kernel/vinum: One more -Wundef fix.
[dragonfly.git] / sys / net / if_ethersubr.c
blobe9d71e668e40f2afb5735358d226eb5fc2641ce6
1 /*
2 * Copyright (c) 1982, 1989, 1993
3 * The Regents of the University of California. All rights reserved.
5 * Redistribution and use in source and binary forms, with or without
6 * modification, are permitted provided that the following conditions
7 * are met:
8 * 1. Redistributions of source code must retain the above copyright
9 * notice, this list of conditions and the following disclaimer.
10 * 2. Redistributions in binary form must reproduce the above copyright
11 * notice, this list of conditions and the following disclaimer in the
12 * documentation and/or other materials provided with the distribution.
13 * 3. Neither the name of the University nor the names of its contributors
14 * may be used to endorse or promote products derived from this software
15 * without specific prior written permission.
17 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
18 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
19 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
20 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
21 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
22 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
23 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
24 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
25 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
26 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
27 * SUCH DAMAGE.
29 * @(#)if_ethersubr.c 8.1 (Berkeley) 6/10/93
30 * $FreeBSD: src/sys/net/if_ethersubr.c,v 1.70.2.33 2003/04/28 15:45:53 archie Exp $
33 #include "opt_inet.h"
34 #include "opt_inet6.h"
35 #include "opt_mpls.h"
36 #include "opt_netgraph.h"
37 #include "opt_carp.h"
38 #include "opt_rss.h"
40 #include <sys/param.h>
41 #include <sys/systm.h>
42 #include <sys/globaldata.h>
43 #include <sys/kernel.h>
44 #include <sys/ktr.h>
45 #include <sys/lock.h>
46 #include <sys/malloc.h>
47 #include <sys/mbuf.h>
48 #include <sys/msgport.h>
49 #include <sys/socket.h>
50 #include <sys/sockio.h>
51 #include <sys/sysctl.h>
52 #include <sys/thread.h>
54 #include <sys/thread2.h>
55 #include <sys/mplock2.h>
57 #include <net/if.h>
58 #include <net/netisr.h>
59 #include <net/route.h>
60 #include <net/if_llc.h>
61 #include <net/if_dl.h>
62 #include <net/if_types.h>
63 #include <net/ifq_var.h>
64 #include <net/bpf.h>
65 #include <net/ethernet.h>
66 #include <net/vlan/if_vlan_ether.h>
67 #include <net/vlan/if_vlan_var.h>
68 #include <net/netmsg2.h>
69 #include <net/netisr2.h>
71 #if defined(INET) || defined(INET6)
72 #include <netinet/in.h>
73 #include <netinet/ip_var.h>
74 #include <netinet/tcp_var.h>
75 #include <netinet/if_ether.h>
76 #include <netinet/ip_flow.h>
77 #include <net/ipfw/ip_fw.h>
78 #include <net/ipfw3/ip_fw.h>
79 #include <net/dummynet/ip_dummynet.h>
80 #endif
81 #ifdef INET6
82 #include <netinet6/nd6.h>
83 #endif
85 #ifdef CARP
86 #include <netinet/ip_carp.h>
87 #endif
89 #ifdef MPLS
90 #include <netproto/mpls/mpls.h>
91 #endif
93 /* netgraph node hooks for ng_ether(4) */
94 void (*ng_ether_input_p)(struct ifnet *ifp, struct mbuf **mp);
95 void (*ng_ether_input_orphan_p)(struct ifnet *ifp, struct mbuf *m);
96 int (*ng_ether_output_p)(struct ifnet *ifp, struct mbuf **mp);
97 void (*ng_ether_attach_p)(struct ifnet *ifp);
98 void (*ng_ether_detach_p)(struct ifnet *ifp);
100 void (*vlan_input_p)(struct mbuf *);
102 static int ether_output(struct ifnet *, struct mbuf *, struct sockaddr *,
103 struct rtentry *);
104 static void ether_restore_header(struct mbuf **, const struct ether_header *,
105 const struct ether_header *);
106 static int ether_characterize(struct mbuf **);
107 static void ether_dispatch(struct ifnet *, int, struct mbuf *, int);
110 * if_bridge support
112 struct mbuf *(*bridge_input_p)(struct ifnet *, struct mbuf *);
113 int (*bridge_output_p)(struct ifnet *, struct mbuf *);
114 void (*bridge_dn_p)(struct mbuf *, struct ifnet *);
115 struct ifnet *(*bridge_interface_p)(void *if_bridge);
117 static int ether_resolvemulti(struct ifnet *, struct sockaddr **,
118 struct sockaddr *);
121 * if_lagg(4) support
123 void (*lagg_input_p)(struct ifnet *, struct mbuf *);
124 int (*lagg_output_p)(struct ifnet *, struct mbuf *);
126 const uint8_t etherbroadcastaddr[ETHER_ADDR_LEN] = {
127 0xff, 0xff, 0xff, 0xff, 0xff, 0xff
130 #define gotoerr(e) do { error = (e); goto bad; } while (0)
131 #define IFP2AC(ifp) ((struct arpcom *)(ifp))
133 static boolean_t ether_ipfw_chk(struct mbuf **m0, struct ifnet *dst,
134 struct ip_fw **rule,
135 const struct ether_header *eh);
137 static int ether_ipfw;
138 static u_long ether_restore_hdr;
139 static u_long ether_prepend_hdr;
140 static u_long ether_input_wronghash;
141 static int ether_debug;
143 #ifdef RSS_DEBUG
144 static u_long ether_pktinfo_try;
145 static u_long ether_pktinfo_hit;
146 static u_long ether_rss_nopi;
147 static u_long ether_rss_nohash;
148 static u_long ether_input_requeue;
149 #endif
150 static u_long ether_input_wronghwhash;
151 static int ether_input_ckhash;
153 #define ETHER_TSOLEN_DEFAULT (4 * ETHERMTU)
155 #define ETHER_NMBCLUSTERS_DEFMIN 32
156 #define ETHER_NMBCLUSTERS_DEFAULT 256
158 static int ether_tsolen_default = ETHER_TSOLEN_DEFAULT;
159 TUNABLE_INT("net.link.ether.tsolen", &ether_tsolen_default);
161 static int ether_nmbclusters_default = ETHER_NMBCLUSTERS_DEFAULT;
162 TUNABLE_INT("net.link.ether.nmbclusters", &ether_nmbclusters_default);
164 SYSCTL_DECL(_net_link);
165 SYSCTL_NODE(_net_link, IFT_ETHER, ether, CTLFLAG_RW, 0, "Ethernet");
166 SYSCTL_INT(_net_link_ether, OID_AUTO, debug, CTLFLAG_RW,
167 &ether_debug, 0, "Ether debug");
168 SYSCTL_INT(_net_link_ether, OID_AUTO, ipfw, CTLFLAG_RW,
169 &ether_ipfw, 0, "Pass ether pkts through firewall");
170 SYSCTL_ULONG(_net_link_ether, OID_AUTO, restore_hdr, CTLFLAG_RW,
171 &ether_restore_hdr, 0, "# of ether header restoration");
172 SYSCTL_ULONG(_net_link_ether, OID_AUTO, prepend_hdr, CTLFLAG_RW,
173 &ether_prepend_hdr, 0,
174 "# of ether header restoration which prepends mbuf");
175 SYSCTL_ULONG(_net_link_ether, OID_AUTO, input_wronghash, CTLFLAG_RW,
176 &ether_input_wronghash, 0, "# of input packets with wrong hash");
177 SYSCTL_INT(_net_link_ether, OID_AUTO, tsolen, CTLFLAG_RW,
178 &ether_tsolen_default, 0, "Default max TSO length");
180 #ifdef RSS_DEBUG
181 SYSCTL_ULONG(_net_link_ether, OID_AUTO, rss_nopi, CTLFLAG_RW,
182 &ether_rss_nopi, 0, "# of packets do not have pktinfo");
183 SYSCTL_ULONG(_net_link_ether, OID_AUTO, rss_nohash, CTLFLAG_RW,
184 &ether_rss_nohash, 0, "# of packets do not have hash");
185 SYSCTL_ULONG(_net_link_ether, OID_AUTO, pktinfo_try, CTLFLAG_RW,
186 &ether_pktinfo_try, 0,
187 "# of tries to find packets' msgport using pktinfo");
188 SYSCTL_ULONG(_net_link_ether, OID_AUTO, pktinfo_hit, CTLFLAG_RW,
189 &ether_pktinfo_hit, 0,
190 "# of packets whose msgport are found using pktinfo");
191 SYSCTL_ULONG(_net_link_ether, OID_AUTO, input_requeue, CTLFLAG_RW,
192 &ether_input_requeue, 0, "# of input packets gets requeued");
193 #endif
194 SYSCTL_ULONG(_net_link_ether, OID_AUTO, input_wronghwhash, CTLFLAG_RW,
195 &ether_input_wronghwhash, 0, "# of input packets with wrong hw hash");
196 SYSCTL_INT(_net_link_ether, OID_AUTO, always_ckhash, CTLFLAG_RW,
197 &ether_input_ckhash, 0, "always check hash");
199 #define ETHER_KTR_STR "ifp=%p"
200 #define ETHER_KTR_ARGS struct ifnet *ifp
201 #ifndef KTR_ETHERNET
202 #define KTR_ETHERNET KTR_ALL
203 #endif
204 KTR_INFO_MASTER(ether);
205 KTR_INFO(KTR_ETHERNET, ether, pkt_beg, 0, ETHER_KTR_STR, ETHER_KTR_ARGS);
206 KTR_INFO(KTR_ETHERNET, ether, pkt_end, 1, ETHER_KTR_STR, ETHER_KTR_ARGS);
207 KTR_INFO(KTR_ETHERNET, ether, disp_beg, 2, ETHER_KTR_STR, ETHER_KTR_ARGS);
208 KTR_INFO(KTR_ETHERNET, ether, disp_end, 3, ETHER_KTR_STR, ETHER_KTR_ARGS);
209 #define logether(name, arg) KTR_LOG(ether_ ## name, arg)
212 * Ethernet output routine.
213 * Encapsulate a packet of type family for the local net.
214 * Use trailer local net encapsulation if enough data in first
215 * packet leaves a multiple of 512 bytes of data in remainder.
216 * Assumes that ifp is actually pointer to arpcom structure.
218 static int
219 ether_output(struct ifnet *ifp, struct mbuf *m, struct sockaddr *dst,
220 struct rtentry *rt)
222 struct ether_header *eh, *deh;
223 u_char *edst;
224 int loop_copy = 0;
225 int hlen = ETHER_HDR_LEN; /* link layer header length */
226 struct arpcom *ac = IFP2AC(ifp);
227 int error;
229 ASSERT_NETISR_NCPUS(mycpuid);
230 ASSERT_IFNET_NOT_SERIALIZED_ALL(ifp);
232 if (ifp->if_flags & IFF_MONITOR)
233 gotoerr(ENETDOWN);
234 if ((ifp->if_flags & (IFF_UP | IFF_RUNNING)) != (IFF_UP | IFF_RUNNING))
235 gotoerr(ENETDOWN);
237 M_PREPEND(m, sizeof(struct ether_header), M_NOWAIT);
238 if (m == NULL)
239 return (ENOBUFS);
240 m->m_pkthdr.csum_lhlen = sizeof(struct ether_header);
241 eh = mtod(m, struct ether_header *);
242 edst = eh->ether_dhost;
245 * Fill in the destination ethernet address and frame type.
247 switch (dst->sa_family) {
248 #ifdef INET
249 case AF_INET:
250 if (!arpresolve(ifp, rt, m, dst, edst))
251 return (0); /* if not yet resolved */
252 #ifdef MPLS
253 if (m->m_flags & M_MPLSLABELED)
254 eh->ether_type = htons(ETHERTYPE_MPLS);
255 else
256 #endif
257 eh->ether_type = htons(ETHERTYPE_IP);
258 break;
259 #endif
260 #ifdef INET6
261 case AF_INET6:
262 if (!nd6_storelladdr(&ac->ac_if, rt, m, dst, edst))
263 return (0); /* Something bad happenned. */
264 eh->ether_type = htons(ETHERTYPE_IPV6);
265 break;
266 #endif
267 case pseudo_AF_HDRCMPLT:
268 case AF_UNSPEC:
269 loop_copy = -1; /* if this is for us, don't do it */
270 deh = (struct ether_header *)dst->sa_data;
271 memcpy(edst, deh->ether_dhost, ETHER_ADDR_LEN);
272 eh->ether_type = deh->ether_type;
273 break;
275 default:
276 if_printf(ifp, "can't handle af%d\n", dst->sa_family);
277 gotoerr(EAFNOSUPPORT);
280 if (dst->sa_family == pseudo_AF_HDRCMPLT) /* unlikely */
281 memcpy(eh->ether_shost,
282 ((struct ether_header *)dst->sa_data)->ether_shost,
283 ETHER_ADDR_LEN);
284 else
285 memcpy(eh->ether_shost, ac->ac_enaddr, ETHER_ADDR_LEN);
288 * Bridges require special output handling.
290 if (ifp->if_bridge) {
291 KASSERT(bridge_output_p != NULL,
292 ("%s: if_bridge not loaded!", __func__));
293 return bridge_output_p(ifp, m);
295 #if 0 /* XXX */
296 if (ifp->if_lagg) {
297 KASSERT(lagg_output_p != NULL,
298 ("%s: if_lagg not loaded!", __func__));
299 return lagg_output_p(ifp, m);
301 #endif
304 * If a simplex interface, and the packet is being sent to our
305 * Ethernet address or a broadcast address, loopback a copy.
306 * XXX To make a simplex device behave exactly like a duplex
307 * device, we should copy in the case of sending to our own
308 * ethernet address (thus letting the original actually appear
309 * on the wire). However, we don't do that here for security
310 * reasons and compatibility with the original behavior.
312 if ((ifp->if_flags & IFF_SIMPLEX) && (loop_copy != -1)) {
313 int csum_flags = 0;
315 if (m->m_pkthdr.csum_flags & CSUM_IP)
316 csum_flags |= (CSUM_IP_CHECKED | CSUM_IP_VALID);
317 if (m->m_pkthdr.csum_flags & CSUM_DELAY_DATA)
318 csum_flags |= (CSUM_DATA_VALID | CSUM_PSEUDO_HDR);
319 if ((m->m_flags & M_BCAST) || (loop_copy > 0)) {
320 struct mbuf *n;
322 if ((n = m_copypacket(m, M_NOWAIT)) != NULL) {
323 n->m_pkthdr.csum_flags |= csum_flags;
324 if (csum_flags & CSUM_DATA_VALID)
325 n->m_pkthdr.csum_data = 0xffff;
326 if_simloop(ifp, n, dst->sa_family, hlen);
327 } else
328 IFNET_STAT_INC(ifp, iqdrops, 1);
329 } else if (bcmp(eh->ether_dhost, eh->ether_shost,
330 ETHER_ADDR_LEN) == 0) {
331 m->m_pkthdr.csum_flags |= csum_flags;
332 if (csum_flags & CSUM_DATA_VALID)
333 m->m_pkthdr.csum_data = 0xffff;
334 if_simloop(ifp, m, dst->sa_family, hlen);
335 return (0); /* XXX */
339 #ifdef CARP
340 if (ifp->if_type == IFT_CARP) {
341 ifp = carp_parent(ifp);
342 if (ifp == NULL)
343 gotoerr(ENETUNREACH);
345 ac = IFP2AC(ifp);
348 * Check precondition again
350 ASSERT_IFNET_NOT_SERIALIZED_ALL(ifp);
352 if (ifp->if_flags & IFF_MONITOR)
353 gotoerr(ENETDOWN);
354 if ((ifp->if_flags & (IFF_UP | IFF_RUNNING)) !=
355 (IFF_UP | IFF_RUNNING))
356 gotoerr(ENETDOWN);
358 #endif
360 /* Handle ng_ether(4) processing, if any */
361 if (ng_ether_output_p != NULL) {
363 * Hold BGL and recheck ng_ether_output_p
365 get_mplock();
366 if (ng_ether_output_p != NULL) {
367 if ((error = ng_ether_output_p(ifp, &m)) != 0) {
368 rel_mplock();
369 goto bad;
371 if (m == NULL) {
372 rel_mplock();
373 return (0);
376 rel_mplock();
379 /* Continue with link-layer output */
380 return ether_output_frame(ifp, m);
382 bad:
383 m_freem(m);
384 return (error);
388 * Returns the bridge interface an ifp is associated
389 * with.
391 * Only call if ifp->if_bridge != NULL.
393 struct ifnet *
394 ether_bridge_interface(struct ifnet *ifp)
396 if (bridge_interface_p)
397 return(bridge_interface_p(ifp->if_bridge));
398 return (ifp);
402 * Ethernet link layer output routine to send a raw frame to the device.
404 * This assumes that the 14 byte Ethernet header is present and contiguous
405 * in the first mbuf.
408 ether_output_frame(struct ifnet *ifp, struct mbuf *m)
410 struct ip_fw *rule = NULL;
411 int error = 0;
412 struct altq_pktattr pktattr;
414 ASSERT_IFNET_NOT_SERIALIZED_ALL(ifp);
416 if (m->m_pkthdr.fw_flags & DUMMYNET_MBUF_TAGGED) {
417 struct m_tag *mtag;
419 /* Extract info from dummynet tag */
420 mtag = m_tag_find(m, PACKET_TAG_DUMMYNET, NULL);
421 KKASSERT(mtag != NULL);
422 rule = ((struct dn_pkt *)m_tag_data(mtag))->dn_priv;
423 KKASSERT(rule != NULL);
425 m_tag_delete(m, mtag);
426 m->m_pkthdr.fw_flags &= ~DUMMYNET_MBUF_TAGGED;
429 if (ifq_is_enabled(&ifp->if_snd))
430 altq_etherclassify(&ifp->if_snd, m, &pktattr);
431 crit_enter();
432 if ((IPFW_LOADED || IPFW3_LOADED) && ether_ipfw != 0) {
433 struct ether_header save_eh, *eh;
435 eh = mtod(m, struct ether_header *);
436 save_eh = *eh;
437 m_adj(m, ETHER_HDR_LEN);
438 if (!ether_ipfw_chk(&m, ifp, &rule, eh)) {
439 crit_exit();
440 if (m != NULL) {
441 m_freem(m);
442 return ENOBUFS; /* pkt dropped */
443 } else
444 return 0; /* consumed e.g. in a pipe */
447 /* packet was ok, restore the ethernet header */
448 ether_restore_header(&m, eh, &save_eh);
449 if (m == NULL) {
450 crit_exit();
451 return ENOBUFS;
454 crit_exit();
457 * Queue message on interface, update output statistics if
458 * successful, and start output if interface not yet active.
460 error = ifq_dispatch(ifp, m, &pktattr);
461 return (error);
465 * ipfw processing for ethernet packets (in and out).
466 * The second parameter is NULL from ether_demux(), and ifp from
467 * ether_output_frame().
469 static boolean_t
470 ether_ipfw_chk(struct mbuf **m0, struct ifnet *dst, struct ip_fw **rule,
471 const struct ether_header *eh)
473 struct ether_header save_eh = *eh; /* might be a ptr in *m0 */
474 struct ip_fw_args args;
475 struct m_tag *mtag;
476 struct mbuf *m;
477 int i;
479 if (*rule != NULL && fw_one_pass)
480 return TRUE; /* dummynet packet, already partially processed */
483 * I need some amount of data to be contiguous.
485 i = min((*m0)->m_pkthdr.len, max_protohdr);
486 if ((*m0)->m_len < i) {
487 *m0 = m_pullup(*m0, i);
488 if (*m0 == NULL)
489 return FALSE;
493 * Clean up tags
495 if ((mtag = m_tag_find(*m0, PACKET_TAG_IPFW_DIVERT, NULL)) != NULL)
496 m_tag_delete(*m0, mtag);
497 if ((*m0)->m_pkthdr.fw_flags & IPFORWARD_MBUF_TAGGED) {
498 mtag = m_tag_find(*m0, PACKET_TAG_IPFORWARD, NULL);
499 KKASSERT(mtag != NULL);
500 m_tag_delete(*m0, mtag);
501 (*m0)->m_pkthdr.fw_flags &= ~IPFORWARD_MBUF_TAGGED;
504 args.flags = 0;
505 args.xlat = NULL;
506 args.m = *m0; /* the packet we are looking at */
507 args.oif = dst; /* destination, if any */
508 args.rule = *rule; /* matching rule to restart */
509 args.eh = &save_eh; /* MAC header for bridged/MAC packets */
510 i = ip_fw_chk_ptr(&args);
511 *m0 = args.m;
512 *rule = args.rule;
514 if (*m0 == NULL)
515 return FALSE;
517 switch (i) {
518 case IP_FW_PASS:
519 return TRUE;
521 case IP_FW_DIVERT:
522 case IP_FW_TEE:
523 case IP_FW_DENY:
525 * XXX at some point add support for divert/forward actions.
526 * If none of the above matches, we have to drop the pkt.
528 return FALSE;
530 case IP_FW_DUMMYNET:
532 * Pass the pkt to dummynet, which consumes it.
534 m = *m0; /* pass the original to dummynet */
535 *m0 = NULL; /* and nothing back to the caller */
537 ether_restore_header(&m, eh, &save_eh);
538 if (m == NULL)
539 return FALSE;
541 m = ip_fw_dn_io_ptr(m, args.cookie,
542 dst ? DN_TO_ETH_OUT: DN_TO_ETH_DEMUX, &args);
543 if (m != NULL)
544 ip_dn_queue(m);
545 return FALSE;
547 default:
548 panic("unknown ipfw return value: %d", i);
553 * Perform common duties while attaching to interface list
555 void
556 ether_ifattach(struct ifnet *ifp, const uint8_t *lla,
557 lwkt_serialize_t serializer)
559 ether_ifattach_bpf(ifp, lla, DLT_EN10MB, sizeof(struct ether_header),
560 serializer);
563 void
564 ether_ifattach_bpf(struct ifnet *ifp, const uint8_t *lla,
565 u_int dlt, u_int hdrlen, lwkt_serialize_t serializer)
567 struct sockaddr_dl *sdl;
568 char ethstr[ETHER_ADDRSTRLEN + 1];
569 struct ifaltq *ifq;
570 int i;
573 * If driver does not configure # of mbuf clusters/jclusters
574 * that could sit on the device queues for quite some time,
575 * we then assume:
576 * - The device queues only consume mbuf clusters.
577 * - No more than ether_nmbclusters_default (by default 256)
578 * mbuf clusters will sit on the device queues for quite
579 * some time.
581 if (ifp->if_nmbclusters <= 0 && ifp->if_nmbjclusters <= 0) {
582 if (ether_nmbclusters_default < ETHER_NMBCLUSTERS_DEFMIN) {
583 kprintf("ether nmbclusters %d -> %d\n",
584 ether_nmbclusters_default,
585 ETHER_NMBCLUSTERS_DEFAULT);
586 ether_nmbclusters_default = ETHER_NMBCLUSTERS_DEFAULT;
588 ifp->if_nmbclusters = ether_nmbclusters_default;
591 ifp->if_type = IFT_ETHER;
592 ifp->if_addrlen = ETHER_ADDR_LEN;
593 ifp->if_hdrlen = ETHER_HDR_LEN;
594 if_attach(ifp, serializer);
595 ifq = &ifp->if_snd;
596 for (i = 0; i < ifq->altq_subq_cnt; ++i) {
597 struct ifaltq_subque *ifsq = ifq_get_subq(ifq, i);
599 ifsq->ifsq_maxbcnt = ifsq->ifsq_maxlen *
600 (ETHER_MAX_LEN - ETHER_CRC_LEN);
602 ifp->if_mtu = ETHERMTU;
603 if (ifp->if_tsolen <= 0) {
604 if ((ether_tsolen_default / ETHERMTU) < 2) {
605 kprintf("ether TSO maxlen %d -> %d\n",
606 ether_tsolen_default, ETHER_TSOLEN_DEFAULT);
607 ether_tsolen_default = ETHER_TSOLEN_DEFAULT;
609 ifp->if_tsolen = ether_tsolen_default;
611 if (ifp->if_baudrate == 0)
612 ifp->if_baudrate = 10000000;
613 ifp->if_output = ether_output;
614 ifp->if_input = ether_input;
615 ifp->if_resolvemulti = ether_resolvemulti;
616 ifp->if_broadcastaddr = etherbroadcastaddr;
617 sdl = IF_LLSOCKADDR(ifp);
618 sdl->sdl_type = IFT_ETHER;
619 sdl->sdl_alen = ifp->if_addrlen;
620 bcopy(lla, LLADDR(sdl), ifp->if_addrlen);
622 * XXX Keep the current drivers happy.
623 * XXX Remove once all drivers have been cleaned up
625 if (lla != IFP2AC(ifp)->ac_enaddr)
626 bcopy(lla, IFP2AC(ifp)->ac_enaddr, ifp->if_addrlen);
627 bpfattach(ifp, dlt, hdrlen);
628 if (ng_ether_attach_p != NULL)
629 (*ng_ether_attach_p)(ifp);
631 if_printf(ifp, "MAC address: %s\n", kether_ntoa(lla, ethstr));
635 * Perform common duties while detaching an Ethernet interface
637 void
638 ether_ifdetach(struct ifnet *ifp)
640 if_down(ifp);
642 if (ng_ether_detach_p != NULL)
643 (*ng_ether_detach_p)(ifp);
644 bpfdetach(ifp);
645 if_detach(ifp);
649 ether_ioctl(struct ifnet *ifp, u_long command, caddr_t data)
651 struct ifaddr *ifa = (struct ifaddr *) data;
652 struct ifreq *ifr = (struct ifreq *) data;
653 int error = 0;
655 #define IF_INIT(ifp) \
656 do { \
657 if (((ifp)->if_flags & IFF_UP) == 0) { \
658 (ifp)->if_flags |= IFF_UP; \
659 (ifp)->if_init((ifp)->if_softc); \
661 } while (0)
663 ASSERT_IFNET_SERIALIZED_ALL(ifp);
665 switch (command) {
666 case SIOCSIFADDR:
667 switch (ifa->ifa_addr->sa_family) {
668 #ifdef INET
669 case AF_INET:
670 IF_INIT(ifp); /* before arpwhohas */
671 arp_ifinit(ifp, ifa);
672 break;
673 #endif
674 default:
675 IF_INIT(ifp);
676 break;
678 break;
680 case SIOCGIFADDR:
681 bcopy(IFP2AC(ifp)->ac_enaddr,
682 ((struct sockaddr *)ifr->ifr_data)->sa_data,
683 ETHER_ADDR_LEN);
684 break;
686 case SIOCSIFMTU:
688 * Set the interface MTU.
690 if (ifr->ifr_mtu > ETHERMTU) {
691 error = EINVAL;
692 } else {
693 ifp->if_mtu = ifr->ifr_mtu;
695 break;
696 default:
697 error = EINVAL;
698 break;
700 return (error);
702 #undef IF_INIT
705 static int
706 ether_resolvemulti(
707 struct ifnet *ifp,
708 struct sockaddr **llsa,
709 struct sockaddr *sa)
711 struct sockaddr_dl *sdl;
712 #ifdef INET
713 struct sockaddr_in *sin;
714 #endif
715 #ifdef INET6
716 struct sockaddr_in6 *sin6;
717 #endif
718 u_char *e_addr;
720 switch(sa->sa_family) {
721 case AF_LINK:
723 * No mapping needed. Just check that it's a valid MC address.
725 sdl = (struct sockaddr_dl *)sa;
726 e_addr = LLADDR(sdl);
727 if ((e_addr[0] & 1) != 1)
728 return EADDRNOTAVAIL;
729 *llsa = NULL;
730 return 0;
732 #ifdef INET
733 case AF_INET:
734 sin = (struct sockaddr_in *)sa;
735 if (!IN_MULTICAST(ntohl(sin->sin_addr.s_addr)))
736 return EADDRNOTAVAIL;
737 sdl = kmalloc(sizeof *sdl, M_IFMADDR, M_WAITOK | M_ZERO);
738 sdl->sdl_len = sizeof *sdl;
739 sdl->sdl_family = AF_LINK;
740 sdl->sdl_index = ifp->if_index;
741 sdl->sdl_type = IFT_ETHER;
742 sdl->sdl_alen = ETHER_ADDR_LEN;
743 e_addr = LLADDR(sdl);
744 ETHER_MAP_IP_MULTICAST(&sin->sin_addr, e_addr);
745 *llsa = (struct sockaddr *)sdl;
746 return 0;
747 #endif
748 #ifdef INET6
749 case AF_INET6:
750 sin6 = (struct sockaddr_in6 *)sa;
751 if (IN6_IS_ADDR_UNSPECIFIED(&sin6->sin6_addr)) {
753 * An IP6 address of 0 means listen to all
754 * of the Ethernet multicast address used for IP6.
755 * (This is used for multicast routers.)
757 ifp->if_flags |= IFF_ALLMULTI;
758 *llsa = NULL;
759 return 0;
761 if (!IN6_IS_ADDR_MULTICAST(&sin6->sin6_addr))
762 return EADDRNOTAVAIL;
763 sdl = kmalloc(sizeof *sdl, M_IFMADDR, M_WAITOK | M_ZERO);
764 sdl->sdl_len = sizeof *sdl;
765 sdl->sdl_family = AF_LINK;
766 sdl->sdl_index = ifp->if_index;
767 sdl->sdl_type = IFT_ETHER;
768 sdl->sdl_alen = ETHER_ADDR_LEN;
769 e_addr = LLADDR(sdl);
770 ETHER_MAP_IPV6_MULTICAST(&sin6->sin6_addr, e_addr);
771 *llsa = (struct sockaddr *)sdl;
772 return 0;
773 #endif
775 default:
777 * Well, the text isn't quite right, but it's the name
778 * that counts...
780 return EAFNOSUPPORT;
784 #if 0
786 * This is for reference. We have a table-driven version
787 * of the little-endian crc32 generator, which is faster
788 * than the double-loop.
790 uint32_t
791 ether_crc32_le(const uint8_t *buf, size_t len)
793 uint32_t c, crc, carry;
794 size_t i, j;
796 crc = 0xffffffffU; /* initial value */
798 for (i = 0; i < len; i++) {
799 c = buf[i];
800 for (j = 0; j < 8; j++) {
801 carry = ((crc & 0x01) ? 1 : 0) ^ (c & 0x01);
802 crc >>= 1;
803 c >>= 1;
804 if (carry)
805 crc = (crc ^ ETHER_CRC_POLY_LE);
809 return (crc);
811 #else
812 uint32_t
813 ether_crc32_le(const uint8_t *buf, size_t len)
815 static const uint32_t crctab[] = {
816 0x00000000, 0x1db71064, 0x3b6e20c8, 0x26d930ac,
817 0x76dc4190, 0x6b6b51f4, 0x4db26158, 0x5005713c,
818 0xedb88320, 0xf00f9344, 0xd6d6a3e8, 0xcb61b38c,
819 0x9b64c2b0, 0x86d3d2d4, 0xa00ae278, 0xbdbdf21c
821 uint32_t crc;
822 size_t i;
824 crc = 0xffffffffU; /* initial value */
826 for (i = 0; i < len; i++) {
827 crc ^= buf[i];
828 crc = (crc >> 4) ^ crctab[crc & 0xf];
829 crc = (crc >> 4) ^ crctab[crc & 0xf];
832 return (crc);
834 #endif
836 uint32_t
837 ether_crc32_be(const uint8_t *buf, size_t len)
839 uint32_t c, crc, carry;
840 size_t i, j;
842 crc = 0xffffffffU; /* initial value */
844 for (i = 0; i < len; i++) {
845 c = buf[i];
846 for (j = 0; j < 8; j++) {
847 carry = ((crc & 0x80000000U) ? 1 : 0) ^ (c & 0x01);
848 crc <<= 1;
849 c >>= 1;
850 if (carry)
851 crc = (crc ^ ETHER_CRC_POLY_BE) | carry;
855 return (crc);
859 * find the size of ethernet header, and call classifier
861 void
862 altq_etherclassify(struct ifaltq *ifq, struct mbuf *m,
863 struct altq_pktattr *pktattr)
865 struct ether_header *eh;
866 uint16_t ether_type;
867 int hlen, af, hdrsize;
869 hlen = sizeof(struct ether_header);
870 eh = mtod(m, struct ether_header *);
872 ether_type = ntohs(eh->ether_type);
873 if (ether_type < ETHERMTU) {
874 /* ick! LLC/SNAP */
875 struct llc *llc = (struct llc *)(eh + 1);
876 hlen += 8;
878 if (m->m_len < hlen ||
879 llc->llc_dsap != LLC_SNAP_LSAP ||
880 llc->llc_ssap != LLC_SNAP_LSAP ||
881 llc->llc_control != LLC_UI)
882 goto bad; /* not snap! */
884 ether_type = ntohs(llc->llc_un.type_snap.ether_type);
887 if (ether_type == ETHERTYPE_IP) {
888 af = AF_INET;
889 hdrsize = 20; /* sizeof(struct ip) */
890 #ifdef INET6
891 } else if (ether_type == ETHERTYPE_IPV6) {
892 af = AF_INET6;
893 hdrsize = 40; /* sizeof(struct ip6_hdr) */
894 #endif
895 } else
896 goto bad;
898 while (m->m_len <= hlen) {
899 hlen -= m->m_len;
900 m = m->m_next;
902 if (m->m_len < hlen + hdrsize) {
904 * ip header is not in a single mbuf. this should not
905 * happen in the current code.
906 * (todo: use m_pulldown in the future)
908 goto bad;
910 m->m_data += hlen;
911 m->m_len -= hlen;
912 ifq_classify(ifq, m, af, pktattr);
913 m->m_data -= hlen;
914 m->m_len += hlen;
916 return;
918 bad:
919 pktattr->pattr_class = NULL;
920 pktattr->pattr_hdr = NULL;
921 pktattr->pattr_af = AF_UNSPEC;
924 static void
925 ether_restore_header(struct mbuf **m0, const struct ether_header *eh,
926 const struct ether_header *save_eh)
928 struct mbuf *m = *m0;
930 ether_restore_hdr++;
933 * Prepend the header, optimize for the common case of
934 * eh pointing into the mbuf.
936 if ((const void *)(eh + 1) == (void *)m->m_data) {
937 m->m_data -= ETHER_HDR_LEN;
938 m->m_len += ETHER_HDR_LEN;
939 m->m_pkthdr.len += ETHER_HDR_LEN;
940 } else {
941 ether_prepend_hdr++;
943 M_PREPEND(m, ETHER_HDR_LEN, M_NOWAIT);
944 if (m != NULL) {
945 bcopy(save_eh, mtod(m, struct ether_header *),
946 ETHER_HDR_LEN);
949 *m0 = m;
953 * Upper layer processing for a received Ethernet packet.
955 void
956 ether_demux_oncpu(struct ifnet *ifp, struct mbuf *m)
958 struct ether_header *eh;
959 int isr, discard = 0;
960 u_short ether_type;
961 struct ip_fw *rule = NULL;
963 M_ASSERTPKTHDR(m);
964 KASSERT(m->m_len >= ETHER_HDR_LEN,
965 ("ether header is not contiguous!"));
967 eh = mtod(m, struct ether_header *);
969 if (m->m_pkthdr.fw_flags & DUMMYNET_MBUF_TAGGED) {
970 struct m_tag *mtag;
972 /* Extract info from dummynet tag */
973 mtag = m_tag_find(m, PACKET_TAG_DUMMYNET, NULL);
974 KKASSERT(mtag != NULL);
975 rule = ((struct dn_pkt *)m_tag_data(mtag))->dn_priv;
976 KKASSERT(rule != NULL);
978 m_tag_delete(m, mtag);
979 m->m_pkthdr.fw_flags &= ~DUMMYNET_MBUF_TAGGED;
981 /* packet is passing the second time */
982 goto post_stats;
986 * We got a packet which was unicast to a different Ethernet
987 * address. If the driver is working properly, then this
988 * situation can only happen when the interface is in
989 * promiscuous mode. We defer the packet discarding until the
990 * vlan processing is done, so that vlan/bridge or vlan/netgraph
991 * could work.
993 if (((ifp->if_flags & (IFF_PROMISC | IFF_PPROMISC)) == IFF_PROMISC) &&
994 !ETHER_IS_MULTICAST(eh->ether_dhost) &&
995 bcmp(eh->ether_dhost, IFP2AC(ifp)->ac_enaddr, ETHER_ADDR_LEN)) {
996 if (ether_debug & 1) {
997 kprintf("%02x:%02x:%02x:%02x:%02x:%02x "
998 "%02x:%02x:%02x:%02x:%02x:%02x "
999 "%04x vs %02x:%02x:%02x:%02x:%02x:%02x\n",
1000 eh->ether_dhost[0],
1001 eh->ether_dhost[1],
1002 eh->ether_dhost[2],
1003 eh->ether_dhost[3],
1004 eh->ether_dhost[4],
1005 eh->ether_dhost[5],
1006 eh->ether_shost[0],
1007 eh->ether_shost[1],
1008 eh->ether_shost[2],
1009 eh->ether_shost[3],
1010 eh->ether_shost[4],
1011 eh->ether_shost[5],
1012 eh->ether_type,
1013 ((u_char *)IFP2AC(ifp)->ac_enaddr)[0],
1014 ((u_char *)IFP2AC(ifp)->ac_enaddr)[1],
1015 ((u_char *)IFP2AC(ifp)->ac_enaddr)[2],
1016 ((u_char *)IFP2AC(ifp)->ac_enaddr)[3],
1017 ((u_char *)IFP2AC(ifp)->ac_enaddr)[4],
1018 ((u_char *)IFP2AC(ifp)->ac_enaddr)[5]
1021 if ((ether_debug & 2) == 0)
1022 discard = 1;
1025 post_stats:
1026 if ((IPFW_LOADED || IPFW3_LOADED) && ether_ipfw != 0 && !discard) {
1027 struct ether_header save_eh = *eh;
1029 /* XXX old crufty stuff, needs to be removed */
1030 m_adj(m, sizeof(struct ether_header));
1032 if (!ether_ipfw_chk(&m, NULL, &rule, eh)) {
1033 m_freem(m);
1034 return;
1037 ether_restore_header(&m, eh, &save_eh);
1038 if (m == NULL)
1039 return;
1040 eh = mtod(m, struct ether_header *);
1043 ether_type = ntohs(eh->ether_type);
1044 KKASSERT(ether_type != ETHERTYPE_VLAN);
1046 /* Handle input from a lagg(4) port */
1047 if (ifp->if_type == IFT_IEEE8023ADLAG) {
1048 KASSERT(lagg_input_p != NULL,
1049 ("%s: if_lagg not loaded!", __func__));
1050 (*lagg_input_p)(ifp, m);
1051 return;
1054 if (m->m_flags & M_VLANTAG) {
1055 void (*vlan_input_func)(struct mbuf *);
1057 vlan_input_func = vlan_input_p;
1058 /* Make sure 'vlan_input_func' is really used. */
1059 cpu_ccfence();
1060 if (vlan_input_func != NULL) {
1061 vlan_input_func(m);
1062 } else {
1063 IFNET_STAT_INC(m->m_pkthdr.rcvif, noproto, 1);
1064 m_freem(m);
1066 return;
1070 * If we have been asked to discard this packet
1071 * (e.g. not for us), drop it before entering
1072 * the upper layer.
1074 if (discard) {
1075 m_freem(m);
1076 return;
1080 * Clear protocol specific flags,
1081 * before entering the upper layer.
1083 m->m_flags &= ~M_ETHER_FLAGS;
1085 /* Strip ethernet header. */
1086 m_adj(m, sizeof(struct ether_header));
1088 switch (ether_type) {
1089 #ifdef INET
1090 case ETHERTYPE_IP:
1091 if ((m->m_flags & M_LENCHECKED) == 0) {
1092 if (!ip_lengthcheck(&m, 0))
1093 return;
1095 if (ipflow_fastforward(m))
1096 return;
1097 isr = NETISR_IP;
1098 break;
1100 case ETHERTYPE_ARP:
1101 if (ifp->if_flags & IFF_NOARP) {
1102 /* Discard packet if ARP is disabled on interface */
1103 m_freem(m);
1104 return;
1106 isr = NETISR_ARP;
1107 break;
1108 #endif
1110 #ifdef INET6
1111 case ETHERTYPE_IPV6:
1112 isr = NETISR_IPV6;
1113 break;
1114 #endif
1116 #ifdef MPLS
1117 case ETHERTYPE_MPLS:
1118 case ETHERTYPE_MPLS_MCAST:
1119 /* Should have been set by ether_input(). */
1120 KKASSERT(m->m_flags & M_MPLSLABELED);
1121 isr = NETISR_MPLS;
1122 break;
1123 #endif
1125 default:
1127 * The accurate msgport is not determined before
1128 * we reach here, so recharacterize packet.
1130 m->m_flags &= ~M_HASH;
1131 if (ng_ether_input_orphan_p != NULL) {
1133 * Put back the ethernet header so netgraph has a
1134 * consistent view of inbound packets.
1136 M_PREPEND(m, ETHER_HDR_LEN, M_NOWAIT);
1137 if (m == NULL) {
1139 * M_PREPEND frees the mbuf in case of failure.
1141 return;
1144 * Hold BGL and recheck ng_ether_input_orphan_p
1146 get_mplock();
1147 if (ng_ether_input_orphan_p != NULL) {
1148 ng_ether_input_orphan_p(ifp, m);
1149 rel_mplock();
1150 return;
1152 rel_mplock();
1154 m_freem(m);
1155 return;
1158 if (m->m_flags & M_HASH) {
1159 if (&curthread->td_msgport ==
1160 netisr_hashport(m->m_pkthdr.hash)) {
1161 netisr_handle(isr, m);
1162 return;
1163 } else {
1165 * XXX Something is wrong,
1166 * we probably should panic here!
1168 m->m_flags &= ~M_HASH;
1169 atomic_add_long(&ether_input_wronghash, 1);
1172 #ifdef RSS_DEBUG
1173 atomic_add_long(&ether_input_requeue, 1);
1174 #endif
1175 netisr_queue(isr, m);
1179 * First we perform any link layer operations, then continue to the
1180 * upper layers with ether_demux_oncpu().
1182 static void
1183 ether_input_oncpu(struct ifnet *ifp, struct mbuf *m)
1185 #ifdef CARP
1186 void *carp;
1187 #endif
1189 if ((ifp->if_flags & (IFF_UP | IFF_MONITOR)) != IFF_UP) {
1191 * Receiving interface's flags are changed, when this
1192 * packet is waiting for processing; discard it.
1194 m_freem(m);
1195 return;
1199 * Tap the packet off here for a bridge. bridge_input()
1200 * will return NULL if it has consumed the packet, otherwise
1201 * it gets processed as normal. Note that bridge_input()
1202 * will always return the original packet if we need to
1203 * process it locally.
1205 if (ifp->if_bridge) {
1206 KASSERT(bridge_input_p != NULL,
1207 ("%s: if_bridge not loaded!", __func__));
1209 if(m->m_flags & M_ETHER_BRIDGED) {
1210 m->m_flags &= ~M_ETHER_BRIDGED;
1211 } else {
1212 m = bridge_input_p(ifp, m);
1213 if (m == NULL)
1214 return;
1216 KASSERT(ifp == m->m_pkthdr.rcvif,
1217 ("bridge_input_p changed rcvif"));
1221 #ifdef CARP
1222 carp = ifp->if_carp;
1223 if (carp) {
1224 m = carp_input(carp, m);
1225 if (m == NULL)
1226 return;
1227 KASSERT(ifp == m->m_pkthdr.rcvif,
1228 ("carp_input changed rcvif"));
1230 #endif
1232 /* Handle ng_ether(4) processing, if any */
1233 if (ng_ether_input_p != NULL) {
1235 * Hold BGL and recheck ng_ether_input_p
1237 get_mplock();
1238 if (ng_ether_input_p != NULL)
1239 ng_ether_input_p(ifp, &m);
1240 rel_mplock();
1242 if (m == NULL)
1243 return;
1246 /* Continue with upper layer processing */
1247 ether_demux_oncpu(ifp, m);
1251 * Perform certain functions of ether_input():
1252 * - Test IFF_UP
1253 * - Update statistics
1254 * - Run bpf(4) tap if requested
1255 * Then pass the packet to ether_input_oncpu().
1257 * This function should be used by pseudo interface (e.g. vlan(4)),
1258 * when it tries to claim that the packet is received by it.
1260 * REINPUT_KEEPRCVIF
1261 * REINPUT_RUNBPF
1263 void
1264 ether_reinput_oncpu(struct ifnet *ifp, struct mbuf *m, int reinput_flags)
1266 /* Discard packet if interface is not up */
1267 if (!(ifp->if_flags & IFF_UP)) {
1268 m_freem(m);
1269 return;
1273 * Change receiving interface. The bridge will often pass a flag to
1274 * ask that this not be done so ARPs get applied to the correct
1275 * side.
1277 if ((reinput_flags & REINPUT_KEEPRCVIF) == 0 ||
1278 m->m_pkthdr.rcvif == NULL) {
1279 m->m_pkthdr.rcvif = ifp;
1282 /* Update statistics */
1283 IFNET_STAT_INC(ifp, ipackets, 1);
1284 IFNET_STAT_INC(ifp, ibytes, m->m_pkthdr.len);
1285 if (m->m_flags & (M_MCAST | M_BCAST))
1286 IFNET_STAT_INC(ifp, imcasts, 1);
1288 if (reinput_flags & REINPUT_RUNBPF)
1289 BPF_MTAP(ifp, m);
1291 ether_input_oncpu(ifp, m);
1294 static __inline boolean_t
1295 ether_vlancheck(struct mbuf **m0)
1297 struct mbuf *m = *m0;
1298 struct ether_header *eh = mtod(m, struct ether_header *);
1299 uint16_t ether_type = ntohs(eh->ether_type);
1301 if (ether_type == ETHERTYPE_VLAN) {
1302 if ((m->m_flags & M_VLANTAG) == 0) {
1304 * Extract vlan tag if hardware does not do
1305 * it for us.
1307 vlan_ether_decap(&m);
1308 if (m == NULL)
1309 goto failed;
1311 eh = mtod(m, struct ether_header *);
1312 ether_type = ntohs(eh->ether_type);
1313 if (ether_type == ETHERTYPE_VLAN) {
1315 * To prevent possible dangerous recursion,
1316 * we don't do vlan-in-vlan.
1318 IFNET_STAT_INC(m->m_pkthdr.rcvif, noproto, 1);
1319 goto failed;
1321 } else {
1323 * To prevent possible dangerous recursion,
1324 * we don't do vlan-in-vlan.
1326 IFNET_STAT_INC(m->m_pkthdr.rcvif, noproto, 1);
1327 goto failed;
1329 KKASSERT(ether_type != ETHERTYPE_VLAN);
1332 m->m_flags |= M_ETHER_VLANCHECKED;
1333 *m0 = m;
1334 return TRUE;
1335 failed:
1336 if (m != NULL)
1337 m_freem(m);
1338 *m0 = NULL;
1339 return FALSE;
1342 static void
1343 ether_input_handler(netmsg_t nmsg)
1345 struct netmsg_packet *nmp = &nmsg->packet; /* actual size */
1346 struct ether_header *eh;
1347 struct ifnet *ifp;
1348 struct mbuf *m;
1350 m = nmp->nm_packet;
1351 M_ASSERTPKTHDR(m);
1353 if ((m->m_flags & M_ETHER_VLANCHECKED) == 0) {
1354 if (!ether_vlancheck(&m)) {
1355 KKASSERT(m == NULL);
1356 return;
1360 ifp = m->m_pkthdr.rcvif;
1361 if ((m->m_flags & (M_HASH | M_CKHASH)) == (M_HASH | M_CKHASH) ||
1362 __predict_false(ether_input_ckhash)) {
1363 int isr;
1366 * Need to verify the hash supplied by the hardware
1367 * which could be wrong.
1369 m->m_flags &= ~(M_HASH | M_CKHASH);
1370 isr = ether_characterize(&m);
1371 if (m == NULL)
1372 return;
1373 KKASSERT(m->m_flags & M_HASH);
1375 if (netisr_hashcpu(m->m_pkthdr.hash) != mycpuid) {
1377 * Wrong hardware supplied hash; redispatch
1379 ether_dispatch(ifp, isr, m, -1);
1380 if (__predict_false(ether_input_ckhash))
1381 atomic_add_long(&ether_input_wronghwhash, 1);
1382 return;
1386 eh = mtod(m, struct ether_header *);
1387 if (ETHER_IS_MULTICAST(eh->ether_dhost)) {
1388 if (bcmp(ifp->if_broadcastaddr, eh->ether_dhost,
1389 ifp->if_addrlen) == 0)
1390 m->m_flags |= M_BCAST;
1391 else
1392 m->m_flags |= M_MCAST;
1393 IFNET_STAT_INC(ifp, imcasts, 1);
1396 ether_input_oncpu(ifp, m);
1400 * Send the packet to the target netisr msgport
1402 * At this point the packet must be characterized (M_HASH set),
1403 * so we know which netisr to send it to.
1405 static void
1406 ether_dispatch(struct ifnet *ifp, int isr, struct mbuf *m, int cpuid)
1408 struct netmsg_packet *pmsg;
1409 int target_cpuid;
1411 KKASSERT(m->m_flags & M_HASH);
1412 target_cpuid = netisr_hashcpu(m->m_pkthdr.hash);
1414 pmsg = &m->m_hdr.mh_netmsg;
1415 netmsg_init(&pmsg->base, NULL, &netisr_apanic_rport,
1416 0, ether_input_handler);
1417 pmsg->nm_packet = m;
1418 pmsg->base.lmsg.u.ms_result = isr;
1420 logether(disp_beg, NULL);
1421 if (target_cpuid == cpuid) {
1422 if ((ifp->if_flags & IFF_IDIRECT) && IN_NETISR_NCPUS(cpuid)) {
1423 ether_input_handler((netmsg_t)pmsg);
1424 } else {
1425 lwkt_sendmsg_oncpu(netisr_cpuport(target_cpuid),
1426 &pmsg->base.lmsg);
1428 } else {
1429 lwkt_sendmsg(netisr_cpuport(target_cpuid),
1430 &pmsg->base.lmsg);
1432 logether(disp_end, NULL);
1436 * Process a received Ethernet packet.
1438 * The ethernet header is assumed to be in the mbuf so the caller
1439 * MUST MAKE SURE that there are at least sizeof(struct ether_header)
1440 * bytes in the first mbuf.
1442 * If the caller knows that the current thread is stick to the current
1443 * cpu, e.g. the interrupt thread or the netisr thread, the current cpuid
1444 * (mycpuid) should be passed through 'cpuid' argument. Else -1 should
1445 * be passed as 'cpuid' argument.
1447 void
1448 ether_input(struct ifnet *ifp, struct mbuf *m, const struct pktinfo *pi,
1449 int cpuid)
1451 int isr;
1453 M_ASSERTPKTHDR(m);
1455 /* Discard packet if interface is not up */
1456 if (!(ifp->if_flags & IFF_UP)) {
1457 m_freem(m);
1458 return;
1461 if (m->m_len < sizeof(struct ether_header)) {
1462 /* XXX error in the caller. */
1463 m_freem(m);
1464 return;
1467 m->m_pkthdr.rcvif = ifp;
1469 logether(pkt_beg, ifp);
1471 ETHER_BPF_MTAP(ifp, m);
1473 IFNET_STAT_INC(ifp, ibytes, m->m_pkthdr.len);
1475 if (ifp->if_flags & IFF_MONITOR) {
1476 struct ether_header *eh;
1478 eh = mtod(m, struct ether_header *);
1479 if (ETHER_IS_MULTICAST(eh->ether_dhost))
1480 IFNET_STAT_INC(ifp, imcasts, 1);
1483 * Interface marked for monitoring; discard packet.
1485 m_freem(m);
1487 logether(pkt_end, ifp);
1488 return;
1492 * If the packet has been characterized (pi->pi_netisr / M_HASH)
1493 * we can dispatch it immediately with trivial checks.
1495 if (pi != NULL && (m->m_flags & M_HASH)) {
1496 #ifdef RSS_DEBUG
1497 atomic_add_long(&ether_pktinfo_try, 1);
1498 #endif
1499 netisr_hashcheck(pi->pi_netisr, m, pi);
1500 if (m->m_flags & M_HASH) {
1501 ether_dispatch(ifp, pi->pi_netisr, m, cpuid);
1502 #ifdef RSS_DEBUG
1503 atomic_add_long(&ether_pktinfo_hit, 1);
1504 #endif
1505 logether(pkt_end, ifp);
1506 return;
1509 #ifdef RSS_DEBUG
1510 else if (ifp->if_capenable & IFCAP_RSS) {
1511 if (pi == NULL)
1512 atomic_add_long(&ether_rss_nopi, 1);
1513 else
1514 atomic_add_long(&ether_rss_nohash, 1);
1516 #endif
1519 * Packet hash will be recalculated by software, so clear
1520 * the M_HASH and M_CKHASH flag set by the driver; the hash
1521 * value calculated by the hardware may not be exactly what
1522 * we want.
1524 m->m_flags &= ~(M_HASH | M_CKHASH);
1526 if (!ether_vlancheck(&m)) {
1527 KKASSERT(m == NULL);
1528 logether(pkt_end, ifp);
1529 return;
1532 isr = ether_characterize(&m);
1533 if (m == NULL) {
1534 logether(pkt_end, ifp);
1535 return;
1539 * Finally dispatch it
1541 ether_dispatch(ifp, isr, m, cpuid);
1543 logether(pkt_end, ifp);
1546 static int
1547 ether_characterize(struct mbuf **m0)
1549 struct mbuf *m = *m0;
1550 struct ether_header *eh;
1551 uint16_t ether_type;
1552 int isr;
1554 eh = mtod(m, struct ether_header *);
1555 ether_type = ntohs(eh->ether_type);
1558 * Map ether type to netisr id.
1560 switch (ether_type) {
1561 #ifdef INET
1562 case ETHERTYPE_IP:
1563 isr = NETISR_IP;
1564 break;
1566 case ETHERTYPE_ARP:
1567 isr = NETISR_ARP;
1568 break;
1569 #endif
1571 #ifdef INET6
1572 case ETHERTYPE_IPV6:
1573 isr = NETISR_IPV6;
1574 break;
1575 #endif
1577 #ifdef MPLS
1578 case ETHERTYPE_MPLS:
1579 case ETHERTYPE_MPLS_MCAST:
1580 m->m_flags |= M_MPLSLABELED;
1581 isr = NETISR_MPLS;
1582 break;
1583 #endif
1585 default:
1587 * NETISR_MAX is an invalid value; it is chosen to let
1588 * netisr_characterize() know that we have no clear
1589 * idea where this packet should go.
1591 isr = NETISR_MAX;
1592 break;
1596 * Ask the isr to characterize the packet since we couldn't.
1597 * This is an attempt to optimally get us onto the correct protocol
1598 * thread.
1600 netisr_characterize(isr, &m, sizeof(struct ether_header));
1602 *m0 = m;
1603 return isr;
1606 static void
1607 ether_demux_handler(netmsg_t nmsg)
1609 struct netmsg_packet *nmp = &nmsg->packet; /* actual size */
1610 struct ifnet *ifp;
1611 struct mbuf *m;
1613 m = nmp->nm_packet;
1614 M_ASSERTPKTHDR(m);
1615 ifp = m->m_pkthdr.rcvif;
1617 ether_demux_oncpu(ifp, m);
1620 void
1621 ether_demux(struct mbuf *m)
1623 struct netmsg_packet *pmsg;
1624 int isr;
1626 isr = ether_characterize(&m);
1627 if (m == NULL)
1628 return;
1630 KKASSERT(m->m_flags & M_HASH);
1631 pmsg = &m->m_hdr.mh_netmsg;
1632 netmsg_init(&pmsg->base, NULL, &netisr_apanic_rport,
1633 0, ether_demux_handler);
1634 pmsg->nm_packet = m;
1635 pmsg->base.lmsg.u.ms_result = isr;
1637 lwkt_sendmsg(netisr_hashport(m->m_pkthdr.hash), &pmsg->base.lmsg);
1640 u_char *
1641 kether_aton(const char *macstr, u_char *addr)
1643 unsigned int o0, o1, o2, o3, o4, o5;
1644 int n;
1646 if (macstr == NULL || addr == NULL)
1647 return NULL;
1649 n = ksscanf(macstr, "%x:%x:%x:%x:%x:%x", &o0, &o1, &o2,
1650 &o3, &o4, &o5);
1651 if (n != 6)
1652 return NULL;
1654 addr[0] = o0;
1655 addr[1] = o1;
1656 addr[2] = o2;
1657 addr[3] = o3;
1658 addr[4] = o4;
1659 addr[5] = o5;
1661 return addr;
1664 char *
1665 kether_ntoa(const u_char *addr, char *buf)
1667 int len = ETHER_ADDRSTRLEN + 1;
1668 int n;
1670 n = ksnprintf(buf, len, "%02x:%02x:%02x:%02x:%02x:%02x", addr[0],
1671 addr[1], addr[2], addr[3], addr[4], addr[5]);
1673 if (n < 17)
1674 return NULL;
1676 return buf;
1679 MODULE_VERSION(ether, 1);