kernel - VM rework part 18 - Cleanup
[dragonfly.git] / sys / vm / swap_pager.c
blob21d02c216f2aded8489a5f7997c35b144751d853
1 /*
2 * (MPSAFE)
4 * Copyright (c) 1998-2010 The DragonFly Project. All rights reserved.
5 *
6 * This code is derived from software contributed to The DragonFly Project
7 * by Matthew Dillon <dillon@backplane.com>
8 *
9 * Redistribution and use in source and binary forms, with or without
10 * modification, are permitted provided that the following conditions
11 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 * notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in
17 * the documentation and/or other materials provided with the
18 * distribution.
19 * 3. Neither the name of The DragonFly Project nor the names of its
20 * contributors may be used to endorse or promote products derived
21 * from this software without specific, prior written permission.
23 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
24 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
25 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
26 * FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
27 * COPYRIGHT HOLDERS OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
28 * INCIDENTAL, SPECIAL, EXEMPLARY OR CONSEQUENTIAL DAMAGES (INCLUDING,
29 * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
30 * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
31 * AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
32 * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT
33 * OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
34 * SUCH DAMAGE.
36 * Copyright (c) 1994 John S. Dyson
37 * Copyright (c) 1990 University of Utah.
38 * Copyright (c) 1991, 1993
39 * The Regents of the University of California. All rights reserved.
41 * This code is derived from software contributed to Berkeley by
42 * the Systems Programming Group of the University of Utah Computer
43 * Science Department.
45 * Redistribution and use in source and binary forms, with or without
46 * modification, are permitted provided that the following conditions
47 * are met:
48 * 1. Redistributions of source code must retain the above copyright
49 * notice, this list of conditions and the following disclaimer.
50 * 2. Redistributions in binary form must reproduce the above copyright
51 * notice, this list of conditions and the following disclaimer in the
52 * documentation and/or other materials provided with the distribution.
53 * 3. Neither the name of the University nor the names of its contributors
54 * may be used to endorse or promote products derived from this software
55 * without specific prior written permission.
57 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
58 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
59 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
60 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
61 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
62 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
63 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
64 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
65 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
66 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
67 * SUCH DAMAGE.
69 * New Swap System
70 * Matthew Dillon
72 * Radix Bitmap 'blists'.
74 * - The new swapper uses the new radix bitmap code. This should scale
75 * to arbitrarily small or arbitrarily large swap spaces and an almost
76 * arbitrary degree of fragmentation.
78 * Features:
80 * - on the fly reallocation of swap during putpages. The new system
81 * does not try to keep previously allocated swap blocks for dirty
82 * pages.
84 * - on the fly deallocation of swap
86 * - No more garbage collection required. Unnecessarily allocated swap
87 * blocks only exist for dirty vm_page_t's now and these are already
88 * cycled (in a high-load system) by the pager. We also do on-the-fly
89 * removal of invalidated swap blocks when a page is destroyed
90 * or renamed.
92 * from: Utah $Hdr: swap_pager.c 1.4 91/04/30$
93 * @(#)swap_pager.c 8.9 (Berkeley) 3/21/94
94 * $FreeBSD: src/sys/vm/swap_pager.c,v 1.130.2.12 2002/08/31 21:15:55 dillon Exp $
97 #include "opt_swap.h"
98 #include <sys/param.h>
99 #include <sys/systm.h>
100 #include <sys/conf.h>
101 #include <sys/kernel.h>
102 #include <sys/proc.h>
103 #include <sys/buf.h>
104 #include <sys/vnode.h>
105 #include <sys/malloc.h>
106 #include <sys/vmmeter.h>
107 #include <sys/sysctl.h>
108 #include <sys/blist.h>
109 #include <sys/lock.h>
110 #include <sys/kcollect.h>
112 #include <vm/vm.h>
113 #include <vm/vm_object.h>
114 #include <vm/vm_page.h>
115 #include <vm/vm_pager.h>
116 #include <vm/vm_pageout.h>
117 #include <vm/swap_pager.h>
118 #include <vm/vm_extern.h>
119 #include <vm/vm_zone.h>
120 #include <vm/vnode_pager.h>
122 #include <sys/buf2.h>
123 #include <vm/vm_page2.h>
125 #ifndef MAX_PAGEOUT_CLUSTER
126 #define MAX_PAGEOUT_CLUSTER SWB_NPAGES
127 #endif
129 #define SWM_FREE 0x02 /* free, period */
130 #define SWM_POP 0x04 /* pop out */
132 #define SWBIO_READ 0x01
133 #define SWBIO_WRITE 0x02
134 #define SWBIO_SYNC 0x04
135 #define SWBIO_TTC 0x08 /* for VM_PAGER_TRY_TO_CACHE */
137 struct swfreeinfo {
138 vm_object_t object;
139 vm_pindex_t basei;
140 vm_pindex_t begi;
141 vm_pindex_t endi; /* inclusive */
144 struct swswapoffinfo {
145 vm_object_t object;
146 int devidx;
147 int shared;
151 * vm_swap_size is in page-sized chunks now. It was DEV_BSIZE'd chunks
152 * in the old system.
155 int swap_pager_full; /* swap space exhaustion (task killing) */
156 int swap_fail_ticks; /* when we became exhausted */
157 int swap_pager_almost_full; /* swap space exhaustion (w/ hysteresis)*/
158 swblk_t vm_swap_cache_use;
159 swblk_t vm_swap_anon_use;
160 static int vm_report_swap_allocs;
162 static struct krate kswaprate = { 1 };
163 static int nsw_rcount; /* free read buffers */
164 static int nsw_wcount_sync; /* limit write buffers / synchronous */
165 static int nsw_wcount_async; /* limit write buffers / asynchronous */
166 static int nsw_wcount_async_max;/* assigned maximum */
167 static int nsw_cluster_max; /* maximum VOP I/O allowed */
169 struct blist *swapblist;
170 static int swap_async_max = 4; /* maximum in-progress async I/O's */
171 static int swap_burst_read = 0; /* allow burst reading */
172 static swblk_t swapiterator; /* linearize allocations */
173 int swap_user_async = 0; /* user swap pager operation can be async */
175 static struct spinlock swapbp_spin = SPINLOCK_INITIALIZER(&swapbp_spin, "swapbp_spin");
177 /* from vm_swap.c */
178 extern struct vnode *swapdev_vp;
179 extern struct swdevt *swdevt;
180 extern int nswdev;
182 #define BLK2DEVIDX(blk) (nswdev > 1 ? blk / SWB_DMMAX % nswdev : 0)
184 SYSCTL_INT(_vm, OID_AUTO, swap_async_max,
185 CTLFLAG_RW, &swap_async_max, 0, "Maximum running async swap ops");
186 SYSCTL_INT(_vm, OID_AUTO, swap_burst_read,
187 CTLFLAG_RW, &swap_burst_read, 0, "Allow burst reads for pageins");
188 SYSCTL_INT(_vm, OID_AUTO, swap_user_async,
189 CTLFLAG_RW, &swap_user_async, 0, "Allow async uuser swap write I/O");
191 #if SWBLK_BITS == 64
192 SYSCTL_LONG(_vm, OID_AUTO, swap_cache_use,
193 CTLFLAG_RD, &vm_swap_cache_use, 0, "");
194 SYSCTL_LONG(_vm, OID_AUTO, swap_anon_use,
195 CTLFLAG_RD, &vm_swap_anon_use, 0, "");
196 SYSCTL_LONG(_vm, OID_AUTO, swap_size,
197 CTLFLAG_RD, &vm_swap_size, 0, "");
198 #else
199 SYSCTL_INT(_vm, OID_AUTO, swap_cache_use,
200 CTLFLAG_RD, &vm_swap_cache_use, 0, "");
201 SYSCTL_INT(_vm, OID_AUTO, swap_anon_use,
202 CTLFLAG_RD, &vm_swap_anon_use, 0, "");
203 SYSCTL_INT(_vm, OID_AUTO, swap_size,
204 CTLFLAG_RD, &vm_swap_size, 0, "");
205 #endif
206 SYSCTL_INT(_vm, OID_AUTO, report_swap_allocs,
207 CTLFLAG_RW, &vm_report_swap_allocs, 0, "");
209 __read_mostly vm_zone_t swap_zone;
212 * Red-Black tree for swblock entries
214 * The caller must hold vm_token
216 RB_GENERATE2(swblock_rb_tree, swblock, swb_entry, rb_swblock_compare,
217 vm_pindex_t, swb_index);
220 rb_swblock_compare(struct swblock *swb1, struct swblock *swb2)
222 if (swb1->swb_index < swb2->swb_index)
223 return(-1);
224 if (swb1->swb_index > swb2->swb_index)
225 return(1);
226 return(0);
229 static
231 rb_swblock_scancmp(struct swblock *swb, void *data)
233 struct swfreeinfo *info = data;
235 if (swb->swb_index < info->basei)
236 return(-1);
237 if (swb->swb_index > info->endi)
238 return(1);
239 return(0);
242 static
244 rb_swblock_condcmp(struct swblock *swb, void *data)
246 struct swfreeinfo *info = data;
248 if (swb->swb_index < info->basei)
249 return(-1);
250 return(0);
254 * pagerops for OBJT_SWAP - "swap pager". Some ops are also global procedure
255 * calls hooked from other parts of the VM system and do not appear here.
256 * (see vm/swap_pager.h).
259 static void swap_pager_dealloc (vm_object_t object);
260 static int swap_pager_getpage (vm_object_t, vm_page_t *, int);
261 static void swap_chain_iodone(struct bio *biox);
263 struct pagerops swappagerops = {
264 swap_pager_dealloc, /* deallocate an OBJT_SWAP object */
265 swap_pager_getpage, /* pagein */
266 swap_pager_putpages, /* pageout */
267 swap_pager_haspage /* get backing store status for page */
271 * SWB_DMMAX is in page-sized chunks with the new swap system. It was
272 * dev-bsized chunks in the old. SWB_DMMAX is always a power of 2.
274 * swap_*() routines are externally accessible. swp_*() routines are
275 * internal.
278 int nswap_lowat = 128; /* in pages, swap_pager_almost_full warn */
279 int nswap_hiwat = 512; /* in pages, swap_pager_almost_full warn */
281 static __inline void swp_sizecheck (void);
282 static void swp_pager_async_iodone (struct bio *bio);
285 * Swap bitmap functions
288 static __inline void swp_pager_freeswapspace(vm_object_t object,
289 swblk_t blk, int npages);
290 static __inline swblk_t swp_pager_getswapspace(vm_object_t object, int npages);
293 * Metadata functions
296 static void swp_pager_meta_convert(vm_object_t);
297 static void swp_pager_meta_build(vm_object_t, vm_pindex_t, swblk_t);
298 static void swp_pager_meta_free(vm_object_t, vm_pindex_t, vm_pindex_t);
299 static void swp_pager_meta_free_all(vm_object_t);
300 static swblk_t swp_pager_meta_ctl(vm_object_t, vm_pindex_t, int);
303 * SWP_SIZECHECK() - update swap_pager_full indication
305 * update the swap_pager_almost_full indication and warn when we are
306 * about to run out of swap space, using lowat/hiwat hysteresis.
308 * Clear swap_pager_full ( task killing ) indication when lowat is met.
310 * No restrictions on call
311 * This routine may not block.
312 * SMP races are ok.
314 static __inline void
315 swp_sizecheck(void)
317 if (vm_swap_size < nswap_lowat) {
318 if (swap_pager_almost_full == 0) {
319 kprintf("swap_pager: out of swap space\n");
320 swap_pager_almost_full = 1;
321 swap_fail_ticks = ticks;
323 } else {
324 swap_pager_full = 0;
325 if (vm_swap_size > nswap_hiwat)
326 swap_pager_almost_full = 0;
331 * Long-term data collection on 10-second interval. Return the value
332 * for KCOLLECT_SWAPPCT and set the values for SWAPANO and SWAPCCAC.
334 * Return total swap in the scale field. This can change if swap is
335 * regularly added or removed and may cause some historical confusion
336 * in that case, but SWAPPCT will always be historically accurate.
339 #define PTOB(value) ((uint64_t)(value) << PAGE_SHIFT)
341 static uint64_t
342 collect_swap_callback(int n)
344 uint64_t total = vm_swap_max;
345 uint64_t anon = vm_swap_anon_use;
346 uint64_t cache = vm_swap_cache_use;
348 if (total == 0) /* avoid divide by zero */
349 total = 1;
350 kcollect_setvalue(KCOLLECT_SWAPANO, PTOB(anon));
351 kcollect_setvalue(KCOLLECT_SWAPCAC, PTOB(cache));
352 kcollect_setscale(KCOLLECT_SWAPANO,
353 KCOLLECT_SCALE(KCOLLECT_SWAPANO_FORMAT, PTOB(total)));
354 kcollect_setscale(KCOLLECT_SWAPCAC,
355 KCOLLECT_SCALE(KCOLLECT_SWAPCAC_FORMAT, PTOB(total)));
356 return (((anon + cache) * 10000 + (total >> 1)) / total);
360 * SWAP_PAGER_INIT() - initialize the swap pager!
362 * Expected to be started from system init. NOTE: This code is run
363 * before much else so be careful what you depend on. Most of the VM
364 * system has yet to be initialized at this point.
366 * Called from the low level boot code only.
368 static void
369 swap_pager_init(void *arg __unused)
371 kcollect_register(KCOLLECT_SWAPPCT, "swapuse", collect_swap_callback,
372 KCOLLECT_SCALE(KCOLLECT_SWAPPCT_FORMAT, 0));
373 kcollect_register(KCOLLECT_SWAPANO, "swapano", NULL,
374 KCOLLECT_SCALE(KCOLLECT_SWAPANO_FORMAT, 0));
375 kcollect_register(KCOLLECT_SWAPCAC, "swapcac", NULL,
376 KCOLLECT_SCALE(KCOLLECT_SWAPCAC_FORMAT, 0));
378 SYSINIT(vm_mem, SI_BOOT1_VM, SI_ORDER_THIRD, swap_pager_init, NULL);
381 * SWAP_PAGER_SWAP_INIT() - swap pager initialization from pageout process
383 * Expected to be started from pageout process once, prior to entering
384 * its main loop.
386 * Called from the low level boot code only.
388 void
389 swap_pager_swap_init(void)
391 int n, n2;
394 * Number of in-transit swap bp operations. Don't
395 * exhaust the pbufs completely. Make sure we
396 * initialize workable values (0 will work for hysteresis
397 * but it isn't very efficient).
399 * The nsw_cluster_max is constrained by the number of pages an XIO
400 * holds, i.e., (MAXPHYS/PAGE_SIZE) and our locally defined
401 * MAX_PAGEOUT_CLUSTER. Also be aware that swap ops are
402 * constrained by the swap device interleave stripe size.
404 * Currently we hardwire nsw_wcount_async to 4. This limit is
405 * designed to prevent other I/O from having high latencies due to
406 * our pageout I/O. The value 4 works well for one or two active swap
407 * devices but is probably a little low if you have more. Even so,
408 * a higher value would probably generate only a limited improvement
409 * with three or four active swap devices since the system does not
410 * typically have to pageout at extreme bandwidths. We will want
411 * at least 2 per swap devices, and 4 is a pretty good value if you
412 * have one NFS swap device due to the command/ack latency over NFS.
413 * So it all works out pretty well.
416 nsw_cluster_max = min((MAXPHYS/PAGE_SIZE), MAX_PAGEOUT_CLUSTER);
418 nsw_rcount = (nswbuf_kva + 1) / 2;
419 nsw_wcount_sync = (nswbuf_kva + 3) / 4;
420 nsw_wcount_async = 4;
421 nsw_wcount_async_max = nsw_wcount_async;
424 * The zone is dynamically allocated so generally size it to
425 * maxswzone (32MB to 256GB of KVM). Set a minimum size based
426 * on physical memory of around 8x (each swblock can hold 16 pages).
428 * With the advent of SSDs (vs HDs) the practical (swap:memory) ratio
429 * has increased dramatically.
431 n = vmstats.v_page_count / 2;
432 if (maxswzone && n < maxswzone / sizeof(struct swblock))
433 n = maxswzone / sizeof(struct swblock);
434 n2 = n;
436 do {
437 swap_zone = zinit(
438 "SWAPMETA",
439 sizeof(struct swblock),
441 ZONE_INTERRUPT);
442 if (swap_zone != NULL)
443 break;
445 * if the allocation failed, try a zone two thirds the
446 * size of the previous attempt.
448 n -= ((n + 2) / 3);
449 } while (n > 0);
451 if (swap_zone == NULL)
452 panic("swap_pager_swap_init: swap_zone == NULL");
453 if (n2 != n)
454 kprintf("Swap zone entries reduced from %d to %d.\n", n2, n);
458 * SWAP_PAGER_ALLOC() - allocate a new OBJT_SWAP VM object and instantiate
459 * its metadata structures.
461 * This routine is called from the mmap and fork code to create a new
462 * OBJT_SWAP object. We do this by creating an OBJT_DEFAULT object
463 * and then converting it with swp_pager_meta_convert().
465 * We only support unnamed objects.
467 * No restrictions.
469 vm_object_t
470 swap_pager_alloc(void *handle, off_t size, vm_prot_t prot, off_t offset)
472 vm_object_t object;
474 KKASSERT(handle == NULL);
475 object = vm_object_allocate_hold(OBJT_DEFAULT,
476 OFF_TO_IDX(offset + PAGE_MASK + size));
477 swp_pager_meta_convert(object);
478 vm_object_drop(object);
480 return (object);
484 * SWAP_PAGER_DEALLOC() - remove swap metadata from object
486 * The swap backing for the object is destroyed. The code is
487 * designed such that we can reinstantiate it later, but this
488 * routine is typically called only when the entire object is
489 * about to be destroyed.
491 * The object must be locked or unreferenceable.
492 * No other requirements.
494 static void
495 swap_pager_dealloc(vm_object_t object)
497 vm_object_hold(object);
498 vm_object_pip_wait(object, "swpdea");
501 * Free all remaining metadata. We only bother to free it from
502 * the swap meta data. We do not attempt to free swapblk's still
503 * associated with vm_page_t's for this object. We do not care
504 * if paging is still in progress on some objects.
506 swp_pager_meta_free_all(object);
507 vm_object_drop(object);
510 /************************************************************************
511 * SWAP PAGER BITMAP ROUTINES *
512 ************************************************************************/
515 * SWP_PAGER_GETSWAPSPACE() - allocate raw swap space
517 * Allocate swap for the requested number of pages. The starting
518 * swap block number (a page index) is returned or SWAPBLK_NONE
519 * if the allocation failed.
521 * Also has the side effect of advising that somebody made a mistake
522 * when they configured swap and didn't configure enough.
524 * The caller must hold the object.
525 * This routine may not block.
527 static __inline swblk_t
528 swp_pager_getswapspace(vm_object_t object, int npages)
530 swblk_t blk;
532 lwkt_gettoken(&vm_token);
533 blk = blist_allocat(swapblist, npages, swapiterator);
534 if (blk == SWAPBLK_NONE)
535 blk = blist_allocat(swapblist, npages, 0);
536 if (blk == SWAPBLK_NONE) {
537 if (swap_pager_full != 2) {
538 if (vm_swap_max == 0) {
539 krateprintf(&kswaprate,
540 "Warning: The system would like to "
541 "page to swap but no swap space "
542 "is configured!\n");
543 } else {
544 krateprintf(&kswaprate,
545 "swap_pager_getswapspace: "
546 "swap full allocating %d pages\n",
547 npages);
549 swap_pager_full = 2;
550 if (swap_pager_almost_full == 0)
551 swap_fail_ticks = ticks;
552 swap_pager_almost_full = 1;
554 } else {
555 /* swapiterator = blk; disable for now, doesn't work well */
556 swapacctspace(blk, -npages);
557 if (object->type == OBJT_SWAP)
558 vm_swap_anon_use += npages;
559 else
560 vm_swap_cache_use += npages;
561 swp_sizecheck();
563 lwkt_reltoken(&vm_token);
564 return(blk);
568 * SWP_PAGER_FREESWAPSPACE() - free raw swap space
570 * This routine returns the specified swap blocks back to the bitmap.
572 * Note: This routine may not block (it could in the old swap code),
573 * and through the use of the new blist routines it does not block.
575 * This routine may not block.
578 static __inline void
579 swp_pager_freeswapspace(vm_object_t object, swblk_t blk, int npages)
581 struct swdevt *sp = &swdevt[BLK2DEVIDX(blk)];
583 lwkt_gettoken(&vm_token);
584 sp->sw_nused -= npages;
585 if (object->type == OBJT_SWAP)
586 vm_swap_anon_use -= npages;
587 else
588 vm_swap_cache_use -= npages;
590 if (sp->sw_flags & SW_CLOSING) {
591 lwkt_reltoken(&vm_token);
592 return;
595 blist_free(swapblist, blk, npages);
596 vm_swap_size += npages;
597 swp_sizecheck();
598 lwkt_reltoken(&vm_token);
602 * SWAP_PAGER_FREESPACE() - frees swap blocks associated with a page
603 * range within an object.
605 * This is a globally accessible routine.
607 * This routine removes swapblk assignments from swap metadata.
609 * The external callers of this routine typically have already destroyed
610 * or renamed vm_page_t's associated with this range in the object so
611 * we should be ok.
613 * No requirements.
615 void
616 swap_pager_freespace(vm_object_t object, vm_pindex_t start, vm_pindex_t size)
618 vm_object_hold(object);
619 swp_pager_meta_free(object, start, size);
620 vm_object_drop(object);
624 * No requirements.
626 void
627 swap_pager_freespace_all(vm_object_t object)
629 vm_object_hold(object);
630 swp_pager_meta_free_all(object);
631 vm_object_drop(object);
635 * This function conditionally frees swap cache swap starting at
636 * (*basei) in the object. (count) swap blocks will be nominally freed.
637 * The actual number of blocks freed can be more or less than the
638 * requested number.
640 * This function nominally returns the number of blocks freed. However,
641 * the actual number of blocks freed may be less then the returned value.
642 * If the function is unable to exhaust the object or if it is able to
643 * free (approximately) the requested number of blocks it returns
644 * a value n > count.
646 * If we exhaust the object we will return a value n <= count.
648 * The caller must hold the object.
650 * WARNING! If count == 0 then -1 can be returned as a degenerate case,
651 * callers should always pass a count value > 0.
653 static int swap_pager_condfree_callback(struct swblock *swap, void *data);
656 swap_pager_condfree(vm_object_t object, vm_pindex_t *basei, int count)
658 struct swfreeinfo info;
659 int n;
660 int t;
662 ASSERT_LWKT_TOKEN_HELD(vm_object_token(object));
664 info.object = object;
665 info.basei = *basei; /* skip up to this page index */
666 info.begi = count; /* max swap pages to destroy */
667 info.endi = count * 8; /* max swblocks to scan */
669 swblock_rb_tree_RB_SCAN(&object->swblock_root, rb_swblock_condcmp,
670 swap_pager_condfree_callback, &info);
671 *basei = info.basei;
674 * Take the higher difference swblocks vs pages
676 n = count - (int)info.begi;
677 t = count * 8 - (int)info.endi;
678 if (n < t)
679 n = t;
680 if (n < 1)
681 n = 1;
682 return(n);
686 * The idea is to free whole meta-block to avoid fragmenting
687 * the swap space or disk I/O. We only do this if NO VM pages
688 * are present.
690 * We do not have to deal with clearing PG_SWAPPED in related VM
691 * pages because there are no related VM pages.
693 * The caller must hold the object.
695 static int
696 swap_pager_condfree_callback(struct swblock *swap, void *data)
698 struct swfreeinfo *info = data;
699 vm_object_t object = info->object;
700 int i;
702 for (i = 0; i < SWAP_META_PAGES; ++i) {
703 if (vm_page_lookup(object, swap->swb_index + i))
704 break;
706 info->basei = swap->swb_index + SWAP_META_PAGES;
707 if (i == SWAP_META_PAGES) {
708 info->begi -= swap->swb_count;
709 swap_pager_freespace(object, swap->swb_index, SWAP_META_PAGES);
711 --info->endi;
712 if ((int)info->begi < 0 || (int)info->endi < 0)
713 return(-1);
714 lwkt_yield();
715 return(0);
719 * Called by vm_page_alloc() when a new VM page is inserted
720 * into a VM object. Checks whether swap has been assigned to
721 * the page and sets PG_SWAPPED as necessary.
723 * (m) must be busied by caller and remains busied on return.
725 void
726 swap_pager_page_inserted(vm_page_t m)
728 if (m->object->swblock_count) {
729 vm_object_hold(m->object);
730 if (swp_pager_meta_ctl(m->object, m->pindex, 0) != SWAPBLK_NONE)
731 vm_page_flag_set(m, PG_SWAPPED);
732 vm_object_drop(m->object);
737 * SWAP_PAGER_RESERVE() - reserve swap blocks in object
739 * Assigns swap blocks to the specified range within the object. The
740 * swap blocks are not zerod. Any previous swap assignment is destroyed.
742 * Returns 0 on success, -1 on failure.
744 * The caller is responsible for avoiding races in the specified range.
745 * No other requirements.
748 swap_pager_reserve(vm_object_t object, vm_pindex_t start, vm_size_t size)
750 int n = 0;
751 swblk_t blk = SWAPBLK_NONE;
752 vm_pindex_t beg = start; /* save start index */
754 vm_object_hold(object);
756 while (size) {
757 if (n == 0) {
758 n = BLIST_MAX_ALLOC;
759 while ((blk = swp_pager_getswapspace(object, n)) ==
760 SWAPBLK_NONE)
762 n >>= 1;
763 if (n == 0) {
764 swp_pager_meta_free(object, beg,
765 start - beg);
766 vm_object_drop(object);
767 return(-1);
771 swp_pager_meta_build(object, start, blk);
772 --size;
773 ++start;
774 ++blk;
775 --n;
777 swp_pager_meta_free(object, start, n);
778 vm_object_drop(object);
779 return(0);
783 * SWAP_PAGER_COPY() - copy blocks from source pager to destination pager
784 * and destroy the source.
786 * Copy any valid swapblks from the source to the destination. In
787 * cases where both the source and destination have a valid swapblk,
788 * we keep the destination's.
790 * This routine is allowed to block. It may block allocating metadata
791 * indirectly through swp_pager_meta_build() or if paging is still in
792 * progress on the source.
794 * XXX vm_page_collapse() kinda expects us not to block because we
795 * supposedly do not need to allocate memory, but for the moment we
796 * *may* have to get a little memory from the zone allocator, but
797 * it is taken from the interrupt memory. We should be ok.
799 * The source object contains no vm_page_t's (which is just as well)
800 * The source object is of type OBJT_SWAP.
802 * The source and destination objects must be held by the caller.
804 void
805 swap_pager_copy(vm_object_t srcobject, vm_object_t dstobject,
806 vm_pindex_t base_index, int destroysource)
808 vm_pindex_t i;
810 ASSERT_LWKT_TOKEN_HELD(vm_object_token(srcobject));
811 ASSERT_LWKT_TOKEN_HELD(vm_object_token(dstobject));
814 * transfer source to destination.
816 for (i = 0; i < dstobject->size; ++i) {
817 swblk_t dstaddr;
820 * Locate (without changing) the swapblk on the destination,
821 * unless it is invalid in which case free it silently, or
822 * if the destination is a resident page, in which case the
823 * source is thrown away.
825 dstaddr = swp_pager_meta_ctl(dstobject, i, 0);
827 if (dstaddr == SWAPBLK_NONE) {
829 * Destination has no swapblk and is not resident,
830 * copy source.
832 swblk_t srcaddr;
834 srcaddr = swp_pager_meta_ctl(srcobject,
835 base_index + i, SWM_POP);
837 if (srcaddr != SWAPBLK_NONE)
838 swp_pager_meta_build(dstobject, i, srcaddr);
839 } else {
841 * Destination has valid swapblk or it is represented
842 * by a resident page. We destroy the sourceblock.
844 swp_pager_meta_ctl(srcobject, base_index + i, SWM_FREE);
849 * Free left over swap blocks in source.
851 * We have to revert the type to OBJT_DEFAULT so we do not accidently
852 * double-remove the object from the swap queues.
854 if (destroysource) {
856 * Reverting the type is not necessary, the caller is going
857 * to destroy srcobject directly, but I'm doing it here
858 * for consistency since we've removed the object from its
859 * queues.
861 swp_pager_meta_free_all(srcobject);
862 if (srcobject->type == OBJT_SWAP)
863 srcobject->type = OBJT_DEFAULT;
868 * SWAP_PAGER_HASPAGE() - determine if we have good backing store for
869 * the requested page.
871 * We determine whether good backing store exists for the requested
872 * page and return TRUE if it does, FALSE if it doesn't.
874 * If TRUE, we also try to determine how much valid, contiguous backing
875 * store exists before and after the requested page within a reasonable
876 * distance. We do not try to restrict it to the swap device stripe
877 * (that is handled in getpages/putpages). It probably isn't worth
878 * doing here.
880 * No requirements.
882 boolean_t
883 swap_pager_haspage(vm_object_t object, vm_pindex_t pindex)
885 swblk_t blk0;
888 * do we have good backing store at the requested index ?
890 vm_object_hold(object);
891 blk0 = swp_pager_meta_ctl(object, pindex, 0);
893 if (blk0 == SWAPBLK_NONE) {
894 vm_object_drop(object);
895 return (FALSE);
897 vm_object_drop(object);
898 return (TRUE);
902 * Object must be held exclusive or shared by the caller.
904 boolean_t
905 swap_pager_haspage_locked(vm_object_t object, vm_pindex_t pindex)
907 if (swp_pager_meta_ctl(object, pindex, 0) == SWAPBLK_NONE)
908 return FALSE;
909 return TRUE;
913 * SWAP_PAGER_PAGE_UNSWAPPED() - remove swap backing store related to page
915 * This removes any associated swap backing store, whether valid or
916 * not, from the page. This operates on any VM object, not just OBJT_SWAP
917 * objects.
919 * This routine is typically called when a page is made dirty, at
920 * which point any associated swap can be freed. MADV_FREE also
921 * calls us in a special-case situation
923 * NOTE!!! If the page is clean and the swap was valid, the caller
924 * should make the page dirty before calling this routine.
925 * This routine does NOT change the m->dirty status of the page.
926 * Also: MADV_FREE depends on it.
928 * The page must be busied.
929 * The caller can hold the object to avoid blocking, else we might block.
930 * No other requirements.
932 void
933 swap_pager_unswapped(vm_page_t m)
935 if (m->flags & PG_SWAPPED) {
936 vm_object_hold(m->object);
937 KKASSERT(m->flags & PG_SWAPPED);
938 swp_pager_meta_ctl(m->object, m->pindex, SWM_FREE);
939 vm_page_flag_clear(m, PG_SWAPPED);
940 vm_object_drop(m->object);
945 * SWAP_PAGER_STRATEGY() - read, write, free blocks
947 * This implements a VM OBJECT strategy function using swap backing store.
948 * This can operate on any VM OBJECT type, not necessarily just OBJT_SWAP
949 * types. Only BUF_CMD_{READ,WRITE,FREEBLKS} is supported, any other
950 * requests will return EINVAL.
952 * This is intended to be a cacheless interface (i.e. caching occurs at
953 * higher levels), and is also used as a swap-based SSD cache for vnode
954 * and device objects.
956 * All I/O goes directly to and from the swap device.
958 * We currently attempt to run I/O synchronously or asynchronously as
959 * the caller requests. This isn't perfect because we loose error
960 * sequencing when we run multiple ops in parallel to satisfy a request.
961 * But this is swap, so we let it all hang out.
963 * NOTE: This function supports the KVABIO API wherein bp->b_data might
964 * not be synchronized to the current cpu.
966 * No requirements.
968 void
969 swap_pager_strategy(vm_object_t object, struct bio *bio)
971 struct buf *bp = bio->bio_buf;
972 struct bio *nbio;
973 vm_pindex_t start;
974 vm_pindex_t biox_blkno = 0;
975 int count;
976 char *data;
977 struct bio *biox;
978 struct buf *bufx;
979 #if 0
980 struct bio_track *track;
981 #endif
983 #if 0
985 * tracking for swapdev vnode I/Os
987 if (bp->b_cmd == BUF_CMD_READ)
988 track = &swapdev_vp->v_track_read;
989 else
990 track = &swapdev_vp->v_track_write;
991 #endif
994 * Only supported commands
996 if (bp->b_cmd != BUF_CMD_FREEBLKS &&
997 bp->b_cmd != BUF_CMD_READ &&
998 bp->b_cmd != BUF_CMD_WRITE) {
999 bp->b_error = EINVAL;
1000 bp->b_flags |= B_ERROR | B_INVAL;
1001 biodone(bio);
1002 return;
1006 * bcount must be an integral number of pages.
1008 if (bp->b_bcount & PAGE_MASK) {
1009 bp->b_error = EINVAL;
1010 bp->b_flags |= B_ERROR | B_INVAL;
1011 biodone(bio);
1012 kprintf("swap_pager_strategy: bp %p offset %lld size %d, "
1013 "not page bounded\n",
1014 bp, (long long)bio->bio_offset, (int)bp->b_bcount);
1015 return;
1019 * Clear error indication, initialize page index, count, data pointer.
1021 bp->b_error = 0;
1022 bp->b_flags &= ~B_ERROR;
1023 bp->b_resid = bp->b_bcount;
1025 start = (vm_pindex_t)(bio->bio_offset >> PAGE_SHIFT);
1026 count = howmany(bp->b_bcount, PAGE_SIZE);
1029 * WARNING! Do not dereference *data without issuing a bkvasync()
1031 data = bp->b_data;
1034 * Deal with BUF_CMD_FREEBLKS
1036 if (bp->b_cmd == BUF_CMD_FREEBLKS) {
1038 * FREE PAGE(s) - destroy underlying swap that is no longer
1039 * needed.
1041 vm_object_hold(object);
1042 swp_pager_meta_free(object, start, count);
1043 vm_object_drop(object);
1044 bp->b_resid = 0;
1045 biodone(bio);
1046 return;
1050 * We need to be able to create a new cluster of I/O's. We cannot
1051 * use the caller fields of the passed bio so push a new one.
1053 * Because nbio is just a placeholder for the cluster links,
1054 * we can biodone() the original bio instead of nbio to make
1055 * things a bit more efficient.
1057 nbio = push_bio(bio);
1058 nbio->bio_offset = bio->bio_offset;
1059 nbio->bio_caller_info1.cluster_head = NULL;
1060 nbio->bio_caller_info2.cluster_tail = NULL;
1062 biox = NULL;
1063 bufx = NULL;
1066 * Execute read or write
1068 vm_object_hold(object);
1070 while (count > 0) {
1071 swblk_t blk;
1074 * Obtain block. If block not found and writing, allocate a
1075 * new block and build it into the object.
1077 blk = swp_pager_meta_ctl(object, start, 0);
1078 if ((blk == SWAPBLK_NONE) && bp->b_cmd == BUF_CMD_WRITE) {
1079 blk = swp_pager_getswapspace(object, 1);
1080 if (blk == SWAPBLK_NONE) {
1081 bp->b_error = ENOMEM;
1082 bp->b_flags |= B_ERROR;
1083 break;
1085 swp_pager_meta_build(object, start, blk);
1089 * Do we have to flush our current collection? Yes if:
1091 * - no swap block at this index
1092 * - swap block is not contiguous
1093 * - we cross a physical disk boundry in the
1094 * stripe.
1096 if (biox &&
1097 (biox_blkno + btoc(bufx->b_bcount) != blk ||
1098 ((biox_blkno ^ blk) & ~SWB_DMMASK))) {
1099 switch(bp->b_cmd) {
1100 case BUF_CMD_READ:
1101 ++mycpu->gd_cnt.v_swapin;
1102 mycpu->gd_cnt.v_swappgsin +=
1103 btoc(bufx->b_bcount);
1104 break;
1105 case BUF_CMD_WRITE:
1106 ++mycpu->gd_cnt.v_swapout;
1107 mycpu->gd_cnt.v_swappgsout +=
1108 btoc(bufx->b_bcount);
1109 bufx->b_dirtyend = bufx->b_bcount;
1110 break;
1111 default:
1112 /* NOT REACHED */
1113 break;
1117 * Finished with this buf.
1119 KKASSERT(bufx->b_bcount != 0);
1120 if (bufx->b_cmd != BUF_CMD_READ)
1121 bufx->b_dirtyend = bufx->b_bcount;
1122 biox = NULL;
1123 bufx = NULL;
1127 * Add new swapblk to biox, instantiating biox if necessary.
1128 * Zero-fill reads are able to take a shortcut.
1130 if (blk == SWAPBLK_NONE) {
1132 * We can only get here if we are reading.
1134 bkvasync(bp);
1135 bzero(data, PAGE_SIZE);
1136 bp->b_resid -= PAGE_SIZE;
1137 } else {
1138 if (biox == NULL) {
1139 /* XXX chain count > 4, wait to <= 4 */
1141 bufx = getpbuf(NULL);
1142 bufx->b_flags |= B_KVABIO;
1143 biox = &bufx->b_bio1;
1144 cluster_append(nbio, bufx);
1145 bufx->b_cmd = bp->b_cmd;
1146 biox->bio_done = swap_chain_iodone;
1147 biox->bio_offset = (off_t)blk << PAGE_SHIFT;
1148 biox->bio_caller_info1.cluster_parent = nbio;
1149 biox_blkno = blk;
1150 bufx->b_bcount = 0;
1151 bufx->b_data = data;
1153 bufx->b_bcount += PAGE_SIZE;
1155 --count;
1156 ++start;
1157 data += PAGE_SIZE;
1160 vm_object_drop(object);
1163 * Flush out last buffer
1165 if (biox) {
1166 if (bufx->b_cmd == BUF_CMD_READ) {
1167 ++mycpu->gd_cnt.v_swapin;
1168 mycpu->gd_cnt.v_swappgsin += btoc(bufx->b_bcount);
1169 } else {
1170 ++mycpu->gd_cnt.v_swapout;
1171 mycpu->gd_cnt.v_swappgsout += btoc(bufx->b_bcount);
1172 bufx->b_dirtyend = bufx->b_bcount;
1174 KKASSERT(bufx->b_bcount);
1175 if (bufx->b_cmd != BUF_CMD_READ)
1176 bufx->b_dirtyend = bufx->b_bcount;
1177 /* biox, bufx = NULL */
1181 * Now initiate all the I/O. Be careful looping on our chain as
1182 * I/O's may complete while we are still initiating them.
1184 * If the request is a 100% sparse read no bios will be present
1185 * and we just biodone() the buffer.
1187 nbio->bio_caller_info2.cluster_tail = NULL;
1188 bufx = nbio->bio_caller_info1.cluster_head;
1190 if (bufx) {
1191 while (bufx) {
1192 biox = &bufx->b_bio1;
1193 BUF_KERNPROC(bufx);
1194 bufx = bufx->b_cluster_next;
1195 vn_strategy(swapdev_vp, biox);
1197 } else {
1198 biodone(bio);
1202 * Completion of the cluster will also call biodone_chain(nbio).
1203 * We never call biodone(nbio) so we don't have to worry about
1204 * setting up a bio_done callback. It's handled in the sub-IO.
1206 /**/
1210 * biodone callback
1212 * No requirements.
1214 static void
1215 swap_chain_iodone(struct bio *biox)
1217 struct buf **nextp;
1218 struct buf *bufx; /* chained sub-buffer */
1219 struct bio *nbio; /* parent nbio with chain glue */
1220 struct buf *bp; /* original bp associated with nbio */
1221 int chain_empty;
1223 bufx = biox->bio_buf;
1224 nbio = biox->bio_caller_info1.cluster_parent;
1225 bp = nbio->bio_buf;
1228 * Update the original buffer
1230 KKASSERT(bp != NULL);
1231 if (bufx->b_flags & B_ERROR) {
1232 atomic_set_int(&bufx->b_flags, B_ERROR);
1233 bp->b_error = bufx->b_error; /* race ok */
1234 } else if (bufx->b_resid != 0) {
1235 atomic_set_int(&bufx->b_flags, B_ERROR);
1236 bp->b_error = EINVAL; /* race ok */
1237 } else {
1238 atomic_subtract_int(&bp->b_resid, bufx->b_bcount);
1242 * Remove us from the chain.
1244 spin_lock(&swapbp_spin);
1245 nextp = &nbio->bio_caller_info1.cluster_head;
1246 while (*nextp != bufx) {
1247 KKASSERT(*nextp != NULL);
1248 nextp = &(*nextp)->b_cluster_next;
1250 *nextp = bufx->b_cluster_next;
1251 chain_empty = (nbio->bio_caller_info1.cluster_head == NULL);
1252 spin_unlock(&swapbp_spin);
1255 * Clean up bufx. If the chain is now empty we finish out
1256 * the parent. Note that we may be racing other completions
1257 * so we must use the chain_empty status from above.
1259 if (chain_empty) {
1260 if (bp->b_resid != 0 && !(bp->b_flags & B_ERROR)) {
1261 atomic_set_int(&bp->b_flags, B_ERROR);
1262 bp->b_error = EINVAL;
1264 biodone_chain(nbio);
1266 relpbuf(bufx, NULL);
1270 * SWAP_PAGER_GETPAGES() - bring page in from swap
1272 * The requested page may have to be brought in from swap. Calculate the
1273 * swap block and bring in additional pages if possible. All pages must
1274 * have contiguous swap block assignments and reside in the same object.
1276 * The caller has a single vm_object_pip_add() reference prior to
1277 * calling us and we should return with the same.
1279 * The caller has BUSY'd the page. We should return with (*mpp) left busy,
1280 * and any additinal pages unbusied.
1282 * If the caller encounters a PG_RAM page it will pass it to us even though
1283 * it may be valid and dirty. We cannot overwrite the page in this case!
1284 * The case is used to allow us to issue pure read-aheads.
1286 * NOTE! XXX This code does not entirely pipeline yet due to the fact that
1287 * the PG_RAM page is validated at the same time as mreq. What we
1288 * really need to do is issue a separate read-ahead pbuf.
1290 * No requirements.
1292 static int
1293 swap_pager_getpage(vm_object_t object, vm_page_t *mpp, int seqaccess)
1295 struct buf *bp;
1296 struct bio *bio;
1297 vm_page_t mreq;
1298 vm_page_t m;
1299 vm_offset_t kva;
1300 swblk_t blk;
1301 int i;
1302 int j;
1303 int raonly;
1304 int error;
1305 u_int32_t busy_count;
1306 vm_page_t marray[XIO_INTERNAL_PAGES];
1308 mreq = *mpp;
1310 vm_object_hold(object);
1311 if (mreq->object != object) {
1312 panic("swap_pager_getpages: object mismatch %p/%p",
1313 object,
1314 mreq->object
1319 * We don't want to overwrite a fully valid page as it might be
1320 * dirty. This case can occur when e.g. vm_fault hits a perfectly
1321 * valid page with PG_RAM set.
1323 * In this case we see if the next page is a suitable page-in
1324 * candidate and if it is we issue read-ahead. PG_RAM will be
1325 * set on the last page of the read-ahead to continue the pipeline.
1327 if (mreq->valid == VM_PAGE_BITS_ALL) {
1328 if (swap_burst_read == 0 || mreq->pindex + 1 >= object->size) {
1329 vm_object_drop(object);
1330 return(VM_PAGER_OK);
1332 blk = swp_pager_meta_ctl(object, mreq->pindex + 1, 0);
1333 if (blk == SWAPBLK_NONE) {
1334 vm_object_drop(object);
1335 return(VM_PAGER_OK);
1337 m = vm_page_lookup_busy_try(object, mreq->pindex + 1,
1338 TRUE, &error);
1339 if (error) {
1340 vm_object_drop(object);
1341 return(VM_PAGER_OK);
1342 } else if (m == NULL) {
1344 * Use VM_ALLOC_QUICK to avoid blocking on cache
1345 * page reuse.
1347 m = vm_page_alloc(object, mreq->pindex + 1,
1348 VM_ALLOC_QUICK);
1349 if (m == NULL) {
1350 vm_object_drop(object);
1351 return(VM_PAGER_OK);
1353 } else {
1354 if (m->valid) {
1355 vm_page_wakeup(m);
1356 vm_object_drop(object);
1357 return(VM_PAGER_OK);
1359 vm_page_unqueue_nowakeup(m);
1361 /* page is busy */
1362 mreq = m;
1363 raonly = 1;
1364 } else {
1365 raonly = 0;
1369 * Try to block-read contiguous pages from swap if sequential,
1370 * otherwise just read one page. Contiguous pages from swap must
1371 * reside within a single device stripe because the I/O cannot be
1372 * broken up across multiple stripes.
1374 * Note that blk and iblk can be SWAPBLK_NONE but the loop is
1375 * set up such that the case(s) are handled implicitly.
1377 blk = swp_pager_meta_ctl(mreq->object, mreq->pindex, 0);
1378 marray[0] = mreq;
1380 for (i = 1; i <= swap_burst_read &&
1381 i < XIO_INTERNAL_PAGES &&
1382 mreq->pindex + i < object->size; ++i) {
1383 swblk_t iblk;
1385 iblk = swp_pager_meta_ctl(object, mreq->pindex + i, 0);
1386 if (iblk != blk + i)
1387 break;
1388 if ((blk ^ iblk) & ~SWB_DMMASK)
1389 break;
1390 m = vm_page_lookup_busy_try(object, mreq->pindex + i,
1391 TRUE, &error);
1392 if (error) {
1393 break;
1394 } else if (m == NULL) {
1396 * Use VM_ALLOC_QUICK to avoid blocking on cache
1397 * page reuse.
1399 m = vm_page_alloc(object, mreq->pindex + i,
1400 VM_ALLOC_QUICK);
1401 if (m == NULL)
1402 break;
1403 } else {
1404 if (m->valid) {
1405 vm_page_wakeup(m);
1406 break;
1408 vm_page_unqueue_nowakeup(m);
1410 /* page is busy */
1411 marray[i] = m;
1413 if (i > 1)
1414 vm_page_flag_set(marray[i - 1], PG_RAM);
1417 * If mreq is the requested page and we have nothing to do return
1418 * VM_PAGER_FAIL. If raonly is set mreq is just another read-ahead
1419 * page and must be cleaned up.
1421 if (blk == SWAPBLK_NONE) {
1422 KKASSERT(i == 1);
1423 if (raonly) {
1424 vnode_pager_freepage(mreq);
1425 vm_object_drop(object);
1426 return(VM_PAGER_OK);
1427 } else {
1428 vm_object_drop(object);
1429 return(VM_PAGER_FAIL);
1434 * Map our page(s) into kva for input
1436 * Use the KVABIO API to avoid synchronizing the pmap.
1438 bp = getpbuf_kva(&nsw_rcount);
1439 bio = &bp->b_bio1;
1440 kva = (vm_offset_t) bp->b_kvabase;
1441 bcopy(marray, bp->b_xio.xio_pages, i * sizeof(vm_page_t));
1442 pmap_qenter_noinval(kva, bp->b_xio.xio_pages, i);
1444 bp->b_data = (caddr_t)kva;
1445 bp->b_bcount = PAGE_SIZE * i;
1446 bp->b_xio.xio_npages = i;
1447 bp->b_flags |= B_KVABIO;
1448 bio->bio_done = swp_pager_async_iodone;
1449 bio->bio_offset = (off_t)blk << PAGE_SHIFT;
1450 bio->bio_caller_info1.index = SWBIO_READ;
1453 * Set index. If raonly set the index beyond the array so all
1454 * the pages are treated the same, otherwise the original mreq is
1455 * at index 0.
1457 if (raonly)
1458 bio->bio_driver_info = (void *)(intptr_t)i;
1459 else
1460 bio->bio_driver_info = (void *)(intptr_t)0;
1462 for (j = 0; j < i; ++j) {
1463 atomic_set_int(&bp->b_xio.xio_pages[j]->busy_count,
1464 PBUSY_SWAPINPROG);
1467 mycpu->gd_cnt.v_swapin++;
1468 mycpu->gd_cnt.v_swappgsin += bp->b_xio.xio_npages;
1471 * We still hold the lock on mreq, and our automatic completion routine
1472 * does not remove it.
1474 vm_object_pip_add(object, bp->b_xio.xio_npages);
1477 * perform the I/O. NOTE!!! bp cannot be considered valid after
1478 * this point because we automatically release it on completion.
1479 * Instead, we look at the one page we are interested in which we
1480 * still hold a lock on even through the I/O completion.
1482 * The other pages in our m[] array are also released on completion,
1483 * so we cannot assume they are valid anymore either.
1485 bp->b_cmd = BUF_CMD_READ;
1486 BUF_KERNPROC(bp);
1487 vn_strategy(swapdev_vp, bio);
1490 * Wait for the page we want to complete. PBUSY_SWAPINPROG is always
1491 * cleared on completion. If an I/O error occurs, SWAPBLK_NONE
1492 * is set in the meta-data.
1494 * If this is a read-ahead only we return immediately without
1495 * waiting for I/O.
1497 if (raonly) {
1498 vm_object_drop(object);
1499 return(VM_PAGER_OK);
1503 * Read-ahead includes originally requested page case.
1505 for (;;) {
1506 busy_count = mreq->busy_count;
1507 cpu_ccfence();
1508 if ((busy_count & PBUSY_SWAPINPROG) == 0)
1509 break;
1510 tsleep_interlock(mreq, 0);
1511 if (!atomic_cmpset_int(&mreq->busy_count, busy_count,
1512 busy_count |
1513 PBUSY_SWAPINPROG | PBUSY_WANTED)) {
1514 continue;
1516 atomic_set_int(&mreq->flags, PG_REFERENCED);
1517 mycpu->gd_cnt.v_intrans++;
1518 if (tsleep(mreq, PINTERLOCKED, "swread", hz*20)) {
1519 kprintf(
1520 "swap_pager: indefinite wait buffer: "
1521 " bp %p offset: %lld, size: %ld\n",
1523 (long long)bio->bio_offset,
1524 (long)bp->b_bcount
1530 * Disallow speculative reads prior to the SWAPINPROG test.
1532 cpu_lfence();
1535 * mreq is left busied after completion, but all the other pages
1536 * are freed. If we had an unrecoverable read error the page will
1537 * not be valid.
1539 vm_object_drop(object);
1540 if (mreq->valid != VM_PAGE_BITS_ALL)
1541 return(VM_PAGER_ERROR);
1542 else
1543 return(VM_PAGER_OK);
1546 * A final note: in a low swap situation, we cannot deallocate swap
1547 * and mark a page dirty here because the caller is likely to mark
1548 * the page clean when we return, causing the page to possibly revert
1549 * to all-zero's later.
1554 * swap_pager_putpages:
1556 * Assign swap (if necessary) and initiate I/O on the specified pages.
1558 * We support both OBJT_DEFAULT and OBJT_SWAP objects. DEFAULT objects
1559 * are automatically converted to SWAP objects.
1561 * In a low memory situation we may block in vn_strategy(), but the new
1562 * vm_page reservation system coupled with properly written VFS devices
1563 * should ensure that no low-memory deadlock occurs. This is an area
1564 * which needs work.
1566 * The parent has N vm_object_pip_add() references prior to
1567 * calling us and will remove references for rtvals[] that are
1568 * not set to VM_PAGER_PEND. We need to remove the rest on I/O
1569 * completion.
1571 * The parent has soft-busy'd the pages it passes us and will unbusy
1572 * those whos rtvals[] entry is not set to VM_PAGER_PEND on return.
1573 * We need to unbusy the rest on I/O completion.
1575 * No requirements.
1577 void
1578 swap_pager_putpages(vm_object_t object, vm_page_t *m, int count,
1579 int flags, int *rtvals)
1581 int i;
1582 int n = 0;
1584 vm_object_hold(object);
1586 if (count && m[0]->object != object) {
1587 panic("swap_pager_getpages: object mismatch %p/%p",
1588 object,
1589 m[0]->object
1594 * Step 1
1596 * Turn object into OBJT_SWAP
1597 * Check for bogus sysops
1599 * Force sync if not pageout process, we don't want any single
1600 * non-pageout process to be able to hog the I/O subsystem! This
1601 * can be overridden by setting.
1603 if (object->type == OBJT_DEFAULT) {
1604 if (object->type == OBJT_DEFAULT)
1605 swp_pager_meta_convert(object);
1609 * Normally we force synchronous swap I/O if this is not the
1610 * pageout daemon to prevent any single user process limited
1611 * via RLIMIT_RSS from hogging swap write bandwidth.
1613 if (curthread != pagethread &&
1614 curthread != emergpager &&
1615 swap_user_async == 0) {
1616 flags |= VM_PAGER_PUT_SYNC;
1620 * Step 2
1622 * Update nsw parameters from swap_async_max sysctl values.
1623 * Do not let the sysop crash the machine with bogus numbers.
1625 if (swap_async_max != nsw_wcount_async_max) {
1626 int n;
1629 * limit range
1631 if ((n = swap_async_max) > nswbuf_kva / 2)
1632 n = nswbuf_kva / 2;
1633 if (n < 1)
1634 n = 1;
1635 swap_async_max = n;
1638 * Adjust difference ( if possible ). If the current async
1639 * count is too low, we may not be able to make the adjustment
1640 * at this time.
1642 * vm_token needed for nsw_wcount sleep interlock
1644 lwkt_gettoken(&vm_token);
1645 n -= nsw_wcount_async_max;
1646 if (nsw_wcount_async + n >= 0) {
1647 nsw_wcount_async_max += n;
1648 pbuf_adjcount(&nsw_wcount_async, n);
1650 lwkt_reltoken(&vm_token);
1654 * Step 3
1656 * Assign swap blocks and issue I/O. We reallocate swap on the fly.
1657 * The page is left dirty until the pageout operation completes
1658 * successfully.
1661 for (i = 0; i < count; i += n) {
1662 struct buf *bp;
1663 struct bio *bio;
1664 swblk_t blk;
1665 int j;
1668 * Maximum I/O size is limited by a number of factors.
1671 n = min(BLIST_MAX_ALLOC, count - i);
1672 n = min(n, nsw_cluster_max);
1674 lwkt_gettoken(&vm_token);
1677 * Get biggest block of swap we can. If we fail, fall
1678 * back and try to allocate a smaller block. Don't go
1679 * overboard trying to allocate space if it would overly
1680 * fragment swap.
1682 while (
1683 (blk = swp_pager_getswapspace(object, n)) == SWAPBLK_NONE &&
1684 n > 4
1686 n >>= 1;
1688 if (blk == SWAPBLK_NONE) {
1689 for (j = 0; j < n; ++j)
1690 rtvals[i+j] = VM_PAGER_FAIL;
1691 lwkt_reltoken(&vm_token);
1692 continue;
1694 if (vm_report_swap_allocs > 0) {
1695 kprintf("swap_alloc %08jx,%d\n", (intmax_t)blk, n);
1696 --vm_report_swap_allocs;
1700 * The I/O we are constructing cannot cross a physical
1701 * disk boundry in the swap stripe.
1703 if ((blk ^ (blk + n)) & ~SWB_DMMASK) {
1704 j = ((blk + SWB_DMMAX) & ~SWB_DMMASK) - blk;
1705 swp_pager_freeswapspace(object, blk + j, n - j);
1706 n = j;
1710 * All I/O parameters have been satisfied, build the I/O
1711 * request and assign the swap space.
1713 * Use the KVABIO API to avoid synchronizing the pmap.
1715 if ((flags & VM_PAGER_PUT_SYNC))
1716 bp = getpbuf_kva(&nsw_wcount_sync);
1717 else
1718 bp = getpbuf_kva(&nsw_wcount_async);
1719 bio = &bp->b_bio1;
1721 lwkt_reltoken(&vm_token);
1723 pmap_qenter_noinval((vm_offset_t)bp->b_data, &m[i], n);
1725 bp->b_flags |= B_KVABIO;
1726 bp->b_bcount = PAGE_SIZE * n;
1727 bio->bio_offset = (off_t)blk << PAGE_SHIFT;
1729 for (j = 0; j < n; ++j) {
1730 vm_page_t mreq = m[i+j];
1732 swp_pager_meta_build(mreq->object, mreq->pindex,
1733 blk + j);
1734 if (object->type == OBJT_SWAP)
1735 vm_page_dirty(mreq);
1736 rtvals[i+j] = VM_PAGER_OK;
1738 atomic_set_int(&mreq->busy_count, PBUSY_SWAPINPROG);
1739 bp->b_xio.xio_pages[j] = mreq;
1741 bp->b_xio.xio_npages = n;
1743 mycpu->gd_cnt.v_swapout++;
1744 mycpu->gd_cnt.v_swappgsout += bp->b_xio.xio_npages;
1746 bp->b_dirtyoff = 0; /* req'd for NFS */
1747 bp->b_dirtyend = bp->b_bcount; /* req'd for NFS */
1748 bp->b_cmd = BUF_CMD_WRITE;
1749 bio->bio_caller_info1.index = SWBIO_WRITE;
1752 * asynchronous
1754 if ((flags & VM_PAGER_PUT_SYNC) == 0) {
1755 bio->bio_done = swp_pager_async_iodone;
1756 BUF_KERNPROC(bp);
1757 vn_strategy(swapdev_vp, bio);
1759 for (j = 0; j < n; ++j)
1760 rtvals[i+j] = VM_PAGER_PEND;
1761 continue;
1765 * Issue synchrnously.
1767 * Wait for the sync I/O to complete, then update rtvals.
1768 * We just set the rtvals[] to VM_PAGER_PEND so we can call
1769 * our async completion routine at the end, thus avoiding a
1770 * double-free.
1772 bio->bio_caller_info1.index |= SWBIO_SYNC;
1773 if (flags & VM_PAGER_TRY_TO_CACHE)
1774 bio->bio_caller_info1.index |= SWBIO_TTC;
1775 bio->bio_done = biodone_sync;
1776 bio->bio_flags |= BIO_SYNC;
1777 vn_strategy(swapdev_vp, bio);
1778 biowait(bio, "swwrt");
1780 for (j = 0; j < n; ++j)
1781 rtvals[i+j] = VM_PAGER_PEND;
1784 * Now that we are through with the bp, we can call the
1785 * normal async completion, which frees everything up.
1787 swp_pager_async_iodone(bio);
1789 vm_object_drop(object);
1793 * No requirements.
1795 * Recalculate the low and high-water marks.
1797 void
1798 swap_pager_newswap(void)
1801 * NOTE: vm_swap_max cannot exceed 1 billion blocks, which is the
1802 * limitation imposed by the blist code. Remember that this
1803 * will be divided by NSWAP_MAX (4), so each swap device is
1804 * limited to around a terrabyte.
1806 if (vm_swap_max) {
1807 nswap_lowat = (int64_t)vm_swap_max * 4 / 100; /* 4% left */
1808 nswap_hiwat = (int64_t)vm_swap_max * 6 / 100; /* 6% left */
1809 kprintf("swap low/high-water marks set to %d/%d\n",
1810 nswap_lowat, nswap_hiwat);
1811 } else {
1812 nswap_lowat = 128;
1813 nswap_hiwat = 512;
1815 swp_sizecheck();
1819 * swp_pager_async_iodone:
1821 * Completion routine for asynchronous reads and writes from/to swap.
1822 * Also called manually by synchronous code to finish up a bp.
1824 * For READ operations, the pages are BUSY'd. For WRITE operations,
1825 * the pages are vm_page_t->busy'd. For READ operations, we BUSY
1826 * unbusy all pages except the 'main' request page. For WRITE
1827 * operations, we vm_page_t->busy'd unbusy all pages ( we can do this
1828 * because we marked them all VM_PAGER_PEND on return from putpages ).
1830 * This routine may not block.
1832 * No requirements.
1834 static void
1835 swp_pager_async_iodone(struct bio *bio)
1837 struct buf *bp = bio->bio_buf;
1838 vm_object_t object = NULL;
1839 int i;
1840 int *nswptr;
1843 * report error
1845 if (bp->b_flags & B_ERROR) {
1846 kprintf(
1847 "swap_pager: I/O error - %s failed; offset %lld,"
1848 "size %ld, error %d\n",
1849 ((bio->bio_caller_info1.index & SWBIO_READ) ?
1850 "pagein" : "pageout"),
1851 (long long)bio->bio_offset,
1852 (long)bp->b_bcount,
1853 bp->b_error
1858 * set object.
1860 if (bp->b_xio.xio_npages)
1861 object = bp->b_xio.xio_pages[0]->object;
1863 #if 0
1864 /* PMAP TESTING CODE (useful, keep it in but #if 0'd) */
1865 if (bio->bio_caller_info1.index & SWBIO_WRITE) {
1866 if (bio->bio_crc != iscsi_crc32(bp->b_data, bp->b_bcount)) {
1867 kprintf("SWAPOUT: BADCRC %08x %08x\n",
1868 bio->bio_crc,
1869 iscsi_crc32(bp->b_data, bp->b_bcount));
1870 for (i = 0; i < bp->b_xio.xio_npages; ++i) {
1871 vm_page_t m = bp->b_xio.xio_pages[i];
1872 if ((m->flags & PG_WRITEABLE) &&
1873 (pmap_mapped_sync(m) & PG_WRITEABLE)) {
1874 kprintf("SWAPOUT: "
1875 "%d/%d %p writable\n",
1876 i, bp->b_xio.xio_npages, m);
1881 #endif
1884 * remove the mapping for kernel virtual
1886 pmap_qremove((vm_offset_t)bp->b_data, bp->b_xio.xio_npages);
1889 * cleanup pages. If an error occurs writing to swap, we are in
1890 * very serious trouble. If it happens to be a disk error, though,
1891 * we may be able to recover by reassigning the swap later on. So
1892 * in this case we remove the m->swapblk assignment for the page
1893 * but do not free it in the rlist. The errornous block(s) are thus
1894 * never reallocated as swap. Redirty the page and continue.
1896 for (i = 0; i < bp->b_xio.xio_npages; ++i) {
1897 vm_page_t m = bp->b_xio.xio_pages[i];
1899 if (bp->b_flags & B_ERROR) {
1901 * If an error occurs I'd love to throw the swapblk
1902 * away without freeing it back to swapspace, so it
1903 * can never be used again. But I can't from an
1904 * interrupt.
1907 if (bio->bio_caller_info1.index & SWBIO_READ) {
1909 * When reading, reqpage needs to stay
1910 * locked for the parent, but all other
1911 * pages can be freed. We still want to
1912 * wakeup the parent waiting on the page,
1913 * though. ( also: pg_reqpage can be -1 and
1914 * not match anything ).
1916 * We have to wake specifically requested pages
1917 * up too because we cleared SWAPINPROG and
1918 * someone may be waiting for that.
1920 * NOTE: For reads, m->dirty will probably
1921 * be overridden by the original caller
1922 * of getpages so don't play cute tricks
1923 * here.
1925 * NOTE: We can't actually free the page from
1926 * here, because this is an interrupt.
1927 * It is not legal to mess with
1928 * object->memq from an interrupt.
1929 * Deactivate the page instead.
1931 * WARNING! The instant SWAPINPROG is
1932 * cleared another cpu may start
1933 * using the mreq page (it will
1934 * check m->valid immediately).
1937 m->valid = 0;
1938 atomic_clear_int(&m->busy_count,
1939 PBUSY_SWAPINPROG);
1942 * bio_driver_info holds the requested page
1943 * index.
1945 if (i != (int)(intptr_t)bio->bio_driver_info) {
1946 vm_page_deactivate(m);
1947 vm_page_wakeup(m);
1948 } else {
1949 vm_page_flash(m);
1952 * If i == bp->b_pager.pg_reqpage, do not wake
1953 * the page up. The caller needs to.
1955 } else {
1957 * If a write error occurs remove the swap
1958 * assignment (note that PG_SWAPPED may or
1959 * may not be set depending on prior activity).
1961 * Re-dirty OBJT_SWAP pages as there is no
1962 * other backing store, we can't throw the
1963 * page away.
1965 * Non-OBJT_SWAP pages (aka swapcache) must
1966 * not be dirtied since they may not have
1967 * been dirty in the first place, and they
1968 * do have backing store (the vnode).
1970 vm_page_busy_wait(m, FALSE, "swadpg");
1971 vm_object_hold(m->object);
1972 swp_pager_meta_ctl(m->object, m->pindex,
1973 SWM_FREE);
1974 vm_page_flag_clear(m, PG_SWAPPED);
1975 vm_object_drop(m->object);
1976 if (m->object->type == OBJT_SWAP) {
1977 vm_page_dirty(m);
1978 vm_page_activate(m);
1980 vm_page_io_finish(m);
1981 atomic_clear_int(&m->busy_count,
1982 PBUSY_SWAPINPROG);
1983 vm_page_wakeup(m);
1985 } else if (bio->bio_caller_info1.index & SWBIO_READ) {
1987 * NOTE: for reads, m->dirty will probably be
1988 * overridden by the original caller of getpages so
1989 * we cannot set them in order to free the underlying
1990 * swap in a low-swap situation. I don't think we'd
1991 * want to do that anyway, but it was an optimization
1992 * that existed in the old swapper for a time before
1993 * it got ripped out due to precisely this problem.
1995 * If not the requested page then deactivate it.
1997 * Note that the requested page, reqpage, is left
1998 * busied, but we still have to wake it up. The
1999 * other pages are released (unbusied) by
2000 * vm_page_wakeup(). We do not set reqpage's
2001 * valid bits here, it is up to the caller.
2005 * NOTE: Can't call pmap_clear_modify(m) from an
2006 * interrupt thread, the pmap code may have to
2007 * map non-kernel pmaps and currently asserts
2008 * the case.
2010 * WARNING! The instant SWAPINPROG is
2011 * cleared another cpu may start
2012 * using the mreq page (it will
2013 * check m->valid immediately).
2015 /*pmap_clear_modify(m);*/
2016 m->valid = VM_PAGE_BITS_ALL;
2017 vm_page_undirty(m);
2018 vm_page_flag_set(m, PG_SWAPPED);
2019 atomic_clear_int(&m->busy_count, PBUSY_SWAPINPROG);
2022 * We have to wake specifically requested pages
2023 * up too because we cleared SWAPINPROG and
2024 * could be waiting for it in getpages. However,
2025 * be sure to not unbusy getpages specifically
2026 * requested page - getpages expects it to be
2027 * left busy.
2029 * bio_driver_info holds the requested page
2031 if (i != (int)(intptr_t)bio->bio_driver_info) {
2032 vm_page_deactivate(m);
2033 vm_page_wakeup(m);
2034 } else {
2035 vm_page_flash(m);
2037 } else {
2039 * Mark the page clean but do not mess with the
2040 * pmap-layer's modified state. That state should
2041 * also be clear since the caller protected the
2042 * page VM_PROT_READ, but allow the case.
2044 * We are in an interrupt, avoid pmap operations.
2046 * If we have a severe page deficit, deactivate the
2047 * page. Do not try to cache it (which would also
2048 * involve a pmap op), because the page might still
2049 * be read-heavy.
2051 * When using the swap to cache clean vnode pages
2052 * we do not mess with the page dirty bits.
2054 * NOTE! Nobody is waiting for the key mreq page
2055 * on write completion.
2057 vm_page_busy_wait(m, FALSE, "swadpg");
2058 if (m->object->type == OBJT_SWAP)
2059 vm_page_undirty(m);
2060 vm_page_flag_set(m, PG_SWAPPED);
2061 atomic_clear_int(&m->busy_count, PBUSY_SWAPINPROG);
2062 if (vm_page_count_severe())
2063 vm_page_deactivate(m);
2064 vm_page_io_finish(m);
2065 if (bio->bio_caller_info1.index & SWBIO_TTC)
2066 vm_page_try_to_cache(m);
2067 else
2068 vm_page_wakeup(m);
2073 * adjust pip. NOTE: the original parent may still have its own
2074 * pip refs on the object.
2077 if (object)
2078 vm_object_pip_wakeup_n(object, bp->b_xio.xio_npages);
2081 * Release the physical I/O buffer.
2083 * NOTE: Due to synchronous operations in the write case b_cmd may
2084 * already be set to BUF_CMD_DONE and BIO_SYNC may have already
2085 * been cleared.
2087 * Use vm_token to interlock nsw_rcount/wcount wakeup?
2089 lwkt_gettoken(&vm_token);
2090 if (bio->bio_caller_info1.index & SWBIO_READ)
2091 nswptr = &nsw_rcount;
2092 else if (bio->bio_caller_info1.index & SWBIO_SYNC)
2093 nswptr = &nsw_wcount_sync;
2094 else
2095 nswptr = &nsw_wcount_async;
2096 bp->b_cmd = BUF_CMD_DONE;
2097 relpbuf(bp, nswptr);
2098 lwkt_reltoken(&vm_token);
2102 * Fault-in a potentially swapped page and remove the swap reference.
2103 * (used by swapoff code)
2105 * object must be held.
2107 static __inline void
2108 swp_pager_fault_page(vm_object_t object, int *sharedp, vm_pindex_t pindex)
2110 struct vnode *vp;
2111 vm_page_t m;
2112 int error;
2114 ASSERT_LWKT_TOKEN_HELD(vm_object_token(object));
2116 if (object->type == OBJT_VNODE) {
2118 * Any swap related to a vnode is due to swapcache. We must
2119 * vget() the vnode in case it is not active (otherwise
2120 * vref() will panic). Calling vm_object_page_remove() will
2121 * ensure that any swap ref is removed interlocked with the
2122 * page. clean_only is set to TRUE so we don't throw away
2123 * dirty pages.
2125 vp = object->handle;
2126 error = vget(vp, LK_SHARED | LK_RETRY | LK_CANRECURSE);
2127 if (error == 0) {
2128 vm_object_page_remove(object, pindex, pindex + 1, TRUE);
2129 vput(vp);
2131 } else {
2133 * Otherwise it is a normal OBJT_SWAP object and we can
2134 * fault the page in and remove the swap.
2136 m = vm_fault_object_page(object, IDX_TO_OFF(pindex),
2137 VM_PROT_NONE,
2138 VM_FAULT_DIRTY | VM_FAULT_UNSWAP,
2139 sharedp, &error);
2140 if (m)
2141 vm_page_unhold(m);
2146 * This removes all swap blocks related to a particular device. We have
2147 * to be careful of ripups during the scan.
2149 static int swp_pager_swapoff_callback(struct swblock *swap, void *data);
2152 swap_pager_swapoff(int devidx)
2154 struct vm_object_hash *hash;
2155 struct swswapoffinfo info;
2156 struct vm_object marker;
2157 vm_object_t object;
2158 int n;
2160 bzero(&marker, sizeof(marker));
2161 marker.type = OBJT_MARKER;
2163 for (n = 0; n < VMOBJ_HSIZE; ++n) {
2164 hash = &vm_object_hash[n];
2166 lwkt_gettoken(&hash->token);
2167 TAILQ_INSERT_HEAD(&hash->list, &marker, object_entry);
2169 while ((object = TAILQ_NEXT(&marker, object_entry)) != NULL) {
2170 if (object->type == OBJT_MARKER)
2171 goto skip;
2172 if (object->type != OBJT_SWAP &&
2173 object->type != OBJT_VNODE)
2174 goto skip;
2175 vm_object_hold(object);
2176 if (object->type != OBJT_SWAP &&
2177 object->type != OBJT_VNODE) {
2178 vm_object_drop(object);
2179 goto skip;
2183 * Object is special in that we can't just pagein
2184 * into vm_page's in it (tmpfs, vn).
2186 if ((object->flags & OBJ_NOPAGEIN) &&
2187 RB_ROOT(&object->swblock_root)) {
2188 vm_object_drop(object);
2189 goto skip;
2192 info.object = object;
2193 info.shared = 0;
2194 info.devidx = devidx;
2195 swblock_rb_tree_RB_SCAN(&object->swblock_root,
2196 NULL, swp_pager_swapoff_callback,
2197 &info);
2198 vm_object_drop(object);
2199 skip:
2200 if (object == TAILQ_NEXT(&marker, object_entry)) {
2201 TAILQ_REMOVE(&hash->list, &marker,
2202 object_entry);
2203 TAILQ_INSERT_AFTER(&hash->list, object,
2204 &marker, object_entry);
2207 TAILQ_REMOVE(&hash->list, &marker, object_entry);
2208 lwkt_reltoken(&hash->token);
2212 * If we fail to locate all swblocks we just fail gracefully and
2213 * do not bother to restore paging on the swap device. If the
2214 * user wants to retry the user can retry.
2216 if (swdevt[devidx].sw_nused)
2217 return (1);
2218 else
2219 return (0);
2222 static
2224 swp_pager_swapoff_callback(struct swblock *swap, void *data)
2226 struct swswapoffinfo *info = data;
2227 vm_object_t object = info->object;
2228 vm_pindex_t index;
2229 swblk_t v;
2230 int i;
2232 index = swap->swb_index;
2233 for (i = 0; i < SWAP_META_PAGES; ++i) {
2235 * Make sure we don't race a dying object. This will
2236 * kill the scan of the object's swap blocks entirely.
2238 if (object->flags & OBJ_DEAD)
2239 return(-1);
2242 * Fault the page, which can obviously block. If the swap
2243 * structure disappears break out.
2245 v = swap->swb_pages[i];
2246 if (v != SWAPBLK_NONE && BLK2DEVIDX(v) == info->devidx) {
2247 swp_pager_fault_page(object, &info->shared,
2248 swap->swb_index + i);
2249 /* swap ptr might go away */
2250 if (RB_LOOKUP(swblock_rb_tree,
2251 &object->swblock_root, index) != swap) {
2252 break;
2256 return(0);
2259 /************************************************************************
2260 * SWAP META DATA *
2261 ************************************************************************
2263 * These routines manipulate the swap metadata stored in the
2264 * OBJT_SWAP object.
2266 * Swap metadata is implemented with a global hash and not directly
2267 * linked into the object. Instead the object simply contains
2268 * appropriate tracking counters.
2272 * Lookup the swblock containing the specified swap block index.
2274 * The caller must hold the object.
2276 static __inline
2277 struct swblock *
2278 swp_pager_lookup(vm_object_t object, vm_pindex_t index)
2280 ASSERT_LWKT_TOKEN_HELD(vm_object_token(object));
2281 index &= ~(vm_pindex_t)SWAP_META_MASK;
2282 return (RB_LOOKUP(swblock_rb_tree, &object->swblock_root, index));
2286 * Remove a swblock from the RB tree.
2288 * The caller must hold the object.
2290 static __inline
2291 void
2292 swp_pager_remove(vm_object_t object, struct swblock *swap)
2294 ASSERT_LWKT_TOKEN_HELD(vm_object_token(object));
2295 RB_REMOVE(swblock_rb_tree, &object->swblock_root, swap);
2299 * Convert default object to swap object if necessary
2301 * The caller must hold the object.
2303 static void
2304 swp_pager_meta_convert(vm_object_t object)
2306 if (object->type == OBJT_DEFAULT) {
2307 object->type = OBJT_SWAP;
2308 KKASSERT(object->swblock_count == 0);
2313 * SWP_PAGER_META_BUILD() - add swap block to swap meta data for object
2315 * We first convert the object to a swap object if it is a default
2316 * object. Vnode objects do not need to be converted.
2318 * The specified swapblk is added to the object's swap metadata. If
2319 * the swapblk is not valid, it is freed instead. Any previously
2320 * assigned swapblk is freed.
2322 * The caller must hold the object.
2324 static void
2325 swp_pager_meta_build(vm_object_t object, vm_pindex_t index, swblk_t swapblk)
2327 struct swblock *swap;
2328 struct swblock *oswap;
2329 vm_pindex_t v;
2331 KKASSERT(swapblk != SWAPBLK_NONE);
2332 ASSERT_LWKT_TOKEN_HELD(vm_object_token(object));
2335 * Convert object if necessary
2337 if (object->type == OBJT_DEFAULT)
2338 swp_pager_meta_convert(object);
2341 * Locate swblock. If not found create, but if we aren't adding
2342 * anything just return. If we run out of space in the map we wait
2343 * and, since the hash table may have changed, retry.
2345 retry:
2346 swap = swp_pager_lookup(object, index);
2348 if (swap == NULL) {
2349 int i;
2351 swap = zalloc(swap_zone);
2352 if (swap == NULL) {
2353 vm_wait(0);
2354 goto retry;
2356 swap->swb_index = index & ~(vm_pindex_t)SWAP_META_MASK;
2357 swap->swb_count = 0;
2359 ++object->swblock_count;
2361 for (i = 0; i < SWAP_META_PAGES; ++i)
2362 swap->swb_pages[i] = SWAPBLK_NONE;
2363 oswap = RB_INSERT(swblock_rb_tree, &object->swblock_root, swap);
2364 KKASSERT(oswap == NULL);
2368 * Delete prior contents of metadata.
2370 * NOTE: Decrement swb_count after the freeing operation (which
2371 * might block) to prevent racing destruction of the swblock.
2373 index &= SWAP_META_MASK;
2375 while ((v = swap->swb_pages[index]) != SWAPBLK_NONE) {
2376 swap->swb_pages[index] = SWAPBLK_NONE;
2377 /* can block */
2378 swp_pager_freeswapspace(object, v, 1);
2379 --swap->swb_count;
2380 --mycpu->gd_vmtotal.t_vm;
2384 * Enter block into metadata
2386 swap->swb_pages[index] = swapblk;
2387 if (swapblk != SWAPBLK_NONE) {
2388 ++swap->swb_count;
2389 ++mycpu->gd_vmtotal.t_vm;
2394 * SWP_PAGER_META_FREE() - free a range of blocks in the object's swap metadata
2396 * The requested range of blocks is freed, with any associated swap
2397 * returned to the swap bitmap.
2399 * This routine will free swap metadata structures as they are cleaned
2400 * out. This routine does *NOT* operate on swap metadata associated
2401 * with resident pages.
2403 * The caller must hold the object.
2405 static int swp_pager_meta_free_callback(struct swblock *swb, void *data);
2407 static void
2408 swp_pager_meta_free(vm_object_t object, vm_pindex_t index, vm_pindex_t count)
2410 struct swfreeinfo info;
2412 ASSERT_LWKT_TOKEN_HELD(vm_object_token(object));
2415 * Nothing to do
2417 if (object->swblock_count == 0) {
2418 KKASSERT(RB_EMPTY(&object->swblock_root));
2419 return;
2421 if (count == 0)
2422 return;
2425 * Setup for RB tree scan. Note that the pindex range can be huge
2426 * due to the 64 bit page index space so we cannot safely iterate.
2428 info.object = object;
2429 info.basei = index & ~(vm_pindex_t)SWAP_META_MASK;
2430 info.begi = index;
2431 info.endi = index + count - 1;
2432 swblock_rb_tree_RB_SCAN(&object->swblock_root, rb_swblock_scancmp,
2433 swp_pager_meta_free_callback, &info);
2437 * The caller must hold the object.
2439 static
2441 swp_pager_meta_free_callback(struct swblock *swap, void *data)
2443 struct swfreeinfo *info = data;
2444 vm_object_t object = info->object;
2445 int index;
2446 int eindex;
2449 * Figure out the range within the swblock. The wider scan may
2450 * return edge-case swap blocks when the start and/or end points
2451 * are in the middle of a block.
2453 if (swap->swb_index < info->begi)
2454 index = (int)info->begi & SWAP_META_MASK;
2455 else
2456 index = 0;
2458 if (swap->swb_index + SWAP_META_PAGES > info->endi)
2459 eindex = (int)info->endi & SWAP_META_MASK;
2460 else
2461 eindex = SWAP_META_MASK;
2464 * Scan and free the blocks. The loop terminates early
2465 * if (swap) runs out of blocks and could be freed.
2467 * NOTE: Decrement swb_count after swp_pager_freeswapspace()
2468 * to deal with a zfree race.
2470 while (index <= eindex) {
2471 swblk_t v = swap->swb_pages[index];
2473 if (v != SWAPBLK_NONE) {
2474 swap->swb_pages[index] = SWAPBLK_NONE;
2475 /* can block */
2476 swp_pager_freeswapspace(object, v, 1);
2477 --mycpu->gd_vmtotal.t_vm;
2478 if (--swap->swb_count == 0) {
2479 swp_pager_remove(object, swap);
2480 zfree(swap_zone, swap);
2481 --object->swblock_count;
2482 break;
2485 ++index;
2488 /* swap may be invalid here due to zfree above */
2489 lwkt_yield();
2491 return(0);
2495 * SWP_PAGER_META_FREE_ALL() - destroy all swap metadata associated with object
2497 * This routine locates and destroys all swap metadata associated with
2498 * an object.
2500 * NOTE: Decrement swb_count after the freeing operation (which
2501 * might block) to prevent racing destruction of the swblock.
2503 * The caller must hold the object.
2505 static void
2506 swp_pager_meta_free_all(vm_object_t object)
2508 struct swblock *swap;
2509 int i;
2511 ASSERT_LWKT_TOKEN_HELD(vm_object_token(object));
2513 while ((swap = RB_ROOT(&object->swblock_root)) != NULL) {
2514 swp_pager_remove(object, swap);
2515 for (i = 0; i < SWAP_META_PAGES; ++i) {
2516 swblk_t v = swap->swb_pages[i];
2517 if (v != SWAPBLK_NONE) {
2518 /* can block */
2519 swp_pager_freeswapspace(object, v, 1);
2520 --swap->swb_count;
2521 --mycpu->gd_vmtotal.t_vm;
2524 if (swap->swb_count != 0)
2525 panic("swap_pager_meta_free_all: swb_count != 0");
2526 zfree(swap_zone, swap);
2527 --object->swblock_count;
2528 lwkt_yield();
2530 KKASSERT(object->swblock_count == 0);
2534 * SWP_PAGER_METACTL() - misc control of swap and vm_page_t meta data.
2536 * This routine is capable of looking up, popping, or freeing
2537 * swapblk assignments in the swap meta data or in the vm_page_t.
2538 * The routine typically returns the swapblk being looked-up, or popped,
2539 * or SWAPBLK_NONE if the block was freed, or SWAPBLK_NONE if the block
2540 * was invalid. This routine will automatically free any invalid
2541 * meta-data swapblks.
2543 * It is not possible to store invalid swapblks in the swap meta data
2544 * (other then a literal 'SWAPBLK_NONE'), so we don't bother checking.
2546 * When acting on a busy resident page and paging is in progress, we
2547 * have to wait until paging is complete but otherwise can act on the
2548 * busy page.
2550 * SWM_FREE remove and free swap block from metadata
2551 * SWM_POP remove from meta data but do not free.. pop it out
2553 * The caller must hold the object.
2555 static swblk_t
2556 swp_pager_meta_ctl(vm_object_t object, vm_pindex_t index, int flags)
2558 struct swblock *swap;
2559 swblk_t r1;
2561 if (object->swblock_count == 0)
2562 return(SWAPBLK_NONE);
2564 r1 = SWAPBLK_NONE;
2565 swap = swp_pager_lookup(object, index);
2567 if (swap != NULL) {
2568 index &= SWAP_META_MASK;
2569 r1 = swap->swb_pages[index];
2571 if (r1 != SWAPBLK_NONE) {
2572 if (flags & (SWM_FREE|SWM_POP)) {
2573 swap->swb_pages[index] = SWAPBLK_NONE;
2574 --mycpu->gd_vmtotal.t_vm;
2575 if (--swap->swb_count == 0) {
2576 swp_pager_remove(object, swap);
2577 zfree(swap_zone, swap);
2578 --object->swblock_count;
2581 /* swap ptr may be invalid */
2582 if (flags & SWM_FREE) {
2583 swp_pager_freeswapspace(object, r1, 1);
2584 r1 = SWAPBLK_NONE;
2587 /* swap ptr may be invalid */
2589 return(r1);