HAMMER - Rework write pipelining
[dragonfly.git] / sys / vfs / hammer / hammer_object.c
blobb54b6bb04b066b3b1f5e1422abf02fb6f005cfe1
1 /*
2 * Copyright (c) 2007-2008 The DragonFly Project. All rights reserved.
3 *
4 * This code is derived from software contributed to The DragonFly Project
5 * by Matthew Dillon <dillon@backplane.com>
6 *
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following conditions
9 * are met:
11 * 1. Redistributions of source code must retain the above copyright
12 * notice, this list of conditions and the following disclaimer.
13 * 2. Redistributions in binary form must reproduce the above copyright
14 * notice, this list of conditions and the following disclaimer in
15 * the documentation and/or other materials provided with the
16 * distribution.
17 * 3. Neither the name of The DragonFly Project nor the names of its
18 * contributors may be used to endorse or promote products derived
19 * from this software without specific, prior written permission.
21 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
22 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
23 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
24 * FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
25 * COPYRIGHT HOLDERS OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
26 * INCIDENTAL, SPECIAL, EXEMPLARY OR CONSEQUENTIAL DAMAGES (INCLUDING,
27 * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
28 * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
29 * AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
30 * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT
31 * OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
32 * SUCH DAMAGE.
34 * $DragonFly: src/sys/vfs/hammer/hammer_object.c,v 1.97 2008/09/23 22:28:56 dillon Exp $
37 #include "hammer.h"
39 static int hammer_mem_lookup(hammer_cursor_t cursor);
40 static void hammer_mem_first(hammer_cursor_t cursor);
41 static int hammer_frontend_trunc_callback(hammer_record_t record,
42 void *data __unused);
43 static int hammer_bulk_scan_callback(hammer_record_t record, void *data);
44 static int hammer_record_needs_overwrite_delete(hammer_record_t record);
45 static int hammer_delete_general(hammer_cursor_t cursor, hammer_inode_t ip,
46 hammer_btree_leaf_elm_t leaf);
48 struct rec_trunc_info {
49 u_int16_t rec_type;
50 int64_t trunc_off;
53 struct hammer_bulk_info {
54 hammer_record_t record;
55 struct hammer_btree_leaf_elm leaf;
59 * Red-black tree support. Comparison code for insertion.
61 static int
62 hammer_rec_rb_compare(hammer_record_t rec1, hammer_record_t rec2)
64 if (rec1->leaf.base.rec_type < rec2->leaf.base.rec_type)
65 return(-1);
66 if (rec1->leaf.base.rec_type > rec2->leaf.base.rec_type)
67 return(1);
69 if (rec1->leaf.base.key < rec2->leaf.base.key)
70 return(-1);
71 if (rec1->leaf.base.key > rec2->leaf.base.key)
72 return(1);
75 * For search & insertion purposes records deleted by the
76 * frontend or deleted/committed by the backend are silently
77 * ignored. Otherwise pipelined insertions will get messed
78 * up.
80 * rec1 is greater then rec2 if rec1 is marked deleted.
81 * rec1 is less then rec2 if rec2 is marked deleted.
83 * Multiple deleted records may be present, do not return 0
84 * if both are marked deleted.
86 if (rec1->flags & (HAMMER_RECF_DELETED_FE | HAMMER_RECF_DELETED_BE |
87 HAMMER_RECF_COMMITTED)) {
88 return(1);
90 if (rec2->flags & (HAMMER_RECF_DELETED_FE | HAMMER_RECF_DELETED_BE |
91 HAMMER_RECF_COMMITTED)) {
92 return(-1);
95 return(0);
99 * Basic record comparison code similar to hammer_btree_cmp().
101 static int
102 hammer_rec_cmp(hammer_base_elm_t elm, hammer_record_t rec)
104 if (elm->rec_type < rec->leaf.base.rec_type)
105 return(-3);
106 if (elm->rec_type > rec->leaf.base.rec_type)
107 return(3);
109 if (elm->key < rec->leaf.base.key)
110 return(-2);
111 if (elm->key > rec->leaf.base.key)
112 return(2);
115 * Never match against an item deleted by the frontend
116 * or backend, or committed by the backend.
118 * elm is less then rec if rec is marked deleted.
120 if (rec->flags & (HAMMER_RECF_DELETED_FE | HAMMER_RECF_DELETED_BE |
121 HAMMER_RECF_COMMITTED)) {
122 return(-1);
124 return(0);
128 * Ranged scan to locate overlapping record(s). This is used by
129 * hammer_ip_get_bulk() to locate an overlapping record. We have
130 * to use a ranged scan because the keys for data records with the
131 * same file base offset can be different due to differing data_len's.
133 * NOTE: The base file offset of a data record is (key - data_len), not (key).
135 static int
136 hammer_rec_overlap_cmp(hammer_record_t rec, void *data)
138 struct hammer_bulk_info *info = data;
139 hammer_btree_leaf_elm_t leaf = &info->leaf;
141 if (rec->leaf.base.rec_type < leaf->base.rec_type)
142 return(-3);
143 if (rec->leaf.base.rec_type > leaf->base.rec_type)
144 return(3);
147 * Overlap compare
149 if (leaf->base.rec_type == HAMMER_RECTYPE_DATA) {
150 /* rec_beg >= leaf_end */
151 if (rec->leaf.base.key - rec->leaf.data_len >= leaf->base.key)
152 return(2);
153 /* rec_end <= leaf_beg */
154 if (rec->leaf.base.key <= leaf->base.key - leaf->data_len)
155 return(-2);
156 } else {
157 if (rec->leaf.base.key < leaf->base.key)
158 return(-2);
159 if (rec->leaf.base.key > leaf->base.key)
160 return(2);
164 * We have to return 0 at this point, even if DELETED_FE is set,
165 * because returning anything else will cause the scan to ignore
166 * one of the branches when we really want it to check both.
168 return(0);
172 * RB_SCAN comparison code for hammer_mem_first(). The argument order
173 * is reversed so the comparison result has to be negated. key_beg and
174 * key_end are both range-inclusive.
176 * Localized deletions are not cached in-memory.
178 static
180 hammer_rec_scan_cmp(hammer_record_t rec, void *data)
182 hammer_cursor_t cursor = data;
183 int r;
185 r = hammer_rec_cmp(&cursor->key_beg, rec);
186 if (r > 1)
187 return(-1);
188 r = hammer_rec_cmp(&cursor->key_end, rec);
189 if (r < -1)
190 return(1);
191 return(0);
195 * This compare function is used when simply looking up key_beg.
197 static
199 hammer_rec_find_cmp(hammer_record_t rec, void *data)
201 hammer_cursor_t cursor = data;
202 int r;
204 r = hammer_rec_cmp(&cursor->key_beg, rec);
205 if (r > 1)
206 return(-1);
207 if (r < -1)
208 return(1);
209 return(0);
213 * Locate blocks within the truncation range. Partial blocks do not count.
215 static
217 hammer_rec_trunc_cmp(hammer_record_t rec, void *data)
219 struct rec_trunc_info *info = data;
221 if (rec->leaf.base.rec_type < info->rec_type)
222 return(-1);
223 if (rec->leaf.base.rec_type > info->rec_type)
224 return(1);
226 switch(rec->leaf.base.rec_type) {
227 case HAMMER_RECTYPE_DB:
229 * DB record key is not beyond the truncation point, retain.
231 if (rec->leaf.base.key < info->trunc_off)
232 return(-1);
233 break;
234 case HAMMER_RECTYPE_DATA:
236 * DATA record offset start is not beyond the truncation point,
237 * retain.
239 if (rec->leaf.base.key - rec->leaf.data_len < info->trunc_off)
240 return(-1);
241 break;
242 default:
243 panic("hammer_rec_trunc_cmp: unexpected record type");
247 * The record start is >= the truncation point, return match,
248 * the record should be destroyed.
250 return(0);
253 RB_GENERATE(hammer_rec_rb_tree, hammer_record, rb_node, hammer_rec_rb_compare);
256 * Allocate a record for the caller to finish filling in. The record is
257 * returned referenced.
259 hammer_record_t
260 hammer_alloc_mem_record(hammer_inode_t ip, int data_len)
262 hammer_record_t record;
263 hammer_mount_t hmp;
265 hmp = ip->hmp;
266 ++hammer_count_records;
267 record = kmalloc(sizeof(*record), hmp->m_misc,
268 M_WAITOK | M_ZERO | M_USE_RESERVE);
269 record->flush_state = HAMMER_FST_IDLE;
270 record->ip = ip;
271 record->leaf.base.btype = HAMMER_BTREE_TYPE_RECORD;
272 record->leaf.data_len = data_len;
273 hammer_ref(&record->lock);
275 if (data_len) {
276 record->data = kmalloc(data_len, hmp->m_misc, M_WAITOK | M_ZERO);
277 record->flags |= HAMMER_RECF_ALLOCDATA;
278 ++hammer_count_record_datas;
281 return (record);
284 void
285 hammer_wait_mem_record_ident(hammer_record_t record, const char *ident)
287 while (record->flush_state == HAMMER_FST_FLUSH) {
288 record->flags |= HAMMER_RECF_WANTED;
289 tsleep(record, 0, ident, 0);
294 * Called from the backend, hammer_inode.c, after a record has been
295 * flushed to disk. The record has been exclusively locked by the
296 * caller and interlocked with BE.
298 * We clean up the state, unlock, and release the record (the record
299 * was referenced by the fact that it was in the HAMMER_FST_FLUSH state).
301 void
302 hammer_flush_record_done(hammer_record_t record, int error)
304 hammer_inode_t target_ip;
306 KKASSERT(record->flush_state == HAMMER_FST_FLUSH);
307 KKASSERT(record->flags & HAMMER_RECF_INTERLOCK_BE);
310 * If an error occured, the backend was unable to sync the
311 * record to its media. Leave the record intact.
313 if (error) {
314 hammer_critical_error(record->ip->hmp, record->ip, error,
315 "while flushing record");
318 --record->flush_group->refs;
319 record->flush_group = NULL;
322 * Adjust the flush state and dependancy based on success or
323 * failure.
325 if (record->flags & (HAMMER_RECF_DELETED_BE | HAMMER_RECF_COMMITTED)) {
326 if ((target_ip = record->target_ip) != NULL) {
327 TAILQ_REMOVE(&target_ip->target_list, record,
328 target_entry);
329 record->target_ip = NULL;
330 hammer_test_inode(target_ip);
332 record->flush_state = HAMMER_FST_IDLE;
333 } else {
334 if (record->target_ip) {
335 record->flush_state = HAMMER_FST_SETUP;
336 hammer_test_inode(record->ip);
337 hammer_test_inode(record->target_ip);
338 } else {
339 record->flush_state = HAMMER_FST_IDLE;
342 record->flags &= ~HAMMER_RECF_INTERLOCK_BE;
345 * Cleanup
347 if (record->flags & HAMMER_RECF_WANTED) {
348 record->flags &= ~HAMMER_RECF_WANTED;
349 wakeup(record);
351 hammer_rel_mem_record(record);
355 * Release a memory record. Records marked for deletion are immediately
356 * removed from the RB-Tree but otherwise left intact until the last ref
357 * goes away.
359 void
360 hammer_rel_mem_record(struct hammer_record *record)
362 hammer_mount_t hmp;
363 hammer_reserve_t resv;
364 hammer_inode_t ip;
365 hammer_inode_t target_ip;
366 int diddrop;
368 hammer_unref(&record->lock);
370 if (record->lock.refs == 0) {
372 * Upon release of the last reference wakeup any waiters.
373 * The record structure may get destroyed so callers will
374 * loop up and do a relookup.
376 * WARNING! Record must be removed from RB-TREE before we
377 * might possibly block. hammer_test_inode() can block!
379 ip = record->ip;
380 hmp = ip->hmp;
383 * Upon release of the last reference a record marked deleted
384 * by the front or backend, or committed by the backend,
385 * is destroyed.
387 if (record->flags & (HAMMER_RECF_DELETED_FE |
388 HAMMER_RECF_DELETED_BE |
389 HAMMER_RECF_COMMITTED)) {
390 KKASSERT(ip->lock.refs > 0);
391 KKASSERT(record->flush_state != HAMMER_FST_FLUSH);
394 * target_ip may have zero refs, we have to ref it
395 * to prevent it from being ripped out from under
396 * us.
398 if ((target_ip = record->target_ip) != NULL) {
399 TAILQ_REMOVE(&target_ip->target_list,
400 record, target_entry);
401 record->target_ip = NULL;
402 hammer_ref(&target_ip->lock);
406 * Remove the record from the B-Tree
408 if (record->flags & HAMMER_RECF_ONRBTREE) {
409 RB_REMOVE(hammer_rec_rb_tree,
410 &record->ip->rec_tree,
411 record);
412 record->flags &= ~HAMMER_RECF_ONRBTREE;
413 KKASSERT(ip->rsv_recs > 0);
414 diddrop = 1;
415 } else {
416 diddrop = 0;
420 * We must wait for any direct-IO to complete before
421 * we can destroy the record because the bio may
422 * have a reference to it.
424 if (record->flags &
425 (HAMMER_RECF_DIRECT_IO | HAMMER_RECF_DIRECT_INVAL)) {
426 hammer_io_direct_wait(record);
430 * Account for the completion after the direct IO
431 * has completed.
433 if (diddrop) {
434 --hmp->rsv_recs;
435 --ip->rsv_recs;
436 hmp->rsv_databytes -= record->leaf.data_len;
438 if (RB_EMPTY(&record->ip->rec_tree)) {
439 record->ip->flags &= ~HAMMER_INODE_XDIRTY;
440 record->ip->sync_flags &= ~HAMMER_INODE_XDIRTY;
441 hammer_test_inode(record->ip);
443 if (ip->rsv_recs == hammer_limit_inode_recs - 1)
444 wakeup(&ip->rsv_recs);
448 * Do this test after removing record from the B-Tree.
450 if (target_ip) {
451 hammer_test_inode(target_ip);
452 hammer_rel_inode(target_ip, 0);
455 if (record->flags & HAMMER_RECF_ALLOCDATA) {
456 --hammer_count_record_datas;
457 kfree(record->data, hmp->m_misc);
458 record->flags &= ~HAMMER_RECF_ALLOCDATA;
462 * Release the reservation.
464 * If the record was not committed we can theoretically
465 * undo the reservation. However, doing so might
466 * create weird edge cases with the ordering of
467 * direct writes because the related buffer cache
468 * elements are per-vnode. So we don't try.
470 if ((resv = record->resv) != NULL) {
471 /* XXX undo leaf.data_offset,leaf.data_len */
472 hammer_blockmap_reserve_complete(hmp, resv);
473 record->resv = NULL;
475 record->data = NULL;
476 --hammer_count_records;
477 kfree(record, hmp->m_misc);
483 * Record visibility depends on whether the record is being accessed by
484 * the backend or the frontend. Backend tests ignore the frontend delete
485 * flag. Frontend tests do NOT ignore the backend delete/commit flags and
486 * must also check for commit races.
488 * Return non-zero if the record is visible, zero if it isn't or if it is
489 * deleted. Returns 0 if the record has been comitted (unless the special
490 * delete-visibility flag is set). A committed record must be located
491 * via the media B-Tree. Returns non-zero if the record is good.
493 * If HAMMER_CURSOR_DELETE_VISIBILITY is set we allow deleted memory
494 * records to be returned. This is so pending deletions are detected
495 * when using an iterator to locate an unused hash key, or when we need
496 * to locate historical records on-disk to destroy.
498 static __inline
500 hammer_ip_iterate_mem_good(hammer_cursor_t cursor, hammer_record_t record)
502 if (cursor->flags & HAMMER_CURSOR_DELETE_VISIBILITY)
503 return(1);
504 if (cursor->flags & HAMMER_CURSOR_BACKEND) {
505 if (record->flags & (HAMMER_RECF_DELETED_BE |
506 HAMMER_RECF_COMMITTED)) {
507 return(0);
509 } else {
510 if (record->flags & (HAMMER_RECF_DELETED_FE |
511 HAMMER_RECF_DELETED_BE |
512 HAMMER_RECF_COMMITTED)) {
513 return(0);
516 return(1);
520 * This callback is used as part of the RB_SCAN function for in-memory
521 * records. We terminate it (return -1) as soon as we get a match.
523 * This routine is used by frontend code.
525 * The primary compare code does not account for ASOF lookups. This
526 * code handles that case as well as a few others.
528 static
530 hammer_rec_scan_callback(hammer_record_t rec, void *data)
532 hammer_cursor_t cursor = data;
535 * We terminate on success, so this should be NULL on entry.
537 KKASSERT(cursor->iprec == NULL);
540 * Skip if the record was marked deleted or committed.
542 if (hammer_ip_iterate_mem_good(cursor, rec) == 0)
543 return(0);
546 * Skip if not visible due to our as-of TID
548 if (cursor->flags & HAMMER_CURSOR_ASOF) {
549 if (cursor->asof < rec->leaf.base.create_tid)
550 return(0);
551 if (rec->leaf.base.delete_tid &&
552 cursor->asof >= rec->leaf.base.delete_tid) {
553 return(0);
558 * ref the record. The record is protected from backend B-Tree
559 * interactions by virtue of the cursor's IP lock.
561 hammer_ref(&rec->lock);
564 * The record may have been deleted or committed while we
565 * were blocked. XXX remove?
567 if (hammer_ip_iterate_mem_good(cursor, rec) == 0) {
568 hammer_rel_mem_record(rec);
569 return(0);
573 * Set the matching record and stop the scan.
575 cursor->iprec = rec;
576 return(-1);
581 * Lookup an in-memory record given the key specified in the cursor. Works
582 * just like hammer_btree_lookup() but operates on an inode's in-memory
583 * record list.
585 * The lookup must fail if the record is marked for deferred deletion.
587 * The API for mem/btree_lookup() does not mess with the ATE/EOF bits.
589 static
591 hammer_mem_lookup(hammer_cursor_t cursor)
593 KKASSERT(cursor->ip);
594 if (cursor->iprec) {
595 hammer_rel_mem_record(cursor->iprec);
596 cursor->iprec = NULL;
598 hammer_rec_rb_tree_RB_SCAN(&cursor->ip->rec_tree, hammer_rec_find_cmp,
599 hammer_rec_scan_callback, cursor);
601 return (cursor->iprec ? 0 : ENOENT);
605 * hammer_mem_first() - locate the first in-memory record matching the
606 * cursor within the bounds of the key range.
608 * WARNING! API is slightly different from btree_first(). hammer_mem_first()
609 * will set ATEMEM the same as MEMEOF, and does not return any error.
611 static
612 void
613 hammer_mem_first(hammer_cursor_t cursor)
615 hammer_inode_t ip;
617 ip = cursor->ip;
618 KKASSERT(ip != NULL);
620 if (cursor->iprec) {
621 hammer_rel_mem_record(cursor->iprec);
622 cursor->iprec = NULL;
624 hammer_rec_rb_tree_RB_SCAN(&ip->rec_tree, hammer_rec_scan_cmp,
625 hammer_rec_scan_callback, cursor);
627 if (cursor->iprec)
628 cursor->flags &= ~(HAMMER_CURSOR_MEMEOF | HAMMER_CURSOR_ATEMEM);
629 else
630 cursor->flags |= HAMMER_CURSOR_MEMEOF | HAMMER_CURSOR_ATEMEM;
633 /************************************************************************
634 * HAMMER IN-MEMORY RECORD FUNCTIONS *
635 ************************************************************************
637 * These functions manipulate in-memory records. Such records typically
638 * exist prior to being committed to disk or indexed via the on-disk B-Tree.
642 * Add a directory entry (dip,ncp) which references inode (ip).
644 * Note that the low 32 bits of the namekey are set temporarily to create
645 * a unique in-memory record, and may be modified a second time when the
646 * record is synchronized to disk. In particular, the low 32 bits cannot be
647 * all 0's when synching to disk, which is not handled here.
649 * NOTE: bytes does not include any terminating \0 on name, and name might
650 * not be terminated.
653 hammer_ip_add_directory(struct hammer_transaction *trans,
654 struct hammer_inode *dip, const char *name, int bytes,
655 struct hammer_inode *ip)
657 struct hammer_cursor cursor;
658 hammer_record_t record;
659 int error;
660 u_int32_t max_iterations;
662 record = hammer_alloc_mem_record(dip, HAMMER_ENTRY_SIZE(bytes));
664 record->type = HAMMER_MEM_RECORD_ADD;
665 record->leaf.base.localization = dip->obj_localization +
666 hammer_dir_localization(dip);
667 record->leaf.base.obj_id = dip->obj_id;
668 record->leaf.base.key = hammer_directory_namekey(dip, name, bytes,
669 &max_iterations);
670 record->leaf.base.rec_type = HAMMER_RECTYPE_DIRENTRY;
671 record->leaf.base.obj_type = ip->ino_leaf.base.obj_type;
672 record->data->entry.obj_id = ip->obj_id;
673 record->data->entry.localization = ip->obj_localization;
674 bcopy(name, record->data->entry.name, bytes);
676 ++ip->ino_data.nlinks;
677 ip->ino_data.ctime = trans->time;
678 hammer_modify_inode(ip, HAMMER_INODE_DDIRTY);
681 * Find an unused namekey. Both the in-memory record tree and
682 * the B-Tree are checked. We do not want historically deleted
683 * names to create a collision as our iteration space may be limited,
684 * and since create_tid wouldn't match anyway an ASOF search
685 * must be used to locate collisions.
687 * delete-visibility is set so pending deletions do not give us
688 * a false-negative on our ability to use an iterator.
690 * The iterator must not rollover the key. Directory keys only
691 * use the positive key space.
693 hammer_init_cursor(trans, &cursor, &dip->cache[1], dip);
694 cursor.key_beg = record->leaf.base;
695 cursor.flags |= HAMMER_CURSOR_ASOF;
696 cursor.flags |= HAMMER_CURSOR_DELETE_VISIBILITY;
697 cursor.asof = ip->obj_asof;
699 while (hammer_ip_lookup(&cursor) == 0) {
700 ++record->leaf.base.key;
701 KKASSERT(record->leaf.base.key > 0);
702 cursor.key_beg.key = record->leaf.base.key;
703 if (--max_iterations == 0) {
704 hammer_rel_mem_record(record);
705 error = ENOSPC;
706 goto failed;
711 * The target inode and the directory entry are bound together.
713 record->target_ip = ip;
714 record->flush_state = HAMMER_FST_SETUP;
715 TAILQ_INSERT_TAIL(&ip->target_list, record, target_entry);
718 * The inode now has a dependancy and must be taken out of the idle
719 * state. An inode not in an idle state is given an extra reference.
721 * When transitioning to a SETUP state flag for an automatic reflush
722 * when the dependancies are disposed of if someone is waiting on
723 * the inode.
725 if (ip->flush_state == HAMMER_FST_IDLE) {
726 hammer_ref(&ip->lock);
727 ip->flush_state = HAMMER_FST_SETUP;
728 if (ip->flags & HAMMER_INODE_FLUSHW)
729 ip->flags |= HAMMER_INODE_REFLUSH;
731 error = hammer_mem_add(record);
732 if (error == 0) {
733 dip->ino_data.mtime = trans->time;
734 hammer_modify_inode(dip, HAMMER_INODE_MTIME);
736 failed:
737 hammer_done_cursor(&cursor);
738 return(error);
742 * Delete the directory entry and update the inode link count. The
743 * cursor must be seeked to the directory entry record being deleted.
745 * The related inode should be share-locked by the caller. The caller is
746 * on the frontend. It could also be NULL indicating that the directory
747 * entry being removed has no related inode.
749 * This function can return EDEADLK requiring the caller to terminate
750 * the cursor, any locks, wait on the returned record, and retry.
753 hammer_ip_del_directory(struct hammer_transaction *trans,
754 hammer_cursor_t cursor, struct hammer_inode *dip,
755 struct hammer_inode *ip)
757 hammer_record_t record;
758 int error;
760 if (hammer_cursor_inmem(cursor)) {
762 * In-memory (unsynchronized) records can simply be freed.
764 * Even though the HAMMER_RECF_DELETED_FE flag is ignored
765 * by the backend, we must still avoid races against the
766 * backend potentially syncing the record to the media.
768 * We cannot call hammer_ip_delete_record(), that routine may
769 * only be called from the backend.
771 record = cursor->iprec;
772 if (record->flags & (HAMMER_RECF_INTERLOCK_BE |
773 HAMMER_RECF_DELETED_BE |
774 HAMMER_RECF_COMMITTED)) {
775 KKASSERT(cursor->deadlk_rec == NULL);
776 hammer_ref(&record->lock);
777 cursor->deadlk_rec = record;
778 error = EDEADLK;
779 } else {
780 KKASSERT(record->type == HAMMER_MEM_RECORD_ADD);
781 record->flags |= HAMMER_RECF_DELETED_FE;
782 error = 0;
784 } else {
786 * If the record is on-disk we have to queue the deletion by
787 * the record's key. This also causes lookups to skip the
788 * record.
790 KKASSERT(dip->flags &
791 (HAMMER_INODE_ONDISK | HAMMER_INODE_DONDISK));
792 record = hammer_alloc_mem_record(dip, 0);
793 record->type = HAMMER_MEM_RECORD_DEL;
794 record->leaf.base = cursor->leaf->base;
797 * ip may be NULL, indicating the deletion of a directory
798 * entry which has no related inode.
800 record->target_ip = ip;
801 if (ip) {
802 record->flush_state = HAMMER_FST_SETUP;
803 TAILQ_INSERT_TAIL(&ip->target_list, record,
804 target_entry);
805 } else {
806 record->flush_state = HAMMER_FST_IDLE;
810 * The inode now has a dependancy and must be taken out of
811 * the idle state. An inode not in an idle state is given
812 * an extra reference.
814 * When transitioning to a SETUP state flag for an automatic
815 * reflush when the dependancies are disposed of if someone
816 * is waiting on the inode.
818 if (ip && ip->flush_state == HAMMER_FST_IDLE) {
819 hammer_ref(&ip->lock);
820 ip->flush_state = HAMMER_FST_SETUP;
821 if (ip->flags & HAMMER_INODE_FLUSHW)
822 ip->flags |= HAMMER_INODE_REFLUSH;
825 error = hammer_mem_add(record);
829 * One less link. The file may still be open in the OS even after
830 * all links have gone away.
832 * We have to terminate the cursor before syncing the inode to
833 * avoid deadlocking against ourselves. XXX this may no longer
834 * be true.
836 * If nlinks drops to zero and the vnode is inactive (or there is
837 * no vnode), call hammer_inode_unloadable_check() to zonk the
838 * inode. If we don't do this here the inode will not be destroyed
839 * on-media until we unmount.
841 if (error == 0) {
842 if (ip) {
843 --ip->ino_data.nlinks; /* do before we might block */
844 ip->ino_data.ctime = trans->time;
846 dip->ino_data.mtime = trans->time;
847 hammer_modify_inode(dip, HAMMER_INODE_MTIME);
848 if (ip) {
849 hammer_modify_inode(ip, HAMMER_INODE_DDIRTY);
850 if (ip->ino_data.nlinks == 0 &&
851 (ip->vp == NULL || (ip->vp->v_flag & VINACTIVE))) {
852 hammer_done_cursor(cursor);
853 hammer_inode_unloadable_check(ip, 1);
854 hammer_flush_inode(ip, 0);
859 return(error);
863 * Add a record to an inode.
865 * The caller must allocate the record with hammer_alloc_mem_record(ip) and
866 * initialize the following additional fields:
868 * The related inode should be share-locked by the caller. The caller is
869 * on the frontend.
871 * record->rec.entry.base.base.key
872 * record->rec.entry.base.base.rec_type
873 * record->rec.entry.base.base.data_len
874 * record->data (a copy will be kmalloc'd if it cannot be embedded)
877 hammer_ip_add_record(struct hammer_transaction *trans, hammer_record_t record)
879 hammer_inode_t ip = record->ip;
880 int error;
882 KKASSERT(record->leaf.base.localization != 0);
883 record->leaf.base.obj_id = ip->obj_id;
884 record->leaf.base.obj_type = ip->ino_leaf.base.obj_type;
885 error = hammer_mem_add(record);
886 return(error);
890 * Locate a bulk record in-memory. Bulk records allow disk space to be
891 * reserved so the front-end can flush large data writes without having
892 * to queue the BIO to the flusher. Only the related record gets queued
893 * to the flusher.
896 static hammer_record_t
897 hammer_ip_get_bulk(hammer_inode_t ip, off_t file_offset, int bytes)
899 struct hammer_bulk_info info;
901 bzero(&info, sizeof(info));
902 info.leaf.base.obj_id = ip->obj_id;
903 info.leaf.base.key = file_offset + bytes;
904 info.leaf.base.create_tid = 0;
905 info.leaf.base.delete_tid = 0;
906 info.leaf.base.rec_type = HAMMER_RECTYPE_DATA;
907 info.leaf.base.obj_type = 0; /* unused */
908 info.leaf.base.btype = HAMMER_BTREE_TYPE_RECORD; /* unused */
909 info.leaf.base.localization = ip->obj_localization + /* unused */
910 HAMMER_LOCALIZE_MISC;
911 info.leaf.data_len = bytes;
913 hammer_rec_rb_tree_RB_SCAN(&ip->rec_tree, hammer_rec_overlap_cmp,
914 hammer_bulk_scan_callback, &info);
916 return(info.record); /* may be NULL */
920 * Take records vetted by overlap_cmp. The first non-deleted record
921 * (if any) stops the scan.
923 static int
924 hammer_bulk_scan_callback(hammer_record_t record, void *data)
926 struct hammer_bulk_info *info = data;
928 if (record->flags & (HAMMER_RECF_DELETED_FE | HAMMER_RECF_DELETED_BE |
929 HAMMER_RECF_COMMITTED)) {
930 return(0);
932 hammer_ref(&record->lock);
933 info->record = record;
934 return(-1); /* stop scan */
938 * Reserve blockmap space placemarked with an in-memory record.
940 * This routine is called by the frontend in order to be able to directly
941 * flush a buffer cache buffer. The frontend has locked the related buffer
942 * cache buffers and we should be able to manipulate any overlapping
943 * in-memory records.
945 * The caller is responsible for adding the returned record.
947 hammer_record_t
948 hammer_ip_add_bulk(hammer_inode_t ip, off_t file_offset, void *data, int bytes,
949 int *errorp)
951 hammer_record_t record;
952 hammer_record_t conflict;
953 int zone;
956 * Deal with conflicting in-memory records. We cannot have multiple
957 * in-memory records for the same base offset without seriously
958 * confusing the backend, including but not limited to the backend
959 * issuing delete-create-delete or create-delete-create sequences
960 * and asserting on the delete_tid being the same as the create_tid.
962 * If we encounter a record with the backend interlock set we cannot
963 * immediately delete it without confusing the backend.
965 while ((conflict = hammer_ip_get_bulk(ip, file_offset, bytes)) !=NULL) {
966 if (conflict->flags & HAMMER_RECF_INTERLOCK_BE) {
967 conflict->flags |= HAMMER_RECF_WANTED;
968 tsleep(conflict, 0, "hmrrc3", 0);
969 } else {
970 conflict->flags |= HAMMER_RECF_DELETED_FE;
972 hammer_rel_mem_record(conflict);
976 * Create a record to cover the direct write. This is called with
977 * the related BIO locked so there should be no possible conflict.
979 * The backend is responsible for finalizing the space reserved in
980 * this record.
982 * XXX bytes not aligned, depend on the reservation code to
983 * align the reservation.
985 record = hammer_alloc_mem_record(ip, 0);
986 zone = (bytes >= HAMMER_BUFSIZE) ? HAMMER_ZONE_LARGE_DATA_INDEX :
987 HAMMER_ZONE_SMALL_DATA_INDEX;
988 record->resv = hammer_blockmap_reserve(ip->hmp, zone, bytes,
989 &record->leaf.data_offset,
990 errorp);
991 if (record->resv == NULL) {
992 kprintf("hammer_ip_add_bulk: reservation failed\n");
993 hammer_rel_mem_record(record);
994 return(NULL);
996 record->type = HAMMER_MEM_RECORD_DATA;
997 record->leaf.base.rec_type = HAMMER_RECTYPE_DATA;
998 record->leaf.base.obj_type = ip->ino_leaf.base.obj_type;
999 record->leaf.base.obj_id = ip->obj_id;
1000 record->leaf.base.key = file_offset + bytes;
1001 record->leaf.base.localization = ip->obj_localization +
1002 HAMMER_LOCALIZE_MISC;
1003 record->leaf.data_len = bytes;
1004 hammer_crc_set_leaf(data, &record->leaf);
1005 KKASSERT(*errorp == 0);
1006 return(record);
1010 * Frontend truncation code. Scan in-memory records only. On-disk records
1011 * and records in a flushing state are handled by the backend. The vnops
1012 * setattr code will handle the block containing the truncation point.
1014 * Partial blocks are not deleted.
1017 hammer_ip_frontend_trunc(struct hammer_inode *ip, off_t file_size)
1019 struct rec_trunc_info info;
1021 switch(ip->ino_data.obj_type) {
1022 case HAMMER_OBJTYPE_REGFILE:
1023 info.rec_type = HAMMER_RECTYPE_DATA;
1024 break;
1025 case HAMMER_OBJTYPE_DBFILE:
1026 info.rec_type = HAMMER_RECTYPE_DB;
1027 break;
1028 default:
1029 return(EINVAL);
1031 info.trunc_off = file_size;
1032 hammer_rec_rb_tree_RB_SCAN(&ip->rec_tree, hammer_rec_trunc_cmp,
1033 hammer_frontend_trunc_callback, &info);
1034 return(0);
1037 static int
1038 hammer_frontend_trunc_callback(hammer_record_t record, void *data __unused)
1040 if (record->flags & HAMMER_RECF_DELETED_FE)
1041 return(0);
1042 if (record->flush_state == HAMMER_FST_FLUSH)
1043 return(0);
1044 KKASSERT((record->flags & HAMMER_RECF_INTERLOCK_BE) == 0);
1045 hammer_ref(&record->lock);
1046 record->flags |= HAMMER_RECF_DELETED_FE;
1047 hammer_rel_mem_record(record);
1048 return(0);
1052 * Return 1 if the caller must check for and delete existing records
1053 * before writing out a new data record.
1055 * Return 0 if the caller can just insert the record into the B-Tree without
1056 * checking.
1058 static int
1059 hammer_record_needs_overwrite_delete(hammer_record_t record)
1061 hammer_inode_t ip = record->ip;
1062 int64_t file_offset;
1063 int r;
1065 if (ip->ino_data.obj_type == HAMMER_OBJTYPE_DBFILE)
1066 file_offset = record->leaf.base.key;
1067 else
1068 file_offset = record->leaf.base.key - record->leaf.data_len;
1069 r = (file_offset < ip->save_trunc_off);
1070 if (ip->ino_data.obj_type == HAMMER_OBJTYPE_DBFILE) {
1071 if (ip->save_trunc_off <= record->leaf.base.key)
1072 ip->save_trunc_off = record->leaf.base.key + 1;
1073 } else {
1074 if (ip->save_trunc_off < record->leaf.base.key)
1075 ip->save_trunc_off = record->leaf.base.key;
1077 return(r);
1081 * Backend code. Sync a record to the media.
1084 hammer_ip_sync_record_cursor(hammer_cursor_t cursor, hammer_record_t record)
1086 hammer_transaction_t trans = cursor->trans;
1087 int64_t file_offset;
1088 int bytes;
1089 void *bdata;
1090 int error;
1091 int doprop;
1093 KKASSERT(record->flush_state == HAMMER_FST_FLUSH);
1094 KKASSERT(record->flags & HAMMER_RECF_INTERLOCK_BE);
1095 KKASSERT(record->leaf.base.localization != 0);
1098 * Any direct-write related to the record must complete before we
1099 * can sync the record to the on-disk media.
1101 if (record->flags & (HAMMER_RECF_DIRECT_IO | HAMMER_RECF_DIRECT_INVAL))
1102 hammer_io_direct_wait(record);
1105 * If this is a bulk-data record placemarker there may be an existing
1106 * record on-disk, indicating a data overwrite. If there is the
1107 * on-disk record must be deleted before we can insert our new record.
1109 * We've synthesized this record and do not know what the create_tid
1110 * on-disk is, nor how much data it represents.
1112 * Keep in mind that (key) for data records is (base_offset + len),
1113 * not (base_offset). Also, we only want to get rid of on-disk
1114 * records since we are trying to sync our in-memory record, call
1115 * hammer_ip_delete_range() with truncating set to 1 to make sure
1116 * it skips in-memory records.
1118 * It is ok for the lookup to return ENOENT.
1120 * NOTE OPTIMIZATION: sync_trunc_off is used to determine if we have
1121 * to call hammer_ip_delete_range() or not. This also means we must
1122 * update sync_trunc_off() as we write.
1124 if (record->type == HAMMER_MEM_RECORD_DATA &&
1125 hammer_record_needs_overwrite_delete(record)) {
1126 file_offset = record->leaf.base.key - record->leaf.data_len;
1127 bytes = (record->leaf.data_len + HAMMER_BUFMASK) &
1128 ~HAMMER_BUFMASK;
1129 KKASSERT((file_offset & HAMMER_BUFMASK) == 0);
1130 error = hammer_ip_delete_range(
1131 cursor, record->ip,
1132 file_offset, file_offset + bytes - 1,
1134 if (error && error != ENOENT)
1135 goto done;
1139 * If this is a general record there may be an on-disk version
1140 * that must be deleted before we can insert the new record.
1142 if (record->type == HAMMER_MEM_RECORD_GENERAL) {
1143 error = hammer_delete_general(cursor, record->ip,
1144 &record->leaf);
1145 if (error && error != ENOENT)
1146 goto done;
1150 * Setup the cursor.
1152 hammer_normalize_cursor(cursor);
1153 cursor->key_beg = record->leaf.base;
1154 cursor->flags &= ~HAMMER_CURSOR_INITMASK;
1155 cursor->flags |= HAMMER_CURSOR_BACKEND;
1156 cursor->flags &= ~HAMMER_CURSOR_INSERT;
1159 * Records can wind up on-media before the inode itself is on-media.
1160 * Flag the case.
1162 record->ip->flags |= HAMMER_INODE_DONDISK;
1165 * If we are deleting a directory entry an exact match must be
1166 * found on-disk.
1168 if (record->type == HAMMER_MEM_RECORD_DEL) {
1169 error = hammer_btree_lookup(cursor);
1170 if (error == 0) {
1171 KKASSERT(cursor->iprec == NULL);
1172 error = hammer_ip_delete_record(cursor, record->ip,
1173 trans->tid);
1174 if (error == 0) {
1175 record->flags |= HAMMER_RECF_DELETED_BE |
1176 HAMMER_RECF_COMMITTED;
1177 ++record->ip->rec_generation;
1180 goto done;
1184 * We are inserting.
1186 * Issue a lookup to position the cursor and locate the insertion
1187 * point. The target key should not exist. If we are creating a
1188 * directory entry we may have to iterate the low 32 bits of the
1189 * key to find an unused key.
1191 hammer_sync_lock_sh(trans);
1192 cursor->flags |= HAMMER_CURSOR_INSERT;
1193 error = hammer_btree_lookup(cursor);
1194 if (hammer_debug_inode)
1195 kprintf("DOINSERT LOOKUP %d\n", error);
1196 if (error == 0) {
1197 kprintf("hammer_ip_sync_record: duplicate rec "
1198 "at (%016llx)\n", (long long)record->leaf.base.key);
1199 Debugger("duplicate record1");
1200 error = EIO;
1202 #if 0
1203 if (record->type == HAMMER_MEM_RECORD_DATA)
1204 kprintf("sync_record %016llx ---------------- %016llx %d\n",
1205 record->leaf.base.key - record->leaf.data_len,
1206 record->leaf.data_offset, error);
1207 #endif
1209 if (error != ENOENT)
1210 goto done_unlock;
1213 * Allocate the record and data. The result buffers will be
1214 * marked as being modified and further calls to
1215 * hammer_modify_buffer() will result in unneeded UNDO records.
1217 * Support zero-fill records (data == NULL and data_len != 0)
1219 if (record->type == HAMMER_MEM_RECORD_DATA) {
1221 * The data portion of a bulk-data record has already been
1222 * committed to disk, we need only adjust the layer2
1223 * statistics in the same transaction as our B-Tree insert.
1225 KKASSERT(record->leaf.data_offset != 0);
1226 error = hammer_blockmap_finalize(trans,
1227 record->resv,
1228 record->leaf.data_offset,
1229 record->leaf.data_len);
1230 } else if (record->data && record->leaf.data_len) {
1232 * Wholely cached record, with data. Allocate the data.
1234 bdata = hammer_alloc_data(trans, record->leaf.data_len,
1235 record->leaf.base.rec_type,
1236 &record->leaf.data_offset,
1237 &cursor->data_buffer,
1238 0, &error);
1239 if (bdata == NULL)
1240 goto done_unlock;
1241 hammer_crc_set_leaf(record->data, &record->leaf);
1242 hammer_modify_buffer(trans, cursor->data_buffer, NULL, 0);
1243 bcopy(record->data, bdata, record->leaf.data_len);
1244 hammer_modify_buffer_done(cursor->data_buffer);
1245 } else {
1247 * Wholely cached record, without data.
1249 record->leaf.data_offset = 0;
1250 record->leaf.data_crc = 0;
1253 error = hammer_btree_insert(cursor, &record->leaf, &doprop);
1254 if (hammer_debug_inode && error) {
1255 kprintf("BTREE INSERT error %d @ %016llx:%d key %016llx\n",
1256 error,
1257 (long long)cursor->node->node_offset,
1258 cursor->index,
1259 (long long)record->leaf.base.key);
1263 * Our record is on-disk and we normally mark the in-memory version
1264 * as having been committed (and not BE-deleted).
1266 * If the record represented a directory deletion but we had to
1267 * sync a valid directory entry to disk due to dependancies,
1268 * we must convert the record to a covering delete so the
1269 * frontend does not have visibility on the synced entry.
1271 if (error == 0) {
1272 if (doprop) {
1273 hammer_btree_do_propagation(cursor,
1274 record->ip->pfsm,
1275 &record->leaf);
1277 if (record->flags & HAMMER_RECF_CONVERT_DELETE) {
1279 * Must convert deleted directory entry add
1280 * to a directory entry delete.
1282 KKASSERT(record->type == HAMMER_MEM_RECORD_ADD);
1283 record->flags &= ~HAMMER_RECF_DELETED_FE;
1284 record->type = HAMMER_MEM_RECORD_DEL;
1285 KKASSERT(record->flush_state == HAMMER_FST_FLUSH);
1286 record->flags &= ~HAMMER_RECF_CONVERT_DELETE;
1287 KKASSERT((record->flags & (HAMMER_RECF_COMMITTED |
1288 HAMMER_RECF_DELETED_BE)) == 0);
1289 /* converted record is not yet committed */
1290 /* hammer_flush_record_done takes care of the rest */
1291 } else {
1293 * Everything went fine and we are now done with
1294 * this record.
1296 record->flags |= HAMMER_RECF_COMMITTED;
1297 ++record->ip->rec_generation;
1299 } else {
1300 if (record->leaf.data_offset) {
1301 hammer_blockmap_free(trans, record->leaf.data_offset,
1302 record->leaf.data_len);
1305 done_unlock:
1306 hammer_sync_unlock(trans);
1307 done:
1308 return(error);
1312 * Add the record to the inode's rec_tree. The low 32 bits of a directory
1313 * entry's key is used to deal with hash collisions in the upper 32 bits.
1314 * A unique 64 bit key is generated in-memory and may be regenerated a
1315 * second time when the directory record is flushed to the on-disk B-Tree.
1317 * A referenced record is passed to this function. This function
1318 * eats the reference. If an error occurs the record will be deleted.
1320 * A copy of the temporary record->data pointer provided by the caller
1321 * will be made.
1324 hammer_mem_add(hammer_record_t record)
1326 hammer_mount_t hmp = record->ip->hmp;
1329 * Make a private copy of record->data
1331 if (record->data)
1332 KKASSERT(record->flags & HAMMER_RECF_ALLOCDATA);
1335 * Insert into the RB tree. A unique key should have already
1336 * been selected if this is a directory entry.
1338 if (RB_INSERT(hammer_rec_rb_tree, &record->ip->rec_tree, record)) {
1339 record->flags |= HAMMER_RECF_DELETED_FE;
1340 hammer_rel_mem_record(record);
1341 return (EEXIST);
1343 ++hmp->count_newrecords;
1344 ++hmp->rsv_recs;
1345 ++record->ip->rsv_recs;
1346 record->ip->hmp->rsv_databytes += record->leaf.data_len;
1347 record->flags |= HAMMER_RECF_ONRBTREE;
1348 hammer_modify_inode(record->ip, HAMMER_INODE_XDIRTY);
1349 hammer_rel_mem_record(record);
1350 return(0);
1353 /************************************************************************
1354 * HAMMER INODE MERGED-RECORD FUNCTIONS *
1355 ************************************************************************
1357 * These functions augment the B-Tree scanning functions in hammer_btree.c
1358 * by merging in-memory records with on-disk records.
1362 * Locate a particular record either in-memory or on-disk.
1364 * NOTE: This is basically a standalone routine, hammer_ip_next() may
1365 * NOT be called to iterate results.
1368 hammer_ip_lookup(hammer_cursor_t cursor)
1370 int error;
1373 * If the element is in-memory return it without searching the
1374 * on-disk B-Tree
1376 KKASSERT(cursor->ip);
1377 error = hammer_mem_lookup(cursor);
1378 if (error == 0) {
1379 cursor->leaf = &cursor->iprec->leaf;
1380 return(error);
1382 if (error != ENOENT)
1383 return(error);
1386 * If the inode has on-disk components search the on-disk B-Tree.
1388 if ((cursor->ip->flags & (HAMMER_INODE_ONDISK|HAMMER_INODE_DONDISK)) == 0)
1389 return(error);
1390 error = hammer_btree_lookup(cursor);
1391 if (error == 0)
1392 error = hammer_btree_extract(cursor, HAMMER_CURSOR_GET_LEAF);
1393 return(error);
1397 * Helper for hammer_ip_first()/hammer_ip_next()
1399 * NOTE: Both ATEDISK and DISKEOF will be set the same. This sets up
1400 * hammer_ip_first() for calling hammer_ip_next(), and sets up the re-seek
1401 * state if hammer_ip_next() needs to re-seek.
1403 static __inline
1405 _hammer_ip_seek_btree(hammer_cursor_t cursor)
1407 hammer_inode_t ip = cursor->ip;
1408 int error;
1410 if (ip->flags & (HAMMER_INODE_ONDISK|HAMMER_INODE_DONDISK)) {
1411 error = hammer_btree_lookup(cursor);
1412 if (error == ENOENT || error == EDEADLK) {
1413 if (hammer_debug_general & 0x2000) {
1414 kprintf("error %d node %p %016llx index %d\n",
1415 error, cursor->node,
1416 (long long)cursor->node->node_offset,
1417 cursor->index);
1419 cursor->flags &= ~HAMMER_CURSOR_ATEDISK;
1420 error = hammer_btree_iterate(cursor);
1422 if (error == 0) {
1423 cursor->flags &= ~(HAMMER_CURSOR_DISKEOF |
1424 HAMMER_CURSOR_ATEDISK);
1425 } else {
1426 cursor->flags |= HAMMER_CURSOR_DISKEOF |
1427 HAMMER_CURSOR_ATEDISK;
1428 if (error == ENOENT)
1429 error = 0;
1431 } else {
1432 cursor->flags |= HAMMER_CURSOR_DISKEOF | HAMMER_CURSOR_ATEDISK;
1433 error = 0;
1435 return(error);
1439 * Helper for hammer_ip_next()
1441 * The caller has determined that the media cursor is further along than the
1442 * memory cursor and must be reseeked after a generation number change.
1444 static
1446 _hammer_ip_reseek(hammer_cursor_t cursor)
1448 struct hammer_base_elm save;
1449 hammer_btree_elm_t elm;
1450 int error;
1451 int r;
1452 int again = 0;
1455 * Do the re-seek.
1457 kprintf("HAMMER: Debug: re-seeked during scan @ino=%016llx\n",
1458 (long long)cursor->ip->obj_id);
1459 save = cursor->key_beg;
1460 cursor->key_beg = cursor->iprec->leaf.base;
1461 error = _hammer_ip_seek_btree(cursor);
1462 KKASSERT(error == 0);
1463 cursor->key_beg = save;
1466 * If the memory record was previous returned to
1467 * the caller and the media record matches
1468 * (-1/+1: only create_tid differs), then iterate
1469 * the media record to avoid a double result.
1471 if ((cursor->flags & HAMMER_CURSOR_ATEDISK) == 0 &&
1472 (cursor->flags & HAMMER_CURSOR_LASTWASMEM)) {
1473 elm = &cursor->node->ondisk->elms[cursor->index];
1474 r = hammer_btree_cmp(&elm->base,
1475 &cursor->iprec->leaf.base);
1476 if (cursor->flags & HAMMER_CURSOR_ASOF) {
1477 if (r >= -1 && r <= 1) {
1478 kprintf("HAMMER: Debug: iterated after "
1479 "re-seek (asof r=%d)\n", r);
1480 cursor->flags |= HAMMER_CURSOR_ATEDISK;
1481 again = 1;
1483 } else {
1484 if (r == 0) {
1485 kprintf("HAMMER: Debug: iterated after "
1486 "re-seek\n");
1487 cursor->flags |= HAMMER_CURSOR_ATEDISK;
1488 again = 1;
1492 return(again);
1496 * Locate the first record within the cursor's key_beg/key_end range,
1497 * restricted to a particular inode. 0 is returned on success, ENOENT
1498 * if no records matched the requested range, or some other error.
1500 * When 0 is returned hammer_ip_next() may be used to iterate additional
1501 * records within the requested range.
1503 * This function can return EDEADLK, requiring the caller to terminate
1504 * the cursor and try again.
1508 hammer_ip_first(hammer_cursor_t cursor)
1510 hammer_inode_t ip = cursor->ip;
1511 int error;
1513 KKASSERT(ip != NULL);
1516 * Clean up fields and setup for merged scan
1518 cursor->flags &= ~HAMMER_CURSOR_RETEST;
1521 * Search the in-memory record list (Red-Black tree). Unlike the
1522 * B-Tree search, mem_first checks for records in the range.
1524 * This function will setup both ATEMEM and MEMEOF properly for
1525 * the ip iteration. ATEMEM will be set if MEMEOF is set.
1527 hammer_mem_first(cursor);
1530 * Detect generation changes during blockages, including
1531 * blockages which occur on the initial btree search.
1533 cursor->rec_generation = cursor->ip->rec_generation;
1536 * Initial search and result
1538 error = _hammer_ip_seek_btree(cursor);
1539 if (error == 0)
1540 error = hammer_ip_next(cursor);
1542 return (error);
1546 * Retrieve the next record in a merged iteration within the bounds of the
1547 * cursor. This call may be made multiple times after the cursor has been
1548 * initially searched with hammer_ip_first().
1550 * There are numerous special cases in this code to deal with races between
1551 * in-memory records and on-media records.
1553 * 0 is returned on success, ENOENT if no further records match the
1554 * requested range, or some other error code is returned.
1557 hammer_ip_next(hammer_cursor_t cursor)
1559 hammer_btree_elm_t elm;
1560 hammer_record_t rec;
1561 hammer_record_t tmprec;
1562 int error;
1563 int r;
1565 again:
1567 * Get the next on-disk record
1569 * NOTE: If we deleted the last on-disk record we had scanned
1570 * ATEDISK will be clear and RETEST will be set, forcing
1571 * a call to iterate. The fact that ATEDISK is clear causes
1572 * iterate to re-test the 'current' element. If ATEDISK is
1573 * set, iterate will skip the 'current' element.
1575 error = 0;
1576 if ((cursor->flags & HAMMER_CURSOR_DISKEOF) == 0) {
1577 if (cursor->flags & (HAMMER_CURSOR_ATEDISK |
1578 HAMMER_CURSOR_RETEST)) {
1579 error = hammer_btree_iterate(cursor);
1580 cursor->flags &= ~HAMMER_CURSOR_RETEST;
1581 if (error == 0) {
1582 cursor->flags &= ~HAMMER_CURSOR_ATEDISK;
1583 hammer_cache_node(&cursor->ip->cache[1],
1584 cursor->node);
1585 } else if (error == ENOENT) {
1586 cursor->flags |= HAMMER_CURSOR_DISKEOF |
1587 HAMMER_CURSOR_ATEDISK;
1588 error = 0;
1594 * If the generation changed the backend has deleted or committed
1595 * one or more memory records since our last check.
1597 * When this case occurs if the disk cursor is > current memory record
1598 * or the disk cursor is at EOF, we must re-seek the disk-cursor.
1599 * Since the cursor is ahead it must have not yet been eaten (if
1600 * not at eof anyway). (XXX data offset case?)
1602 * NOTE: we are not doing a full check here. That will be handled
1603 * later on.
1605 * If we have exhausted all memory records we do not have to do any
1606 * further seeks.
1608 while (cursor->rec_generation != cursor->ip->rec_generation &&
1609 error == 0
1611 kprintf("HAMMER: Debug: generation changed during scan @ino=%016llx\n", (long long)cursor->ip->obj_id);
1612 cursor->rec_generation = cursor->ip->rec_generation;
1613 if (cursor->flags & HAMMER_CURSOR_MEMEOF)
1614 break;
1615 if (cursor->flags & HAMMER_CURSOR_DISKEOF) {
1616 r = 1;
1617 } else {
1618 KKASSERT((cursor->flags & HAMMER_CURSOR_ATEDISK) == 0);
1619 elm = &cursor->node->ondisk->elms[cursor->index];
1620 r = hammer_btree_cmp(&elm->base,
1621 &cursor->iprec->leaf.base);
1625 * Do we re-seek the media cursor?
1627 if (r > 0) {
1628 if (_hammer_ip_reseek(cursor))
1629 goto again;
1634 * We can now safely get the next in-memory record. We cannot
1635 * block here.
1637 * hammer_rec_scan_cmp: Is the record still in our general range,
1638 * (non-inclusive of snapshot exclusions)?
1639 * hammer_rec_scan_callback: Is the record in our snapshot?
1641 tmprec = NULL;
1642 if ((cursor->flags & HAMMER_CURSOR_MEMEOF) == 0) {
1644 * If the current memory record was eaten then get the next
1645 * one. Stale records are skipped.
1647 if (cursor->flags & HAMMER_CURSOR_ATEMEM) {
1648 tmprec = cursor->iprec;
1649 cursor->iprec = NULL;
1650 rec = hammer_rec_rb_tree_RB_NEXT(tmprec);
1651 while (rec) {
1652 if (hammer_rec_scan_cmp(rec, cursor) != 0)
1653 break;
1654 if (hammer_rec_scan_callback(rec, cursor) != 0)
1655 break;
1656 rec = hammer_rec_rb_tree_RB_NEXT(rec);
1658 if (cursor->iprec) {
1659 KKASSERT(cursor->iprec == rec);
1660 cursor->flags &= ~HAMMER_CURSOR_ATEMEM;
1661 } else {
1662 cursor->flags |= HAMMER_CURSOR_MEMEOF;
1664 cursor->flags &= ~HAMMER_CURSOR_LASTWASMEM;
1669 * MEMORY RECORD VALIDITY TEST
1671 * (We still can't block, which is why tmprec is being held so
1672 * long).
1674 * If the memory record is no longer valid we skip it. It may
1675 * have been deleted by the frontend. If it was deleted or
1676 * committed by the backend the generation change re-seeked the
1677 * disk cursor and the record will be present there.
1679 if (error == 0 && (cursor->flags & HAMMER_CURSOR_MEMEOF) == 0) {
1680 KKASSERT(cursor->iprec);
1681 KKASSERT((cursor->flags & HAMMER_CURSOR_ATEMEM) == 0);
1682 if (!hammer_ip_iterate_mem_good(cursor, cursor->iprec)) {
1683 cursor->flags |= HAMMER_CURSOR_ATEMEM;
1684 if (tmprec)
1685 hammer_rel_mem_record(tmprec);
1686 goto again;
1689 if (tmprec)
1690 hammer_rel_mem_record(tmprec);
1693 * Extract either the disk or memory record depending on their
1694 * relative position.
1696 error = 0;
1697 switch(cursor->flags & (HAMMER_CURSOR_ATEDISK | HAMMER_CURSOR_ATEMEM)) {
1698 case 0:
1700 * Both entries valid. Compare the entries and nominally
1701 * return the first one in the sort order. Numerous cases
1702 * require special attention, however.
1704 elm = &cursor->node->ondisk->elms[cursor->index];
1705 r = hammer_btree_cmp(&elm->base, &cursor->iprec->leaf.base);
1708 * If the two entries differ only by their key (-2/2) or
1709 * create_tid (-1/1), and are DATA records, we may have a
1710 * nominal match. We have to calculate the base file
1711 * offset of the data.
1713 if (r <= 2 && r >= -2 && r != 0 &&
1714 cursor->ip->ino_data.obj_type == HAMMER_OBJTYPE_REGFILE &&
1715 cursor->iprec->type == HAMMER_MEM_RECORD_DATA) {
1716 int64_t base1 = elm->leaf.base.key - elm->leaf.data_len;
1717 int64_t base2 = cursor->iprec->leaf.base.key -
1718 cursor->iprec->leaf.data_len;
1719 if (base1 == base2)
1720 r = 0;
1723 if (r < 0) {
1724 error = hammer_btree_extract(cursor,
1725 HAMMER_CURSOR_GET_LEAF);
1726 cursor->flags |= HAMMER_CURSOR_ATEDISK;
1727 cursor->flags &= ~HAMMER_CURSOR_LASTWASMEM;
1728 break;
1732 * If the entries match exactly the memory entry is either
1733 * an on-disk directory entry deletion or a bulk data
1734 * overwrite. If it is a directory entry deletion we eat
1735 * both entries.
1737 * For the bulk-data overwrite case it is possible to have
1738 * visibility into both, which simply means the syncer
1739 * hasn't gotten around to doing the delete+insert sequence
1740 * on the B-Tree. Use the memory entry and throw away the
1741 * on-disk entry.
1743 * If the in-memory record is not either of these we
1744 * probably caught the syncer while it was syncing it to
1745 * the media. Since we hold a shared lock on the cursor,
1746 * the in-memory record had better be marked deleted at
1747 * this point.
1749 if (r == 0) {
1750 if (cursor->iprec->type == HAMMER_MEM_RECORD_DEL) {
1751 if ((cursor->flags & HAMMER_CURSOR_DELETE_VISIBILITY) == 0) {
1752 cursor->flags |= HAMMER_CURSOR_ATEDISK;
1753 cursor->flags |= HAMMER_CURSOR_ATEMEM;
1754 goto again;
1756 } else if (cursor->iprec->type == HAMMER_MEM_RECORD_DATA) {
1757 if ((cursor->flags & HAMMER_CURSOR_DELETE_VISIBILITY) == 0) {
1758 cursor->flags |= HAMMER_CURSOR_ATEDISK;
1760 /* fall through to memory entry */
1761 } else {
1762 panic("hammer_ip_next: duplicate mem/b-tree entry %p %d %08x", cursor->iprec, cursor->iprec->type, cursor->iprec->flags);
1763 cursor->flags |= HAMMER_CURSOR_ATEMEM;
1764 goto again;
1767 /* fall through to the memory entry */
1768 case HAMMER_CURSOR_ATEDISK:
1770 * Only the memory entry is valid.
1772 cursor->leaf = &cursor->iprec->leaf;
1773 cursor->flags |= HAMMER_CURSOR_ATEMEM;
1774 cursor->flags |= HAMMER_CURSOR_LASTWASMEM;
1777 * If the memory entry is an on-disk deletion we should have
1778 * also had found a B-Tree record. If the backend beat us
1779 * to it it would have interlocked the cursor and we should
1780 * have seen the in-memory record marked DELETED_FE.
1782 if (cursor->iprec->type == HAMMER_MEM_RECORD_DEL &&
1783 (cursor->flags & HAMMER_CURSOR_DELETE_VISIBILITY) == 0) {
1784 panic("hammer_ip_next: del-on-disk with no b-tree entry iprec %p flags %08x", cursor->iprec, cursor->iprec->flags);
1786 break;
1787 case HAMMER_CURSOR_ATEMEM:
1789 * Only the disk entry is valid
1791 error = hammer_btree_extract(cursor, HAMMER_CURSOR_GET_LEAF);
1792 cursor->flags |= HAMMER_CURSOR_ATEDISK;
1793 cursor->flags &= ~HAMMER_CURSOR_LASTWASMEM;
1794 break;
1795 default:
1797 * Neither entry is valid
1799 * XXX error not set properly
1801 cursor->flags &= ~HAMMER_CURSOR_LASTWASMEM;
1802 cursor->leaf = NULL;
1803 error = ENOENT;
1804 break;
1806 return(error);
1810 * Resolve the cursor->data pointer for the current cursor position in
1811 * a merged iteration.
1814 hammer_ip_resolve_data(hammer_cursor_t cursor)
1816 hammer_record_t record;
1817 int error;
1819 if (hammer_cursor_inmem(cursor)) {
1821 * The data associated with an in-memory record is usually
1822 * kmalloced, but reserve-ahead data records will have an
1823 * on-disk reference.
1825 * NOTE: Reserve-ahead data records must be handled in the
1826 * context of the related high level buffer cache buffer
1827 * to interlock against async writes.
1829 record = cursor->iprec;
1830 cursor->data = record->data;
1831 error = 0;
1832 if (cursor->data == NULL) {
1833 KKASSERT(record->leaf.base.rec_type ==
1834 HAMMER_RECTYPE_DATA);
1835 cursor->data = hammer_bread_ext(cursor->trans->hmp,
1836 record->leaf.data_offset,
1837 record->leaf.data_len,
1838 &error,
1839 &cursor->data_buffer);
1841 } else {
1842 cursor->leaf = &cursor->node->ondisk->elms[cursor->index].leaf;
1843 error = hammer_btree_extract(cursor, HAMMER_CURSOR_GET_DATA);
1845 return(error);
1849 * Backend truncation / record replacement - delete records in range.
1851 * Delete all records within the specified range for inode ip. In-memory
1852 * records still associated with the frontend are ignored.
1854 * If truncating is non-zero in-memory records associated with the back-end
1855 * are ignored. If truncating is > 1 we can return EWOULDBLOCK.
1857 * NOTES:
1859 * * An unaligned range will cause new records to be added to cover
1860 * the edge cases. (XXX not implemented yet).
1862 * * Replacement via reservations (see hammer_ip_sync_record_cursor())
1863 * also do not deal with unaligned ranges.
1865 * * ran_end is inclusive (e.g. 0,1023 instead of 0,1024).
1867 * * Record keys for regular file data have to be special-cased since
1868 * they indicate the end of the range (key = base + bytes).
1870 * * This function may be asked to delete ridiculously huge ranges, for
1871 * example if someone truncates or removes a 1TB regular file. We
1872 * must be very careful on restarts and we may have to stop w/
1873 * EWOULDBLOCK to avoid blowing out the buffer cache.
1876 hammer_ip_delete_range(hammer_cursor_t cursor, hammer_inode_t ip,
1877 int64_t ran_beg, int64_t ran_end, int truncating)
1879 hammer_transaction_t trans = cursor->trans;
1880 hammer_btree_leaf_elm_t leaf;
1881 int error;
1882 int64_t off;
1883 int64_t tmp64;
1885 #if 0
1886 kprintf("delete_range %p %016llx-%016llx\n", ip, ran_beg, ran_end);
1887 #endif
1889 KKASSERT(trans->type == HAMMER_TRANS_FLS);
1890 retry:
1891 hammer_normalize_cursor(cursor);
1892 cursor->key_beg.localization = ip->obj_localization +
1893 HAMMER_LOCALIZE_MISC;
1894 cursor->key_beg.obj_id = ip->obj_id;
1895 cursor->key_beg.create_tid = 0;
1896 cursor->key_beg.delete_tid = 0;
1897 cursor->key_beg.obj_type = 0;
1899 if (ip->ino_data.obj_type == HAMMER_OBJTYPE_DBFILE) {
1900 cursor->key_beg.key = ran_beg;
1901 cursor->key_beg.rec_type = HAMMER_RECTYPE_DB;
1902 } else {
1904 * The key in the B-Tree is (base+bytes), so the first possible
1905 * matching key is ran_beg + 1.
1907 cursor->key_beg.key = ran_beg + 1;
1908 cursor->key_beg.rec_type = HAMMER_RECTYPE_DATA;
1911 cursor->key_end = cursor->key_beg;
1912 if (ip->ino_data.obj_type == HAMMER_OBJTYPE_DBFILE) {
1913 cursor->key_end.key = ran_end;
1914 } else {
1915 tmp64 = ran_end + MAXPHYS + 1; /* work around GCC-4 bug */
1916 if (tmp64 < ran_end)
1917 cursor->key_end.key = 0x7FFFFFFFFFFFFFFFLL;
1918 else
1919 cursor->key_end.key = ran_end + MAXPHYS + 1;
1922 cursor->asof = ip->obj_asof;
1923 cursor->flags &= ~HAMMER_CURSOR_INITMASK;
1924 cursor->flags |= HAMMER_CURSOR_ASOF;
1925 cursor->flags |= HAMMER_CURSOR_DELETE_VISIBILITY;
1926 cursor->flags |= HAMMER_CURSOR_BACKEND;
1927 cursor->flags |= HAMMER_CURSOR_END_INCLUSIVE;
1929 error = hammer_ip_first(cursor);
1932 * Iterate through matching records and mark them as deleted.
1934 while (error == 0) {
1935 leaf = cursor->leaf;
1937 KKASSERT(leaf->base.delete_tid == 0);
1938 KKASSERT(leaf->base.obj_id == ip->obj_id);
1941 * There may be overlap cases for regular file data. Also
1942 * remember the key for a regular file record is (base + len),
1943 * NOT (base).
1945 * Note that do to duplicates (mem & media) allowed by
1946 * DELETE_VISIBILITY, off can wind up less then ran_beg.
1948 if (leaf->base.rec_type == HAMMER_RECTYPE_DATA) {
1949 off = leaf->base.key - leaf->data_len;
1951 * Check the left edge case. We currently do not
1952 * split existing records.
1954 if (off < ran_beg && leaf->base.key > ran_beg) {
1955 panic("hammer left edge case %016llx %d\n",
1956 (long long)leaf->base.key,
1957 leaf->data_len);
1961 * Check the right edge case. Note that the
1962 * record can be completely out of bounds, which
1963 * terminates the search.
1965 * base->key is exclusive of the right edge while
1966 * ran_end is inclusive of the right edge. The
1967 * (key - data_len) left boundary is inclusive.
1969 * XXX theory-check this test at some point, are
1970 * we missing a + 1 somewhere? Note that ran_end
1971 * could overflow.
1973 if (leaf->base.key - 1 > ran_end) {
1974 if (leaf->base.key - leaf->data_len > ran_end)
1975 break;
1976 panic("hammer right edge case\n");
1978 } else {
1979 off = leaf->base.key;
1983 * Delete the record. When truncating we do not delete
1984 * in-memory (data) records because they represent data
1985 * written after the truncation.
1987 * This will also physically destroy the B-Tree entry and
1988 * data if the retention policy dictates. The function
1989 * will set HAMMER_CURSOR_RETEST to cause hammer_ip_next()
1990 * to retest the new 'current' element.
1992 if (truncating == 0 || hammer_cursor_ondisk(cursor)) {
1993 error = hammer_ip_delete_record(cursor, ip, trans->tid);
1995 * If we have built up too many meta-buffers we risk
1996 * deadlocking the kernel and must stop. This can
1997 * occur when deleting ridiculously huge files.
1998 * sync_trunc_off is updated so the next cycle does
1999 * not re-iterate records we have already deleted.
2001 * This is only done with formal truncations.
2003 if (truncating > 1 && error == 0 &&
2004 hammer_flusher_meta_limit(ip->hmp)) {
2005 ip->sync_trunc_off = off;
2006 error = EWOULDBLOCK;
2009 if (error)
2010 break;
2011 ran_beg = off; /* for restart */
2012 error = hammer_ip_next(cursor);
2014 if (cursor->node)
2015 hammer_cache_node(&ip->cache[1], cursor->node);
2017 if (error == EDEADLK) {
2018 hammer_done_cursor(cursor);
2019 error = hammer_init_cursor(trans, cursor, &ip->cache[1], ip);
2020 if (error == 0)
2021 goto retry;
2023 if (error == ENOENT)
2024 error = 0;
2025 return(error);
2029 * This backend function deletes the specified record on-disk, similar to
2030 * delete_range but for a specific record. Unlike the exact deletions
2031 * used when deleting a directory entry this function uses an ASOF search
2032 * like delete_range.
2034 * This function may be called with ip->obj_asof set for a slave snapshot,
2035 * so don't use it. We always delete non-historical records only.
2037 static int
2038 hammer_delete_general(hammer_cursor_t cursor, hammer_inode_t ip,
2039 hammer_btree_leaf_elm_t leaf)
2041 hammer_transaction_t trans = cursor->trans;
2042 int error;
2044 KKASSERT(trans->type == HAMMER_TRANS_FLS);
2045 retry:
2046 hammer_normalize_cursor(cursor);
2047 cursor->key_beg = leaf->base;
2048 cursor->asof = HAMMER_MAX_TID;
2049 cursor->flags &= ~HAMMER_CURSOR_INITMASK;
2050 cursor->flags |= HAMMER_CURSOR_ASOF;
2051 cursor->flags |= HAMMER_CURSOR_BACKEND;
2052 cursor->flags &= ~HAMMER_CURSOR_INSERT;
2054 error = hammer_btree_lookup(cursor);
2055 if (error == 0) {
2056 error = hammer_ip_delete_record(cursor, ip, trans->tid);
2058 if (error == EDEADLK) {
2059 hammer_done_cursor(cursor);
2060 error = hammer_init_cursor(trans, cursor, &ip->cache[1], ip);
2061 if (error == 0)
2062 goto retry;
2064 return(error);
2068 * This function deletes remaining auxillary records when an inode is
2069 * being deleted. This function explicitly does not delete the
2070 * inode record, directory entry, data, or db records. Those must be
2071 * properly disposed of prior to this call.
2074 hammer_ip_delete_clean(hammer_cursor_t cursor, hammer_inode_t ip, int *countp)
2076 hammer_transaction_t trans = cursor->trans;
2077 hammer_btree_leaf_elm_t leaf;
2078 int error;
2080 KKASSERT(trans->type == HAMMER_TRANS_FLS);
2081 retry:
2082 hammer_normalize_cursor(cursor);
2083 cursor->key_beg.localization = ip->obj_localization +
2084 HAMMER_LOCALIZE_MISC;
2085 cursor->key_beg.obj_id = ip->obj_id;
2086 cursor->key_beg.create_tid = 0;
2087 cursor->key_beg.delete_tid = 0;
2088 cursor->key_beg.obj_type = 0;
2089 cursor->key_beg.rec_type = HAMMER_RECTYPE_CLEAN_START;
2090 cursor->key_beg.key = HAMMER_MIN_KEY;
2092 cursor->key_end = cursor->key_beg;
2093 cursor->key_end.rec_type = HAMMER_RECTYPE_MAX;
2094 cursor->key_end.key = HAMMER_MAX_KEY;
2096 cursor->asof = ip->obj_asof;
2097 cursor->flags &= ~HAMMER_CURSOR_INITMASK;
2098 cursor->flags |= HAMMER_CURSOR_END_INCLUSIVE | HAMMER_CURSOR_ASOF;
2099 cursor->flags |= HAMMER_CURSOR_DELETE_VISIBILITY;
2100 cursor->flags |= HAMMER_CURSOR_BACKEND;
2102 error = hammer_ip_first(cursor);
2105 * Iterate through matching records and mark them as deleted.
2107 while (error == 0) {
2108 leaf = cursor->leaf;
2110 KKASSERT(leaf->base.delete_tid == 0);
2113 * Mark the record and B-Tree entry as deleted. This will
2114 * also physically delete the B-Tree entry, record, and
2115 * data if the retention policy dictates. The function
2116 * will set HAMMER_CURSOR_RETEST to cause hammer_ip_next()
2117 * to retest the new 'current' element.
2119 * Directory entries (and delete-on-disk directory entries)
2120 * must be synced and cannot be deleted.
2122 error = hammer_ip_delete_record(cursor, ip, trans->tid);
2123 ++*countp;
2124 if (error)
2125 break;
2126 error = hammer_ip_next(cursor);
2128 if (cursor->node)
2129 hammer_cache_node(&ip->cache[1], cursor->node);
2130 if (error == EDEADLK) {
2131 hammer_done_cursor(cursor);
2132 error = hammer_init_cursor(trans, cursor, &ip->cache[1], ip);
2133 if (error == 0)
2134 goto retry;
2136 if (error == ENOENT)
2137 error = 0;
2138 return(error);
2142 * Delete the record at the current cursor. On success the cursor will
2143 * be positioned appropriately for an iteration but may no longer be at
2144 * a leaf node.
2146 * This routine is only called from the backend.
2148 * NOTE: This can return EDEADLK, requiring the caller to terminate the
2149 * cursor and retry.
2152 hammer_ip_delete_record(hammer_cursor_t cursor, hammer_inode_t ip,
2153 hammer_tid_t tid)
2155 hammer_record_t iprec;
2156 hammer_mount_t hmp;
2157 int error;
2159 KKASSERT(cursor->flags & HAMMER_CURSOR_BACKEND);
2160 KKASSERT(tid != 0);
2161 hmp = cursor->node->hmp;
2164 * In-memory (unsynchronized) records can simply be freed. This
2165 * only occurs in range iterations since all other records are
2166 * individually synchronized. Thus there should be no confusion with
2167 * the interlock.
2169 * An in-memory record may be deleted before being committed to disk,
2170 * but could have been accessed in the mean time. The reservation
2171 * code will deal with the case.
2173 if (hammer_cursor_inmem(cursor)) {
2174 iprec = cursor->iprec;
2175 KKASSERT((iprec->flags & HAMMER_RECF_INTERLOCK_BE) ==0);
2176 iprec->flags |= HAMMER_RECF_DELETED_FE;
2177 iprec->flags |= HAMMER_RECF_DELETED_BE;
2178 KKASSERT(iprec->ip == ip);
2179 ++ip->rec_generation;
2180 return(0);
2184 * On-disk records are marked as deleted by updating their delete_tid.
2185 * This does not effect their position in the B-Tree (which is based
2186 * on their create_tid).
2188 * Frontend B-Tree operations track inodes so we tell
2189 * hammer_delete_at_cursor() not to.
2191 error = hammer_btree_extract(cursor, HAMMER_CURSOR_GET_LEAF);
2193 if (error == 0) {
2194 error = hammer_delete_at_cursor(
2195 cursor,
2196 HAMMER_DELETE_ADJUST | hammer_nohistory(ip),
2197 cursor->trans->tid,
2198 cursor->trans->time32,
2199 0, NULL);
2201 return(error);
2205 * Delete the B-Tree element at the current cursor and do any necessary
2206 * mirror propagation.
2208 * The cursor must be properly positioned for an iteration on return but
2209 * may be pointing at an internal element.
2211 * An element can be un-deleted by passing a delete_tid of 0 with
2212 * HAMMER_DELETE_ADJUST.
2215 hammer_delete_at_cursor(hammer_cursor_t cursor, int delete_flags,
2216 hammer_tid_t delete_tid, u_int32_t delete_ts,
2217 int track, int64_t *stat_bytes)
2219 struct hammer_btree_leaf_elm save_leaf;
2220 hammer_transaction_t trans;
2221 hammer_btree_leaf_elm_t leaf;
2222 hammer_node_t node;
2223 hammer_btree_elm_t elm;
2224 hammer_off_t data_offset;
2225 int32_t data_len;
2226 u_int16_t rec_type;
2227 int error;
2228 int icount;
2229 int doprop;
2231 error = hammer_cursor_upgrade(cursor);
2232 if (error)
2233 return(error);
2235 trans = cursor->trans;
2236 node = cursor->node;
2237 elm = &node->ondisk->elms[cursor->index];
2238 leaf = &elm->leaf;
2239 KKASSERT(elm->base.btype == HAMMER_BTREE_TYPE_RECORD);
2241 hammer_sync_lock_sh(trans);
2242 doprop = 0;
2243 icount = 0;
2246 * Adjust the delete_tid. Update the mirror_tid propagation field
2247 * as well. delete_tid can be 0 (undelete -- used by mirroring).
2249 if (delete_flags & HAMMER_DELETE_ADJUST) {
2250 if (elm->base.rec_type == HAMMER_RECTYPE_INODE) {
2251 if (elm->leaf.base.delete_tid == 0 && delete_tid)
2252 icount = -1;
2253 if (elm->leaf.base.delete_tid && delete_tid == 0)
2254 icount = 1;
2257 hammer_modify_node(trans, node, elm, sizeof(*elm));
2258 elm->leaf.base.delete_tid = delete_tid;
2259 elm->leaf.delete_ts = delete_ts;
2260 hammer_modify_node_done(node);
2262 if (elm->leaf.base.delete_tid > node->ondisk->mirror_tid) {
2263 hammer_modify_node_field(trans, node, mirror_tid);
2264 node->ondisk->mirror_tid = elm->leaf.base.delete_tid;
2265 hammer_modify_node_done(node);
2266 doprop = 1;
2267 if (hammer_debug_general & 0x0002) {
2268 kprintf("delete_at_cursor: propagate %016llx"
2269 " @%016llx\n",
2270 (long long)elm->leaf.base.delete_tid,
2271 (long long)node->node_offset);
2276 * Adjust for the iteration. We have deleted the current
2277 * element and want to clear ATEDISK so the iteration does
2278 * not skip the element after, which now becomes the current
2279 * element. This element must be re-tested if doing an
2280 * iteration, which is handled by the RETEST flag.
2282 if ((cursor->flags & HAMMER_CURSOR_DISKEOF) == 0) {
2283 cursor->flags |= HAMMER_CURSOR_RETEST;
2284 cursor->flags &= ~HAMMER_CURSOR_ATEDISK;
2288 * An on-disk record cannot have the same delete_tid
2289 * as its create_tid. In a chain of record updates
2290 * this could result in a duplicate record.
2292 KKASSERT(elm->leaf.base.delete_tid !=
2293 elm->leaf.base.create_tid);
2297 * Destroy the B-Tree element if asked (typically if a nohistory
2298 * file or mount, or when called by the pruning code).
2300 * Adjust the ATEDISK flag to properly support iterations.
2302 if (delete_flags & HAMMER_DELETE_DESTROY) {
2303 data_offset = elm->leaf.data_offset;
2304 data_len = elm->leaf.data_len;
2305 rec_type = elm->leaf.base.rec_type;
2306 if (doprop) {
2307 save_leaf = elm->leaf;
2308 leaf = &save_leaf;
2310 if (elm->base.rec_type == HAMMER_RECTYPE_INODE &&
2311 elm->leaf.base.delete_tid == 0) {
2312 icount = -1;
2315 error = hammer_btree_delete(cursor);
2316 if (error == 0) {
2318 * The deletion moves the next element (if any) to
2319 * the current element position. We must clear
2320 * ATEDISK so this element is not skipped and we
2321 * must set RETEST to force any iteration to re-test
2322 * the element.
2324 if ((cursor->flags & HAMMER_CURSOR_DISKEOF) == 0) {
2325 cursor->flags |= HAMMER_CURSOR_RETEST;
2326 cursor->flags &= ~HAMMER_CURSOR_ATEDISK;
2329 if (error == 0) {
2330 switch(data_offset & HAMMER_OFF_ZONE_MASK) {
2331 case HAMMER_ZONE_LARGE_DATA:
2332 case HAMMER_ZONE_SMALL_DATA:
2333 case HAMMER_ZONE_META:
2334 hammer_blockmap_free(trans,
2335 data_offset, data_len);
2336 break;
2337 default:
2338 break;
2344 * Track inode count and next_tid. This is used by the mirroring
2345 * and PFS code. icount can be negative, zero, or positive.
2347 if (error == 0 && track) {
2348 if (icount) {
2349 hammer_modify_volume_field(trans, trans->rootvol,
2350 vol0_stat_inodes);
2351 trans->rootvol->ondisk->vol0_stat_inodes += icount;
2352 hammer_modify_volume_done(trans->rootvol);
2354 if (trans->rootvol->ondisk->vol0_next_tid < delete_tid) {
2355 hammer_modify_volume(trans, trans->rootvol, NULL, 0);
2356 trans->rootvol->ondisk->vol0_next_tid = delete_tid;
2357 hammer_modify_volume_done(trans->rootvol);
2362 * mirror_tid propagation occurs if the node's mirror_tid had to be
2363 * updated while adjusting the delete_tid.
2365 * This occurs when deleting even in nohistory mode, but does not
2366 * occur when pruning an already-deleted node.
2368 * cursor->ip is NULL when called from the pruning, mirroring,
2369 * and pfs code. If non-NULL propagation will be conditionalized
2370 * on whether the PFS is in no-history mode or not.
2372 if (doprop) {
2373 if (cursor->ip)
2374 hammer_btree_do_propagation(cursor, cursor->ip->pfsm, leaf);
2375 else
2376 hammer_btree_do_propagation(cursor, NULL, leaf);
2378 hammer_sync_unlock(trans);
2379 return (error);
2383 * Determine whether we can remove a directory. This routine checks whether
2384 * a directory is empty or not and enforces flush connectivity.
2386 * Flush connectivity requires that we block if the target directory is
2387 * currently flushing, otherwise it may not end up in the same flush group.
2389 * Returns 0 on success, ENOTEMPTY or EDEADLK (or other errors) on failure.
2392 hammer_ip_check_directory_empty(hammer_transaction_t trans, hammer_inode_t ip)
2394 struct hammer_cursor cursor;
2395 int error;
2398 * Check directory empty
2400 hammer_init_cursor(trans, &cursor, &ip->cache[1], ip);
2402 cursor.key_beg.localization = ip->obj_localization +
2403 hammer_dir_localization(ip);
2404 cursor.key_beg.obj_id = ip->obj_id;
2405 cursor.key_beg.create_tid = 0;
2406 cursor.key_beg.delete_tid = 0;
2407 cursor.key_beg.obj_type = 0;
2408 cursor.key_beg.rec_type = HAMMER_RECTYPE_INODE + 1;
2409 cursor.key_beg.key = HAMMER_MIN_KEY;
2411 cursor.key_end = cursor.key_beg;
2412 cursor.key_end.rec_type = 0xFFFF;
2413 cursor.key_end.key = HAMMER_MAX_KEY;
2415 cursor.asof = ip->obj_asof;
2416 cursor.flags |= HAMMER_CURSOR_END_INCLUSIVE | HAMMER_CURSOR_ASOF;
2418 error = hammer_ip_first(&cursor);
2419 if (error == ENOENT)
2420 error = 0;
2421 else if (error == 0)
2422 error = ENOTEMPTY;
2423 hammer_done_cursor(&cursor);
2424 return(error);