kernel/vm: Rename *_putpages()'s 'sync' argument to 'flags'.
[dragonfly.git] / sys / kern / uipc_socket.c
blobfe8f149bf688180389bc572eb02f4b2319efb85d
1 /*
2 * Copyright (c) 2004 Jeffrey M. Hsu. All rights reserved.
3 * Copyright (c) 2004 The DragonFly Project. All rights reserved.
4 *
5 * This code is derived from software contributed to The DragonFly Project
6 * by Jeffrey M. Hsu.
7 *
8 * Redistribution and use in source and binary forms, with or without
9 * modification, are permitted provided that the following conditions
10 * are met:
11 * 1. Redistributions of source code must retain the above copyright
12 * notice, this list of conditions and the following disclaimer.
13 * 2. Redistributions in binary form must reproduce the above copyright
14 * notice, this list of conditions and the following disclaimer in the
15 * documentation and/or other materials provided with the distribution.
16 * 3. Neither the name of The DragonFly Project nor the names of its
17 * contributors may be used to endorse or promote products derived
18 * from this software without specific, prior written permission.
20 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
21 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
22 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
23 * FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
24 * COPYRIGHT HOLDERS OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
25 * INCIDENTAL, SPECIAL, EXEMPLARY OR CONSEQUENTIAL DAMAGES (INCLUDING,
26 * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
27 * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
28 * AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
29 * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT
30 * OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
31 * SUCH DAMAGE.
35 * Copyright (c) 1982, 1986, 1988, 1990, 1993
36 * The Regents of the University of California. All rights reserved.
38 * Redistribution and use in source and binary forms, with or without
39 * modification, are permitted provided that the following conditions
40 * are met:
41 * 1. Redistributions of source code must retain the above copyright
42 * notice, this list of conditions and the following disclaimer.
43 * 2. Redistributions in binary form must reproduce the above copyright
44 * notice, this list of conditions and the following disclaimer in the
45 * documentation and/or other materials provided with the distribution.
46 * 3. Neither the name of the University nor the names of its contributors
47 * may be used to endorse or promote products derived from this software
48 * without specific prior written permission.
50 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
51 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
52 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
53 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
54 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
55 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
56 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
57 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
58 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
59 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
60 * SUCH DAMAGE.
62 * @(#)uipc_socket.c 8.3 (Berkeley) 4/15/94
63 * $FreeBSD: src/sys/kern/uipc_socket.c,v 1.68.2.24 2003/11/11 17:18:18 silby Exp $
66 #include "opt_inet.h"
68 #include <sys/param.h>
69 #include <sys/systm.h>
70 #include <sys/fcntl.h>
71 #include <sys/malloc.h>
72 #include <sys/mbuf.h>
73 #include <sys/domain.h>
74 #include <sys/file.h> /* for struct knote */
75 #include <sys/kernel.h>
76 #include <sys/event.h>
77 #include <sys/proc.h>
78 #include <sys/protosw.h>
79 #include <sys/socket.h>
80 #include <sys/socketvar.h>
81 #include <sys/socketops.h>
82 #include <sys/resourcevar.h>
83 #include <sys/signalvar.h>
84 #include <sys/sysctl.h>
85 #include <sys/uio.h>
86 #include <sys/jail.h>
87 #include <vm/vm_zone.h>
88 #include <vm/pmap.h>
89 #include <net/netmsg2.h>
90 #include <net/netisr2.h>
92 #include <sys/socketvar2.h>
93 #include <sys/spinlock2.h>
95 #include <machine/limits.h>
97 #ifdef INET
98 extern int tcp_sosend_agglim;
99 extern int tcp_sosend_async;
100 extern int tcp_sosend_jcluster;
101 extern int udp_sosend_async;
102 extern int udp_sosend_prepend;
104 static int do_setopt_accept_filter(struct socket *so, struct sockopt *sopt);
105 #endif /* INET */
107 static void filt_sordetach(struct knote *kn);
108 static int filt_soread(struct knote *kn, long hint);
109 static void filt_sowdetach(struct knote *kn);
110 static int filt_sowrite(struct knote *kn, long hint);
111 static int filt_solisten(struct knote *kn, long hint);
113 static int soclose_sync(struct socket *so, int fflag);
114 static void soclose_fast(struct socket *so);
116 static struct filterops solisten_filtops =
117 { FILTEROP_ISFD|FILTEROP_MPSAFE, NULL, filt_sordetach, filt_solisten };
118 static struct filterops soread_filtops =
119 { FILTEROP_ISFD|FILTEROP_MPSAFE, NULL, filt_sordetach, filt_soread };
120 static struct filterops sowrite_filtops =
121 { FILTEROP_ISFD|FILTEROP_MPSAFE, NULL, filt_sowdetach, filt_sowrite };
122 static struct filterops soexcept_filtops =
123 { FILTEROP_ISFD|FILTEROP_MPSAFE, NULL, filt_sordetach, filt_soread };
125 MALLOC_DEFINE(M_SOCKET, "socket", "socket struct");
126 MALLOC_DEFINE(M_SONAME, "soname", "socket name");
127 MALLOC_DEFINE(M_PCB, "pcb", "protocol control block");
130 static int somaxconn = SOMAXCONN;
131 SYSCTL_INT(_kern_ipc, KIPC_SOMAXCONN, somaxconn, CTLFLAG_RW,
132 &somaxconn, 0, "Maximum pending socket connection queue size");
134 static int use_soclose_fast = 1;
135 SYSCTL_INT(_kern_ipc, OID_AUTO, soclose_fast, CTLFLAG_RW,
136 &use_soclose_fast, 0, "Fast socket close");
138 int use_soaccept_pred_fast = 1;
139 SYSCTL_INT(_kern_ipc, OID_AUTO, soaccept_pred_fast, CTLFLAG_RW,
140 &use_soaccept_pred_fast, 0, "Fast socket accept predication");
142 int use_sendfile_async = 1;
143 SYSCTL_INT(_kern_ipc, OID_AUTO, sendfile_async, CTLFLAG_RW,
144 &use_sendfile_async, 0, "sendfile uses asynchronized pru_send");
146 int use_soconnect_async = 1;
147 SYSCTL_INT(_kern_ipc, OID_AUTO, soconnect_async, CTLFLAG_RW,
148 &use_soconnect_async, 0, "soconnect uses asynchronized pru_connect");
150 static int use_socreate_fast = 1;
151 SYSCTL_INT(_kern_ipc, OID_AUTO, socreate_fast, CTLFLAG_RW,
152 &use_socreate_fast, 0, "Fast socket creation");
154 static int soavailconn = 32;
155 SYSCTL_INT(_kern_ipc, OID_AUTO, soavailconn, CTLFLAG_RW,
156 &soavailconn, 0, "Maximum available socket connection queue size");
159 * Socket operation routines.
160 * These routines are called by the routines in
161 * sys_socket.c or from a system process, and
162 * implement the semantics of socket operations by
163 * switching out to the protocol specific routines.
167 * Get a socket structure, and initialize it.
168 * Note that it would probably be better to allocate socket
169 * and PCB at the same time, but I'm not convinced that all
170 * the protocols can be easily modified to do this.
172 struct socket *
173 soalloc(int waitok, struct protosw *pr)
175 globaldata_t gd = mycpu;
176 struct socket *so;
177 unsigned waitmask;
179 waitmask = waitok ? M_WAITOK : M_NOWAIT;
180 so = kmalloc(sizeof(struct socket), M_SOCKET, M_ZERO|waitmask);
181 if (so) {
182 /* XXX race condition for reentrant kernel */
183 so->so_proto = pr;
184 TAILQ_INIT(&so->so_aiojobq);
185 TAILQ_INIT(&so->so_rcv.ssb_mlist);
186 TAILQ_INIT(&so->so_snd.ssb_mlist);
187 lwkt_token_init(&so->so_rcv.ssb_token, "rcvtok");
188 lwkt_token_init(&so->so_snd.ssb_token, "sndtok");
189 spin_init(&so->so_rcvd_spin, "soalloc");
190 netmsg_init(&so->so_rcvd_msg.base, so, &netisr_adone_rport,
191 MSGF_DROPABLE | MSGF_PRIORITY,
192 so->so_proto->pr_usrreqs->pru_rcvd);
193 so->so_rcvd_msg.nm_pru_flags |= PRUR_ASYNC;
194 so->so_state = SS_NOFDREF;
195 so->so_refs = 1;
196 so->so_inum = gd->gd_anoninum++ * ncpus + gd->gd_cpuid + 2;
198 return so;
202 socreate(int dom, struct socket **aso, int type,
203 int proto, struct thread *td)
205 struct proc *p = td->td_proc;
206 struct protosw *prp;
207 struct socket *so;
208 struct pru_attach_info ai;
209 struct prison *pr = p->p_ucred->cr_prison;
210 int error;
212 if (proto)
213 prp = pffindproto(dom, proto, type);
214 else
215 prp = pffindtype(dom, type);
217 if (prp == NULL || prp->pr_usrreqs->pru_attach == 0)
218 return (EPROTONOSUPPORT);
220 if (pr && PRISON_CAP_ISSET(pr->pr_caps, PRISON_CAP_NET_UNIXIPROUTE) &&
221 prp->pr_domain->dom_family != PF_LOCAL &&
222 prp->pr_domain->dom_family != PF_INET &&
223 prp->pr_domain->dom_family != PF_INET6 &&
224 prp->pr_domain->dom_family != PF_ROUTE) {
225 return (EPROTONOSUPPORT);
228 if (prp->pr_type != type)
229 return (EPROTOTYPE);
230 so = soalloc(p != NULL, prp);
231 if (so == NULL)
232 return (ENOBUFS);
235 * Callers of socreate() presumably will connect up a descriptor
236 * and call soclose() if they cannot. This represents our so_refs
237 * (which should be 1) from soalloc().
239 soclrstate(so, SS_NOFDREF);
242 * Set a default port for protocol processing. No action will occur
243 * on the socket on this port until an inpcb is attached to it and
244 * is able to match incoming packets, or until the socket becomes
245 * available to userland.
247 * We normally default the socket to the protocol thread on cpu 0,
248 * if protocol does not provide its own method to initialize the
249 * default port.
251 * If PR_SYNC_PORT is set (unix domain sockets) there is no protocol
252 * thread and all pr_*()/pru_*() calls are executed synchronously.
254 if (prp->pr_flags & PR_SYNC_PORT)
255 so->so_port = &netisr_sync_port;
256 else if (prp->pr_initport != NULL)
257 so->so_port = prp->pr_initport();
258 else
259 so->so_port = netisr_cpuport(0);
261 TAILQ_INIT(&so->so_incomp);
262 TAILQ_INIT(&so->so_comp);
263 so->so_type = type;
264 so->so_cred = crhold(p->p_ucred);
265 ai.sb_rlimit = &p->p_rlimit[RLIMIT_SBSIZE];
266 ai.p_ucred = p->p_ucred;
267 ai.fd_rdir = p->p_fd->fd_rdir;
270 * Auto-sizing of socket buffers is managed by the protocols and
271 * the appropriate flags must be set in the pru_attach function.
273 if (use_socreate_fast && prp->pr_usrreqs->pru_preattach)
274 error = so_pru_attach_fast(so, proto, &ai);
275 else
276 error = so_pru_attach(so, proto, &ai);
277 if (error) {
278 sosetstate(so, SS_NOFDREF);
279 sofree(so); /* from soalloc */
280 return error;
284 * NOTE: Returns referenced socket.
286 *aso = so;
287 return (0);
291 sobind(struct socket *so, struct sockaddr *nam, struct thread *td)
293 int error;
295 error = so_pru_bind(so, nam, td);
296 return (error);
299 static void
300 sodealloc(struct socket *so)
302 KKASSERT((so->so_state & (SS_INCOMP | SS_COMP)) == 0);
304 #ifdef INVARIANTS
305 if (so->so_options & SO_ACCEPTCONN) {
306 KASSERT(TAILQ_EMPTY(&so->so_comp), ("so_comp is not empty"));
307 KASSERT(TAILQ_EMPTY(&so->so_incomp),
308 ("so_incomp is not empty"));
310 #endif
312 if (so->so_rcv.ssb_hiwat)
313 (void)chgsbsize(so->so_cred->cr_uidinfo,
314 &so->so_rcv.ssb_hiwat, 0, RLIM_INFINITY);
315 if (so->so_snd.ssb_hiwat)
316 (void)chgsbsize(so->so_cred->cr_uidinfo,
317 &so->so_snd.ssb_hiwat, 0, RLIM_INFINITY);
318 #ifdef INET
319 /* remove accept filter if present */
320 if (so->so_accf != NULL)
321 do_setopt_accept_filter(so, NULL);
322 #endif /* INET */
323 crfree(so->so_cred);
324 if (so->so_faddr != NULL)
325 kfree(so->so_faddr, M_SONAME);
326 kfree(so, M_SOCKET);
330 solisten(struct socket *so, int backlog, struct thread *td)
332 if (so->so_state & (SS_ISCONNECTED | SS_ISCONNECTING))
333 return (EINVAL);
335 lwkt_gettoken(&so->so_rcv.ssb_token);
336 if (TAILQ_EMPTY(&so->so_comp))
337 so->so_options |= SO_ACCEPTCONN;
338 lwkt_reltoken(&so->so_rcv.ssb_token);
339 if (backlog < 0 || backlog > somaxconn)
340 backlog = somaxconn;
341 so->so_qlimit = backlog;
342 return so_pru_listen(so, td);
345 static void
346 soqflush(struct socket *so)
348 lwkt_getpooltoken(so);
349 if (so->so_options & SO_ACCEPTCONN) {
350 struct socket *sp;
352 while ((sp = TAILQ_FIRST(&so->so_incomp)) != NULL) {
353 KKASSERT((sp->so_state & (SS_INCOMP | SS_COMP)) ==
354 SS_INCOMP);
355 TAILQ_REMOVE(&so->so_incomp, sp, so_list);
356 so->so_incqlen--;
357 soclrstate(sp, SS_INCOMP);
358 soabort_async(sp, TRUE);
360 while ((sp = TAILQ_FIRST(&so->so_comp)) != NULL) {
361 KKASSERT((sp->so_state & (SS_INCOMP | SS_COMP)) ==
362 SS_COMP);
363 TAILQ_REMOVE(&so->so_comp, sp, so_list);
364 so->so_qlen--;
365 soclrstate(sp, SS_COMP);
366 soabort_async(sp, TRUE);
369 lwkt_relpooltoken(so);
373 * Destroy a disconnected socket. This routine is a NOP if entities
374 * still have a reference on the socket:
376 * so_pcb - The protocol stack still has a reference
377 * SS_NOFDREF - There is no longer a file pointer reference
379 void
380 sofree(struct socket *so)
382 struct socket *head;
385 * This is a bit hackish at the moment. We need to interlock
386 * any accept queue we are on before we potentially lose the
387 * last reference to avoid races against a re-reference from
388 * someone operating on the queue.
390 while ((head = so->so_head) != NULL) {
391 lwkt_getpooltoken(head);
392 if (so->so_head == head)
393 break;
394 lwkt_relpooltoken(head);
398 * Arbitrage the last free.
400 KKASSERT(so->so_refs > 0);
401 if (atomic_fetchadd_int(&so->so_refs, -1) != 1) {
402 if (head)
403 lwkt_relpooltoken(head);
404 return;
407 KKASSERT(so->so_pcb == NULL && (so->so_state & SS_NOFDREF));
408 KKASSERT((so->so_state & SS_ASSERTINPROG) == 0);
410 if (head != NULL) {
412 * We're done, remove ourselves from the accept queue we are
413 * on, if we are on one.
415 if (so->so_state & SS_INCOMP) {
416 KKASSERT((so->so_state & (SS_INCOMP | SS_COMP)) ==
417 SS_INCOMP);
418 TAILQ_REMOVE(&head->so_incomp, so, so_list);
419 head->so_incqlen--;
420 } else if (so->so_state & SS_COMP) {
422 * We must not decommission a socket that's
423 * on the accept(2) queue. If we do, then
424 * accept(2) may hang after select(2) indicated
425 * that the listening socket was ready.
427 KKASSERT((so->so_state & (SS_INCOMP | SS_COMP)) ==
428 SS_COMP);
429 lwkt_relpooltoken(head);
430 return;
431 } else {
432 panic("sofree: not queued");
434 soclrstate(so, SS_INCOMP);
435 so->so_head = NULL;
436 lwkt_relpooltoken(head);
437 } else {
438 /* Flush accept queues, if we are accepting. */
439 soqflush(so);
441 ssb_release(&so->so_snd, so);
442 sorflush(so);
443 sodealloc(so);
447 * Close a socket on last file table reference removal.
448 * Initiate disconnect if connected.
449 * Free socket when disconnect complete.
452 soclose(struct socket *so, int fflag)
454 int error;
456 funsetown(&so->so_sigio);
457 sosetstate(so, SS_ISCLOSING);
458 if (!use_soclose_fast ||
459 (so->so_proto->pr_flags & PR_SYNC_PORT) ||
460 ((so->so_state & SS_ISCONNECTED) &&
461 (so->so_options & SO_LINGER) &&
462 so->so_linger != 0)) {
463 error = soclose_sync(so, fflag);
464 } else {
465 soclose_fast(so);
466 error = 0;
468 return error;
471 void
472 sodiscard(struct socket *so)
474 if (so->so_state & SS_NOFDREF)
475 panic("soclose: NOFDREF");
476 sosetstate(so, SS_NOFDREF); /* take ref */
480 * Append the completed queue of head to head_inh (inherting listen socket).
482 void
483 soinherit(struct socket *head, struct socket *head_inh)
485 boolean_t do_wakeup = FALSE;
487 KASSERT(head->so_options & SO_ACCEPTCONN,
488 ("head does not accept connection"));
489 KASSERT(head_inh->so_options & SO_ACCEPTCONN,
490 ("head_inh does not accept connection"));
492 lwkt_getpooltoken(head);
493 lwkt_getpooltoken(head_inh);
495 if (head->so_qlen > 0)
496 do_wakeup = TRUE;
498 while (!TAILQ_EMPTY(&head->so_comp)) {
499 struct ucred *old_cr;
500 struct socket *sp;
502 sp = TAILQ_FIRST(&head->so_comp);
503 KKASSERT((sp->so_state & (SS_INCOMP | SS_COMP)) == SS_COMP);
506 * Remove this socket from the current listen socket
507 * completed queue.
509 TAILQ_REMOVE(&head->so_comp, sp, so_list);
510 head->so_qlen--;
512 /* Save the old ucred for later free. */
513 old_cr = sp->so_cred;
516 * Install this socket to the inheriting listen socket
517 * completed queue.
519 sp->so_cred = crhold(head_inh->so_cred); /* non-blocking */
520 sp->so_head = head_inh;
522 TAILQ_INSERT_TAIL(&head_inh->so_comp, sp, so_list);
523 head_inh->so_qlen++;
526 * NOTE:
527 * crfree() may block and release the tokens temporarily.
528 * However, we are fine here, since the transition is done.
530 crfree(old_cr);
533 lwkt_relpooltoken(head_inh);
534 lwkt_relpooltoken(head);
536 if (do_wakeup) {
538 * "New" connections have arrived
540 sorwakeup(head_inh);
541 wakeup(&head_inh->so_timeo);
545 static int
546 soclose_sync(struct socket *so, int fflag)
548 int error = 0;
550 if ((so->so_proto->pr_flags & PR_SYNC_PORT) == 0)
551 so_pru_sync(so); /* unpend async prus */
553 if (so->so_pcb == NULL)
554 goto discard;
556 if (so->so_state & SS_ISCONNECTED) {
557 if ((so->so_state & SS_ISDISCONNECTING) == 0) {
558 error = sodisconnect(so);
559 if (error)
560 goto drop;
562 if (so->so_options & SO_LINGER) {
563 if ((so->so_state & SS_ISDISCONNECTING) &&
564 (fflag & FNONBLOCK))
565 goto drop;
566 while (so->so_state & SS_ISCONNECTED) {
567 error = tsleep(&so->so_timeo, PCATCH,
568 "soclos", so->so_linger * hz);
569 if (error)
570 break;
574 drop:
575 if (so->so_pcb) {
576 int error2;
578 error2 = so_pru_detach(so);
579 if (error2 == EJUSTRETURN) {
581 * Protocol will call sodiscard()
582 * and sofree() for us.
584 return error;
586 if (error == 0)
587 error = error2;
589 discard:
590 sodiscard(so);
591 sofree(so); /* dispose of ref */
593 return (error);
596 static void
597 soclose_fast_handler(netmsg_t msg)
599 struct socket *so = msg->base.nm_so;
601 if (so->so_pcb == NULL)
602 goto discard;
604 if ((so->so_state & SS_ISCONNECTED) &&
605 (so->so_state & SS_ISDISCONNECTING) == 0)
606 so_pru_disconnect_direct(so);
608 if (so->so_pcb) {
609 int error;
611 error = so_pru_detach_direct(so);
612 if (error == EJUSTRETURN) {
614 * Protocol will call sodiscard()
615 * and sofree() for us.
617 return;
620 discard:
621 sodiscard(so);
622 sofree(so);
625 static void
626 soclose_fast(struct socket *so)
628 struct netmsg_base *base = &so->so_clomsg;
630 netmsg_init(base, so, &netisr_apanic_rport, 0,
631 soclose_fast_handler);
632 if (so->so_port == netisr_curport())
633 lwkt_sendmsg_oncpu(so->so_port, &base->lmsg);
634 else
635 lwkt_sendmsg(so->so_port, &base->lmsg);
639 * Abort and destroy a socket. Only one abort can be in progress
640 * at any given moment.
642 void
643 soabort_async(struct socket *so, boolean_t clr_head)
646 * Keep a reference before clearing the so_head
647 * to avoid racing socket close in netisr.
649 soreference(so);
650 if (clr_head)
651 so->so_head = NULL;
652 so_pru_abort_async(so);
655 void
656 soabort_direct(struct socket *so)
658 soreference(so);
659 so_pru_abort_direct(so);
663 * so is passed in ref'd, which becomes owned by
664 * the cleared SS_NOFDREF flag.
666 void
667 soaccept_generic(struct socket *so)
669 if ((so->so_state & SS_NOFDREF) == 0)
670 panic("soaccept: !NOFDREF");
671 soclrstate(so, SS_NOFDREF); /* owned by lack of SS_NOFDREF */
675 soaccept(struct socket *so, struct sockaddr **nam)
677 int error;
679 soaccept_generic(so);
680 error = so_pru_accept(so, nam);
681 return (error);
685 soconnect(struct socket *so, struct sockaddr *nam, struct thread *td,
686 boolean_t sync)
688 int error;
690 if (so->so_options & SO_ACCEPTCONN)
691 return (EOPNOTSUPP);
693 * If protocol is connection-based, can only connect once.
694 * Otherwise, if connected, try to disconnect first.
695 * This allows user to disconnect by connecting to, e.g.,
696 * a null address.
698 if (so->so_state & (SS_ISCONNECTED|SS_ISCONNECTING) &&
699 ((so->so_proto->pr_flags & PR_CONNREQUIRED) ||
700 (error = sodisconnect(so)))) {
701 error = EISCONN;
702 } else {
704 * Prevent accumulated error from previous connection
705 * from biting us.
707 so->so_error = 0;
708 if (!sync && so->so_proto->pr_usrreqs->pru_preconnect)
709 error = so_pru_connect_async(so, nam, td);
710 else
711 error = so_pru_connect(so, nam, td);
713 return (error);
717 soconnect2(struct socket *so1, struct socket *so2)
719 int error;
721 error = so_pru_connect2(so1, so2);
722 return (error);
726 sodisconnect(struct socket *so)
728 int error;
730 if ((so->so_state & SS_ISCONNECTED) == 0) {
731 error = ENOTCONN;
732 goto bad;
734 if (so->so_state & SS_ISDISCONNECTING) {
735 error = EALREADY;
736 goto bad;
738 error = so_pru_disconnect(so);
739 bad:
740 return (error);
743 #define SBLOCKWAIT(f) (((f) & MSG_DONTWAIT) ? M_NOWAIT : M_WAITOK)
745 * Send on a socket.
746 * If send must go all at once and message is larger than
747 * send buffering, then hard error.
748 * Lock against other senders.
749 * If must go all at once and not enough room now, then
750 * inform user that this would block and do nothing.
751 * Otherwise, if nonblocking, send as much as possible.
752 * The data to be sent is described by "uio" if nonzero,
753 * otherwise by the mbuf chain "top" (which must be null
754 * if uio is not). Data provided in mbuf chain must be small
755 * enough to send all at once.
757 * Returns nonzero on error, timeout or signal; callers
758 * must check for short counts if EINTR/ERESTART are returned.
759 * Data and control buffers are freed on return.
762 sosend(struct socket *so, struct sockaddr *addr, struct uio *uio,
763 struct mbuf *top, struct mbuf *control, int flags,
764 struct thread *td)
766 struct mbuf **mp;
767 struct mbuf *m;
768 size_t resid;
769 int space, len;
770 int clen = 0, error, dontroute, mlen;
771 int atomic = sosendallatonce(so) || top;
772 int pru_flags;
774 if (uio) {
775 resid = uio->uio_resid;
776 } else {
777 resid = (size_t)top->m_pkthdr.len;
778 #ifdef INVARIANTS
779 len = 0;
780 for (m = top; m; m = m->m_next)
781 len += m->m_len;
782 KKASSERT(top->m_pkthdr.len == len);
783 #endif
787 * WARNING! resid is unsigned, space and len are signed. space
788 * can wind up negative if the sockbuf is overcommitted.
790 * Also check to make sure that MSG_EOR isn't used on SOCK_STREAM
791 * type sockets since that's an error.
793 if (so->so_type == SOCK_STREAM && (flags & MSG_EOR)) {
794 error = EINVAL;
795 goto out;
798 dontroute =
799 (flags & MSG_DONTROUTE) && (so->so_options & SO_DONTROUTE) == 0 &&
800 (so->so_proto->pr_flags & PR_ATOMIC);
801 if (td->td_lwp != NULL)
802 td->td_lwp->lwp_ru.ru_msgsnd++;
803 if (control)
804 clen = control->m_len;
805 #define gotoerr(errcode) { error = errcode; goto release; }
807 restart:
808 error = ssb_lock(&so->so_snd, SBLOCKWAIT(flags));
809 if (error)
810 goto out;
812 do {
813 if (so->so_state & SS_CANTSENDMORE)
814 gotoerr(EPIPE);
815 if (so->so_error) {
816 error = so->so_error;
817 so->so_error = 0;
818 goto release;
820 if ((so->so_state & SS_ISCONNECTED) == 0) {
822 * `sendto' and `sendmsg' is allowed on a connection-
823 * based socket if it supports implied connect.
824 * Return ENOTCONN if not connected and no address is
825 * supplied.
827 if ((so->so_proto->pr_flags & PR_CONNREQUIRED) &&
828 (so->so_proto->pr_flags & PR_IMPLOPCL) == 0) {
829 if ((so->so_state & SS_ISCONFIRMING) == 0 &&
830 !(resid == 0 && clen != 0))
831 gotoerr(ENOTCONN);
832 } else if (addr == NULL)
833 gotoerr(so->so_proto->pr_flags & PR_CONNREQUIRED ?
834 ENOTCONN : EDESTADDRREQ);
836 if ((atomic && resid > so->so_snd.ssb_hiwat) ||
837 clen > so->so_snd.ssb_hiwat) {
838 gotoerr(EMSGSIZE);
840 space = ssb_space(&so->so_snd);
841 if (flags & MSG_OOB)
842 space += 1024;
843 if ((space < 0 || (size_t)space < resid + clen) && uio &&
844 (atomic || space < so->so_snd.ssb_lowat || space < clen)) {
845 if (flags & (MSG_FNONBLOCKING|MSG_DONTWAIT))
846 gotoerr(EWOULDBLOCK);
847 ssb_unlock(&so->so_snd);
848 error = ssb_wait(&so->so_snd);
849 if (error)
850 goto out;
851 goto restart;
853 mp = &top;
854 space -= clen;
855 do {
856 if (uio == NULL) {
858 * Data is prepackaged in "top".
860 resid = 0;
861 if (flags & MSG_EOR)
862 top->m_flags |= M_EOR;
863 } else do {
864 if (resid > INT_MAX)
865 resid = INT_MAX;
866 m = m_getl((int)resid, M_WAITOK, MT_DATA,
867 top == NULL ? M_PKTHDR : 0, &mlen);
868 if (top == NULL) {
869 m->m_pkthdr.len = 0;
870 m->m_pkthdr.rcvif = NULL;
872 len = imin((int)szmin(mlen, resid), space);
873 if (resid < MINCLSIZE) {
875 * For datagram protocols, leave room
876 * for protocol headers in first mbuf.
878 if (atomic && top == NULL && len < mlen)
879 MH_ALIGN(m, len);
881 space -= len;
882 error = uiomove(mtod(m, caddr_t), (size_t)len, uio);
883 resid = uio->uio_resid;
884 m->m_len = len;
885 *mp = m;
886 top->m_pkthdr.len += len;
887 if (error)
888 goto release;
889 mp = &m->m_next;
890 if (resid == 0) {
891 if (flags & MSG_EOR)
892 top->m_flags |= M_EOR;
893 break;
895 } while (space > 0 && atomic);
896 if (dontroute)
897 so->so_options |= SO_DONTROUTE;
898 if (flags & MSG_OOB) {
899 pru_flags = PRUS_OOB;
900 } else if ((flags & MSG_EOF) &&
901 (so->so_proto->pr_flags & PR_IMPLOPCL) &&
902 (resid == 0)) {
904 * If the user set MSG_EOF, the protocol
905 * understands this flag and nothing left to
906 * send then use PRU_SEND_EOF instead of PRU_SEND.
908 pru_flags = PRUS_EOF;
909 } else if (resid > 0 && space > 0) {
910 /* If there is more to send, set PRUS_MORETOCOME */
911 pru_flags = PRUS_MORETOCOME;
912 } else {
913 pru_flags = 0;
916 * XXX all the SS_CANTSENDMORE checks previously
917 * done could be out of date. We could have recieved
918 * a reset packet in an interrupt or maybe we slept
919 * while doing page faults in uiomove() etc. We could
920 * probably recheck again inside the splnet() protection
921 * here, but there are probably other places that this
922 * also happens. We must rethink this.
924 error = so_pru_send(so, pru_flags, top, addr, control, td);
925 if (dontroute)
926 so->so_options &= ~SO_DONTROUTE;
927 clen = 0;
928 control = NULL;
929 top = NULL;
930 mp = &top;
931 if (error)
932 goto release;
933 } while (resid && space > 0);
934 } while (resid);
936 release:
937 ssb_unlock(&so->so_snd);
938 out:
939 if (top)
940 m_freem(top);
941 if (control)
942 m_freem(control);
943 return (error);
946 #ifdef INET
948 * A specialization of sosend() for UDP based on protocol-specific knowledge:
949 * so->so_proto->pr_flags has the PR_ATOMIC field set. This means that
950 * sosendallatonce() returns true,
951 * the "atomic" variable is true,
952 * and sosendudp() blocks until space is available for the entire send.
953 * so->so_proto->pr_flags does not have the PR_CONNREQUIRED or
954 * PR_IMPLOPCL flags set.
955 * UDP has no out-of-band data.
956 * UDP has no control data.
957 * UDP does not support MSG_EOR.
960 sosendudp(struct socket *so, struct sockaddr *addr, struct uio *uio,
961 struct mbuf *top, struct mbuf *control, int flags, struct thread *td)
963 size_t resid;
964 int error, pru_flags = 0;
965 int space;
967 if (td->td_lwp != NULL)
968 td->td_lwp->lwp_ru.ru_msgsnd++;
969 if (control)
970 m_freem(control);
972 KASSERT((uio && !top) || (top && !uio), ("bad arguments to sosendudp"));
973 resid = uio ? uio->uio_resid : (size_t)top->m_pkthdr.len;
975 restart:
976 error = ssb_lock(&so->so_snd, SBLOCKWAIT(flags));
977 if (error)
978 goto out;
980 if (so->so_state & SS_CANTSENDMORE)
981 gotoerr(EPIPE);
982 if (so->so_error) {
983 error = so->so_error;
984 so->so_error = 0;
985 goto release;
987 if (!(so->so_state & SS_ISCONNECTED) && addr == NULL)
988 gotoerr(EDESTADDRREQ);
989 if (resid > so->so_snd.ssb_hiwat)
990 gotoerr(EMSGSIZE);
991 space = ssb_space(&so->so_snd);
992 if (uio && (space < 0 || (size_t)space < resid)) {
993 if (flags & (MSG_FNONBLOCKING|MSG_DONTWAIT))
994 gotoerr(EWOULDBLOCK);
995 ssb_unlock(&so->so_snd);
996 error = ssb_wait(&so->so_snd);
997 if (error)
998 goto out;
999 goto restart;
1002 if (uio) {
1003 int hdrlen = max_hdr;
1006 * We try to optimize out the additional mbuf
1007 * allocations in M_PREPEND() on output path, e.g.
1008 * - udp_output(), when it tries to prepend protocol
1009 * headers.
1010 * - Link layer output function, when it tries to
1011 * prepend link layer header.
1013 * This probably will not benefit any data that will
1014 * be fragmented, so this optimization is only performed
1015 * when the size of data and max size of protocol+link
1016 * headers fit into one mbuf cluster.
1018 if (uio->uio_resid > MCLBYTES - hdrlen ||
1019 !udp_sosend_prepend) {
1020 top = m_uiomove(uio);
1021 if (top == NULL)
1022 goto release;
1023 } else {
1024 int nsize;
1026 top = m_getl(uio->uio_resid + hdrlen, M_WAITOK,
1027 MT_DATA, M_PKTHDR, &nsize);
1028 KASSERT(nsize >= uio->uio_resid + hdrlen,
1029 ("sosendudp invalid nsize %d, "
1030 "resid %zu, hdrlen %d",
1031 nsize, uio->uio_resid, hdrlen));
1033 top->m_len = uio->uio_resid;
1034 top->m_pkthdr.len = uio->uio_resid;
1035 top->m_data += hdrlen;
1037 error = uiomove(mtod(top, caddr_t), top->m_len, uio);
1038 if (error)
1039 goto out;
1043 if (flags & MSG_DONTROUTE)
1044 pru_flags |= PRUS_DONTROUTE;
1046 if (udp_sosend_async && (flags & MSG_SYNC) == 0) {
1047 so_pru_send_async(so, pru_flags, top, addr, NULL, td);
1048 error = 0;
1049 } else {
1050 error = so_pru_send(so, pru_flags, top, addr, NULL, td);
1052 top = NULL; /* sent or freed in lower layer */
1054 release:
1055 ssb_unlock(&so->so_snd);
1056 out:
1057 if (top)
1058 m_freem(top);
1059 return (error);
1063 sosendtcp(struct socket *so, struct sockaddr *addr, struct uio *uio,
1064 struct mbuf *top, struct mbuf *control, int flags,
1065 struct thread *td)
1067 struct mbuf **mp;
1068 struct mbuf *m;
1069 size_t resid;
1070 int space, len;
1071 int error, mlen;
1072 int allatonce;
1073 int pru_flags;
1075 if (uio) {
1076 KKASSERT(top == NULL);
1077 allatonce = 0;
1078 resid = uio->uio_resid;
1079 } else {
1080 allatonce = 1;
1081 resid = (size_t)top->m_pkthdr.len;
1082 #ifdef INVARIANTS
1083 len = 0;
1084 for (m = top; m; m = m->m_next)
1085 len += m->m_len;
1086 KKASSERT(top->m_pkthdr.len == len);
1087 #endif
1091 * WARNING! resid is unsigned, space and len are signed. space
1092 * can wind up negative if the sockbuf is overcommitted.
1094 * Also check to make sure that MSG_EOR isn't used on TCP
1096 if (flags & MSG_EOR) {
1097 error = EINVAL;
1098 goto out;
1101 if (control) {
1102 /* TCP doesn't do control messages (rights, creds, etc) */
1103 if (control->m_len) {
1104 error = EINVAL;
1105 goto out;
1107 m_freem(control); /* empty control, just free it */
1108 control = NULL;
1111 if (td->td_lwp != NULL)
1112 td->td_lwp->lwp_ru.ru_msgsnd++;
1114 #define gotoerr(errcode) { error = errcode; goto release; }
1116 restart:
1117 error = ssb_lock(&so->so_snd, SBLOCKWAIT(flags));
1118 if (error)
1119 goto out;
1121 do {
1122 if (so->so_state & SS_CANTSENDMORE)
1123 gotoerr(EPIPE);
1124 if (so->so_error) {
1125 error = so->so_error;
1126 so->so_error = 0;
1127 goto release;
1129 if ((so->so_state & SS_ISCONNECTED) == 0 &&
1130 (so->so_state & SS_ISCONFIRMING) == 0)
1131 gotoerr(ENOTCONN);
1132 if (allatonce && resid > so->so_snd.ssb_hiwat)
1133 gotoerr(EMSGSIZE);
1135 space = ssb_space_prealloc(&so->so_snd);
1136 if (flags & MSG_OOB)
1137 space += 1024;
1138 if ((space < 0 || (size_t)space < resid) && !allatonce &&
1139 space < so->so_snd.ssb_lowat) {
1140 if (flags & (MSG_FNONBLOCKING|MSG_DONTWAIT))
1141 gotoerr(EWOULDBLOCK);
1142 ssb_unlock(&so->so_snd);
1143 error = ssb_wait(&so->so_snd);
1144 if (error)
1145 goto out;
1146 goto restart;
1148 mp = &top;
1149 do {
1150 int cnt = 0, async = 0;
1152 if (uio == NULL) {
1154 * Data is prepackaged in "top".
1156 resid = 0;
1157 } else do {
1158 if (resid > INT_MAX)
1159 resid = INT_MAX;
1160 if (tcp_sosend_jcluster) {
1161 m = m_getlj((int)resid, M_WAITOK, MT_DATA,
1162 top == NULL ? M_PKTHDR : 0, &mlen);
1163 } else {
1164 m = m_getl((int)resid, M_WAITOK, MT_DATA,
1165 top == NULL ? M_PKTHDR : 0, &mlen);
1167 if (top == NULL) {
1168 m->m_pkthdr.len = 0;
1169 m->m_pkthdr.rcvif = NULL;
1171 len = imin((int)szmin(mlen, resid), space);
1172 space -= len;
1173 error = uiomove(mtod(m, caddr_t), (size_t)len, uio);
1174 resid = uio->uio_resid;
1175 m->m_len = len;
1176 *mp = m;
1177 top->m_pkthdr.len += len;
1178 if (error)
1179 goto release;
1180 mp = &m->m_next;
1181 if (resid == 0)
1182 break;
1183 ++cnt;
1184 } while (space > 0 && cnt < tcp_sosend_agglim);
1186 if (tcp_sosend_async)
1187 async = 1;
1189 if (flags & MSG_OOB) {
1190 pru_flags = PRUS_OOB;
1191 async = 0;
1192 } else if ((flags & MSG_EOF) && resid == 0) {
1193 pru_flags = PRUS_EOF;
1194 } else if (resid > 0 && space > 0) {
1195 /* If there is more to send, set PRUS_MORETOCOME */
1196 pru_flags = PRUS_MORETOCOME;
1197 async = 1;
1198 } else {
1199 pru_flags = 0;
1202 if (flags & MSG_SYNC)
1203 async = 0;
1206 * XXX all the SS_CANTSENDMORE checks previously
1207 * done could be out of date. We could have recieved
1208 * a reset packet in an interrupt or maybe we slept
1209 * while doing page faults in uiomove() etc. We could
1210 * probably recheck again inside the splnet() protection
1211 * here, but there are probably other places that this
1212 * also happens. We must rethink this.
1214 for (m = top; m; m = m->m_next)
1215 ssb_preallocstream(&so->so_snd, m);
1216 if (!async) {
1217 error = so_pru_send(so, pru_flags, top,
1218 NULL, NULL, td);
1219 } else {
1220 so_pru_send_async(so, pru_flags, top,
1221 NULL, NULL, td);
1222 error = 0;
1225 top = NULL;
1226 mp = &top;
1227 if (error)
1228 goto release;
1229 } while (resid && space > 0);
1230 } while (resid);
1232 release:
1233 ssb_unlock(&so->so_snd);
1234 out:
1235 if (top)
1236 m_freem(top);
1237 if (control)
1238 m_freem(control);
1239 return (error);
1241 #endif
1244 * Implement receive operations on a socket.
1246 * We depend on the way that records are added to the signalsockbuf
1247 * by sbappend*. In particular, each record (mbufs linked through m_next)
1248 * must begin with an address if the protocol so specifies,
1249 * followed by an optional mbuf or mbufs containing ancillary data,
1250 * and then zero or more mbufs of data.
1252 * Although the signalsockbuf is locked, new data may still be appended.
1253 * A token inside the ssb_lock deals with MP issues and still allows
1254 * the network to access the socket if we block in a uio.
1256 * The caller may receive the data as a single mbuf chain by supplying
1257 * an mbuf **mp0 for use in returning the chain. The uio is then used
1258 * only for the count in uio_resid.
1261 soreceive(struct socket *so, struct sockaddr **psa, struct uio *uio,
1262 struct sockbuf *sio, struct mbuf **controlp, int *flagsp)
1264 struct mbuf *m, *n;
1265 struct mbuf *free_chain = NULL;
1266 int flags, len, error, offset;
1267 struct protosw *pr = so->so_proto;
1268 int moff, type = 0;
1269 size_t resid, orig_resid;
1270 boolean_t free_rights = FALSE;
1272 if (uio)
1273 resid = uio->uio_resid;
1274 else
1275 resid = (size_t)(sio->sb_climit - sio->sb_cc);
1276 orig_resid = resid;
1278 if (psa)
1279 *psa = NULL;
1280 if (controlp)
1281 *controlp = NULL;
1282 if (flagsp)
1283 flags = *flagsp &~ MSG_EOR;
1284 else
1285 flags = 0;
1286 if (flags & MSG_OOB) {
1287 m = m_get(M_WAITOK, MT_DATA);
1288 if (m == NULL)
1289 return (ENOBUFS);
1290 error = so_pru_rcvoob(so, m, flags & MSG_PEEK);
1291 if (error)
1292 goto bad;
1293 if (sio) {
1294 do {
1295 sbappend(sio, m);
1296 KKASSERT(resid >= (size_t)m->m_len);
1297 resid -= (size_t)m->m_len;
1298 } while (resid > 0 && m);
1299 } else {
1300 do {
1301 uio->uio_resid = resid;
1302 error = uiomove(mtod(m, caddr_t),
1303 (int)szmin(resid, m->m_len),
1304 uio);
1305 resid = uio->uio_resid;
1306 m = m_free(m);
1307 } while (uio->uio_resid && error == 0 && m);
1309 bad:
1310 if (m)
1311 m_freem(m);
1312 return (error);
1314 if ((so->so_state & SS_ISCONFIRMING) && resid)
1315 so_pru_rcvd(so, 0);
1318 * The token interlocks against the protocol thread while
1319 * ssb_lock is a blocking lock against other userland entities.
1321 lwkt_gettoken(&so->so_rcv.ssb_token);
1322 restart:
1323 error = ssb_lock(&so->so_rcv, SBLOCKWAIT(flags));
1324 if (error)
1325 goto done;
1327 m = so->so_rcv.ssb_mb;
1329 * If we have less data than requested, block awaiting more
1330 * (subject to any timeout) if:
1331 * 1. the current count is less than the low water mark, or
1332 * 2. MSG_WAITALL is set, and it is possible to do the entire
1333 * receive operation at once if we block (resid <= hiwat).
1334 * 3. MSG_DONTWAIT is not set
1335 * If MSG_WAITALL is set but resid is larger than the receive buffer,
1336 * we have to do the receive in sections, and thus risk returning
1337 * a short count if a timeout or signal occurs after we start.
1339 if (m == NULL || (((flags & MSG_DONTWAIT) == 0 &&
1340 (size_t)so->so_rcv.ssb_cc < resid) &&
1341 (so->so_rcv.ssb_cc < so->so_rcv.ssb_lowat ||
1342 ((flags & MSG_WAITALL) && resid <= (size_t)so->so_rcv.ssb_hiwat)) &&
1343 m->m_nextpkt == 0 && (pr->pr_flags & PR_ATOMIC) == 0)) {
1344 KASSERT(m != NULL || !so->so_rcv.ssb_cc, ("receive 1"));
1345 if (so->so_error || so->so_rerror) {
1346 if (m)
1347 goto dontblock;
1348 if (so->so_error)
1349 error = so->so_error;
1350 else
1351 error = so->so_rerror;
1352 if ((flags & MSG_PEEK) == 0) {
1353 if (so->so_error)
1354 so->so_error = 0;
1355 else
1356 so->so_rerror = 0;
1358 goto release;
1360 if (so->so_state & SS_CANTRCVMORE) {
1361 if (m)
1362 goto dontblock;
1363 else
1364 goto release;
1366 for (; m; m = m->m_next) {
1367 if (m->m_type == MT_OOBDATA || (m->m_flags & M_EOR)) {
1368 m = so->so_rcv.ssb_mb;
1369 goto dontblock;
1372 if ((so->so_state & (SS_ISCONNECTED|SS_ISCONNECTING)) == 0 &&
1373 (pr->pr_flags & PR_CONNREQUIRED)) {
1374 error = ENOTCONN;
1375 goto release;
1377 if (resid == 0)
1378 goto release;
1379 if (flags & (MSG_FNONBLOCKING|MSG_DONTWAIT)) {
1380 error = EWOULDBLOCK;
1381 goto release;
1383 ssb_unlock(&so->so_rcv);
1384 error = ssb_wait(&so->so_rcv);
1385 if (error)
1386 goto done;
1387 goto restart;
1389 dontblock:
1390 if (uio && uio->uio_td && uio->uio_td->td_proc)
1391 uio->uio_td->td_lwp->lwp_ru.ru_msgrcv++;
1394 * note: m should be == sb_mb here. Cache the next record while
1395 * cleaning up. Note that calling m_free*() will break out critical
1396 * section.
1398 KKASSERT(m == so->so_rcv.ssb_mb);
1401 * Skip any address mbufs prepending the record.
1403 if (pr->pr_flags & PR_ADDR) {
1404 KASSERT(m->m_type == MT_SONAME, ("receive 1a"));
1405 orig_resid = 0;
1406 if (psa)
1407 *psa = dup_sockaddr(mtod(m, struct sockaddr *));
1408 if (flags & MSG_PEEK)
1409 m = m->m_next;
1410 else
1411 m = sbunlinkmbuf(&so->so_rcv.sb, m, &free_chain);
1415 * Skip any control mbufs prepending the record.
1417 while (m && m->m_type == MT_CONTROL && error == 0) {
1418 if (flags & MSG_PEEK) {
1419 if (controlp)
1420 *controlp = m_copy(m, 0, m->m_len);
1421 m = m->m_next; /* XXX race */
1422 } else {
1423 const struct cmsghdr *cm = mtod(m, struct cmsghdr *);
1425 if (controlp) {
1426 n = sbunlinkmbuf(&so->so_rcv.sb, m, NULL);
1427 if (pr->pr_domain->dom_externalize &&
1428 cm->cmsg_level == SOL_SOCKET &&
1429 cm->cmsg_type == SCM_RIGHTS) {
1430 error = pr->pr_domain->dom_externalize
1431 (m, flags);
1433 *controlp = m;
1434 m = n;
1435 } else {
1436 if (cm->cmsg_level == SOL_SOCKET &&
1437 cm->cmsg_type == SCM_RIGHTS)
1438 free_rights = TRUE;
1439 m = sbunlinkmbuf(&so->so_rcv.sb, m, &free_chain);
1442 if (controlp && *controlp) {
1443 orig_resid = 0;
1444 controlp = &(*controlp)->m_next;
1449 * flag OOB data.
1451 if (m) {
1452 type = m->m_type;
1453 if (type == MT_OOBDATA)
1454 flags |= MSG_OOB;
1458 * Copy to the UIO or mbuf return chain (*mp).
1460 moff = 0;
1461 offset = 0;
1462 while (m && resid > 0 && error == 0) {
1463 if (m->m_type == MT_OOBDATA) {
1464 if (type != MT_OOBDATA)
1465 break;
1466 } else if (type == MT_OOBDATA)
1467 break;
1468 else
1469 KASSERT(m->m_type == MT_DATA || m->m_type == MT_HEADER,
1470 ("receive 3"));
1471 soclrstate(so, SS_RCVATMARK);
1472 len = (resid > INT_MAX) ? INT_MAX : resid;
1473 if (so->so_oobmark && len > so->so_oobmark - offset)
1474 len = so->so_oobmark - offset;
1475 if (len > m->m_len - moff)
1476 len = m->m_len - moff;
1479 * Copy out to the UIO or pass the mbufs back to the SIO.
1480 * The SIO is dealt with when we eat the mbuf, but deal
1481 * with the resid here either way.
1483 if (uio) {
1484 uio->uio_resid = resid;
1485 error = uiomove(mtod(m, caddr_t) + moff, len, uio);
1486 resid = uio->uio_resid;
1487 if (error)
1488 goto release;
1489 } else {
1490 resid -= (size_t)len;
1494 * Eat the entire mbuf or just a piece of it
1496 if (len == m->m_len - moff) {
1497 if (m->m_flags & M_EOR)
1498 flags |= MSG_EOR;
1499 if (flags & MSG_PEEK) {
1500 m = m->m_next;
1501 moff = 0;
1502 } else {
1503 if (sio) {
1504 n = sbunlinkmbuf(&so->so_rcv.sb, m, NULL);
1505 sbappend(sio, m);
1506 m = n;
1507 } else {
1508 m = sbunlinkmbuf(&so->so_rcv.sb, m, &free_chain);
1511 } else {
1512 if (flags & MSG_PEEK) {
1513 moff += len;
1514 } else {
1515 if (sio) {
1516 n = m_copym(m, 0, len, M_WAITOK);
1517 if (n)
1518 sbappend(sio, n);
1520 m->m_data += len;
1521 m->m_len -= len;
1522 so->so_rcv.ssb_cc -= len;
1525 if (so->so_oobmark) {
1526 if ((flags & MSG_PEEK) == 0) {
1527 so->so_oobmark -= len;
1528 if (so->so_oobmark == 0) {
1529 sosetstate(so, SS_RCVATMARK);
1530 break;
1532 } else {
1533 offset += len;
1534 if (offset == so->so_oobmark)
1535 break;
1538 if (flags & MSG_EOR)
1539 break;
1541 * If the MSG_WAITALL flag is set (for non-atomic socket),
1542 * we must not quit until resid == 0 or an error
1543 * termination. If a signal/timeout occurs, return
1544 * with a short count but without error.
1545 * Keep signalsockbuf locked against other readers.
1547 while ((flags & MSG_WAITALL) && m == NULL &&
1548 resid > 0 && !sosendallatonce(so) &&
1549 so->so_rcv.ssb_mb == NULL) {
1550 if (so->so_error || so->so_rerror ||
1551 so->so_state & SS_CANTRCVMORE)
1552 break;
1554 * The window might have closed to zero, make
1555 * sure we send an ack now that we've drained
1556 * the buffer or we might end up blocking until
1557 * the idle takes over (5 seconds).
1559 if (pr->pr_flags & PR_WANTRCVD && so->so_pcb)
1560 so_pru_rcvd(so, flags);
1561 error = ssb_wait(&so->so_rcv);
1562 if (error) {
1563 ssb_unlock(&so->so_rcv);
1564 error = 0;
1565 goto done;
1567 m = so->so_rcv.ssb_mb;
1572 * If an atomic read was requested but unread data still remains
1573 * in the record, set MSG_TRUNC.
1575 if (m && pr->pr_flags & PR_ATOMIC)
1576 flags |= MSG_TRUNC;
1579 * Cleanup. If an atomic read was requested drop any unread data.
1581 if ((flags & MSG_PEEK) == 0) {
1582 if (m && (pr->pr_flags & PR_ATOMIC))
1583 sbdroprecord(&so->so_rcv.sb);
1584 if ((pr->pr_flags & PR_WANTRCVD) && so->so_pcb)
1585 so_pru_rcvd(so, flags);
1588 if (orig_resid == resid && orig_resid &&
1589 (flags & MSG_EOR) == 0 && (so->so_state & SS_CANTRCVMORE) == 0) {
1590 ssb_unlock(&so->so_rcv);
1591 goto restart;
1594 if (flagsp)
1595 *flagsp |= flags;
1596 release:
1597 ssb_unlock(&so->so_rcv);
1598 done:
1599 lwkt_reltoken(&so->so_rcv.ssb_token);
1600 if (free_chain) {
1601 if (free_rights && (pr->pr_flags & PR_RIGHTS) &&
1602 pr->pr_domain->dom_dispose)
1603 pr->pr_domain->dom_dispose(free_chain);
1604 m_freem(free_chain);
1606 return (error);
1610 sorecvtcp(struct socket *so, struct sockaddr **psa, struct uio *uio,
1611 struct sockbuf *sio, struct mbuf **controlp, int *flagsp)
1613 struct mbuf *m, *n;
1614 struct mbuf *free_chain = NULL;
1615 int flags, len, error, offset;
1616 struct protosw *pr = so->so_proto;
1617 int moff;
1618 int didoob;
1619 size_t resid, orig_resid, restmp;
1621 if (uio)
1622 resid = uio->uio_resid;
1623 else
1624 resid = (size_t)(sio->sb_climit - sio->sb_cc);
1625 orig_resid = resid;
1627 if (psa)
1628 *psa = NULL;
1629 if (controlp)
1630 *controlp = NULL;
1631 if (flagsp)
1632 flags = *flagsp &~ MSG_EOR;
1633 else
1634 flags = 0;
1635 if (flags & MSG_OOB) {
1636 m = m_get(M_WAITOK, MT_DATA);
1637 if (m == NULL)
1638 return (ENOBUFS);
1639 error = so_pru_rcvoob(so, m, flags & MSG_PEEK);
1640 if (error)
1641 goto bad;
1642 if (sio) {
1643 do {
1644 sbappend(sio, m);
1645 KKASSERT(resid >= (size_t)m->m_len);
1646 resid -= (size_t)m->m_len;
1647 } while (resid > 0 && m);
1648 } else {
1649 do {
1650 uio->uio_resid = resid;
1651 error = uiomove(mtod(m, caddr_t),
1652 (int)szmin(resid, m->m_len),
1653 uio);
1654 resid = uio->uio_resid;
1655 m = m_free(m);
1656 } while (uio->uio_resid && error == 0 && m);
1658 bad:
1659 if (m)
1660 m_freem(m);
1661 return (error);
1665 * The token interlocks against the protocol thread while
1666 * ssb_lock is a blocking lock against other userland entities.
1668 * Lock a limited number of mbufs (not all, so sbcompress() still
1669 * works well). The token is used as an interlock for sbwait() so
1670 * release it afterwords.
1672 restart:
1673 error = ssb_lock(&so->so_rcv, SBLOCKWAIT(flags));
1674 if (error)
1675 goto done;
1677 lwkt_gettoken(&so->so_rcv.ssb_token);
1678 m = so->so_rcv.ssb_mb;
1681 * If we have less data than requested, block awaiting more
1682 * (subject to any timeout) if:
1683 * 1. the current count is less than the low water mark, or
1684 * 2. MSG_WAITALL is set, and it is possible to do the entire
1685 * receive operation at once if we block (resid <= hiwat).
1686 * 3. MSG_DONTWAIT is not set
1687 * If MSG_WAITALL is set but resid is larger than the receive buffer,
1688 * we have to do the receive in sections, and thus risk returning
1689 * a short count if a timeout or signal occurs after we start.
1691 if (m == NULL || (((flags & MSG_DONTWAIT) == 0 &&
1692 (size_t)so->so_rcv.ssb_cc < resid) &&
1693 (so->so_rcv.ssb_cc < so->so_rcv.ssb_lowat ||
1694 ((flags & MSG_WAITALL) && resid <= (size_t)so->so_rcv.ssb_hiwat)))) {
1695 KASSERT(m != NULL || !so->so_rcv.ssb_cc, ("receive 1"));
1696 if (so->so_error) {
1697 if (m)
1698 goto dontblock;
1699 lwkt_reltoken(&so->so_rcv.ssb_token);
1700 error = so->so_error;
1701 if ((flags & MSG_PEEK) == 0)
1702 so->so_error = 0;
1703 goto release;
1705 if (so->so_state & SS_CANTRCVMORE) {
1706 if (m)
1707 goto dontblock;
1708 lwkt_reltoken(&so->so_rcv.ssb_token);
1709 goto release;
1711 if ((so->so_state & (SS_ISCONNECTED|SS_ISCONNECTING)) == 0 &&
1712 (pr->pr_flags & PR_CONNREQUIRED)) {
1713 lwkt_reltoken(&so->so_rcv.ssb_token);
1714 error = ENOTCONN;
1715 goto release;
1717 if (resid == 0) {
1718 lwkt_reltoken(&so->so_rcv.ssb_token);
1719 goto release;
1721 if (flags & (MSG_FNONBLOCKING|MSG_DONTWAIT)) {
1722 lwkt_reltoken(&so->so_rcv.ssb_token);
1723 error = EWOULDBLOCK;
1724 goto release;
1726 ssb_unlock(&so->so_rcv);
1727 error = ssb_wait(&so->so_rcv);
1728 lwkt_reltoken(&so->so_rcv.ssb_token);
1729 if (error)
1730 goto done;
1731 goto restart;
1735 * Token still held
1737 dontblock:
1738 n = m;
1739 restmp = 0;
1740 while (n && restmp < resid) {
1741 n->m_flags |= M_SOLOCKED;
1742 restmp += n->m_len;
1743 if (n->m_next == NULL)
1744 n = n->m_nextpkt;
1745 else
1746 n = n->m_next;
1750 * Release token for loop
1752 lwkt_reltoken(&so->so_rcv.ssb_token);
1753 if (uio && uio->uio_td && uio->uio_td->td_proc)
1754 uio->uio_td->td_lwp->lwp_ru.ru_msgrcv++;
1757 * note: m should be == sb_mb here. Cache the next record while
1758 * cleaning up. Note that calling m_free*() will break out critical
1759 * section.
1761 KKASSERT(m == so->so_rcv.ssb_mb);
1764 * Copy to the UIO or mbuf return chain (*mp).
1766 * NOTE: Token is not held for loop
1768 moff = 0;
1769 offset = 0;
1770 didoob = 0;
1772 while (m && (m->m_flags & M_SOLOCKED) && resid > 0 && error == 0) {
1773 KASSERT(m->m_type == MT_DATA || m->m_type == MT_HEADER,
1774 ("receive 3"));
1776 soclrstate(so, SS_RCVATMARK);
1777 len = (resid > INT_MAX) ? INT_MAX : resid;
1778 if (so->so_oobmark && len > so->so_oobmark - offset)
1779 len = so->so_oobmark - offset;
1780 if (len > m->m_len - moff)
1781 len = m->m_len - moff;
1784 * Copy out to the UIO or pass the mbufs back to the SIO.
1785 * The SIO is dealt with when we eat the mbuf, but deal
1786 * with the resid here either way.
1788 if (uio) {
1789 uio->uio_resid = resid;
1790 error = uiomove(mtod(m, caddr_t) + moff, len, uio);
1791 resid = uio->uio_resid;
1792 if (error)
1793 goto release;
1794 } else {
1795 resid -= (size_t)len;
1799 * Eat the entire mbuf or just a piece of it
1801 offset += len;
1802 if (len == m->m_len - moff) {
1803 m = m->m_next;
1804 moff = 0;
1805 } else {
1806 moff += len;
1810 * Check oobmark
1812 if (so->so_oobmark && offset == so->so_oobmark) {
1813 didoob = 1;
1814 break;
1819 * Synchronize sockbuf with data we read.
1821 * NOTE: (m) is junk on entry (it could be left over from the
1822 * previous loop).
1824 if ((flags & MSG_PEEK) == 0) {
1825 lwkt_gettoken(&so->so_rcv.ssb_token);
1826 m = so->so_rcv.ssb_mb;
1827 while (m && offset >= m->m_len) {
1828 if (so->so_oobmark) {
1829 so->so_oobmark -= m->m_len;
1830 if (so->so_oobmark == 0) {
1831 sosetstate(so, SS_RCVATMARK);
1832 didoob = 1;
1835 offset -= m->m_len;
1836 if (sio) {
1837 n = sbunlinkmbuf(&so->so_rcv.sb, m, NULL);
1838 sbappend(sio, m);
1839 m = n;
1840 } else {
1841 m = sbunlinkmbuf(&so->so_rcv.sb,
1842 m, &free_chain);
1845 if (offset) {
1846 KKASSERT(m);
1847 if (sio) {
1848 n = m_copym(m, 0, offset, M_WAITOK);
1849 if (n)
1850 sbappend(sio, n);
1852 m->m_data += offset;
1853 m->m_len -= offset;
1854 so->so_rcv.ssb_cc -= offset;
1855 if (so->so_oobmark) {
1856 so->so_oobmark -= offset;
1857 if (so->so_oobmark == 0) {
1858 sosetstate(so, SS_RCVATMARK);
1859 didoob = 1;
1862 offset = 0;
1864 lwkt_reltoken(&so->so_rcv.ssb_token);
1868 * If the MSG_WAITALL flag is set (for non-atomic socket),
1869 * we must not quit until resid == 0 or an error termination.
1871 * If a signal/timeout occurs, return with a short count but without
1872 * error.
1874 * Keep signalsockbuf locked against other readers.
1876 * XXX if MSG_PEEK we currently do quit.
1878 if ((flags & MSG_WAITALL) && !(flags & MSG_PEEK) &&
1879 didoob == 0 && resid > 0 &&
1880 !sosendallatonce(so)) {
1881 lwkt_gettoken(&so->so_rcv.ssb_token);
1882 error = 0;
1883 while ((m = so->so_rcv.ssb_mb) == NULL) {
1884 if (so->so_error || (so->so_state & SS_CANTRCVMORE)) {
1885 error = so->so_error;
1886 break;
1889 * The window might have closed to zero, make
1890 * sure we send an ack now that we've drained
1891 * the buffer or we might end up blocking until
1892 * the idle takes over (5 seconds).
1894 if (so->so_pcb)
1895 so_pru_rcvd_async(so);
1896 if (so->so_rcv.ssb_mb == NULL)
1897 error = ssb_wait(&so->so_rcv);
1898 if (error) {
1899 lwkt_reltoken(&so->so_rcv.ssb_token);
1900 ssb_unlock(&so->so_rcv);
1901 error = 0;
1902 goto done;
1905 if (m && error == 0)
1906 goto dontblock;
1907 lwkt_reltoken(&so->so_rcv.ssb_token);
1911 * Token not held here.
1913 * Cleanup. If an atomic read was requested drop any unread data XXX
1915 if ((flags & MSG_PEEK) == 0) {
1916 if (so->so_pcb)
1917 so_pru_rcvd_async(so);
1920 if (orig_resid == resid && orig_resid &&
1921 (so->so_state & SS_CANTRCVMORE) == 0) {
1922 ssb_unlock(&so->so_rcv);
1923 goto restart;
1926 if (flagsp)
1927 *flagsp |= flags;
1928 release:
1929 ssb_unlock(&so->so_rcv);
1930 done:
1931 if (free_chain)
1932 m_freem(free_chain);
1933 return (error);
1937 * Shut a socket down. Note that we do not get a frontend lock as we
1938 * want to be able to shut the socket down even if another thread is
1939 * blocked in a read(), thus waking it up.
1942 soshutdown(struct socket *so, int how)
1944 if (!(how == SHUT_RD || how == SHUT_WR || how == SHUT_RDWR))
1945 return (EINVAL);
1947 if (how != SHUT_WR) {
1948 /*ssb_lock(&so->so_rcv, M_WAITOK);*/
1949 sorflush(so);
1950 /*ssb_unlock(&so->so_rcv);*/
1952 if (how != SHUT_RD)
1953 return (so_pru_shutdown(so));
1954 return (0);
1957 void
1958 sorflush(struct socket *so)
1960 struct signalsockbuf *ssb = &so->so_rcv;
1961 struct protosw *pr = so->so_proto;
1962 struct signalsockbuf asb;
1964 atomic_set_int(&ssb->ssb_flags, SSB_NOINTR);
1966 lwkt_gettoken(&ssb->ssb_token);
1967 socantrcvmore(so);
1968 asb = *ssb;
1971 * Can't just blow up the ssb structure here
1973 bzero(&ssb->sb, sizeof(ssb->sb));
1974 ssb->ssb_timeo = 0;
1975 ssb->ssb_lowat = 0;
1976 ssb->ssb_hiwat = 0;
1977 ssb->ssb_mbmax = 0;
1978 atomic_clear_int(&ssb->ssb_flags, SSB_CLEAR_MASK);
1980 if ((pr->pr_flags & PR_RIGHTS) && pr->pr_domain->dom_dispose)
1981 (*pr->pr_domain->dom_dispose)(asb.ssb_mb);
1982 ssb_release(&asb, so);
1984 lwkt_reltoken(&ssb->ssb_token);
1987 #ifdef INET
1988 static int
1989 do_setopt_accept_filter(struct socket *so, struct sockopt *sopt)
1991 struct accept_filter_arg *afap = NULL;
1992 struct accept_filter *afp;
1993 struct so_accf *af = so->so_accf;
1994 int error = 0;
1996 /* do not set/remove accept filters on non listen sockets */
1997 if ((so->so_options & SO_ACCEPTCONN) == 0) {
1998 error = EINVAL;
1999 goto out;
2002 /* removing the filter */
2003 if (sopt == NULL) {
2004 if (af != NULL) {
2005 if (af->so_accept_filter != NULL &&
2006 af->so_accept_filter->accf_destroy != NULL) {
2007 af->so_accept_filter->accf_destroy(so);
2009 if (af->so_accept_filter_str != NULL) {
2010 kfree(af->so_accept_filter_str, M_ACCF);
2012 kfree(af, M_ACCF);
2013 so->so_accf = NULL;
2015 so->so_options &= ~SO_ACCEPTFILTER;
2016 return (0);
2018 /* adding a filter */
2019 /* must remove previous filter first */
2020 if (af != NULL) {
2021 error = EINVAL;
2022 goto out;
2024 /* don't put large objects on the kernel stack */
2025 afap = kmalloc(sizeof(*afap), M_TEMP, M_WAITOK);
2026 error = sooptcopyin(sopt, afap, sizeof *afap, sizeof *afap);
2027 afap->af_name[sizeof(afap->af_name)-1] = '\0';
2028 afap->af_arg[sizeof(afap->af_arg)-1] = '\0';
2029 if (error)
2030 goto out;
2031 afp = accept_filt_get(afap->af_name);
2032 if (afp == NULL) {
2033 error = ENOENT;
2034 goto out;
2036 af = kmalloc(sizeof(*af), M_ACCF, M_WAITOK | M_ZERO);
2037 if (afp->accf_create != NULL) {
2038 if (afap->af_name[0] != '\0') {
2039 int len = strlen(afap->af_name) + 1;
2041 af->so_accept_filter_str = kmalloc(len, M_ACCF,
2042 M_WAITOK);
2043 strcpy(af->so_accept_filter_str, afap->af_name);
2045 af->so_accept_filter_arg = afp->accf_create(so, afap->af_arg);
2046 if (af->so_accept_filter_arg == NULL) {
2047 kfree(af->so_accept_filter_str, M_ACCF);
2048 kfree(af, M_ACCF);
2049 so->so_accf = NULL;
2050 error = EINVAL;
2051 goto out;
2054 af->so_accept_filter = afp;
2055 so->so_accf = af;
2056 so->so_options |= SO_ACCEPTFILTER;
2057 out:
2058 if (afap != NULL)
2059 kfree(afap, M_TEMP);
2060 return (error);
2062 #endif /* INET */
2065 * Perhaps this routine, and sooptcopyout(), below, ought to come in
2066 * an additional variant to handle the case where the option value needs
2067 * to be some kind of integer, but not a specific size.
2068 * In addition to their use here, these functions are also called by the
2069 * protocol-level pr_ctloutput() routines.
2072 sooptcopyin(struct sockopt *sopt, void *buf, size_t len, size_t minlen)
2074 return soopt_to_kbuf(sopt, buf, len, minlen);
2078 soopt_to_kbuf(struct sockopt *sopt, void *buf, size_t len, size_t minlen)
2080 size_t valsize;
2082 KKASSERT(!sopt->sopt_val || kva_p(sopt->sopt_val));
2083 KKASSERT(kva_p(buf));
2086 * If the user gives us more than we wanted, we ignore it,
2087 * but if we don't get the minimum length the caller
2088 * wants, we return EINVAL. On success, sopt->sopt_valsize
2089 * is set to however much we actually retrieved.
2091 if ((valsize = sopt->sopt_valsize) < minlen)
2092 return EINVAL;
2093 if (valsize > len)
2094 sopt->sopt_valsize = valsize = len;
2096 bcopy(sopt->sopt_val, buf, valsize);
2097 return 0;
2102 sosetopt(struct socket *so, struct sockopt *sopt)
2104 int error, optval;
2105 struct linger l;
2106 struct timeval tv;
2107 u_long val;
2108 struct signalsockbuf *sotmp;
2110 error = 0;
2111 sopt->sopt_dir = SOPT_SET;
2112 if (sopt->sopt_level != SOL_SOCKET) {
2113 if (so->so_proto && so->so_proto->pr_ctloutput) {
2114 return (so_pr_ctloutput(so, sopt));
2116 error = ENOPROTOOPT;
2117 } else {
2118 switch (sopt->sopt_name) {
2119 #ifdef INET
2120 case SO_ACCEPTFILTER:
2121 error = do_setopt_accept_filter(so, sopt);
2122 if (error)
2123 goto bad;
2124 break;
2125 #endif /* INET */
2126 case SO_LINGER:
2127 error = sooptcopyin(sopt, &l, sizeof l, sizeof l);
2128 if (error)
2129 goto bad;
2131 so->so_linger = l.l_linger;
2132 if (l.l_onoff)
2133 so->so_options |= SO_LINGER;
2134 else
2135 so->so_options &= ~SO_LINGER;
2136 break;
2138 case SO_DEBUG:
2139 case SO_KEEPALIVE:
2140 case SO_DONTROUTE:
2141 case SO_USELOOPBACK:
2142 case SO_BROADCAST:
2143 case SO_REUSEADDR:
2144 case SO_REUSEPORT:
2145 case SO_OOBINLINE:
2146 case SO_TIMESTAMP:
2147 case SO_NOSIGPIPE:
2148 case SO_RERROR:
2149 error = sooptcopyin(sopt, &optval, sizeof optval,
2150 sizeof optval);
2151 if (error)
2152 goto bad;
2153 if (optval)
2154 so->so_options |= sopt->sopt_name;
2155 else
2156 so->so_options &= ~sopt->sopt_name;
2157 break;
2159 case SO_SNDBUF:
2160 case SO_RCVBUF:
2161 case SO_SNDLOWAT:
2162 case SO_RCVLOWAT:
2163 error = sooptcopyin(sopt, &optval, sizeof optval,
2164 sizeof optval);
2165 if (error)
2166 goto bad;
2169 * Values < 1 make no sense for any of these
2170 * options, so disallow them.
2172 if (optval < 1) {
2173 error = EINVAL;
2174 goto bad;
2177 switch (sopt->sopt_name) {
2178 case SO_SNDBUF:
2179 case SO_RCVBUF:
2180 if (ssb_reserve(sopt->sopt_name == SO_SNDBUF ?
2181 &so->so_snd : &so->so_rcv, (u_long)optval,
2183 &curproc->p_rlimit[RLIMIT_SBSIZE]) == 0) {
2184 error = ENOBUFS;
2185 goto bad;
2187 sotmp = (sopt->sopt_name == SO_SNDBUF) ?
2188 &so->so_snd : &so->so_rcv;
2189 atomic_clear_int(&sotmp->ssb_flags,
2190 SSB_AUTOSIZE);
2191 break;
2194 * Make sure the low-water is never greater than
2195 * the high-water.
2197 case SO_SNDLOWAT:
2198 so->so_snd.ssb_lowat =
2199 (optval > so->so_snd.ssb_hiwat) ?
2200 so->so_snd.ssb_hiwat : optval;
2201 atomic_clear_int(&so->so_snd.ssb_flags,
2202 SSB_AUTOLOWAT);
2203 break;
2204 case SO_RCVLOWAT:
2205 so->so_rcv.ssb_lowat =
2206 (optval > so->so_rcv.ssb_hiwat) ?
2207 so->so_rcv.ssb_hiwat : optval;
2208 atomic_clear_int(&so->so_rcv.ssb_flags,
2209 SSB_AUTOLOWAT);
2210 break;
2212 break;
2214 case SO_SNDTIMEO:
2215 case SO_RCVTIMEO:
2216 error = sooptcopyin(sopt, &tv, sizeof tv,
2217 sizeof tv);
2218 if (error)
2219 goto bad;
2221 /* assert(hz > 0); */
2222 if (tv.tv_sec < 0 || tv.tv_sec > INT_MAX / hz ||
2223 tv.tv_usec < 0 || tv.tv_usec >= 1000000) {
2224 error = EDOM;
2225 goto bad;
2227 /* assert(tick > 0); */
2228 /* assert(ULONG_MAX - INT_MAX >= 1000000); */
2229 val = (u_long)(tv.tv_sec * hz) + tv.tv_usec / ustick;
2230 if (val > INT_MAX) {
2231 error = EDOM;
2232 goto bad;
2234 if (val == 0 && tv.tv_usec != 0)
2235 val = 1;
2237 switch (sopt->sopt_name) {
2238 case SO_SNDTIMEO:
2239 so->so_snd.ssb_timeo = val;
2240 break;
2241 case SO_RCVTIMEO:
2242 so->so_rcv.ssb_timeo = val;
2243 break;
2245 break;
2246 default:
2247 error = ENOPROTOOPT;
2248 break;
2250 if (error == 0 && so->so_proto && so->so_proto->pr_ctloutput) {
2251 (void) so_pr_ctloutput(so, sopt);
2254 bad:
2255 return (error);
2258 /* Helper routine for getsockopt */
2260 sooptcopyout(struct sockopt *sopt, const void *buf, size_t len)
2262 soopt_from_kbuf(sopt, buf, len);
2263 return 0;
2266 void
2267 soopt_from_kbuf(struct sockopt *sopt, const void *buf, size_t len)
2269 size_t valsize;
2271 if (len == 0) {
2272 sopt->sopt_valsize = 0;
2273 return;
2276 KKASSERT(!sopt->sopt_val || kva_p(sopt->sopt_val));
2277 KKASSERT(kva_p(buf));
2280 * Documented get behavior is that we always return a value,
2281 * possibly truncated to fit in the user's buffer.
2282 * Traditional behavior is that we always tell the user
2283 * precisely how much we copied, rather than something useful
2284 * like the total amount we had available for her.
2285 * Note that this interface is not idempotent; the entire answer must
2286 * generated ahead of time.
2288 valsize = szmin(len, sopt->sopt_valsize);
2289 sopt->sopt_valsize = valsize;
2290 if (sopt->sopt_val != 0) {
2291 bcopy(buf, sopt->sopt_val, valsize);
2296 sogetopt(struct socket *so, struct sockopt *sopt)
2298 int error, optval;
2299 long optval_l;
2300 struct linger l;
2301 struct timeval tv;
2302 #ifdef INET
2303 struct accept_filter_arg *afap;
2304 #endif
2306 error = 0;
2307 sopt->sopt_dir = SOPT_GET;
2308 if (sopt->sopt_level != SOL_SOCKET) {
2309 if (so->so_proto && so->so_proto->pr_ctloutput) {
2310 return (so_pr_ctloutput(so, sopt));
2311 } else
2312 return (ENOPROTOOPT);
2313 } else {
2314 switch (sopt->sopt_name) {
2315 #ifdef INET
2316 case SO_ACCEPTFILTER:
2317 if ((so->so_options & SO_ACCEPTCONN) == 0)
2318 return (EINVAL);
2319 afap = kmalloc(sizeof(*afap), M_TEMP,
2320 M_WAITOK | M_ZERO);
2321 if ((so->so_options & SO_ACCEPTFILTER) != 0) {
2322 strcpy(afap->af_name, so->so_accf->so_accept_filter->accf_name);
2323 if (so->so_accf->so_accept_filter_str != NULL)
2324 strcpy(afap->af_arg, so->so_accf->so_accept_filter_str);
2326 error = sooptcopyout(sopt, afap, sizeof(*afap));
2327 kfree(afap, M_TEMP);
2328 break;
2329 #endif /* INET */
2331 case SO_LINGER:
2332 l.l_onoff = so->so_options & SO_LINGER;
2333 l.l_linger = so->so_linger;
2334 error = sooptcopyout(sopt, &l, sizeof l);
2335 break;
2337 case SO_USELOOPBACK:
2338 case SO_DONTROUTE:
2339 case SO_DEBUG:
2340 case SO_KEEPALIVE:
2341 case SO_REUSEADDR:
2342 case SO_REUSEPORT:
2343 case SO_BROADCAST:
2344 case SO_OOBINLINE:
2345 case SO_TIMESTAMP:
2346 case SO_NOSIGPIPE:
2347 case SO_RERROR:
2348 optval = so->so_options & sopt->sopt_name;
2349 integer:
2350 error = sooptcopyout(sopt, &optval, sizeof optval);
2351 break;
2353 case SO_TYPE:
2354 optval = so->so_type;
2355 goto integer;
2357 case SO_ERROR:
2358 if (so->so_error) {
2359 optval = so->so_error;
2360 so->so_error = 0;
2361 } else {
2362 optval = so->so_rerror;
2363 so->so_rerror = 0;
2365 goto integer;
2367 case SO_SNDBUF:
2368 optval = so->so_snd.ssb_hiwat;
2369 goto integer;
2371 case SO_RCVBUF:
2372 optval = so->so_rcv.ssb_hiwat;
2373 goto integer;
2375 case SO_SNDLOWAT:
2376 optval = so->so_snd.ssb_lowat;
2377 goto integer;
2379 case SO_RCVLOWAT:
2380 optval = so->so_rcv.ssb_lowat;
2381 goto integer;
2383 case SO_SNDTIMEO:
2384 case SO_RCVTIMEO:
2385 optval = (sopt->sopt_name == SO_SNDTIMEO ?
2386 so->so_snd.ssb_timeo : so->so_rcv.ssb_timeo);
2388 tv.tv_sec = optval / hz;
2389 tv.tv_usec = (optval % hz) * ustick;
2390 error = sooptcopyout(sopt, &tv, sizeof tv);
2391 break;
2393 case SO_SNDSPACE:
2394 optval_l = ssb_space(&so->so_snd);
2395 error = sooptcopyout(sopt, &optval_l, sizeof(optval_l));
2396 break;
2398 case SO_CPUHINT:
2399 optval = -1; /* no hint */
2400 goto integer;
2402 default:
2403 error = ENOPROTOOPT;
2404 break;
2406 if (error == 0 && so->so_proto && so->so_proto->pr_ctloutput)
2407 so_pr_ctloutput(so, sopt);
2408 return (error);
2412 /* XXX; prepare mbuf for (__FreeBSD__ < 3) routines. */
2414 soopt_getm(struct sockopt *sopt, struct mbuf **mp)
2416 struct mbuf *m, *m_prev;
2417 int sopt_size = sopt->sopt_valsize, msize;
2419 m = m_getl(sopt_size, sopt->sopt_td ? M_WAITOK : M_NOWAIT, MT_DATA,
2420 0, &msize);
2421 if (m == NULL)
2422 return (ENOBUFS);
2423 m->m_len = min(msize, sopt_size);
2424 sopt_size -= m->m_len;
2425 *mp = m;
2426 m_prev = m;
2428 while (sopt_size > 0) {
2429 m = m_getl(sopt_size, sopt->sopt_td ? M_WAITOK : M_NOWAIT,
2430 MT_DATA, 0, &msize);
2431 if (m == NULL) {
2432 m_freem(*mp);
2433 return (ENOBUFS);
2435 m->m_len = min(msize, sopt_size);
2436 sopt_size -= m->m_len;
2437 m_prev->m_next = m;
2438 m_prev = m;
2440 return (0);
2443 /* XXX; copyin sopt data into mbuf chain for (__FreeBSD__ < 3) routines. */
2445 soopt_mcopyin(struct sockopt *sopt, struct mbuf *m)
2447 soopt_to_mbuf(sopt, m);
2448 return 0;
2451 void
2452 soopt_to_mbuf(struct sockopt *sopt, struct mbuf *m)
2454 size_t valsize;
2455 void *val;
2457 KKASSERT(!sopt->sopt_val || kva_p(sopt->sopt_val));
2458 KKASSERT(kva_p(m));
2459 if (sopt->sopt_val == NULL)
2460 return;
2461 val = sopt->sopt_val;
2462 valsize = sopt->sopt_valsize;
2463 while (m != NULL && valsize >= m->m_len) {
2464 bcopy(val, mtod(m, char *), m->m_len);
2465 valsize -= m->m_len;
2466 val = (caddr_t)val + m->m_len;
2467 m = m->m_next;
2469 if (m != NULL) /* should be allocated enoughly at ip6_sooptmcopyin() */
2470 panic("ip6_sooptmcopyin");
2473 /* XXX; copyout mbuf chain data into soopt for (__FreeBSD__ < 3) routines. */
2475 soopt_mcopyout(struct sockopt *sopt, struct mbuf *m)
2477 return soopt_from_mbuf(sopt, m);
2481 soopt_from_mbuf(struct sockopt *sopt, struct mbuf *m)
2483 struct mbuf *m0 = m;
2484 size_t valsize = 0;
2485 size_t maxsize;
2486 void *val;
2488 KKASSERT(!sopt->sopt_val || kva_p(sopt->sopt_val));
2489 KKASSERT(kva_p(m));
2490 if (sopt->sopt_val == NULL)
2491 return 0;
2492 val = sopt->sopt_val;
2493 maxsize = sopt->sopt_valsize;
2494 while (m != NULL && maxsize >= m->m_len) {
2495 bcopy(mtod(m, char *), val, m->m_len);
2496 maxsize -= m->m_len;
2497 val = (caddr_t)val + m->m_len;
2498 valsize += m->m_len;
2499 m = m->m_next;
2501 if (m != NULL) {
2502 /* enough soopt buffer should be given from user-land */
2503 m_freem(m0);
2504 return (EINVAL);
2506 sopt->sopt_valsize = valsize;
2507 return 0;
2510 void
2511 sohasoutofband(struct socket *so)
2513 if (so->so_sigio != NULL)
2514 pgsigio(so->so_sigio, SIGURG, 0);
2516 * NOTE:
2517 * There is no need to use NOTE_OOB as KNOTE hint here:
2518 * soread filter depends on so_oobmark and SS_RCVATMARK
2519 * so_state. NOTE_OOB would cause unnecessary penalty
2520 * in KNOTE, if there was knote processing contention.
2522 KNOTE(&so->so_rcv.ssb_kq.ki_note, 0);
2526 sokqfilter(struct file *fp, struct knote *kn)
2528 struct socket *so = (struct socket *)kn->kn_fp->f_data;
2529 struct signalsockbuf *ssb;
2531 switch (kn->kn_filter) {
2532 case EVFILT_READ:
2533 if (so->so_options & SO_ACCEPTCONN)
2534 kn->kn_fop = &solisten_filtops;
2535 else
2536 kn->kn_fop = &soread_filtops;
2537 ssb = &so->so_rcv;
2538 break;
2539 case EVFILT_WRITE:
2540 kn->kn_fop = &sowrite_filtops;
2541 ssb = &so->so_snd;
2542 break;
2543 case EVFILT_EXCEPT:
2544 kn->kn_fop = &soexcept_filtops;
2545 ssb = &so->so_rcv;
2546 break;
2547 default:
2548 return (EOPNOTSUPP);
2551 knote_insert(&ssb->ssb_kq.ki_note, kn);
2552 atomic_set_int(&ssb->ssb_flags, SSB_KNOTE);
2553 return (0);
2556 static void
2557 filt_sordetach(struct knote *kn)
2559 struct socket *so = (struct socket *)kn->kn_fp->f_data;
2561 knote_remove(&so->so_rcv.ssb_kq.ki_note, kn);
2562 if (SLIST_EMPTY(&so->so_rcv.ssb_kq.ki_note))
2563 atomic_clear_int(&so->so_rcv.ssb_flags, SSB_KNOTE);
2566 /*ARGSUSED*/
2567 static int
2568 filt_soread(struct knote *kn, long hint __unused)
2570 struct socket *so = (struct socket *)kn->kn_fp->f_data;
2572 if (kn->kn_sfflags & NOTE_OOB) {
2573 if ((so->so_oobmark || (so->so_state & SS_RCVATMARK))) {
2574 kn->kn_fflags |= NOTE_OOB;
2575 return (1);
2577 return (0);
2579 kn->kn_data = so->so_rcv.ssb_cc;
2581 if (so->so_state & SS_CANTRCVMORE) {
2583 * Only set NODATA if all data has been exhausted.
2585 if (kn->kn_data == 0)
2586 kn->kn_flags |= EV_NODATA;
2587 kn->kn_flags |= EV_EOF;
2588 if (so->so_state & SS_CANTSENDMORE)
2589 kn->kn_flags |= EV_HUP;
2590 kn->kn_fflags = so->so_error;
2591 return (1);
2593 if (so->so_error || so->so_rerror)
2594 return (1);
2595 if (kn->kn_sfflags & NOTE_LOWAT)
2596 return (kn->kn_data >= kn->kn_sdata);
2597 return ((kn->kn_data >= so->so_rcv.ssb_lowat) ||
2598 !TAILQ_EMPTY(&so->so_comp));
2601 static void
2602 filt_sowdetach(struct knote *kn)
2604 struct socket *so = (struct socket *)kn->kn_fp->f_data;
2606 knote_remove(&so->so_snd.ssb_kq.ki_note, kn);
2607 if (SLIST_EMPTY(&so->so_snd.ssb_kq.ki_note))
2608 atomic_clear_int(&so->so_snd.ssb_flags, SSB_KNOTE);
2611 /*ARGSUSED*/
2612 static int
2613 filt_sowrite(struct knote *kn, long hint __unused)
2615 struct socket *so = (struct socket *)kn->kn_fp->f_data;
2617 if (so->so_snd.ssb_flags & SSB_PREALLOC)
2618 kn->kn_data = ssb_space_prealloc(&so->so_snd);
2619 else
2620 kn->kn_data = ssb_space(&so->so_snd);
2622 if (so->so_state & SS_CANTSENDMORE) {
2623 kn->kn_flags |= (EV_EOF | EV_NODATA);
2624 if (so->so_state & SS_CANTRCVMORE)
2625 kn->kn_flags |= EV_HUP;
2626 kn->kn_fflags = so->so_error;
2627 return (1);
2629 if (so->so_error) /* temporary udp error */
2630 return (1);
2631 if (((so->so_state & SS_ISCONNECTED) == 0) &&
2632 (so->so_proto->pr_flags & PR_CONNREQUIRED))
2633 return (0);
2634 if (kn->kn_sfflags & NOTE_LOWAT)
2635 return (kn->kn_data >= kn->kn_sdata);
2636 return (kn->kn_data >= so->so_snd.ssb_lowat);
2639 /*ARGSUSED*/
2640 static int
2641 filt_solisten(struct knote *kn, long hint __unused)
2643 struct socket *so = (struct socket *)kn->kn_fp->f_data;
2644 int qlen = so->so_qlen;
2646 if (soavailconn > 0 && qlen > soavailconn)
2647 qlen = soavailconn;
2648 kn->kn_data = qlen;
2650 return (!TAILQ_EMPTY(&so->so_comp));