kernel/vm: Rename *_putpages()'s 'sync' argument to 'flags'.
[dragonfly.git] / sys / kern / kern_exit.c
blobae0211411e4552c7eff39184625b03ca6339d1d3
1 /*
2 * Copyright (c) 1982, 1986, 1989, 1991, 1993
3 * The Regents of the University of California. All rights reserved.
4 * (c) UNIX System Laboratories, Inc.
5 * All or some portions of this file are derived from material licensed
6 * to the University of California by American Telephone and Telegraph
7 * Co. or Unix System Laboratories, Inc. and are reproduced herein with
8 * the permission of UNIX System Laboratories, Inc.
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 * notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in the
17 * documentation and/or other materials provided with the distribution.
18 * 3. Neither the name of the University nor the names of its contributors
19 * may be used to endorse or promote products derived from this software
20 * without specific prior written permission.
22 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
23 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
24 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
25 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
26 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
27 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
28 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
29 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
30 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
31 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
32 * SUCH DAMAGE.
34 * @(#)kern_exit.c 8.7 (Berkeley) 2/12/94
35 * $FreeBSD: src/sys/kern/kern_exit.c,v 1.92.2.11 2003/01/13 22:51:16 dillon Exp $
38 #include "opt_ktrace.h"
40 #include <sys/param.h>
41 #include <sys/systm.h>
42 #include <sys/sysproto.h>
43 #include <sys/kernel.h>
44 #include <sys/malloc.h>
45 #include <sys/proc.h>
46 #include <sys/ktrace.h>
47 #include <sys/pioctl.h>
48 #include <sys/tty.h>
49 #include <sys/wait.h>
50 #include <sys/vnode.h>
51 #include <sys/resourcevar.h>
52 #include <sys/signalvar.h>
53 #include <sys/taskqueue.h>
54 #include <sys/ptrace.h>
55 #include <sys/acct.h> /* for acct_process() function prototype */
56 #include <sys/filedesc.h>
57 #include <sys/shm.h>
58 #include <sys/sem.h>
59 #include <sys/jail.h>
60 #include <sys/kern_syscall.h>
61 #include <sys/unistd.h>
62 #include <sys/eventhandler.h>
63 #include <sys/dsched.h>
65 #include <vm/vm.h>
66 #include <vm/vm_param.h>
67 #include <sys/lock.h>
68 #include <vm/pmap.h>
69 #include <vm/vm_map.h>
70 #include <vm/vm_extern.h>
72 #include <sys/refcount.h>
73 #include <sys/spinlock2.h>
75 #include <machine/vmm.h>
77 static void reaplwps(void *context, int dummy);
78 static void reaplwp(struct lwp *lp);
79 static void killlwps(struct lwp *lp);
81 static MALLOC_DEFINE(M_ATEXIT, "atexit", "atexit callback");
84 * callout list for things to do at exit time
86 struct exitlist {
87 exitlist_fn function;
88 TAILQ_ENTRY(exitlist) next;
91 TAILQ_HEAD(exit_list_head, exitlist);
92 static struct exit_list_head exit_list = TAILQ_HEAD_INITIALIZER(exit_list);
95 * LWP reaper data
97 static struct task *deadlwp_task[MAXCPU];
98 static struct lwplist deadlwp_list[MAXCPU];
99 static struct lwkt_token deadlwp_token[MAXCPU];
101 void (*linux_task_drop_callback)(thread_t td);
102 void (*linux_proc_drop_callback)(struct proc *p);
105 * exit --
106 * Death of process.
108 * SYS_EXIT_ARGS(int rval)
111 sys_exit(struct exit_args *uap)
113 exit1(W_EXITCODE(uap->rval, 0));
114 /* NOTREACHED */
118 * Extended exit --
119 * Death of a lwp or process with optional bells and whistles.
122 sys_extexit(struct extexit_args *uap)
124 struct proc *p = curproc;
125 int action, who;
126 int error;
128 action = EXTEXIT_ACTION(uap->how);
129 who = EXTEXIT_WHO(uap->how);
131 /* Check parameters before we might perform some action */
132 switch (who) {
133 case EXTEXIT_PROC:
134 case EXTEXIT_LWP:
135 break;
136 default:
137 return (EINVAL);
140 switch (action) {
141 case EXTEXIT_SIMPLE:
142 break;
143 case EXTEXIT_SETINT:
144 error = copyout(&uap->status, uap->addr, sizeof(uap->status));
145 if (error)
146 return (error);
147 break;
148 default:
149 return (EINVAL);
152 lwkt_gettoken(&p->p_token);
154 switch (who) {
155 case EXTEXIT_LWP:
157 * Be sure only to perform a simple lwp exit if there is at
158 * least one more lwp in the proc, which will call exit1()
159 * later, otherwise the proc will be an UNDEAD and not even a
160 * SZOMB!
162 if (p->p_nthreads > 1) {
163 lwp_exit(0, NULL); /* called w/ p_token held */
164 /* NOT REACHED */
166 /* else last lwp in proc: do the real thing */
167 /* FALLTHROUGH */
168 default: /* to help gcc */
169 case EXTEXIT_PROC:
170 lwkt_reltoken(&p->p_token);
171 exit1(W_EXITCODE(uap->status, 0));
172 /* NOTREACHED */
175 /* NOTREACHED */
176 lwkt_reltoken(&p->p_token); /* safety */
180 * Kill all lwps associated with the current process except the
181 * current lwp. Return an error if we race another thread trying to
182 * do the same thing and lose the race.
184 * If forexec is non-zero the current thread and process flags are
185 * cleaned up so they can be reused.
188 killalllwps(int forexec)
190 struct lwp *lp = curthread->td_lwp;
191 struct proc *p = lp->lwp_proc;
192 int fakestop;
195 * Interlock against P_WEXIT. Only one of the process's thread
196 * is allowed to do the master exit.
198 lwkt_gettoken(&p->p_token);
199 if (p->p_flags & P_WEXIT) {
200 lwkt_reltoken(&p->p_token);
201 return (EALREADY);
203 p->p_flags |= P_WEXIT;
204 lwkt_gettoken(&lp->lwp_token);
207 * Set temporary stopped state in case we are racing a coredump.
208 * Otherwise the coredump may hang forever.
210 if (lp->lwp_mpflags & LWP_MP_WSTOP) {
211 fakestop = 0;
212 } else {
213 atomic_set_int(&lp->lwp_mpflags, LWP_MP_WSTOP);
214 ++p->p_nstopped;
215 fakestop = 1;
216 wakeup(&p->p_nstopped);
220 * Interlock with LWP_MP_WEXIT and kill any remaining LWPs
222 atomic_set_int(&lp->lwp_mpflags, LWP_MP_WEXIT);
223 if (p->p_nthreads > 1)
224 killlwps(lp);
227 * Undo temporary stopped state
229 if (fakestop && (lp->lwp_mpflags & LWP_MP_WSTOP)) {
230 atomic_clear_int(&lp->lwp_mpflags, LWP_MP_WSTOP);
231 --p->p_nstopped;
235 * If doing this for an exec, clean up the remaining thread
236 * (us) for continuing operation after all the other threads
237 * have been killed.
239 if (forexec) {
240 atomic_clear_int(&lp->lwp_mpflags, LWP_MP_WEXIT);
241 p->p_flags &= ~P_WEXIT;
243 lwkt_reltoken(&lp->lwp_token);
244 lwkt_reltoken(&p->p_token);
246 return(0);
250 * Kill all LWPs except the current one. Do not try to signal
251 * LWPs which have exited on their own or have already been
252 * signaled.
254 static void
255 killlwps(struct lwp *lp)
257 struct proc *p = lp->lwp_proc;
258 struct lwp *tlp;
261 * Kill the remaining LWPs. We must send the signal before setting
262 * LWP_MP_WEXIT. The setting of WEXIT is optional but helps reduce
263 * races. tlp must be held across the call as it might block and
264 * allow the target lwp to rip itself out from under our loop.
266 FOREACH_LWP_IN_PROC(tlp, p) {
267 LWPHOLD(tlp);
268 lwkt_gettoken(&tlp->lwp_token);
269 if ((tlp->lwp_mpflags & LWP_MP_WEXIT) == 0) {
270 atomic_set_int(&tlp->lwp_mpflags, LWP_MP_WEXIT);
271 lwpsignal(p, tlp, SIGKILL);
273 lwkt_reltoken(&tlp->lwp_token);
274 LWPRELE(tlp);
278 * Wait for everything to clear out. Also make sure any tstop()s
279 * are signalled (we are holding p_token for the interlock).
281 wakeup(p);
282 while (p->p_nthreads > 1)
283 tsleep(&p->p_nthreads, 0, "killlwps", 0);
287 * Exit: deallocate address space and other resources, change proc state
288 * to zombie, and unlink proc from allproc and parent's lists. Save exit
289 * status and rusage for wait(). Check for child processes and orphan them.
291 void
292 exit1(int rv)
294 struct thread *td = curthread;
295 struct proc *p = td->td_proc;
296 struct lwp *lp = td->td_lwp;
297 struct proc *q;
298 struct proc *pp;
299 struct proc *reproc;
300 struct sysreaper *reap;
301 struct vmspace *vm;
302 struct vnode *vtmp;
303 struct exitlist *ep;
304 int error;
306 lwkt_gettoken(&p->p_token);
308 if (p->p_pid == 1) {
309 kprintf("init died (signal %d, exit %d)\n",
310 WTERMSIG(rv), WEXITSTATUS(rv));
311 panic("Going nowhere without my init!");
313 varsymset_clean(&p->p_varsymset);
314 lockuninit(&p->p_varsymset.vx_lock);
317 * Kill all lwps associated with the current process, return an
318 * error if we race another thread trying to do the same thing
319 * and lose the race.
321 error = killalllwps(0);
322 if (error) {
323 lwp_exit(0, NULL);
324 /* NOT REACHED */
327 /* are we a task leader? */
328 if (p == p->p_leader) {
329 struct kill_args killArgs;
330 killArgs.signum = SIGKILL;
331 q = p->p_peers;
332 while(q) {
333 killArgs.pid = q->p_pid;
335 * The interface for kill is better
336 * than the internal signal
338 sys_kill(&killArgs);
339 q = q->p_peers;
341 while (p->p_peers)
342 tsleep((caddr_t)p, 0, "exit1", 0);
345 #ifdef PGINPROF
346 vmsizmon();
347 #endif
348 STOPEVENT(p, S_EXIT, rv);
349 p->p_flags |= P_POSTEXIT; /* stop procfs stepping */
352 * Check if any loadable modules need anything done at process exit.
353 * e.g. SYSV IPC stuff
354 * XXX what if one of these generates an error?
356 p->p_xstat = rv;
359 * XXX: imho, the eventhandler stuff is much cleaner than this.
360 * Maybe we should move everything to use eventhandler.
362 TAILQ_FOREACH(ep, &exit_list, next)
363 (*ep->function)(td);
365 if (p->p_flags & P_PROFIL)
366 stopprofclock(p);
368 SIGEMPTYSET(p->p_siglist);
369 SIGEMPTYSET(lp->lwp_siglist);
370 if (timevalisset(&p->p_realtimer.it_value))
371 callout_terminate(&p->p_ithandle);
374 * Reset any sigio structures pointing to us as a result of
375 * F_SETOWN with our pid.
377 funsetownlst(&p->p_sigiolst);
380 * Close open files and release open-file table.
381 * This may block!
383 fdfree(p, NULL);
385 if (p->p_leader->p_peers) {
386 q = p->p_leader;
387 while(q->p_peers != p)
388 q = q->p_peers;
389 q->p_peers = p->p_peers;
390 wakeup((caddr_t)p->p_leader);
394 * XXX Shutdown SYSV semaphores
396 semexit(p);
398 /* The next two chunks should probably be moved to vmspace_exit. */
399 vm = p->p_vmspace;
402 * Clean up data related to virtual kernel operation. Clean up
403 * any vkernel context related to the current lwp now so we can
404 * destroy p_vkernel.
406 if (p->p_vkernel) {
407 vkernel_lwp_exit(lp);
408 vkernel_exit(p);
412 * Release the user portion of address space. The exitbump prevents
413 * the vmspace from being completely eradicated (using holdcnt).
414 * This releases references to vnodes, which could cause I/O if the
415 * file has been unlinked. We need to do this early enough that
416 * we can still sleep.
418 * We can't free the entire vmspace as the kernel stack may be mapped
419 * within that space also.
421 * Processes sharing the same vmspace may exit in one order, and
422 * get cleaned up by vmspace_exit() in a different order. The
423 * last exiting process to reach this point releases as much of
424 * the environment as it can, and the last process cleaned up
425 * by vmspace_exit() (which decrements exitingcnt) cleans up the
426 * remainder.
428 * NOTE: Releasing p_token around this call is helpful if the
429 * vmspace had a huge RSS. Otherwise some other process
430 * trying to do an allproc or other scan (like 'ps') may
431 * stall for a long time.
433 lwkt_reltoken(&p->p_token);
434 vmspace_relexit(vm);
435 lwkt_gettoken(&p->p_token);
437 if (SESS_LEADER(p)) {
438 struct session *sp = p->p_session;
440 if (sp->s_ttyvp) {
442 * We are the controlling process. Signal the
443 * foreground process group, drain the controlling
444 * terminal, and revoke access to the controlling
445 * terminal.
447 * NOTE: while waiting for the process group to exit
448 * it is possible that one of the processes in the
449 * group will revoke the tty, so the ttyclosesession()
450 * function will re-check sp->s_ttyvp.
452 if (sp->s_ttyp && (sp->s_ttyp->t_session == sp)) {
453 if (sp->s_ttyp->t_pgrp)
454 pgsignal(sp->s_ttyp->t_pgrp, SIGHUP, 1);
455 ttywait(sp->s_ttyp);
456 ttyclosesession(sp, 1); /* also revoke */
459 * Release the tty. If someone has it open via
460 * /dev/tty then close it (since they no longer can
461 * once we've NULL'd it out).
463 ttyclosesession(sp, 0);
466 * s_ttyp is not zero'd; we use this to indicate
467 * that the session once had a controlling terminal.
468 * (for logging and informational purposes)
471 sp->s_leader = NULL;
473 fixjobc(p, p->p_pgrp, 0);
474 (void)acct_process(p);
475 #ifdef KTRACE
477 * release trace file
479 if (p->p_tracenode)
480 ktrdestroy(&p->p_tracenode);
481 p->p_traceflag = 0;
482 #endif
484 * Release reference to text vnode
486 if ((vtmp = p->p_textvp) != NULL) {
487 p->p_textvp = NULL;
488 vrele(vtmp);
491 /* Release namecache handle to text file */
492 if (p->p_textnch.ncp)
493 cache_drop(&p->p_textnch);
496 * We have to handle PPWAIT here or proc_move_allproc_zombie()
497 * will block on the PHOLD() the parent is doing.
499 * We are using the flag as an interlock so an atomic op is
500 * necessary to synchronize with the parent's cpu.
502 if (p->p_flags & P_PPWAIT) {
503 if (p->p_pptr && p->p_pptr->p_upmap)
504 atomic_add_int(&p->p_pptr->p_upmap->invfork, -1);
505 atomic_clear_int(&p->p_flags, P_PPWAIT);
506 wakeup(p->p_pptr);
510 * Move the process to the zombie list. This will block
511 * until the process p_lock count reaches 0. The process will
512 * not be reaped until TDF_EXITING is set by cpu_thread_exit(),
513 * which is called from cpu_proc_exit().
515 * Interlock against waiters using p_waitgen. We increment
516 * p_waitgen after completing the move of our process to the
517 * zombie list.
519 * WARNING: pp becomes stale when we block, clear it now as a
520 * reminder.
522 proc_move_allproc_zombie(p);
523 pp = p->p_pptr;
524 atomic_add_long(&pp->p_waitgen, 1);
525 pp = NULL;
528 * release controlled reaper for exit if we own it and return the
529 * remaining reaper (the one for us), which we will drop after we
530 * are done.
532 reap = reaper_exit(p);
535 * Reparent all of this process's children to the init process or
536 * to the designated reaper. We must hold the reaper's p_token in
537 * order to safely mess with p_children.
539 * We already hold p->p_token (to remove the children from our list).
541 reproc = NULL;
542 q = LIST_FIRST(&p->p_children);
543 if (q) {
544 reproc = reaper_get(reap);
545 lwkt_gettoken(&reproc->p_token);
546 while ((q = LIST_FIRST(&p->p_children)) != NULL) {
547 PHOLD(q);
548 lwkt_gettoken(&q->p_token);
549 if (q != LIST_FIRST(&p->p_children)) {
550 lwkt_reltoken(&q->p_token);
551 PRELE(q);
552 continue;
554 LIST_REMOVE(q, p_sibling);
555 LIST_INSERT_HEAD(&reproc->p_children, q, p_sibling);
556 q->p_pptr = reproc;
557 q->p_ppid = reproc->p_pid;
558 q->p_sigparent = SIGCHLD;
561 * Traced processes are killed
562 * since their existence means someone is screwing up.
564 if (q->p_flags & P_TRACED) {
565 q->p_flags &= ~P_TRACED;
566 ksignal(q, SIGKILL);
568 lwkt_reltoken(&q->p_token);
569 PRELE(q);
571 lwkt_reltoken(&reproc->p_token);
572 wakeup(reproc);
576 * Save exit status and final rusage info. We no longer add
577 * child rusage info into self times, wait4() and kern_wait()
578 * handles it in order to properly support wait6().
580 calcru_proc(p, &p->p_ru);
581 /*ruadd(&p->p_ru, &p->p_cru); REMOVED */
584 * notify interested parties of our demise.
586 KNOTE(&p->p_klist, NOTE_EXIT);
589 * Notify parent that we're gone. If parent has the PS_NOCLDWAIT
590 * flag set, or if the handler is set to SIG_IGN, notify the reaper
591 * instead (it will handle this situation).
593 * NOTE: The reaper can still be the parent process.
595 * (must reload pp)
597 if (p->p_pptr->p_sigacts->ps_flag & (PS_NOCLDWAIT | PS_CLDSIGIGN)) {
598 if (reproc == NULL)
599 reproc = reaper_get(reap);
600 proc_reparent(p, reproc);
602 if (reproc)
603 PRELE(reproc);
604 if (reap)
605 reaper_drop(reap);
608 * Signal (possibly new) parent.
610 pp = p->p_pptr;
611 PHOLD(pp);
612 if (p->p_sigparent && pp != initproc) {
613 int sig = p->p_sigparent;
615 if (sig != SIGUSR1 && sig != SIGCHLD)
616 sig = SIGCHLD;
617 ksignal(pp, sig);
618 } else {
619 ksignal(pp, SIGCHLD);
621 p->p_flags &= ~P_TRACED;
622 PRELE(pp);
625 * cpu_exit is responsible for clearing curproc, since
626 * it is heavily integrated with the thread/switching sequence.
628 * Other substructures are freed from wait().
630 if (p->p_limit) {
631 struct plimit *rlimit;
633 rlimit = p->p_limit;
634 p->p_limit = NULL;
635 plimit_free(rlimit);
639 * Finally, call machine-dependent code to release as many of the
640 * lwp's resources as we can and halt execution of this thread.
642 * pp is a wild pointer now but still the correct wakeup() target.
643 * lwp_exit() only uses it to send the wakeup() signal to the likely
644 * parent. Any reparenting race that occurs will get a signal
645 * automatically and not be an issue.
647 lwp_exit(1, pp);
651 * Eventually called by every exiting LWP
653 * p->p_token must be held. mplock may be held and will be released.
655 void
656 lwp_exit(int masterexit, void *waddr)
658 struct thread *td = curthread;
659 struct lwp *lp = td->td_lwp;
660 struct proc *p = lp->lwp_proc;
661 int dowake = 0;
664 * Release the current user process designation on the process so
665 * the userland scheduler can work in someone else.
667 p->p_usched->release_curproc(lp);
670 * Destroy the per-thread shared page and remove from any pmaps
671 * it resides in.
673 lwp_userunmap(lp);
676 * lwp_exit() may be called without setting LWP_MP_WEXIT, so
677 * make sure it is set here.
679 ASSERT_LWKT_TOKEN_HELD(&p->p_token);
680 atomic_set_int(&lp->lwp_mpflags, LWP_MP_WEXIT);
683 * Clean up any virtualization
685 if (lp->lwp_vkernel)
686 vkernel_lwp_exit(lp);
688 if (td->td_vmm)
689 vmm_vmdestroy();
692 * Clean up select/poll support
694 kqueue_terminate(&lp->lwp_kqueue);
696 if (td->td_linux_task)
697 linux_task_drop_callback(td);
698 if (masterexit && p->p_linux_mm)
699 linux_proc_drop_callback(p);
702 * Clean up any syscall-cached ucred or rlimit.
704 if (td->td_ucred) {
705 crfree(td->td_ucred);
706 td->td_ucred = NULL;
708 if (td->td_limit) {
709 struct plimit *rlimit;
711 rlimit = td->td_limit;
712 td->td_limit = NULL;
713 plimit_free(rlimit);
717 * Cleanup any cached descriptors for this thread
719 if (p->p_fd)
720 fexitcache(td);
723 * Nobody actually wakes us when the lock
724 * count reaches zero, so just wait one tick.
726 while (lp->lwp_lock > 0)
727 tsleep(lp, 0, "lwpexit", 1);
729 /* Hand down resource usage to our proc */
730 ruadd(&p->p_ru, &lp->lwp_ru);
733 * If we don't hold the process until the LWP is reaped wait*()
734 * may try to dispose of its vmspace before all the LWPs have
735 * actually terminated.
737 PHOLD(p);
740 * Do any remaining work that might block on us. We should be
741 * coded such that further blocking is ok after decrementing
742 * p_nthreads but don't take the chance.
744 dsched_exit_thread(td);
745 biosched_done(curthread);
748 * We have to use the reaper for all the LWPs except the one doing
749 * the master exit. The LWP doing the master exit can just be
750 * left on p_lwps and the process reaper will deal with it
751 * synchronously, which is much faster.
753 * Wakeup anyone waiting on p_nthreads to drop to 1 or 0.
755 * The process is left held until the reaper calls lwp_dispose() on
756 * the lp (after calling lwp_wait()).
758 if (masterexit == 0) {
759 int cpu = mycpuid;
761 lwp_rb_tree_RB_REMOVE(&p->p_lwp_tree, lp);
762 --p->p_nthreads;
763 if ((p->p_flags & P_MAYBETHREADED) && p->p_nthreads <= 1)
764 dowake = 1;
765 lwkt_gettoken(&deadlwp_token[cpu]);
766 LIST_INSERT_HEAD(&deadlwp_list[cpu], lp, u.lwp_reap_entry);
767 taskqueue_enqueue(taskqueue_thread[cpu], deadlwp_task[cpu]);
768 lwkt_reltoken(&deadlwp_token[cpu]);
769 } else {
770 --p->p_nthreads;
771 if ((p->p_flags & P_MAYBETHREADED) && p->p_nthreads <= 1)
772 dowake = 1;
776 * We no longer need p_token.
778 * Tell the userland scheduler that we are going away
780 lwkt_reltoken(&p->p_token);
781 p->p_usched->heuristic_exiting(lp, p);
784 * Issue late wakeups after releasing our token to give us a chance
785 * to deschedule and switch away before another cpu in a wait*()
786 * reaps us. This is done as late as possible to reduce contention.
788 if (dowake)
789 wakeup(&p->p_nthreads);
790 if (waddr)
791 wakeup(waddr);
793 cpu_lwp_exit();
797 * Wait until a lwp is completely dead. The final interlock in this drama
798 * is when TDF_EXITING is set in cpu_thread_exit() just before the final
799 * switchout.
801 * At the point TDF_EXITING is set a complete exit is accomplished when
802 * TDF_RUNNING and TDF_PREEMPT_LOCK are both clear. td_mpflags has two
803 * post-switch interlock flags that can be used to wait for the TDF_
804 * flags to clear.
806 * Returns non-zero on success, and zero if the caller needs to retry
807 * the lwp_wait().
809 static int
810 lwp_wait(struct lwp *lp)
812 struct thread *td = lp->lwp_thread;
813 u_int mpflags;
815 KKASSERT(lwkt_preempted_proc() != lp);
818 * This bit of code uses the thread destruction interlock
819 * managed by lwkt_switch_return() to wait for the lwp's
820 * thread to completely disengage.
822 * It is possible for us to race another cpu core so we
823 * have to do this correctly.
825 for (;;) {
826 mpflags = td->td_mpflags;
827 cpu_ccfence();
828 if (mpflags & TDF_MP_EXITSIG)
829 break;
830 tsleep_interlock(td, 0);
831 if (atomic_cmpset_int(&td->td_mpflags, mpflags,
832 mpflags | TDF_MP_EXITWAIT)) {
833 tsleep(td, PINTERLOCKED, "lwpxt", 0);
838 * We've already waited for the core exit but there can still
839 * be other refs from e.g. process scans and such.
841 if (lp->lwp_lock > 0) {
842 tsleep(lp, 0, "lwpwait1", 1);
843 return(0);
845 if (td->td_refs) {
846 tsleep(td, 0, "lwpwait2", 1);
847 return(0);
851 * Now that we have the thread destruction interlock these flags
852 * really should already be cleaned up, keep a check for safety.
854 * We can't rip its stack out from under it until TDF_EXITING is
855 * set and both TDF_RUNNING and TDF_PREEMPT_LOCK are clear.
856 * TDF_PREEMPT_LOCK must be checked because TDF_RUNNING
857 * will be cleared temporarily if a thread gets preempted.
859 while ((td->td_flags & (TDF_RUNNING |
860 TDF_RUNQ |
861 TDF_PREEMPT_LOCK |
862 TDF_EXITING)) != TDF_EXITING) {
863 tsleep(lp, 0, "lwpwait3", 1);
864 return (0);
867 KASSERT((td->td_flags & (TDF_RUNQ|TDF_TSLEEPQ)) == 0,
868 ("lwp_wait: td %p (%s) still on run or sleep queue",
869 td, td->td_comm));
870 return (1);
874 * Release the resources associated with a lwp.
875 * The lwp must be completely dead.
877 void
878 lwp_dispose(struct lwp *lp)
880 struct thread *td = lp->lwp_thread;
882 KKASSERT(lwkt_preempted_proc() != lp);
883 KKASSERT(lp->lwp_lock == 0);
884 KKASSERT(td->td_refs == 0);
885 KKASSERT((td->td_flags & (TDF_RUNNING |
886 TDF_RUNQ |
887 TDF_PREEMPT_LOCK |
888 TDF_EXITING)) == TDF_EXITING);
890 PRELE(lp->lwp_proc);
891 lp->lwp_proc = NULL;
892 if (td != NULL) {
893 td->td_proc = NULL;
894 td->td_lwp = NULL;
895 lp->lwp_thread = NULL;
896 lwkt_free_thread(td);
898 kfree(lp, M_LWP);
902 sys_wait4(struct wait_args *uap)
904 struct __wrusage wrusage;
905 int error;
906 int status;
907 int options;
908 id_t id;
909 idtype_t idtype;
911 options = uap->options | WEXITED | WTRAPPED;
912 id = uap->pid;
914 if (id == WAIT_ANY) {
915 idtype = P_ALL;
916 } else if (id == WAIT_MYPGRP) {
917 idtype = P_PGID;
918 id = curproc->p_pgid;
919 } else if (id < 0) {
920 idtype = P_PGID;
921 id = -id;
922 } else {
923 idtype = P_PID;
926 error = kern_wait(idtype, id, &status, options, &wrusage,
927 NULL, &uap->sysmsg_result);
929 if (error == 0 && uap->status)
930 error = copyout(&status, uap->status, sizeof(*uap->status));
931 if (error == 0 && uap->rusage) {
932 ruadd(&wrusage.wru_self, &wrusage.wru_children);
933 error = copyout(&wrusage.wru_self, uap->rusage, sizeof(*uap->rusage));
935 return (error);
939 sys_wait6(struct wait6_args *uap)
941 struct __wrusage wrusage;
942 siginfo_t info;
943 siginfo_t *infop;
944 int error;
945 int status;
946 int options;
947 id_t id;
948 idtype_t idtype;
951 * NOTE: wait6() requires WEXITED and WTRAPPED to be specified if
952 * desired.
954 options = uap->options;
955 idtype = uap->idtype;
956 id = uap->id;
957 infop = uap->info ? &info : NULL;
959 switch(idtype) {
960 case P_PID:
961 case P_PGID:
962 if (id == WAIT_MYPGRP) {
963 idtype = P_PGID;
964 id = curproc->p_pgid;
966 break;
967 default:
968 /* let kern_wait deal with the remainder */
969 break;
972 error = kern_wait(idtype, id, &status, options,
973 &wrusage, infop, &uap->sysmsg_result);
975 if (error == 0 && uap->status)
976 error = copyout(&status, uap->status, sizeof(*uap->status));
977 if (error == 0 && uap->wrusage)
978 error = copyout(&wrusage, uap->wrusage, sizeof(*uap->wrusage));
979 if (error == 0 && uap->info)
980 error = copyout(&info, uap->info, sizeof(*uap->info));
981 return (error);
985 * kernel wait*() system call support
988 kern_wait(idtype_t idtype, id_t id, int *status, int options,
989 struct __wrusage *wrusage, siginfo_t *info, int *res)
991 struct thread *td = curthread;
992 struct lwp *lp;
993 struct proc *q = td->td_proc;
994 struct proc *p, *t;
995 struct ucred *cr;
996 struct pargs *pa;
997 struct sigacts *ps;
998 int nfound, error;
999 long waitgen;
1002 * Must not have extraneous options. Must have at least one
1003 * matchable option.
1005 if (options &~ (WUNTRACED|WNOHANG|WCONTINUED|WLINUXCLONE|WSTOPPED|
1006 WEXITED|WTRAPPED|WNOWAIT)) {
1007 return (EINVAL);
1009 if ((options & (WEXITED | WUNTRACED | WCONTINUED | WTRAPPED)) == 0) {
1010 return (EINVAL);
1014 * Protect the q->p_children list
1016 lwkt_gettoken(&q->p_token);
1017 loop:
1019 * All sorts of things can change due to blocking so we have to loop
1020 * all the way back up here.
1022 * The problem is that if a process group is stopped and the parent
1023 * is doing a wait*(..., WUNTRACED, ...), it will see the STOP
1024 * of the child and then stop itself when it tries to return from the
1025 * system call. When the process group is resumed the parent will
1026 * then get the STOP status even though the child has now resumed
1027 * (a followup wait*() will get the CONT status).
1029 * Previously the CONT would overwrite the STOP because the tstop
1030 * was handled within tsleep(), and the parent would only see
1031 * the CONT when both are stopped and continued together. This little
1032 * two-line hack restores this effect.
1034 * No locks are held so we can safely block the process here.
1036 if (STOPLWP(q, td->td_lwp))
1037 tstop();
1039 nfound = 0;
1042 * Loop on children.
1044 * NOTE: We don't want to break q's p_token in the loop for the
1045 * case where no children are found or we risk breaking the
1046 * interlock between child and parent.
1048 waitgen = atomic_fetchadd_long(&q->p_waitgen, 0x80000000);
1049 LIST_FOREACH(p, &q->p_children, p_sibling) {
1051 * Skip children that another thread is already uninterruptably
1052 * reaping.
1054 if (PWAITRES_PENDING(p))
1055 continue;
1058 * Filter, (p) will be held on fall-through. Try to optimize
1059 * this to avoid the atomic op until we are pretty sure we
1060 * want this process.
1062 switch(idtype) {
1063 case P_ALL:
1064 PHOLD(p);
1065 break;
1066 case P_PID:
1067 if (p->p_pid != (pid_t)id)
1068 continue;
1069 PHOLD(p);
1070 break;
1071 case P_PGID:
1072 if (p->p_pgid != (pid_t)id)
1073 continue;
1074 PHOLD(p);
1075 break;
1076 case P_SID:
1077 PHOLD(p);
1078 if (p->p_session && p->p_session->s_sid != (pid_t)id) {
1079 PRELE(p);
1080 continue;
1082 break;
1083 case P_UID:
1084 PHOLD(p);
1085 if (p->p_ucred->cr_uid != (uid_t)id) {
1086 PRELE(p);
1087 continue;
1089 break;
1090 case P_GID:
1091 PHOLD(p);
1092 if (p->p_ucred->cr_gid != (gid_t)id) {
1093 PRELE(p);
1094 continue;
1096 break;
1097 case P_JAILID:
1098 PHOLD(p);
1099 if (p->p_ucred->cr_prison &&
1100 p->p_ucred->cr_prison->pr_id != (int)id) {
1101 PRELE(p);
1102 continue;
1104 break;
1105 default:
1106 /* unsupported filter */
1107 continue;
1109 /* (p) is held at this point */
1112 * This special case handles a kthread spawned by linux_clone
1113 * (see linux_misc.c). The linux_wait4 and linux_waitpid
1114 * functions need to be able to distinguish between waiting
1115 * on a process and waiting on a thread. It is a thread if
1116 * p_sigparent is not SIGCHLD, and the WLINUXCLONE option
1117 * signifies we want to wait for threads and not processes.
1119 if ((p->p_sigparent != SIGCHLD) ^
1120 ((options & WLINUXCLONE) != 0)) {
1121 PRELE(p);
1122 continue;
1125 nfound++;
1126 if (p->p_stat == SZOMB && (options & WEXITED)) {
1128 * We may go into SZOMB with threads still present.
1129 * We must wait for them to exit before we can reap
1130 * the master thread, otherwise we may race reaping
1131 * non-master threads.
1133 * Only this routine can remove a process from
1134 * the zombie list and destroy it.
1136 * This function will fail after sleeping if another
1137 * thread owns the zombie lock. This function will
1138 * fail immediately or after sleeping if another
1139 * thread owns or obtains ownership of the reap via
1140 * WAITRES.
1142 if (PHOLDZOMB(p)) {
1143 PRELE(p);
1144 goto loop;
1146 lwkt_gettoken(&p->p_token);
1147 if (p->p_pptr != q) {
1148 lwkt_reltoken(&p->p_token);
1149 PRELE(p);
1150 PRELEZOMB(p);
1151 goto loop;
1155 * We are the reaper, from this point on the reap
1156 * cannot be aborted.
1158 PWAITRES_SET(p);
1159 while (p->p_nthreads > 0) {
1160 tsleep(&p->p_nthreads, 0, "lwpzomb", hz);
1164 * Reap any LWPs left in p->p_lwps. This is usually
1165 * just the last LWP. This must be done before
1166 * we loop on p_lock since the lwps hold a ref on
1167 * it as a vmspace interlock.
1169 * Once that is accomplished p_nthreads had better
1170 * be zero.
1172 while ((lp = RB_ROOT(&p->p_lwp_tree)) != NULL) {
1174 * Make sure no one is using this lwp, before
1175 * it is removed from the tree. If we didn't
1176 * wait it here, lwp tree iteration with
1177 * blocking operation would be broken.
1179 while (lp->lwp_lock > 0)
1180 tsleep(lp, 0, "zomblwp", 1);
1181 lwp_rb_tree_RB_REMOVE(&p->p_lwp_tree, lp);
1182 reaplwp(lp);
1184 KKASSERT(p->p_nthreads == 0);
1187 * Don't do anything really bad until all references
1188 * to the process go away. This may include other
1189 * LWPs which are still in the process of being
1190 * reaped. We can't just pull the rug out from under
1191 * them because they may still be using the VM space.
1193 * Certain kernel facilities such as /proc will also
1194 * put a hold on the process for short periods of
1195 * time.
1197 PRELE(p); /* from top of loop */
1198 PSTALL(p, "reap3", 1); /* 1 ref (for PZOMBHOLD) */
1200 /* Take care of our return values. */
1201 *res = p->p_pid;
1203 *status = p->p_xstat;
1204 wrusage->wru_self = p->p_ru;
1205 wrusage->wru_children = p->p_cru;
1207 if (info) {
1208 bzero(info, sizeof(*info));
1209 info->si_errno = 0;
1210 info->si_signo = SIGCHLD;
1211 if (WIFEXITED(p->p_xstat)) {
1212 info->si_code = CLD_EXITED;
1213 info->si_status =
1214 WEXITSTATUS(p->p_xstat);
1215 } else {
1216 info->si_code = CLD_KILLED;
1217 info->si_status = WTERMSIG(p->p_xstat);
1219 info->si_pid = p->p_pid;
1220 info->si_uid = p->p_ucred->cr_uid;
1224 * WNOWAIT shortcuts to done here, leaving the
1225 * child on the zombie list.
1227 if (options & WNOWAIT) {
1228 lwkt_reltoken(&p->p_token);
1229 PRELEZOMB(p);
1230 error = 0;
1231 goto done;
1235 * If we got the child via a ptrace 'attach',
1236 * we need to give it back to the old parent.
1238 if (p->p_oppid && (t = pfind(p->p_oppid)) != NULL) {
1239 p->p_oppid = 0;
1240 proc_reparent(p, t);
1241 ksignal(t, SIGCHLD);
1242 wakeup((caddr_t)t);
1243 PRELE(t);
1244 lwkt_reltoken(&p->p_token);
1245 PRELEZOMB(p);
1246 error = 0;
1247 goto done;
1251 * Unlink the proc from its process group so that
1252 * the following operations won't lead to an
1253 * inconsistent state for processes running down
1254 * the zombie list.
1256 proc_remove_zombie(p);
1257 proc_userunmap(p);
1258 lwkt_reltoken(&p->p_token);
1259 leavepgrp(p);
1261 p->p_xstat = 0;
1262 ruadd(&q->p_cru, &p->p_ru);
1263 ruadd(&q->p_cru, &p->p_cru);
1266 * Decrement the count of procs running with this uid.
1268 chgproccnt(p->p_ucred->cr_ruidinfo, -1, 0);
1271 * Free up credentials. p_spin is required to
1272 * avoid races against allproc scans.
1274 spin_lock(&p->p_spin);
1275 cr = p->p_ucred;
1276 p->p_ucred = NULL;
1277 spin_unlock(&p->p_spin);
1278 crfree(cr);
1281 * Remove unused arguments
1283 pa = p->p_args;
1284 p->p_args = NULL;
1285 if (pa && refcount_release(&pa->ar_ref)) {
1286 kfree(pa, M_PARGS);
1287 pa = NULL;
1290 ps = p->p_sigacts;
1291 p->p_sigacts = NULL;
1292 if (ps && refcount_release(&ps->ps_refcnt)) {
1293 kfree(ps, M_SUBPROC);
1294 ps = NULL;
1298 * Our exitingcount was incremented when the process
1299 * became a zombie, now that the process has been
1300 * removed from (almost) all lists we should be able
1301 * to safely destroy its vmspace. Wait for any current
1302 * holders to go away (so the vmspace remains stable),
1303 * then scrap it.
1305 * NOTE: Releasing the parent process (q) p_token
1306 * across the vmspace_exitfree() call is
1307 * important here to reduce stalls on
1308 * interactions with (q) (such as
1309 * fork/exec/wait or 'ps').
1311 PSTALL(p, "reap4", 1);
1312 lwkt_reltoken(&q->p_token);
1313 vmspace_exitfree(p);
1314 lwkt_gettoken(&q->p_token);
1315 PSTALL(p, "reap5", 1);
1318 * NOTE: We have to officially release ZOMB in order
1319 * to ensure that a racing thread in kern_wait()
1320 * which blocked on ZOMB is woken up.
1322 PRELEZOMB(p);
1323 kfree(p->p_uidpcpu, M_SUBPROC);
1324 kfree(p, M_PROC);
1325 atomic_add_int(&nprocs, -1);
1326 error = 0;
1327 goto done;
1331 * Process has not yet exited
1333 if ((p->p_stat == SSTOP || p->p_stat == SCORE) &&
1334 (p->p_flags & P_WAITED) == 0 &&
1335 (((p->p_flags & P_TRACED) && (options & WTRAPPED)) ||
1336 (options & WSTOPPED))) {
1337 lwkt_gettoken(&p->p_token);
1338 if (p->p_pptr != q) {
1339 lwkt_reltoken(&p->p_token);
1340 PRELE(p);
1341 goto loop;
1343 if ((p->p_stat != SSTOP && p->p_stat != SCORE) ||
1344 (p->p_flags & P_WAITED) != 0 ||
1345 ((p->p_flags & P_TRACED) == 0 &&
1346 (options & WUNTRACED) == 0)) {
1347 lwkt_reltoken(&p->p_token);
1348 PRELE(p);
1349 goto loop;
1353 * Don't set P_WAITED if WNOWAIT specified, leaving
1354 * the process in a waitable state.
1356 if ((options & WNOWAIT) == 0)
1357 p->p_flags |= P_WAITED;
1359 *res = p->p_pid;
1360 *status = W_STOPCODE(p->p_xstat);
1361 /* Zero rusage so we get something consistent. */
1362 bzero(wrusage, sizeof(*wrusage));
1363 error = 0;
1364 if (info) {
1365 bzero(info, sizeof(*info));
1366 if (p->p_flags & P_TRACED)
1367 info->si_code = CLD_TRAPPED;
1368 else
1369 info->si_code = CLD_STOPPED;
1370 info->si_status = WSTOPSIG(p->p_xstat);
1372 lwkt_reltoken(&p->p_token);
1373 PRELE(p);
1374 goto done;
1376 if ((options & WCONTINUED) && (p->p_flags & P_CONTINUED)) {
1377 lwkt_gettoken(&p->p_token);
1378 if (p->p_pptr != q) {
1379 lwkt_reltoken(&p->p_token);
1380 PRELE(p);
1381 goto loop;
1383 if ((p->p_flags & P_CONTINUED) == 0) {
1384 lwkt_reltoken(&p->p_token);
1385 PRELE(p);
1386 goto loop;
1389 *res = p->p_pid;
1392 * Don't set P_WAITED if WNOWAIT specified, leaving
1393 * the process in a waitable state.
1395 if ((options & WNOWAIT) == 0)
1396 p->p_flags &= ~P_CONTINUED;
1398 *status = SIGCONT;
1399 error = 0;
1400 if (info) {
1401 bzero(info, sizeof(*info));
1402 info->si_code = CLD_CONTINUED;
1403 info->si_status = WSTOPSIG(p->p_xstat);
1405 lwkt_reltoken(&p->p_token);
1406 PRELE(p);
1407 goto done;
1409 PRELE(p);
1411 if (nfound == 0) {
1412 error = ECHILD;
1413 goto done;
1415 if (options & WNOHANG) {
1416 *res = 0;
1417 error = 0;
1418 goto done;
1422 * Wait for signal - interlocked using q->p_waitgen.
1424 error = 0;
1425 while ((waitgen & 0x7FFFFFFF) == (q->p_waitgen & 0x7FFFFFFF)) {
1426 tsleep_interlock(q, PCATCH);
1427 waitgen = atomic_fetchadd_long(&q->p_waitgen, 0x80000000);
1428 if ((waitgen & 0x7FFFFFFF) == (q->p_waitgen & 0x7FFFFFFF)) {
1429 error = tsleep(q, PCATCH | PINTERLOCKED, "wait", 0);
1430 break;
1433 if (error) {
1434 done:
1435 lwkt_reltoken(&q->p_token);
1436 return (error);
1438 goto loop;
1442 * Change child's parent process to parent.
1444 * p_children/p_sibling requires the parent's token, and
1445 * changing pptr requires the child's token, so we have to
1446 * get three tokens to do this operation. We also need to
1447 * hold pointers that might get ripped out from under us to
1448 * preserve structural integrity.
1450 * It is possible to race another reparent or disconnect or other
1451 * similar operation. We must retry when this situation occurs.
1452 * Once we successfully reparent the process we no longer care
1453 * about any races.
1455 void
1456 proc_reparent(struct proc *child, struct proc *parent)
1458 struct proc *opp;
1460 PHOLD(parent);
1461 while ((opp = child->p_pptr) != parent) {
1462 PHOLD(opp);
1463 lwkt_gettoken(&opp->p_token);
1464 lwkt_gettoken(&child->p_token);
1465 lwkt_gettoken(&parent->p_token);
1466 if (child->p_pptr != opp) {
1467 lwkt_reltoken(&parent->p_token);
1468 lwkt_reltoken(&child->p_token);
1469 lwkt_reltoken(&opp->p_token);
1470 PRELE(opp);
1471 continue;
1473 LIST_REMOVE(child, p_sibling);
1474 LIST_INSERT_HEAD(&parent->p_children, child, p_sibling);
1475 child->p_pptr = parent;
1476 child->p_ppid = parent->p_pid;
1477 lwkt_reltoken(&parent->p_token);
1478 lwkt_reltoken(&child->p_token);
1479 lwkt_reltoken(&opp->p_token);
1480 if (LIST_EMPTY(&opp->p_children))
1481 wakeup(opp);
1482 PRELE(opp);
1483 break;
1485 PRELE(parent);
1489 * The next two functions are to handle adding/deleting items on the
1490 * exit callout list
1492 * at_exit():
1493 * Take the arguments given and put them onto the exit callout list,
1494 * However first make sure that it's not already there.
1495 * returns 0 on success.
1499 at_exit(exitlist_fn function)
1501 struct exitlist *ep;
1503 #ifdef INVARIANTS
1504 /* Be noisy if the programmer has lost track of things */
1505 if (rm_at_exit(function))
1506 kprintf("WARNING: exit callout entry (%p) already present\n",
1507 function);
1508 #endif
1509 ep = kmalloc(sizeof(*ep), M_ATEXIT, M_NOWAIT);
1510 if (ep == NULL)
1511 return (ENOMEM);
1512 ep->function = function;
1513 TAILQ_INSERT_TAIL(&exit_list, ep, next);
1514 return (0);
1518 * Scan the exit callout list for the given item and remove it.
1519 * Returns the number of items removed (0 or 1)
1522 rm_at_exit(exitlist_fn function)
1524 struct exitlist *ep;
1526 TAILQ_FOREACH(ep, &exit_list, next) {
1527 if (ep->function == function) {
1528 TAILQ_REMOVE(&exit_list, ep, next);
1529 kfree(ep, M_ATEXIT);
1530 return(1);
1533 return (0);
1537 * LWP reaper related code.
1539 static void
1540 reaplwps(void *context, int dummy)
1542 struct lwplist *lwplist = context;
1543 struct lwp *lp;
1544 int cpu = mycpuid;
1546 lwkt_gettoken(&deadlwp_token[cpu]);
1547 while ((lp = LIST_FIRST(lwplist))) {
1548 LIST_REMOVE(lp, u.lwp_reap_entry);
1549 reaplwp(lp);
1551 lwkt_reltoken(&deadlwp_token[cpu]);
1554 static void
1555 reaplwp(struct lwp *lp)
1557 while (lwp_wait(lp) == 0)
1559 lwp_dispose(lp);
1562 static void
1563 deadlwp_init(void)
1565 int cpu;
1567 for (cpu = 0; cpu < ncpus; cpu++) {
1568 lwkt_token_init(&deadlwp_token[cpu], "deadlwpl");
1569 LIST_INIT(&deadlwp_list[cpu]);
1570 deadlwp_task[cpu] = kmalloc(sizeof(*deadlwp_task[cpu]),
1571 M_DEVBUF, M_WAITOK);
1572 TASK_INIT(deadlwp_task[cpu], 0, reaplwps, &deadlwp_list[cpu]);
1576 SYSINIT(deadlwpinit, SI_SUB_CONFIGURE, SI_ORDER_ANY, deadlwp_init, NULL);