kernel - VM rework part 18 - Cleanup
[dragonfly.git] / sys / vm / vm_map.c
blob22be1506f8543356282d996796b9d6a63aab7771
1 /*
2 * Copyright (c) 1991, 1993
3 * The Regents of the University of California. All rights reserved.
4 * Copyright (c) 2003-2019 The DragonFly Project. All rights reserved.
6 * This code is derived from software contributed to Berkeley by
7 * The Mach Operating System project at Carnegie-Mellon University.
9 * This code is derived from software contributed to The DragonFly Project
10 * by Matthew Dillon <dillon@backplane.com>
12 * Redistribution and use in source and binary forms, with or without
13 * modification, are permitted provided that the following conditions
14 * are met:
15 * 1. Redistributions of source code must retain the above copyright
16 * notice, this list of conditions and the following disclaimer.
17 * 2. Redistributions in binary form must reproduce the above copyright
18 * notice, this list of conditions and the following disclaimer in the
19 * documentation and/or other materials provided with the distribution.
20 * 3. Neither the name of the University nor the names of its contributors
21 * may be used to endorse or promote products derived from this software
22 * without specific prior written permission.
24 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
25 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
26 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
27 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
28 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
29 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
30 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
31 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
32 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
33 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
34 * SUCH DAMAGE.
36 * from: @(#)vm_map.c 8.3 (Berkeley) 1/12/94
38 * Copyright (c) 1987, 1990 Carnegie-Mellon University.
39 * All rights reserved.
41 * Authors: Avadis Tevanian, Jr., Michael Wayne Young
43 * Permission to use, copy, modify and distribute this software and
44 * its documentation is hereby granted, provided that both the copyright
45 * notice and this permission notice appear in all copies of the
46 * software, derivative works or modified versions, and any portions
47 * thereof, and that both notices appear in supporting documentation.
49 * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
50 * CONDITION. CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
51 * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
53 * Carnegie Mellon requests users of this software to return to
55 * Software Distribution Coordinator or Software.Distribution@CS.CMU.EDU
56 * School of Computer Science
57 * Carnegie Mellon University
58 * Pittsburgh PA 15213-3890
60 * any improvements or extensions that they make and grant Carnegie the
61 * rights to redistribute these changes.
63 #include <sys/param.h>
64 #include <sys/systm.h>
65 #include <sys/kernel.h>
66 #include <sys/proc.h>
67 #include <sys/serialize.h>
68 #include <sys/lock.h>
69 #include <sys/vmmeter.h>
70 #include <sys/mman.h>
71 #include <sys/vnode.h>
72 #include <sys/resourcevar.h>
73 #include <sys/shm.h>
74 #include <sys/tree.h>
75 #include <sys/malloc.h>
76 #include <sys/objcache.h>
77 #include <sys/kern_syscall.h>
79 #include <vm/vm.h>
80 #include <vm/vm_param.h>
81 #include <vm/pmap.h>
82 #include <vm/vm_map.h>
83 #include <vm/vm_page.h>
84 #include <vm/vm_object.h>
85 #include <vm/vm_pager.h>
86 #include <vm/vm_kern.h>
87 #include <vm/vm_extern.h>
88 #include <vm/swap_pager.h>
89 #include <vm/vm_zone.h>
91 #include <sys/random.h>
92 #include <sys/sysctl.h>
93 #include <sys/spinlock.h>
95 #include <sys/thread2.h>
96 #include <sys/spinlock2.h>
99 * Virtual memory maps provide for the mapping, protection, and sharing
100 * of virtual memory objects. In addition, this module provides for an
101 * efficient virtual copy of memory from one map to another.
103 * Synchronization is required prior to most operations.
105 * Maps consist of an ordered doubly-linked list of simple entries.
106 * A hint and a RB tree is used to speed-up lookups.
108 * Callers looking to modify maps specify start/end addresses which cause
109 * the related map entry to be clipped if necessary, and then later
110 * recombined if the pieces remained compatible.
112 * Virtual copy operations are performed by copying VM object references
113 * from one map to another, and then marking both regions as copy-on-write.
115 static boolean_t vmspace_ctor(void *obj, void *privdata, int ocflags);
116 static void vmspace_dtor(void *obj, void *privdata);
117 static void vmspace_terminate(struct vmspace *vm, int final);
119 MALLOC_DEFINE(M_VMSPACE, "vmspace", "vmspace objcache backingstore");
120 MALLOC_DEFINE(M_MAP_BACKING, "map_backing", "vm_map_backing to entry");
121 static struct objcache *vmspace_cache;
124 * per-cpu page table cross mappings are initialized in early boot
125 * and might require a considerable number of vm_map_entry structures.
127 #define MAPENTRYBSP_CACHE (MAXCPU+1)
128 #define MAPENTRYAP_CACHE 8
131 * Partioning threaded programs with large anonymous memory areas can
132 * improve concurrent fault performance.
134 #define MAP_ENTRY_PARTITION_SIZE ((vm_offset_t)(32 * 1024 * 1024))
135 #define MAP_ENTRY_PARTITION_MASK (MAP_ENTRY_PARTITION_SIZE - 1)
137 #define VM_MAP_ENTRY_WITHIN_PARTITION(entry) \
138 ((((entry)->ba.start ^ (entry)->ba.end) & ~MAP_ENTRY_PARTITION_MASK) == 0)
140 static struct vm_zone mapentzone_store;
141 __read_mostly static vm_zone_t mapentzone;
143 static struct vm_map_entry map_entry_init[MAX_MAPENT];
144 static struct vm_map_entry cpu_map_entry_init_bsp[MAPENTRYBSP_CACHE];
145 static struct vm_map_entry cpu_map_entry_init_ap[MAXCPU][MAPENTRYAP_CACHE];
147 static int randomize_mmap;
148 SYSCTL_INT(_vm, OID_AUTO, randomize_mmap, CTLFLAG_RW, &randomize_mmap, 0,
149 "Randomize mmap offsets");
150 static int vm_map_relock_enable = 1;
151 SYSCTL_INT(_vm, OID_AUTO, map_relock_enable, CTLFLAG_RW,
152 &vm_map_relock_enable, 0, "insert pop pgtable optimization");
153 static int vm_map_partition_enable = 1;
154 SYSCTL_INT(_vm, OID_AUTO, map_partition_enable, CTLFLAG_RW,
155 &vm_map_partition_enable, 0, "Break up larger vm_map_entry's");
156 static int vm_map_backing_limit = 5;
157 SYSCTL_INT(_vm, OID_AUTO, map_backing_limit, CTLFLAG_RW,
158 &vm_map_backing_limit, 0, "ba.backing_ba link depth");
159 static int vm_map_backing_shadow_test = 1;
160 SYSCTL_INT(_vm, OID_AUTO, map_backing_shadow_test, CTLFLAG_RW,
161 &vm_map_backing_shadow_test, 0, "ba.object shadow test");
163 static void vmspace_drop_notoken(struct vmspace *vm);
164 static void vm_map_entry_shadow(vm_map_entry_t entry);
165 static vm_map_entry_t vm_map_entry_create(int *);
166 static void vm_map_entry_dispose (vm_map_t map, vm_map_entry_t entry, int *);
167 static void vm_map_entry_dispose_ba (vm_map_backing_t ba);
168 static void vm_map_backing_replicated(vm_map_t map,
169 vm_map_entry_t entry, int flags);
170 static void vm_map_backing_adjust_start(vm_map_entry_t entry,
171 vm_ooffset_t start);
172 static void vm_map_backing_adjust_end(vm_map_entry_t entry,
173 vm_ooffset_t end);
174 static void vm_map_backing_attach (vm_map_backing_t ba);
175 static void vm_map_backing_detach (vm_map_backing_t ba);
176 static void _vm_map_clip_end (vm_map_t, vm_map_entry_t, vm_offset_t, int *);
177 static void _vm_map_clip_start (vm_map_t, vm_map_entry_t, vm_offset_t, int *);
178 static void vm_map_entry_delete (vm_map_t, vm_map_entry_t, int *);
179 static void vm_map_entry_unwire (vm_map_t, vm_map_entry_t);
180 static void vm_map_copy_entry (vm_map_t, vm_map_t, vm_map_entry_t,
181 vm_map_entry_t);
182 static void vm_map_unclip_range (vm_map_t map, vm_map_entry_t start_entry,
183 vm_offset_t start, vm_offset_t end, int *countp, int flags);
184 static void vm_map_entry_partition(vm_map_t map, vm_map_entry_t entry,
185 vm_offset_t vaddr, int *countp);
187 #define MAP_BACK_CLIPPED 0x0001
188 #define MAP_BACK_BASEOBJREFD 0x0002
191 * Initialize the vm_map module. Must be called before any other vm_map
192 * routines.
194 * Map and entry structures are allocated from the general purpose
195 * memory pool with some exceptions:
197 * - The kernel map is allocated statically.
198 * - Initial kernel map entries are allocated out of a static pool.
199 * - We must set ZONE_SPECIAL here or the early boot code can get
200 * stuck if there are >63 cores.
202 * These restrictions are necessary since malloc() uses the
203 * maps and requires map entries.
205 * Called from the low level boot code only.
207 void
208 vm_map_startup(void)
210 mapentzone = &mapentzone_store;
211 zbootinit(mapentzone, "MAP ENTRY", sizeof (struct vm_map_entry),
212 map_entry_init, MAX_MAPENT);
213 mapentzone_store.zflags |= ZONE_SPECIAL;
217 * Called prior to any vmspace allocations.
219 * Called from the low level boot code only.
221 void
222 vm_init2(void)
224 vmspace_cache = objcache_create_mbacked(M_VMSPACE,
225 sizeof(struct vmspace),
226 0, ncpus * 4,
227 vmspace_ctor, vmspace_dtor,
228 NULL);
229 zinitna(mapentzone, NULL, 0, 0, ZONE_USE_RESERVE | ZONE_SPECIAL);
230 pmap_init2();
231 vm_object_init2();
235 * objcache support. We leave the pmap root cached as long as possible
236 * for performance reasons.
238 static
239 boolean_t
240 vmspace_ctor(void *obj, void *privdata, int ocflags)
242 struct vmspace *vm = obj;
244 bzero(vm, sizeof(*vm));
245 vm->vm_refcnt = VM_REF_DELETED;
247 return 1;
250 static
251 void
252 vmspace_dtor(void *obj, void *privdata)
254 struct vmspace *vm = obj;
256 KKASSERT(vm->vm_refcnt == VM_REF_DELETED);
257 pmap_puninit(vmspace_pmap(vm));
261 * Red black tree functions
263 * The caller must hold the related map lock.
265 static int rb_vm_map_compare(vm_map_entry_t a, vm_map_entry_t b);
266 RB_GENERATE(vm_map_rb_tree, vm_map_entry, rb_entry, rb_vm_map_compare);
268 /* a->ba.start is address, and the only field which must be initialized */
269 static int
270 rb_vm_map_compare(vm_map_entry_t a, vm_map_entry_t b)
272 if (a->ba.start < b->ba.start)
273 return(-1);
274 else if (a->ba.start > b->ba.start)
275 return(1);
276 return(0);
280 * Initialize vmspace ref/hold counts vmspace0. There is a holdcnt for
281 * every refcnt.
283 void
284 vmspace_initrefs(struct vmspace *vm)
286 vm->vm_refcnt = 1;
287 vm->vm_holdcnt = 1;
291 * Allocate a vmspace structure, including a vm_map and pmap.
292 * Initialize numerous fields. While the initial allocation is zerod,
293 * subsequence reuse from the objcache leaves elements of the structure
294 * intact (particularly the pmap), so portions must be zerod.
296 * Returns a referenced vmspace.
298 * No requirements.
300 struct vmspace *
301 vmspace_alloc(vm_offset_t min, vm_offset_t max)
303 struct vmspace *vm;
305 vm = objcache_get(vmspace_cache, M_WAITOK);
307 bzero(&vm->vm_startcopy,
308 (char *)&vm->vm_endcopy - (char *)&vm->vm_startcopy);
309 vm_map_init(&vm->vm_map, min, max, NULL); /* initializes token */
312 * NOTE: hold to acquires token for safety.
314 * On return vmspace is referenced (refs=1, hold=1). That is,
315 * each refcnt also has a holdcnt. There can be additional holds
316 * (holdcnt) above and beyond the refcnt. Finalization is handled in
317 * two stages, one on refs 1->0, and the the second on hold 1->0.
319 KKASSERT(vm->vm_holdcnt == 0);
320 KKASSERT(vm->vm_refcnt == VM_REF_DELETED);
321 vmspace_initrefs(vm);
322 vmspace_hold(vm);
323 pmap_pinit(vmspace_pmap(vm)); /* (some fields reused) */
324 vm->vm_map.pmap = vmspace_pmap(vm); /* XXX */
325 vm->vm_shm = NULL;
326 vm->vm_flags = 0;
327 cpu_vmspace_alloc(vm);
328 vmspace_drop(vm);
330 return (vm);
334 * NOTE: Can return 0 if the vmspace is exiting.
337 vmspace_getrefs(struct vmspace *vm)
339 int32_t n;
341 n = vm->vm_refcnt;
342 cpu_ccfence();
343 if (n & VM_REF_DELETED)
344 n = -1;
345 return n;
348 void
349 vmspace_hold(struct vmspace *vm)
351 atomic_add_int(&vm->vm_holdcnt, 1);
352 lwkt_gettoken(&vm->vm_map.token);
356 * Drop with final termination interlock.
358 void
359 vmspace_drop(struct vmspace *vm)
361 lwkt_reltoken(&vm->vm_map.token);
362 vmspace_drop_notoken(vm);
365 static void
366 vmspace_drop_notoken(struct vmspace *vm)
368 if (atomic_fetchadd_int(&vm->vm_holdcnt, -1) == 1) {
369 if (vm->vm_refcnt & VM_REF_DELETED)
370 vmspace_terminate(vm, 1);
375 * A vmspace object must not be in a terminated state to be able to obtain
376 * additional refs on it.
378 * These are official references to the vmspace, the count is used to check
379 * for vmspace sharing. Foreign accessors should use 'hold' and not 'ref'.
381 * XXX we need to combine hold & ref together into one 64-bit field to allow
382 * holds to prevent stage-1 termination.
384 void
385 vmspace_ref(struct vmspace *vm)
387 uint32_t n;
389 atomic_add_int(&vm->vm_holdcnt, 1);
390 n = atomic_fetchadd_int(&vm->vm_refcnt, 1);
391 KKASSERT((n & VM_REF_DELETED) == 0);
395 * Release a ref on the vmspace. On the 1->0 transition we do stage-1
396 * termination of the vmspace. Then, on the final drop of the hold we
397 * will do stage-2 final termination.
399 void
400 vmspace_rel(struct vmspace *vm)
402 uint32_t n;
405 * Drop refs. Each ref also has a hold which is also dropped.
407 * When refs hits 0 compete to get the VM_REF_DELETED flag (hold
408 * prevent finalization) to start termination processing.
409 * Finalization occurs when the last hold count drops to 0.
411 n = atomic_fetchadd_int(&vm->vm_refcnt, -1) - 1;
412 while (n == 0) {
413 if (atomic_cmpset_int(&vm->vm_refcnt, 0, VM_REF_DELETED)) {
414 vmspace_terminate(vm, 0);
415 break;
417 n = vm->vm_refcnt;
418 cpu_ccfence();
420 vmspace_drop_notoken(vm);
424 * This is called during exit indicating that the vmspace is no
425 * longer in used by an exiting process, but the process has not yet
426 * been reaped.
428 * We drop refs, allowing for stage-1 termination, but maintain a holdcnt
429 * to prevent stage-2 until the process is reaped. Note hte order of
430 * operation, we must hold first.
432 * No requirements.
434 void
435 vmspace_relexit(struct vmspace *vm)
437 atomic_add_int(&vm->vm_holdcnt, 1);
438 vmspace_rel(vm);
442 * Called during reap to disconnect the remainder of the vmspace from
443 * the process. On the hold drop the vmspace termination is finalized.
445 * No requirements.
447 void
448 vmspace_exitfree(struct proc *p)
450 struct vmspace *vm;
452 vm = p->p_vmspace;
453 p->p_vmspace = NULL;
454 vmspace_drop_notoken(vm);
458 * Called in two cases:
460 * (1) When the last refcnt is dropped and the vmspace becomes inactive,
461 * called with final == 0. refcnt will be (u_int)-1 at this point,
462 * and holdcnt will still be non-zero.
464 * (2) When holdcnt becomes 0, called with final == 1. There should no
465 * longer be anyone with access to the vmspace.
467 * VMSPACE_EXIT1 flags the primary deactivation
468 * VMSPACE_EXIT2 flags the last reap
470 static void
471 vmspace_terminate(struct vmspace *vm, int final)
473 int count;
475 lwkt_gettoken(&vm->vm_map.token);
476 if (final == 0) {
477 KKASSERT((vm->vm_flags & VMSPACE_EXIT1) == 0);
478 vm->vm_flags |= VMSPACE_EXIT1;
481 * Get rid of most of the resources. Leave the kernel pmap
482 * intact.
484 * If the pmap does not contain wired pages we can bulk-delete
485 * the pmap as a performance optimization before removing the
486 * related mappings.
488 * If the pmap contains wired pages we cannot do this
489 * pre-optimization because currently vm_fault_unwire()
490 * expects the pmap pages to exist and will not decrement
491 * p->wire_count if they do not.
493 shmexit(vm);
494 if (vmspace_pmap(vm)->pm_stats.wired_count) {
495 vm_map_remove(&vm->vm_map, VM_MIN_USER_ADDRESS,
496 VM_MAX_USER_ADDRESS);
497 pmap_remove_pages(vmspace_pmap(vm), VM_MIN_USER_ADDRESS,
498 VM_MAX_USER_ADDRESS);
499 } else {
500 pmap_remove_pages(vmspace_pmap(vm), VM_MIN_USER_ADDRESS,
501 VM_MAX_USER_ADDRESS);
502 vm_map_remove(&vm->vm_map, VM_MIN_USER_ADDRESS,
503 VM_MAX_USER_ADDRESS);
505 lwkt_reltoken(&vm->vm_map.token);
506 } else {
507 KKASSERT((vm->vm_flags & VMSPACE_EXIT1) != 0);
508 KKASSERT((vm->vm_flags & VMSPACE_EXIT2) == 0);
511 * Get rid of remaining basic resources.
513 vm->vm_flags |= VMSPACE_EXIT2;
514 shmexit(vm);
516 count = vm_map_entry_reserve(MAP_RESERVE_COUNT);
517 vm_map_lock(&vm->vm_map);
518 cpu_vmspace_free(vm);
521 * Lock the map, to wait out all other references to it.
522 * Delete all of the mappings and pages they hold, then call
523 * the pmap module to reclaim anything left.
525 vm_map_delete(&vm->vm_map,
526 vm_map_min(&vm->vm_map),
527 vm_map_max(&vm->vm_map),
528 &count);
529 vm_map_unlock(&vm->vm_map);
530 vm_map_entry_release(count);
532 pmap_release(vmspace_pmap(vm));
533 lwkt_reltoken(&vm->vm_map.token);
534 objcache_put(vmspace_cache, vm);
539 * Swap useage is determined by taking the proportional swap used by
540 * VM objects backing the VM map. To make up for fractional losses,
541 * if the VM object has any swap use at all the associated map entries
542 * count for at least 1 swap page.
544 * No requirements.
546 vm_offset_t
547 vmspace_swap_count(struct vmspace *vm)
549 vm_map_t map = &vm->vm_map;
550 vm_map_entry_t cur;
551 vm_object_t object;
552 vm_offset_t count = 0;
553 vm_offset_t n;
555 vmspace_hold(vm);
557 RB_FOREACH(cur, vm_map_rb_tree, &map->rb_root) {
558 switch(cur->maptype) {
559 case VM_MAPTYPE_NORMAL:
560 case VM_MAPTYPE_VPAGETABLE:
561 if ((object = cur->ba.object) == NULL)
562 break;
563 if (object->swblock_count) {
564 n = (cur->ba.end - cur->ba.start) / PAGE_SIZE;
565 count += object->swblock_count *
566 SWAP_META_PAGES * n / object->size + 1;
568 break;
569 default:
570 break;
573 vmspace_drop(vm);
575 return(count);
579 * Calculate the approximate number of anonymous pages in use by
580 * this vmspace. To make up for fractional losses, we count each
581 * VM object as having at least 1 anonymous page.
583 * No requirements.
585 vm_offset_t
586 vmspace_anonymous_count(struct vmspace *vm)
588 vm_map_t map = &vm->vm_map;
589 vm_map_entry_t cur;
590 vm_object_t object;
591 vm_offset_t count = 0;
593 vmspace_hold(vm);
594 RB_FOREACH(cur, vm_map_rb_tree, &map->rb_root) {
595 switch(cur->maptype) {
596 case VM_MAPTYPE_NORMAL:
597 case VM_MAPTYPE_VPAGETABLE:
598 if ((object = cur->ba.object) == NULL)
599 break;
600 if (object->type != OBJT_DEFAULT &&
601 object->type != OBJT_SWAP) {
602 break;
604 count += object->resident_page_count;
605 break;
606 default:
607 break;
610 vmspace_drop(vm);
612 return(count);
616 * Initialize an existing vm_map structure such as that in the vmspace
617 * structure. The pmap is initialized elsewhere.
619 * No requirements.
621 void
622 vm_map_init(struct vm_map *map, vm_offset_t min_addr, vm_offset_t max_addr,
623 pmap_t pmap)
625 RB_INIT(&map->rb_root);
626 spin_init(&map->ilock_spin, "ilock");
627 map->ilock_base = NULL;
628 map->nentries = 0;
629 map->size = 0;
630 map->system_map = 0;
631 vm_map_min(map) = min_addr;
632 vm_map_max(map) = max_addr;
633 map->pmap = pmap;
634 map->timestamp = 0;
635 map->flags = 0;
636 bzero(&map->freehint, sizeof(map->freehint));
637 lwkt_token_init(&map->token, "vm_map");
638 lockinit(&map->lock, "vm_maplk", (hz + 9) / 10, 0);
642 * Find the first possible free address for the specified request length.
643 * Returns 0 if we don't have one cached.
645 static
646 vm_offset_t
647 vm_map_freehint_find(vm_map_t map, vm_size_t length, vm_size_t align)
649 vm_map_freehint_t *scan;
651 scan = &map->freehint[0];
652 while (scan < &map->freehint[VM_MAP_FFCOUNT]) {
653 if (scan->length == length && scan->align == align)
654 return(scan->start);
655 ++scan;
657 return 0;
661 * Unconditionally set the freehint. Called by vm_map_findspace() after
662 * it finds an address. This will help us iterate optimally on the next
663 * similar findspace.
665 static
666 void
667 vm_map_freehint_update(vm_map_t map, vm_offset_t start,
668 vm_size_t length, vm_size_t align)
670 vm_map_freehint_t *scan;
672 scan = &map->freehint[0];
673 while (scan < &map->freehint[VM_MAP_FFCOUNT]) {
674 if (scan->length == length && scan->align == align) {
675 scan->start = start;
676 return;
678 ++scan;
680 scan = &map->freehint[map->freehint_newindex & VM_MAP_FFMASK];
681 scan->start = start;
682 scan->align = align;
683 scan->length = length;
684 ++map->freehint_newindex;
688 * Update any existing freehints (for any alignment), for the hole we just
689 * added.
691 static
692 void
693 vm_map_freehint_hole(vm_map_t map, vm_offset_t start, vm_size_t length)
695 vm_map_freehint_t *scan;
697 scan = &map->freehint[0];
698 while (scan < &map->freehint[VM_MAP_FFCOUNT]) {
699 if (scan->length <= length && scan->start > start)
700 scan->start = start;
701 ++scan;
706 * This function handles MAP_ENTRY_NEEDS_COPY by inserting a fronting
707 * object in the entry for COW faults.
709 * The entire chain including entry->ba (prior to inserting the fronting
710 * object) essentially becomes set in stone... elements of it can be paged
711 * in or out, but cannot be further modified.
713 * NOTE: If we do not optimize the backing chain then a unique copy is not
714 * needed. Note, however, that because portions of the chain are
715 * shared across pmaps we cannot make any changes to the vm_map_backing
716 * elements themselves.
718 * If the map segment is governed by a virtual page table then it is
719 * possible to address offsets beyond the mapped area. Just allocate
720 * a maximally sized object for this case.
722 * If addref is non-zero an additional reference is added to the returned
723 * entry. This mechanic exists because the additional reference might have
724 * to be added atomically and not after return to prevent a premature
725 * collapse. XXX currently there is no collapse code.
727 * The vm_map must be exclusively locked.
728 * No other requirements.
730 static
731 void
732 vm_map_entry_shadow(vm_map_entry_t entry)
734 vm_map_backing_t ba;
735 vm_size_t length;
736 vm_object_t source;
737 vm_object_t result;
739 if (entry->maptype == VM_MAPTYPE_VPAGETABLE)
740 length = 0x7FFFFFFF;
741 else
742 length = atop(entry->ba.end - entry->ba.start);
745 * Don't create the new object if the old object isn't shared.
746 * This case occurs quite often when programs fork/exec/wait.
748 * Caller ensures source exists (all backing_ba's must have objects),
749 * typically indirectly by virtue of the NEEDS_COPY flag being set.
750 * We have a ref on source by virtue of the entry and do not need
751 * to lock it to do this test.
753 source = entry->ba.object;
754 KKASSERT(source);
756 if (source->type != OBJT_VNODE) {
757 if (source->ref_count == 1 &&
758 source->handle == NULL &&
759 (source->type == OBJT_DEFAULT ||
760 source->type == OBJT_SWAP)) {
761 goto done;
764 ba = kmalloc(sizeof(*ba), M_MAP_BACKING, M_INTWAIT); /* copied later */
765 vm_object_hold_shared(source);
768 * Once it becomes part of a backing_ba chain it can wind up anywhere,
769 * drop the ONEMAPPING flag now.
771 vm_object_clear_flag(source, OBJ_ONEMAPPING);
774 * Allocate a new object with the given length. The new object
775 * is returned referenced but we may have to add another one.
776 * If we are adding a second reference we must clear OBJ_ONEMAPPING.
777 * (typically because the caller is about to clone a vm_map_entry).
779 * The source object currently has an extra reference to prevent
780 * collapses into it while we mess with its shadow list, which
781 * we will remove later in this routine.
783 * The target object may require a second reference if asked for one
784 * by the caller.
786 result = vm_object_allocate_hold(OBJT_DEFAULT, length);
787 if (result == NULL)
788 panic("vm_object_shadow: no object for shadowing");
791 * The new object shadows the source object.
793 * Try to optimize the result object's page color when shadowing
794 * in order to maintain page coloring consistency in the combined
795 * shadowed object.
797 * The source object is moved to ba, retaining its existing ref-count.
798 * No additional ref is needed.
800 * SHADOWING IS NOT APPLICABLE TO OBJT_VNODE OBJECTS
802 vm_map_backing_detach(&entry->ba);
803 *ba = entry->ba; /* previous ba */
804 entry->ba.object = result; /* new ba (at head of entry) */
805 entry->ba.backing_ba = ba;
806 entry->ba.backing_count = ba->backing_count + 1;
807 entry->ba.offset = 0;
809 /* cpu localization twist */
810 result->pg_color = vm_quickcolor();
812 vm_map_backing_attach(&entry->ba);
813 vm_map_backing_attach(ba);
816 * Adjust the return storage. Drop the ref on source before
817 * returning.
819 vm_object_drop(result);
820 vm_object_drop(source);
821 done:
822 entry->eflags &= ~MAP_ENTRY_NEEDS_COPY;
826 * Allocate an object for a vm_map_entry.
828 * Object allocation for anonymous mappings is defered as long as possible.
829 * This function is called when we can defer no longer, generally when a map
830 * entry might be split or forked or takes a page fault.
832 * If the map segment is governed by a virtual page table then it is
833 * possible to address offsets beyond the mapped area. Just allocate
834 * a maximally sized object for this case.
836 * The vm_map must be exclusively locked.
837 * No other requirements.
839 void
840 vm_map_entry_allocate_object(vm_map_entry_t entry)
842 vm_object_t obj;
845 * ba.offset is NOT cumulatively added in the backing_ba scan like
846 * it was in the old object chain, so we can assign whatever offset
847 * we like to the new object.
849 * For now assign a value of 0 to make debugging object sizes
850 * easier.
852 entry->ba.offset = 0;
854 if (entry->maptype == VM_MAPTYPE_VPAGETABLE) {
855 /* XXX */
856 obj = vm_object_allocate(OBJT_DEFAULT, 0x7FFFFFFF);
857 } else {
858 obj = vm_object_allocate(OBJT_DEFAULT,
859 atop(entry->ba.end - entry->ba.start) +
860 entry->ba.offset);
862 entry->ba.object = obj;
863 vm_map_backing_attach(&entry->ba);
867 * Set an initial negative count so the first attempt to reserve
868 * space preloads a bunch of vm_map_entry's for this cpu. Also
869 * pre-allocate 2 vm_map_entries which will be needed by zalloc() to
870 * map a new page for vm_map_entry structures. SMP systems are
871 * particularly sensitive.
873 * This routine is called in early boot so we cannot just call
874 * vm_map_entry_reserve().
876 * Called from the low level boot code only (for each cpu)
878 * WARNING! Take care not to have too-big a static/BSS structure here
879 * as MAXCPU can be 256+, otherwise the loader's 64MB heap
880 * can get blown out by the kernel plus the initrd image.
882 void
883 vm_map_entry_reserve_cpu_init(globaldata_t gd)
885 vm_map_entry_t entry;
886 int count;
887 int i;
889 atomic_add_int(&gd->gd_vme_avail, -MAP_RESERVE_COUNT * 2);
890 if (gd->gd_cpuid == 0) {
891 entry = &cpu_map_entry_init_bsp[0];
892 count = MAPENTRYBSP_CACHE;
893 } else {
894 entry = &cpu_map_entry_init_ap[gd->gd_cpuid][0];
895 count = MAPENTRYAP_CACHE;
897 for (i = 0; i < count; ++i, ++entry) {
898 MAPENT_FREELIST(entry) = gd->gd_vme_base;
899 gd->gd_vme_base = entry;
904 * Reserves vm_map_entry structures so code later-on can manipulate
905 * map_entry structures within a locked map without blocking trying
906 * to allocate a new vm_map_entry.
908 * No requirements.
910 * WARNING! We must not decrement gd_vme_avail until after we have
911 * ensured that sufficient entries exist, otherwise we can
912 * get into an endless call recursion in the zalloc code
913 * itself.
916 vm_map_entry_reserve(int count)
918 struct globaldata *gd = mycpu;
919 vm_map_entry_t entry;
922 * Make sure we have enough structures in gd_vme_base to handle
923 * the reservation request.
925 * Use a critical section to protect against VM faults. It might
926 * not be needed, but we have to be careful here.
928 if (gd->gd_vme_avail < count) {
929 crit_enter();
930 while (gd->gd_vme_avail < count) {
931 entry = zalloc(mapentzone);
932 MAPENT_FREELIST(entry) = gd->gd_vme_base;
933 gd->gd_vme_base = entry;
934 atomic_add_int(&gd->gd_vme_avail, 1);
936 crit_exit();
938 atomic_add_int(&gd->gd_vme_avail, -count);
940 return(count);
944 * Releases previously reserved vm_map_entry structures that were not
945 * used. If we have too much junk in our per-cpu cache clean some of
946 * it out.
948 * No requirements.
950 void
951 vm_map_entry_release(int count)
953 struct globaldata *gd = mycpu;
954 vm_map_entry_t entry;
955 vm_map_entry_t efree;
957 count = atomic_fetchadd_int(&gd->gd_vme_avail, count) + count;
958 if (gd->gd_vme_avail > MAP_RESERVE_SLOP) {
959 efree = NULL;
960 crit_enter();
961 while (gd->gd_vme_avail > MAP_RESERVE_HYST) {
962 entry = gd->gd_vme_base;
963 KKASSERT(entry != NULL);
964 gd->gd_vme_base = MAPENT_FREELIST(entry);
965 atomic_add_int(&gd->gd_vme_avail, -1);
966 MAPENT_FREELIST(entry) = efree;
967 efree = entry;
969 crit_exit();
970 while ((entry = efree) != NULL) {
971 efree = MAPENT_FREELIST(efree);
972 zfree(mapentzone, entry);
978 * Reserve map entry structures for use in kernel_map itself. These
979 * entries have *ALREADY* been reserved on a per-cpu basis when the map
980 * was inited. This function is used by zalloc() to avoid a recursion
981 * when zalloc() itself needs to allocate additional kernel memory.
983 * This function works like the normal reserve but does not load the
984 * vm_map_entry cache (because that would result in an infinite
985 * recursion). Note that gd_vme_avail may go negative. This is expected.
987 * Any caller of this function must be sure to renormalize after
988 * potentially eating entries to ensure that the reserve supply
989 * remains intact.
991 * No requirements.
994 vm_map_entry_kreserve(int count)
996 struct globaldata *gd = mycpu;
998 atomic_add_int(&gd->gd_vme_avail, -count);
999 KASSERT(gd->gd_vme_base != NULL,
1000 ("no reserved entries left, gd_vme_avail = %d",
1001 gd->gd_vme_avail));
1002 return(count);
1006 * Release previously reserved map entries for kernel_map. We do not
1007 * attempt to clean up like the normal release function as this would
1008 * cause an unnecessary (but probably not fatal) deep procedure call.
1010 * No requirements.
1012 void
1013 vm_map_entry_krelease(int count)
1015 struct globaldata *gd = mycpu;
1017 atomic_add_int(&gd->gd_vme_avail, count);
1021 * Allocates a VM map entry for insertion. No entry fields are filled in.
1023 * The entries should have previously been reserved. The reservation count
1024 * is tracked in (*countp).
1026 * No requirements.
1028 static vm_map_entry_t
1029 vm_map_entry_create(int *countp)
1031 struct globaldata *gd = mycpu;
1032 vm_map_entry_t entry;
1034 KKASSERT(*countp > 0);
1035 --*countp;
1036 crit_enter();
1037 entry = gd->gd_vme_base;
1038 KASSERT(entry != NULL, ("gd_vme_base NULL! count %d", *countp));
1039 gd->gd_vme_base = MAPENT_FREELIST(entry);
1040 crit_exit();
1042 return(entry);
1048 static void
1049 vm_map_backing_attach(vm_map_backing_t ba)
1051 vm_object_t obj = ba->object;
1053 lockmgr(&obj->backing_lk, LK_EXCLUSIVE);
1054 TAILQ_INSERT_TAIL(&obj->backing_list, ba, entry);
1055 lockmgr(&obj->backing_lk, LK_RELEASE);
1058 static void
1059 vm_map_backing_detach(vm_map_backing_t ba)
1061 vm_object_t obj = ba->object;
1063 lockmgr(&obj->backing_lk, LK_EXCLUSIVE);
1064 TAILQ_REMOVE(&obj->backing_list, ba, entry);
1065 lockmgr(&obj->backing_lk, LK_RELEASE);
1069 * Dispose of the dynamically allocated backing_ba chain associated
1070 * with a vm_map_entry.
1072 * We decrement the (possibly shared) element and kfree() on the
1073 * 1->0 transition. We only iterate to the next backing_ba when
1074 * the previous one went through a 1->0 transition.
1076 static void
1077 vm_map_entry_dispose_ba(vm_map_backing_t ba)
1079 vm_map_backing_t next;
1081 while (ba) {
1082 if (ba->object) {
1083 vm_map_backing_detach(ba);
1084 vm_object_deallocate(ba->object);
1086 next = ba->backing_ba;
1087 kfree(ba, M_MAP_BACKING);
1088 ba = next;
1093 * Dispose of a vm_map_entry that is no longer being referenced.
1095 * No requirements.
1097 static void
1098 vm_map_entry_dispose(vm_map_t map, vm_map_entry_t entry, int *countp)
1100 struct globaldata *gd = mycpu;
1103 * Dispose of the base object and the backing link.
1105 switch(entry->maptype) {
1106 case VM_MAPTYPE_NORMAL:
1107 case VM_MAPTYPE_VPAGETABLE:
1108 if (entry->ba.object) {
1109 vm_map_backing_detach(&entry->ba);
1110 vm_object_deallocate(entry->ba.object);
1112 break;
1113 case VM_MAPTYPE_SUBMAP:
1114 case VM_MAPTYPE_UKSMAP:
1115 /* XXX TODO */
1116 break;
1117 default:
1118 break;
1120 vm_map_entry_dispose_ba(entry->ba.backing_ba);
1123 * Cleanup for safety.
1125 entry->ba.backing_ba = NULL;
1126 entry->ba.object = NULL;
1127 entry->ba.offset = 0;
1129 ++*countp;
1130 crit_enter();
1131 MAPENT_FREELIST(entry) = gd->gd_vme_base;
1132 gd->gd_vme_base = entry;
1133 crit_exit();
1138 * Insert/remove entries from maps.
1140 * The related map must be exclusively locked.
1141 * The caller must hold map->token
1142 * No other requirements.
1144 static __inline void
1145 vm_map_entry_link(vm_map_t map, vm_map_entry_t entry)
1147 ASSERT_VM_MAP_LOCKED(map);
1149 map->nentries++;
1150 if (vm_map_rb_tree_RB_INSERT(&map->rb_root, entry))
1151 panic("vm_map_entry_link: dup addr map %p ent %p", map, entry);
1154 static __inline void
1155 vm_map_entry_unlink(vm_map_t map,
1156 vm_map_entry_t entry)
1158 ASSERT_VM_MAP_LOCKED(map);
1160 if (entry->eflags & MAP_ENTRY_IN_TRANSITION) {
1161 panic("vm_map_entry_unlink: attempt to mess with "
1162 "locked entry! %p", entry);
1164 vm_map_rb_tree_RB_REMOVE(&map->rb_root, entry);
1165 map->nentries--;
1169 * Finds the map entry containing (or immediately preceding) the specified
1170 * address in the given map. The entry is returned in (*entry).
1172 * The boolean result indicates whether the address is actually contained
1173 * in the map.
1175 * The related map must be locked.
1176 * No other requirements.
1178 boolean_t
1179 vm_map_lookup_entry(vm_map_t map, vm_offset_t address, vm_map_entry_t *entry)
1181 vm_map_entry_t tmp;
1182 vm_map_entry_t last;
1184 ASSERT_VM_MAP_LOCKED(map);
1187 * Locate the record from the top of the tree. 'last' tracks the
1188 * closest prior record and is returned if no match is found, which
1189 * in binary tree terms means tracking the most recent right-branch
1190 * taken. If there is no prior record, *entry is set to NULL.
1192 last = NULL;
1193 tmp = RB_ROOT(&map->rb_root);
1195 while (tmp) {
1196 if (address >= tmp->ba.start) {
1197 if (address < tmp->ba.end) {
1198 *entry = tmp;
1199 return(TRUE);
1201 last = tmp;
1202 tmp = RB_RIGHT(tmp, rb_entry);
1203 } else {
1204 tmp = RB_LEFT(tmp, rb_entry);
1207 *entry = last;
1208 return (FALSE);
1212 * Inserts the given whole VM object into the target map at the specified
1213 * address range. The object's size should match that of the address range.
1215 * The map must be exclusively locked.
1216 * The object must be held.
1217 * The caller must have reserved sufficient vm_map_entry structures.
1219 * If object is non-NULL, ref count must be bumped by caller prior to
1220 * making call to account for the new entry. XXX API is a bit messy.
1223 vm_map_insert(vm_map_t map, int *countp, void *map_object, void *map_aux,
1224 vm_ooffset_t offset, vm_offset_t start, vm_offset_t end,
1225 vm_maptype_t maptype, vm_subsys_t id,
1226 vm_prot_t prot, vm_prot_t max, int cow)
1228 vm_map_entry_t new_entry;
1229 vm_map_entry_t prev_entry;
1230 vm_map_entry_t next;
1231 vm_map_entry_t temp_entry;
1232 vm_eflags_t protoeflags;
1233 vm_object_t object;
1234 int must_drop = 0;
1236 if (maptype == VM_MAPTYPE_UKSMAP)
1237 object = NULL;
1238 else
1239 object = map_object;
1241 ASSERT_VM_MAP_LOCKED(map);
1242 if (object)
1243 ASSERT_LWKT_TOKEN_HELD(vm_object_token(object));
1246 * Check that the start and end points are not bogus.
1248 if ((start < vm_map_min(map)) || (end > vm_map_max(map)) ||
1249 (start >= end)) {
1250 return (KERN_INVALID_ADDRESS);
1254 * Find the entry prior to the proposed starting address; if it's part
1255 * of an existing entry, this range is bogus.
1257 if (vm_map_lookup_entry(map, start, &temp_entry))
1258 return (KERN_NO_SPACE);
1259 prev_entry = temp_entry;
1262 * Assert that the next entry doesn't overlap the end point.
1264 if (prev_entry)
1265 next = vm_map_rb_tree_RB_NEXT(prev_entry);
1266 else
1267 next = RB_MIN(vm_map_rb_tree, &map->rb_root);
1268 if (next && next->ba.start < end)
1269 return (KERN_NO_SPACE);
1271 protoeflags = 0;
1273 if (cow & MAP_COPY_ON_WRITE)
1274 protoeflags |= MAP_ENTRY_COW|MAP_ENTRY_NEEDS_COPY;
1276 if (cow & MAP_NOFAULT) {
1277 protoeflags |= MAP_ENTRY_NOFAULT;
1279 KASSERT(object == NULL,
1280 ("vm_map_insert: paradoxical MAP_NOFAULT request"));
1282 if (cow & MAP_DISABLE_SYNCER)
1283 protoeflags |= MAP_ENTRY_NOSYNC;
1284 if (cow & MAP_DISABLE_COREDUMP)
1285 protoeflags |= MAP_ENTRY_NOCOREDUMP;
1286 if (cow & MAP_IS_STACK)
1287 protoeflags |= MAP_ENTRY_STACK;
1288 if (cow & MAP_IS_KSTACK)
1289 protoeflags |= MAP_ENTRY_KSTACK;
1291 lwkt_gettoken(&map->token);
1293 if (object) {
1295 } else if (prev_entry &&
1296 (prev_entry->eflags == protoeflags) &&
1297 (prev_entry->ba.end == start) &&
1298 (prev_entry->wired_count == 0) &&
1299 (prev_entry->id == id) &&
1300 prev_entry->maptype == maptype &&
1301 maptype == VM_MAPTYPE_NORMAL &&
1302 prev_entry->ba.backing_ba == NULL && /* not backed */
1303 ((prev_entry->ba.object == NULL) ||
1304 vm_object_coalesce(prev_entry->ba.object,
1305 OFF_TO_IDX(prev_entry->ba.offset),
1306 (vm_size_t)(prev_entry->ba.end - prev_entry->ba.start),
1307 (vm_size_t)(end - prev_entry->ba.end)))) {
1309 * We were able to extend the object. Determine if we
1310 * can extend the previous map entry to include the
1311 * new range as well.
1313 if ((prev_entry->inheritance == VM_INHERIT_DEFAULT) &&
1314 (prev_entry->protection == prot) &&
1315 (prev_entry->max_protection == max)) {
1316 map->size += (end - prev_entry->ba.end);
1317 vm_map_backing_adjust_end(prev_entry, end);
1318 vm_map_simplify_entry(map, prev_entry, countp);
1319 lwkt_reltoken(&map->token);
1320 return (KERN_SUCCESS);
1324 * If we can extend the object but cannot extend the
1325 * map entry, we have to create a new map entry. We
1326 * must bump the ref count on the extended object to
1327 * account for it. object may be NULL.
1329 object = prev_entry->ba.object;
1330 offset = prev_entry->ba.offset +
1331 (prev_entry->ba.end - prev_entry->ba.start);
1332 if (object) {
1333 vm_object_hold(object);
1334 vm_object_lock_swap(); /* map->token order */
1335 vm_object_reference_locked(object);
1336 map_object = object;
1337 must_drop = 1;
1342 * NOTE: if conditionals fail, object can be NULL here. This occurs
1343 * in things like the buffer map where we manage kva but do not manage
1344 * backing objects.
1348 * Create a new entry
1350 new_entry = vm_map_entry_create(countp);
1351 new_entry->ba.pmap = map->pmap;
1352 new_entry->ba.start = start;
1353 new_entry->ba.end = end;
1354 new_entry->id = id;
1356 new_entry->maptype = maptype;
1357 new_entry->eflags = protoeflags;
1358 new_entry->aux.master_pde = 0; /* in case size is different */
1359 new_entry->aux.map_aux = map_aux;
1360 new_entry->ba.map_object = map_object;
1361 new_entry->ba.backing_ba = NULL;
1362 new_entry->ba.backing_count = 0;
1363 new_entry->ba.offset = offset;
1364 new_entry->ba.flags = 0;
1365 new_entry->ba.pmap = map->pmap;
1367 new_entry->inheritance = VM_INHERIT_DEFAULT;
1368 new_entry->protection = prot;
1369 new_entry->max_protection = max;
1370 new_entry->wired_count = 0;
1373 * Insert the new entry into the list
1375 vm_map_backing_replicated(map, new_entry, MAP_BACK_BASEOBJREFD);
1376 vm_map_entry_link(map, new_entry);
1377 map->size += new_entry->ba.end - new_entry->ba.start;
1380 * Don't worry about updating freehint[] when inserting, allow
1381 * addresses to be lower than the actual first free spot.
1383 #if 0
1385 * Temporarily removed to avoid MAP_STACK panic, due to
1386 * MAP_STACK being a huge hack. Will be added back in
1387 * when MAP_STACK (and the user stack mapping) is fixed.
1390 * It may be possible to simplify the entry
1392 vm_map_simplify_entry(map, new_entry, countp);
1393 #endif
1396 * Try to pre-populate the page table. Mappings governed by virtual
1397 * page tables cannot be prepopulated without a lot of work, so
1398 * don't try.
1400 if ((cow & (MAP_PREFAULT|MAP_PREFAULT_PARTIAL)) &&
1401 maptype != VM_MAPTYPE_VPAGETABLE &&
1402 maptype != VM_MAPTYPE_UKSMAP) {
1403 int dorelock = 0;
1404 if (vm_map_relock_enable && (cow & MAP_PREFAULT_RELOCK)) {
1405 dorelock = 1;
1406 vm_object_lock_swap();
1407 vm_object_drop(object);
1409 pmap_object_init_pt(map->pmap, new_entry,
1410 new_entry->ba.start,
1411 new_entry->ba.end - new_entry->ba.start,
1412 cow & MAP_PREFAULT_PARTIAL);
1413 if (dorelock) {
1414 vm_object_hold(object);
1415 vm_object_lock_swap();
1418 lwkt_reltoken(&map->token);
1419 if (must_drop)
1420 vm_object_drop(object);
1422 return (KERN_SUCCESS);
1426 * Find sufficient space for `length' bytes in the given map, starting at
1427 * `start'. Returns 0 on success, 1 on no space.
1429 * This function will returned an arbitrarily aligned pointer. If no
1430 * particular alignment is required you should pass align as 1. Note that
1431 * the map may return PAGE_SIZE aligned pointers if all the lengths used in
1432 * the map are a multiple of PAGE_SIZE, even if you pass a smaller align
1433 * argument.
1435 * 'align' should be a power of 2 but is not required to be.
1437 * The map must be exclusively locked.
1438 * No other requirements.
1441 vm_map_findspace(vm_map_t map, vm_offset_t start, vm_size_t length,
1442 vm_size_t align, int flags, vm_offset_t *addr)
1444 vm_map_entry_t entry;
1445 vm_map_entry_t tmp;
1446 vm_offset_t hole_start;
1447 vm_offset_t end;
1448 vm_offset_t align_mask;
1450 if (start < vm_map_min(map))
1451 start = vm_map_min(map);
1452 if (start > vm_map_max(map))
1453 return (1);
1456 * If the alignment is not a power of 2 we will have to use
1457 * a mod/division, set align_mask to a special value.
1459 if ((align | (align - 1)) + 1 != (align << 1))
1460 align_mask = (vm_offset_t)-1;
1461 else
1462 align_mask = align - 1;
1465 * Use freehint to adjust the start point, hopefully reducing
1466 * the iteration to O(1).
1468 hole_start = vm_map_freehint_find(map, length, align);
1469 if (start < hole_start)
1470 start = hole_start;
1471 if (vm_map_lookup_entry(map, start, &tmp))
1472 start = tmp->ba.end;
1473 entry = tmp; /* may be NULL */
1476 * Look through the rest of the map, trying to fit a new region in the
1477 * gap between existing regions, or after the very last region.
1479 for (;;) {
1481 * Adjust the proposed start by the requested alignment,
1482 * be sure that we didn't wrap the address.
1484 if (align_mask == (vm_offset_t)-1)
1485 end = roundup(start, align);
1486 else
1487 end = (start + align_mask) & ~align_mask;
1488 if (end < start)
1489 return (1);
1490 start = end;
1493 * Find the end of the proposed new region. Be sure we didn't
1494 * go beyond the end of the map, or wrap around the address.
1495 * Then check to see if this is the last entry or if the
1496 * proposed end fits in the gap between this and the next
1497 * entry.
1499 end = start + length;
1500 if (end > vm_map_max(map) || end < start)
1501 return (1);
1504 * Locate the next entry, we can stop if this is the
1505 * last entry (we know we are in-bounds so that would
1506 * be a sucess).
1508 if (entry)
1509 entry = vm_map_rb_tree_RB_NEXT(entry);
1510 else
1511 entry = RB_MIN(vm_map_rb_tree, &map->rb_root);
1512 if (entry == NULL)
1513 break;
1516 * Determine if the proposed area would overlap the
1517 * next entry.
1519 * When matching against a STACK entry, only allow the
1520 * memory map to intrude on the ungrown portion of the
1521 * STACK entry when MAP_TRYFIXED is set.
1523 if (entry->ba.start >= end) {
1524 if ((entry->eflags & MAP_ENTRY_STACK) == 0)
1525 break;
1526 if (flags & MAP_TRYFIXED)
1527 break;
1528 if (entry->ba.start - entry->aux.avail_ssize >= end)
1529 break;
1531 start = entry->ba.end;
1535 * Update the freehint
1537 vm_map_freehint_update(map, start, length, align);
1540 * Grow the kernel_map if necessary. pmap_growkernel() will panic
1541 * if it fails. The kernel_map is locked and nothing can steal
1542 * our address space if pmap_growkernel() blocks.
1544 * NOTE: This may be unconditionally called for kldload areas on
1545 * x86_64 because these do not bump kernel_vm_end (which would
1546 * fill 128G worth of page tables!). Therefore we must not
1547 * retry.
1549 if (map == &kernel_map) {
1550 vm_offset_t kstop;
1552 kstop = round_page(start + length);
1553 if (kstop > kernel_vm_end)
1554 pmap_growkernel(start, kstop);
1556 *addr = start;
1557 return (0);
1561 * vm_map_find finds an unallocated region in the target address map with
1562 * the given length and allocates it. The search is defined to be first-fit
1563 * from the specified address; the region found is returned in the same
1564 * parameter.
1566 * If object is non-NULL, ref count must be bumped by caller
1567 * prior to making call to account for the new entry.
1569 * No requirements. This function will lock the map temporarily.
1572 vm_map_find(vm_map_t map, void *map_object, void *map_aux,
1573 vm_ooffset_t offset, vm_offset_t *addr,
1574 vm_size_t length, vm_size_t align, boolean_t fitit,
1575 vm_maptype_t maptype, vm_subsys_t id,
1576 vm_prot_t prot, vm_prot_t max, int cow)
1578 vm_offset_t start;
1579 vm_object_t object;
1580 int result;
1581 int count;
1583 if (maptype == VM_MAPTYPE_UKSMAP)
1584 object = NULL;
1585 else
1586 object = map_object;
1588 start = *addr;
1590 count = vm_map_entry_reserve(MAP_RESERVE_COUNT);
1591 vm_map_lock(map);
1592 if (object)
1593 vm_object_hold_shared(object);
1594 if (fitit) {
1595 if (vm_map_findspace(map, start, length, align, 0, addr)) {
1596 if (object)
1597 vm_object_drop(object);
1598 vm_map_unlock(map);
1599 vm_map_entry_release(count);
1600 return (KERN_NO_SPACE);
1602 start = *addr;
1604 result = vm_map_insert(map, &count, map_object, map_aux,
1605 offset, start, start + length,
1606 maptype, id, prot, max, cow);
1607 if (object)
1608 vm_object_drop(object);
1609 vm_map_unlock(map);
1610 vm_map_entry_release(count);
1612 return (result);
1616 * Simplify the given map entry by merging with either neighbor. This
1617 * routine also has the ability to merge with both neighbors.
1619 * This routine guarentees that the passed entry remains valid (though
1620 * possibly extended). When merging, this routine may delete one or
1621 * both neighbors. No action is taken on entries which have their
1622 * in-transition flag set.
1624 * The map must be exclusively locked.
1626 void
1627 vm_map_simplify_entry(vm_map_t map, vm_map_entry_t entry, int *countp)
1629 vm_map_entry_t next, prev;
1630 vm_size_t prevsize, esize;
1632 if (entry->eflags & MAP_ENTRY_IN_TRANSITION) {
1633 ++mycpu->gd_cnt.v_intrans_coll;
1634 return;
1637 if (entry->maptype == VM_MAPTYPE_SUBMAP)
1638 return;
1639 if (entry->maptype == VM_MAPTYPE_UKSMAP)
1640 return;
1642 prev = vm_map_rb_tree_RB_PREV(entry);
1643 if (prev) {
1644 prevsize = prev->ba.end - prev->ba.start;
1645 if ( (prev->ba.end == entry->ba.start) &&
1646 (prev->maptype == entry->maptype) &&
1647 (prev->ba.object == entry->ba.object) &&
1648 (prev->ba.backing_ba == entry->ba.backing_ba) &&
1649 (!prev->ba.object ||
1650 (prev->ba.offset + prevsize == entry->ba.offset)) &&
1651 (prev->eflags == entry->eflags) &&
1652 (prev->protection == entry->protection) &&
1653 (prev->max_protection == entry->max_protection) &&
1654 (prev->inheritance == entry->inheritance) &&
1655 (prev->id == entry->id) &&
1656 (prev->wired_count == entry->wired_count)) {
1658 * NOTE: order important. Unlink before gumming up
1659 * the RBTREE w/adjust, adjust before disposal
1660 * of prior entry, to avoid pmap snafus.
1662 vm_map_entry_unlink(map, prev);
1663 vm_map_backing_adjust_start(entry, prev->ba.start);
1664 if (entry->ba.object == NULL)
1665 entry->ba.offset = 0;
1666 vm_map_entry_dispose(map, prev, countp);
1670 next = vm_map_rb_tree_RB_NEXT(entry);
1671 if (next) {
1672 esize = entry->ba.end - entry->ba.start;
1673 if ((entry->ba.end == next->ba.start) &&
1674 (next->maptype == entry->maptype) &&
1675 (next->ba.object == entry->ba.object) &&
1676 (prev->ba.backing_ba == entry->ba.backing_ba) &&
1677 (!entry->ba.object ||
1678 (entry->ba.offset + esize == next->ba.offset)) &&
1679 (next->eflags == entry->eflags) &&
1680 (next->protection == entry->protection) &&
1681 (next->max_protection == entry->max_protection) &&
1682 (next->inheritance == entry->inheritance) &&
1683 (next->id == entry->id) &&
1684 (next->wired_count == entry->wired_count)) {
1686 * NOTE: order important. Unlink before gumming up
1687 * the RBTREE w/adjust, adjust before disposal
1688 * of prior entry, to avoid pmap snafus.
1690 vm_map_entry_unlink(map, next);
1691 vm_map_backing_adjust_end(entry, next->ba.end);
1692 vm_map_entry_dispose(map, next, countp);
1698 * Asserts that the given entry begins at or after the specified address.
1699 * If necessary, it splits the entry into two.
1701 #define vm_map_clip_start(map, entry, startaddr, countp) \
1703 if (startaddr > entry->ba.start) \
1704 _vm_map_clip_start(map, entry, startaddr, countp); \
1708 * This routine is called only when it is known that the entry must be split.
1710 * The map must be exclusively locked.
1712 static void
1713 _vm_map_clip_start(vm_map_t map, vm_map_entry_t entry, vm_offset_t start,
1714 int *countp)
1716 vm_map_entry_t new_entry;
1719 * Split off the front portion -- note that we must insert the new
1720 * entry BEFORE this one, so that this entry has the specified
1721 * starting address.
1724 vm_map_simplify_entry(map, entry, countp);
1727 * If there is no object backing this entry, we might as well create
1728 * one now. If we defer it, an object can get created after the map
1729 * is clipped, and individual objects will be created for the split-up
1730 * map. This is a bit of a hack, but is also about the best place to
1731 * put this improvement.
1733 if (entry->ba.object == NULL && !map->system_map &&
1734 VM_MAP_ENTRY_WITHIN_PARTITION(entry)) {
1735 vm_map_entry_allocate_object(entry);
1739 * NOTE: The replicated function will adjust start, end, and offset
1740 * for the remainder of the backing_ba linkages. We must fixup
1741 * the embedded ba.
1743 new_entry = vm_map_entry_create(countp);
1744 *new_entry = *entry;
1745 new_entry->ba.end = start;
1748 * Ordering is important, make sure the new entry is replicated
1749 * before we cut the exiting entry.
1751 vm_map_backing_replicated(map, new_entry, MAP_BACK_CLIPPED);
1752 vm_map_backing_adjust_start(entry, start);
1753 vm_map_entry_link(map, new_entry);
1757 * Asserts that the given entry ends at or before the specified address.
1758 * If necessary, it splits the entry into two.
1760 * The map must be exclusively locked.
1762 #define vm_map_clip_end(map, entry, endaddr, countp) \
1764 if (endaddr < entry->ba.end) \
1765 _vm_map_clip_end(map, entry, endaddr, countp); \
1769 * This routine is called only when it is known that the entry must be split.
1771 * The map must be exclusively locked.
1773 static void
1774 _vm_map_clip_end(vm_map_t map, vm_map_entry_t entry, vm_offset_t end,
1775 int *countp)
1777 vm_map_entry_t new_entry;
1780 * If there is no object backing this entry, we might as well create
1781 * one now. If we defer it, an object can get created after the map
1782 * is clipped, and individual objects will be created for the split-up
1783 * map. This is a bit of a hack, but is also about the best place to
1784 * put this improvement.
1787 if (entry->ba.object == NULL && !map->system_map &&
1788 VM_MAP_ENTRY_WITHIN_PARTITION(entry)) {
1789 vm_map_entry_allocate_object(entry);
1793 * Create a new entry and insert it AFTER the specified entry
1795 * NOTE: The replicated function will adjust start, end, and offset
1796 * for the remainder of the backing_ba linkages. We must fixup
1797 * the embedded ba.
1799 new_entry = vm_map_entry_create(countp);
1800 *new_entry = *entry;
1801 new_entry->ba.start = end;
1802 new_entry->ba.offset += (new_entry->ba.start - entry->ba.start);
1805 * Ordering is important, make sure the new entry is replicated
1806 * before we cut the exiting entry.
1808 vm_map_backing_replicated(map, new_entry, MAP_BACK_CLIPPED);
1809 vm_map_backing_adjust_end(entry, end);
1810 vm_map_entry_link(map, new_entry);
1814 * Asserts that the starting and ending region addresses fall within the
1815 * valid range for the map.
1817 #define VM_MAP_RANGE_CHECK(map, start, end) \
1819 if (start < vm_map_min(map)) \
1820 start = vm_map_min(map); \
1821 if (end > vm_map_max(map)) \
1822 end = vm_map_max(map); \
1823 if (start > end) \
1824 start = end; \
1828 * Used to block when an in-transition collison occurs. The map
1829 * is unlocked for the sleep and relocked before the return.
1831 void
1832 vm_map_transition_wait(vm_map_t map, int relock)
1834 tsleep_interlock(map, 0);
1835 vm_map_unlock(map);
1836 tsleep(map, PINTERLOCKED, "vment", 0);
1837 if (relock)
1838 vm_map_lock(map);
1842 * When we do blocking operations with the map lock held it is
1843 * possible that a clip might have occured on our in-transit entry,
1844 * requiring an adjustment to the entry in our loop. These macros
1845 * help the pageable and clip_range code deal with the case. The
1846 * conditional costs virtually nothing if no clipping has occured.
1849 #define CLIP_CHECK_BACK(entry, save_start) \
1850 do { \
1851 while (entry->ba.start != save_start) { \
1852 entry = vm_map_rb_tree_RB_PREV(entry); \
1853 KASSERT(entry, ("bad entry clip")); \
1855 } while(0)
1857 #define CLIP_CHECK_FWD(entry, save_end) \
1858 do { \
1859 while (entry->ba.end != save_end) { \
1860 entry = vm_map_rb_tree_RB_NEXT(entry); \
1861 KASSERT(entry, ("bad entry clip")); \
1863 } while(0)
1867 * Clip the specified range and return the base entry. The
1868 * range may cover several entries starting at the returned base
1869 * and the first and last entry in the covering sequence will be
1870 * properly clipped to the requested start and end address.
1872 * If no holes are allowed you should pass the MAP_CLIP_NO_HOLES
1873 * flag.
1875 * The MAP_ENTRY_IN_TRANSITION flag will be set for the entries
1876 * covered by the requested range.
1878 * The map must be exclusively locked on entry and will remain locked
1879 * on return. If no range exists or the range contains holes and you
1880 * specified that no holes were allowed, NULL will be returned. This
1881 * routine may temporarily unlock the map in order avoid a deadlock when
1882 * sleeping.
1884 static
1885 vm_map_entry_t
1886 vm_map_clip_range(vm_map_t map, vm_offset_t start, vm_offset_t end,
1887 int *countp, int flags)
1889 vm_map_entry_t start_entry;
1890 vm_map_entry_t entry;
1891 vm_map_entry_t next;
1894 * Locate the entry and effect initial clipping. The in-transition
1895 * case does not occur very often so do not try to optimize it.
1897 again:
1898 if (vm_map_lookup_entry(map, start, &start_entry) == FALSE)
1899 return (NULL);
1900 entry = start_entry;
1901 if (entry->eflags & MAP_ENTRY_IN_TRANSITION) {
1902 entry->eflags |= MAP_ENTRY_NEEDS_WAKEUP;
1903 ++mycpu->gd_cnt.v_intrans_coll;
1904 ++mycpu->gd_cnt.v_intrans_wait;
1905 vm_map_transition_wait(map, 1);
1907 * entry and/or start_entry may have been clipped while
1908 * we slept, or may have gone away entirely. We have
1909 * to restart from the lookup.
1911 goto again;
1915 * Since we hold an exclusive map lock we do not have to restart
1916 * after clipping, even though clipping may block in zalloc.
1918 vm_map_clip_start(map, entry, start, countp);
1919 vm_map_clip_end(map, entry, end, countp);
1920 entry->eflags |= MAP_ENTRY_IN_TRANSITION;
1923 * Scan entries covered by the range. When working on the next
1924 * entry a restart need only re-loop on the current entry which
1925 * we have already locked, since 'next' may have changed. Also,
1926 * even though entry is safe, it may have been clipped so we
1927 * have to iterate forwards through the clip after sleeping.
1929 for (;;) {
1930 next = vm_map_rb_tree_RB_NEXT(entry);
1931 if (next == NULL || next->ba.start >= end)
1932 break;
1933 if (flags & MAP_CLIP_NO_HOLES) {
1934 if (next->ba.start > entry->ba.end) {
1935 vm_map_unclip_range(map, start_entry,
1936 start, entry->ba.end, countp, flags);
1937 return(NULL);
1941 if (next->eflags & MAP_ENTRY_IN_TRANSITION) {
1942 vm_offset_t save_end = entry->ba.end;
1943 next->eflags |= MAP_ENTRY_NEEDS_WAKEUP;
1944 ++mycpu->gd_cnt.v_intrans_coll;
1945 ++mycpu->gd_cnt.v_intrans_wait;
1946 vm_map_transition_wait(map, 1);
1949 * clips might have occured while we blocked.
1951 CLIP_CHECK_FWD(entry, save_end);
1952 CLIP_CHECK_BACK(start_entry, start);
1953 continue;
1957 * No restart necessary even though clip_end may block, we
1958 * are holding the map lock.
1960 vm_map_clip_end(map, next, end, countp);
1961 next->eflags |= MAP_ENTRY_IN_TRANSITION;
1962 entry = next;
1964 if (flags & MAP_CLIP_NO_HOLES) {
1965 if (entry->ba.end != end) {
1966 vm_map_unclip_range(map, start_entry,
1967 start, entry->ba.end, countp, flags);
1968 return(NULL);
1971 return(start_entry);
1975 * Undo the effect of vm_map_clip_range(). You should pass the same
1976 * flags and the same range that you passed to vm_map_clip_range().
1977 * This code will clear the in-transition flag on the entries and
1978 * wake up anyone waiting. This code will also simplify the sequence
1979 * and attempt to merge it with entries before and after the sequence.
1981 * The map must be locked on entry and will remain locked on return.
1983 * Note that you should also pass the start_entry returned by
1984 * vm_map_clip_range(). However, if you block between the two calls
1985 * with the map unlocked please be aware that the start_entry may
1986 * have been clipped and you may need to scan it backwards to find
1987 * the entry corresponding with the original start address. You are
1988 * responsible for this, vm_map_unclip_range() expects the correct
1989 * start_entry to be passed to it and will KASSERT otherwise.
1991 static
1992 void
1993 vm_map_unclip_range(vm_map_t map, vm_map_entry_t start_entry,
1994 vm_offset_t start, vm_offset_t end,
1995 int *countp, int flags)
1997 vm_map_entry_t entry;
1999 entry = start_entry;
2001 KASSERT(entry->ba.start == start, ("unclip_range: illegal base entry"));
2002 while (entry && entry->ba.start < end) {
2003 KASSERT(entry->eflags & MAP_ENTRY_IN_TRANSITION,
2004 ("in-transition flag not set during unclip on: %p",
2005 entry));
2006 KASSERT(entry->ba.end <= end,
2007 ("unclip_range: tail wasn't clipped"));
2008 entry->eflags &= ~MAP_ENTRY_IN_TRANSITION;
2009 if (entry->eflags & MAP_ENTRY_NEEDS_WAKEUP) {
2010 entry->eflags &= ~MAP_ENTRY_NEEDS_WAKEUP;
2011 wakeup(map);
2013 entry = vm_map_rb_tree_RB_NEXT(entry);
2017 * Simplification does not block so there is no restart case.
2019 entry = start_entry;
2020 while (entry && entry->ba.start < end) {
2021 vm_map_simplify_entry(map, entry, countp);
2022 entry = vm_map_rb_tree_RB_NEXT(entry);
2027 * Mark the given range as handled by a subordinate map.
2029 * This range must have been created with vm_map_find(), and no other
2030 * operations may have been performed on this range prior to calling
2031 * vm_map_submap().
2033 * Submappings cannot be removed.
2035 * No requirements.
2038 vm_map_submap(vm_map_t map, vm_offset_t start, vm_offset_t end, vm_map_t submap)
2040 vm_map_entry_t entry;
2041 int result = KERN_INVALID_ARGUMENT;
2042 int count;
2044 count = vm_map_entry_reserve(MAP_RESERVE_COUNT);
2045 vm_map_lock(map);
2047 VM_MAP_RANGE_CHECK(map, start, end);
2049 if (vm_map_lookup_entry(map, start, &entry)) {
2050 vm_map_clip_start(map, entry, start, &count);
2051 } else if (entry) {
2052 entry = vm_map_rb_tree_RB_NEXT(entry);
2053 } else {
2054 entry = RB_MIN(vm_map_rb_tree, &map->rb_root);
2057 vm_map_clip_end(map, entry, end, &count);
2059 if ((entry->ba.start == start) && (entry->ba.end == end) &&
2060 ((entry->eflags & MAP_ENTRY_COW) == 0) &&
2061 (entry->ba.object == NULL)) {
2062 entry->ba.sub_map = submap;
2063 entry->maptype = VM_MAPTYPE_SUBMAP;
2064 result = KERN_SUCCESS;
2066 vm_map_unlock(map);
2067 vm_map_entry_release(count);
2069 return (result);
2073 * Sets the protection of the specified address region in the target map.
2074 * If "set_max" is specified, the maximum protection is to be set;
2075 * otherwise, only the current protection is affected.
2077 * The protection is not applicable to submaps, but is applicable to normal
2078 * maps and maps governed by virtual page tables. For example, when operating
2079 * on a virtual page table our protection basically controls how COW occurs
2080 * on the backing object, whereas the virtual page table abstraction itself
2081 * is an abstraction for userland.
2083 * No requirements.
2086 vm_map_protect(vm_map_t map, vm_offset_t start, vm_offset_t end,
2087 vm_prot_t new_prot, boolean_t set_max)
2089 vm_map_entry_t current;
2090 vm_map_entry_t entry;
2091 int count;
2093 count = vm_map_entry_reserve(MAP_RESERVE_COUNT);
2094 vm_map_lock(map);
2096 VM_MAP_RANGE_CHECK(map, start, end);
2098 if (vm_map_lookup_entry(map, start, &entry)) {
2099 vm_map_clip_start(map, entry, start, &count);
2100 } else if (entry) {
2101 entry = vm_map_rb_tree_RB_NEXT(entry);
2102 } else {
2103 entry = RB_MIN(vm_map_rb_tree, &map->rb_root);
2107 * Make a first pass to check for protection violations.
2109 current = entry;
2110 while (current && current->ba.start < end) {
2111 if (current->maptype == VM_MAPTYPE_SUBMAP) {
2112 vm_map_unlock(map);
2113 vm_map_entry_release(count);
2114 return (KERN_INVALID_ARGUMENT);
2116 if ((new_prot & current->max_protection) != new_prot) {
2117 vm_map_unlock(map);
2118 vm_map_entry_release(count);
2119 return (KERN_PROTECTION_FAILURE);
2123 * When making a SHARED+RW file mmap writable, update
2124 * v_lastwrite_ts.
2126 if (new_prot & PROT_WRITE &&
2127 (current->eflags & MAP_ENTRY_NEEDS_COPY) == 0 &&
2128 (current->maptype == VM_MAPTYPE_NORMAL ||
2129 current->maptype == VM_MAPTYPE_VPAGETABLE) &&
2130 current->ba.object &&
2131 current->ba.object->type == OBJT_VNODE) {
2132 struct vnode *vp;
2134 vp = current->ba.object->handle;
2135 if (vp && vn_lock(vp, LK_EXCLUSIVE | LK_RETRY | LK_NOWAIT) == 0) {
2136 vfs_timestamp(&vp->v_lastwrite_ts);
2137 vsetflags(vp, VLASTWRITETS);
2138 vn_unlock(vp);
2141 current = vm_map_rb_tree_RB_NEXT(current);
2145 * Go back and fix up protections. [Note that clipping is not
2146 * necessary the second time.]
2148 current = entry;
2150 while (current && current->ba.start < end) {
2151 vm_prot_t old_prot;
2153 vm_map_clip_end(map, current, end, &count);
2155 old_prot = current->protection;
2156 if (set_max) {
2157 current->max_protection = new_prot;
2158 current->protection = new_prot & old_prot;
2159 } else {
2160 current->protection = new_prot;
2164 * Update physical map if necessary. Worry about copy-on-write
2165 * here -- CHECK THIS XXX
2167 if (current->protection != old_prot) {
2168 #define MASK(entry) (((entry)->eflags & MAP_ENTRY_COW) ? ~VM_PROT_WRITE : \
2169 VM_PROT_ALL)
2171 pmap_protect(map->pmap, current->ba.start,
2172 current->ba.end,
2173 current->protection & MASK(current));
2174 #undef MASK
2177 vm_map_simplify_entry(map, current, &count);
2179 current = vm_map_rb_tree_RB_NEXT(current);
2181 vm_map_unlock(map);
2182 vm_map_entry_release(count);
2183 return (KERN_SUCCESS);
2187 * This routine traverses a processes map handling the madvise
2188 * system call. Advisories are classified as either those effecting
2189 * the vm_map_entry structure, or those effecting the underlying
2190 * objects.
2192 * The <value> argument is used for extended madvise calls.
2194 * No requirements.
2197 vm_map_madvise(vm_map_t map, vm_offset_t start, vm_offset_t end,
2198 int behav, off_t value)
2200 vm_map_entry_t current, entry;
2201 int modify_map = 0;
2202 int error = 0;
2203 int count;
2206 * Some madvise calls directly modify the vm_map_entry, in which case
2207 * we need to use an exclusive lock on the map and we need to perform
2208 * various clipping operations. Otherwise we only need a read-lock
2209 * on the map.
2211 count = vm_map_entry_reserve(MAP_RESERVE_COUNT);
2213 switch(behav) {
2214 case MADV_NORMAL:
2215 case MADV_SEQUENTIAL:
2216 case MADV_RANDOM:
2217 case MADV_NOSYNC:
2218 case MADV_AUTOSYNC:
2219 case MADV_NOCORE:
2220 case MADV_CORE:
2221 case MADV_SETMAP:
2222 modify_map = 1;
2223 vm_map_lock(map);
2224 break;
2225 case MADV_INVAL:
2226 case MADV_WILLNEED:
2227 case MADV_DONTNEED:
2228 case MADV_FREE:
2229 vm_map_lock_read(map);
2230 break;
2231 default:
2232 vm_map_entry_release(count);
2233 return (EINVAL);
2237 * Locate starting entry and clip if necessary.
2240 VM_MAP_RANGE_CHECK(map, start, end);
2242 if (vm_map_lookup_entry(map, start, &entry)) {
2243 if (modify_map)
2244 vm_map_clip_start(map, entry, start, &count);
2245 } else if (entry) {
2246 entry = vm_map_rb_tree_RB_NEXT(entry);
2247 } else {
2248 entry = RB_MIN(vm_map_rb_tree, &map->rb_root);
2251 if (modify_map) {
2253 * madvise behaviors that are implemented in the vm_map_entry.
2255 * We clip the vm_map_entry so that behavioral changes are
2256 * limited to the specified address range.
2258 for (current = entry;
2259 current && current->ba.start < end;
2260 current = vm_map_rb_tree_RB_NEXT(current)) {
2262 * Ignore submaps
2264 if (current->maptype == VM_MAPTYPE_SUBMAP)
2265 continue;
2267 vm_map_clip_end(map, current, end, &count);
2269 switch (behav) {
2270 case MADV_NORMAL:
2271 vm_map_entry_set_behavior(current, MAP_ENTRY_BEHAV_NORMAL);
2272 break;
2273 case MADV_SEQUENTIAL:
2274 vm_map_entry_set_behavior(current, MAP_ENTRY_BEHAV_SEQUENTIAL);
2275 break;
2276 case MADV_RANDOM:
2277 vm_map_entry_set_behavior(current, MAP_ENTRY_BEHAV_RANDOM);
2278 break;
2279 case MADV_NOSYNC:
2280 current->eflags |= MAP_ENTRY_NOSYNC;
2281 break;
2282 case MADV_AUTOSYNC:
2283 current->eflags &= ~MAP_ENTRY_NOSYNC;
2284 break;
2285 case MADV_NOCORE:
2286 current->eflags |= MAP_ENTRY_NOCOREDUMP;
2287 break;
2288 case MADV_CORE:
2289 current->eflags &= ~MAP_ENTRY_NOCOREDUMP;
2290 break;
2291 case MADV_SETMAP:
2293 * Set the page directory page for a map
2294 * governed by a virtual page table. Mark
2295 * the entry as being governed by a virtual
2296 * page table if it is not.
2298 * XXX the page directory page is stored
2299 * in the avail_ssize field if the map_entry.
2301 * XXX the map simplification code does not
2302 * compare this field so weird things may
2303 * happen if you do not apply this function
2304 * to the entire mapping governed by the
2305 * virtual page table.
2307 if (current->maptype != VM_MAPTYPE_VPAGETABLE) {
2308 error = EINVAL;
2309 break;
2311 current->aux.master_pde = value;
2312 pmap_remove(map->pmap,
2313 current->ba.start, current->ba.end);
2314 break;
2315 case MADV_INVAL:
2317 * Invalidate the related pmap entries, used
2318 * to flush portions of the real kernel's
2319 * pmap when the caller has removed or
2320 * modified existing mappings in a virtual
2321 * page table.
2323 * (exclusive locked map version does not
2324 * need the range interlock).
2326 pmap_remove(map->pmap,
2327 current->ba.start, current->ba.end);
2328 break;
2329 default:
2330 error = EINVAL;
2331 break;
2333 vm_map_simplify_entry(map, current, &count);
2335 vm_map_unlock(map);
2336 } else {
2337 vm_pindex_t pindex;
2338 vm_pindex_t delta;
2341 * madvise behaviors that are implemented in the underlying
2342 * vm_object.
2344 * Since we don't clip the vm_map_entry, we have to clip
2345 * the vm_object pindex and count.
2347 * NOTE! These functions are only supported on normal maps,
2348 * except MADV_INVAL which is also supported on
2349 * virtual page tables.
2351 * NOTE! These functions only apply to the top-most object.
2352 * It is not applicable to backing objects.
2354 for (current = entry;
2355 current && current->ba.start < end;
2356 current = vm_map_rb_tree_RB_NEXT(current)) {
2357 vm_offset_t useStart;
2359 if (current->maptype != VM_MAPTYPE_NORMAL &&
2360 (current->maptype != VM_MAPTYPE_VPAGETABLE ||
2361 behav != MADV_INVAL)) {
2362 continue;
2365 pindex = OFF_TO_IDX(current->ba.offset);
2366 delta = atop(current->ba.end - current->ba.start);
2367 useStart = current->ba.start;
2369 if (current->ba.start < start) {
2370 pindex += atop(start - current->ba.start);
2371 delta -= atop(start - current->ba.start);
2372 useStart = start;
2374 if (current->ba.end > end)
2375 delta -= atop(current->ba.end - end);
2377 if ((vm_spindex_t)delta <= 0)
2378 continue;
2380 if (behav == MADV_INVAL) {
2382 * Invalidate the related pmap entries, used
2383 * to flush portions of the real kernel's
2384 * pmap when the caller has removed or
2385 * modified existing mappings in a virtual
2386 * page table.
2388 * (shared locked map version needs the
2389 * interlock, see vm_fault()).
2391 struct vm_map_ilock ilock;
2393 KASSERT(useStart >= VM_MIN_USER_ADDRESS &&
2394 useStart + ptoa(delta) <=
2395 VM_MAX_USER_ADDRESS,
2396 ("Bad range %016jx-%016jx (%016jx)",
2397 useStart, useStart + ptoa(delta),
2398 delta));
2399 vm_map_interlock(map, &ilock,
2400 useStart,
2401 useStart + ptoa(delta));
2402 pmap_remove(map->pmap,
2403 useStart,
2404 useStart + ptoa(delta));
2405 vm_map_deinterlock(map, &ilock);
2406 } else {
2407 vm_object_madvise(current->ba.object,
2408 pindex, delta, behav);
2412 * Try to populate the page table. Mappings governed
2413 * by virtual page tables cannot be pre-populated
2414 * without a lot of work so don't try.
2416 if (behav == MADV_WILLNEED &&
2417 current->maptype != VM_MAPTYPE_VPAGETABLE) {
2418 pmap_object_init_pt(
2419 map->pmap, current,
2420 useStart,
2421 (delta << PAGE_SHIFT),
2422 MAP_PREFAULT_MADVISE
2426 vm_map_unlock_read(map);
2428 vm_map_entry_release(count);
2429 return(error);
2434 * Sets the inheritance of the specified address range in the target map.
2435 * Inheritance affects how the map will be shared with child maps at the
2436 * time of vm_map_fork.
2439 vm_map_inherit(vm_map_t map, vm_offset_t start, vm_offset_t end,
2440 vm_inherit_t new_inheritance)
2442 vm_map_entry_t entry;
2443 vm_map_entry_t temp_entry;
2444 int count;
2446 switch (new_inheritance) {
2447 case VM_INHERIT_NONE:
2448 case VM_INHERIT_COPY:
2449 case VM_INHERIT_SHARE:
2450 break;
2451 default:
2452 return (KERN_INVALID_ARGUMENT);
2455 count = vm_map_entry_reserve(MAP_RESERVE_COUNT);
2456 vm_map_lock(map);
2458 VM_MAP_RANGE_CHECK(map, start, end);
2460 if (vm_map_lookup_entry(map, start, &temp_entry)) {
2461 entry = temp_entry;
2462 vm_map_clip_start(map, entry, start, &count);
2463 } else if (temp_entry) {
2464 entry = vm_map_rb_tree_RB_NEXT(temp_entry);
2465 } else {
2466 entry = RB_MIN(vm_map_rb_tree, &map->rb_root);
2469 while (entry && entry->ba.start < end) {
2470 vm_map_clip_end(map, entry, end, &count);
2472 entry->inheritance = new_inheritance;
2474 vm_map_simplify_entry(map, entry, &count);
2476 entry = vm_map_rb_tree_RB_NEXT(entry);
2478 vm_map_unlock(map);
2479 vm_map_entry_release(count);
2480 return (KERN_SUCCESS);
2484 * Implement the semantics of mlock
2487 vm_map_unwire(vm_map_t map, vm_offset_t start, vm_offset_t real_end,
2488 boolean_t new_pageable)
2490 vm_map_entry_t entry;
2491 vm_map_entry_t start_entry;
2492 vm_offset_t end;
2493 int rv = KERN_SUCCESS;
2494 int count;
2496 count = vm_map_entry_reserve(MAP_RESERVE_COUNT);
2497 vm_map_lock(map);
2498 VM_MAP_RANGE_CHECK(map, start, real_end);
2499 end = real_end;
2501 start_entry = vm_map_clip_range(map, start, end, &count,
2502 MAP_CLIP_NO_HOLES);
2503 if (start_entry == NULL) {
2504 vm_map_unlock(map);
2505 vm_map_entry_release(count);
2506 return (KERN_INVALID_ADDRESS);
2509 if (new_pageable == 0) {
2510 entry = start_entry;
2511 while (entry && entry->ba.start < end) {
2512 vm_offset_t save_start;
2513 vm_offset_t save_end;
2516 * Already user wired or hard wired (trivial cases)
2518 if (entry->eflags & MAP_ENTRY_USER_WIRED) {
2519 entry = vm_map_rb_tree_RB_NEXT(entry);
2520 continue;
2522 if (entry->wired_count != 0) {
2523 entry->wired_count++;
2524 entry->eflags |= MAP_ENTRY_USER_WIRED;
2525 entry = vm_map_rb_tree_RB_NEXT(entry);
2526 continue;
2530 * A new wiring requires instantiation of appropriate
2531 * management structures and the faulting in of the
2532 * page.
2534 if (entry->maptype == VM_MAPTYPE_NORMAL ||
2535 entry->maptype == VM_MAPTYPE_VPAGETABLE) {
2536 int copyflag = entry->eflags &
2537 MAP_ENTRY_NEEDS_COPY;
2538 if (copyflag && ((entry->protection &
2539 VM_PROT_WRITE) != 0)) {
2540 vm_map_entry_shadow(entry);
2541 } else if (entry->ba.object == NULL &&
2542 !map->system_map) {
2543 vm_map_entry_allocate_object(entry);
2546 entry->wired_count++;
2547 entry->eflags |= MAP_ENTRY_USER_WIRED;
2550 * Now fault in the area. Note that vm_fault_wire()
2551 * may release the map lock temporarily, it will be
2552 * relocked on return. The in-transition
2553 * flag protects the entries.
2555 save_start = entry->ba.start;
2556 save_end = entry->ba.end;
2557 rv = vm_fault_wire(map, entry, TRUE, 0);
2558 if (rv) {
2559 CLIP_CHECK_BACK(entry, save_start);
2560 for (;;) {
2561 KASSERT(entry->wired_count == 1, ("bad wired_count on entry"));
2562 entry->eflags &= ~MAP_ENTRY_USER_WIRED;
2563 entry->wired_count = 0;
2564 if (entry->ba.end == save_end)
2565 break;
2566 entry = vm_map_rb_tree_RB_NEXT(entry);
2567 KASSERT(entry,
2568 ("bad entry clip during backout"));
2570 end = save_start; /* unwire the rest */
2571 break;
2574 * note that even though the entry might have been
2575 * clipped, the USER_WIRED flag we set prevents
2576 * duplication so we do not have to do a
2577 * clip check.
2579 entry = vm_map_rb_tree_RB_NEXT(entry);
2583 * If we failed fall through to the unwiring section to
2584 * unwire what we had wired so far. 'end' has already
2585 * been adjusted.
2587 if (rv)
2588 new_pageable = 1;
2591 * start_entry might have been clipped if we unlocked the
2592 * map and blocked. No matter how clipped it has gotten
2593 * there should be a fragment that is on our start boundary.
2595 CLIP_CHECK_BACK(start_entry, start);
2599 * Deal with the unwiring case.
2601 if (new_pageable) {
2603 * This is the unwiring case. We must first ensure that the
2604 * range to be unwired is really wired down. We know there
2605 * are no holes.
2607 entry = start_entry;
2608 while (entry && entry->ba.start < end) {
2609 if ((entry->eflags & MAP_ENTRY_USER_WIRED) == 0) {
2610 rv = KERN_INVALID_ARGUMENT;
2611 goto done;
2613 KASSERT(entry->wired_count != 0,
2614 ("wired count was 0 with USER_WIRED set! %p",
2615 entry));
2616 entry = vm_map_rb_tree_RB_NEXT(entry);
2620 * Now decrement the wiring count for each region. If a region
2621 * becomes completely unwired, unwire its physical pages and
2622 * mappings.
2625 * The map entries are processed in a loop, checking to
2626 * make sure the entry is wired and asserting it has a wired
2627 * count. However, another loop was inserted more-or-less in
2628 * the middle of the unwiring path. This loop picks up the
2629 * "entry" loop variable from the first loop without first
2630 * setting it to start_entry. Naturally, the secound loop
2631 * is never entered and the pages backing the entries are
2632 * never unwired. This can lead to a leak of wired pages.
2634 entry = start_entry;
2635 while (entry && entry->ba.start < end) {
2636 KASSERT(entry->eflags & MAP_ENTRY_USER_WIRED,
2637 ("expected USER_WIRED on entry %p", entry));
2638 entry->eflags &= ~MAP_ENTRY_USER_WIRED;
2639 entry->wired_count--;
2640 if (entry->wired_count == 0)
2641 vm_fault_unwire(map, entry);
2642 entry = vm_map_rb_tree_RB_NEXT(entry);
2645 done:
2646 vm_map_unclip_range(map, start_entry, start, real_end, &count,
2647 MAP_CLIP_NO_HOLES);
2648 vm_map_unlock(map);
2649 vm_map_entry_release(count);
2651 return (rv);
2655 * Sets the pageability of the specified address range in the target map.
2656 * Regions specified as not pageable require locked-down physical
2657 * memory and physical page maps.
2659 * The map must not be locked, but a reference must remain to the map
2660 * throughout the call.
2662 * This function may be called via the zalloc path and must properly
2663 * reserve map entries for kernel_map.
2665 * No requirements.
2668 vm_map_wire(vm_map_t map, vm_offset_t start, vm_offset_t real_end, int kmflags)
2670 vm_map_entry_t entry;
2671 vm_map_entry_t start_entry;
2672 vm_offset_t end;
2673 int rv = KERN_SUCCESS;
2674 int count;
2676 if (kmflags & KM_KRESERVE)
2677 count = vm_map_entry_kreserve(MAP_RESERVE_COUNT);
2678 else
2679 count = vm_map_entry_reserve(MAP_RESERVE_COUNT);
2680 vm_map_lock(map);
2681 VM_MAP_RANGE_CHECK(map, start, real_end);
2682 end = real_end;
2684 start_entry = vm_map_clip_range(map, start, end, &count,
2685 MAP_CLIP_NO_HOLES);
2686 if (start_entry == NULL) {
2687 vm_map_unlock(map);
2688 rv = KERN_INVALID_ADDRESS;
2689 goto failure;
2691 if ((kmflags & KM_PAGEABLE) == 0) {
2693 * Wiring.
2695 * 1. Holding the write lock, we create any shadow or zero-fill
2696 * objects that need to be created. Then we clip each map
2697 * entry to the region to be wired and increment its wiring
2698 * count. We create objects before clipping the map entries
2699 * to avoid object proliferation.
2701 * 2. We downgrade to a read lock, and call vm_fault_wire to
2702 * fault in the pages for any newly wired area (wired_count is
2703 * 1).
2705 * Downgrading to a read lock for vm_fault_wire avoids a
2706 * possible deadlock with another process that may have faulted
2707 * on one of the pages to be wired (it would mark the page busy,
2708 * blocking us, then in turn block on the map lock that we
2709 * hold). Because of problems in the recursive lock package,
2710 * we cannot upgrade to a write lock in vm_map_lookup. Thus,
2711 * any actions that require the write lock must be done
2712 * beforehand. Because we keep the read lock on the map, the
2713 * copy-on-write status of the entries we modify here cannot
2714 * change.
2716 entry = start_entry;
2717 while (entry && entry->ba.start < end) {
2719 * Trivial case if the entry is already wired
2721 if (entry->wired_count) {
2722 entry->wired_count++;
2723 entry = vm_map_rb_tree_RB_NEXT(entry);
2724 continue;
2728 * The entry is being newly wired, we have to setup
2729 * appropriate management structures. A shadow
2730 * object is required for a copy-on-write region,
2731 * or a normal object for a zero-fill region. We
2732 * do not have to do this for entries that point to sub
2733 * maps because we won't hold the lock on the sub map.
2735 if (entry->maptype == VM_MAPTYPE_NORMAL ||
2736 entry->maptype == VM_MAPTYPE_VPAGETABLE) {
2737 int copyflag = entry->eflags &
2738 MAP_ENTRY_NEEDS_COPY;
2739 if (copyflag && ((entry->protection &
2740 VM_PROT_WRITE) != 0)) {
2741 vm_map_entry_shadow(entry);
2742 } else if (entry->ba.object == NULL &&
2743 !map->system_map) {
2744 vm_map_entry_allocate_object(entry);
2747 entry->wired_count++;
2748 entry = vm_map_rb_tree_RB_NEXT(entry);
2752 * Pass 2.
2756 * HACK HACK HACK HACK
2758 * vm_fault_wire() temporarily unlocks the map to avoid
2759 * deadlocks. The in-transition flag from vm_map_clip_range
2760 * call should protect us from changes while the map is
2761 * unlocked. T
2763 * NOTE: Previously this comment stated that clipping might
2764 * still occur while the entry is unlocked, but from
2765 * what I can tell it actually cannot.
2767 * It is unclear whether the CLIP_CHECK_*() calls
2768 * are still needed but we keep them in anyway.
2770 * HACK HACK HACK HACK
2773 entry = start_entry;
2774 while (entry && entry->ba.start < end) {
2776 * If vm_fault_wire fails for any page we need to undo
2777 * what has been done. We decrement the wiring count
2778 * for those pages which have not yet been wired (now)
2779 * and unwire those that have (later).
2781 vm_offset_t save_start = entry->ba.start;
2782 vm_offset_t save_end = entry->ba.end;
2784 if (entry->wired_count == 1)
2785 rv = vm_fault_wire(map, entry, FALSE, kmflags);
2786 if (rv) {
2787 CLIP_CHECK_BACK(entry, save_start);
2788 for (;;) {
2789 KASSERT(entry->wired_count == 1,
2790 ("wired_count changed unexpectedly"));
2791 entry->wired_count = 0;
2792 if (entry->ba.end == save_end)
2793 break;
2794 entry = vm_map_rb_tree_RB_NEXT(entry);
2795 KASSERT(entry,
2796 ("bad entry clip during backout"));
2798 end = save_start;
2799 break;
2801 CLIP_CHECK_FWD(entry, save_end);
2802 entry = vm_map_rb_tree_RB_NEXT(entry);
2806 * If a failure occured undo everything by falling through
2807 * to the unwiring code. 'end' has already been adjusted
2808 * appropriately.
2810 if (rv)
2811 kmflags |= KM_PAGEABLE;
2814 * start_entry is still IN_TRANSITION but may have been
2815 * clipped since vm_fault_wire() unlocks and relocks the
2816 * map. No matter how clipped it has gotten there should
2817 * be a fragment that is on our start boundary.
2819 CLIP_CHECK_BACK(start_entry, start);
2822 if (kmflags & KM_PAGEABLE) {
2824 * This is the unwiring case. We must first ensure that the
2825 * range to be unwired is really wired down. We know there
2826 * are no holes.
2828 entry = start_entry;
2829 while (entry && entry->ba.start < end) {
2830 if (entry->wired_count == 0) {
2831 rv = KERN_INVALID_ARGUMENT;
2832 goto done;
2834 entry = vm_map_rb_tree_RB_NEXT(entry);
2838 * Now decrement the wiring count for each region. If a region
2839 * becomes completely unwired, unwire its physical pages and
2840 * mappings.
2842 entry = start_entry;
2843 while (entry && entry->ba.start < end) {
2844 entry->wired_count--;
2845 if (entry->wired_count == 0)
2846 vm_fault_unwire(map, entry);
2847 entry = vm_map_rb_tree_RB_NEXT(entry);
2850 done:
2851 vm_map_unclip_range(map, start_entry, start, real_end,
2852 &count, MAP_CLIP_NO_HOLES);
2853 vm_map_unlock(map);
2854 failure:
2855 if (kmflags & KM_KRESERVE)
2856 vm_map_entry_krelease(count);
2857 else
2858 vm_map_entry_release(count);
2859 return (rv);
2863 * Mark a newly allocated address range as wired but do not fault in
2864 * the pages. The caller is expected to load the pages into the object.
2866 * The map must be locked on entry and will remain locked on return.
2867 * No other requirements.
2869 void
2870 vm_map_set_wired_quick(vm_map_t map, vm_offset_t addr, vm_size_t size,
2871 int *countp)
2873 vm_map_entry_t scan;
2874 vm_map_entry_t entry;
2876 entry = vm_map_clip_range(map, addr, addr + size,
2877 countp, MAP_CLIP_NO_HOLES);
2878 scan = entry;
2879 while (scan && scan->ba.start < addr + size) {
2880 KKASSERT(scan->wired_count == 0);
2881 scan->wired_count = 1;
2882 scan = vm_map_rb_tree_RB_NEXT(scan);
2884 vm_map_unclip_range(map, entry, addr, addr + size,
2885 countp, MAP_CLIP_NO_HOLES);
2889 * Push any dirty cached pages in the address range to their pager.
2890 * If syncio is TRUE, dirty pages are written synchronously.
2891 * If invalidate is TRUE, any cached pages are freed as well.
2893 * This routine is called by sys_msync()
2895 * Returns an error if any part of the specified range is not mapped.
2897 * No requirements.
2900 vm_map_clean(vm_map_t map, vm_offset_t start, vm_offset_t end,
2901 boolean_t syncio, boolean_t invalidate)
2903 vm_map_entry_t current;
2904 vm_map_entry_t next;
2905 vm_map_entry_t entry;
2906 vm_map_backing_t ba;
2907 vm_size_t size;
2908 vm_object_t object;
2909 vm_ooffset_t offset;
2911 vm_map_lock_read(map);
2912 VM_MAP_RANGE_CHECK(map, start, end);
2913 if (!vm_map_lookup_entry(map, start, &entry)) {
2914 vm_map_unlock_read(map);
2915 return (KERN_INVALID_ADDRESS);
2917 lwkt_gettoken(&map->token);
2920 * Make a first pass to check for holes.
2922 current = entry;
2923 while (current && current->ba.start < end) {
2924 if (current->maptype == VM_MAPTYPE_SUBMAP) {
2925 lwkt_reltoken(&map->token);
2926 vm_map_unlock_read(map);
2927 return (KERN_INVALID_ARGUMENT);
2929 next = vm_map_rb_tree_RB_NEXT(current);
2930 if (end > current->ba.end &&
2931 (next == NULL ||
2932 current->ba.end != next->ba.start)) {
2933 lwkt_reltoken(&map->token);
2934 vm_map_unlock_read(map);
2935 return (KERN_INVALID_ADDRESS);
2937 current = next;
2940 if (invalidate)
2941 pmap_remove(vm_map_pmap(map), start, end);
2944 * Make a second pass, cleaning/uncaching pages from the indicated
2945 * objects as we go.
2947 current = entry;
2948 while (current && current->ba.start < end) {
2949 offset = current->ba.offset + (start - current->ba.start);
2950 size = (end <= current->ba.end ? end : current->ba.end) - start;
2952 switch(current->maptype) {
2953 case VM_MAPTYPE_SUBMAP:
2955 vm_map_t smap;
2956 vm_map_entry_t tentry;
2957 vm_size_t tsize;
2959 smap = current->ba.sub_map;
2960 vm_map_lock_read(smap);
2961 vm_map_lookup_entry(smap, offset, &tentry);
2962 if (tentry == NULL) {
2963 tsize = vm_map_max(smap) - offset;
2964 ba = NULL;
2965 offset = 0 + (offset - vm_map_min(smap));
2966 } else {
2967 tsize = tentry->ba.end - offset;
2968 ba = &tentry->ba;
2969 offset = tentry->ba.offset +
2970 (offset - tentry->ba.start);
2972 vm_map_unlock_read(smap);
2973 if (tsize < size)
2974 size = tsize;
2975 break;
2977 case VM_MAPTYPE_NORMAL:
2978 case VM_MAPTYPE_VPAGETABLE:
2979 ba = &current->ba;
2980 break;
2981 default:
2982 ba = NULL;
2983 break;
2985 if (ba) {
2986 object = ba->object;
2987 if (object)
2988 vm_object_hold(object);
2989 } else {
2990 object = NULL;
2994 * Note that there is absolutely no sense in writing out
2995 * anonymous objects, so we track down the vnode object
2996 * to write out.
2997 * We invalidate (remove) all pages from the address space
2998 * anyway, for semantic correctness.
3000 * note: certain anonymous maps, such as MAP_NOSYNC maps,
3001 * may start out with a NULL object.
3003 * XXX do we really want to stop at the first backing store
3004 * here if there are more? XXX
3006 if (ba) {
3007 vm_object_t tobj;
3009 tobj = object;
3010 while (ba->backing_ba != NULL) {
3011 offset -= ba->offset;
3012 ba = ba->backing_ba;
3013 offset += ba->offset;
3014 tobj = ba->object;
3015 if (tobj->size < OFF_TO_IDX(offset + size))
3016 size = IDX_TO_OFF(tobj->size) - offset;
3017 break; /* XXX this break is not correct */
3019 if (object != tobj) {
3020 if (object)
3021 vm_object_drop(object);
3022 object = tobj;
3023 vm_object_hold(object);
3027 if (object && (object->type == OBJT_VNODE) &&
3028 (current->protection & VM_PROT_WRITE) &&
3029 (object->flags & OBJ_NOMSYNC) == 0) {
3031 * Flush pages if writing is allowed, invalidate them
3032 * if invalidation requested. Pages undergoing I/O
3033 * will be ignored by vm_object_page_remove().
3035 * We cannot lock the vnode and then wait for paging
3036 * to complete without deadlocking against vm_fault.
3037 * Instead we simply call vm_object_page_remove() and
3038 * allow it to block internally on a page-by-page
3039 * basis when it encounters pages undergoing async
3040 * I/O.
3042 int flags;
3044 /* no chain wait needed for vnode objects */
3045 vm_object_reference_locked(object);
3046 vn_lock(object->handle, LK_EXCLUSIVE | LK_RETRY);
3047 flags = (syncio || invalidate) ? OBJPC_SYNC : 0;
3048 flags |= invalidate ? OBJPC_INVAL : 0;
3051 * When operating on a virtual page table just
3052 * flush the whole object. XXX we probably ought
3053 * to
3055 switch(current->maptype) {
3056 case VM_MAPTYPE_NORMAL:
3057 vm_object_page_clean(object,
3058 OFF_TO_IDX(offset),
3059 OFF_TO_IDX(offset + size + PAGE_MASK),
3060 flags);
3061 break;
3062 case VM_MAPTYPE_VPAGETABLE:
3063 vm_object_page_clean(object, 0, 0, flags);
3064 break;
3066 vn_unlock(((struct vnode *)object->handle));
3067 vm_object_deallocate_locked(object);
3069 if (object && invalidate &&
3070 ((object->type == OBJT_VNODE) ||
3071 (object->type == OBJT_DEVICE) ||
3072 (object->type == OBJT_MGTDEVICE))) {
3073 int clean_only =
3074 ((object->type == OBJT_DEVICE) ||
3075 (object->type == OBJT_MGTDEVICE)) ? FALSE : TRUE;
3076 /* no chain wait needed for vnode/device objects */
3077 vm_object_reference_locked(object);
3078 switch(current->maptype) {
3079 case VM_MAPTYPE_NORMAL:
3080 vm_object_page_remove(object,
3081 OFF_TO_IDX(offset),
3082 OFF_TO_IDX(offset + size + PAGE_MASK),
3083 clean_only);
3084 break;
3085 case VM_MAPTYPE_VPAGETABLE:
3086 vm_object_page_remove(object, 0, 0, clean_only);
3087 break;
3089 vm_object_deallocate_locked(object);
3091 start += size;
3092 if (object)
3093 vm_object_drop(object);
3094 current = vm_map_rb_tree_RB_NEXT(current);
3097 lwkt_reltoken(&map->token);
3098 vm_map_unlock_read(map);
3100 return (KERN_SUCCESS);
3104 * Make the region specified by this entry pageable.
3106 * The vm_map must be exclusively locked.
3108 static void
3109 vm_map_entry_unwire(vm_map_t map, vm_map_entry_t entry)
3111 entry->eflags &= ~MAP_ENTRY_USER_WIRED;
3112 entry->wired_count = 0;
3113 vm_fault_unwire(map, entry);
3117 * Deallocate the given entry from the target map.
3119 * The vm_map must be exclusively locked.
3121 static void
3122 vm_map_entry_delete(vm_map_t map, vm_map_entry_t entry, int *countp)
3124 vm_map_entry_unlink(map, entry);
3125 map->size -= entry->ba.end - entry->ba.start;
3126 vm_map_entry_dispose(map, entry, countp);
3130 * Deallocates the given address range from the target map.
3132 * The vm_map must be exclusively locked.
3135 vm_map_delete(vm_map_t map, vm_offset_t start, vm_offset_t end, int *countp)
3137 vm_object_t object;
3138 vm_map_entry_t entry;
3139 vm_map_entry_t first_entry;
3140 vm_offset_t hole_start;
3142 ASSERT_VM_MAP_LOCKED(map);
3143 lwkt_gettoken(&map->token);
3144 again:
3146 * Find the start of the region, and clip it. Set entry to point
3147 * at the first record containing the requested address or, if no
3148 * such record exists, the next record with a greater address. The
3149 * loop will run from this point until a record beyond the termination
3150 * address is encountered.
3152 * Adjust freehint[] for either the clip case or the extension case.
3154 * GGG see other GGG comment.
3156 if (vm_map_lookup_entry(map, start, &first_entry)) {
3157 entry = first_entry;
3158 vm_map_clip_start(map, entry, start, countp);
3159 hole_start = start;
3160 } else {
3161 if (first_entry) {
3162 entry = vm_map_rb_tree_RB_NEXT(first_entry);
3163 if (entry == NULL)
3164 hole_start = first_entry->ba.start;
3165 else
3166 hole_start = first_entry->ba.end;
3167 } else {
3168 entry = RB_MIN(vm_map_rb_tree, &map->rb_root);
3169 if (entry == NULL)
3170 hole_start = vm_map_min(map);
3171 else
3172 hole_start = vm_map_max(map);
3177 * Step through all entries in this region
3179 while (entry && entry->ba.start < end) {
3180 vm_map_entry_t next;
3181 vm_offset_t s, e;
3182 vm_pindex_t offidxstart, offidxend, count;
3185 * If we hit an in-transition entry we have to sleep and
3186 * retry. It's easier (and not really slower) to just retry
3187 * since this case occurs so rarely and the hint is already
3188 * pointing at the right place. We have to reset the
3189 * start offset so as not to accidently delete an entry
3190 * another process just created in vacated space.
3192 if (entry->eflags & MAP_ENTRY_IN_TRANSITION) {
3193 entry->eflags |= MAP_ENTRY_NEEDS_WAKEUP;
3194 start = entry->ba.start;
3195 ++mycpu->gd_cnt.v_intrans_coll;
3196 ++mycpu->gd_cnt.v_intrans_wait;
3197 vm_map_transition_wait(map, 1);
3198 goto again;
3200 vm_map_clip_end(map, entry, end, countp);
3202 s = entry->ba.start;
3203 e = entry->ba.end;
3204 next = vm_map_rb_tree_RB_NEXT(entry);
3206 offidxstart = OFF_TO_IDX(entry->ba.offset);
3207 count = OFF_TO_IDX(e - s);
3209 switch(entry->maptype) {
3210 case VM_MAPTYPE_NORMAL:
3211 case VM_MAPTYPE_VPAGETABLE:
3212 case VM_MAPTYPE_SUBMAP:
3213 object = entry->ba.object;
3214 break;
3215 default:
3216 object = NULL;
3217 break;
3221 * Unwire before removing addresses from the pmap; otherwise,
3222 * unwiring will put the entries back in the pmap.
3224 * Generally speaking, doing a bulk pmap_remove() before
3225 * removing the pages from the VM object is better at
3226 * reducing unnecessary IPIs. The pmap code is now optimized
3227 * to not blindly iterate the range when pt and pd pages
3228 * are missing.
3230 if (entry->wired_count != 0)
3231 vm_map_entry_unwire(map, entry);
3233 offidxend = offidxstart + count;
3235 if (object == &kernel_object) {
3236 pmap_remove(map->pmap, s, e);
3237 vm_object_hold(object);
3238 vm_object_page_remove(object, offidxstart,
3239 offidxend, FALSE);
3240 vm_object_drop(object);
3241 } else if (object && object->type != OBJT_DEFAULT &&
3242 object->type != OBJT_SWAP) {
3244 * vnode object routines cannot be chain-locked,
3245 * but since we aren't removing pages from the
3246 * object here we can use a shared hold.
3248 vm_object_hold_shared(object);
3249 pmap_remove(map->pmap, s, e);
3250 vm_object_drop(object);
3251 } else if (object) {
3252 vm_object_hold(object);
3253 pmap_remove(map->pmap, s, e);
3255 if (object != NULL &&
3256 object->ref_count != 1 &&
3257 (object->flags & (OBJ_NOSPLIT|OBJ_ONEMAPPING)) ==
3258 OBJ_ONEMAPPING &&
3259 (object->type == OBJT_DEFAULT ||
3260 object->type == OBJT_SWAP)) {
3262 * When ONEMAPPING is set we can destroy the
3263 * pages underlying the entry's range.
3265 vm_object_page_remove(object, offidxstart,
3266 offidxend, FALSE);
3267 if (object->type == OBJT_SWAP) {
3268 swap_pager_freespace(object,
3269 offidxstart,
3270 count);
3272 if (offidxend >= object->size &&
3273 offidxstart < object->size) {
3274 object->size = offidxstart;
3277 vm_object_drop(object);
3278 } else if (entry->maptype == VM_MAPTYPE_UKSMAP) {
3279 pmap_remove(map->pmap, s, e);
3283 * Delete the entry (which may delete the object) only after
3284 * removing all pmap entries pointing to its pages.
3285 * (Otherwise, its page frames may be reallocated, and any
3286 * modify bits will be set in the wrong object!)
3288 vm_map_entry_delete(map, entry, countp);
3289 entry = next;
3293 * We either reached the end and use vm_map_max as the end
3294 * address, or we didn't and we use the next entry as the
3295 * end address.
3297 if (entry == NULL) {
3298 vm_map_freehint_hole(map, hole_start,
3299 vm_map_max(map) - hole_start);
3300 } else {
3301 vm_map_freehint_hole(map, hole_start,
3302 entry->ba.start - hole_start);
3305 lwkt_reltoken(&map->token);
3307 return (KERN_SUCCESS);
3311 * Remove the given address range from the target map.
3312 * This is the exported form of vm_map_delete.
3314 * No requirements.
3317 vm_map_remove(vm_map_t map, vm_offset_t start, vm_offset_t end)
3319 int result;
3320 int count;
3322 count = vm_map_entry_reserve(MAP_RESERVE_COUNT);
3323 vm_map_lock(map);
3324 VM_MAP_RANGE_CHECK(map, start, end);
3325 result = vm_map_delete(map, start, end, &count);
3326 vm_map_unlock(map);
3327 vm_map_entry_release(count);
3329 return (result);
3333 * Assert that the target map allows the specified privilege on the
3334 * entire address region given. The entire region must be allocated.
3336 * The caller must specify whether the vm_map is already locked or not.
3338 boolean_t
3339 vm_map_check_protection(vm_map_t map, vm_offset_t start, vm_offset_t end,
3340 vm_prot_t protection, boolean_t have_lock)
3342 vm_map_entry_t entry;
3343 vm_map_entry_t tmp_entry;
3344 boolean_t result;
3346 if (have_lock == FALSE)
3347 vm_map_lock_read(map);
3349 if (!vm_map_lookup_entry(map, start, &tmp_entry)) {
3350 if (have_lock == FALSE)
3351 vm_map_unlock_read(map);
3352 return (FALSE);
3354 entry = tmp_entry;
3356 result = TRUE;
3357 while (start < end) {
3358 if (entry == NULL) {
3359 result = FALSE;
3360 break;
3364 * No holes allowed!
3367 if (start < entry->ba.start) {
3368 result = FALSE;
3369 break;
3372 * Check protection associated with entry.
3375 if ((entry->protection & protection) != protection) {
3376 result = FALSE;
3377 break;
3379 /* go to next entry */
3380 start = entry->ba.end;
3381 entry = vm_map_rb_tree_RB_NEXT(entry);
3383 if (have_lock == FALSE)
3384 vm_map_unlock_read(map);
3385 return (result);
3389 * vm_map_backing structures are not shared across forks and must be
3390 * replicated.
3392 * Generally speaking we must reallocate the backing_ba sequence and
3393 * also adjust it for any changes made to the base entry->ba.start and
3394 * entry->ba.end. The first ba in the chain is of course &entry->ba,
3395 * so we only need to adjust subsequent ba's start, end, and offset.
3397 * MAP_BACK_CLIPPED - Called as part of a clipping replication.
3398 * Do not clear OBJ_ONEMAPPING.
3400 * MAP_BACK_BASEOBJREFD - Called from vm_map_insert(). The base object
3401 * has already been referenced.
3403 static
3404 void
3405 vm_map_backing_replicated(vm_map_t map, vm_map_entry_t entry, int flags)
3407 vm_map_backing_t ba;
3408 vm_map_backing_t nba;
3409 vm_object_t object;
3411 ba = &entry->ba;
3412 for (;;) {
3413 object = ba->object;
3414 ba->pmap = map->pmap;
3415 if (object &&
3416 (entry->maptype == VM_MAPTYPE_VPAGETABLE ||
3417 entry->maptype == VM_MAPTYPE_NORMAL)) {
3418 if (ba != &entry->ba ||
3419 (flags & MAP_BACK_BASEOBJREFD) == 0) {
3420 vm_object_reference_quick(object);
3422 vm_map_backing_attach(ba);
3423 if ((flags & MAP_BACK_CLIPPED) == 0 &&
3424 object->ref_count > 1) {
3425 vm_object_clear_flag(object, OBJ_ONEMAPPING);
3428 if (ba->backing_ba == NULL)
3429 break;
3430 nba = kmalloc(sizeof(*nba), M_MAP_BACKING, M_INTWAIT);
3431 *nba = *ba->backing_ba;
3432 nba->offset += (ba->start - nba->start); /* += (new - old) */
3433 nba->start = ba->start;
3434 nba->end = ba->end;
3435 ba->backing_ba = nba;
3436 ba = nba;
3437 /* pmap is replaced at the top of the loop */
3441 static
3442 void
3443 vm_map_backing_adjust_start(vm_map_entry_t entry, vm_ooffset_t start)
3445 vm_map_backing_t ba;
3447 if (entry->maptype == VM_MAPTYPE_VPAGETABLE ||
3448 entry->maptype == VM_MAPTYPE_NORMAL) {
3449 for (ba = &entry->ba; ba; ba = ba->backing_ba) {
3450 if (ba->object) {
3451 lockmgr(&ba->object->backing_lk, LK_EXCLUSIVE);
3452 ba->offset += (start - ba->start);
3453 ba->start = start;
3454 lockmgr(&ba->object->backing_lk, LK_RELEASE);
3455 } else {
3456 ba->offset += (start - ba->start);
3457 ba->start = start;
3460 } else {
3461 /* not an object and can't be shadowed */
3465 static
3466 void
3467 vm_map_backing_adjust_end(vm_map_entry_t entry, vm_ooffset_t end)
3469 vm_map_backing_t ba;
3471 if (entry->maptype == VM_MAPTYPE_VPAGETABLE ||
3472 entry->maptype == VM_MAPTYPE_NORMAL) {
3473 for (ba = &entry->ba; ba; ba = ba->backing_ba) {
3474 if (ba->object) {
3475 lockmgr(&ba->object->backing_lk, LK_EXCLUSIVE);
3476 ba->end = end;
3477 lockmgr(&ba->object->backing_lk, LK_RELEASE);
3478 } else {
3479 ba->end = end;
3482 } else {
3483 /* not an object and can't be shadowed */
3488 * Handles the dirty work of making src_entry and dst_entry copy-on-write
3489 * after src_entry has been cloned to dst_entry. For normal entries only.
3491 * The vm_maps must be exclusively locked.
3492 * The vm_map's token must be held.
3494 * Because the maps are locked no faults can be in progress during the
3495 * operation.
3497 static void
3498 vm_map_copy_entry(vm_map_t src_map, vm_map_t dst_map,
3499 vm_map_entry_t src_entry, vm_map_entry_t dst_entry)
3501 vm_object_t obj;
3503 KKASSERT(dst_entry->maptype == VM_MAPTYPE_NORMAL ||
3504 dst_entry->maptype == VM_MAPTYPE_VPAGETABLE);
3506 if (src_entry->wired_count &&
3507 src_entry->maptype != VM_MAPTYPE_VPAGETABLE) {
3509 * Of course, wired down pages can't be set copy-on-write.
3510 * Cause wired pages to be copied into the new map by
3511 * simulating faults (the new pages are pageable)
3513 * Scrap ba.object (its ref-count has not yet been adjusted
3514 * so we can just NULL out the field). Remove the backing
3515 * store.
3517 * Then call vm_fault_copy_entry() to create a new object
3518 * in dst_entry and copy the wired pages from src to dst.
3520 * The fault-copy code doesn't work with virtual page
3521 * tables.
3523 if ((obj = dst_entry->ba.object) != NULL) {
3524 vm_map_backing_detach(&dst_entry->ba);
3525 dst_entry->ba.object = NULL;
3526 vm_map_entry_dispose_ba(dst_entry->ba.backing_ba);
3527 dst_entry->ba.backing_ba = NULL;
3528 dst_entry->ba.backing_count = 0;
3530 vm_fault_copy_entry(dst_map, src_map, dst_entry, src_entry);
3531 } else {
3532 if ((src_entry->eflags & MAP_ENTRY_NEEDS_COPY) == 0) {
3534 * If the source entry is not already marked NEEDS_COPY
3535 * we need to write-protect the PTEs.
3537 pmap_protect(src_map->pmap,
3538 src_entry->ba.start,
3539 src_entry->ba.end,
3540 src_entry->protection & ~VM_PROT_WRITE);
3544 * dst_entry.ba_object might be stale. Update it (its
3545 * ref-count has not yet been updated so just overwrite
3546 * the field).
3548 * If there is no object then we are golden. Also, in
3549 * this situation if there are no backing_ba linkages then
3550 * we can set ba.offset to whatever we want. For now we
3551 * set the offset for 0 for make debugging object sizes
3552 * easier.
3554 obj = src_entry->ba.object;
3556 if (obj) {
3557 src_entry->eflags |= (MAP_ENTRY_COW |
3558 MAP_ENTRY_NEEDS_COPY);
3559 dst_entry->eflags |= (MAP_ENTRY_COW |
3560 MAP_ENTRY_NEEDS_COPY);
3561 KKASSERT(dst_entry->ba.offset == src_entry->ba.offset);
3562 } else {
3563 dst_entry->ba.offset = 0;
3567 * Normal, allow the backing_ba link depth to
3568 * increase.
3570 pmap_copy(dst_map->pmap, src_map->pmap,
3571 dst_entry->ba.start,
3572 dst_entry->ba.end - dst_entry->ba.start,
3573 src_entry->ba.start);
3578 * Create a vmspace for a new process and its related vm_map based on an
3579 * existing vmspace. The new map inherits information from the old map
3580 * according to inheritance settings.
3582 * The source map must not be locked.
3583 * No requirements.
3585 static void vmspace_fork_normal_entry(vm_map_t old_map, vm_map_t new_map,
3586 vm_map_entry_t old_entry, int *countp);
3587 static void vmspace_fork_uksmap_entry(vm_map_t old_map, vm_map_t new_map,
3588 vm_map_entry_t old_entry, int *countp);
3590 struct vmspace *
3591 vmspace_fork(struct vmspace *vm1)
3593 struct vmspace *vm2;
3594 vm_map_t old_map = &vm1->vm_map;
3595 vm_map_t new_map;
3596 vm_map_entry_t old_entry;
3597 int count;
3599 lwkt_gettoken(&vm1->vm_map.token);
3600 vm_map_lock(old_map);
3602 vm2 = vmspace_alloc(vm_map_min(old_map), vm_map_max(old_map));
3603 lwkt_gettoken(&vm2->vm_map.token);
3606 * We must bump the timestamp to force any concurrent fault
3607 * to retry.
3609 bcopy(&vm1->vm_startcopy, &vm2->vm_startcopy,
3610 (caddr_t)&vm1->vm_endcopy - (caddr_t)&vm1->vm_startcopy);
3611 new_map = &vm2->vm_map; /* XXX */
3612 new_map->timestamp = 1;
3614 vm_map_lock(new_map);
3616 count = old_map->nentries;
3617 count = vm_map_entry_reserve(count + MAP_RESERVE_COUNT);
3619 RB_FOREACH(old_entry, vm_map_rb_tree, &old_map->rb_root) {
3620 switch(old_entry->maptype) {
3621 case VM_MAPTYPE_SUBMAP:
3622 panic("vm_map_fork: encountered a submap");
3623 break;
3624 case VM_MAPTYPE_UKSMAP:
3625 vmspace_fork_uksmap_entry(old_map, new_map,
3626 old_entry, &count);
3627 break;
3628 case VM_MAPTYPE_NORMAL:
3629 case VM_MAPTYPE_VPAGETABLE:
3630 vmspace_fork_normal_entry(old_map, new_map,
3631 old_entry, &count);
3632 break;
3636 new_map->size = old_map->size;
3637 vm_map_unlock(new_map);
3638 vm_map_unlock(old_map);
3639 vm_map_entry_release(count);
3641 lwkt_reltoken(&vm2->vm_map.token);
3642 lwkt_reltoken(&vm1->vm_map.token);
3644 return (vm2);
3647 static
3648 void
3649 vmspace_fork_normal_entry(vm_map_t old_map, vm_map_t new_map,
3650 vm_map_entry_t old_entry, int *countp)
3652 vm_map_entry_t new_entry;
3653 vm_map_backing_t ba;
3654 vm_object_t object;
3657 * If the backing_ba link list gets too long then fault it
3658 * all into the head object and dispose of the list. We do
3659 * this in old_entry prior to cloning in order to benefit both
3660 * parent and child.
3662 * We can test our fronting object's size against its
3663 * resident_page_count for a really cheap (but probably not perfect)
3664 * all-shadowed test, allowing us to disconnect the backing_ba
3665 * link list early.
3667 * XXX Currently doesn't work for VPAGETABLEs (the entire object
3668 * would have to be copied).
3670 object = old_entry->ba.object;
3671 if (old_entry->ba.backing_ba &&
3672 old_entry->maptype != VM_MAPTYPE_VPAGETABLE &&
3673 (old_entry->ba.backing_count >= vm_map_backing_limit ||
3674 (vm_map_backing_shadow_test && object &&
3675 object->size == object->resident_page_count))) {
3677 * If there are too many backing_ba linkages we
3678 * collapse everything into the head
3680 * This will also remove all the pte's.
3682 if (old_entry->eflags & MAP_ENTRY_NEEDS_COPY)
3683 vm_map_entry_shadow(old_entry);
3684 if (object == NULL)
3685 vm_map_entry_allocate_object(old_entry);
3686 if (vm_fault_collapse(old_map, old_entry) == KERN_SUCCESS) {
3687 ba = old_entry->ba.backing_ba;
3688 old_entry->ba.backing_ba = NULL;
3689 old_entry->ba.backing_count = 0;
3690 vm_map_entry_dispose_ba(ba);
3693 object = NULL; /* object variable is now invalid */
3696 * Fork the entry
3698 switch (old_entry->inheritance) {
3699 case VM_INHERIT_NONE:
3700 break;
3701 case VM_INHERIT_SHARE:
3703 * Clone the entry as a shared entry. This will look like
3704 * shared memory across the old and the new process. We must
3705 * ensure that the object is allocated.
3707 if (old_entry->ba.object == NULL)
3708 vm_map_entry_allocate_object(old_entry);
3710 if (old_entry->eflags & MAP_ENTRY_NEEDS_COPY) {
3712 * Create the fronting vm_map_backing for
3713 * an entry which needs a copy, plus an extra
3714 * ref because we are going to duplicate it
3715 * in the fork.
3717 * The call to vm_map_entry_shadow() will also clear
3718 * OBJ_ONEMAPPING.
3720 * XXX no more collapse. Still need extra ref
3721 * for the fork.
3723 vm_map_entry_shadow(old_entry);
3724 } else if (old_entry->ba.object) {
3725 object = old_entry->ba.object;
3729 * Clone the entry. We've already bumped the ref on
3730 * the vm_object for our new entry.
3732 new_entry = vm_map_entry_create(countp);
3733 *new_entry = *old_entry;
3735 new_entry->eflags &= ~MAP_ENTRY_USER_WIRED;
3736 new_entry->wired_count = 0;
3739 * Replicate and index the vm_map_backing. Don't share
3740 * the vm_map_backing across vm_map's (only across clips).
3742 * Insert the entry into the new map -- we know we're
3743 * inserting at the end of the new map.
3745 vm_map_backing_replicated(new_map, new_entry, 0);
3746 vm_map_entry_link(new_map, new_entry);
3749 * Update the physical map
3751 pmap_copy(new_map->pmap, old_map->pmap,
3752 new_entry->ba.start,
3753 (old_entry->ba.end - old_entry->ba.start),
3754 old_entry->ba.start);
3755 break;
3756 case VM_INHERIT_COPY:
3758 * Clone the entry and link the copy into the new map.
3760 * Note that ref-counting adjustment for old_entry->ba.object
3761 * (if it isn't a special map that is) is handled by
3762 * vm_map_copy_entry().
3764 new_entry = vm_map_entry_create(countp);
3765 *new_entry = *old_entry;
3767 new_entry->eflags &= ~MAP_ENTRY_USER_WIRED;
3768 new_entry->wired_count = 0;
3770 vm_map_backing_replicated(new_map, new_entry, 0);
3771 vm_map_entry_link(new_map, new_entry);
3774 * This does the actual dirty work of making both entries
3775 * copy-on-write, and will also handle the fronting object.
3777 vm_map_copy_entry(old_map, new_map, old_entry, new_entry);
3778 break;
3783 * When forking user-kernel shared maps, the map might change in the
3784 * child so do not try to copy the underlying pmap entries.
3786 static
3787 void
3788 vmspace_fork_uksmap_entry(vm_map_t old_map, vm_map_t new_map,
3789 vm_map_entry_t old_entry, int *countp)
3791 vm_map_entry_t new_entry;
3793 new_entry = vm_map_entry_create(countp);
3794 *new_entry = *old_entry;
3796 new_entry->eflags &= ~MAP_ENTRY_USER_WIRED;
3797 new_entry->wired_count = 0;
3798 KKASSERT(new_entry->ba.backing_ba == NULL);
3799 vm_map_backing_replicated(new_map, new_entry, 0);
3801 vm_map_entry_link(new_map, new_entry);
3805 * Create an auto-grow stack entry
3807 * No requirements.
3810 vm_map_stack (vm_map_t map, vm_offset_t *addrbos, vm_size_t max_ssize,
3811 int flags, vm_prot_t prot, vm_prot_t max, int cow)
3813 vm_map_entry_t prev_entry;
3814 vm_map_entry_t next;
3815 vm_size_t init_ssize;
3816 int rv;
3817 int count;
3818 vm_offset_t tmpaddr;
3820 cow |= MAP_IS_STACK;
3822 if (max_ssize < sgrowsiz)
3823 init_ssize = max_ssize;
3824 else
3825 init_ssize = sgrowsiz;
3827 count = vm_map_entry_reserve(MAP_RESERVE_COUNT);
3828 vm_map_lock(map);
3831 * Find space for the mapping
3833 if ((flags & (MAP_FIXED | MAP_TRYFIXED)) == 0) {
3834 if (vm_map_findspace(map, *addrbos, max_ssize, 1,
3835 flags, &tmpaddr)) {
3836 vm_map_unlock(map);
3837 vm_map_entry_release(count);
3838 return (KERN_NO_SPACE);
3840 *addrbos = tmpaddr;
3843 /* If addr is already mapped, no go */
3844 if (vm_map_lookup_entry(map, *addrbos, &prev_entry)) {
3845 vm_map_unlock(map);
3846 vm_map_entry_release(count);
3847 return (KERN_NO_SPACE);
3850 #if 0
3851 /* XXX already handled by kern_mmap() */
3852 /* If we would blow our VMEM resource limit, no go */
3853 if (map->size + init_ssize >
3854 curproc->p_rlimit[RLIMIT_VMEM].rlim_cur) {
3855 vm_map_unlock(map);
3856 vm_map_entry_release(count);
3857 return (KERN_NO_SPACE);
3859 #endif
3862 * If we can't accomodate max_ssize in the current mapping,
3863 * no go. However, we need to be aware that subsequent user
3864 * mappings might map into the space we have reserved for
3865 * stack, and currently this space is not protected.
3867 * Hopefully we will at least detect this condition
3868 * when we try to grow the stack.
3870 if (prev_entry)
3871 next = vm_map_rb_tree_RB_NEXT(prev_entry);
3872 else
3873 next = RB_MIN(vm_map_rb_tree, &map->rb_root);
3875 if (next && next->ba.start < *addrbos + max_ssize) {
3876 vm_map_unlock(map);
3877 vm_map_entry_release(count);
3878 return (KERN_NO_SPACE);
3882 * We initially map a stack of only init_ssize. We will
3883 * grow as needed later. Since this is to be a grow
3884 * down stack, we map at the top of the range.
3886 * Note: we would normally expect prot and max to be
3887 * VM_PROT_ALL, and cow to be 0. Possibly we should
3888 * eliminate these as input parameters, and just
3889 * pass these values here in the insert call.
3891 rv = vm_map_insert(map, &count, NULL, NULL,
3892 0, *addrbos + max_ssize - init_ssize,
3893 *addrbos + max_ssize,
3894 VM_MAPTYPE_NORMAL,
3895 VM_SUBSYS_STACK, prot, max, cow);
3897 /* Now set the avail_ssize amount */
3898 if (rv == KERN_SUCCESS) {
3899 if (prev_entry)
3900 next = vm_map_rb_tree_RB_NEXT(prev_entry);
3901 else
3902 next = RB_MIN(vm_map_rb_tree, &map->rb_root);
3903 if (prev_entry != NULL) {
3904 vm_map_clip_end(map,
3905 prev_entry,
3906 *addrbos + max_ssize - init_ssize,
3907 &count);
3909 if (next->ba.end != *addrbos + max_ssize ||
3910 next->ba.start != *addrbos + max_ssize - init_ssize){
3911 panic ("Bad entry start/end for new stack entry");
3912 } else {
3913 next->aux.avail_ssize = max_ssize - init_ssize;
3917 vm_map_unlock(map);
3918 vm_map_entry_release(count);
3919 return (rv);
3923 * Attempts to grow a vm stack entry. Returns KERN_SUCCESS if the
3924 * desired address is already mapped, or if we successfully grow
3925 * the stack. Also returns KERN_SUCCESS if addr is outside the
3926 * stack range (this is strange, but preserves compatibility with
3927 * the grow function in vm_machdep.c).
3929 * No requirements.
3932 vm_map_growstack (vm_map_t map, vm_offset_t addr)
3934 vm_map_entry_t prev_entry;
3935 vm_map_entry_t stack_entry;
3936 vm_map_entry_t next;
3937 struct vmspace *vm;
3938 struct lwp *lp;
3939 struct proc *p;
3940 vm_offset_t end;
3941 int grow_amount;
3942 int rv = KERN_SUCCESS;
3943 int is_procstack;
3944 int use_read_lock = 1;
3945 int count;
3948 * Find the vm
3950 lp = curthread->td_lwp;
3951 p = curthread->td_proc;
3952 KKASSERT(lp != NULL);
3953 vm = lp->lwp_vmspace;
3956 * Growstack is only allowed on the current process. We disallow
3957 * other use cases, e.g. trying to access memory via procfs that
3958 * the stack hasn't grown into.
3960 if (map != &vm->vm_map) {
3961 return KERN_FAILURE;
3964 count = vm_map_entry_reserve(MAP_RESERVE_COUNT);
3965 Retry:
3966 if (use_read_lock)
3967 vm_map_lock_read(map);
3968 else
3969 vm_map_lock(map);
3972 * If addr is already in the entry range, no need to grow.
3973 * prev_entry returns NULL if addr is at the head.
3975 if (vm_map_lookup_entry(map, addr, &prev_entry))
3976 goto done;
3977 if (prev_entry)
3978 stack_entry = vm_map_rb_tree_RB_NEXT(prev_entry);
3979 else
3980 stack_entry = RB_MIN(vm_map_rb_tree, &map->rb_root);
3982 if (stack_entry == NULL)
3983 goto done;
3984 if (prev_entry == NULL)
3985 end = stack_entry->ba.start - stack_entry->aux.avail_ssize;
3986 else
3987 end = prev_entry->ba.end;
3990 * This next test mimics the old grow function in vm_machdep.c.
3991 * It really doesn't quite make sense, but we do it anyway
3992 * for compatibility.
3994 * If not growable stack, return success. This signals the
3995 * caller to proceed as he would normally with normal vm.
3997 if (stack_entry->aux.avail_ssize < 1 ||
3998 addr >= stack_entry->ba.start ||
3999 addr < stack_entry->ba.start - stack_entry->aux.avail_ssize) {
4000 goto done;
4003 /* Find the minimum grow amount */
4004 grow_amount = roundup (stack_entry->ba.start - addr, PAGE_SIZE);
4005 if (grow_amount > stack_entry->aux.avail_ssize) {
4006 rv = KERN_NO_SPACE;
4007 goto done;
4011 * If there is no longer enough space between the entries
4012 * nogo, and adjust the available space. Note: this
4013 * should only happen if the user has mapped into the
4014 * stack area after the stack was created, and is
4015 * probably an error.
4017 * This also effectively destroys any guard page the user
4018 * might have intended by limiting the stack size.
4020 if (grow_amount > stack_entry->ba.start - end) {
4021 if (use_read_lock && vm_map_lock_upgrade(map)) {
4022 /* lost lock */
4023 use_read_lock = 0;
4024 goto Retry;
4026 use_read_lock = 0;
4027 stack_entry->aux.avail_ssize = stack_entry->ba.start - end;
4028 rv = KERN_NO_SPACE;
4029 goto done;
4032 is_procstack = addr >= (vm_offset_t)vm->vm_maxsaddr;
4034 /* If this is the main process stack, see if we're over the
4035 * stack limit.
4037 if (is_procstack && (vm->vm_ssize + grow_amount >
4038 p->p_rlimit[RLIMIT_STACK].rlim_cur)) {
4039 rv = KERN_NO_SPACE;
4040 goto done;
4043 /* Round up the grow amount modulo SGROWSIZ */
4044 grow_amount = roundup (grow_amount, sgrowsiz);
4045 if (grow_amount > stack_entry->aux.avail_ssize) {
4046 grow_amount = stack_entry->aux.avail_ssize;
4048 if (is_procstack && (vm->vm_ssize + grow_amount >
4049 p->p_rlimit[RLIMIT_STACK].rlim_cur)) {
4050 grow_amount = p->p_rlimit[RLIMIT_STACK].rlim_cur - vm->vm_ssize;
4053 /* If we would blow our VMEM resource limit, no go */
4054 if (map->size + grow_amount > p->p_rlimit[RLIMIT_VMEM].rlim_cur) {
4055 rv = KERN_NO_SPACE;
4056 goto done;
4059 if (use_read_lock && vm_map_lock_upgrade(map)) {
4060 /* lost lock */
4061 use_read_lock = 0;
4062 goto Retry;
4064 use_read_lock = 0;
4066 /* Get the preliminary new entry start value */
4067 addr = stack_entry->ba.start - grow_amount;
4069 /* If this puts us into the previous entry, cut back our growth
4070 * to the available space. Also, see the note above.
4072 if (addr < end) {
4073 stack_entry->aux.avail_ssize = stack_entry->ba.start - end;
4074 addr = end;
4077 rv = vm_map_insert(map, &count, NULL, NULL,
4078 0, addr, stack_entry->ba.start,
4079 VM_MAPTYPE_NORMAL,
4080 VM_SUBSYS_STACK, VM_PROT_ALL, VM_PROT_ALL, 0);
4082 /* Adjust the available stack space by the amount we grew. */
4083 if (rv == KERN_SUCCESS) {
4084 if (prev_entry) {
4085 vm_map_clip_end(map, prev_entry, addr, &count);
4086 next = vm_map_rb_tree_RB_NEXT(prev_entry);
4087 } else {
4088 next = RB_MIN(vm_map_rb_tree, &map->rb_root);
4090 if (next->ba.end != stack_entry->ba.start ||
4091 next->ba.start != addr) {
4092 panic ("Bad stack grow start/end in new stack entry");
4093 } else {
4094 next->aux.avail_ssize =
4095 stack_entry->aux.avail_ssize -
4096 (next->ba.end - next->ba.start);
4097 if (is_procstack) {
4098 vm->vm_ssize += next->ba.end -
4099 next->ba.start;
4103 if (map->flags & MAP_WIREFUTURE)
4104 vm_map_unwire(map, next->ba.start, next->ba.end, FALSE);
4107 done:
4108 if (use_read_lock)
4109 vm_map_unlock_read(map);
4110 else
4111 vm_map_unlock(map);
4112 vm_map_entry_release(count);
4113 return (rv);
4117 * Unshare the specified VM space for exec. If other processes are
4118 * mapped to it, then create a new one. The new vmspace is null.
4120 * No requirements.
4122 void
4123 vmspace_exec(struct proc *p, struct vmspace *vmcopy)
4125 struct vmspace *oldvmspace = p->p_vmspace;
4126 struct vmspace *newvmspace;
4127 vm_map_t map = &p->p_vmspace->vm_map;
4130 * If we are execing a resident vmspace we fork it, otherwise
4131 * we create a new vmspace. Note that exitingcnt is not
4132 * copied to the new vmspace.
4134 lwkt_gettoken(&oldvmspace->vm_map.token);
4135 if (vmcopy) {
4136 newvmspace = vmspace_fork(vmcopy);
4137 lwkt_gettoken(&newvmspace->vm_map.token);
4138 } else {
4139 newvmspace = vmspace_alloc(vm_map_min(map), vm_map_max(map));
4140 lwkt_gettoken(&newvmspace->vm_map.token);
4141 bcopy(&oldvmspace->vm_startcopy, &newvmspace->vm_startcopy,
4142 (caddr_t)&oldvmspace->vm_endcopy -
4143 (caddr_t)&oldvmspace->vm_startcopy);
4147 * Finish initializing the vmspace before assigning it
4148 * to the process. The vmspace will become the current vmspace
4149 * if p == curproc.
4151 pmap_pinit2(vmspace_pmap(newvmspace));
4152 pmap_replacevm(p, newvmspace, 0);
4153 lwkt_reltoken(&newvmspace->vm_map.token);
4154 lwkt_reltoken(&oldvmspace->vm_map.token);
4155 vmspace_rel(oldvmspace);
4159 * Unshare the specified VM space for forcing COW. This
4160 * is called by rfork, for the (RFMEM|RFPROC) == 0 case.
4162 void
4163 vmspace_unshare(struct proc *p)
4165 struct vmspace *oldvmspace = p->p_vmspace;
4166 struct vmspace *newvmspace;
4168 lwkt_gettoken(&oldvmspace->vm_map.token);
4169 if (vmspace_getrefs(oldvmspace) == 1) {
4170 lwkt_reltoken(&oldvmspace->vm_map.token);
4171 return;
4173 newvmspace = vmspace_fork(oldvmspace);
4174 lwkt_gettoken(&newvmspace->vm_map.token);
4175 pmap_pinit2(vmspace_pmap(newvmspace));
4176 pmap_replacevm(p, newvmspace, 0);
4177 lwkt_reltoken(&newvmspace->vm_map.token);
4178 lwkt_reltoken(&oldvmspace->vm_map.token);
4179 vmspace_rel(oldvmspace);
4183 * vm_map_hint: return the beginning of the best area suitable for
4184 * creating a new mapping with "prot" protection.
4186 * No requirements.
4188 vm_offset_t
4189 vm_map_hint(struct proc *p, vm_offset_t addr, vm_prot_t prot)
4191 struct vmspace *vms = p->p_vmspace;
4192 struct rlimit limit;
4193 rlim_t dsiz;
4196 * Acquire datasize limit for mmap() operation,
4197 * calculate nearest power of 2.
4199 if (kern_getrlimit(RLIMIT_DATA, &limit))
4200 limit.rlim_cur = maxdsiz;
4201 dsiz = limit.rlim_cur;
4203 if (!randomize_mmap || addr != 0) {
4205 * Set a reasonable start point for the hint if it was
4206 * not specified or if it falls within the heap space.
4207 * Hinted mmap()s do not allocate out of the heap space.
4209 if (addr == 0 ||
4210 (addr >= round_page((vm_offset_t)vms->vm_taddr) &&
4211 addr < round_page((vm_offset_t)vms->vm_daddr + dsiz))) {
4212 addr = round_page((vm_offset_t)vms->vm_daddr + dsiz);
4215 return addr;
4219 * randomize_mmap && addr == 0. For now randomize the
4220 * address within a dsiz range beyond the data limit.
4222 addr = (vm_offset_t)vms->vm_daddr + dsiz;
4223 if (dsiz)
4224 addr += (karc4random64() & 0x7FFFFFFFFFFFFFFFLU) % dsiz;
4225 return (round_page(addr));
4229 * Finds the VM object, offset, and protection for a given virtual address
4230 * in the specified map, assuming a page fault of the type specified.
4232 * Leaves the map in question locked for read; return values are guaranteed
4233 * until a vm_map_lookup_done call is performed. Note that the map argument
4234 * is in/out; the returned map must be used in the call to vm_map_lookup_done.
4236 * A handle (out_entry) is returned for use in vm_map_lookup_done, to make
4237 * that fast.
4239 * If a lookup is requested with "write protection" specified, the map may
4240 * be changed to perform virtual copying operations, although the data
4241 * referenced will remain the same.
4243 * No requirements.
4246 vm_map_lookup(vm_map_t *var_map, /* IN/OUT */
4247 vm_offset_t vaddr,
4248 vm_prot_t fault_typea,
4249 vm_map_entry_t *out_entry, /* OUT */
4250 struct vm_map_backing **bap, /* OUT */
4251 vm_pindex_t *pindex, /* OUT */
4252 vm_prot_t *out_prot, /* OUT */
4253 int *wflags) /* OUT */
4255 vm_map_entry_t entry;
4256 vm_map_t map = *var_map;
4257 vm_prot_t prot;
4258 vm_prot_t fault_type = fault_typea;
4259 int use_read_lock = 1;
4260 int rv = KERN_SUCCESS;
4261 int count;
4262 thread_t td = curthread;
4265 * vm_map_entry_reserve() implements an important mitigation
4266 * against mmap() span running the kernel out of vm_map_entry
4267 * structures, but it can also cause an infinite call recursion.
4268 * Use td_nest_count to prevent an infinite recursion (allows
4269 * the vm_map code to dig into the pcpu vm_map_entry reserve).
4271 count = 0;
4272 if (td->td_nest_count == 0) {
4273 ++td->td_nest_count;
4274 count = vm_map_entry_reserve(MAP_RESERVE_COUNT);
4275 --td->td_nest_count;
4277 RetryLookup:
4278 if (use_read_lock)
4279 vm_map_lock_read(map);
4280 else
4281 vm_map_lock(map);
4284 * Always do a full lookup. The hint doesn't get us much anymore
4285 * now that the map is RB'd.
4287 cpu_ccfence();
4288 *out_entry = NULL;
4289 *bap = NULL;
4292 vm_map_entry_t tmp_entry;
4294 if (!vm_map_lookup_entry(map, vaddr, &tmp_entry)) {
4295 rv = KERN_INVALID_ADDRESS;
4296 goto done;
4298 entry = tmp_entry;
4299 *out_entry = entry;
4303 * Handle submaps.
4305 if (entry->maptype == VM_MAPTYPE_SUBMAP) {
4306 vm_map_t old_map = map;
4308 *var_map = map = entry->ba.sub_map;
4309 if (use_read_lock)
4310 vm_map_unlock_read(old_map);
4311 else
4312 vm_map_unlock(old_map);
4313 use_read_lock = 1;
4314 goto RetryLookup;
4318 * Check whether this task is allowed to have this page.
4319 * Note the special case for MAP_ENTRY_COW pages with an override.
4320 * This is to implement a forced COW for debuggers.
4322 if (fault_type & VM_PROT_OVERRIDE_WRITE)
4323 prot = entry->max_protection;
4324 else
4325 prot = entry->protection;
4327 fault_type &= (VM_PROT_READ|VM_PROT_WRITE|VM_PROT_EXECUTE);
4328 if ((fault_type & prot) != fault_type) {
4329 rv = KERN_PROTECTION_FAILURE;
4330 goto done;
4333 if ((entry->eflags & MAP_ENTRY_USER_WIRED) &&
4334 (entry->eflags & MAP_ENTRY_COW) &&
4335 (fault_type & VM_PROT_WRITE) &&
4336 (fault_typea & VM_PROT_OVERRIDE_WRITE) == 0) {
4337 rv = KERN_PROTECTION_FAILURE;
4338 goto done;
4342 * If this page is not pageable, we have to get it for all possible
4343 * accesses.
4345 *wflags = 0;
4346 if (entry->wired_count) {
4347 *wflags |= FW_WIRED;
4348 prot = fault_type = entry->protection;
4352 * Virtual page tables may need to update the accessed (A) bit
4353 * in a page table entry. Upgrade the fault to a write fault for
4354 * that case if the map will support it. If the map does not support
4355 * it the page table entry simply will not be updated.
4357 if (entry->maptype == VM_MAPTYPE_VPAGETABLE) {
4358 if (prot & VM_PROT_WRITE)
4359 fault_type |= VM_PROT_WRITE;
4362 if (curthread->td_lwp && curthread->td_lwp->lwp_vmspace &&
4363 pmap_emulate_ad_bits(&curthread->td_lwp->lwp_vmspace->vm_pmap)) {
4364 if ((prot & VM_PROT_WRITE) == 0)
4365 fault_type |= VM_PROT_WRITE;
4369 * Only NORMAL and VPAGETABLE maps are object-based. UKSMAPs are not.
4371 if (entry->maptype != VM_MAPTYPE_NORMAL &&
4372 entry->maptype != VM_MAPTYPE_VPAGETABLE) {
4373 *bap = NULL;
4374 goto skip;
4378 * If the entry was copy-on-write, we either ...
4380 if (entry->eflags & MAP_ENTRY_NEEDS_COPY) {
4382 * If we want to write the page, we may as well handle that
4383 * now since we've got the map locked.
4385 * If we don't need to write the page, we just demote the
4386 * permissions allowed.
4388 if (fault_type & VM_PROT_WRITE) {
4390 * Not allowed if TDF_NOFAULT is set as the shadowing
4391 * operation can deadlock against the faulting
4392 * function due to the copy-on-write.
4394 if (curthread->td_flags & TDF_NOFAULT) {
4395 rv = KERN_FAILURE_NOFAULT;
4396 goto done;
4400 * Make a new vm_map_backing + object, and place it
4401 * in the object chain. Note that no new references
4402 * have appeared -- one just moved from the map to
4403 * the new object.
4405 if (use_read_lock && vm_map_lock_upgrade(map)) {
4406 /* lost lock */
4407 use_read_lock = 0;
4408 goto RetryLookup;
4410 use_read_lock = 0;
4411 vm_map_entry_shadow(entry);
4412 *wflags |= FW_DIDCOW;
4413 } else {
4415 * We're attempting to read a copy-on-write page --
4416 * don't allow writes.
4418 prot &= ~VM_PROT_WRITE;
4423 * Create an object if necessary. This code also handles
4424 * partitioning large entries to improve vm_fault performance.
4426 if (entry->ba.object == NULL && !map->system_map) {
4427 if (use_read_lock && vm_map_lock_upgrade(map)) {
4428 /* lost lock */
4429 use_read_lock = 0;
4430 goto RetryLookup;
4432 use_read_lock = 0;
4435 * Partition large entries, giving each its own VM object,
4436 * to improve concurrent fault performance. This is only
4437 * applicable to userspace.
4439 if (map != &kernel_map &&
4440 entry->maptype == VM_MAPTYPE_NORMAL &&
4441 ((entry->ba.start ^ entry->ba.end) &
4442 ~MAP_ENTRY_PARTITION_MASK) &&
4443 vm_map_partition_enable) {
4444 if (entry->eflags & MAP_ENTRY_IN_TRANSITION) {
4445 entry->eflags |= MAP_ENTRY_NEEDS_WAKEUP;
4446 ++mycpu->gd_cnt.v_intrans_coll;
4447 ++mycpu->gd_cnt.v_intrans_wait;
4448 vm_map_transition_wait(map, 0);
4449 goto RetryLookup;
4451 vm_map_entry_partition(map, entry, vaddr, &count);
4453 vm_map_entry_allocate_object(entry);
4457 * Return the object/offset from this entry. If the entry was
4458 * copy-on-write or empty, it has been fixed up.
4460 *bap = &entry->ba;
4462 skip:
4463 *pindex = OFF_TO_IDX((vaddr - entry->ba.start) + entry->ba.offset);
4466 * Return whether this is the only map sharing this data. On
4467 * success we return with a read lock held on the map. On failure
4468 * we return with the map unlocked.
4470 *out_prot = prot;
4471 done:
4472 if (rv == KERN_SUCCESS) {
4473 if (use_read_lock == 0)
4474 vm_map_lock_downgrade(map);
4475 } else if (use_read_lock) {
4476 vm_map_unlock_read(map);
4477 } else {
4478 vm_map_unlock(map);
4480 if (count > 0)
4481 vm_map_entry_release(count);
4483 return (rv);
4487 * Releases locks acquired by a vm_map_lookup()
4488 * (according to the handle returned by that lookup).
4490 * No other requirements.
4492 void
4493 vm_map_lookup_done(vm_map_t map, vm_map_entry_t entry, int count)
4496 * Unlock the main-level map
4498 vm_map_unlock_read(map);
4499 if (count)
4500 vm_map_entry_release(count);
4503 static void
4504 vm_map_entry_partition(vm_map_t map, vm_map_entry_t entry,
4505 vm_offset_t vaddr, int *countp)
4507 vaddr &= ~MAP_ENTRY_PARTITION_MASK;
4508 vm_map_clip_start(map, entry, vaddr, countp);
4509 vaddr += MAP_ENTRY_PARTITION_SIZE;
4510 vm_map_clip_end(map, entry, vaddr, countp);
4514 * Quick hack, needs some help to make it more SMP friendly.
4516 void
4517 vm_map_interlock(vm_map_t map, struct vm_map_ilock *ilock,
4518 vm_offset_t ran_beg, vm_offset_t ran_end)
4520 struct vm_map_ilock *scan;
4522 ilock->ran_beg = ran_beg;
4523 ilock->ran_end = ran_end;
4524 ilock->flags = 0;
4526 spin_lock(&map->ilock_spin);
4527 restart:
4528 for (scan = map->ilock_base; scan; scan = scan->next) {
4529 if (ran_end > scan->ran_beg && ran_beg < scan->ran_end) {
4530 scan->flags |= ILOCK_WAITING;
4531 ssleep(scan, &map->ilock_spin, 0, "ilock", 0);
4532 goto restart;
4535 ilock->next = map->ilock_base;
4536 map->ilock_base = ilock;
4537 spin_unlock(&map->ilock_spin);
4540 void
4541 vm_map_deinterlock(vm_map_t map, struct vm_map_ilock *ilock)
4543 struct vm_map_ilock *scan;
4544 struct vm_map_ilock **scanp;
4546 spin_lock(&map->ilock_spin);
4547 scanp = &map->ilock_base;
4548 while ((scan = *scanp) != NULL) {
4549 if (scan == ilock) {
4550 *scanp = ilock->next;
4551 spin_unlock(&map->ilock_spin);
4552 if (ilock->flags & ILOCK_WAITING)
4553 wakeup(ilock);
4554 return;
4556 scanp = &scan->next;
4558 spin_unlock(&map->ilock_spin);
4559 panic("vm_map_deinterlock: missing ilock!");
4562 #include "opt_ddb.h"
4563 #ifdef DDB
4564 #include <ddb/ddb.h>
4567 * Debugging only
4569 DB_SHOW_COMMAND(map, vm_map_print)
4571 static int nlines;
4572 /* XXX convert args. */
4573 vm_map_t map = (vm_map_t)addr;
4574 boolean_t full = have_addr;
4576 vm_map_entry_t entry;
4578 db_iprintf("Task map %p: pmap=%p, nentries=%d, version=%u\n",
4579 (void *)map,
4580 (void *)map->pmap, map->nentries, map->timestamp);
4581 nlines++;
4583 if (!full && db_indent)
4584 return;
4586 db_indent += 2;
4587 RB_FOREACH(entry, vm_map_rb_tree, &map->rb_root) {
4588 db_iprintf("map entry %p: start=%p, end=%p\n",
4589 (void *)entry,
4590 (void *)entry->ba.start, (void *)entry->ba.end);
4591 nlines++;
4593 static char *inheritance_name[4] =
4594 {"share", "copy", "none", "donate_copy"};
4596 db_iprintf(" prot=%x/%x/%s",
4597 entry->protection,
4598 entry->max_protection,
4599 inheritance_name[(int)(unsigned char)
4600 entry->inheritance]);
4601 if (entry->wired_count != 0)
4602 db_printf(", wired");
4604 switch(entry->maptype) {
4605 case VM_MAPTYPE_SUBMAP:
4606 /* XXX no %qd in kernel. Truncate entry->ba.offset. */
4607 db_printf(", share=%p, offset=0x%lx\n",
4608 (void *)entry->ba.sub_map,
4609 (long)entry->ba.offset);
4610 nlines++;
4612 db_indent += 2;
4613 vm_map_print((db_expr_t)(intptr_t)entry->ba.sub_map,
4614 full, 0, NULL);
4615 db_indent -= 2;
4616 break;
4617 case VM_MAPTYPE_NORMAL:
4618 case VM_MAPTYPE_VPAGETABLE:
4619 /* XXX no %qd in kernel. Truncate entry->ba.offset. */
4620 db_printf(", object=%p, offset=0x%lx",
4621 (void *)entry->ba.object,
4622 (long)entry->ba.offset);
4623 if (entry->eflags & MAP_ENTRY_COW)
4624 db_printf(", copy (%s)",
4625 (entry->eflags & MAP_ENTRY_NEEDS_COPY) ? "needed" : "done");
4626 db_printf("\n");
4627 nlines++;
4629 if (entry->ba.object) {
4630 db_indent += 2;
4631 vm_object_print((db_expr_t)(intptr_t)
4632 entry->ba.object,
4633 full, 0, NULL);
4634 nlines += 4;
4635 db_indent -= 2;
4637 break;
4638 case VM_MAPTYPE_UKSMAP:
4639 db_printf(", uksmap=%p, offset=0x%lx",
4640 (void *)entry->ba.uksmap,
4641 (long)entry->ba.offset);
4642 if (entry->eflags & MAP_ENTRY_COW)
4643 db_printf(", copy (%s)",
4644 (entry->eflags & MAP_ENTRY_NEEDS_COPY) ? "needed" : "done");
4645 db_printf("\n");
4646 nlines++;
4647 break;
4648 default:
4649 break;
4652 db_indent -= 2;
4653 if (db_indent == 0)
4654 nlines = 0;
4658 * Debugging only
4660 DB_SHOW_COMMAND(procvm, procvm)
4662 struct proc *p;
4664 if (have_addr) {
4665 p = (struct proc *) addr;
4666 } else {
4667 p = curproc;
4670 db_printf("p = %p, vmspace = %p, map = %p, pmap = %p\n",
4671 (void *)p, (void *)p->p_vmspace, (void *)&p->p_vmspace->vm_map,
4672 (void *)vmspace_pmap(p->p_vmspace));
4674 vm_map_print((db_expr_t)(intptr_t)&p->p_vmspace->vm_map, 1, 0, NULL);
4677 #endif /* DDB */