kernel/vm: Rename *_putpages()'s 'sync' argument to 'flags'.
[dragonfly.git] / sys / kern / kern_synch.c
blob68020219d56b88863bbc2050d0d8c0ec99a37b8c
1 /*-
2 * Copyright (c) 1982, 1986, 1990, 1991, 1993
3 * The Regents of the University of California. All rights reserved.
4 * (c) UNIX System Laboratories, Inc.
5 * All or some portions of this file are derived from material licensed
6 * to the University of California by American Telephone and Telegraph
7 * Co. or Unix System Laboratories, Inc. and are reproduced herein with
8 * the permission of UNIX System Laboratories, Inc.
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 * notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in the
17 * documentation and/or other materials provided with the distribution.
18 * 3. Neither the name of the University nor the names of its contributors
19 * may be used to endorse or promote products derived from this software
20 * without specific prior written permission.
22 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
23 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
24 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
25 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
26 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
27 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
28 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
29 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
30 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
31 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
32 * SUCH DAMAGE.
34 * @(#)kern_synch.c 8.9 (Berkeley) 5/19/95
35 * $FreeBSD: src/sys/kern/kern_synch.c,v 1.87.2.6 2002/10/13 07:29:53 kbyanc Exp $
38 #include "opt_ktrace.h"
40 #include <sys/param.h>
41 #include <sys/systm.h>
42 #include <sys/proc.h>
43 #include <sys/kernel.h>
44 #include <sys/signalvar.h>
45 #include <sys/resourcevar.h>
46 #include <sys/vmmeter.h>
47 #include <sys/sysctl.h>
48 #include <sys/lock.h>
49 #include <sys/priv.h>
50 #include <sys/kcollect.h>
51 #include <sys/malloc.h>
52 #ifdef KTRACE
53 #include <sys/ktrace.h>
54 #endif
55 #include <sys/ktr.h>
56 #include <sys/serialize.h>
58 #include <sys/signal2.h>
59 #include <sys/thread2.h>
60 #include <sys/spinlock2.h>
61 #include <sys/mutex2.h>
63 #include <machine/cpu.h>
64 #include <machine/smp.h>
66 #include <vm/vm_extern.h>
68 struct tslpque {
69 TAILQ_HEAD(, thread) queue;
70 const volatile void *ident0;
71 const volatile void *ident1;
72 const volatile void *ident2;
73 const volatile void *ident3;
76 static void sched_setup (void *dummy);
77 SYSINIT(sched_setup, SI_SUB_KICK_SCHEDULER, SI_ORDER_FIRST, sched_setup, NULL);
78 static void sched_dyninit (void *dummy);
79 SYSINIT(sched_dyninit, SI_BOOT1_DYNALLOC, SI_ORDER_FIRST, sched_dyninit, NULL);
81 int lbolt;
82 void *lbolt_syncer;
83 __read_mostly int tsleep_crypto_dump = 0;
84 __read_mostly int ncpus;
85 __read_mostly int ncpus_fit, ncpus_fit_mask; /* note: mask not cpumask_t */
86 __read_mostly int safepri;
87 __read_mostly int tsleep_now_works;
89 MALLOC_DEFINE(M_TSLEEP, "tslpque", "tsleep queues");
91 #define __DEALL(ident) __DEQUALIFY(void *, ident)
93 #if !defined(KTR_TSLEEP)
94 #define KTR_TSLEEP KTR_ALL
95 #endif
96 KTR_INFO_MASTER(tsleep);
97 KTR_INFO(KTR_TSLEEP, tsleep, tsleep_beg, 0, "tsleep enter %p", const volatile void *ident);
98 KTR_INFO(KTR_TSLEEP, tsleep, tsleep_end, 1, "tsleep exit");
99 KTR_INFO(KTR_TSLEEP, tsleep, wakeup_beg, 2, "wakeup enter %p", const volatile void *ident);
100 KTR_INFO(KTR_TSLEEP, tsleep, wakeup_end, 3, "wakeup exit");
101 KTR_INFO(KTR_TSLEEP, tsleep, ilockfail, 4, "interlock failed %p", const volatile void *ident);
103 #define logtsleep1(name) KTR_LOG(tsleep_ ## name)
104 #define logtsleep2(name, val) KTR_LOG(tsleep_ ## name, val)
106 __exclusive_cache_line
107 struct loadavg averunnable =
108 { {0, 0, 0}, FSCALE }; /* load average, of runnable procs */
110 * Constants for averages over 1, 5, and 15 minutes
111 * when sampling at 5 second intervals.
113 __read_mostly
114 static fixpt_t cexp[3] = {
115 0.9200444146293232 * FSCALE, /* exp(-1/12) */
116 0.9834714538216174 * FSCALE, /* exp(-1/60) */
117 0.9944598480048967 * FSCALE, /* exp(-1/180) */
120 static void endtsleep (void *);
121 static void loadav (void *arg);
122 static void schedcpu (void *arg);
124 __read_mostly static int pctcpu_decay = 10;
125 SYSCTL_INT(_kern, OID_AUTO, pctcpu_decay, CTLFLAG_RW,
126 &pctcpu_decay, 0, "");
129 * kernel uses `FSCALE', userland (SHOULD) use kern.fscale
131 __read_mostly int fscale __unused = FSCALE; /* exported to systat */
132 SYSCTL_INT(_kern, OID_AUTO, fscale, CTLFLAG_RD, 0, FSCALE, "");
135 * Issue a wakeup() from userland (debugging)
137 static int
138 sysctl_wakeup(SYSCTL_HANDLER_ARGS)
140 uint64_t ident = 1;
141 int error = 0;
143 if (req->newptr != NULL) {
144 if (priv_check(curthread, PRIV_ROOT))
145 return (EPERM);
146 error = SYSCTL_IN(req, &ident, sizeof(ident));
147 if (error)
148 return error;
149 kprintf("issue wakeup %016jx\n", ident);
150 wakeup((void *)(intptr_t)ident);
152 if (req->oldptr != NULL) {
153 error = SYSCTL_OUT(req, &ident, sizeof(ident));
155 return error;
158 static int
159 sysctl_wakeup_umtx(SYSCTL_HANDLER_ARGS)
161 uint64_t ident = 1;
162 int error = 0;
164 if (req->newptr != NULL) {
165 if (priv_check(curthread, PRIV_ROOT))
166 return (EPERM);
167 error = SYSCTL_IN(req, &ident, sizeof(ident));
168 if (error)
169 return error;
170 kprintf("issue wakeup %016jx, PDOMAIN_UMTX\n", ident);
171 wakeup_domain((void *)(intptr_t)ident, PDOMAIN_UMTX);
173 if (req->oldptr != NULL) {
174 error = SYSCTL_OUT(req, &ident, sizeof(ident));
176 return error;
179 SYSCTL_PROC(_debug, OID_AUTO, wakeup, CTLTYPE_UQUAD|CTLFLAG_RW, 0, 0,
180 sysctl_wakeup, "Q", "issue wakeup(addr)");
181 SYSCTL_PROC(_debug, OID_AUTO, wakeup_umtx, CTLTYPE_UQUAD|CTLFLAG_RW, 0, 0,
182 sysctl_wakeup_umtx, "Q", "issue wakeup(addr, PDOMAIN_UMTX)");
185 * Recompute process priorities, once a second.
187 * Since the userland schedulers are typically event oriented, if the
188 * estcpu calculation at wakeup() time is not sufficient to make a
189 * process runnable relative to other processes in the system we have
190 * a 1-second recalc to help out.
192 * This code also allows us to store sysclock_t data in the process structure
193 * without fear of an overrun, since sysclock_t are guarenteed to hold
194 * several seconds worth of count.
196 * WARNING! callouts can preempt normal threads. However, they will not
197 * preempt a thread holding a spinlock so we *can* safely use spinlocks.
199 static int schedcpu_stats(struct proc *p, void *data __unused);
200 static int schedcpu_resource(struct proc *p, void *data __unused);
202 static void
203 schedcpu(void *arg)
205 allproc_scan(schedcpu_stats, NULL, 1);
206 allproc_scan(schedcpu_resource, NULL, 1);
207 if (mycpu->gd_cpuid == 0) {
208 wakeup((caddr_t)&lbolt);
209 wakeup(lbolt_syncer);
211 callout_reset(&mycpu->gd_schedcpu_callout, hz, schedcpu, NULL);
215 * General process statistics once a second
217 static int
218 schedcpu_stats(struct proc *p, void *data __unused)
220 struct lwp *lp;
223 * Threads may not be completely set up if process in SIDL state.
225 if (p->p_stat == SIDL)
226 return(0);
228 PHOLD(p);
229 if (lwkt_trytoken(&p->p_token) == FALSE) {
230 PRELE(p);
231 return(0);
234 p->p_swtime++;
235 FOREACH_LWP_IN_PROC(lp, p) {
236 if (lp->lwp_stat == LSSLEEP) {
237 ++lp->lwp_slptime;
238 if (lp->lwp_slptime == 1)
239 p->p_usched->uload_update(lp);
243 * Only recalculate processes that are active or have slept
244 * less then 2 seconds. The schedulers understand this.
245 * Otherwise decay by 50% per second.
247 * NOTE: uload_update is called separately from kern_synch.c
248 * when slptime == 1, removing the thread's
249 * uload/ucount.
251 if (lp->lwp_slptime <= 1) {
252 p->p_usched->recalculate(lp);
253 } else {
254 int decay;
256 decay = pctcpu_decay;
257 cpu_ccfence();
258 if (decay <= 1)
259 decay = 1;
260 if (decay > 100)
261 decay = 100;
262 lp->lwp_pctcpu = (lp->lwp_pctcpu * (decay - 1)) / decay;
265 lwkt_reltoken(&p->p_token);
266 lwkt_yield();
267 PRELE(p);
268 return(0);
272 * Resource checks. XXX break out since ksignal/killproc can block,
273 * limiting us to one process killed per second. There is probably
274 * a better way.
276 static int
277 schedcpu_resource(struct proc *p, void *data __unused)
279 u_int64_t ttime;
280 struct lwp *lp;
282 if (p->p_stat == SIDL)
283 return(0);
285 PHOLD(p);
286 if (lwkt_trytoken(&p->p_token) == FALSE) {
287 PRELE(p);
288 return(0);
291 if (p->p_stat == SZOMB || p->p_limit == NULL) {
292 lwkt_reltoken(&p->p_token);
293 PRELE(p);
294 return(0);
297 ttime = 0;
298 FOREACH_LWP_IN_PROC(lp, p) {
300 * We may have caught an lp in the middle of being
301 * created, lwp_thread can be NULL.
303 if (lp->lwp_thread) {
304 ttime += lp->lwp_thread->td_sticks;
305 ttime += lp->lwp_thread->td_uticks;
309 switch(plimit_testcpulimit(p, ttime)) {
310 case PLIMIT_TESTCPU_KILL:
311 killproc(p, "exceeded maximum CPU limit");
312 break;
313 case PLIMIT_TESTCPU_XCPU:
314 if ((p->p_flags & P_XCPU) == 0) {
315 p->p_flags |= P_XCPU;
316 ksignal(p, SIGXCPU);
318 break;
319 default:
320 break;
322 lwkt_reltoken(&p->p_token);
323 lwkt_yield();
324 PRELE(p);
325 return(0);
329 * This is only used by ps. Generate a cpu percentage use over
330 * a period of one second.
332 void
333 updatepcpu(struct lwp *lp, int cpticks, int ttlticks)
335 fixpt_t acc;
336 int remticks;
338 acc = (cpticks << FSHIFT) / ttlticks;
339 if (ttlticks >= ESTCPUFREQ) {
340 lp->lwp_pctcpu = acc;
341 } else {
342 remticks = ESTCPUFREQ - ttlticks;
343 lp->lwp_pctcpu = (acc * ttlticks + lp->lwp_pctcpu * remticks) /
344 ESTCPUFREQ;
349 * Handy macros to calculate hash indices. LOOKUP() calculates the
350 * global cpumask hash index, TCHASHSHIFT() converts that into the
351 * pcpu hash index.
353 * By making the pcpu hash arrays smaller we save a significant amount
354 * of memory at very low cost. The real cost is in IPIs, which are handled
355 * by the much larger global cpumask hash table.
357 #define LOOKUP_PRIME 66555444443333333ULL
358 #define LOOKUP(x) ((((uintptr_t)(x) + ((uintptr_t)(x) >> 18)) ^ \
359 LOOKUP_PRIME) % slpque_tablesize)
360 #define TCHASHSHIFT(x) ((x) >> 4)
362 __read_mostly static uint32_t slpque_tablesize;
363 __read_mostly static cpumask_t *slpque_cpumasks;
365 SYSCTL_UINT(_kern, OID_AUTO, slpque_tablesize, CTLFLAG_RD, &slpque_tablesize,
366 0, "");
369 * This is a dandy function that allows us to interlock tsleep/wakeup
370 * operations with unspecified upper level locks, such as lockmgr locks,
371 * simply by holding a critical section. The sequence is:
373 * (acquire upper level lock)
374 * tsleep_interlock(blah)
375 * (release upper level lock)
376 * tsleep(blah, ...)
378 * Basically this functions queues us on the tsleep queue without actually
379 * descheduling us. When tsleep() is later called with PINTERLOCK it
380 * assumes the thread was already queued, otherwise it queues it there.
382 * Thus it is possible to receive the wakeup prior to going to sleep and
383 * the race conditions are covered.
385 static __inline void
386 _tsleep_interlock(globaldata_t gd, const volatile void *ident, int flags)
388 thread_t td = gd->gd_curthread;
389 struct tslpque *qp;
390 uint32_t cid;
391 uint32_t gid;
393 if (ident == NULL) {
394 kprintf("tsleep_interlock: NULL ident %s\n", td->td_comm);
395 print_backtrace(5);
398 crit_enter_quick(td);
399 if (td->td_flags & TDF_TSLEEPQ) {
401 * Shortcut if unchanged
403 if (td->td_wchan == ident &&
404 td->td_wdomain == (flags & PDOMAIN_MASK)) {
405 crit_exit_quick(td);
406 return;
410 * Remove current sleepq
412 cid = LOOKUP(td->td_wchan);
413 gid = TCHASHSHIFT(cid);
414 qp = &gd->gd_tsleep_hash[gid];
415 TAILQ_REMOVE(&qp->queue, td, td_sleepq);
416 if (TAILQ_FIRST(&qp->queue) == NULL) {
417 qp->ident0 = NULL;
418 qp->ident1 = NULL;
419 qp->ident2 = NULL;
420 qp->ident3 = NULL;
421 ATOMIC_CPUMASK_NANDBIT(slpque_cpumasks[cid],
422 gd->gd_cpuid);
424 } else {
425 td->td_flags |= TDF_TSLEEPQ;
427 cid = LOOKUP(ident);
428 gid = TCHASHSHIFT(cid);
429 qp = &gd->gd_tsleep_hash[gid];
430 TAILQ_INSERT_TAIL(&qp->queue, td, td_sleepq);
431 if (qp->ident0 != ident && qp->ident1 != ident &&
432 qp->ident2 != ident && qp->ident3 != ident) {
433 if (qp->ident0 == NULL)
434 qp->ident0 = ident;
435 else if (qp->ident1 == NULL)
436 qp->ident1 = ident;
437 else if (qp->ident2 == NULL)
438 qp->ident2 = ident;
439 else if (qp->ident3 == NULL)
440 qp->ident3 = ident;
441 else
442 qp->ident0 = (void *)(intptr_t)-1;
444 ATOMIC_CPUMASK_ORBIT(slpque_cpumasks[cid], gd->gd_cpuid);
445 td->td_wchan = ident;
446 td->td_wdomain = flags & PDOMAIN_MASK;
447 crit_exit_quick(td);
450 void
451 tsleep_interlock(const volatile void *ident, int flags)
453 _tsleep_interlock(mycpu, ident, flags);
457 * Remove thread from sleepq. Must be called with a critical section held.
458 * The thread must not be migrating.
460 static __inline void
461 _tsleep_remove(thread_t td)
463 globaldata_t gd = mycpu;
464 struct tslpque *qp;
465 uint32_t cid;
466 uint32_t gid;
468 KKASSERT(td->td_gd == gd && IN_CRITICAL_SECT(td));
469 KKASSERT((td->td_flags & TDF_MIGRATING) == 0);
470 if (td->td_flags & TDF_TSLEEPQ) {
471 td->td_flags &= ~TDF_TSLEEPQ;
472 cid = LOOKUP(td->td_wchan);
473 gid = TCHASHSHIFT(cid);
474 qp = &gd->gd_tsleep_hash[gid];
475 TAILQ_REMOVE(&qp->queue, td, td_sleepq);
476 if (TAILQ_FIRST(&qp->queue) == NULL) {
477 ATOMIC_CPUMASK_NANDBIT(slpque_cpumasks[cid],
478 gd->gd_cpuid);
480 td->td_wchan = NULL;
481 td->td_wdomain = 0;
485 void
486 tsleep_remove(thread_t td)
488 _tsleep_remove(td);
492 * General sleep call. Suspends the current process until a wakeup is
493 * performed on the specified identifier. The process will then be made
494 * runnable with the specified priority. Sleeps at most timo/hz seconds
495 * (0 means no timeout). If flags includes PCATCH flag, signals are checked
496 * before and after sleeping, else signals are not checked. Returns 0 if
497 * awakened, EWOULDBLOCK if the timeout expires. If PCATCH is set and a
498 * signal needs to be delivered, ERESTART is returned if the current system
499 * call should be restarted if possible, and EINTR is returned if the system
500 * call should be interrupted by the signal (return EINTR).
502 * Note that if we are a process, we release_curproc() before messing with
503 * the LWKT scheduler.
505 * During autoconfiguration or after a panic, a sleep will simply
506 * lower the priority briefly to allow interrupts, then return.
508 * WARNING! This code can't block (short of switching away), or bad things
509 * will happen. No getting tokens, no blocking locks, etc.
512 tsleep(const volatile void *ident, int flags, const char *wmesg, int timo)
514 struct thread *td = curthread;
515 struct lwp *lp = td->td_lwp;
516 struct proc *p = td->td_proc; /* may be NULL */
517 globaldata_t gd;
518 int sig;
519 int catch;
520 int error;
521 int oldpri;
522 struct callout thandle;
525 * Currently a severe hack. Make sure any delayed wakeups
526 * are flushed before we sleep or we might deadlock on whatever
527 * event we are sleeping on.
529 if (td->td_flags & TDF_DELAYED_WAKEUP)
530 wakeup_end_delayed();
533 * NOTE: removed KTRPOINT, it could cause races due to blocking
534 * even in stable. Just scrap it for now.
536 if (!tsleep_crypto_dump && (tsleep_now_works == 0 || panicstr)) {
538 * After a panic, or before we actually have an operational
539 * softclock, just give interrupts a chance, then just return;
541 * don't run any other procs or panic below,
542 * in case this is the idle process and already asleep.
544 splz();
545 oldpri = td->td_pri;
546 lwkt_setpri_self(safepri);
547 lwkt_switch();
548 lwkt_setpri_self(oldpri);
549 return (0);
551 logtsleep2(tsleep_beg, ident);
552 gd = td->td_gd;
553 KKASSERT(td != &gd->gd_idlethread); /* you must be kidding! */
556 * NOTE: all of this occurs on the current cpu, including any
557 * callout-based wakeups, so a critical section is a sufficient
558 * interlock.
560 * The entire sequence through to where we actually sleep must
561 * run without breaking the critical section.
563 catch = flags & PCATCH;
564 error = 0;
565 sig = 0;
567 crit_enter_quick(td);
569 KASSERT(ident != NULL, ("tsleep: no ident"));
570 KASSERT(lp == NULL ||
571 lp->lwp_stat == LSRUN || /* Obvious */
572 lp->lwp_stat == LSSTOP, /* Set in tstop */
573 ("tsleep %p %s %d",
574 ident, wmesg, lp->lwp_stat));
577 * We interlock the sleep queue if the caller has not already done
578 * it for us. This must be done before we potentially acquire any
579 * tokens or we can loose the wakeup.
581 if ((flags & PINTERLOCKED) == 0) {
582 _tsleep_interlock(gd, ident, flags);
586 * Setup for the current process (if this is a process). We must
587 * interlock with lwp_token to avoid remote wakeup races via
588 * setrunnable()
590 if (lp) {
591 lwkt_gettoken(&lp->lwp_token);
594 * If the umbrella process is in the SCORE state then
595 * make sure that the thread is flagged going into a
596 * normal sleep to allow the core dump to proceed, otherwise
597 * the coredump can end up waiting forever. If the normal
598 * sleep is woken up, the thread will enter a stopped state
599 * upon return to userland.
601 * We do not want to interrupt or cause a thread exist at
602 * this juncture because that will mess-up the state the
603 * coredump is trying to save.
605 if (p->p_stat == SCORE) {
606 lwkt_gettoken(&p->p_token);
607 if ((lp->lwp_mpflags & LWP_MP_WSTOP) == 0) {
608 atomic_set_int(&lp->lwp_mpflags, LWP_MP_WSTOP);
609 ++p->p_nstopped;
611 lwkt_reltoken(&p->p_token);
615 * PCATCH requested.
617 if (catch) {
619 * Early termination if PCATCH was set and a
620 * signal is pending, interlocked with the
621 * critical section.
623 * Early termination only occurs when tsleep() is
624 * entered while in a normal LSRUN state.
626 if ((sig = CURSIG(lp)) != 0)
627 goto resume;
630 * Causes ksignal to wake us up if a signal is
631 * received (interlocked with lp->lwp_token).
633 lp->lwp_flags |= LWP_SINTR;
635 } else {
636 KKASSERT(p == NULL);
640 * Make sure the current process has been untangled from
641 * the userland scheduler and initialize slptime to start
642 * counting.
644 * NOTE: td->td_wakefromcpu is pre-set by the release function
645 * for the dfly scheduler, and then adjusted by _wakeup()
647 if (lp) {
648 p->p_usched->release_curproc(lp);
649 lp->lwp_slptime = 0;
653 * For PINTERLOCKED operation, TDF_TSLEEPQ might not be set if
654 * a wakeup() was processed before the thread could go to sleep.
656 * If TDF_TSLEEPQ is set, make sure the ident matches the recorded
657 * ident. If it does not then the thread slept inbetween the
658 * caller's initial tsleep_interlock() call and the caller's tsleep()
659 * call.
661 * Extreme loads can cause the sending of an IPI (e.g. wakeup()'s)
662 * to process incoming IPIs, thus draining incoming wakeups.
664 if ((td->td_flags & TDF_TSLEEPQ) == 0) {
665 logtsleep2(ilockfail, ident);
666 goto resume;
667 } else if (td->td_wchan != ident ||
668 td->td_wdomain != (flags & PDOMAIN_MASK)) {
669 logtsleep2(ilockfail, ident);
670 goto resume;
674 * scheduling is blocked while in a critical section. Coincide
675 * the descheduled-by-tsleep flag with the descheduling of the
676 * lwkt.
678 * The timer callout is localized on our cpu and interlocked by
679 * our critical section.
681 lwkt_deschedule_self(td);
682 td->td_flags |= TDF_TSLEEP_DESCHEDULED;
683 td->td_wmesg = wmesg;
686 * Setup the timeout, if any. The timeout is only operable while
687 * the thread is flagged descheduled.
689 KKASSERT((td->td_flags & TDF_TIMEOUT) == 0);
690 if (timo) {
691 callout_init_mp(&thandle);
692 callout_reset(&thandle, timo, endtsleep, td);
696 * Beddy bye bye.
698 if (lp) {
700 * Ok, we are sleeping. Place us in the SSLEEP state.
702 KKASSERT((lp->lwp_mpflags & LWP_MP_ONRUNQ) == 0);
705 * tstop() sets LSSTOP, so don't fiddle with that.
707 if (lp->lwp_stat != LSSTOP)
708 lp->lwp_stat = LSSLEEP;
709 lp->lwp_ru.ru_nvcsw++;
710 p->p_usched->uload_update(lp);
711 lwkt_switch();
714 * And when we are woken up, put us back in LSRUN. If we
715 * slept for over a second, recalculate our estcpu.
717 lp->lwp_stat = LSRUN;
718 if (lp->lwp_slptime) {
719 p->p_usched->uload_update(lp);
720 p->p_usched->recalculate(lp);
722 lp->lwp_slptime = 0;
723 } else {
724 lwkt_switch();
728 * Make sure we haven't switched cpus while we were asleep. It's
729 * not supposed to happen. Cleanup our temporary flags.
731 KKASSERT(gd == td->td_gd);
734 * Cleanup the timeout. If the timeout has already occured thandle
735 * has already been stopped, otherwise stop thandle. If the timeout
736 * is running (the callout thread must be blocked trying to get
737 * lwp_token) then wait for us to get scheduled.
739 if (timo) {
740 while (td->td_flags & TDF_TIMEOUT_RUNNING) {
741 /* else we won't get rescheduled! */
742 if (lp->lwp_stat != LSSTOP)
743 lp->lwp_stat = LSSLEEP;
744 lwkt_deschedule_self(td);
745 td->td_wmesg = "tsrace";
746 lwkt_switch();
747 kprintf("td %p %s: timeout race\n", td, td->td_comm);
749 if (td->td_flags & TDF_TIMEOUT) {
750 td->td_flags &= ~TDF_TIMEOUT;
751 error = EWOULDBLOCK;
752 } else {
753 /* does not block when on same cpu */
754 callout_cancel(&thandle);
757 td->td_flags &= ~TDF_TSLEEP_DESCHEDULED;
760 * Make sure we have been removed from the sleepq. In most
761 * cases this will have been done for us already but it is
762 * possible for a scheduling IPI to be in-flight from a
763 * previous tsleep/tsleep_interlock() or due to a straight-out
764 * call to lwkt_schedule() (in the case of an interrupt thread),
765 * causing a spurious wakeup.
767 _tsleep_remove(td);
768 td->td_wmesg = NULL;
771 * Figure out the correct error return. If interrupted by a
772 * signal we want to return EINTR or ERESTART.
774 resume:
775 if (lp) {
776 if (catch && error == 0) {
777 if (sig != 0 || (sig = CURSIG(lp))) {
778 if (SIGISMEMBER(p->p_sigacts->ps_sigintr, sig))
779 error = EINTR;
780 else
781 error = ERESTART;
785 lp->lwp_flags &= ~LWP_SINTR;
788 * Unconditionally set us to LSRUN on resume. lwp_stat could
789 * be in a weird state due to the goto resume, particularly
790 * when tsleep() is called from tstop().
792 lp->lwp_stat = LSRUN;
793 lwkt_reltoken(&lp->lwp_token);
795 logtsleep1(tsleep_end);
796 crit_exit_quick(td);
798 return (error);
802 * Interlocked spinlock sleep. An exclusively held spinlock must
803 * be passed to ssleep(). The function will atomically release the
804 * spinlock and tsleep on the ident, then reacquire the spinlock and
805 * return.
807 * This routine is fairly important along the critical path, so optimize it
808 * heavily.
811 ssleep(const volatile void *ident, struct spinlock *spin, int flags,
812 const char *wmesg, int timo)
814 globaldata_t gd = mycpu;
815 int error;
817 _tsleep_interlock(gd, ident, flags);
818 spin_unlock_quick(gd, spin);
819 error = tsleep(ident, flags | PINTERLOCKED, wmesg, timo);
820 KKASSERT(gd == mycpu);
821 _spin_lock_quick(gd, spin, wmesg);
823 return (error);
827 lksleep(const volatile void *ident, struct lock *lock, int flags,
828 const char *wmesg, int timo)
830 globaldata_t gd = mycpu;
831 int error;
833 _tsleep_interlock(gd, ident, flags);
834 lockmgr(lock, LK_RELEASE);
835 error = tsleep(ident, flags | PINTERLOCKED, wmesg, timo);
836 lockmgr(lock, LK_EXCLUSIVE);
838 return (error);
842 * Interlocked mutex sleep. An exclusively held mutex must be passed
843 * to mtxsleep(). The function will atomically release the mutex
844 * and tsleep on the ident, then reacquire the mutex and return.
847 mtxsleep(const volatile void *ident, struct mtx *mtx, int flags,
848 const char *wmesg, int timo)
850 globaldata_t gd = mycpu;
851 int error;
853 _tsleep_interlock(gd, ident, flags);
854 mtx_unlock(mtx);
855 error = tsleep(ident, flags | PINTERLOCKED, wmesg, timo);
856 mtx_lock_ex_quick(mtx);
858 return (error);
862 * Interlocked serializer sleep. An exclusively held serializer must
863 * be passed to zsleep(). The function will atomically release
864 * the serializer and tsleep on the ident, then reacquire the serializer
865 * and return.
868 zsleep(const volatile void *ident, struct lwkt_serialize *slz, int flags,
869 const char *wmesg, int timo)
871 globaldata_t gd = mycpu;
872 int ret;
874 ASSERT_SERIALIZED(slz);
876 _tsleep_interlock(gd, ident, flags);
877 lwkt_serialize_exit(slz);
878 ret = tsleep(ident, flags | PINTERLOCKED, wmesg, timo);
879 lwkt_serialize_enter(slz);
881 return ret;
885 * Directly block on the LWKT thread by descheduling it. This
886 * is much faster then tsleep(), but the only legal way to wake
887 * us up is to directly schedule the thread.
889 * Setting TDF_SINTR will cause new signals to directly schedule us.
891 * This routine must be called while in a critical section.
894 lwkt_sleep(const char *wmesg, int flags)
896 thread_t td = curthread;
897 int sig;
899 if ((flags & PCATCH) == 0 || td->td_lwp == NULL) {
900 td->td_flags |= TDF_BLOCKED;
901 td->td_wmesg = wmesg;
902 lwkt_deschedule_self(td);
903 lwkt_switch();
904 td->td_wmesg = NULL;
905 td->td_flags &= ~TDF_BLOCKED;
906 return(0);
908 if ((sig = CURSIG(td->td_lwp)) != 0) {
909 if (SIGISMEMBER(td->td_proc->p_sigacts->ps_sigintr, sig))
910 return(EINTR);
911 else
912 return(ERESTART);
915 td->td_flags |= TDF_BLOCKED | TDF_SINTR;
916 td->td_wmesg = wmesg;
917 lwkt_deschedule_self(td);
918 lwkt_switch();
919 td->td_flags &= ~(TDF_BLOCKED | TDF_SINTR);
920 td->td_wmesg = NULL;
921 return(0);
925 * Implement the timeout for tsleep.
927 * This type of callout timeout is scheduled on the same cpu the process
928 * is sleeping on. Also, at the moment, the MP lock is held.
930 static void
931 endtsleep(void *arg)
933 thread_t td = arg;
934 struct lwp *lp;
937 * We are going to have to get the lwp_token, which means we might
938 * block. This can race a tsleep getting woken up by other means
939 * so set TDF_TIMEOUT_RUNNING to force the tsleep to wait for our
940 * processing to complete (sorry tsleep!).
942 * We can safely set td_flags because td MUST be on the same cpu
943 * as we are.
945 KKASSERT(td->td_gd == mycpu);
946 crit_enter();
947 td->td_flags |= TDF_TIMEOUT_RUNNING | TDF_TIMEOUT;
950 * This can block but TDF_TIMEOUT_RUNNING will prevent the thread
951 * from exiting the tsleep on us. The flag is interlocked by virtue
952 * of lp being on the same cpu as we are.
954 if ((lp = td->td_lwp) != NULL)
955 lwkt_gettoken(&lp->lwp_token);
957 KKASSERT(td->td_flags & TDF_TSLEEP_DESCHEDULED);
959 if (lp) {
961 * callout timer should normally never be set in tstop()
962 * because it passes a timeout of 0. However, there is a
963 * case during thread exit (which SSTOP's all the threads)
964 * for which tstop() must break out and can (properly) leave
965 * the thread in LSSTOP.
967 KKASSERT(lp->lwp_stat != LSSTOP ||
968 (lp->lwp_mpflags & LWP_MP_WEXIT));
969 setrunnable(lp);
970 lwkt_reltoken(&lp->lwp_token);
971 } else {
972 _tsleep_remove(td);
973 lwkt_schedule(td);
975 KKASSERT(td->td_gd == mycpu);
976 td->td_flags &= ~TDF_TIMEOUT_RUNNING;
977 crit_exit();
981 * Make all processes sleeping on the specified identifier runnable.
982 * count may be zero or one only.
984 * The domain encodes the sleep/wakeup domain, flags, plus the originating
985 * cpu.
987 * This call may run without the MP lock held. We can only manipulate thread
988 * state on the cpu owning the thread. We CANNOT manipulate process state
989 * at all.
991 * _wakeup() can be passed to an IPI so we can't use (const volatile
992 * void *ident).
994 static void
995 _wakeup(void *ident, int domain)
997 struct tslpque *qp;
998 struct thread *td;
999 struct thread *ntd;
1000 globaldata_t gd;
1001 cpumask_t mask;
1002 uint32_t cid;
1003 uint32_t gid;
1004 int wids = 0;
1006 crit_enter();
1007 logtsleep2(wakeup_beg, ident);
1008 gd = mycpu;
1009 cid = LOOKUP(ident);
1010 gid = TCHASHSHIFT(cid);
1011 qp = &gd->gd_tsleep_hash[gid];
1012 restart:
1013 for (td = TAILQ_FIRST(&qp->queue); td != NULL; td = ntd) {
1014 ntd = TAILQ_NEXT(td, td_sleepq);
1015 if (td->td_wchan == ident &&
1016 td->td_wdomain == (domain & PDOMAIN_MASK)
1018 KKASSERT(td->td_gd == gd);
1019 _tsleep_remove(td);
1020 td->td_wakefromcpu = PWAKEUP_DECODE(domain);
1021 if (td->td_flags & TDF_TSLEEP_DESCHEDULED) {
1022 lwkt_schedule(td);
1023 if (domain & PWAKEUP_ONE)
1024 goto done;
1026 goto restart;
1028 if (td->td_wchan == qp->ident0)
1029 wids |= 1;
1030 else if (td->td_wchan == qp->ident1)
1031 wids |= 2;
1032 else if (td->td_wchan == qp->ident2)
1033 wids |= 4;
1034 else if (td->td_wchan == qp->ident3)
1035 wids |= 8;
1036 else
1037 wids |= 16; /* force ident0 to be retained (-1) */
1041 * Because a bunch of cpumask array entries cover the same queue, it
1042 * is possible for our bit to remain set in some of them and cause
1043 * spurious wakeup IPIs later on. Make sure that the bit is cleared
1044 * when a spurious IPI occurs to prevent further spurious IPIs.
1046 if (TAILQ_FIRST(&qp->queue) == NULL) {
1047 ATOMIC_CPUMASK_NANDBIT(slpque_cpumasks[cid], gd->gd_cpuid);
1048 qp->ident0 = NULL;
1049 qp->ident1 = NULL;
1050 qp->ident2 = NULL;
1051 qp->ident3 = NULL;
1052 } else {
1053 if ((wids & 1) == 0) {
1054 if ((wids & 16) == 0) {
1055 qp->ident0 = NULL;
1056 } else {
1057 KKASSERT(qp->ident0 == (void *)(intptr_t)-1);
1060 if ((wids & 2) == 0)
1061 qp->ident1 = NULL;
1062 if ((wids & 4) == 0)
1063 qp->ident2 = NULL;
1064 if ((wids & 8) == 0)
1065 qp->ident3 = NULL;
1069 * We finished checking the current cpu but there still may be
1070 * more work to do. Either wakeup_one was requested and no matching
1071 * thread was found, or a normal wakeup was requested and we have
1072 * to continue checking cpus.
1074 * It should be noted that this scheme is actually less expensive then
1075 * the old scheme when waking up multiple threads, since we send
1076 * only one IPI message per target candidate which may then schedule
1077 * multiple threads. Before we could have wound up sending an IPI
1078 * message for each thread on the target cpu (!= current cpu) that
1079 * needed to be woken up.
1081 * NOTE: Wakeups occuring on remote cpus are asynchronous. This
1082 * should be ok since we are passing idents in the IPI rather
1083 * then thread pointers.
1085 * NOTE: We MUST mfence (or use an atomic op) prior to reading
1086 * the cpumask, as another cpu may have written to it in
1087 * a fashion interlocked with whatever the caller did before
1088 * calling wakeup(). Otherwise we might miss the interaction
1089 * (kern_mutex.c can cause this problem).
1091 * lfence is insufficient as it may allow a written state to
1092 * reorder around the cpumask load.
1094 if ((domain & PWAKEUP_MYCPU) == 0) {
1095 globaldata_t tgd;
1096 const volatile void *id0;
1097 int n;
1099 cpu_mfence();
1100 /* cpu_lfence(); */
1101 mask = slpque_cpumasks[cid];
1102 CPUMASK_ANDMASK(mask, gd->gd_other_cpus);
1103 while (CPUMASK_TESTNZERO(mask)) {
1104 n = BSRCPUMASK(mask);
1105 CPUMASK_NANDBIT(mask, n);
1106 tgd = globaldata_find(n);
1109 * Both ident0 compares must from a single load
1110 * to avoid ident0 update races crossing the two
1111 * compares.
1113 qp = &tgd->gd_tsleep_hash[gid];
1114 id0 = qp->ident0;
1115 cpu_ccfence();
1116 if (id0 == (void *)(intptr_t)-1) {
1117 lwkt_send_ipiq2(tgd, _wakeup, ident,
1118 domain | PWAKEUP_MYCPU);
1119 ++tgd->gd_cnt.v_wakeup_colls;
1120 } else if (id0 == ident ||
1121 qp->ident1 == ident ||
1122 qp->ident2 == ident ||
1123 qp->ident3 == ident) {
1124 lwkt_send_ipiq2(tgd, _wakeup, ident,
1125 domain | PWAKEUP_MYCPU);
1128 #if 0
1129 if (CPUMASK_TESTNZERO(mask)) {
1130 lwkt_send_ipiq2_mask(mask, _wakeup, ident,
1131 domain | PWAKEUP_MYCPU);
1133 #endif
1135 done:
1136 logtsleep1(wakeup_end);
1137 crit_exit();
1141 * Wakeup all threads tsleep()ing on the specified ident, on all cpus
1143 void
1144 wakeup(const volatile void *ident)
1146 globaldata_t gd = mycpu;
1147 thread_t td = gd->gd_curthread;
1149 if (td && (td->td_flags & TDF_DELAYED_WAKEUP)) {
1151 * If we are in a delayed wakeup section, record up to two wakeups in
1152 * a per-CPU queue and issue them when we block or exit the delayed
1153 * wakeup section.
1155 if (atomic_cmpset_ptr(&gd->gd_delayed_wakeup[0], NULL, ident))
1156 return;
1157 if (atomic_cmpset_ptr(&gd->gd_delayed_wakeup[1], NULL, ident))
1158 return;
1160 ident = atomic_swap_ptr(__DEQUALIFY(volatile void **, &gd->gd_delayed_wakeup[1]),
1161 __DEALL(ident));
1162 ident = atomic_swap_ptr(__DEQUALIFY(volatile void **, &gd->gd_delayed_wakeup[0]),
1163 __DEALL(ident));
1166 _wakeup(__DEALL(ident), PWAKEUP_ENCODE(0, gd->gd_cpuid));
1170 * Wakeup one thread tsleep()ing on the specified ident, on any cpu.
1172 void
1173 wakeup_one(const volatile void *ident)
1175 /* XXX potentially round-robin the first responding cpu */
1176 _wakeup(__DEALL(ident), PWAKEUP_ENCODE(0, mycpu->gd_cpuid) |
1177 PWAKEUP_ONE);
1181 * Wakeup threads tsleep()ing on the specified ident on the current cpu
1182 * only.
1184 void
1185 wakeup_mycpu(const volatile void *ident)
1187 _wakeup(__DEALL(ident), PWAKEUP_ENCODE(0, mycpu->gd_cpuid) |
1188 PWAKEUP_MYCPU);
1192 * Wakeup one thread tsleep()ing on the specified ident on the current cpu
1193 * only.
1195 void
1196 wakeup_mycpu_one(const volatile void *ident)
1198 /* XXX potentially round-robin the first responding cpu */
1199 _wakeup(__DEALL(ident), PWAKEUP_ENCODE(0, mycpu->gd_cpuid) |
1200 PWAKEUP_MYCPU | PWAKEUP_ONE);
1204 * Wakeup all thread tsleep()ing on the specified ident on the specified cpu
1205 * only.
1207 void
1208 wakeup_oncpu(globaldata_t gd, const volatile void *ident)
1210 globaldata_t mygd = mycpu;
1211 if (gd == mycpu) {
1212 _wakeup(__DEALL(ident), PWAKEUP_ENCODE(0, mygd->gd_cpuid) |
1213 PWAKEUP_MYCPU);
1214 } else {
1215 lwkt_send_ipiq2(gd, _wakeup, __DEALL(ident),
1216 PWAKEUP_ENCODE(0, mygd->gd_cpuid) |
1217 PWAKEUP_MYCPU);
1222 * Wakeup one thread tsleep()ing on the specified ident on the specified cpu
1223 * only.
1225 void
1226 wakeup_oncpu_one(globaldata_t gd, const volatile void *ident)
1228 globaldata_t mygd = mycpu;
1229 if (gd == mygd) {
1230 _wakeup(__DEALL(ident), PWAKEUP_ENCODE(0, mygd->gd_cpuid) |
1231 PWAKEUP_MYCPU | PWAKEUP_ONE);
1232 } else {
1233 lwkt_send_ipiq2(gd, _wakeup, __DEALL(ident),
1234 PWAKEUP_ENCODE(0, mygd->gd_cpuid) |
1235 PWAKEUP_MYCPU | PWAKEUP_ONE);
1240 * Wakeup all threads waiting on the specified ident that slept using
1241 * the specified domain, on all cpus.
1243 void
1244 wakeup_domain(const volatile void *ident, int domain)
1246 _wakeup(__DEALL(ident), PWAKEUP_ENCODE(domain, mycpu->gd_cpuid));
1250 * Wakeup one thread waiting on the specified ident that slept using
1251 * the specified domain, on any cpu.
1253 void
1254 wakeup_domain_one(const volatile void *ident, int domain)
1256 /* XXX potentially round-robin the first responding cpu */
1257 _wakeup(__DEALL(ident),
1258 PWAKEUP_ENCODE(domain, mycpu->gd_cpuid) | PWAKEUP_ONE);
1261 void
1262 wakeup_start_delayed(void)
1264 globaldata_t gd = mycpu;
1266 crit_enter();
1267 gd->gd_curthread->td_flags |= TDF_DELAYED_WAKEUP;
1268 crit_exit();
1271 void
1272 wakeup_end_delayed(void)
1274 globaldata_t gd = mycpu;
1276 if (gd->gd_curthread->td_flags & TDF_DELAYED_WAKEUP) {
1277 crit_enter();
1278 gd->gd_curthread->td_flags &= ~TDF_DELAYED_WAKEUP;
1279 if (gd->gd_delayed_wakeup[0] || gd->gd_delayed_wakeup[1]) {
1280 if (gd->gd_delayed_wakeup[0]) {
1281 wakeup(gd->gd_delayed_wakeup[0]);
1282 gd->gd_delayed_wakeup[0] = NULL;
1284 if (gd->gd_delayed_wakeup[1]) {
1285 wakeup(gd->gd_delayed_wakeup[1]);
1286 gd->gd_delayed_wakeup[1] = NULL;
1289 crit_exit();
1294 * setrunnable()
1296 * Make a process runnable. lp->lwp_token must be held on call and this
1297 * function must be called from the cpu owning lp.
1299 * This only has an effect if we are in LSSTOP or LSSLEEP.
1301 void
1302 setrunnable(struct lwp *lp)
1304 thread_t td = lp->lwp_thread;
1306 ASSERT_LWKT_TOKEN_HELD(&lp->lwp_token);
1307 KKASSERT(td->td_gd == mycpu);
1308 crit_enter();
1309 if (lp->lwp_stat == LSSTOP)
1310 lp->lwp_stat = LSSLEEP;
1311 if (lp->lwp_stat == LSSLEEP) {
1312 _tsleep_remove(td);
1313 lwkt_schedule(td);
1314 } else if (td->td_flags & TDF_SINTR) {
1315 lwkt_schedule(td);
1317 crit_exit();
1321 * The process is stopped due to some condition, usually because p_stat is
1322 * set to SSTOP, but also possibly due to being traced.
1324 * Caller must hold p->p_token
1326 * NOTE! If the caller sets SSTOP, the caller must also clear P_WAITED
1327 * because the parent may check the child's status before the child actually
1328 * gets to this routine.
1330 * This routine is called with the current lwp only, typically just
1331 * before returning to userland if the process state is detected as
1332 * possibly being in a stopped state.
1334 void
1335 tstop(void)
1337 struct lwp *lp = curthread->td_lwp;
1338 struct proc *p = lp->lwp_proc;
1339 struct proc *q;
1341 lwkt_gettoken(&lp->lwp_token);
1342 crit_enter();
1345 * If LWP_MP_WSTOP is set, we were sleeping
1346 * while our process was stopped. At this point
1347 * we were already counted as stopped.
1349 if ((lp->lwp_mpflags & LWP_MP_WSTOP) == 0) {
1351 * If we're the last thread to stop, signal
1352 * our parent.
1354 p->p_nstopped++;
1355 atomic_set_int(&lp->lwp_mpflags, LWP_MP_WSTOP);
1356 wakeup(&p->p_nstopped);
1357 if (p->p_nstopped == p->p_nthreads) {
1359 * Token required to interlock kern_wait()
1361 q = p->p_pptr;
1362 PHOLD(q);
1363 lwkt_gettoken(&q->p_token);
1364 p->p_flags &= ~P_WAITED;
1365 wakeup(p->p_pptr);
1366 if ((q->p_sigacts->ps_flag & PS_NOCLDSTOP) == 0)
1367 ksignal(q, SIGCHLD);
1368 lwkt_reltoken(&q->p_token);
1369 PRELE(q);
1374 * Wait here while in a stopped state, interlocked with lwp_token.
1375 * We must break-out if the whole process is trying to exit.
1377 while (STOPLWP(p, lp)) {
1378 lp->lwp_stat = LSSTOP;
1379 tsleep(p, 0, "stop", 0);
1381 p->p_nstopped--;
1382 atomic_clear_int(&lp->lwp_mpflags, LWP_MP_WSTOP);
1383 crit_exit();
1384 lwkt_reltoken(&lp->lwp_token);
1388 * Compute a tenex style load average of a quantity on
1389 * 1, 5 and 15 minute intervals. This is a pcpu callout.
1391 * We segment the lwp scan on a pcpu basis. This does NOT
1392 * mean the associated lwps are on this cpu, it is done
1393 * just to break the work up.
1395 * The callout on cpu0 rolls up the stats from the other
1396 * cpus.
1398 static int loadav_count_runnable(struct lwp *p, void *data);
1400 static void
1401 loadav(void *arg)
1403 globaldata_t gd = mycpu;
1404 struct loadavg *avg;
1405 int i, nrun;
1407 nrun = 0;
1408 alllwp_scan(loadav_count_runnable, &nrun, 1);
1409 gd->gd_loadav_nrunnable = nrun;
1410 if (gd->gd_cpuid == 0) {
1411 avg = &averunnable;
1412 nrun = 0;
1413 for (i = 0; i < ncpus; ++i)
1414 nrun += globaldata_find(i)->gd_loadav_nrunnable;
1415 for (i = 0; i < 3; i++) {
1416 avg->ldavg[i] = (cexp[i] * avg->ldavg[i] +
1417 (long)nrun * FSCALE * (FSCALE - cexp[i])) >> FSHIFT;
1422 * Schedule the next update to occur after 5 seconds, but add a
1423 * random variation to avoid synchronisation with processes that
1424 * run at regular intervals.
1426 callout_reset(&gd->gd_loadav_callout,
1427 hz * 4 + (int)(krandom() % (hz * 2 + 1)),
1428 loadav, NULL);
1431 static int
1432 loadav_count_runnable(struct lwp *lp, void *data)
1434 int *nrunp = data;
1435 thread_t td;
1437 switch (lp->lwp_stat) {
1438 case LSRUN:
1439 if ((td = lp->lwp_thread) == NULL)
1440 break;
1441 if (td->td_flags & TDF_BLOCKED)
1442 break;
1443 ++*nrunp;
1444 break;
1445 default:
1446 break;
1448 lwkt_yield();
1449 return(0);
1453 * Regular data collection
1455 static uint64_t
1456 collect_load_callback(int n)
1458 int fscale = averunnable.fscale;
1460 return ((averunnable.ldavg[0] * 100 + (fscale >> 1)) / fscale);
1463 static void
1464 sched_setup(void *dummy __unused)
1466 globaldata_t save_gd = mycpu;
1467 globaldata_t gd;
1468 int n;
1470 kcollect_register(KCOLLECT_LOAD, "load", collect_load_callback,
1471 KCOLLECT_SCALE(KCOLLECT_LOAD_FORMAT, 0));
1474 * Kick off timeout driven events by calling first time. We
1475 * split the work across available cpus to help scale it,
1476 * it can eat a lot of cpu when there are a lot of processes
1477 * on the system.
1479 for (n = 0; n < ncpus; ++n) {
1480 gd = globaldata_find(n);
1481 lwkt_setcpu_self(gd);
1482 callout_init_mp(&gd->gd_loadav_callout);
1483 callout_init_mp(&gd->gd_schedcpu_callout);
1484 schedcpu(NULL);
1485 loadav(NULL);
1487 lwkt_setcpu_self(save_gd);
1491 * Extremely early initialization, dummy-up the tables so we don't have
1492 * to conditionalize for NULL in _wakeup() and tsleep_interlock(). Even
1493 * though the system isn't blocking this early, these functions still
1494 * try to access the hash table.
1496 * This setup will be overridden once sched_dyninit() -> sleep_gdinit()
1497 * is called.
1499 void
1500 sleep_early_gdinit(globaldata_t gd)
1502 static struct tslpque dummy_slpque;
1503 static cpumask_t dummy_cpumasks;
1505 slpque_tablesize = 1;
1506 gd->gd_tsleep_hash = &dummy_slpque;
1507 slpque_cpumasks = &dummy_cpumasks;
1508 TAILQ_INIT(&dummy_slpque.queue);
1512 * PCPU initialization. Called after KMALLOC is operational, by
1513 * sched_dyninit() for cpu 0, and by mi_gdinit() for other cpus later.
1515 * WARNING! The pcpu hash table is smaller than the global cpumask
1516 * hash table, which can save us a lot of memory when maxproc
1517 * is set high.
1519 void
1520 sleep_gdinit(globaldata_t gd)
1522 struct thread *td;
1523 size_t hash_size;
1524 uint32_t n;
1525 uint32_t i;
1528 * This shouldn't happen, that is there shouldn't be any threads
1529 * waiting on the dummy tsleep queue this early in the boot.
1531 if (gd->gd_cpuid == 0) {
1532 struct tslpque *qp = &gd->gd_tsleep_hash[0];
1533 TAILQ_FOREACH(td, &qp->queue, td_sleepq) {
1534 kprintf("SLEEP_GDINIT SWITCH %s\n", td->td_comm);
1539 * Note that we have to allocate one extra slot because we are
1540 * shifting a modulo value. TCHASHSHIFT(slpque_tablesize - 1) can
1541 * return the same value as TCHASHSHIFT(slpque_tablesize).
1543 n = TCHASHSHIFT(slpque_tablesize) + 1;
1545 hash_size = sizeof(struct tslpque) * n;
1546 gd->gd_tsleep_hash = (void *)kmem_alloc3(&kernel_map, hash_size,
1547 VM_SUBSYS_GD,
1548 KM_CPU(gd->gd_cpuid));
1549 memset(gd->gd_tsleep_hash, 0, hash_size);
1550 for (i = 0; i < n; ++i)
1551 TAILQ_INIT(&gd->gd_tsleep_hash[i].queue);
1555 * Dynamic initialization after the memory system is operational.
1557 static void
1558 sched_dyninit(void *dummy __unused)
1560 int tblsize;
1561 int tblsize2;
1562 int n;
1565 * Calculate table size for slpque hash. We want a prime number
1566 * large enough to avoid overloading slpque_cpumasks when the
1567 * system has a large number of sleeping processes, which will
1568 * spam IPIs on wakeup().
1570 * While it is true this is really a per-lwp factor, generally
1571 * speaking the maxproc limit is a good metric to go by.
1573 for (tblsize = maxproc | 1; ; tblsize += 2) {
1574 if (tblsize % 3 == 0)
1575 continue;
1576 if (tblsize % 5 == 0)
1577 continue;
1578 tblsize2 = (tblsize / 2) | 1;
1579 for (n = 7; n < tblsize2; n += 2) {
1580 if (tblsize % n == 0)
1581 break;
1583 if (n == tblsize2)
1584 break;
1588 * PIDs are currently limited to 6 digits. Cap the table size
1589 * at double this.
1591 if (tblsize > 2000003)
1592 tblsize = 2000003;
1594 slpque_tablesize = tblsize;
1595 slpque_cpumasks = kmalloc(sizeof(*slpque_cpumasks) * slpque_tablesize,
1596 M_TSLEEP, M_WAITOK | M_ZERO);
1597 sleep_gdinit(mycpu);