iwmfw - Add version 22 firmwares for AC3168 and AC8265 chipsets.
[dragonfly.git] / contrib / gcc-5.0 / gcc / alias.c
blob6949a157d4aa65fae77c243715be655660755023
1 /* Alias analysis for GNU C
2 Copyright (C) 1997-2015 Free Software Foundation, Inc.
3 Contributed by John Carr (jfc@mit.edu).
5 This file is part of GCC.
7 GCC is free software; you can redistribute it and/or modify it under
8 the terms of the GNU General Public License as published by the Free
9 Software Foundation; either version 3, or (at your option) any later
10 version.
12 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
13 WARRANTY; without even the implied warranty of MERCHANTABILITY or
14 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
15 for more details.
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING3. If not see
19 <http://www.gnu.org/licenses/>. */
21 #include "config.h"
22 #include "system.h"
23 #include "coretypes.h"
24 #include "tm.h"
25 #include "rtl.h"
26 #include "hash-set.h"
27 #include "machmode.h"
28 #include "vec.h"
29 #include "double-int.h"
30 #include "input.h"
31 #include "alias.h"
32 #include "symtab.h"
33 #include "wide-int.h"
34 #include "inchash.h"
35 #include "tree.h"
36 #include "fold-const.h"
37 #include "varasm.h"
38 #include "hashtab.h"
39 #include "hard-reg-set.h"
40 #include "function.h"
41 #include "flags.h"
42 #include "statistics.h"
43 #include "real.h"
44 #include "fixed-value.h"
45 #include "insn-config.h"
46 #include "expmed.h"
47 #include "dojump.h"
48 #include "explow.h"
49 #include "calls.h"
50 #include "emit-rtl.h"
51 #include "stmt.h"
52 #include "expr.h"
53 #include "tm_p.h"
54 #include "regs.h"
55 #include "diagnostic-core.h"
56 #include "cselib.h"
57 #include "hash-map.h"
58 #include "langhooks.h"
59 #include "timevar.h"
60 #include "dumpfile.h"
61 #include "target.h"
62 #include "dominance.h"
63 #include "cfg.h"
64 #include "cfganal.h"
65 #include "predict.h"
66 #include "basic-block.h"
67 #include "df.h"
68 #include "tree-ssa-alias.h"
69 #include "internal-fn.h"
70 #include "gimple-expr.h"
71 #include "is-a.h"
72 #include "gimple.h"
73 #include "gimple-ssa.h"
74 #include "rtl-iter.h"
76 /* The aliasing API provided here solves related but different problems:
78 Say there exists (in c)
80 struct X {
81 struct Y y1;
82 struct Z z2;
83 } x1, *px1, *px2;
85 struct Y y2, *py;
86 struct Z z2, *pz;
89 py = &x1.y1;
90 px2 = &x1;
92 Consider the four questions:
94 Can a store to x1 interfere with px2->y1?
95 Can a store to x1 interfere with px2->z2?
96 Can a store to x1 change the value pointed to by with py?
97 Can a store to x1 change the value pointed to by with pz?
99 The answer to these questions can be yes, yes, yes, and maybe.
101 The first two questions can be answered with a simple examination
102 of the type system. If structure X contains a field of type Y then
103 a store through a pointer to an X can overwrite any field that is
104 contained (recursively) in an X (unless we know that px1 != px2).
106 The last two questions can be solved in the same way as the first
107 two questions but this is too conservative. The observation is
108 that in some cases we can know which (if any) fields are addressed
109 and if those addresses are used in bad ways. This analysis may be
110 language specific. In C, arbitrary operations may be applied to
111 pointers. However, there is some indication that this may be too
112 conservative for some C++ types.
114 The pass ipa-type-escape does this analysis for the types whose
115 instances do not escape across the compilation boundary.
117 Historically in GCC, these two problems were combined and a single
118 data structure that was used to represent the solution to these
119 problems. We now have two similar but different data structures,
120 The data structure to solve the last two questions is similar to
121 the first, but does not contain the fields whose address are never
122 taken. For types that do escape the compilation unit, the data
123 structures will have identical information.
126 /* The alias sets assigned to MEMs assist the back-end in determining
127 which MEMs can alias which other MEMs. In general, two MEMs in
128 different alias sets cannot alias each other, with one important
129 exception. Consider something like:
131 struct S { int i; double d; };
133 a store to an `S' can alias something of either type `int' or type
134 `double'. (However, a store to an `int' cannot alias a `double'
135 and vice versa.) We indicate this via a tree structure that looks
136 like:
137 struct S
140 |/_ _\|
141 int double
143 (The arrows are directed and point downwards.)
144 In this situation we say the alias set for `struct S' is the
145 `superset' and that those for `int' and `double' are `subsets'.
147 To see whether two alias sets can point to the same memory, we must
148 see if either alias set is a subset of the other. We need not trace
149 past immediate descendants, however, since we propagate all
150 grandchildren up one level.
152 Alias set zero is implicitly a superset of all other alias sets.
153 However, this is no actual entry for alias set zero. It is an
154 error to attempt to explicitly construct a subset of zero. */
156 struct alias_set_traits : default_hashmap_traits
158 template<typename T>
159 static bool
160 is_empty (T &e)
162 return e.m_key == INT_MIN;
165 template<typename T>
166 static bool
167 is_deleted (T &e)
169 return e.m_key == (INT_MIN + 1);
172 template<typename T> static void mark_empty (T &e) { e.m_key = INT_MIN; }
174 template<typename T>
175 static void
176 mark_deleted (T &e)
178 e.m_key = INT_MIN + 1;
182 struct GTY(()) alias_set_entry_d {
183 /* The alias set number, as stored in MEM_ALIAS_SET. */
184 alias_set_type alias_set;
186 /* Nonzero if would have a child of zero: this effectively makes this
187 alias set the same as alias set zero. */
188 int has_zero_child;
190 /* The children of the alias set. These are not just the immediate
191 children, but, in fact, all descendants. So, if we have:
193 struct T { struct S s; float f; }
195 continuing our example above, the children here will be all of
196 `int', `double', `float', and `struct S'. */
197 hash_map<int, int, alias_set_traits> *children;
199 typedef struct alias_set_entry_d *alias_set_entry;
201 static int rtx_equal_for_memref_p (const_rtx, const_rtx);
202 static int memrefs_conflict_p (int, rtx, int, rtx, HOST_WIDE_INT);
203 static void record_set (rtx, const_rtx, void *);
204 static int base_alias_check (rtx, rtx, rtx, rtx, machine_mode,
205 machine_mode);
206 static rtx find_base_value (rtx);
207 static int mems_in_disjoint_alias_sets_p (const_rtx, const_rtx);
208 static alias_set_entry get_alias_set_entry (alias_set_type);
209 static tree decl_for_component_ref (tree);
210 static int write_dependence_p (const_rtx,
211 const_rtx, machine_mode, rtx,
212 bool, bool, bool);
214 static void memory_modified_1 (rtx, const_rtx, void *);
216 /* Set up all info needed to perform alias analysis on memory references. */
218 /* Returns the size in bytes of the mode of X. */
219 #define SIZE_FOR_MODE(X) (GET_MODE_SIZE (GET_MODE (X)))
221 /* Cap the number of passes we make over the insns propagating alias
222 information through set chains.
223 ??? 10 is a completely arbitrary choice. This should be based on the
224 maximum loop depth in the CFG, but we do not have this information
225 available (even if current_loops _is_ available). */
226 #define MAX_ALIAS_LOOP_PASSES 10
228 /* reg_base_value[N] gives an address to which register N is related.
229 If all sets after the first add or subtract to the current value
230 or otherwise modify it so it does not point to a different top level
231 object, reg_base_value[N] is equal to the address part of the source
232 of the first set.
234 A base address can be an ADDRESS, SYMBOL_REF, or LABEL_REF. ADDRESS
235 expressions represent three types of base:
237 1. incoming arguments. There is just one ADDRESS to represent all
238 arguments, since we do not know at this level whether accesses
239 based on different arguments can alias. The ADDRESS has id 0.
241 2. stack_pointer_rtx, frame_pointer_rtx, hard_frame_pointer_rtx
242 (if distinct from frame_pointer_rtx) and arg_pointer_rtx.
243 Each of these rtxes has a separate ADDRESS associated with it,
244 each with a negative id.
246 GCC is (and is required to be) precise in which register it
247 chooses to access a particular region of stack. We can therefore
248 assume that accesses based on one of these rtxes do not alias
249 accesses based on another of these rtxes.
251 3. bases that are derived from malloc()ed memory (REG_NOALIAS).
252 Each such piece of memory has a separate ADDRESS associated
253 with it, each with an id greater than 0.
255 Accesses based on one ADDRESS do not alias accesses based on other
256 ADDRESSes. Accesses based on ADDRESSes in groups (2) and (3) do not
257 alias globals either; the ADDRESSes have Pmode to indicate this.
258 The ADDRESS in group (1) _may_ alias globals; it has VOIDmode to
259 indicate this. */
261 static GTY(()) vec<rtx, va_gc> *reg_base_value;
262 static rtx *new_reg_base_value;
264 /* The single VOIDmode ADDRESS that represents all argument bases.
265 It has id 0. */
266 static GTY(()) rtx arg_base_value;
268 /* Used to allocate unique ids to each REG_NOALIAS ADDRESS. */
269 static int unique_id;
271 /* We preserve the copy of old array around to avoid amount of garbage
272 produced. About 8% of garbage produced were attributed to this
273 array. */
274 static GTY((deletable)) vec<rtx, va_gc> *old_reg_base_value;
276 /* Values of XINT (address, 0) of Pmode ADDRESS rtxes for special
277 registers. */
278 #define UNIQUE_BASE_VALUE_SP -1
279 #define UNIQUE_BASE_VALUE_ARGP -2
280 #define UNIQUE_BASE_VALUE_FP -3
281 #define UNIQUE_BASE_VALUE_HFP -4
283 #define static_reg_base_value \
284 (this_target_rtl->x_static_reg_base_value)
286 #define REG_BASE_VALUE(X) \
287 (REGNO (X) < vec_safe_length (reg_base_value) \
288 ? (*reg_base_value)[REGNO (X)] : 0)
290 /* Vector indexed by N giving the initial (unchanging) value known for
291 pseudo-register N. This vector is initialized in init_alias_analysis,
292 and does not change until end_alias_analysis is called. */
293 static GTY(()) vec<rtx, va_gc> *reg_known_value;
295 /* Vector recording for each reg_known_value whether it is due to a
296 REG_EQUIV note. Future passes (viz., reload) may replace the
297 pseudo with the equivalent expression and so we account for the
298 dependences that would be introduced if that happens.
300 The REG_EQUIV notes created in assign_parms may mention the arg
301 pointer, and there are explicit insns in the RTL that modify the
302 arg pointer. Thus we must ensure that such insns don't get
303 scheduled across each other because that would invalidate the
304 REG_EQUIV notes. One could argue that the REG_EQUIV notes are
305 wrong, but solving the problem in the scheduler will likely give
306 better code, so we do it here. */
307 static sbitmap reg_known_equiv_p;
309 /* True when scanning insns from the start of the rtl to the
310 NOTE_INSN_FUNCTION_BEG note. */
311 static bool copying_arguments;
314 /* The splay-tree used to store the various alias set entries. */
315 static GTY (()) vec<alias_set_entry, va_gc> *alias_sets;
317 /* Build a decomposed reference object for querying the alias-oracle
318 from the MEM rtx and store it in *REF.
319 Returns false if MEM is not suitable for the alias-oracle. */
321 static bool
322 ao_ref_from_mem (ao_ref *ref, const_rtx mem)
324 tree expr = MEM_EXPR (mem);
325 tree base;
327 if (!expr)
328 return false;
330 ao_ref_init (ref, expr);
332 /* Get the base of the reference and see if we have to reject or
333 adjust it. */
334 base = ao_ref_base (ref);
335 if (base == NULL_TREE)
336 return false;
338 /* The tree oracle doesn't like bases that are neither decls
339 nor indirect references of SSA names. */
340 if (!(DECL_P (base)
341 || (TREE_CODE (base) == MEM_REF
342 && TREE_CODE (TREE_OPERAND (base, 0)) == SSA_NAME)
343 || (TREE_CODE (base) == TARGET_MEM_REF
344 && TREE_CODE (TMR_BASE (base)) == SSA_NAME)))
345 return false;
347 /* If this is a reference based on a partitioned decl replace the
348 base with a MEM_REF of the pointer representative we
349 created during stack slot partitioning. */
350 if (TREE_CODE (base) == VAR_DECL
351 && ! is_global_var (base)
352 && cfun->gimple_df->decls_to_pointers != NULL)
354 tree *namep = cfun->gimple_df->decls_to_pointers->get (base);
355 if (namep)
356 ref->base = build_simple_mem_ref (*namep);
359 ref->ref_alias_set = MEM_ALIAS_SET (mem);
361 /* If MEM_OFFSET or MEM_SIZE are unknown what we got from MEM_EXPR
362 is conservative, so trust it. */
363 if (!MEM_OFFSET_KNOWN_P (mem)
364 || !MEM_SIZE_KNOWN_P (mem))
365 return true;
367 /* If MEM_OFFSET/MEM_SIZE get us outside of ref->offset/ref->max_size
368 drop ref->ref. */
369 if (MEM_OFFSET (mem) < 0
370 || (ref->max_size != -1
371 && ((MEM_OFFSET (mem) + MEM_SIZE (mem)) * BITS_PER_UNIT
372 > ref->max_size)))
373 ref->ref = NULL_TREE;
375 /* Refine size and offset we got from analyzing MEM_EXPR by using
376 MEM_SIZE and MEM_OFFSET. */
378 ref->offset += MEM_OFFSET (mem) * BITS_PER_UNIT;
379 ref->size = MEM_SIZE (mem) * BITS_PER_UNIT;
381 /* The MEM may extend into adjacent fields, so adjust max_size if
382 necessary. */
383 if (ref->max_size != -1
384 && ref->size > ref->max_size)
385 ref->max_size = ref->size;
387 /* If MEM_OFFSET and MEM_SIZE get us outside of the base object of
388 the MEM_EXPR punt. This happens for STRICT_ALIGNMENT targets a lot. */
389 if (MEM_EXPR (mem) != get_spill_slot_decl (false)
390 && (ref->offset < 0
391 || (DECL_P (ref->base)
392 && (DECL_SIZE (ref->base) == NULL_TREE
393 || TREE_CODE (DECL_SIZE (ref->base)) != INTEGER_CST
394 || wi::ltu_p (wi::to_offset (DECL_SIZE (ref->base)),
395 ref->offset + ref->size)))))
396 return false;
398 return true;
401 /* Query the alias-oracle on whether the two memory rtx X and MEM may
402 alias. If TBAA_P is set also apply TBAA. Returns true if the
403 two rtxen may alias, false otherwise. */
405 static bool
406 rtx_refs_may_alias_p (const_rtx x, const_rtx mem, bool tbaa_p)
408 ao_ref ref1, ref2;
410 if (!ao_ref_from_mem (&ref1, x)
411 || !ao_ref_from_mem (&ref2, mem))
412 return true;
414 return refs_may_alias_p_1 (&ref1, &ref2,
415 tbaa_p
416 && MEM_ALIAS_SET (x) != 0
417 && MEM_ALIAS_SET (mem) != 0);
420 /* Returns a pointer to the alias set entry for ALIAS_SET, if there is
421 such an entry, or NULL otherwise. */
423 static inline alias_set_entry
424 get_alias_set_entry (alias_set_type alias_set)
426 return (*alias_sets)[alias_set];
429 /* Returns nonzero if the alias sets for MEM1 and MEM2 are such that
430 the two MEMs cannot alias each other. */
432 static inline int
433 mems_in_disjoint_alias_sets_p (const_rtx mem1, const_rtx mem2)
435 return (flag_strict_aliasing
436 && ! alias_sets_conflict_p (MEM_ALIAS_SET (mem1),
437 MEM_ALIAS_SET (mem2)));
440 /* Return true if the first alias set is a subset of the second. */
442 bool
443 alias_set_subset_of (alias_set_type set1, alias_set_type set2)
445 alias_set_entry ase;
447 /* Everything is a subset of the "aliases everything" set. */
448 if (set2 == 0)
449 return true;
451 /* Otherwise, check if set1 is a subset of set2. */
452 ase = get_alias_set_entry (set2);
453 if (ase != 0
454 && (ase->has_zero_child
455 || ase->children->get (set1)))
456 return true;
457 return false;
460 /* Return 1 if the two specified alias sets may conflict. */
463 alias_sets_conflict_p (alias_set_type set1, alias_set_type set2)
465 alias_set_entry ase;
467 /* The easy case. */
468 if (alias_sets_must_conflict_p (set1, set2))
469 return 1;
471 /* See if the first alias set is a subset of the second. */
472 ase = get_alias_set_entry (set1);
473 if (ase != 0
474 && (ase->has_zero_child
475 || ase->children->get (set2)))
476 return 1;
478 /* Now do the same, but with the alias sets reversed. */
479 ase = get_alias_set_entry (set2);
480 if (ase != 0
481 && (ase->has_zero_child
482 || ase->children->get (set1)))
483 return 1;
485 /* The two alias sets are distinct and neither one is the
486 child of the other. Therefore, they cannot conflict. */
487 return 0;
490 /* Return 1 if the two specified alias sets will always conflict. */
493 alias_sets_must_conflict_p (alias_set_type set1, alias_set_type set2)
495 if (set1 == 0 || set2 == 0 || set1 == set2)
496 return 1;
498 return 0;
501 /* Return 1 if any MEM object of type T1 will always conflict (using the
502 dependency routines in this file) with any MEM object of type T2.
503 This is used when allocating temporary storage. If T1 and/or T2 are
504 NULL_TREE, it means we know nothing about the storage. */
507 objects_must_conflict_p (tree t1, tree t2)
509 alias_set_type set1, set2;
511 /* If neither has a type specified, we don't know if they'll conflict
512 because we may be using them to store objects of various types, for
513 example the argument and local variables areas of inlined functions. */
514 if (t1 == 0 && t2 == 0)
515 return 0;
517 /* If they are the same type, they must conflict. */
518 if (t1 == t2
519 /* Likewise if both are volatile. */
520 || (t1 != 0 && TYPE_VOLATILE (t1) && t2 != 0 && TYPE_VOLATILE (t2)))
521 return 1;
523 set1 = t1 ? get_alias_set (t1) : 0;
524 set2 = t2 ? get_alias_set (t2) : 0;
526 /* We can't use alias_sets_conflict_p because we must make sure
527 that every subtype of t1 will conflict with every subtype of
528 t2 for which a pair of subobjects of these respective subtypes
529 overlaps on the stack. */
530 return alias_sets_must_conflict_p (set1, set2);
533 /* Return the outermost parent of component present in the chain of
534 component references handled by get_inner_reference in T with the
535 following property:
536 - the component is non-addressable, or
537 - the parent has alias set zero,
538 or NULL_TREE if no such parent exists. In the former cases, the alias
539 set of this parent is the alias set that must be used for T itself. */
541 tree
542 component_uses_parent_alias_set_from (const_tree t)
544 const_tree found = NULL_TREE;
546 while (handled_component_p (t))
548 switch (TREE_CODE (t))
550 case COMPONENT_REF:
551 if (DECL_NONADDRESSABLE_P (TREE_OPERAND (t, 1)))
552 found = t;
553 break;
555 case ARRAY_REF:
556 case ARRAY_RANGE_REF:
557 if (TYPE_NONALIASED_COMPONENT (TREE_TYPE (TREE_OPERAND (t, 0))))
558 found = t;
559 break;
561 case REALPART_EXPR:
562 case IMAGPART_EXPR:
563 break;
565 case BIT_FIELD_REF:
566 case VIEW_CONVERT_EXPR:
567 /* Bitfields and casts are never addressable. */
568 found = t;
569 break;
571 default:
572 gcc_unreachable ();
575 if (get_alias_set (TREE_TYPE (TREE_OPERAND (t, 0))) == 0)
576 found = t;
578 t = TREE_OPERAND (t, 0);
581 if (found)
582 return TREE_OPERAND (found, 0);
584 return NULL_TREE;
588 /* Return whether the pointer-type T effective for aliasing may
589 access everything and thus the reference has to be assigned
590 alias-set zero. */
592 static bool
593 ref_all_alias_ptr_type_p (const_tree t)
595 return (TREE_CODE (TREE_TYPE (t)) == VOID_TYPE
596 || TYPE_REF_CAN_ALIAS_ALL (t));
599 /* Return the alias set for the memory pointed to by T, which may be
600 either a type or an expression. Return -1 if there is nothing
601 special about dereferencing T. */
603 static alias_set_type
604 get_deref_alias_set_1 (tree t)
606 /* All we care about is the type. */
607 if (! TYPE_P (t))
608 t = TREE_TYPE (t);
610 /* If we have an INDIRECT_REF via a void pointer, we don't
611 know anything about what that might alias. Likewise if the
612 pointer is marked that way. */
613 if (ref_all_alias_ptr_type_p (t))
614 return 0;
616 return -1;
619 /* Return the alias set for the memory pointed to by T, which may be
620 either a type or an expression. */
622 alias_set_type
623 get_deref_alias_set (tree t)
625 /* If we're not doing any alias analysis, just assume everything
626 aliases everything else. */
627 if (!flag_strict_aliasing)
628 return 0;
630 alias_set_type set = get_deref_alias_set_1 (t);
632 /* Fall back to the alias-set of the pointed-to type. */
633 if (set == -1)
635 if (! TYPE_P (t))
636 t = TREE_TYPE (t);
637 set = get_alias_set (TREE_TYPE (t));
640 return set;
643 /* Return the pointer-type relevant for TBAA purposes from the
644 memory reference tree *T or NULL_TREE in which case *T is
645 adjusted to point to the outermost component reference that
646 can be used for assigning an alias set. */
648 static tree
649 reference_alias_ptr_type_1 (tree *t)
651 tree inner;
653 /* Get the base object of the reference. */
654 inner = *t;
655 while (handled_component_p (inner))
657 /* If there is a VIEW_CONVERT_EXPR in the chain we cannot use
658 the type of any component references that wrap it to
659 determine the alias-set. */
660 if (TREE_CODE (inner) == VIEW_CONVERT_EXPR)
661 *t = TREE_OPERAND (inner, 0);
662 inner = TREE_OPERAND (inner, 0);
665 /* Handle pointer dereferences here, they can override the
666 alias-set. */
667 if (INDIRECT_REF_P (inner)
668 && ref_all_alias_ptr_type_p (TREE_TYPE (TREE_OPERAND (inner, 0))))
669 return TREE_TYPE (TREE_OPERAND (inner, 0));
670 else if (TREE_CODE (inner) == TARGET_MEM_REF)
671 return TREE_TYPE (TMR_OFFSET (inner));
672 else if (TREE_CODE (inner) == MEM_REF
673 && ref_all_alias_ptr_type_p (TREE_TYPE (TREE_OPERAND (inner, 1))))
674 return TREE_TYPE (TREE_OPERAND (inner, 1));
676 /* If the innermost reference is a MEM_REF that has a
677 conversion embedded treat it like a VIEW_CONVERT_EXPR above,
678 using the memory access type for determining the alias-set. */
679 if (TREE_CODE (inner) == MEM_REF
680 && (TYPE_MAIN_VARIANT (TREE_TYPE (inner))
681 != TYPE_MAIN_VARIANT
682 (TREE_TYPE (TREE_TYPE (TREE_OPERAND (inner, 1))))))
683 return TREE_TYPE (TREE_OPERAND (inner, 1));
685 /* Otherwise, pick up the outermost object that we could have
686 a pointer to. */
687 tree tem = component_uses_parent_alias_set_from (*t);
688 if (tem)
689 *t = tem;
691 return NULL_TREE;
694 /* Return the pointer-type relevant for TBAA purposes from the
695 gimple memory reference tree T. This is the type to be used for
696 the offset operand of MEM_REF or TARGET_MEM_REF replacements of T
697 and guarantees that get_alias_set will return the same alias
698 set for T and the replacement. */
700 tree
701 reference_alias_ptr_type (tree t)
703 tree ptype = reference_alias_ptr_type_1 (&t);
704 /* If there is a given pointer type for aliasing purposes, return it. */
705 if (ptype != NULL_TREE)
706 return ptype;
708 /* Otherwise build one from the outermost component reference we
709 may use. */
710 if (TREE_CODE (t) == MEM_REF
711 || TREE_CODE (t) == TARGET_MEM_REF)
712 return TREE_TYPE (TREE_OPERAND (t, 1));
713 else
714 return build_pointer_type (TYPE_MAIN_VARIANT (TREE_TYPE (t)));
717 /* Return whether the pointer-types T1 and T2 used to determine
718 two alias sets of two references will yield the same answer
719 from get_deref_alias_set. */
721 bool
722 alias_ptr_types_compatible_p (tree t1, tree t2)
724 if (TYPE_MAIN_VARIANT (t1) == TYPE_MAIN_VARIANT (t2))
725 return true;
727 if (ref_all_alias_ptr_type_p (t1)
728 || ref_all_alias_ptr_type_p (t2))
729 return false;
731 return (TYPE_MAIN_VARIANT (TREE_TYPE (t1))
732 == TYPE_MAIN_VARIANT (TREE_TYPE (t2)));
735 /* Return the alias set for T, which may be either a type or an
736 expression. Call language-specific routine for help, if needed. */
738 alias_set_type
739 get_alias_set (tree t)
741 alias_set_type set;
743 /* If we're not doing any alias analysis, just assume everything
744 aliases everything else. Also return 0 if this or its type is
745 an error. */
746 if (! flag_strict_aliasing || t == error_mark_node
747 || (! TYPE_P (t)
748 && (TREE_TYPE (t) == 0 || TREE_TYPE (t) == error_mark_node)))
749 return 0;
751 /* We can be passed either an expression or a type. This and the
752 language-specific routine may make mutually-recursive calls to each other
753 to figure out what to do. At each juncture, we see if this is a tree
754 that the language may need to handle specially. First handle things that
755 aren't types. */
756 if (! TYPE_P (t))
758 /* Give the language a chance to do something with this tree
759 before we look at it. */
760 STRIP_NOPS (t);
761 set = lang_hooks.get_alias_set (t);
762 if (set != -1)
763 return set;
765 /* Get the alias pointer-type to use or the outermost object
766 that we could have a pointer to. */
767 tree ptype = reference_alias_ptr_type_1 (&t);
768 if (ptype != NULL)
769 return get_deref_alias_set (ptype);
771 /* If we've already determined the alias set for a decl, just return
772 it. This is necessary for C++ anonymous unions, whose component
773 variables don't look like union members (boo!). */
774 if (TREE_CODE (t) == VAR_DECL
775 && DECL_RTL_SET_P (t) && MEM_P (DECL_RTL (t)))
776 return MEM_ALIAS_SET (DECL_RTL (t));
778 /* Now all we care about is the type. */
779 t = TREE_TYPE (t);
782 /* Variant qualifiers don't affect the alias set, so get the main
783 variant. */
784 t = TYPE_MAIN_VARIANT (t);
786 /* Always use the canonical type as well. If this is a type that
787 requires structural comparisons to identify compatible types
788 use alias set zero. */
789 if (TYPE_STRUCTURAL_EQUALITY_P (t))
791 /* Allow the language to specify another alias set for this
792 type. */
793 set = lang_hooks.get_alias_set (t);
794 if (set != -1)
795 return set;
796 return 0;
799 t = TYPE_CANONICAL (t);
801 /* The canonical type should not require structural equality checks. */
802 gcc_checking_assert (!TYPE_STRUCTURAL_EQUALITY_P (t));
804 /* If this is a type with a known alias set, return it. */
805 if (TYPE_ALIAS_SET_KNOWN_P (t))
806 return TYPE_ALIAS_SET (t);
808 /* We don't want to set TYPE_ALIAS_SET for incomplete types. */
809 if (!COMPLETE_TYPE_P (t))
811 /* For arrays with unknown size the conservative answer is the
812 alias set of the element type. */
813 if (TREE_CODE (t) == ARRAY_TYPE)
814 return get_alias_set (TREE_TYPE (t));
816 /* But return zero as a conservative answer for incomplete types. */
817 return 0;
820 /* See if the language has special handling for this type. */
821 set = lang_hooks.get_alias_set (t);
822 if (set != -1)
823 return set;
825 /* There are no objects of FUNCTION_TYPE, so there's no point in
826 using up an alias set for them. (There are, of course, pointers
827 and references to functions, but that's different.) */
828 else if (TREE_CODE (t) == FUNCTION_TYPE || TREE_CODE (t) == METHOD_TYPE)
829 set = 0;
831 /* Unless the language specifies otherwise, let vector types alias
832 their components. This avoids some nasty type punning issues in
833 normal usage. And indeed lets vectors be treated more like an
834 array slice. */
835 else if (TREE_CODE (t) == VECTOR_TYPE)
836 set = get_alias_set (TREE_TYPE (t));
838 /* Unless the language specifies otherwise, treat array types the
839 same as their components. This avoids the asymmetry we get
840 through recording the components. Consider accessing a
841 character(kind=1) through a reference to a character(kind=1)[1:1].
842 Or consider if we want to assign integer(kind=4)[0:D.1387] and
843 integer(kind=4)[4] the same alias set or not.
844 Just be pragmatic here and make sure the array and its element
845 type get the same alias set assigned. */
846 else if (TREE_CODE (t) == ARRAY_TYPE && !TYPE_NONALIASED_COMPONENT (t))
847 set = get_alias_set (TREE_TYPE (t));
849 /* From the former common C and C++ langhook implementation:
851 Unfortunately, there is no canonical form of a pointer type.
852 In particular, if we have `typedef int I', then `int *', and
853 `I *' are different types. So, we have to pick a canonical
854 representative. We do this below.
856 Technically, this approach is actually more conservative that
857 it needs to be. In particular, `const int *' and `int *'
858 should be in different alias sets, according to the C and C++
859 standard, since their types are not the same, and so,
860 technically, an `int **' and `const int **' cannot point at
861 the same thing.
863 But, the standard is wrong. In particular, this code is
864 legal C++:
866 int *ip;
867 int **ipp = &ip;
868 const int* const* cipp = ipp;
869 And, it doesn't make sense for that to be legal unless you
870 can dereference IPP and CIPP. So, we ignore cv-qualifiers on
871 the pointed-to types. This issue has been reported to the
872 C++ committee.
874 In addition to the above canonicalization issue, with LTO
875 we should also canonicalize `T (*)[]' to `T *' avoiding
876 alias issues with pointer-to element types and pointer-to
877 array types.
879 Likewise we need to deal with the situation of incomplete
880 pointed-to types and make `*(struct X **)&a' and
881 `*(struct X {} **)&a' alias. Otherwise we will have to
882 guarantee that all pointer-to incomplete type variants
883 will be replaced by pointer-to complete type variants if
884 they are available.
886 With LTO the convenient situation of using `void *' to
887 access and store any pointer type will also become
888 more apparent (and `void *' is just another pointer-to
889 incomplete type). Assigning alias-set zero to `void *'
890 and all pointer-to incomplete types is a not appealing
891 solution. Assigning an effective alias-set zero only
892 affecting pointers might be - by recording proper subset
893 relationships of all pointer alias-sets.
895 Pointer-to function types are another grey area which
896 needs caution. Globbing them all into one alias-set
897 or the above effective zero set would work.
899 For now just assign the same alias-set to all pointers.
900 That's simple and avoids all the above problems. */
901 else if (POINTER_TYPE_P (t)
902 && t != ptr_type_node)
903 set = get_alias_set (ptr_type_node);
905 /* Otherwise make a new alias set for this type. */
906 else
908 /* Each canonical type gets its own alias set, so canonical types
909 shouldn't form a tree. It doesn't really matter for types
910 we handle specially above, so only check it where it possibly
911 would result in a bogus alias set. */
912 gcc_checking_assert (TYPE_CANONICAL (t) == t);
914 set = new_alias_set ();
917 TYPE_ALIAS_SET (t) = set;
919 /* If this is an aggregate type or a complex type, we must record any
920 component aliasing information. */
921 if (AGGREGATE_TYPE_P (t) || TREE_CODE (t) == COMPLEX_TYPE)
922 record_component_aliases (t);
924 return set;
927 /* Return a brand-new alias set. */
929 alias_set_type
930 new_alias_set (void)
932 if (flag_strict_aliasing)
934 if (alias_sets == 0)
935 vec_safe_push (alias_sets, (alias_set_entry) 0);
936 vec_safe_push (alias_sets, (alias_set_entry) 0);
937 return alias_sets->length () - 1;
939 else
940 return 0;
943 /* Indicate that things in SUBSET can alias things in SUPERSET, but that
944 not everything that aliases SUPERSET also aliases SUBSET. For example,
945 in C, a store to an `int' can alias a load of a structure containing an
946 `int', and vice versa. But it can't alias a load of a 'double' member
947 of the same structure. Here, the structure would be the SUPERSET and
948 `int' the SUBSET. This relationship is also described in the comment at
949 the beginning of this file.
951 This function should be called only once per SUPERSET/SUBSET pair.
953 It is illegal for SUPERSET to be zero; everything is implicitly a
954 subset of alias set zero. */
956 void
957 record_alias_subset (alias_set_type superset, alias_set_type subset)
959 alias_set_entry superset_entry;
960 alias_set_entry subset_entry;
962 /* It is possible in complex type situations for both sets to be the same,
963 in which case we can ignore this operation. */
964 if (superset == subset)
965 return;
967 gcc_assert (superset);
969 superset_entry = get_alias_set_entry (superset);
970 if (superset_entry == 0)
972 /* Create an entry for the SUPERSET, so that we have a place to
973 attach the SUBSET. */
974 superset_entry = ggc_cleared_alloc<alias_set_entry_d> ();
975 superset_entry->alias_set = superset;
976 superset_entry->children
977 = hash_map<int, int, alias_set_traits>::create_ggc (64);
978 superset_entry->has_zero_child = 0;
979 (*alias_sets)[superset] = superset_entry;
982 if (subset == 0)
983 superset_entry->has_zero_child = 1;
984 else
986 subset_entry = get_alias_set_entry (subset);
987 /* If there is an entry for the subset, enter all of its children
988 (if they are not already present) as children of the SUPERSET. */
989 if (subset_entry)
991 if (subset_entry->has_zero_child)
992 superset_entry->has_zero_child = 1;
994 hash_map<int, int, alias_set_traits>::iterator iter
995 = subset_entry->children->begin ();
996 for (; iter != subset_entry->children->end (); ++iter)
997 superset_entry->children->put ((*iter).first, (*iter).second);
1000 /* Enter the SUBSET itself as a child of the SUPERSET. */
1001 superset_entry->children->put (subset, 0);
1005 /* Record that component types of TYPE, if any, are part of that type for
1006 aliasing purposes. For record types, we only record component types
1007 for fields that are not marked non-addressable. For array types, we
1008 only record the component type if it is not marked non-aliased. */
1010 void
1011 record_component_aliases (tree type)
1013 alias_set_type superset = get_alias_set (type);
1014 tree field;
1016 if (superset == 0)
1017 return;
1019 switch (TREE_CODE (type))
1021 case RECORD_TYPE:
1022 case UNION_TYPE:
1023 case QUAL_UNION_TYPE:
1024 for (field = TYPE_FIELDS (type); field != 0; field = DECL_CHAIN (field))
1025 if (TREE_CODE (field) == FIELD_DECL && !DECL_NONADDRESSABLE_P (field))
1026 record_alias_subset (superset, get_alias_set (TREE_TYPE (field)));
1027 break;
1029 case COMPLEX_TYPE:
1030 record_alias_subset (superset, get_alias_set (TREE_TYPE (type)));
1031 break;
1033 /* VECTOR_TYPE and ARRAY_TYPE share the alias set with their
1034 element type. */
1036 default:
1037 break;
1041 /* Allocate an alias set for use in storing and reading from the varargs
1042 spill area. */
1044 static GTY(()) alias_set_type varargs_set = -1;
1046 alias_set_type
1047 get_varargs_alias_set (void)
1049 #if 1
1050 /* We now lower VA_ARG_EXPR, and there's currently no way to attach the
1051 varargs alias set to an INDIRECT_REF (FIXME!), so we can't
1052 consistently use the varargs alias set for loads from the varargs
1053 area. So don't use it anywhere. */
1054 return 0;
1055 #else
1056 if (varargs_set == -1)
1057 varargs_set = new_alias_set ();
1059 return varargs_set;
1060 #endif
1063 /* Likewise, but used for the fixed portions of the frame, e.g., register
1064 save areas. */
1066 static GTY(()) alias_set_type frame_set = -1;
1068 alias_set_type
1069 get_frame_alias_set (void)
1071 if (frame_set == -1)
1072 frame_set = new_alias_set ();
1074 return frame_set;
1077 /* Create a new, unique base with id ID. */
1079 static rtx
1080 unique_base_value (HOST_WIDE_INT id)
1082 return gen_rtx_ADDRESS (Pmode, id);
1085 /* Return true if accesses based on any other base value cannot alias
1086 those based on X. */
1088 static bool
1089 unique_base_value_p (rtx x)
1091 return GET_CODE (x) == ADDRESS && GET_MODE (x) == Pmode;
1094 /* Return true if X is known to be a base value. */
1096 static bool
1097 known_base_value_p (rtx x)
1099 switch (GET_CODE (x))
1101 case LABEL_REF:
1102 case SYMBOL_REF:
1103 return true;
1105 case ADDRESS:
1106 /* Arguments may or may not be bases; we don't know for sure. */
1107 return GET_MODE (x) != VOIDmode;
1109 default:
1110 return false;
1114 /* Inside SRC, the source of a SET, find a base address. */
1116 static rtx
1117 find_base_value (rtx src)
1119 unsigned int regno;
1121 #if defined (FIND_BASE_TERM)
1122 /* Try machine-dependent ways to find the base term. */
1123 src = FIND_BASE_TERM (src);
1124 #endif
1126 switch (GET_CODE (src))
1128 case SYMBOL_REF:
1129 case LABEL_REF:
1130 return src;
1132 case REG:
1133 regno = REGNO (src);
1134 /* At the start of a function, argument registers have known base
1135 values which may be lost later. Returning an ADDRESS
1136 expression here allows optimization based on argument values
1137 even when the argument registers are used for other purposes. */
1138 if (regno < FIRST_PSEUDO_REGISTER && copying_arguments)
1139 return new_reg_base_value[regno];
1141 /* If a pseudo has a known base value, return it. Do not do this
1142 for non-fixed hard regs since it can result in a circular
1143 dependency chain for registers which have values at function entry.
1145 The test above is not sufficient because the scheduler may move
1146 a copy out of an arg reg past the NOTE_INSN_FUNCTION_BEGIN. */
1147 if ((regno >= FIRST_PSEUDO_REGISTER || fixed_regs[regno])
1148 && regno < vec_safe_length (reg_base_value))
1150 /* If we're inside init_alias_analysis, use new_reg_base_value
1151 to reduce the number of relaxation iterations. */
1152 if (new_reg_base_value && new_reg_base_value[regno]
1153 && DF_REG_DEF_COUNT (regno) == 1)
1154 return new_reg_base_value[regno];
1156 if ((*reg_base_value)[regno])
1157 return (*reg_base_value)[regno];
1160 return 0;
1162 case MEM:
1163 /* Check for an argument passed in memory. Only record in the
1164 copying-arguments block; it is too hard to track changes
1165 otherwise. */
1166 if (copying_arguments
1167 && (XEXP (src, 0) == arg_pointer_rtx
1168 || (GET_CODE (XEXP (src, 0)) == PLUS
1169 && XEXP (XEXP (src, 0), 0) == arg_pointer_rtx)))
1170 return arg_base_value;
1171 return 0;
1173 case CONST:
1174 src = XEXP (src, 0);
1175 if (GET_CODE (src) != PLUS && GET_CODE (src) != MINUS)
1176 break;
1178 /* ... fall through ... */
1180 case PLUS:
1181 case MINUS:
1183 rtx temp, src_0 = XEXP (src, 0), src_1 = XEXP (src, 1);
1185 /* If either operand is a REG that is a known pointer, then it
1186 is the base. */
1187 if (REG_P (src_0) && REG_POINTER (src_0))
1188 return find_base_value (src_0);
1189 if (REG_P (src_1) && REG_POINTER (src_1))
1190 return find_base_value (src_1);
1192 /* If either operand is a REG, then see if we already have
1193 a known value for it. */
1194 if (REG_P (src_0))
1196 temp = find_base_value (src_0);
1197 if (temp != 0)
1198 src_0 = temp;
1201 if (REG_P (src_1))
1203 temp = find_base_value (src_1);
1204 if (temp!= 0)
1205 src_1 = temp;
1208 /* If either base is named object or a special address
1209 (like an argument or stack reference), then use it for the
1210 base term. */
1211 if (src_0 != 0 && known_base_value_p (src_0))
1212 return src_0;
1214 if (src_1 != 0 && known_base_value_p (src_1))
1215 return src_1;
1217 /* Guess which operand is the base address:
1218 If either operand is a symbol, then it is the base. If
1219 either operand is a CONST_INT, then the other is the base. */
1220 if (CONST_INT_P (src_1) || CONSTANT_P (src_0))
1221 return find_base_value (src_0);
1222 else if (CONST_INT_P (src_0) || CONSTANT_P (src_1))
1223 return find_base_value (src_1);
1225 return 0;
1228 case LO_SUM:
1229 /* The standard form is (lo_sum reg sym) so look only at the
1230 second operand. */
1231 return find_base_value (XEXP (src, 1));
1233 case AND:
1234 /* If the second operand is constant set the base
1235 address to the first operand. */
1236 if (CONST_INT_P (XEXP (src, 1)) && INTVAL (XEXP (src, 1)) != 0)
1237 return find_base_value (XEXP (src, 0));
1238 return 0;
1240 case TRUNCATE:
1241 /* As we do not know which address space the pointer is referring to, we can
1242 handle this only if the target does not support different pointer or
1243 address modes depending on the address space. */
1244 if (!target_default_pointer_address_modes_p ())
1245 break;
1246 if (GET_MODE_SIZE (GET_MODE (src)) < GET_MODE_SIZE (Pmode))
1247 break;
1248 /* Fall through. */
1249 case HIGH:
1250 case PRE_INC:
1251 case PRE_DEC:
1252 case POST_INC:
1253 case POST_DEC:
1254 case PRE_MODIFY:
1255 case POST_MODIFY:
1256 return find_base_value (XEXP (src, 0));
1258 case ZERO_EXTEND:
1259 case SIGN_EXTEND: /* used for NT/Alpha pointers */
1260 /* As we do not know which address space the pointer is referring to, we can
1261 handle this only if the target does not support different pointer or
1262 address modes depending on the address space. */
1263 if (!target_default_pointer_address_modes_p ())
1264 break;
1267 rtx temp = find_base_value (XEXP (src, 0));
1269 if (temp != 0 && CONSTANT_P (temp))
1270 temp = convert_memory_address (Pmode, temp);
1272 return temp;
1275 default:
1276 break;
1279 return 0;
1282 /* Called from init_alias_analysis indirectly through note_stores,
1283 or directly if DEST is a register with a REG_NOALIAS note attached.
1284 SET is null in the latter case. */
1286 /* While scanning insns to find base values, reg_seen[N] is nonzero if
1287 register N has been set in this function. */
1288 static sbitmap reg_seen;
1290 static void
1291 record_set (rtx dest, const_rtx set, void *data ATTRIBUTE_UNUSED)
1293 unsigned regno;
1294 rtx src;
1295 int n;
1297 if (!REG_P (dest))
1298 return;
1300 regno = REGNO (dest);
1302 gcc_checking_assert (regno < reg_base_value->length ());
1304 /* If this spans multiple hard registers, then we must indicate that every
1305 register has an unusable value. */
1306 if (regno < FIRST_PSEUDO_REGISTER)
1307 n = hard_regno_nregs[regno][GET_MODE (dest)];
1308 else
1309 n = 1;
1310 if (n != 1)
1312 while (--n >= 0)
1314 bitmap_set_bit (reg_seen, regno + n);
1315 new_reg_base_value[regno + n] = 0;
1317 return;
1320 if (set)
1322 /* A CLOBBER wipes out any old value but does not prevent a previously
1323 unset register from acquiring a base address (i.e. reg_seen is not
1324 set). */
1325 if (GET_CODE (set) == CLOBBER)
1327 new_reg_base_value[regno] = 0;
1328 return;
1330 src = SET_SRC (set);
1332 else
1334 /* There's a REG_NOALIAS note against DEST. */
1335 if (bitmap_bit_p (reg_seen, regno))
1337 new_reg_base_value[regno] = 0;
1338 return;
1340 bitmap_set_bit (reg_seen, regno);
1341 new_reg_base_value[regno] = unique_base_value (unique_id++);
1342 return;
1345 /* If this is not the first set of REGNO, see whether the new value
1346 is related to the old one. There are two cases of interest:
1348 (1) The register might be assigned an entirely new value
1349 that has the same base term as the original set.
1351 (2) The set might be a simple self-modification that
1352 cannot change REGNO's base value.
1354 If neither case holds, reject the original base value as invalid.
1355 Note that the following situation is not detected:
1357 extern int x, y; int *p = &x; p += (&y-&x);
1359 ANSI C does not allow computing the difference of addresses
1360 of distinct top level objects. */
1361 if (new_reg_base_value[regno] != 0
1362 && find_base_value (src) != new_reg_base_value[regno])
1363 switch (GET_CODE (src))
1365 case LO_SUM:
1366 case MINUS:
1367 if (XEXP (src, 0) != dest && XEXP (src, 1) != dest)
1368 new_reg_base_value[regno] = 0;
1369 break;
1370 case PLUS:
1371 /* If the value we add in the PLUS is also a valid base value,
1372 this might be the actual base value, and the original value
1373 an index. */
1375 rtx other = NULL_RTX;
1377 if (XEXP (src, 0) == dest)
1378 other = XEXP (src, 1);
1379 else if (XEXP (src, 1) == dest)
1380 other = XEXP (src, 0);
1382 if (! other || find_base_value (other))
1383 new_reg_base_value[regno] = 0;
1384 break;
1386 case AND:
1387 if (XEXP (src, 0) != dest || !CONST_INT_P (XEXP (src, 1)))
1388 new_reg_base_value[regno] = 0;
1389 break;
1390 default:
1391 new_reg_base_value[regno] = 0;
1392 break;
1394 /* If this is the first set of a register, record the value. */
1395 else if ((regno >= FIRST_PSEUDO_REGISTER || ! fixed_regs[regno])
1396 && ! bitmap_bit_p (reg_seen, regno) && new_reg_base_value[regno] == 0)
1397 new_reg_base_value[regno] = find_base_value (src);
1399 bitmap_set_bit (reg_seen, regno);
1402 /* Return REG_BASE_VALUE for REGNO. Selective scheduler uses this to avoid
1403 using hard registers with non-null REG_BASE_VALUE for renaming. */
1405 get_reg_base_value (unsigned int regno)
1407 return (*reg_base_value)[regno];
1410 /* If a value is known for REGNO, return it. */
1413 get_reg_known_value (unsigned int regno)
1415 if (regno >= FIRST_PSEUDO_REGISTER)
1417 regno -= FIRST_PSEUDO_REGISTER;
1418 if (regno < vec_safe_length (reg_known_value))
1419 return (*reg_known_value)[regno];
1421 return NULL;
1424 /* Set it. */
1426 static void
1427 set_reg_known_value (unsigned int regno, rtx val)
1429 if (regno >= FIRST_PSEUDO_REGISTER)
1431 regno -= FIRST_PSEUDO_REGISTER;
1432 if (regno < vec_safe_length (reg_known_value))
1433 (*reg_known_value)[regno] = val;
1437 /* Similarly for reg_known_equiv_p. */
1439 bool
1440 get_reg_known_equiv_p (unsigned int regno)
1442 if (regno >= FIRST_PSEUDO_REGISTER)
1444 regno -= FIRST_PSEUDO_REGISTER;
1445 if (regno < vec_safe_length (reg_known_value))
1446 return bitmap_bit_p (reg_known_equiv_p, regno);
1448 return false;
1451 static void
1452 set_reg_known_equiv_p (unsigned int regno, bool val)
1454 if (regno >= FIRST_PSEUDO_REGISTER)
1456 regno -= FIRST_PSEUDO_REGISTER;
1457 if (regno < vec_safe_length (reg_known_value))
1459 if (val)
1460 bitmap_set_bit (reg_known_equiv_p, regno);
1461 else
1462 bitmap_clear_bit (reg_known_equiv_p, regno);
1468 /* Returns a canonical version of X, from the point of view alias
1469 analysis. (For example, if X is a MEM whose address is a register,
1470 and the register has a known value (say a SYMBOL_REF), then a MEM
1471 whose address is the SYMBOL_REF is returned.) */
1474 canon_rtx (rtx x)
1476 /* Recursively look for equivalences. */
1477 if (REG_P (x) && REGNO (x) >= FIRST_PSEUDO_REGISTER)
1479 rtx t = get_reg_known_value (REGNO (x));
1480 if (t == x)
1481 return x;
1482 if (t)
1483 return canon_rtx (t);
1486 if (GET_CODE (x) == PLUS)
1488 rtx x0 = canon_rtx (XEXP (x, 0));
1489 rtx x1 = canon_rtx (XEXP (x, 1));
1491 if (x0 != XEXP (x, 0) || x1 != XEXP (x, 1))
1493 if (CONST_INT_P (x0))
1494 return plus_constant (GET_MODE (x), x1, INTVAL (x0));
1495 else if (CONST_INT_P (x1))
1496 return plus_constant (GET_MODE (x), x0, INTVAL (x1));
1497 return gen_rtx_PLUS (GET_MODE (x), x0, x1);
1501 /* This gives us much better alias analysis when called from
1502 the loop optimizer. Note we want to leave the original
1503 MEM alone, but need to return the canonicalized MEM with
1504 all the flags with their original values. */
1505 else if (MEM_P (x))
1506 x = replace_equiv_address_nv (x, canon_rtx (XEXP (x, 0)));
1508 return x;
1511 /* Return 1 if X and Y are identical-looking rtx's.
1512 Expect that X and Y has been already canonicalized.
1514 We use the data in reg_known_value above to see if two registers with
1515 different numbers are, in fact, equivalent. */
1517 static int
1518 rtx_equal_for_memref_p (const_rtx x, const_rtx y)
1520 int i;
1521 int j;
1522 enum rtx_code code;
1523 const char *fmt;
1525 if (x == 0 && y == 0)
1526 return 1;
1527 if (x == 0 || y == 0)
1528 return 0;
1530 if (x == y)
1531 return 1;
1533 code = GET_CODE (x);
1534 /* Rtx's of different codes cannot be equal. */
1535 if (code != GET_CODE (y))
1536 return 0;
1538 /* (MULT:SI x y) and (MULT:HI x y) are NOT equivalent.
1539 (REG:SI x) and (REG:HI x) are NOT equivalent. */
1541 if (GET_MODE (x) != GET_MODE (y))
1542 return 0;
1544 /* Some RTL can be compared without a recursive examination. */
1545 switch (code)
1547 case REG:
1548 return REGNO (x) == REGNO (y);
1550 case LABEL_REF:
1551 return LABEL_REF_LABEL (x) == LABEL_REF_LABEL (y);
1553 case SYMBOL_REF:
1554 return XSTR (x, 0) == XSTR (y, 0);
1556 case ENTRY_VALUE:
1557 /* This is magic, don't go through canonicalization et al. */
1558 return rtx_equal_p (ENTRY_VALUE_EXP (x), ENTRY_VALUE_EXP (y));
1560 case VALUE:
1561 CASE_CONST_UNIQUE:
1562 /* Pointer equality guarantees equality for these nodes. */
1563 return 0;
1565 default:
1566 break;
1569 /* canon_rtx knows how to handle plus. No need to canonicalize. */
1570 if (code == PLUS)
1571 return ((rtx_equal_for_memref_p (XEXP (x, 0), XEXP (y, 0))
1572 && rtx_equal_for_memref_p (XEXP (x, 1), XEXP (y, 1)))
1573 || (rtx_equal_for_memref_p (XEXP (x, 0), XEXP (y, 1))
1574 && rtx_equal_for_memref_p (XEXP (x, 1), XEXP (y, 0))));
1575 /* For commutative operations, the RTX match if the operand match in any
1576 order. Also handle the simple binary and unary cases without a loop. */
1577 if (COMMUTATIVE_P (x))
1579 rtx xop0 = canon_rtx (XEXP (x, 0));
1580 rtx yop0 = canon_rtx (XEXP (y, 0));
1581 rtx yop1 = canon_rtx (XEXP (y, 1));
1583 return ((rtx_equal_for_memref_p (xop0, yop0)
1584 && rtx_equal_for_memref_p (canon_rtx (XEXP (x, 1)), yop1))
1585 || (rtx_equal_for_memref_p (xop0, yop1)
1586 && rtx_equal_for_memref_p (canon_rtx (XEXP (x, 1)), yop0)));
1588 else if (NON_COMMUTATIVE_P (x))
1590 return (rtx_equal_for_memref_p (canon_rtx (XEXP (x, 0)),
1591 canon_rtx (XEXP (y, 0)))
1592 && rtx_equal_for_memref_p (canon_rtx (XEXP (x, 1)),
1593 canon_rtx (XEXP (y, 1))));
1595 else if (UNARY_P (x))
1596 return rtx_equal_for_memref_p (canon_rtx (XEXP (x, 0)),
1597 canon_rtx (XEXP (y, 0)));
1599 /* Compare the elements. If any pair of corresponding elements
1600 fail to match, return 0 for the whole things.
1602 Limit cases to types which actually appear in addresses. */
1604 fmt = GET_RTX_FORMAT (code);
1605 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
1607 switch (fmt[i])
1609 case 'i':
1610 if (XINT (x, i) != XINT (y, i))
1611 return 0;
1612 break;
1614 case 'E':
1615 /* Two vectors must have the same length. */
1616 if (XVECLEN (x, i) != XVECLEN (y, i))
1617 return 0;
1619 /* And the corresponding elements must match. */
1620 for (j = 0; j < XVECLEN (x, i); j++)
1621 if (rtx_equal_for_memref_p (canon_rtx (XVECEXP (x, i, j)),
1622 canon_rtx (XVECEXP (y, i, j))) == 0)
1623 return 0;
1624 break;
1626 case 'e':
1627 if (rtx_equal_for_memref_p (canon_rtx (XEXP (x, i)),
1628 canon_rtx (XEXP (y, i))) == 0)
1629 return 0;
1630 break;
1632 /* This can happen for asm operands. */
1633 case 's':
1634 if (strcmp (XSTR (x, i), XSTR (y, i)))
1635 return 0;
1636 break;
1638 /* This can happen for an asm which clobbers memory. */
1639 case '0':
1640 break;
1642 /* It is believed that rtx's at this level will never
1643 contain anything but integers and other rtx's,
1644 except for within LABEL_REFs and SYMBOL_REFs. */
1645 default:
1646 gcc_unreachable ();
1649 return 1;
1652 static rtx
1653 find_base_term (rtx x)
1655 cselib_val *val;
1656 struct elt_loc_list *l, *f;
1657 rtx ret;
1659 #if defined (FIND_BASE_TERM)
1660 /* Try machine-dependent ways to find the base term. */
1661 x = FIND_BASE_TERM (x);
1662 #endif
1664 switch (GET_CODE (x))
1666 case REG:
1667 return REG_BASE_VALUE (x);
1669 case TRUNCATE:
1670 /* As we do not know which address space the pointer is referring to, we can
1671 handle this only if the target does not support different pointer or
1672 address modes depending on the address space. */
1673 if (!target_default_pointer_address_modes_p ())
1674 return 0;
1675 if (GET_MODE_SIZE (GET_MODE (x)) < GET_MODE_SIZE (Pmode))
1676 return 0;
1677 /* Fall through. */
1678 case HIGH:
1679 case PRE_INC:
1680 case PRE_DEC:
1681 case POST_INC:
1682 case POST_DEC:
1683 case PRE_MODIFY:
1684 case POST_MODIFY:
1685 return find_base_term (XEXP (x, 0));
1687 case ZERO_EXTEND:
1688 case SIGN_EXTEND: /* Used for Alpha/NT pointers */
1689 /* As we do not know which address space the pointer is referring to, we can
1690 handle this only if the target does not support different pointer or
1691 address modes depending on the address space. */
1692 if (!target_default_pointer_address_modes_p ())
1693 return 0;
1696 rtx temp = find_base_term (XEXP (x, 0));
1698 if (temp != 0 && CONSTANT_P (temp))
1699 temp = convert_memory_address (Pmode, temp);
1701 return temp;
1704 case VALUE:
1705 val = CSELIB_VAL_PTR (x);
1706 ret = NULL_RTX;
1708 if (!val)
1709 return ret;
1711 if (cselib_sp_based_value_p (val))
1712 return static_reg_base_value[STACK_POINTER_REGNUM];
1714 f = val->locs;
1715 /* Temporarily reset val->locs to avoid infinite recursion. */
1716 val->locs = NULL;
1718 for (l = f; l; l = l->next)
1719 if (GET_CODE (l->loc) == VALUE
1720 && CSELIB_VAL_PTR (l->loc)->locs
1721 && !CSELIB_VAL_PTR (l->loc)->locs->next
1722 && CSELIB_VAL_PTR (l->loc)->locs->loc == x)
1723 continue;
1724 else if ((ret = find_base_term (l->loc)) != 0)
1725 break;
1727 val->locs = f;
1728 return ret;
1730 case LO_SUM:
1731 /* The standard form is (lo_sum reg sym) so look only at the
1732 second operand. */
1733 return find_base_term (XEXP (x, 1));
1735 case CONST:
1736 x = XEXP (x, 0);
1737 if (GET_CODE (x) != PLUS && GET_CODE (x) != MINUS)
1738 return 0;
1739 /* Fall through. */
1740 case PLUS:
1741 case MINUS:
1743 rtx tmp1 = XEXP (x, 0);
1744 rtx tmp2 = XEXP (x, 1);
1746 /* This is a little bit tricky since we have to determine which of
1747 the two operands represents the real base address. Otherwise this
1748 routine may return the index register instead of the base register.
1750 That may cause us to believe no aliasing was possible, when in
1751 fact aliasing is possible.
1753 We use a few simple tests to guess the base register. Additional
1754 tests can certainly be added. For example, if one of the operands
1755 is a shift or multiply, then it must be the index register and the
1756 other operand is the base register. */
1758 if (tmp1 == pic_offset_table_rtx && CONSTANT_P (tmp2))
1759 return find_base_term (tmp2);
1761 /* If either operand is known to be a pointer, then prefer it
1762 to determine the base term. */
1763 if (REG_P (tmp1) && REG_POINTER (tmp1))
1765 else if (REG_P (tmp2) && REG_POINTER (tmp2))
1766 std::swap (tmp1, tmp2);
1767 /* If second argument is constant which has base term, prefer it
1768 over variable tmp1. See PR64025. */
1769 else if (CONSTANT_P (tmp2) && !CONST_INT_P (tmp2))
1770 std::swap (tmp1, tmp2);
1772 /* Go ahead and find the base term for both operands. If either base
1773 term is from a pointer or is a named object or a special address
1774 (like an argument or stack reference), then use it for the
1775 base term. */
1776 rtx base = find_base_term (tmp1);
1777 if (base != NULL_RTX
1778 && ((REG_P (tmp1) && REG_POINTER (tmp1))
1779 || known_base_value_p (base)))
1780 return base;
1781 base = find_base_term (tmp2);
1782 if (base != NULL_RTX
1783 && ((REG_P (tmp2) && REG_POINTER (tmp2))
1784 || known_base_value_p (base)))
1785 return base;
1787 /* We could not determine which of the two operands was the
1788 base register and which was the index. So we can determine
1789 nothing from the base alias check. */
1790 return 0;
1793 case AND:
1794 if (CONST_INT_P (XEXP (x, 1)) && INTVAL (XEXP (x, 1)) != 0)
1795 return find_base_term (XEXP (x, 0));
1796 return 0;
1798 case SYMBOL_REF:
1799 case LABEL_REF:
1800 return x;
1802 default:
1803 return 0;
1807 /* Return true if accesses to address X may alias accesses based
1808 on the stack pointer. */
1810 bool
1811 may_be_sp_based_p (rtx x)
1813 rtx base = find_base_term (x);
1814 return !base || base == static_reg_base_value[STACK_POINTER_REGNUM];
1817 /* Return 0 if the addresses X and Y are known to point to different
1818 objects, 1 if they might be pointers to the same object. */
1820 static int
1821 base_alias_check (rtx x, rtx x_base, rtx y, rtx y_base,
1822 machine_mode x_mode, machine_mode y_mode)
1824 /* If the address itself has no known base see if a known equivalent
1825 value has one. If either address still has no known base, nothing
1826 is known about aliasing. */
1827 if (x_base == 0)
1829 rtx x_c;
1831 if (! flag_expensive_optimizations || (x_c = canon_rtx (x)) == x)
1832 return 1;
1834 x_base = find_base_term (x_c);
1835 if (x_base == 0)
1836 return 1;
1839 if (y_base == 0)
1841 rtx y_c;
1842 if (! flag_expensive_optimizations || (y_c = canon_rtx (y)) == y)
1843 return 1;
1845 y_base = find_base_term (y_c);
1846 if (y_base == 0)
1847 return 1;
1850 /* If the base addresses are equal nothing is known about aliasing. */
1851 if (rtx_equal_p (x_base, y_base))
1852 return 1;
1854 /* The base addresses are different expressions. If they are not accessed
1855 via AND, there is no conflict. We can bring knowledge of object
1856 alignment into play here. For example, on alpha, "char a, b;" can
1857 alias one another, though "char a; long b;" cannot. AND addesses may
1858 implicitly alias surrounding objects; i.e. unaligned access in DImode
1859 via AND address can alias all surrounding object types except those
1860 with aligment 8 or higher. */
1861 if (GET_CODE (x) == AND && GET_CODE (y) == AND)
1862 return 1;
1863 if (GET_CODE (x) == AND
1864 && (!CONST_INT_P (XEXP (x, 1))
1865 || (int) GET_MODE_UNIT_SIZE (y_mode) < -INTVAL (XEXP (x, 1))))
1866 return 1;
1867 if (GET_CODE (y) == AND
1868 && (!CONST_INT_P (XEXP (y, 1))
1869 || (int) GET_MODE_UNIT_SIZE (x_mode) < -INTVAL (XEXP (y, 1))))
1870 return 1;
1872 /* Differing symbols not accessed via AND never alias. */
1873 if (GET_CODE (x_base) != ADDRESS && GET_CODE (y_base) != ADDRESS)
1874 return 0;
1876 if (unique_base_value_p (x_base) || unique_base_value_p (y_base))
1877 return 0;
1879 return 1;
1882 /* Return TRUE if EXPR refers to a VALUE whose uid is greater than
1883 (or equal to) that of V. */
1885 static bool
1886 refs_newer_value_p (const_rtx expr, rtx v)
1888 int minuid = CSELIB_VAL_PTR (v)->uid;
1889 subrtx_iterator::array_type array;
1890 FOR_EACH_SUBRTX (iter, array, expr, NONCONST)
1891 if (GET_CODE (*iter) == VALUE && CSELIB_VAL_PTR (*iter)->uid >= minuid)
1892 return true;
1893 return false;
1896 /* Convert the address X into something we can use. This is done by returning
1897 it unchanged unless it is a VALUE or VALUE +/- constant; for VALUE
1898 we call cselib to get a more useful rtx. */
1901 get_addr (rtx x)
1903 cselib_val *v;
1904 struct elt_loc_list *l;
1906 if (GET_CODE (x) != VALUE)
1908 if ((GET_CODE (x) == PLUS || GET_CODE (x) == MINUS)
1909 && GET_CODE (XEXP (x, 0)) == VALUE
1910 && CONST_SCALAR_INT_P (XEXP (x, 1)))
1912 rtx op0 = get_addr (XEXP (x, 0));
1913 if (op0 != XEXP (x, 0))
1915 if (GET_CODE (x) == PLUS
1916 && GET_CODE (XEXP (x, 1)) == CONST_INT)
1917 return plus_constant (GET_MODE (x), op0, INTVAL (XEXP (x, 1)));
1918 return simplify_gen_binary (GET_CODE (x), GET_MODE (x),
1919 op0, XEXP (x, 1));
1922 return x;
1924 v = CSELIB_VAL_PTR (x);
1925 if (v)
1927 bool have_equivs = cselib_have_permanent_equivalences ();
1928 if (have_equivs)
1929 v = canonical_cselib_val (v);
1930 for (l = v->locs; l; l = l->next)
1931 if (CONSTANT_P (l->loc))
1932 return l->loc;
1933 for (l = v->locs; l; l = l->next)
1934 if (!REG_P (l->loc) && !MEM_P (l->loc)
1935 /* Avoid infinite recursion when potentially dealing with
1936 var-tracking artificial equivalences, by skipping the
1937 equivalences themselves, and not choosing expressions
1938 that refer to newer VALUEs. */
1939 && (!have_equivs
1940 || (GET_CODE (l->loc) != VALUE
1941 && !refs_newer_value_p (l->loc, x))))
1942 return l->loc;
1943 if (have_equivs)
1945 for (l = v->locs; l; l = l->next)
1946 if (REG_P (l->loc)
1947 || (GET_CODE (l->loc) != VALUE
1948 && !refs_newer_value_p (l->loc, x)))
1949 return l->loc;
1950 /* Return the canonical value. */
1951 return v->val_rtx;
1953 if (v->locs)
1954 return v->locs->loc;
1956 return x;
1959 /* Return the address of the (N_REFS + 1)th memory reference to ADDR
1960 where SIZE is the size in bytes of the memory reference. If ADDR
1961 is not modified by the memory reference then ADDR is returned. */
1963 static rtx
1964 addr_side_effect_eval (rtx addr, int size, int n_refs)
1966 int offset = 0;
1968 switch (GET_CODE (addr))
1970 case PRE_INC:
1971 offset = (n_refs + 1) * size;
1972 break;
1973 case PRE_DEC:
1974 offset = -(n_refs + 1) * size;
1975 break;
1976 case POST_INC:
1977 offset = n_refs * size;
1978 break;
1979 case POST_DEC:
1980 offset = -n_refs * size;
1981 break;
1983 default:
1984 return addr;
1987 if (offset)
1988 addr = gen_rtx_PLUS (GET_MODE (addr), XEXP (addr, 0),
1989 gen_int_mode (offset, GET_MODE (addr)));
1990 else
1991 addr = XEXP (addr, 0);
1992 addr = canon_rtx (addr);
1994 return addr;
1997 /* Return TRUE if an object X sized at XSIZE bytes and another object
1998 Y sized at YSIZE bytes, starting C bytes after X, may overlap. If
1999 any of the sizes is zero, assume an overlap, otherwise use the
2000 absolute value of the sizes as the actual sizes. */
2002 static inline bool
2003 offset_overlap_p (HOST_WIDE_INT c, int xsize, int ysize)
2005 return (xsize == 0 || ysize == 0
2006 || (c >= 0
2007 ? (abs (xsize) > c)
2008 : (abs (ysize) > -c)));
2011 /* Return one if X and Y (memory addresses) reference the
2012 same location in memory or if the references overlap.
2013 Return zero if they do not overlap, else return
2014 minus one in which case they still might reference the same location.
2016 C is an offset accumulator. When
2017 C is nonzero, we are testing aliases between X and Y + C.
2018 XSIZE is the size in bytes of the X reference,
2019 similarly YSIZE is the size in bytes for Y.
2020 Expect that canon_rtx has been already called for X and Y.
2022 If XSIZE or YSIZE is zero, we do not know the amount of memory being
2023 referenced (the reference was BLKmode), so make the most pessimistic
2024 assumptions.
2026 If XSIZE or YSIZE is negative, we may access memory outside the object
2027 being referenced as a side effect. This can happen when using AND to
2028 align memory references, as is done on the Alpha.
2030 Nice to notice that varying addresses cannot conflict with fp if no
2031 local variables had their addresses taken, but that's too hard now.
2033 ??? Contrary to the tree alias oracle this does not return
2034 one for X + non-constant and Y + non-constant when X and Y are equal.
2035 If that is fixed the TBAA hack for union type-punning can be removed. */
2037 static int
2038 memrefs_conflict_p (int xsize, rtx x, int ysize, rtx y, HOST_WIDE_INT c)
2040 if (GET_CODE (x) == VALUE)
2042 if (REG_P (y))
2044 struct elt_loc_list *l = NULL;
2045 if (CSELIB_VAL_PTR (x))
2046 for (l = canonical_cselib_val (CSELIB_VAL_PTR (x))->locs;
2047 l; l = l->next)
2048 if (REG_P (l->loc) && rtx_equal_for_memref_p (l->loc, y))
2049 break;
2050 if (l)
2051 x = y;
2052 else
2053 x = get_addr (x);
2055 /* Don't call get_addr if y is the same VALUE. */
2056 else if (x != y)
2057 x = get_addr (x);
2059 if (GET_CODE (y) == VALUE)
2061 if (REG_P (x))
2063 struct elt_loc_list *l = NULL;
2064 if (CSELIB_VAL_PTR (y))
2065 for (l = canonical_cselib_val (CSELIB_VAL_PTR (y))->locs;
2066 l; l = l->next)
2067 if (REG_P (l->loc) && rtx_equal_for_memref_p (l->loc, x))
2068 break;
2069 if (l)
2070 y = x;
2071 else
2072 y = get_addr (y);
2074 /* Don't call get_addr if x is the same VALUE. */
2075 else if (y != x)
2076 y = get_addr (y);
2078 if (GET_CODE (x) == HIGH)
2079 x = XEXP (x, 0);
2080 else if (GET_CODE (x) == LO_SUM)
2081 x = XEXP (x, 1);
2082 else
2083 x = addr_side_effect_eval (x, abs (xsize), 0);
2084 if (GET_CODE (y) == HIGH)
2085 y = XEXP (y, 0);
2086 else if (GET_CODE (y) == LO_SUM)
2087 y = XEXP (y, 1);
2088 else
2089 y = addr_side_effect_eval (y, abs (ysize), 0);
2091 if (rtx_equal_for_memref_p (x, y))
2093 return offset_overlap_p (c, xsize, ysize);
2096 /* This code used to check for conflicts involving stack references and
2097 globals but the base address alias code now handles these cases. */
2099 if (GET_CODE (x) == PLUS)
2101 /* The fact that X is canonicalized means that this
2102 PLUS rtx is canonicalized. */
2103 rtx x0 = XEXP (x, 0);
2104 rtx x1 = XEXP (x, 1);
2106 if (GET_CODE (y) == PLUS)
2108 /* The fact that Y is canonicalized means that this
2109 PLUS rtx is canonicalized. */
2110 rtx y0 = XEXP (y, 0);
2111 rtx y1 = XEXP (y, 1);
2113 if (rtx_equal_for_memref_p (x1, y1))
2114 return memrefs_conflict_p (xsize, x0, ysize, y0, c);
2115 if (rtx_equal_for_memref_p (x0, y0))
2116 return memrefs_conflict_p (xsize, x1, ysize, y1, c);
2117 if (CONST_INT_P (x1))
2119 if (CONST_INT_P (y1))
2120 return memrefs_conflict_p (xsize, x0, ysize, y0,
2121 c - INTVAL (x1) + INTVAL (y1));
2122 else
2123 return memrefs_conflict_p (xsize, x0, ysize, y,
2124 c - INTVAL (x1));
2126 else if (CONST_INT_P (y1))
2127 return memrefs_conflict_p (xsize, x, ysize, y0, c + INTVAL (y1));
2129 return -1;
2131 else if (CONST_INT_P (x1))
2132 return memrefs_conflict_p (xsize, x0, ysize, y, c - INTVAL (x1));
2134 else if (GET_CODE (y) == PLUS)
2136 /* The fact that Y is canonicalized means that this
2137 PLUS rtx is canonicalized. */
2138 rtx y0 = XEXP (y, 0);
2139 rtx y1 = XEXP (y, 1);
2141 if (CONST_INT_P (y1))
2142 return memrefs_conflict_p (xsize, x, ysize, y0, c + INTVAL (y1));
2143 else
2144 return -1;
2147 if (GET_CODE (x) == GET_CODE (y))
2148 switch (GET_CODE (x))
2150 case MULT:
2152 /* Handle cases where we expect the second operands to be the
2153 same, and check only whether the first operand would conflict
2154 or not. */
2155 rtx x0, y0;
2156 rtx x1 = canon_rtx (XEXP (x, 1));
2157 rtx y1 = canon_rtx (XEXP (y, 1));
2158 if (! rtx_equal_for_memref_p (x1, y1))
2159 return -1;
2160 x0 = canon_rtx (XEXP (x, 0));
2161 y0 = canon_rtx (XEXP (y, 0));
2162 if (rtx_equal_for_memref_p (x0, y0))
2163 return offset_overlap_p (c, xsize, ysize);
2165 /* Can't properly adjust our sizes. */
2166 if (!CONST_INT_P (x1))
2167 return -1;
2168 xsize /= INTVAL (x1);
2169 ysize /= INTVAL (x1);
2170 c /= INTVAL (x1);
2171 return memrefs_conflict_p (xsize, x0, ysize, y0, c);
2174 default:
2175 break;
2178 /* Deal with alignment ANDs by adjusting offset and size so as to
2179 cover the maximum range, without taking any previously known
2180 alignment into account. Make a size negative after such an
2181 adjustments, so that, if we end up with e.g. two SYMBOL_REFs, we
2182 assume a potential overlap, because they may end up in contiguous
2183 memory locations and the stricter-alignment access may span over
2184 part of both. */
2185 if (GET_CODE (x) == AND && CONST_INT_P (XEXP (x, 1)))
2187 HOST_WIDE_INT sc = INTVAL (XEXP (x, 1));
2188 unsigned HOST_WIDE_INT uc = sc;
2189 if (sc < 0 && -uc == (uc & -uc))
2191 if (xsize > 0)
2192 xsize = -xsize;
2193 if (xsize)
2194 xsize += sc + 1;
2195 c -= sc + 1;
2196 return memrefs_conflict_p (xsize, canon_rtx (XEXP (x, 0)),
2197 ysize, y, c);
2200 if (GET_CODE (y) == AND && CONST_INT_P (XEXP (y, 1)))
2202 HOST_WIDE_INT sc = INTVAL (XEXP (y, 1));
2203 unsigned HOST_WIDE_INT uc = sc;
2204 if (sc < 0 && -uc == (uc & -uc))
2206 if (ysize > 0)
2207 ysize = -ysize;
2208 if (ysize)
2209 ysize += sc + 1;
2210 c += sc + 1;
2211 return memrefs_conflict_p (xsize, x,
2212 ysize, canon_rtx (XEXP (y, 0)), c);
2216 if (CONSTANT_P (x))
2218 if (CONST_INT_P (x) && CONST_INT_P (y))
2220 c += (INTVAL (y) - INTVAL (x));
2221 return offset_overlap_p (c, xsize, ysize);
2224 if (GET_CODE (x) == CONST)
2226 if (GET_CODE (y) == CONST)
2227 return memrefs_conflict_p (xsize, canon_rtx (XEXP (x, 0)),
2228 ysize, canon_rtx (XEXP (y, 0)), c);
2229 else
2230 return memrefs_conflict_p (xsize, canon_rtx (XEXP (x, 0)),
2231 ysize, y, c);
2233 if (GET_CODE (y) == CONST)
2234 return memrefs_conflict_p (xsize, x, ysize,
2235 canon_rtx (XEXP (y, 0)), c);
2237 /* Assume a potential overlap for symbolic addresses that went
2238 through alignment adjustments (i.e., that have negative
2239 sizes), because we can't know how far they are from each
2240 other. */
2241 if (CONSTANT_P (y))
2242 return (xsize < 0 || ysize < 0 || offset_overlap_p (c, xsize, ysize));
2244 return -1;
2247 return -1;
2250 /* Functions to compute memory dependencies.
2252 Since we process the insns in execution order, we can build tables
2253 to keep track of what registers are fixed (and not aliased), what registers
2254 are varying in known ways, and what registers are varying in unknown
2255 ways.
2257 If both memory references are volatile, then there must always be a
2258 dependence between the two references, since their order can not be
2259 changed. A volatile and non-volatile reference can be interchanged
2260 though.
2262 We also must allow AND addresses, because they may generate accesses
2263 outside the object being referenced. This is used to generate aligned
2264 addresses from unaligned addresses, for instance, the alpha
2265 storeqi_unaligned pattern. */
2267 /* Read dependence: X is read after read in MEM takes place. There can
2268 only be a dependence here if both reads are volatile, or if either is
2269 an explicit barrier. */
2272 read_dependence (const_rtx mem, const_rtx x)
2274 if (MEM_VOLATILE_P (x) && MEM_VOLATILE_P (mem))
2275 return true;
2276 if (MEM_ALIAS_SET (x) == ALIAS_SET_MEMORY_BARRIER
2277 || MEM_ALIAS_SET (mem) == ALIAS_SET_MEMORY_BARRIER)
2278 return true;
2279 return false;
2282 /* Look at the bottom of the COMPONENT_REF list for a DECL, and return it. */
2284 static tree
2285 decl_for_component_ref (tree x)
2289 x = TREE_OPERAND (x, 0);
2291 while (x && TREE_CODE (x) == COMPONENT_REF);
2293 return x && DECL_P (x) ? x : NULL_TREE;
2296 /* Walk up the COMPONENT_REF list in X and adjust *OFFSET to compensate
2297 for the offset of the field reference. *KNOWN_P says whether the
2298 offset is known. */
2300 static void
2301 adjust_offset_for_component_ref (tree x, bool *known_p,
2302 HOST_WIDE_INT *offset)
2304 if (!*known_p)
2305 return;
2308 tree xoffset = component_ref_field_offset (x);
2309 tree field = TREE_OPERAND (x, 1);
2310 if (TREE_CODE (xoffset) != INTEGER_CST)
2312 *known_p = false;
2313 return;
2316 offset_int woffset
2317 = (wi::to_offset (xoffset)
2318 + wi::lrshift (wi::to_offset (DECL_FIELD_BIT_OFFSET (field)),
2319 LOG2_BITS_PER_UNIT));
2320 if (!wi::fits_uhwi_p (woffset))
2322 *known_p = false;
2323 return;
2325 *offset += woffset.to_uhwi ();
2327 x = TREE_OPERAND (x, 0);
2329 while (x && TREE_CODE (x) == COMPONENT_REF);
2332 /* Return nonzero if we can determine the exprs corresponding to memrefs
2333 X and Y and they do not overlap.
2334 If LOOP_VARIANT is set, skip offset-based disambiguation */
2337 nonoverlapping_memrefs_p (const_rtx x, const_rtx y, bool loop_invariant)
2339 tree exprx = MEM_EXPR (x), expry = MEM_EXPR (y);
2340 rtx rtlx, rtly;
2341 rtx basex, basey;
2342 bool moffsetx_known_p, moffsety_known_p;
2343 HOST_WIDE_INT moffsetx = 0, moffsety = 0;
2344 HOST_WIDE_INT offsetx = 0, offsety = 0, sizex, sizey, tem;
2346 /* Unless both have exprs, we can't tell anything. */
2347 if (exprx == 0 || expry == 0)
2348 return 0;
2350 /* For spill-slot accesses make sure we have valid offsets. */
2351 if ((exprx == get_spill_slot_decl (false)
2352 && ! MEM_OFFSET_KNOWN_P (x))
2353 || (expry == get_spill_slot_decl (false)
2354 && ! MEM_OFFSET_KNOWN_P (y)))
2355 return 0;
2357 /* If the field reference test failed, look at the DECLs involved. */
2358 moffsetx_known_p = MEM_OFFSET_KNOWN_P (x);
2359 if (moffsetx_known_p)
2360 moffsetx = MEM_OFFSET (x);
2361 if (TREE_CODE (exprx) == COMPONENT_REF)
2363 tree t = decl_for_component_ref (exprx);
2364 if (! t)
2365 return 0;
2366 adjust_offset_for_component_ref (exprx, &moffsetx_known_p, &moffsetx);
2367 exprx = t;
2370 moffsety_known_p = MEM_OFFSET_KNOWN_P (y);
2371 if (moffsety_known_p)
2372 moffsety = MEM_OFFSET (y);
2373 if (TREE_CODE (expry) == COMPONENT_REF)
2375 tree t = decl_for_component_ref (expry);
2376 if (! t)
2377 return 0;
2378 adjust_offset_for_component_ref (expry, &moffsety_known_p, &moffsety);
2379 expry = t;
2382 if (! DECL_P (exprx) || ! DECL_P (expry))
2383 return 0;
2385 /* With invalid code we can end up storing into the constant pool.
2386 Bail out to avoid ICEing when creating RTL for this.
2387 See gfortran.dg/lto/20091028-2_0.f90. */
2388 if (TREE_CODE (exprx) == CONST_DECL
2389 || TREE_CODE (expry) == CONST_DECL)
2390 return 1;
2392 rtlx = DECL_RTL (exprx);
2393 rtly = DECL_RTL (expry);
2395 /* If either RTL is not a MEM, it must be a REG or CONCAT, meaning they
2396 can't overlap unless they are the same because we never reuse that part
2397 of the stack frame used for locals for spilled pseudos. */
2398 if ((!MEM_P (rtlx) || !MEM_P (rtly))
2399 && ! rtx_equal_p (rtlx, rtly))
2400 return 1;
2402 /* If we have MEMs referring to different address spaces (which can
2403 potentially overlap), we cannot easily tell from the addresses
2404 whether the references overlap. */
2405 if (MEM_P (rtlx) && MEM_P (rtly)
2406 && MEM_ADDR_SPACE (rtlx) != MEM_ADDR_SPACE (rtly))
2407 return 0;
2409 /* Get the base and offsets of both decls. If either is a register, we
2410 know both are and are the same, so use that as the base. The only
2411 we can avoid overlap is if we can deduce that they are nonoverlapping
2412 pieces of that decl, which is very rare. */
2413 basex = MEM_P (rtlx) ? XEXP (rtlx, 0) : rtlx;
2414 if (GET_CODE (basex) == PLUS && CONST_INT_P (XEXP (basex, 1)))
2415 offsetx = INTVAL (XEXP (basex, 1)), basex = XEXP (basex, 0);
2417 basey = MEM_P (rtly) ? XEXP (rtly, 0) : rtly;
2418 if (GET_CODE (basey) == PLUS && CONST_INT_P (XEXP (basey, 1)))
2419 offsety = INTVAL (XEXP (basey, 1)), basey = XEXP (basey, 0);
2421 /* If the bases are different, we know they do not overlap if both
2422 are constants or if one is a constant and the other a pointer into the
2423 stack frame. Otherwise a different base means we can't tell if they
2424 overlap or not. */
2425 if (! rtx_equal_p (basex, basey))
2426 return ((CONSTANT_P (basex) && CONSTANT_P (basey))
2427 || (CONSTANT_P (basex) && REG_P (basey)
2428 && REGNO_PTR_FRAME_P (REGNO (basey)))
2429 || (CONSTANT_P (basey) && REG_P (basex)
2430 && REGNO_PTR_FRAME_P (REGNO (basex))));
2432 /* Offset based disambiguation not appropriate for loop invariant */
2433 if (loop_invariant)
2434 return 0;
2436 sizex = (!MEM_P (rtlx) ? (int) GET_MODE_SIZE (GET_MODE (rtlx))
2437 : MEM_SIZE_KNOWN_P (rtlx) ? MEM_SIZE (rtlx)
2438 : -1);
2439 sizey = (!MEM_P (rtly) ? (int) GET_MODE_SIZE (GET_MODE (rtly))
2440 : MEM_SIZE_KNOWN_P (rtly) ? MEM_SIZE (rtly)
2441 : -1);
2443 /* If we have an offset for either memref, it can update the values computed
2444 above. */
2445 if (moffsetx_known_p)
2446 offsetx += moffsetx, sizex -= moffsetx;
2447 if (moffsety_known_p)
2448 offsety += moffsety, sizey -= moffsety;
2450 /* If a memref has both a size and an offset, we can use the smaller size.
2451 We can't do this if the offset isn't known because we must view this
2452 memref as being anywhere inside the DECL's MEM. */
2453 if (MEM_SIZE_KNOWN_P (x) && moffsetx_known_p)
2454 sizex = MEM_SIZE (x);
2455 if (MEM_SIZE_KNOWN_P (y) && moffsety_known_p)
2456 sizey = MEM_SIZE (y);
2458 /* Put the values of the memref with the lower offset in X's values. */
2459 if (offsetx > offsety)
2461 tem = offsetx, offsetx = offsety, offsety = tem;
2462 tem = sizex, sizex = sizey, sizey = tem;
2465 /* If we don't know the size of the lower-offset value, we can't tell
2466 if they conflict. Otherwise, we do the test. */
2467 return sizex >= 0 && offsety >= offsetx + sizex;
2470 /* Helper for true_dependence and canon_true_dependence.
2471 Checks for true dependence: X is read after store in MEM takes place.
2473 If MEM_CANONICALIZED is FALSE, then X_ADDR and MEM_ADDR should be
2474 NULL_RTX, and the canonical addresses of MEM and X are both computed
2475 here. If MEM_CANONICALIZED, then MEM must be already canonicalized.
2477 If X_ADDR is non-NULL, it is used in preference of XEXP (x, 0).
2479 Returns 1 if there is a true dependence, 0 otherwise. */
2481 static int
2482 true_dependence_1 (const_rtx mem, machine_mode mem_mode, rtx mem_addr,
2483 const_rtx x, rtx x_addr, bool mem_canonicalized)
2485 rtx true_mem_addr;
2486 rtx base;
2487 int ret;
2489 gcc_checking_assert (mem_canonicalized ? (mem_addr != NULL_RTX)
2490 : (mem_addr == NULL_RTX && x_addr == NULL_RTX));
2492 if (MEM_VOLATILE_P (x) && MEM_VOLATILE_P (mem))
2493 return 1;
2495 /* (mem:BLK (scratch)) is a special mechanism to conflict with everything.
2496 This is used in epilogue deallocation functions, and in cselib. */
2497 if (GET_MODE (x) == BLKmode && GET_CODE (XEXP (x, 0)) == SCRATCH)
2498 return 1;
2499 if (GET_MODE (mem) == BLKmode && GET_CODE (XEXP (mem, 0)) == SCRATCH)
2500 return 1;
2501 if (MEM_ALIAS_SET (x) == ALIAS_SET_MEMORY_BARRIER
2502 || MEM_ALIAS_SET (mem) == ALIAS_SET_MEMORY_BARRIER)
2503 return 1;
2505 if (! x_addr)
2506 x_addr = XEXP (x, 0);
2507 x_addr = get_addr (x_addr);
2509 if (! mem_addr)
2511 mem_addr = XEXP (mem, 0);
2512 if (mem_mode == VOIDmode)
2513 mem_mode = GET_MODE (mem);
2515 true_mem_addr = get_addr (mem_addr);
2517 /* Read-only memory is by definition never modified, and therefore can't
2518 conflict with anything. However, don't assume anything when AND
2519 addresses are involved and leave to the code below to determine
2520 dependence. We don't expect to find read-only set on MEM, but
2521 stupid user tricks can produce them, so don't die. */
2522 if (MEM_READONLY_P (x)
2523 && GET_CODE (x_addr) != AND
2524 && GET_CODE (true_mem_addr) != AND)
2525 return 0;
2527 /* If we have MEMs referring to different address spaces (which can
2528 potentially overlap), we cannot easily tell from the addresses
2529 whether the references overlap. */
2530 if (MEM_ADDR_SPACE (mem) != MEM_ADDR_SPACE (x))
2531 return 1;
2533 base = find_base_term (x_addr);
2534 if (base && (GET_CODE (base) == LABEL_REF
2535 || (GET_CODE (base) == SYMBOL_REF
2536 && CONSTANT_POOL_ADDRESS_P (base))))
2537 return 0;
2539 rtx mem_base = find_base_term (true_mem_addr);
2540 if (! base_alias_check (x_addr, base, true_mem_addr, mem_base,
2541 GET_MODE (x), mem_mode))
2542 return 0;
2544 x_addr = canon_rtx (x_addr);
2545 if (!mem_canonicalized)
2546 mem_addr = canon_rtx (true_mem_addr);
2548 if ((ret = memrefs_conflict_p (GET_MODE_SIZE (mem_mode), mem_addr,
2549 SIZE_FOR_MODE (x), x_addr, 0)) != -1)
2550 return ret;
2552 if (mems_in_disjoint_alias_sets_p (x, mem))
2553 return 0;
2555 if (nonoverlapping_memrefs_p (mem, x, false))
2556 return 0;
2558 return rtx_refs_may_alias_p (x, mem, true);
2561 /* True dependence: X is read after store in MEM takes place. */
2564 true_dependence (const_rtx mem, machine_mode mem_mode, const_rtx x)
2566 return true_dependence_1 (mem, mem_mode, NULL_RTX,
2567 x, NULL_RTX, /*mem_canonicalized=*/false);
2570 /* Canonical true dependence: X is read after store in MEM takes place.
2571 Variant of true_dependence which assumes MEM has already been
2572 canonicalized (hence we no longer do that here).
2573 The mem_addr argument has been added, since true_dependence_1 computed
2574 this value prior to canonicalizing. */
2577 canon_true_dependence (const_rtx mem, machine_mode mem_mode, rtx mem_addr,
2578 const_rtx x, rtx x_addr)
2580 return true_dependence_1 (mem, mem_mode, mem_addr,
2581 x, x_addr, /*mem_canonicalized=*/true);
2584 /* Returns nonzero if a write to X might alias a previous read from
2585 (or, if WRITEP is true, a write to) MEM.
2586 If X_CANONCALIZED is true, then X_ADDR is the canonicalized address of X,
2587 and X_MODE the mode for that access.
2588 If MEM_CANONICALIZED is true, MEM is canonicalized. */
2590 static int
2591 write_dependence_p (const_rtx mem,
2592 const_rtx x, machine_mode x_mode, rtx x_addr,
2593 bool mem_canonicalized, bool x_canonicalized, bool writep)
2595 rtx mem_addr;
2596 rtx true_mem_addr, true_x_addr;
2597 rtx base;
2598 int ret;
2600 gcc_checking_assert (x_canonicalized
2601 ? (x_addr != NULL_RTX && x_mode != VOIDmode)
2602 : (x_addr == NULL_RTX && x_mode == VOIDmode));
2604 if (MEM_VOLATILE_P (x) && MEM_VOLATILE_P (mem))
2605 return 1;
2607 /* (mem:BLK (scratch)) is a special mechanism to conflict with everything.
2608 This is used in epilogue deallocation functions. */
2609 if (GET_MODE (x) == BLKmode && GET_CODE (XEXP (x, 0)) == SCRATCH)
2610 return 1;
2611 if (GET_MODE (mem) == BLKmode && GET_CODE (XEXP (mem, 0)) == SCRATCH)
2612 return 1;
2613 if (MEM_ALIAS_SET (x) == ALIAS_SET_MEMORY_BARRIER
2614 || MEM_ALIAS_SET (mem) == ALIAS_SET_MEMORY_BARRIER)
2615 return 1;
2617 if (!x_addr)
2618 x_addr = XEXP (x, 0);
2619 true_x_addr = get_addr (x_addr);
2621 mem_addr = XEXP (mem, 0);
2622 true_mem_addr = get_addr (mem_addr);
2624 /* A read from read-only memory can't conflict with read-write memory.
2625 Don't assume anything when AND addresses are involved and leave to
2626 the code below to determine dependence. */
2627 if (!writep
2628 && MEM_READONLY_P (mem)
2629 && GET_CODE (true_x_addr) != AND
2630 && GET_CODE (true_mem_addr) != AND)
2631 return 0;
2633 /* If we have MEMs referring to different address spaces (which can
2634 potentially overlap), we cannot easily tell from the addresses
2635 whether the references overlap. */
2636 if (MEM_ADDR_SPACE (mem) != MEM_ADDR_SPACE (x))
2637 return 1;
2639 base = find_base_term (true_mem_addr);
2640 if (! writep
2641 && base
2642 && (GET_CODE (base) == LABEL_REF
2643 || (GET_CODE (base) == SYMBOL_REF
2644 && CONSTANT_POOL_ADDRESS_P (base))))
2645 return 0;
2647 rtx x_base = find_base_term (true_x_addr);
2648 if (! base_alias_check (true_x_addr, x_base, true_mem_addr, base,
2649 GET_MODE (x), GET_MODE (mem)))
2650 return 0;
2652 if (!x_canonicalized)
2654 x_addr = canon_rtx (true_x_addr);
2655 x_mode = GET_MODE (x);
2657 if (!mem_canonicalized)
2658 mem_addr = canon_rtx (true_mem_addr);
2660 if ((ret = memrefs_conflict_p (SIZE_FOR_MODE (mem), mem_addr,
2661 GET_MODE_SIZE (x_mode), x_addr, 0)) != -1)
2662 return ret;
2664 if (nonoverlapping_memrefs_p (x, mem, false))
2665 return 0;
2667 return rtx_refs_may_alias_p (x, mem, false);
2670 /* Anti dependence: X is written after read in MEM takes place. */
2673 anti_dependence (const_rtx mem, const_rtx x)
2675 return write_dependence_p (mem, x, VOIDmode, NULL_RTX,
2676 /*mem_canonicalized=*/false,
2677 /*x_canonicalized*/false, /*writep=*/false);
2680 /* Likewise, but we already have a canonicalized MEM, and X_ADDR for X.
2681 Also, consider X in X_MODE (which might be from an enclosing
2682 STRICT_LOW_PART / ZERO_EXTRACT).
2683 If MEM_CANONICALIZED is true, MEM is canonicalized. */
2686 canon_anti_dependence (const_rtx mem, bool mem_canonicalized,
2687 const_rtx x, machine_mode x_mode, rtx x_addr)
2689 return write_dependence_p (mem, x, x_mode, x_addr,
2690 mem_canonicalized, /*x_canonicalized=*/true,
2691 /*writep=*/false);
2694 /* Output dependence: X is written after store in MEM takes place. */
2697 output_dependence (const_rtx mem, const_rtx x)
2699 return write_dependence_p (mem, x, VOIDmode, NULL_RTX,
2700 /*mem_canonicalized=*/false,
2701 /*x_canonicalized*/false, /*writep=*/true);
2704 /* Likewise, but we already have a canonicalized MEM, and X_ADDR for X.
2705 Also, consider X in X_MODE (which might be from an enclosing
2706 STRICT_LOW_PART / ZERO_EXTRACT).
2707 If MEM_CANONICALIZED is true, MEM is canonicalized. */
2710 canon_output_dependence (const_rtx mem, bool mem_canonicalized,
2711 const_rtx x, machine_mode x_mode, rtx x_addr)
2713 return write_dependence_p (mem, x, x_mode, x_addr,
2714 mem_canonicalized, /*x_canonicalized=*/true,
2715 /*writep=*/true);
2720 /* Check whether X may be aliased with MEM. Don't do offset-based
2721 memory disambiguation & TBAA. */
2723 may_alias_p (const_rtx mem, const_rtx x)
2725 rtx x_addr, mem_addr;
2727 if (MEM_VOLATILE_P (x) && MEM_VOLATILE_P (mem))
2728 return 1;
2730 /* (mem:BLK (scratch)) is a special mechanism to conflict with everything.
2731 This is used in epilogue deallocation functions. */
2732 if (GET_MODE (x) == BLKmode && GET_CODE (XEXP (x, 0)) == SCRATCH)
2733 return 1;
2734 if (GET_MODE (mem) == BLKmode && GET_CODE (XEXP (mem, 0)) == SCRATCH)
2735 return 1;
2736 if (MEM_ALIAS_SET (x) == ALIAS_SET_MEMORY_BARRIER
2737 || MEM_ALIAS_SET (mem) == ALIAS_SET_MEMORY_BARRIER)
2738 return 1;
2740 x_addr = XEXP (x, 0);
2741 x_addr = get_addr (x_addr);
2743 mem_addr = XEXP (mem, 0);
2744 mem_addr = get_addr (mem_addr);
2746 /* Read-only memory is by definition never modified, and therefore can't
2747 conflict with anything. However, don't assume anything when AND
2748 addresses are involved and leave to the code below to determine
2749 dependence. We don't expect to find read-only set on MEM, but
2750 stupid user tricks can produce them, so don't die. */
2751 if (MEM_READONLY_P (x)
2752 && GET_CODE (x_addr) != AND
2753 && GET_CODE (mem_addr) != AND)
2754 return 0;
2756 /* If we have MEMs referring to different address spaces (which can
2757 potentially overlap), we cannot easily tell from the addresses
2758 whether the references overlap. */
2759 if (MEM_ADDR_SPACE (mem) != MEM_ADDR_SPACE (x))
2760 return 1;
2762 rtx x_base = find_base_term (x_addr);
2763 rtx mem_base = find_base_term (mem_addr);
2764 if (! base_alias_check (x_addr, x_base, mem_addr, mem_base,
2765 GET_MODE (x), GET_MODE (mem_addr)))
2766 return 0;
2768 if (nonoverlapping_memrefs_p (mem, x, true))
2769 return 0;
2771 /* TBAA not valid for loop_invarint */
2772 return rtx_refs_may_alias_p (x, mem, false);
2775 void
2776 init_alias_target (void)
2778 int i;
2780 if (!arg_base_value)
2781 arg_base_value = gen_rtx_ADDRESS (VOIDmode, 0);
2783 memset (static_reg_base_value, 0, sizeof static_reg_base_value);
2785 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
2786 /* Check whether this register can hold an incoming pointer
2787 argument. FUNCTION_ARG_REGNO_P tests outgoing register
2788 numbers, so translate if necessary due to register windows. */
2789 if (FUNCTION_ARG_REGNO_P (OUTGOING_REGNO (i))
2790 && HARD_REGNO_MODE_OK (i, Pmode))
2791 static_reg_base_value[i] = arg_base_value;
2793 static_reg_base_value[STACK_POINTER_REGNUM]
2794 = unique_base_value (UNIQUE_BASE_VALUE_SP);
2795 static_reg_base_value[ARG_POINTER_REGNUM]
2796 = unique_base_value (UNIQUE_BASE_VALUE_ARGP);
2797 static_reg_base_value[FRAME_POINTER_REGNUM]
2798 = unique_base_value (UNIQUE_BASE_VALUE_FP);
2799 #if !HARD_FRAME_POINTER_IS_FRAME_POINTER
2800 static_reg_base_value[HARD_FRAME_POINTER_REGNUM]
2801 = unique_base_value (UNIQUE_BASE_VALUE_HFP);
2802 #endif
2805 /* Set MEMORY_MODIFIED when X modifies DATA (that is assumed
2806 to be memory reference. */
2807 static bool memory_modified;
2808 static void
2809 memory_modified_1 (rtx x, const_rtx pat ATTRIBUTE_UNUSED, void *data)
2811 if (MEM_P (x))
2813 if (anti_dependence (x, (const_rtx)data) || output_dependence (x, (const_rtx)data))
2814 memory_modified = true;
2819 /* Return true when INSN possibly modify memory contents of MEM
2820 (i.e. address can be modified). */
2821 bool
2822 memory_modified_in_insn_p (const_rtx mem, const_rtx insn)
2824 if (!INSN_P (insn))
2825 return false;
2826 memory_modified = false;
2827 note_stores (PATTERN (insn), memory_modified_1, CONST_CAST_RTX(mem));
2828 return memory_modified;
2831 /* Return TRUE if the destination of a set is rtx identical to
2832 ITEM. */
2833 static inline bool
2834 set_dest_equal_p (const_rtx set, const_rtx item)
2836 rtx dest = SET_DEST (set);
2837 return rtx_equal_p (dest, item);
2840 /* Like memory_modified_in_insn_p, but return TRUE if INSN will
2841 *DEFINITELY* modify the memory contents of MEM. */
2842 bool
2843 memory_must_be_modified_in_insn_p (const_rtx mem, const_rtx insn)
2845 if (!INSN_P (insn))
2846 return false;
2847 insn = PATTERN (insn);
2848 if (GET_CODE (insn) == SET)
2849 return set_dest_equal_p (insn, mem);
2850 else if (GET_CODE (insn) == PARALLEL)
2852 int i;
2853 for (i = 0; i < XVECLEN (insn, 0); i++)
2855 rtx sub = XVECEXP (insn, 0, i);
2856 if (GET_CODE (sub) == SET
2857 && set_dest_equal_p (sub, mem))
2858 return true;
2861 return false;
2864 /* Initialize the aliasing machinery. Initialize the REG_KNOWN_VALUE
2865 array. */
2867 void
2868 init_alias_analysis (void)
2870 unsigned int maxreg = max_reg_num ();
2871 int changed, pass;
2872 int i;
2873 unsigned int ui;
2874 rtx_insn *insn;
2875 rtx val;
2876 int rpo_cnt;
2877 int *rpo;
2879 timevar_push (TV_ALIAS_ANALYSIS);
2881 vec_safe_grow_cleared (reg_known_value, maxreg - FIRST_PSEUDO_REGISTER);
2882 reg_known_equiv_p = sbitmap_alloc (maxreg - FIRST_PSEUDO_REGISTER);
2883 bitmap_clear (reg_known_equiv_p);
2885 /* If we have memory allocated from the previous run, use it. */
2886 if (old_reg_base_value)
2887 reg_base_value = old_reg_base_value;
2889 if (reg_base_value)
2890 reg_base_value->truncate (0);
2892 vec_safe_grow_cleared (reg_base_value, maxreg);
2894 new_reg_base_value = XNEWVEC (rtx, maxreg);
2895 reg_seen = sbitmap_alloc (maxreg);
2897 /* The basic idea is that each pass through this loop will use the
2898 "constant" information from the previous pass to propagate alias
2899 information through another level of assignments.
2901 The propagation is done on the CFG in reverse post-order, to propagate
2902 things forward as far as possible in each iteration.
2904 This could get expensive if the assignment chains are long. Maybe
2905 we should throttle the number of iterations, possibly based on
2906 the optimization level or flag_expensive_optimizations.
2908 We could propagate more information in the first pass by making use
2909 of DF_REG_DEF_COUNT to determine immediately that the alias information
2910 for a pseudo is "constant".
2912 A program with an uninitialized variable can cause an infinite loop
2913 here. Instead of doing a full dataflow analysis to detect such problems
2914 we just cap the number of iterations for the loop.
2916 The state of the arrays for the set chain in question does not matter
2917 since the program has undefined behavior. */
2919 rpo = XNEWVEC (int, n_basic_blocks_for_fn (cfun));
2920 rpo_cnt = pre_and_rev_post_order_compute (NULL, rpo, false);
2922 pass = 0;
2925 /* Assume nothing will change this iteration of the loop. */
2926 changed = 0;
2928 /* We want to assign the same IDs each iteration of this loop, so
2929 start counting from one each iteration of the loop. */
2930 unique_id = 1;
2932 /* We're at the start of the function each iteration through the
2933 loop, so we're copying arguments. */
2934 copying_arguments = true;
2936 /* Wipe the potential alias information clean for this pass. */
2937 memset (new_reg_base_value, 0, maxreg * sizeof (rtx));
2939 /* Wipe the reg_seen array clean. */
2940 bitmap_clear (reg_seen);
2942 /* Initialize the alias information for this pass. */
2943 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
2944 if (static_reg_base_value[i])
2946 new_reg_base_value[i] = static_reg_base_value[i];
2947 bitmap_set_bit (reg_seen, i);
2950 /* Walk the insns adding values to the new_reg_base_value array. */
2951 for (i = 0; i < rpo_cnt; i++)
2953 basic_block bb = BASIC_BLOCK_FOR_FN (cfun, rpo[i]);
2954 FOR_BB_INSNS (bb, insn)
2956 if (NONDEBUG_INSN_P (insn))
2958 rtx note, set;
2960 #if defined (HAVE_prologue) || defined (HAVE_epilogue)
2961 /* The prologue/epilogue insns are not threaded onto the
2962 insn chain until after reload has completed. Thus,
2963 there is no sense wasting time checking if INSN is in
2964 the prologue/epilogue until after reload has completed. */
2965 if (reload_completed
2966 && prologue_epilogue_contains (insn))
2967 continue;
2968 #endif
2970 /* If this insn has a noalias note, process it, Otherwise,
2971 scan for sets. A simple set will have no side effects
2972 which could change the base value of any other register. */
2974 if (GET_CODE (PATTERN (insn)) == SET
2975 && REG_NOTES (insn) != 0
2976 && find_reg_note (insn, REG_NOALIAS, NULL_RTX))
2977 record_set (SET_DEST (PATTERN (insn)), NULL_RTX, NULL);
2978 else
2979 note_stores (PATTERN (insn), record_set, NULL);
2981 set = single_set (insn);
2983 if (set != 0
2984 && REG_P (SET_DEST (set))
2985 && REGNO (SET_DEST (set)) >= FIRST_PSEUDO_REGISTER)
2987 unsigned int regno = REGNO (SET_DEST (set));
2988 rtx src = SET_SRC (set);
2989 rtx t;
2991 note = find_reg_equal_equiv_note (insn);
2992 if (note && REG_NOTE_KIND (note) == REG_EQUAL
2993 && DF_REG_DEF_COUNT (regno) != 1)
2994 note = NULL_RTX;
2996 if (note != NULL_RTX
2997 && GET_CODE (XEXP (note, 0)) != EXPR_LIST
2998 && ! rtx_varies_p (XEXP (note, 0), 1)
2999 && ! reg_overlap_mentioned_p (SET_DEST (set),
3000 XEXP (note, 0)))
3002 set_reg_known_value (regno, XEXP (note, 0));
3003 set_reg_known_equiv_p (regno,
3004 REG_NOTE_KIND (note) == REG_EQUIV);
3006 else if (DF_REG_DEF_COUNT (regno) == 1
3007 && GET_CODE (src) == PLUS
3008 && REG_P (XEXP (src, 0))
3009 && (t = get_reg_known_value (REGNO (XEXP (src, 0))))
3010 && CONST_INT_P (XEXP (src, 1)))
3012 t = plus_constant (GET_MODE (src), t,
3013 INTVAL (XEXP (src, 1)));
3014 set_reg_known_value (regno, t);
3015 set_reg_known_equiv_p (regno, false);
3017 else if (DF_REG_DEF_COUNT (regno) == 1
3018 && ! rtx_varies_p (src, 1))
3020 set_reg_known_value (regno, src);
3021 set_reg_known_equiv_p (regno, false);
3025 else if (NOTE_P (insn)
3026 && NOTE_KIND (insn) == NOTE_INSN_FUNCTION_BEG)
3027 copying_arguments = false;
3031 /* Now propagate values from new_reg_base_value to reg_base_value. */
3032 gcc_assert (maxreg == (unsigned int) max_reg_num ());
3034 for (ui = 0; ui < maxreg; ui++)
3036 if (new_reg_base_value[ui]
3037 && new_reg_base_value[ui] != (*reg_base_value)[ui]
3038 && ! rtx_equal_p (new_reg_base_value[ui], (*reg_base_value)[ui]))
3040 (*reg_base_value)[ui] = new_reg_base_value[ui];
3041 changed = 1;
3045 while (changed && ++pass < MAX_ALIAS_LOOP_PASSES);
3046 XDELETEVEC (rpo);
3048 /* Fill in the remaining entries. */
3049 FOR_EACH_VEC_ELT (*reg_known_value, i, val)
3051 int regno = i + FIRST_PSEUDO_REGISTER;
3052 if (! val)
3053 set_reg_known_value (regno, regno_reg_rtx[regno]);
3056 /* Clean up. */
3057 free (new_reg_base_value);
3058 new_reg_base_value = 0;
3059 sbitmap_free (reg_seen);
3060 reg_seen = 0;
3061 timevar_pop (TV_ALIAS_ANALYSIS);
3064 /* Equate REG_BASE_VALUE (reg1) to REG_BASE_VALUE (reg2).
3065 Special API for var-tracking pass purposes. */
3067 void
3068 vt_equate_reg_base_value (const_rtx reg1, const_rtx reg2)
3070 (*reg_base_value)[REGNO (reg1)] = REG_BASE_VALUE (reg2);
3073 void
3074 end_alias_analysis (void)
3076 old_reg_base_value = reg_base_value;
3077 vec_free (reg_known_value);
3078 sbitmap_free (reg_known_equiv_p);
3081 #include "gt-alias.h"