
1712 vm_object_chain_acquire(next_object, fs->shared);
1713 KKASSERT(next_object == fs->object->backing_object);
1714 pindex += OFF_TO_IDX(fs->object->backing_object_offset);
1717 if (next_object == NULL) {
1719 * If there's no object left, fill the page in the top
1720 * object with zeros.
1722 if (fs->object != fs->first_object) {
1723 #if 0
1724 if (fs->first_object->backing_object !=
1725 fs->object) {
1726 vm_object_hold(fs->first_object->backing_object);
1728 #endif
1729 vm_object_chain_release_all(
1730 fs->first_object->backing_object,
1731 fs->object);
1732 #if 0
1733 if (fs->first_object->backing_object !=
1734 fs->object) {
1735 vm_object_drop(fs->first_object->backing_object);
1737 #endif
1738 vm_object_pip_wakeup(fs->object);
1739 vm_object_drop(fs->object);
1740 fs->object = fs->first_object;
1741 pindex = first_pindex;
1742 fs->m = fs->first_m;
1744 fs->first_m = NULL;
1747 * Zero the page if necessary and mark it valid.
1749 if ((fs->m->flags & PG_ZERO) == 0) {
1750 vm_page_zero_fill(fs->m);
1751 } else {
1752 #ifdef PMAP_DEBUG
1753 pmap_page_assertzero(VM_PAGE_TO_PHYS(fs->m));
1754 #endif
1755 vm_page_flag_clear(fs->m, PG_ZERO);
1756 mycpu->gd_cnt.v_ozfod++;
1758 mycpu->gd_cnt.v_zfod++;
1759 fs->m->valid = VM_PAGE_BITS_ALL;
1760 break; /* break to PAGE HAS BEEN FOUND */
1762 if (fs->object != fs->first_object) {
1763 vm_object_pip_wakeup(fs->object);
1764 vm_object_lock_swap();
1765 vm_object_drop(fs->object);
1767 KASSERT(fs->object != next_object,
1768 ("object loop %p", next_object));
1769 fs->object = next_object;
1770 vm_object_pip_add(fs->object, 1);
1774 * PAGE HAS BEEN FOUND. [Loop invariant still holds -- the object lock
1775 * is held.]
1777 * object still held.
1779 * local shared variable may be different from fs->shared.
1781 * If the page is being written, but isn't already owned by the
1782 * top-level object, we have to copy it into a new page owned by the
1783 * top-level object.
1785 KASSERT((fs->m->flags & PG_BUSY) != 0,
1786 ("vm_fault: not busy after main loop"));
1788 if (fs->object != fs->first_object) {
1790 * We only really need to copy if we want to write it.
1792 if (fault_type & VM_PROT_WRITE) {
1794 * This allows pages to be virtually copied from a
1795 * backing_object into the first_object, where the
1796 * backing object has no other refs to it, and cannot
1797 * gain any more refs. Instead of a bcopy, we just
1798 * move the page from the backing object to the
1799 * first object. Note that we must mark the page
1800 * dirty in the first object so that it will go out
1801 * to swap when needed.
1803 if (
1805 * Must be holding exclusive locks
1807 fs->first_shared == 0 &&
1808 fs->shared == 0 &&
1810 * Map, if present, has not changed
1812 (fs->map == NULL ||
1813 fs->map_generation == fs->map->timestamp) &&
1815 * Only one shadow object
1817 (fs->object->shadow_count == 1) &&
1819 * No COW refs, except us
1821 (fs->object->ref_count == 1) &&
1823 * No one else can look this object up
1825 (fs->object->handle == NULL) &&
1827 * No other ways to look the object up
1829 ((fs->object->type == OBJT_DEFAULT) ||
1830 (fs->object->type == OBJT_SWAP)) &&
1832 * We don't chase down the shadow chain
1834 (fs->object == fs->first_object->backing_object) &&
1837 * grab the lock if we need to
1839 (fs->lookup_still_valid ||
1840 fs->map == NULL ||
1841 lockmgr(&fs->map->lock, LK_EXCLUSIVE|LK_NOWAIT) == 0)
1844 * (first_m) and (m) are both busied. We have
1845 * move (m) into (first_m)'s object/pindex
1846 * in an atomic fashion, then free (first_m).
1848 * first_object is held so second remove
1849 * followed by the rename should wind
1850 * up being atomic. vm_page_free() might
1851 * block so we don't do it until after the
1852 * rename.
1854 fs->lookup_still_valid = 1;
1855 vm_page_protect(fs->first_m, VM_PROT_NONE);
1856 vm_page_remove(fs->first_m);
1857 vm_page_rename(fs->m, fs->first_object,
1858 first_pindex);
1859 vm_page_free(fs->first_m);
1860 fs->first_m = fs->m;
1861 fs->m = NULL;
1862 mycpu->gd_cnt.v_cow_optim++;
1863 } else {
1865 * Oh, well, lets copy it.
1867 * Why are we unmapping the original page
1868 * here? Well, in short, not all accessors
1869 * of user memory go through the pmap. The
1870 * procfs code doesn't have access user memory
1871 * via a local pmap, so vm_fault_page*()
1872 * can't call pmap_enter(). And the umtx*()
1873 * code may modify the COW'd page via a DMAP
1874 * or kernel mapping and not via the pmap,
1875 * leaving the original page still mapped
1876 * read-only into the pmap.
1878 * So we have to remove the page from at
1879 * least the current pmap if it is in it.
1880 * Just remove it from all pmaps.
1882 KKASSERT(fs->first_shared == 0);
1883 vm_page_copy(fs->m, fs->first_m);
1884 vm_page_protect(fs->m, VM_PROT_NONE);
1885 vm_page_event(fs->m, VMEVENT_COW);
1889 * We no longer need the old page or object.
1891 if (fs->m)
1892 release_page(fs);
1895 * We intend to revert to first_object, undo the
1896 * chain lock through to that.
1898 #if 0
1899 if (fs->first_object->backing_object != fs->object)
1900 vm_object_hold(fs->first_object->backing_object);
1901 #endif
1902 vm_object_chain_release_all(
1903 fs->first_object->backing_object,
1904 fs->object);
1905 #if 0
1906 if (fs->first_object->backing_object != fs->object)
1907 vm_object_drop(fs->first_object->backing_object);
1908 #endif
1911 * fs->object != fs->first_object due to above
1912 * conditional
1914 vm_object_pip_wakeup(fs->object);
1915 vm_object_drop(fs->object);
1918 * Only use the new page below...
1920 mycpu->gd_cnt.v_cow_faults++;
1921 fs->m = fs->first_m;
1922 fs->object = fs->first_object;
1923 pindex = first_pindex;
1924 } else {
1926 * If it wasn't a write fault avoid having to copy
1927 * the page by mapping it read-only.
1929 fs->prot &= ~VM_PROT_WRITE;
1934 * Relock the map if necessary, then check the generation count.
1935 * relock_map() will update fs->timestamp to account for the
1936 * relocking if necessary.
1938 * If the count has changed after relocking then all sorts of
1939 * crap may have happened and we have to retry.
1941 * NOTE: The relock_map() can fail due to a deadlock against
1942 * the vm_page we are holding BUSY.
1944 if (fs->lookup_still_valid == FALSE && fs->map) {
1945 if (relock_map(fs) ||
1946 fs->map->timestamp != fs->map_generation) {
1947 release_page(fs);
1948 vm_object_pip_wakeup(fs->first_object);
1949 vm_object_chain_release_all(fs->first_object,
1950 fs->object);
1951 if (fs->object != fs->first_object)
1952 vm_object_drop(fs->object);
1953 unlock_and_deallocate(fs);
1954 return (KERN_TRY_AGAIN);
1959 * If the fault is a write, we know that this page is being
1960 * written NOW so dirty it explicitly to save on pmap_is_modified()
1961 * calls later.
1963 * If this is a NOSYNC mmap we do not want to set PG_NOSYNC
1964 * if the page is already dirty to prevent data written with
1965 * the expectation of being synced from not being synced.
1966 * Likewise if this entry does not request NOSYNC then make
1967 * sure the page isn't marked NOSYNC. Applications sharing
1968 * data should use the same flags to avoid ping ponging.
1970 * Also tell the backing pager, if any, that it should remove
1971 * any swap backing since the page is now dirty.
1973 vm_page_activate(fs->m);
1974 if (fs->prot & VM_PROT_WRITE) {
1975 vm_object_set_writeable_dirty(fs->m->object);
1976 vm_set_nosync(fs->m, fs->entry);
1977 if (fs->fault_flags & VM_FAULT_DIRTY) {
1978 vm_page_dirty(fs->m);
1979 swap_pager_unswapped(fs->m);
1983 vm_object_pip_wakeup(fs->first_object);
1984 vm_object_chain_release_all(fs->first_object, fs->object);
1985 if (fs->object != fs->first_object)
1986 vm_object_drop(fs->object);
1989 * Page had better still be busy. We are still locked up and
1990 * fs->object will have another PIP reference if it is not equal
1991 * to fs->first_object.
1993 KASSERT(fs->m->flags & PG_BUSY,
1994 ("vm_fault: page %p not busy!", fs->m));
1997 * Sanity check: page must be completely valid or it is not fit to
1998 * map into user space. vm_pager_get_pages() ensures this.
2000 if (fs->m->valid != VM_PAGE_BITS_ALL) {
2001 vm_page_zero_invalid(fs->m, TRUE);
2002 kprintf("Warning: page %p partially invalid on fault\n", fs->m);
2004 vm_page_flag_clear(fs->m, PG_ZERO);
2006 return (KERN_SUCCESS);
2010 * Hold each of the physical pages that are mapped by the specified range of
2011 * virtual addresses, ["addr", "addr" + "len"), if those mappings are valid
2012 * and allow the specified types of access, "prot". If all of the implied
2013 * pages are successfully held, then the number of held pages is returned
2014 * together with pointers to those pages in the array "ma". However, if any
2015 * of the pages cannot be held, -1 is returned.
2018 vm_fault_quick_hold_pages(vm_map_t map, vm_offset_t addr, vm_size_t len,
2019 vm_prot_t prot, vm_page_t *ma, int max_count)
2021 vm_offset_t start, end;
2022 int i, npages, error;
2024 start = trunc_page(addr);
2025 end = round_page(addr + len);
2027 npages = howmany(end - start, PAGE_SIZE);
2029 if (npages > max_count)
2030 return -1;
2032 for (i = 0; i < npages; i++) {
2033 // XXX error handling
2034 ma[i] = vm_fault_page_quick(start + (i * PAGE_SIZE),
2035 prot,
2036 &error);
2039 return npages;
2043 * Wire down a range of virtual addresses in a map. The entry in question
2044 * should be marked in-transition and the map must be locked. We must
2045 * release the map temporarily while faulting-in the page to avoid a
2046 * deadlock. Note that the entry may be clipped while we are blocked but
2047 * will never be freed.
2049 * No requirements.
2052 vm_fault_wire(vm_map_t map, vm_map_entry_t entry,
2053 boolean_t user_wire, int kmflags)
2055 boolean_t fictitious;
2056 vm_offset_t start;
2057 vm_offset_t end;
2058 vm_offset_t va;
2059 vm_paddr_t pa;
2060 vm_page_t m;
2061 pmap_t pmap;
2062 int rv;
2063 int wire_prot;
2064 int fault_flags;
2066 lwkt_gettoken(&map->token);
2068 if (user_wire) {
2069 wire_prot = VM_PROT_READ;
2070 fault_flags = VM_FAULT_USER_WIRE;
2071 } else {
2072 wire_prot = VM_PROT_READ | VM_PROT_WRITE;
2073 fault_flags = VM_FAULT_CHANGE_WIRING;
2075 if (kmflags & KM_NOTLBSYNC)
2076 wire_prot |= VM_PROT_NOSYNC;
2078 pmap = vm_map_pmap(map);
2079 start = entry->start;
2080 end = entry->end;
2081 switch(entry->maptype) {
2082 case VM_MAPTYPE_NORMAL:
2083 case VM_MAPTYPE_VPAGETABLE:
2084 fictitious = entry->object.vm_object &&
2085 ((entry->object.vm_object->type == OBJT_DEVICE) ||
2086 (entry->object.vm_object->type == OBJT_MGTDEVICE));
2087 break;
2088 case VM_MAPTYPE_UKSMAP:
2089 fictitious = TRUE;
2090 break;
2091 default:
2092 fictitious = FALSE;
2093 break;
2096 if (entry->eflags & MAP_ENTRY_KSTACK)
2097 start += PAGE_SIZE;
2098 map->timestamp++;
2099 vm_map_unlock(map);
2102 * We simulate a fault to get the page and enter it in the physical
2103 * map.
2105 for (va = start; va < end; va += PAGE_SIZE) {
2106 rv = vm_fault(map, va, wire_prot, fault_flags);
2107 if (rv) {
2108 while (va > start) {
2109 va -= PAGE_SIZE;
2110 if ((pa = pmap_extract(pmap, va)) == 0)
2111 continue;
2112 pmap_change_wiring(pmap, va, FALSE, entry);
2113 if (!fictitious) {
2114 m = PHYS_TO_VM_PAGE(pa);
2115 vm_page_busy_wait(m, FALSE, "vmwrpg");
2116 vm_page_unwire(m, 1);
2117 vm_page_wakeup(m);
2120 goto done;
2123 rv = KERN_SUCCESS;
2124 done:
2125 vm_map_lock(map);
2126 lwkt_reltoken(&map->token);
2127 return (rv);
2131 * Unwire a range of virtual addresses in a map. The map should be
2132 * locked.
2134 void
2135 vm_fault_unwire(vm_map_t map, vm_map_entry_t entry)
2137 boolean_t fictitious;
2138 vm_offset_t start;
2139 vm_offset_t end;
2140 vm_offset_t va;
2141 vm_paddr_t pa;
2142 vm_page_t m;
2143 pmap_t pmap;
2145 lwkt_gettoken(&map->token);
2147 pmap = vm_map_pmap(map);
2148 start = entry->start;
2149 end = entry->end;
2150 fictitious = entry->object.vm_object &&
2151 ((entry->object.vm_object->type == OBJT_DEVICE) ||
2152 (entry->object.vm_object->type == OBJT_MGTDEVICE));
2153 if (entry->eflags & MAP_ENTRY_KSTACK)
2154 start += PAGE_SIZE;
2157 * Since the pages are wired down, we must be able to get their
2158 * mappings from the physical map system.
2160 for (va = start; va < end; va += PAGE_SIZE) {
2161 pa = pmap_extract(pmap, va);
2162 if (pa != 0) {
2163 pmap_change_wiring(pmap, va, FALSE, entry);
2164 if (!fictitious) {
2165 m = PHYS_TO_VM_PAGE(pa);
2166 vm_page_busy_wait(m, FALSE, "vmwupg");
2167 vm_page_unwire(m, 1);
2168 vm_page_wakeup(m);
2172 lwkt_reltoken(&map->token);
2176 * Copy all of the pages from a wired-down map entry to another.
2178 * The source and destination maps must be locked for write.
2179 * The source and destination maps token must be held
2180 * The source map entry must be wired down (or be a sharing map
2181 * entry corresponding to a main map entry that is wired down).
2183 * No other requirements.
2185 * XXX do segment optimization
2187 void
2188 vm_fault_copy_entry(vm_map_t dst_map, vm_map_t src_map,
2189 vm_map_entry_t dst_entry, vm_map_entry_t src_entry)
2191 vm_object_t dst_object;
2192 vm_object_t src_object;
2193 vm_ooffset_t dst_offset;
2194 vm_ooffset_t src_offset;
2195 vm_prot_t prot;
2196 vm_offset_t vaddr;
2197 vm_page_t dst_m;
2198 vm_page_t src_m;
2200 src_object = src_entry->object.vm_object;
2201 src_offset = src_entry->offset;
2204 * Create the top-level object for the destination entry. (Doesn't
2205 * actually shadow anything - we copy the pages directly.)
2207 vm_map_entry_allocate_object(dst_entry);
2208 dst_object = dst_entry->object.vm_object;
2210 prot = dst_entry->max_protection;
2213 * Loop through all of the pages in the entry's range, copying each
2214 * one from the source object (it should be there) to the destination
2215 * object.
2217 vm_object_hold(src_object);
2218 vm_object_hold(dst_object);
2219 for (vaddr = dst_entry->start, dst_offset = 0;
2220 vaddr < dst_entry->end;
2221 vaddr += PAGE_SIZE, dst_offset += PAGE_SIZE) {
2224 * Allocate a page in the destination object
2226 do {
2227 dst_m = vm_page_alloc(dst_object,
2228 OFF_TO_IDX(dst_offset),
2229 VM_ALLOC_NORMAL);
2230 if (dst_m == NULL) {
2231 vm_wait(0);
2233 } while (dst_m == NULL);
2236 * Find the page in the source object, and copy it in.
2237 * (Because the source is wired down, the page will be in
2238 * memory.)
2240 src_m = vm_page_lookup(src_object,
2241 OFF_TO_IDX(dst_offset + src_offset));
2242 if (src_m == NULL)
2243 panic("vm_fault_copy_wired: page missing");
2245 vm_page_copy(src_m, dst_m);
2246 vm_page_event(src_m, VMEVENT_COW);
2249 * Enter it in the pmap...
2252 vm_page_flag_clear(dst_m, PG_ZERO);
2253 pmap_enter(dst_map->pmap, vaddr, dst_m, prot, FALSE, dst_entry);
2256 * Mark it no longer busy, and put it on the active list.
2258 vm_page_activate(dst_m);
2259 vm_page_wakeup(dst_m);
2261 vm_object_drop(dst_object);
2262 vm_object_drop(src_object);
2265 #if 0
2268 * This routine checks around the requested page for other pages that
2269 * might be able to be faulted in. This routine brackets the viable
2270 * pages for the pages to be paged in.
2272 * Inputs:
2273 * m, rbehind, rahead
2275 * Outputs:
2276 * marray (array of vm_page_t), reqpage (index of requested page)
2278 * Return value:
2279 * number of pages in marray
2281 static int
2282 vm_fault_additional_pages(vm_page_t m, int rbehind, int rahead,
2283 vm_page_t *marray, int *reqpage)
2285 int i,j;
2286 vm_object_t object;
2287 vm_pindex_t pindex, startpindex, endpindex, tpindex;
2288 vm_page_t rtm;
2289 int cbehind, cahead;
2291 object = m->object;
2292 pindex = m->pindex;
2295 * we don't fault-ahead for device pager
2297 if ((object->type == OBJT_DEVICE) ||
2298 (object->type == OBJT_MGTDEVICE)) {
2299 *reqpage = 0;
2300 marray[0] = m;
2301 return 1;
2305 * if the requested page is not available, then give up now
2307 if (!vm_pager_has_page(object, pindex, &cbehind, &cahead)) {
2308 *reqpage = 0; /* not used by caller, fix compiler warn */
2309 return 0;
2312 if ((cbehind == 0) && (cahead == 0)) {
2313 *reqpage = 0;
2314 marray[0] = m;
2315 return 1;
2318 if (rahead > cahead) {
2319 rahead = cahead;
2322 if (rbehind > cbehind) {
2323 rbehind = cbehind;
2327 * Do not do any readahead if we have insufficient free memory.
2329 * XXX code was broken disabled before and has instability
2330 * with this conditonal fixed, so shortcut for now.
2332 if (burst_fault == 0 || vm_page_count_severe()) {
2333 marray[0] = m;
2334 *reqpage = 0;
2335 return 1;
2339 * scan backward for the read behind pages -- in memory
2341 * Assume that if the page is not found an interrupt will not
2342 * create it. Theoretically interrupts can only remove (busy)
2343 * pages, not create new associations.
2345 if (pindex > 0) {
2346 if (rbehind > pindex) {
2347 rbehind = pindex;
2348 startpindex = 0;
2349 } else {
2350 startpindex = pindex - rbehind;
2353 vm_object_hold(object);
2354 for (tpindex = pindex; tpindex > startpindex; --tpindex) {
2355 if (vm_page_lookup(object, tpindex - 1))
2356 break;
2359 i = 0;
2360 while (tpindex < pindex) {
2361 rtm = vm_page_alloc(object, tpindex, VM_ALLOC_SYSTEM |
2362 VM_ALLOC_NULL_OK);
2363 if (rtm == NULL) {
2364 for (j = 0; j < i; j++) {
2365 vm_page_free(marray[j]);
2367 vm_object_drop(object);
2368 marray[0] = m;
2369 *reqpage = 0;
2370 return 1;
2372 marray[i] = rtm;
2373 ++i;
2374 ++tpindex;
2376 vm_object_drop(object);
2377 } else {
2378 i = 0;
2382 * Assign requested page
2384 marray[i] = m;
2385 *reqpage = i;
2386 ++i;
2389 * Scan forwards for read-ahead pages
2391 tpindex = pindex + 1;
2392 endpindex = tpindex + rahead;
2393 if (endpindex > object->size)
2394 endpindex = object->size;
2396 vm_object_hold(object);
2397 while (tpindex < endpindex) {
2398 if (vm_page_lookup(object, tpindex))
2399 break;
2400 rtm = vm_page_alloc(object, tpindex, VM_ALLOC_SYSTEM |
2401 VM_ALLOC_NULL_OK);
2402 if (rtm == NULL)
2403 break;
2404 marray[i] = rtm;
2405 ++i;
2406 ++tpindex;
2408 vm_object_drop(object);
2410 return (i);
2413 #endif
2416 * vm_prefault() provides a quick way of clustering pagefaults into a
2417 * processes address space. It is a "cousin" of pmap_object_init_pt,
2418 * except it runs at page fault time instead of mmap time.
2420 * vm.fast_fault Enables pre-faulting zero-fill pages
2422 * vm.prefault_pages Number of pages (1/2 negative, 1/2 positive) to
2423 * prefault. Scan stops in either direction when
2424 * a page is found to already exist.
2426 * This code used to be per-platform pmap_prefault(). It is now
2427 * machine-independent and enhanced to also pre-fault zero-fill pages
2428 * (see vm.fast_fault) as well as make them writable, which greatly
2429 * reduces the number of page faults programs incur.
2431 * Application performance when pre-faulting zero-fill pages is heavily
2432 * dependent on the application. Very tiny applications like /bin/echo
2433 * lose a little performance while applications of any appreciable size
2434 * gain performance. Prefaulting multiple pages also reduces SMP
2435 * congestion and can improve SMP performance significantly.
2437 * NOTE! prot may allow writing but this only applies to the top level
2438 * object. If we wind up mapping a page extracted from a backing
2439 * object we have to make sure it is read-only.
2441 * NOTE! The caller has already handled any COW operations on the
2442 * vm_map_entry via the normal fault code. Do NOT call this
2443 * shortcut unless the normal fault code has run on this entry.
2445 * The related map must be locked.
2446 * No other requirements.
2448 static int vm_prefault_pages = 8;
2449 SYSCTL_INT(_vm, OID_AUTO, prefault_pages, CTLFLAG_RW, &vm_prefault_pages, 0,
2450 "Maximum number of pages to pre-fault");
2451 static int vm_fast_fault = 1;
2452 SYSCTL_INT(_vm, OID_AUTO, fast_fault, CTLFLAG_RW, &vm_fast_fault, 0,
2453 "Burst fault zero-fill regions");
2456 * Set PG_NOSYNC if the map entry indicates so, but only if the page
2457 * is not already dirty by other means. This will prevent passive
2458 * filesystem syncing as well as 'sync' from writing out the page.
2460 static void
2461 vm_set_nosync(vm_page_t m, vm_map_entry_t entry)
2463 if (entry->eflags & MAP_ENTRY_NOSYNC) {
2464 if (m->dirty == 0)
2465 vm_page_flag_set(m, PG_NOSYNC);
2466 } else {
2467 vm_page_flag_clear(m, PG_NOSYNC);
2471 static void
2472 vm_prefault(pmap_t pmap, vm_offset_t addra, vm_map_entry_t entry, int prot,
2473 int fault_flags)
2475 struct lwp *lp;
2476 vm_page_t m;
2477 vm_offset_t addr;
2478 vm_pindex_t index;
2479 vm_pindex_t pindex;
2480 vm_object_t object;
2481 int pprot;
2482 int i;
2483 int noneg;
2484 int nopos;
2485 int maxpages;
2488 * Get stable max count value, disabled if set to 0
2490 maxpages = vm_prefault_pages;
2491 cpu_ccfence();
2492 if (maxpages <= 0)
2493 return;
2496 * We do not currently prefault mappings that use virtual page
2497 * tables. We do not prefault foreign pmaps.
2499 if (entry->maptype != VM_MAPTYPE_NORMAL)
2500 return;
2501 lp = curthread->td_lwp;
2502 if (lp == NULL || (pmap != vmspace_pmap(lp->lwp_vmspace)))
2503 return;
2506 * Limit pre-fault count to 1024 pages.
2508 if (maxpages > 1024)
2509 maxpages = 1024;
2511 object = entry->object.vm_object;
2512 KKASSERT(object != NULL);
2513 KKASSERT(object == entry->object.vm_object);
2514 vm_object_hold(object);
2515 vm_object_chain_acquire(object, 0);
2517 noneg = 0;
2518 nopos = 0;
2519 for (i = 0; i < maxpages; ++i) {
2520 vm_object_t lobject;
2521 vm_object_t nobject;
2522 int allocated = 0;
2523 int error;
2526 * This can eat a lot of time on a heavily contended
2527 * machine so yield on the tick if needed.
2529 if ((i & 7) == 7)
2530 lwkt_yield();
2533 * Calculate the page to pre-fault, stopping the scan in
2534 * each direction separately if the limit is reached.
2536 if (i & 1) {
2537 if (noneg)
2538 continue;
2539 addr = addra - ((i + 1) >> 1) * PAGE_SIZE;
2540 } else {
2541 if (nopos)
2542 continue;
2543 addr = addra + ((i + 2) >> 1) * PAGE_SIZE;
2545 if (addr < entry->start) {
2546 noneg = 1;
2547 if (noneg && nopos)
2548 break;
2549 continue;
2551 if (addr >= entry->end) {
2552 nopos = 1;
2553 if (noneg && nopos)
2554 break;
2555 continue;
2559 * Skip pages already mapped, and stop scanning in that
2560 * direction. When the scan terminates in both directions
2561 * we are done.
2563 if (pmap_prefault_ok(pmap, addr) == 0) {
2564 if (i & 1)
2565 noneg = 1;
2566 else
2567 nopos = 1;
2568 if (noneg && nopos)
2569 break;
2570 continue;
2574 * Follow the VM object chain to obtain the page to be mapped
2575 * into the pmap.
2577 * If we reach the terminal object without finding a page
2578 * and we determine it would be advantageous, then allocate
2579 * a zero-fill page for the base object. The base object
2580 * is guaranteed to be OBJT_DEFAULT for this case.
2582 * In order to not have to check the pager via *haspage*()
2583 * we stop if any non-default object is encountered. e.g.
2584 * a vnode or swap object would stop the loop.
2586 index = ((addr - entry->start) + entry->offset) >> PAGE_SHIFT;
2587 lobject = object;
2588 pindex = index;
2589 pprot = prot;
2591 KKASSERT(lobject == entry->object.vm_object);
2592 /*vm_object_hold(lobject); implied */
2594 while ((m = vm_page_lookup_busy_try(lobject, pindex,
2595 TRUE, &error)) == NULL) {
2596 if (lobject->type != OBJT_DEFAULT)
2597 break;
2598 if (lobject->backing_object == NULL) {
2599 if (vm_fast_fault == 0)
2600 break;
2601 if ((prot & VM_PROT_WRITE) == 0 ||
2602 vm_page_count_min(0)) {
2603 break;
2607 * NOTE: Allocated from base object
2609 m = vm_page_alloc(object, index,
2610 VM_ALLOC_NORMAL |
2611 VM_ALLOC_ZERO |
2612 VM_ALLOC_USE_GD |
2613 VM_ALLOC_NULL_OK);
2614 if (m == NULL)
2615 break;
2616 allocated = 1;
2617 pprot = prot;
2618 /* lobject = object .. not needed */
2619 break;
2621 if (lobject->backing_object_offset & PAGE_MASK)
2622 break;
2623 nobject = lobject->backing_object;
2624 vm_object_hold(nobject);
2625 KKASSERT(nobject == lobject->backing_object);
2626 pindex += lobject->backing_object_offset >> PAGE_SHIFT;
2627 if (lobject != object) {
2628 vm_object_lock_swap();
2629 vm_object_drop(lobject);
2631 lobject = nobject;
2632 pprot &= ~VM_PROT_WRITE;
2633 vm_object_chain_acquire(lobject, 0);
2637 * NOTE: A non-NULL (m) will be associated with lobject if
2638 * it was found there, otherwise it is probably a
2639 * zero-fill page associated with the base object.
2641 * Give-up if no page is available.
2643 if (m == NULL) {
2644 if (lobject != object) {
2645 #if 0
2646 if (object->backing_object != lobject)
2647 vm_object_hold(object->backing_object);
2648 #endif
2649 vm_object_chain_release_all(
2650 object->backing_object, lobject);
2651 #if 0
2652 if (object->backing_object != lobject)
2653 vm_object_drop(object->backing_object);
2654 #endif
2655 vm_object_drop(lobject);
2657 break;
2661 * The object must be marked dirty if we are mapping a
2662 * writable page. m->object is either lobject or object,
2663 * both of which are still held. Do this before we
2664 * potentially drop the object.
2666 if (pprot & VM_PROT_WRITE)
2667 vm_object_set_writeable_dirty(m->object);
2670 * Do not conditionalize on PG_RAM. If pages are present in
2671 * the VM system we assume optimal caching. If caching is
2672 * not optimal the I/O gravy train will be restarted when we
2673 * hit an unavailable page. We do not want to try to restart
2674 * the gravy train now because we really don't know how much
2675 * of the object has been cached. The cost for restarting
2676 * the gravy train should be low (since accesses will likely
2677 * be I/O bound anyway).
2679 if (lobject != object) {
2680 #if 0
2681 if (object->backing_object != lobject)
2682 vm_object_hold(object->backing_object);
2683 #endif
2684 vm_object_chain_release_all(object->backing_object,
2685 lobject);
2686 #if 0
2687 if (object->backing_object != lobject)
2688 vm_object_drop(object->backing_object);
2689 #endif
2690 vm_object_drop(lobject);
2694 * Enter the page into the pmap if appropriate. If we had
2695 * allocated the page we have to place it on a queue. If not
2696 * we just have to make sure it isn't on the cache queue
2697 * (pages on the cache queue are not allowed to be mapped).
2699 if (allocated) {
2701 * Page must be zerod.
2703 if ((m->flags & PG_ZERO) == 0) {
2704 vm_page_zero_fill(m);
2705 } else {
2706 #ifdef PMAP_DEBUG
2707 pmap_page_assertzero(
2708 VM_PAGE_TO_PHYS(m));
2709 #endif
2710 vm_page_flag_clear(m, PG_ZERO);
2711 mycpu->gd_cnt.v_ozfod++;
2713 mycpu->gd_cnt.v_zfod++;
2714 m->valid = VM_PAGE_BITS_ALL;
2717 * Handle dirty page case
2719 if (pprot & VM_PROT_WRITE)
2720 vm_set_nosync(m, entry);
2721 pmap_enter(pmap, addr, m, pprot, 0, entry);
2722 mycpu->gd_cnt.v_vm_faults++;
2723 if (curthread->td_lwp)
2724 ++curthread->td_lwp->lwp_ru.ru_minflt;
2725 vm_page_deactivate(m);
2726 if (pprot & VM_PROT_WRITE) {
2727 /*vm_object_set_writeable_dirty(m->object);*/
2728 vm_set_nosync(m, entry);
2729 if (fault_flags & VM_FAULT_DIRTY) {
2730 vm_page_dirty(m);
2731 /*XXX*/
2732 swap_pager_unswapped(m);
2735 vm_page_wakeup(m);
2736 } else if (error) {
2737 /* couldn't busy page, no wakeup */
2738 } else if (
2739 ((m->valid & VM_PAGE_BITS_ALL) == VM_PAGE_BITS_ALL) &&
2740 (m->flags & PG_FICTITIOUS) == 0) {
2742 * A fully valid page not undergoing soft I/O can
2743 * be immediately entered into the pmap.
2745 if ((m->queue - m->pc) == PQ_CACHE)
2746 vm_page_deactivate(m);
2747 if (pprot & VM_PROT_WRITE) {
2748 /*vm_object_set_writeable_dirty(m->object);*/
2749 vm_set_nosync(m, entry);
2750 if (fault_flags & VM_FAULT_DIRTY) {
2751 vm_page_dirty(m);
2752 /*XXX*/
2753 swap_pager_unswapped(m);
2756 if (pprot & VM_PROT_WRITE)
2757 vm_set_nosync(m, entry);
2758 pmap_enter(pmap, addr, m, pprot, 0, entry);
2759 mycpu->gd_cnt.v_vm_faults++;
2760 if (curthread->td_lwp)
2761 ++curthread->td_lwp->lwp_ru.ru_minflt;
2762 vm_page_wakeup(m);
2763 } else {
2764 vm_page_wakeup(m);
2767 vm_object_chain_release(object);
2768 vm_object_drop(object);
2772 * Object can be held shared
2774 static void
2775 vm_prefault_quick(pmap_t pmap, vm_offset_t addra,
2776 vm_map_entry_t entry, int prot, int fault_flags)
2778 struct lwp *lp;
2779 vm_page_t m;
2780 vm_offset_t addr;
2781 vm_pindex_t pindex;
2782 vm_object_t object;
2783 int i;
2784 int noneg;
2785 int nopos;
2786 int maxpages;
2789 * Get stable max count value, disabled if set to 0
2791 maxpages = vm_prefault_pages;
2792 cpu_ccfence();
2793 if (maxpages <= 0)
2794 return;
2797 * We do not currently prefault mappings that use virtual page
2798 * tables. We do not prefault foreign pmaps.
2800 if (entry->maptype != VM_MAPTYPE_NORMAL)
2801 return;
2802 lp = curthread->td_lwp;
2803 if (lp == NULL || (pmap != vmspace_pmap(lp->lwp_vmspace)))
2804 return;
2805 object = entry->object.vm_object;
2806 if (object->backing_object != NULL)
2807 return;
2808 ASSERT_LWKT_TOKEN_HELD(vm_object_token(object));
2811 * Limit pre-fault count to 1024 pages.
2813 if (maxpages > 1024)
2814 maxpages = 1024;
2816 noneg = 0;
2817 nopos = 0;
2818 for (i = 0; i < maxpages; ++i) {
2819 int error;
2822 * Calculate the page to pre-fault, stopping the scan in
2823 * each direction separately if the limit is reached.
2825 if (i & 1) {
2826 if (noneg)
2827 continue;
2828 addr = addra - ((i + 1) >> 1) * PAGE_SIZE;
2829 } else {
2830 if (nopos)
2831 continue;
2832 addr = addra + ((i + 2) >> 1) * PAGE_SIZE;
2834 if (addr < entry->start) {
2835 noneg = 1;
2836 if (noneg && nopos)
2837 break;
2838 continue;
2840 if (addr >= entry->end) {
2841 nopos = 1;
2842 if (noneg && nopos)
2843 break;
2844 continue;
2848 * Skip pages already mapped, and stop scanning in that
2849 * direction. When the scan terminates in both directions
2850 * we are done.
2852 if (pmap_prefault_ok(pmap, addr) == 0) {
2853 if (i & 1)
2854 noneg = 1;
2855 else
2856 nopos = 1;
2857 if (noneg && nopos)
2858 break;
2859 continue;
2863 * Follow the VM object chain to obtain the page to be mapped
2864 * into the pmap. This version of the prefault code only
2865 * works with terminal objects.
2867 * WARNING! We cannot call swap_pager_unswapped() with a
2868 * shared token.
2870 pindex = ((addr - entry->start) + entry->offset) >> PAGE_SHIFT;
2872 m = vm_page_lookup_busy_try(object, pindex, TRUE, &error);
2873 if (m == NULL || error)
2874 continue;
2876 if (((m->valid & VM_PAGE_BITS_ALL) == VM_PAGE_BITS_ALL) &&
2877 (m->flags & PG_FICTITIOUS) == 0 &&
2878 ((m->flags & PG_SWAPPED) == 0 ||
2879 (prot & VM_PROT_WRITE) == 0 ||
2880 (fault_flags & VM_FAULT_DIRTY) == 0)) {
2882 * A fully valid page not undergoing soft I/O can
2883 * be immediately entered into the pmap.
2885 if ((m->queue - m->pc) == PQ_CACHE)
2886 vm_page_deactivate(m);
2887 if (prot & VM_PROT_WRITE) {
2888 vm_object_set_writeable_dirty(m->object);
2889 vm_set_nosync(m, entry);
2890 if (fault_flags & VM_FAULT_DIRTY) {
2891 vm_page_dirty(m);
2892 /*XXX*/
2893 swap_pager_unswapped(m);
2896 pmap_enter(pmap, addr, m, prot, 0, entry);
2897 mycpu->gd_cnt.v_vm_faults++;
2898 if (curthread->td_lwp)
2899 ++curthread->td_lwp->lwp_ru.ru_minflt;
2901 vm_page_wakeup(m);