2 * Copyright (c) 2003, 2004 Jeffrey M. Hsu. All rights reserved.
3 * Copyright (c) 2003, 2004 The DragonFly Project. All rights reserved.
5 * This code is derived from software contributed to The DragonFly Project
8 * Redistribution and use in source and binary forms, with or without
9 * modification, are permitted provided that the following conditions
11 * 1. Redistributions of source code must retain the above copyright
12 * notice, this list of conditions and the following disclaimer.
13 * 2. Redistributions in binary form must reproduce the above copyright
14 * notice, this list of conditions and the following disclaimer in the
15 * documentation and/or other materials provided with the distribution.
16 * 3. Neither the name of The DragonFly Project nor the names of its
17 * contributors may be used to endorse or promote products derived
18 * from this software without specific, prior written permission.
20 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
21 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
22 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
23 * FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
24 * COPYRIGHT HOLDERS OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
25 * INCIDENTAL, SPECIAL, EXEMPLARY OR CONSEQUENTIAL DAMAGES (INCLUDING,
26 * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
27 * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
28 * AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
29 * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT
30 * OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
35 * Copyright (c) 1982, 1986, 1988, 1993
36 * The Regents of the University of California. All rights reserved.
38 * Redistribution and use in source and binary forms, with or without
39 * modification, are permitted provided that the following conditions
41 * 1. Redistributions of source code must retain the above copyright
42 * notice, this list of conditions and the following disclaimer.
43 * 2. Redistributions in binary form must reproduce the above copyright
44 * notice, this list of conditions and the following disclaimer in the
45 * documentation and/or other materials provided with the distribution.
46 * 3. Neither the name of the University nor the names of its contributors
47 * may be used to endorse or promote products derived from this software
48 * without specific prior written permission.
50 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
51 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
52 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
53 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
54 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
55 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
56 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
57 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
58 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
59 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
62 * @(#)ip_input.c 8.2 (Berkeley) 1/4/94
63 * $FreeBSD: src/sys/netinet/ip_input.c,v 1.130.2.52 2003/03/07 07:01:28 silby Exp $
68 #include "opt_bootp.h"
70 #include "opt_ipdivert.h"
71 #include "opt_ipstealth.h"
72 #include "opt_ipsec.h"
75 #include <sys/param.h>
76 #include <sys/systm.h>
78 #include <sys/malloc.h>
79 #include <sys/mpipe.h>
80 #include <sys/domain.h>
81 #include <sys/protosw.h>
82 #include <sys/socket.h>
84 #include <sys/globaldata.h>
85 #include <sys/thread.h>
86 #include <sys/kernel.h>
87 #include <sys/syslog.h>
88 #include <sys/sysctl.h>
89 #include <sys/in_cksum.h>
92 #include <sys/mplock2.h>
94 #include <machine/stdarg.h>
97 #include <net/if_types.h>
98 #include <net/if_var.h>
99 #include <net/if_dl.h>
100 #include <net/pfil.h>
101 #include <net/route.h>
102 #include <net/netisr2.h>
104 #include <netinet/in.h>
105 #include <netinet/in_systm.h>
106 #include <netinet/in_var.h>
107 #include <netinet/ip.h>
108 #include <netinet/in_pcb.h>
109 #include <netinet/ip_var.h>
110 #include <netinet/ip_icmp.h>
111 #include <netinet/ip_divert.h>
112 #include <netinet/ip_flow.h>
114 #include <sys/thread2.h>
115 #include <sys/msgport2.h>
116 #include <net/netmsg2.h>
118 #include <sys/socketvar.h>
120 #include <net/ipfw/ip_fw.h>
121 #include <net/dummynet/ip_dummynet.h>
124 #include <netinet6/ipsec.h>
125 #include <netproto/key/key.h>
129 #include <netproto/ipsec/ipsec.h>
130 #include <netproto/ipsec/key.h>
134 static int ip_rsvp_on
;
135 struct socket
*ip_rsvpd
;
137 int ipforwarding
= 0;
138 SYSCTL_INT(_net_inet_ip
, IPCTL_FORWARDING
, forwarding
, CTLFLAG_RW
,
139 &ipforwarding
, 0, "Enable IP forwarding between interfaces");
141 static int ipsendredirects
= 1; /* XXX */
142 SYSCTL_INT(_net_inet_ip
, IPCTL_SENDREDIRECTS
, redirect
, CTLFLAG_RW
,
143 &ipsendredirects
, 0, "Enable sending IP redirects");
145 int ip_defttl
= IPDEFTTL
;
146 SYSCTL_INT(_net_inet_ip
, IPCTL_DEFTTL
, ttl
, CTLFLAG_RW
,
147 &ip_defttl
, 0, "Maximum TTL on IP packets");
149 static int ip_dosourceroute
= 0;
150 SYSCTL_INT(_net_inet_ip
, IPCTL_SOURCEROUTE
, sourceroute
, CTLFLAG_RW
,
151 &ip_dosourceroute
, 0, "Enable forwarding source routed IP packets");
153 static int ip_acceptsourceroute
= 0;
154 SYSCTL_INT(_net_inet_ip
, IPCTL_ACCEPTSOURCEROUTE
, accept_sourceroute
,
155 CTLFLAG_RW
, &ip_acceptsourceroute
, 0,
156 "Enable accepting source routed IP packets");
158 static int ip_keepfaith
= 0;
159 SYSCTL_INT(_net_inet_ip
, IPCTL_KEEPFAITH
, keepfaith
, CTLFLAG_RW
,
161 "Enable packet capture for FAITH IPv4->IPv6 translator daemon");
164 SYSCTL_INT(_net_inet_ip
, OID_AUTO
, maxfragpackets
, CTLFLAG_RW
,
166 "Maximum number of IPv4 fragment reassembly queue entries");
168 static int maxfragsperpacket
;
169 SYSCTL_INT(_net_inet_ip
, OID_AUTO
, maxfragsperpacket
, CTLFLAG_RW
,
170 &maxfragsperpacket
, 0,
171 "Maximum number of IPv4 fragments allowed per packet");
173 static int ip_sendsourcequench
= 0;
174 SYSCTL_INT(_net_inet_ip
, OID_AUTO
, sendsourcequench
, CTLFLAG_RW
,
175 &ip_sendsourcequench
, 0,
176 "Enable the transmission of source quench packets");
178 int ip_do_randomid
= 1;
179 SYSCTL_INT(_net_inet_ip
, OID_AUTO
, random_id
, CTLFLAG_RW
,
181 "Assign random ip_id values");
183 * XXX - Setting ip_checkinterface mostly implements the receive side of
184 * the Strong ES model described in RFC 1122, but since the routing table
185 * and transmit implementation do not implement the Strong ES model,
186 * setting this to 1 results in an odd hybrid.
188 * XXX - ip_checkinterface currently must be disabled if you use ipnat
189 * to translate the destination address to another local interface.
191 * XXX - ip_checkinterface must be disabled if you add IP aliases
192 * to the loopback interface instead of the interface where the
193 * packets for those addresses are received.
195 static int ip_checkinterface
= 0;
196 SYSCTL_INT(_net_inet_ip
, OID_AUTO
, check_interface
, CTLFLAG_RW
,
197 &ip_checkinterface
, 0, "Verify packet arrives on correct interface");
199 static u_long ip_hash_count
= 0;
200 SYSCTL_ULONG(_net_inet_ip
, OID_AUTO
, hash_count
, CTLFLAG_RD
,
201 &ip_hash_count
, 0, "Number of packets hashed by IP");
204 static u_long ip_rehash_count
= 0;
205 SYSCTL_ULONG(_net_inet_ip
, OID_AUTO
, rehash_count
, CTLFLAG_RD
,
206 &ip_rehash_count
, 0, "Number of packets rehashed by IP");
208 static u_long ip_dispatch_fast
= 0;
209 SYSCTL_ULONG(_net_inet_ip
, OID_AUTO
, dispatch_fast_count
, CTLFLAG_RD
,
210 &ip_dispatch_fast
, 0, "Number of packets handled on current CPU");
212 static u_long ip_dispatch_slow
= 0;
213 SYSCTL_ULONG(_net_inet_ip
, OID_AUTO
, dispatch_slow_count
, CTLFLAG_RD
,
214 &ip_dispatch_slow
, 0, "Number of packets messaged to another CPU");
218 static int ipprintfs
= 0;
221 extern struct domain inetdomain
;
222 extern struct protosw inetsw
[];
223 u_char ip_protox
[IPPROTO_MAX
];
224 struct in_ifaddrhead in_ifaddrheads
[MAXCPU
]; /* first inet address */
225 struct in_ifaddrhashhead
*in_ifaddrhashtbls
[MAXCPU
];
226 /* inet addr hash table */
227 u_long in_ifaddrhmask
; /* mask for hash table */
229 static struct mbuf
*ipforward_mtemp
[MAXCPU
];
231 struct ip_stats ipstats_percpu
[MAXCPU
] __cachealign
;
234 sysctl_ipstats(SYSCTL_HANDLER_ARGS
)
238 for (cpu
= 0; cpu
< ncpus
; ++cpu
) {
239 if ((error
= SYSCTL_OUT(req
, &ipstats_percpu
[cpu
],
240 sizeof(struct ip_stats
))))
242 if ((error
= SYSCTL_IN(req
, &ipstats_percpu
[cpu
],
243 sizeof(struct ip_stats
))))
249 SYSCTL_PROC(_net_inet_ip
, IPCTL_STATS
, stats
, (CTLTYPE_OPAQUE
| CTLFLAG_RW
),
250 0, 0, sysctl_ipstats
, "S,ip_stats", "IP statistics");
252 /* Packet reassembly stuff */
253 #define IPREASS_NHASH_LOG2 6
254 #define IPREASS_NHASH (1 << IPREASS_NHASH_LOG2)
255 #define IPREASS_HMASK (IPREASS_NHASH - 1)
256 #define IPREASS_HASH(x,y) \
257 (((((x) & 0xF) | ((((x) >> 8) & 0xF) << 4)) ^ (y)) & IPREASS_HMASK)
259 TAILQ_HEAD(ipqhead
, ipq
);
260 struct ipfrag_queue
{
263 struct netmsg_base timeo_netmsg
;
264 struct netmsg_base drain_netmsg
;
265 struct ipqhead ipq
[IPREASS_NHASH
];
268 static struct ipfrag_queue ipfrag_queue_pcpu
[MAXCPU
];
271 SYSCTL_INT(_net_inet_ip
, IPCTL_DEFMTU
, mtu
, CTLFLAG_RW
,
272 &ip_mtu
, 0, "Default MTU");
276 static int ipstealth
= 0;
277 SYSCTL_INT(_net_inet_ip
, OID_AUTO
, stealth
, CTLFLAG_RW
, &ipstealth
, 0, "");
279 static const int ipstealth
= 0;
282 struct mbuf
*(*ip_divert_p
)(struct mbuf
*, int, int);
284 struct pfil_head inet_pfil_hook
;
287 * struct ip_srcrt_opt is used to store packet state while it travels
290 * XXX Note that the code even makes assumptions on the size and
291 * alignment of fields inside struct ip_srcrt so e.g. adding some
292 * fields will break the code. This needs to be fixed.
294 * We need to save the IP options in case a protocol wants to respond
295 * to an incoming packet over the same route if the packet got here
296 * using IP source routing. This allows connection establishment and
297 * maintenance when the remote end is on a network that is not known
301 struct in_addr dst
; /* final destination */
302 char nop
; /* one NOP to align */
303 char srcopt
[IPOPT_OFFSET
+ 1]; /* OPTVAL, OLEN and OFFSET */
304 struct in_addr route
[MAX_IPOPTLEN
/sizeof(struct in_addr
)];
307 struct ip_srcrt_opt
{
309 struct ip_srcrt ip_srcrt
;
312 #define IPFRAG_MPIPE_MAX 4096
313 #define MAXIPFRAG_MIN ((IPFRAG_MPIPE_MAX * 2) / 256)
315 static MALLOC_DEFINE(M_IPQ
, "ipq", "IP Fragment Management");
316 static struct malloc_pipe ipq_mpipe
;
318 static void save_rte(struct mbuf
*, u_char
*, struct in_addr
);
319 static int ip_dooptions(struct mbuf
*m
, int, struct sockaddr_in
*);
320 static void ip_freef(struct ipfrag_queue
*, struct ipqhead
*,
322 static void ip_input_handler(netmsg_t
);
324 static void ipfrag_timeo_dispatch(netmsg_t
);
325 static void ipfrag_drain_dispatch(netmsg_t
);
328 * IP initialization: fill in IP protocol switch table.
329 * All protocols not implemented in kernel go to raw IP protocol handler.
338 * Make sure we can handle a reasonable number of fragments but
339 * cap it at IPFRAG_MPIPE_MAX.
341 mpipe_init(&ipq_mpipe
, M_IPQ
, sizeof(struct ipq
),
342 IFQ_MAXLEN
, IPFRAG_MPIPE_MAX
, 0, NULL
, NULL
, NULL
);
343 for (cpu
= 0; cpu
< ncpus
; ++cpu
) {
344 TAILQ_INIT(&in_ifaddrheads
[cpu
]);
345 in_ifaddrhashtbls
[cpu
] =
346 hashinit(INADDR_NHASH
, M_IFADDR
, &in_ifaddrhmask
);
348 pr
= pffindproto(PF_INET
, IPPROTO_RAW
, SOCK_RAW
);
351 for (i
= 0; i
< IPPROTO_MAX
; i
++)
352 ip_protox
[i
] = pr
- inetsw
;
353 for (pr
= inetdomain
.dom_protosw
;
354 pr
< inetdomain
.dom_protoswNPROTOSW
; pr
++) {
355 if (pr
->pr_domain
->dom_family
== PF_INET
&& pr
->pr_protocol
) {
356 if (pr
->pr_protocol
!= IPPROTO_RAW
)
357 ip_protox
[pr
->pr_protocol
] = pr
- inetsw
;
361 inet_pfil_hook
.ph_type
= PFIL_TYPE_AF
;
362 inet_pfil_hook
.ph_af
= AF_INET
;
363 if ((i
= pfil_head_register(&inet_pfil_hook
)) != 0) {
364 kprintf("%s: WARNING: unable to register pfil hook, "
365 "error %d\n", __func__
, i
);
368 maxnipq
= (nmbclusters
/ 32) / ncpus2
;
369 if (maxnipq
< MAXIPFRAG_MIN
)
370 maxnipq
= MAXIPFRAG_MIN
;
371 maxfragsperpacket
= 16;
373 ip_id
= time_second
& 0xffff; /* time_second survives reboots */
375 for (cpu
= 0; cpu
< ncpus
; ++cpu
) {
377 * Initialize IP statistics counters for each CPU.
379 bzero(&ipstats_percpu
[cpu
], sizeof(struct ip_stats
));
382 * Preallocate mbuf template for forwarding
384 MGETHDR(ipforward_mtemp
[cpu
], M_WAITOK
, MT_DATA
);
387 * Initialize per-cpu ip fragments queues
389 for (i
= 0; i
< IPREASS_NHASH
; i
++) {
390 struct ipfrag_queue
*fragq
= &ipfrag_queue_pcpu
[cpu
];
392 TAILQ_INIT(&fragq
->ipq
[i
]);
393 netmsg_init(&fragq
->timeo_netmsg
, NULL
,
394 &netisr_adone_rport
, MSGF_PRIORITY
,
395 ipfrag_timeo_dispatch
);
396 netmsg_init(&fragq
->drain_netmsg
, NULL
,
397 &netisr_adone_rport
, MSGF_PRIORITY
,
398 ipfrag_drain_dispatch
);
402 netisr_register(NETISR_IP
, ip_input_handler
, ip_hashfn
);
403 netisr_register_hashcheck(NETISR_IP
, ip_hashcheck
);
406 /* Do transport protocol processing. */
408 transport_processing_oncpu(struct mbuf
*m
, int hlen
, struct ip
*ip
)
410 const struct protosw
*pr
= &inetsw
[ip_protox
[ip
->ip_p
]];
413 * Switch out to protocol's input routine.
416 pr
->pr_input(&m
, &hlen
, ip
->ip_p
);
421 transport_processing_handler(netmsg_t msg
)
423 struct netmsg_packet
*pmsg
= &msg
->packet
;
427 ip
= mtod(pmsg
->nm_packet
, struct ip
*);
428 hlen
= pmsg
->base
.lmsg
.u
.ms_result
;
430 transport_processing_oncpu(pmsg
->nm_packet
, hlen
, ip
);
431 /* msg was embedded in the mbuf, do not reply! */
435 ip_input_handler(netmsg_t msg
)
437 ip_input(msg
->packet
.nm_packet
);
438 /* msg was embedded in the mbuf, do not reply! */
442 * IP input routine. Checksum and byte swap header. If fragmented
443 * try to reassemble. Process options. Pass to next level.
446 ip_input(struct mbuf
*m
)
449 struct in_ifaddr
*ia
= NULL
;
450 struct in_ifaddr_container
*iac
;
453 struct in_addr pkt_dst
;
454 boolean_t using_srcrt
= FALSE
; /* forward (by PFIL_HOOKS) */
455 struct in_addr odst
; /* original dst address(NAT) */
457 struct sockaddr_in
*next_hop
= NULL
;
460 struct tdb_ident
*tdbi
;
461 struct secpolicy
*sp
;
468 * This routine is called from numerous places which may not have
469 * characterized the packet.
471 ip
= mtod(m
, struct ip
*);
472 if (IN_MULTICAST(ntohl(ip
->ip_dst
.s_addr
)) ||
473 (ntohs(ip
->ip_off
) & (IP_MF
| IP_OFFMASK
))) {
475 * Force hash recalculation for fragments and multicast
476 * packets; hardware may not do it correctly.
477 * XXX add flag to indicate the hash is from hardware
479 m
->m_flags
&= ~M_HASH
;
481 if ((m
->m_flags
& M_HASH
) == 0) {
485 KKASSERT(m
->m_flags
& M_HASH
);
487 if (&curthread
->td_msgport
!=
488 netisr_hashport(m
->m_pkthdr
.hash
)) {
489 netisr_queue(NETISR_IP
, m
);
490 /* Requeued to other netisr msgport; done */
494 /* mbuf could have been changed */
495 ip
= mtod(m
, struct ip
*);
499 * Pull out certain tags
501 if (m
->m_pkthdr
.fw_flags
& IPFORWARD_MBUF_TAGGED
) {
503 mtag
= m_tag_find(m
, PACKET_TAG_IPFORWARD
, NULL
);
504 KKASSERT(mtag
!= NULL
);
505 next_hop
= m_tag_data(mtag
);
508 if (m
->m_pkthdr
.fw_flags
& DUMMYNET_MBUF_TAGGED
) {
509 /* dummynet already filtered us */
510 ip
= mtod(m
, struct ip
*);
511 hlen
= IP_VHL_HL(ip
->ip_vhl
) << 2;
517 /* length checks already done in ip_hashfn() */
518 KASSERT(m
->m_len
>= sizeof(struct ip
), ("IP header not in one mbuf"));
520 if (IP_VHL_V(ip
->ip_vhl
) != IPVERSION
) {
521 ipstat
.ips_badvers
++;
525 hlen
= IP_VHL_HL(ip
->ip_vhl
) << 2;
526 /* length checks already done in ip_hashfn() */
527 KASSERT(hlen
>= sizeof(struct ip
), ("IP header len too small"));
528 KASSERT(m
->m_len
>= hlen
, ("complete IP header not in one mbuf"));
530 /* 127/8 must not appear on wire - RFC1122 */
531 if ((ntohl(ip
->ip_dst
.s_addr
) >> IN_CLASSA_NSHIFT
) == IN_LOOPBACKNET
||
532 (ntohl(ip
->ip_src
.s_addr
) >> IN_CLASSA_NSHIFT
) == IN_LOOPBACKNET
) {
533 if (!(m
->m_pkthdr
.rcvif
->if_flags
& IFF_LOOPBACK
)) {
534 ipstat
.ips_badaddr
++;
539 if (m
->m_pkthdr
.csum_flags
& CSUM_IP_CHECKED
) {
540 sum
= !(m
->m_pkthdr
.csum_flags
& CSUM_IP_VALID
);
542 if (hlen
== sizeof(struct ip
))
543 sum
= in_cksum_hdr(ip
);
545 sum
= in_cksum(m
, hlen
);
553 if (altq_input
!= NULL
&& (*altq_input
)(m
, AF_INET
) == 0) {
554 /* packet is dropped by traffic conditioner */
559 * Convert fields to host representation.
561 ip
->ip_len
= ntohs(ip
->ip_len
);
562 ip
->ip_off
= ntohs(ip
->ip_off
);
564 /* length checks already done in ip_hashfn() */
565 KASSERT(ip
->ip_len
>= hlen
, ("total length less then header length"));
566 KASSERT(m
->m_pkthdr
.len
>= ip
->ip_len
, ("mbuf too short"));
569 * Trim mbufs if longer than the IP header would have us expect.
571 if (m
->m_pkthdr
.len
> ip
->ip_len
) {
572 if (m
->m_len
== m
->m_pkthdr
.len
) {
573 m
->m_len
= ip
->ip_len
;
574 m
->m_pkthdr
.len
= ip
->ip_len
;
576 m_adj(m
, ip
->ip_len
- m
->m_pkthdr
.len
);
579 #if defined(IPSEC) && !defined(IPSEC_FILTERGIF)
581 * Bypass packet filtering for packets from a tunnel (gif).
583 if (ipsec_gethist(m
, NULL
))
589 * Right now when no processing on packet has done
590 * and it is still fresh out of network we do our black
592 * - Firewall: deny/allow/divert
593 * - Xlate: translate packet's addr/port (NAT).
594 * - Pipe: pass pkt through dummynet.
595 * - Wrap: fake packet's addr/port <unimpl.>
596 * - Encapsulate: put it in another IP and send out. <unimp.>
601 * If we've been forwarded from the output side, then
602 * skip the firewall a second time
604 if (next_hop
!= NULL
)
608 if (!pfil_has_hooks(&inet_pfil_hook
)) {
609 if (m
->m_pkthdr
.fw_flags
& DUMMYNET_MBUF_TAGGED
) {
611 * Strip dummynet tags from stranded packets
613 mtag
= m_tag_find(m
, PACKET_TAG_DUMMYNET
, NULL
);
614 KKASSERT(mtag
!= NULL
);
615 m_tag_delete(m
, mtag
);
616 m
->m_pkthdr
.fw_flags
&= ~DUMMYNET_MBUF_TAGGED
;
622 * Run through list of hooks for input packets.
624 * NOTE! If the packet is rewritten pf/ipfw/whoever must
628 if (pfil_run_hooks(&inet_pfil_hook
, &m
, m
->m_pkthdr
.rcvif
, PFIL_IN
))
630 if (m
== NULL
) /* consumed by filter */
632 ip
= mtod(m
, struct ip
*);
633 hlen
= IP_VHL_HL(ip
->ip_vhl
) << 2;
634 using_srcrt
= (odst
.s_addr
!= ip
->ip_dst
.s_addr
);
636 if (m
->m_pkthdr
.fw_flags
& IPFORWARD_MBUF_TAGGED
) {
637 mtag
= m_tag_find(m
, PACKET_TAG_IPFORWARD
, NULL
);
638 KKASSERT(mtag
!= NULL
);
639 next_hop
= m_tag_data(mtag
);
641 if (m
->m_pkthdr
.fw_flags
& DUMMYNET_MBUF_TAGGED
) {
645 if (m
->m_pkthdr
.fw_flags
& FW_MBUF_REDISPATCH
) {
646 m
->m_pkthdr
.fw_flags
&= ~FW_MBUF_REDISPATCH
;
650 * Process options and, if not destined for us,
651 * ship it on. ip_dooptions returns 1 when an
652 * error was detected (causing an icmp message
653 * to be sent and the original packet to be freed).
655 if (hlen
> sizeof(struct ip
) && ip_dooptions(m
, 0, next_hop
))
658 /* greedy RSVP, snatches any PATH packet of the RSVP protocol and no
659 * matter if it is destined to another node, or whether it is
660 * a multicast one, RSVP wants it! and prevents it from being forwarded
661 * anywhere else. Also checks if the rsvp daemon is running before
662 * grabbing the packet.
664 if (rsvp_on
&& ip
->ip_p
== IPPROTO_RSVP
)
668 * Check our list of addresses, to see if the packet is for us.
669 * If we don't have any addresses, assume any unicast packet
670 * we receive might be for us (and let the upper layers deal
673 if (TAILQ_EMPTY(&in_ifaddrheads
[mycpuid
]) &&
674 !(m
->m_flags
& (M_MCAST
| M_BCAST
)))
678 * Cache the destination address of the packet; this may be
679 * changed by use of 'ipfw fwd'.
681 pkt_dst
= next_hop
? next_hop
->sin_addr
: ip
->ip_dst
;
684 * Enable a consistency check between the destination address
685 * and the arrival interface for a unicast packet (the RFC 1122
686 * strong ES model) if IP forwarding is disabled and the packet
687 * is not locally generated and the packet is not subject to
690 * XXX - Checking also should be disabled if the destination
691 * address is ipnat'ed to a different interface.
693 * XXX - Checking is incompatible with IP aliases added
694 * to the loopback interface instead of the interface where
695 * the packets are received.
697 checkif
= ip_checkinterface
&&
699 m
->m_pkthdr
.rcvif
!= NULL
&&
700 !(m
->m_pkthdr
.rcvif
->if_flags
& IFF_LOOPBACK
) &&
704 * Check for exact addresses in the hash bucket.
706 LIST_FOREACH(iac
, INADDR_HASH(pkt_dst
.s_addr
), ia_hash
) {
710 * If the address matches, verify that the packet
711 * arrived via the correct interface if checking is
714 if (IA_SIN(ia
)->sin_addr
.s_addr
== pkt_dst
.s_addr
&&
715 (!checkif
|| ia
->ia_ifp
== m
->m_pkthdr
.rcvif
))
721 * Check for broadcast addresses.
723 * Only accept broadcast packets that arrive via the matching
724 * interface. Reception of forwarded directed broadcasts would
725 * be handled via ip_forward() and ether_output() with the loopback
726 * into the stack for SIMPLEX interfaces handled by ether_output().
728 if (m
->m_pkthdr
.rcvif
!= NULL
&&
729 m
->m_pkthdr
.rcvif
->if_flags
& IFF_BROADCAST
) {
730 struct ifaddr_container
*ifac
;
732 TAILQ_FOREACH(ifac
, &m
->m_pkthdr
.rcvif
->if_addrheads
[mycpuid
],
734 struct ifaddr
*ifa
= ifac
->ifa
;
736 if (ifa
->ifa_addr
== NULL
) /* shutdown/startup race */
738 if (ifa
->ifa_addr
->sa_family
!= AF_INET
)
741 if (satosin(&ia
->ia_broadaddr
)->sin_addr
.s_addr
==
744 if (ia
->ia_netbroadcast
.s_addr
== pkt_dst
.s_addr
)
747 if (IA_SIN(ia
)->sin_addr
.s_addr
== INADDR_ANY
)
752 if (IN_MULTICAST(ntohl(ip
->ip_dst
.s_addr
))) {
753 struct in_multi
*inm
;
755 if (ip_mrouter
!= NULL
) {
756 /* XXX Multicast routing is not MPSAFE yet */
760 * If we are acting as a multicast router, all
761 * incoming multicast packets are passed to the
762 * kernel-level multicast forwarding function.
763 * The packet is returned (relatively) intact; if
764 * ip_mforward() returns a non-zero value, the packet
765 * must be discarded, else it may be accepted below.
767 if (ip_mforward
!= NULL
&&
768 ip_mforward(ip
, m
->m_pkthdr
.rcvif
, m
, NULL
) != 0) {
770 ipstat
.ips_cantforward
++;
778 * The process-level routing daemon needs to receive
779 * all multicast IGMP packets, whether or not this
780 * host belongs to their destination groups.
782 if (ip
->ip_p
== IPPROTO_IGMP
)
784 ipstat
.ips_forward
++;
787 * See if we belong to the destination multicast group on the
790 inm
= IN_LOOKUP_MULTI(&ip
->ip_dst
, m
->m_pkthdr
.rcvif
);
792 ipstat
.ips_notmember
++;
798 if (ip
->ip_dst
.s_addr
== INADDR_BROADCAST
)
800 if (ip
->ip_dst
.s_addr
== INADDR_ANY
)
804 * FAITH(Firewall Aided Internet Translator)
806 if (m
->m_pkthdr
.rcvif
&& m
->m_pkthdr
.rcvif
->if_type
== IFT_FAITH
) {
808 if (ip
->ip_p
== IPPROTO_TCP
|| ip
->ip_p
== IPPROTO_ICMP
)
816 * Not for us; forward if possible and desirable.
819 ipstat
.ips_cantforward
++;
824 * Enforce inbound IPsec SPD.
826 if (ipsec4_in_reject(m
, NULL
)) {
827 ipsecstat
.in_polvio
++;
832 mtag
= m_tag_find(m
, PACKET_TAG_IPSEC_IN_DONE
, NULL
);
835 tdbi
= (struct tdb_ident
*)m_tag_data(mtag
);
836 sp
= ipsec_getpolicy(tdbi
, IPSEC_DIR_INBOUND
);
838 sp
= ipsec_getpolicybyaddr(m
, IPSEC_DIR_INBOUND
,
839 IP_FORWARDING
, &error
);
841 if (sp
== NULL
) { /* NB: can happen if error */
843 /*XXX error stat???*/
844 DPRINTF(("ip_input: no SP for forwarding\n")); /*XXX*/
849 * Check security policy against packet attributes.
851 error
= ipsec_in_reject(sp
, m
);
855 ipstat
.ips_cantforward
++;
859 ip_forward(m
, using_srcrt
, next_hop
);
866 * IPSTEALTH: Process non-routing options only
867 * if the packet is destined for us.
870 hlen
> sizeof(struct ip
) &&
871 ip_dooptions(m
, 1, next_hop
))
874 /* Count the packet in the ip address stats */
876 IFA_STAT_INC(&ia
->ia_ifa
, ipackets
, 1);
877 IFA_STAT_INC(&ia
->ia_ifa
, ibytes
, m
->m_pkthdr
.len
);
881 * If offset or IP_MF are set, must reassemble.
882 * Otherwise, nothing need be done.
883 * (We could look in the reassembly queue to see
884 * if the packet was previously fragmented,
885 * but it's not worth the time; just let them time out.)
887 if (ip
->ip_off
& (IP_MF
| IP_OFFMASK
)) {
889 * Attempt reassembly; if it succeeds, proceed. ip_reass()
890 * will return a different mbuf.
892 * NOTE: ip_reass() returns m with M_HASH cleared to force
893 * us to recharacterize the packet.
898 ip
= mtod(m
, struct ip
*);
900 /* Get the header length of the reassembled packet */
901 hlen
= IP_VHL_HL(ip
->ip_vhl
) << 2;
908 * enforce IPsec policy checking if we are seeing last header.
909 * note that we do not visit this with protocols with pcb layer
910 * code - like udp/tcp/raw ip.
912 if ((inetsw
[ip_protox
[ip
->ip_p
]].pr_flags
& PR_LASTHDR
) &&
913 ipsec4_in_reject(m
, NULL
)) {
914 ipsecstat
.in_polvio
++;
920 * enforce IPsec policy checking if we are seeing last header.
921 * note that we do not visit this with protocols with pcb layer
922 * code - like udp/tcp/raw ip.
924 if (inetsw
[ip_protox
[ip
->ip_p
]].pr_flags
& PR_LASTHDR
) {
926 * Check if the packet has already had IPsec processing
927 * done. If so, then just pass it along. This tag gets
928 * set during AH, ESP, etc. input handling, before the
929 * packet is returned to the ip input queue for delivery.
931 mtag
= m_tag_find(m
, PACKET_TAG_IPSEC_IN_DONE
, NULL
);
934 tdbi
= (struct tdb_ident
*)m_tag_data(mtag
);
935 sp
= ipsec_getpolicy(tdbi
, IPSEC_DIR_INBOUND
);
937 sp
= ipsec_getpolicybyaddr(m
, IPSEC_DIR_INBOUND
,
938 IP_FORWARDING
, &error
);
942 * Check security policy against packet attributes.
944 error
= ipsec_in_reject(sp
, m
);
947 /* XXX error stat??? */
949 DPRINTF(("ip_input: no SP, packet discarded\n"));/*XXX*/
957 #endif /* FAST_IPSEC */
960 * We must forward the packet to the correct protocol thread if
961 * we are not already in it.
963 * NOTE: ip_len is now in host form. ip_len is not adjusted
964 * further for protocol processing, instead we pass hlen
965 * to the protosw and let it deal with it.
967 ipstat
.ips_delivered
++;
969 if ((m
->m_flags
& M_HASH
) == 0) {
971 atomic_add_long(&ip_rehash_count
, 1);
973 ip
->ip_len
= htons(ip
->ip_len
+ hlen
);
974 ip
->ip_off
= htons(ip
->ip_off
);
980 ip
= mtod(m
, struct ip
*);
981 ip
->ip_len
= ntohs(ip
->ip_len
) - hlen
;
982 ip
->ip_off
= ntohs(ip
->ip_off
);
983 KKASSERT(m
->m_flags
& M_HASH
);
985 port
= netisr_hashport(m
->m_pkthdr
.hash
);
987 if (port
!= &curthread
->td_msgport
) {
988 struct netmsg_packet
*pmsg
;
991 atomic_add_long(&ip_dispatch_slow
, 1);
994 pmsg
= &m
->m_hdr
.mh_netmsg
;
995 netmsg_init(&pmsg
->base
, NULL
, &netisr_apanic_rport
,
996 0, transport_processing_handler
);
998 pmsg
->base
.lmsg
.u
.ms_result
= hlen
;
999 lwkt_sendmsg(port
, &pmsg
->base
.lmsg
);
1002 atomic_add_long(&ip_dispatch_fast
, 1);
1004 transport_processing_oncpu(m
, hlen
, ip
);
1013 * Take incoming datagram fragment and try to reassemble it into
1014 * whole datagram. If a chain for reassembly of this datagram already
1015 * exists, then it is given as fp; otherwise have to make a chain.
1018 ip_reass(struct mbuf
*m
)
1020 struct ipfrag_queue
*fragq
= &ipfrag_queue_pcpu
[mycpuid
];
1021 struct ip
*ip
= mtod(m
, struct ip
*);
1022 struct mbuf
*p
= NULL
, *q
, *nq
;
1024 struct ipq
*fp
= NULL
;
1025 struct ipqhead
*head
;
1026 int hlen
= IP_VHL_HL(ip
->ip_vhl
) << 2;
1030 /* If maxnipq or maxfragsperpacket are 0, never accept fragments. */
1031 if (maxnipq
== 0 || maxfragsperpacket
== 0) {
1032 ipstat
.ips_fragments
++;
1033 ipstat
.ips_fragdropped
++;
1038 sum
= IPREASS_HASH(ip
->ip_src
.s_addr
, ip
->ip_id
);
1040 * Look for queue of fragments of this datagram.
1042 head
= &fragq
->ipq
[sum
];
1043 TAILQ_FOREACH(fp
, head
, ipq_list
) {
1044 if (ip
->ip_id
== fp
->ipq_id
&&
1045 ip
->ip_src
.s_addr
== fp
->ipq_src
.s_addr
&&
1046 ip
->ip_dst
.s_addr
== fp
->ipq_dst
.s_addr
&&
1047 ip
->ip_p
== fp
->ipq_p
)
1054 * Enforce upper bound on number of fragmented packets
1055 * for which we attempt reassembly;
1056 * If maxnipq is -1, accept all fragments without limitation.
1058 if (fragq
->nipq
> maxnipq
&& maxnipq
> 0) {
1060 * drop something from the tail of the current queue
1061 * before proceeding further
1063 struct ipq
*q
= TAILQ_LAST(head
, ipqhead
);
1066 * The current queue is empty,
1067 * so drop from one of the others.
1069 for (i
= 0; i
< IPREASS_NHASH
; i
++) {
1070 struct ipq
*r
= TAILQ_LAST(&fragq
->ipq
[i
],
1073 ipstat
.ips_fragtimeout
+= r
->ipq_nfrags
;
1074 ip_freef(fragq
, &fragq
->ipq
[i
], r
);
1079 ipstat
.ips_fragtimeout
+= q
->ipq_nfrags
;
1080 ip_freef(fragq
, head
, q
);
1085 * Adjust ip_len to not reflect header,
1086 * convert offset of this to bytes.
1089 if (ip
->ip_off
& IP_MF
) {
1091 * Make sure that fragments have a data length
1092 * that's a non-zero multiple of 8 bytes.
1094 if (ip
->ip_len
== 0 || (ip
->ip_len
& 0x7) != 0) {
1095 ipstat
.ips_toosmall
++; /* XXX */
1099 m
->m_flags
|= M_FRAG
;
1101 m
->m_flags
&= ~M_FRAG
;
1105 ipstat
.ips_fragments
++;
1106 m
->m_pkthdr
.header
= ip
;
1109 * If the hardware has not done csum over this fragment
1110 * then csum_data is not valid at all.
1112 if ((m
->m_pkthdr
.csum_flags
& (CSUM_FRAG_NOT_CHECKED
| CSUM_DATA_VALID
))
1113 == (CSUM_FRAG_NOT_CHECKED
| CSUM_DATA_VALID
)) {
1114 m
->m_pkthdr
.csum_data
= 0;
1115 m
->m_pkthdr
.csum_flags
&= ~(CSUM_DATA_VALID
| CSUM_PSEUDO_HDR
);
1119 * Presence of header sizes in mbufs
1120 * would confuse code below.
1126 * If first fragment to arrive, create a reassembly queue.
1129 if ((fp
= mpipe_alloc_nowait(&ipq_mpipe
)) == NULL
)
1131 TAILQ_INSERT_HEAD(head
, fp
, ipq_list
);
1134 fp
->ipq_ttl
= IPFRAGTTL
;
1135 fp
->ipq_p
= ip
->ip_p
;
1136 fp
->ipq_id
= ip
->ip_id
;
1137 fp
->ipq_src
= ip
->ip_src
;
1138 fp
->ipq_dst
= ip
->ip_dst
;
1140 m
->m_nextpkt
= NULL
;
1145 #define GETIP(m) ((struct ip*)((m)->m_pkthdr.header))
1148 * Find a segment which begins after this one does.
1150 for (p
= NULL
, q
= fp
->ipq_frags
; q
; p
= q
, q
= q
->m_nextpkt
) {
1151 if (GETIP(q
)->ip_off
> ip
->ip_off
)
1156 * If there is a preceding segment, it may provide some of
1157 * our data already. If so, drop the data from the incoming
1158 * segment. If it provides all of our data, drop us, otherwise
1159 * stick new segment in the proper place.
1161 * If some of the data is dropped from the the preceding
1162 * segment, then it's checksum is invalidated.
1165 i
= GETIP(p
)->ip_off
+ GETIP(p
)->ip_len
- ip
->ip_off
;
1167 if (i
>= ip
->ip_len
)
1170 m
->m_pkthdr
.csum_flags
= 0;
1174 m
->m_nextpkt
= p
->m_nextpkt
;
1177 m
->m_nextpkt
= fp
->ipq_frags
;
1182 * While we overlap succeeding segments trim them or,
1183 * if they are completely covered, dequeue them.
1185 for (; q
!= NULL
&& ip
->ip_off
+ ip
->ip_len
> GETIP(q
)->ip_off
;
1187 i
= (ip
->ip_off
+ ip
->ip_len
) - GETIP(q
)->ip_off
;
1188 if (i
< GETIP(q
)->ip_len
) {
1189 GETIP(q
)->ip_len
-= i
;
1190 GETIP(q
)->ip_off
+= i
;
1192 q
->m_pkthdr
.csum_flags
= 0;
1197 ipstat
.ips_fragdropped
++;
1199 q
->m_nextpkt
= NULL
;
1205 * Check for complete reassembly and perform frag per packet
1208 * Frag limiting is performed here so that the nth frag has
1209 * a chance to complete the packet before we drop the packet.
1210 * As a result, n+1 frags are actually allowed per packet, but
1211 * only n will ever be stored. (n = maxfragsperpacket.)
1215 for (p
= NULL
, q
= fp
->ipq_frags
; q
; p
= q
, q
= q
->m_nextpkt
) {
1216 if (GETIP(q
)->ip_off
!= next
) {
1217 if (fp
->ipq_nfrags
> maxfragsperpacket
) {
1218 ipstat
.ips_fragdropped
+= fp
->ipq_nfrags
;
1219 ip_freef(fragq
, head
, fp
);
1223 next
+= GETIP(q
)->ip_len
;
1225 /* Make sure the last packet didn't have the IP_MF flag */
1226 if (p
->m_flags
& M_FRAG
) {
1227 if (fp
->ipq_nfrags
> maxfragsperpacket
) {
1228 ipstat
.ips_fragdropped
+= fp
->ipq_nfrags
;
1229 ip_freef(fragq
, head
, fp
);
1235 * Reassembly is complete. Make sure the packet is a sane size.
1239 if (next
+ (IP_VHL_HL(ip
->ip_vhl
) << 2) > IP_MAXPACKET
) {
1240 ipstat
.ips_toolong
++;
1241 ipstat
.ips_fragdropped
+= fp
->ipq_nfrags
;
1242 ip_freef(fragq
, head
, fp
);
1247 * Concatenate fragments.
1254 q
->m_nextpkt
= NULL
;
1255 for (q
= nq
; q
!= NULL
; q
= nq
) {
1257 q
->m_nextpkt
= NULL
;
1258 m
->m_pkthdr
.csum_flags
&= q
->m_pkthdr
.csum_flags
;
1259 m
->m_pkthdr
.csum_data
+= q
->m_pkthdr
.csum_data
;
1264 * Clean up the 1's complement checksum. Carry over 16 bits must
1265 * be added back. This assumes no more then 65535 packet fragments
1266 * were reassembled. A second carry can also occur (but not a third).
1268 m
->m_pkthdr
.csum_data
= (m
->m_pkthdr
.csum_data
& 0xffff) +
1269 (m
->m_pkthdr
.csum_data
>> 16);
1270 if (m
->m_pkthdr
.csum_data
> 0xFFFF)
1271 m
->m_pkthdr
.csum_data
-= 0xFFFF;
1274 * Create header for new ip packet by
1275 * modifying header of first packet;
1276 * dequeue and discard fragment reassembly header.
1277 * Make header visible.
1280 ip
->ip_src
= fp
->ipq_src
;
1281 ip
->ip_dst
= fp
->ipq_dst
;
1282 TAILQ_REMOVE(head
, fp
, ipq_list
);
1284 mpipe_free(&ipq_mpipe
, fp
);
1285 m
->m_len
+= (IP_VHL_HL(ip
->ip_vhl
) << 2);
1286 m
->m_data
-= (IP_VHL_HL(ip
->ip_vhl
) << 2);
1287 /* some debugging cruft by sklower, below, will go away soon */
1288 if (m
->m_flags
& M_PKTHDR
) { /* XXX this should be done elsewhere */
1291 for (n
= m
; n
; n
= n
->m_next
)
1293 m
->m_pkthdr
.len
= plen
;
1297 * Reassembly complete, return the next protocol.
1299 * Be sure to clear M_HASH to force the packet
1300 * to be re-characterized.
1302 * Clear M_FRAG, we are no longer a fragment.
1304 m
->m_flags
&= ~(M_HASH
| M_FRAG
);
1306 ipstat
.ips_reassembled
++;
1310 ipstat
.ips_fragdropped
++;
1321 * Free a fragment reassembly header and all
1322 * associated datagrams.
1325 ip_freef(struct ipfrag_queue
*fragq
, struct ipqhead
*fhp
, struct ipq
*fp
)
1330 * Remove first to protect against blocking
1332 TAILQ_REMOVE(fhp
, fp
, ipq_list
);
1335 * Clean out at our leisure
1337 while (fp
->ipq_frags
) {
1339 fp
->ipq_frags
= q
->m_nextpkt
;
1340 q
->m_nextpkt
= NULL
;
1343 mpipe_free(&ipq_mpipe
, fp
);
1348 * If a timer expires on a reassembly queue, discard it.
1351 ipfrag_timeo_dispatch(netmsg_t nmsg
)
1353 struct ipfrag_queue
*fragq
= &ipfrag_queue_pcpu
[mycpuid
];
1354 struct ipq
*fp
, *fp_temp
;
1355 struct ipqhead
*head
;
1359 lwkt_replymsg(&nmsg
->lmsg
, 0); /* reply ASAP */
1362 for (i
= 0; i
< IPREASS_NHASH
; i
++) {
1363 head
= &fragq
->ipq
[i
];
1364 TAILQ_FOREACH_MUTABLE(fp
, head
, ipq_list
, fp_temp
) {
1365 if (--fp
->ipq_ttl
== 0) {
1366 ipstat
.ips_fragtimeout
+= fp
->ipq_nfrags
;
1367 ip_freef(fragq
, head
, fp
);
1372 * If we are over the maximum number of fragments
1373 * (due to the limit being lowered), drain off
1374 * enough to get down to the new limit.
1376 if (maxnipq
>= 0 && fragq
->nipq
> maxnipq
) {
1377 for (i
= 0; i
< IPREASS_NHASH
; i
++) {
1378 head
= &fragq
->ipq
[i
];
1379 while (fragq
->nipq
> maxnipq
&& !TAILQ_EMPTY(head
)) {
1380 ipstat
.ips_fragdropped
+=
1381 TAILQ_FIRST(head
)->ipq_nfrags
;
1382 ip_freef(fragq
, head
, TAILQ_FIRST(head
));
1389 ipfrag_timeo_ipi(void *arg __unused
)
1392 struct lwkt_msg
*msg
= &ipfrag_queue_pcpu
[cpu
].timeo_netmsg
.lmsg
;
1394 ipfrag_queue_pcpu
[cpu
].timeo_inprog
= 0;
1396 if (msg
->ms_flags
& MSGF_DONE
)
1397 lwkt_sendmsg_oncpu(netisr_cpuport(cpu
), msg
);
1402 ipfrag_slowtimo(void)
1407 CPUMASK_ASSZERO(mask
);
1408 for (i
= 0; i
< ncpus
; ++i
) {
1409 if (ipfrag_queue_pcpu
[i
].nipq
&&
1410 ipfrag_queue_pcpu
[i
].timeo_inprog
== 0) {
1411 ipfrag_queue_pcpu
[i
].timeo_inprog
= 1;
1412 CPUMASK_ORBIT(mask
, i
);
1415 CPUMASK_ANDMASK(mask
, smp_active_mask
);
1416 if (CPUMASK_TESTNZERO(mask
))
1417 lwkt_send_ipiq_mask(mask
, ipfrag_timeo_ipi
, NULL
);
1421 * IP timer processing
1431 * Drain off all datagram fragments.
1434 ipfrag_drain_dispatch(netmsg_t nmsg
)
1436 struct ipfrag_queue
*fragq
= &ipfrag_queue_pcpu
[mycpuid
];
1437 struct ipqhead
*head
;
1441 lwkt_replymsg(&nmsg
->lmsg
, 0); /* reply ASAP */
1444 for (i
= 0; i
< IPREASS_NHASH
; i
++) {
1445 head
= &fragq
->ipq
[i
];
1446 while (!TAILQ_EMPTY(head
)) {
1447 ipstat
.ips_fragdropped
+= TAILQ_FIRST(head
)->ipq_nfrags
;
1448 ip_freef(fragq
, head
, TAILQ_FIRST(head
));
1454 ipfrag_drain_ipi(void *arg __unused
)
1457 struct lwkt_msg
*msg
= &ipfrag_queue_pcpu
[cpu
].drain_netmsg
.lmsg
;
1460 if (msg
->ms_flags
& MSGF_DONE
)
1461 lwkt_sendmsg_oncpu(netisr_cpuport(cpu
), msg
);
1470 CPUMASK_ASSBMASK(mask
, ncpus
);
1471 CPUMASK_ANDMASK(mask
, smp_active_mask
);
1472 if (CPUMASK_TESTNZERO(mask
))
1473 lwkt_send_ipiq_mask(mask
, ipfrag_drain_ipi
, NULL
);
1484 * Do option processing on a datagram,
1485 * possibly discarding it if bad options are encountered,
1486 * or forwarding it if source-routed.
1487 * The pass argument is used when operating in the IPSTEALTH
1488 * mode to tell what options to process:
1489 * [LS]SRR (pass 0) or the others (pass 1).
1490 * The reason for as many as two passes is that when doing IPSTEALTH,
1491 * non-routing options should be processed only if the packet is for us.
1492 * Returns 1 if packet has been forwarded/freed,
1493 * 0 if the packet should be processed further.
1496 ip_dooptions(struct mbuf
*m
, int pass
, struct sockaddr_in
*next_hop
)
1498 struct sockaddr_in ipaddr
= { sizeof ipaddr
, AF_INET
};
1499 struct ip
*ip
= mtod(m
, struct ip
*);
1501 struct in_ifaddr
*ia
;
1502 int opt
, optlen
, cnt
, off
, code
, type
= ICMP_PARAMPROB
;
1503 boolean_t forward
= FALSE
;
1504 struct in_addr
*sin
, dst
;
1508 cp
= (u_char
*)(ip
+ 1);
1509 cnt
= (IP_VHL_HL(ip
->ip_vhl
) << 2) - sizeof(struct ip
);
1510 for (; cnt
> 0; cnt
-= optlen
, cp
+= optlen
) {
1511 opt
= cp
[IPOPT_OPTVAL
];
1512 if (opt
== IPOPT_EOL
)
1514 if (opt
== IPOPT_NOP
)
1517 if (cnt
< IPOPT_OLEN
+ sizeof(*cp
)) {
1518 code
= &cp
[IPOPT_OLEN
] - (u_char
*)ip
;
1521 optlen
= cp
[IPOPT_OLEN
];
1522 if (optlen
< IPOPT_OLEN
+ sizeof(*cp
) || optlen
> cnt
) {
1523 code
= &cp
[IPOPT_OLEN
] - (u_char
*)ip
;
1533 * Source routing with record.
1534 * Find interface with current destination address.
1535 * If none on this machine then drop if strictly routed,
1536 * or do nothing if loosely routed.
1537 * Record interface address and bring up next address
1538 * component. If strictly routed make sure next
1539 * address is on directly accessible net.
1543 if (ipstealth
&& pass
> 0)
1545 if (optlen
< IPOPT_OFFSET
+ sizeof(*cp
)) {
1546 code
= &cp
[IPOPT_OLEN
] - (u_char
*)ip
;
1549 if ((off
= cp
[IPOPT_OFFSET
]) < IPOPT_MINOFF
) {
1550 code
= &cp
[IPOPT_OFFSET
] - (u_char
*)ip
;
1553 ipaddr
.sin_addr
= ip
->ip_dst
;
1554 ia
= (struct in_ifaddr
*)
1555 ifa_ifwithaddr((struct sockaddr
*)&ipaddr
);
1557 if (opt
== IPOPT_SSRR
) {
1558 type
= ICMP_UNREACH
;
1559 code
= ICMP_UNREACH_SRCFAIL
;
1562 if (!ip_dosourceroute
)
1563 goto nosourcerouting
;
1565 * Loose routing, and not at next destination
1566 * yet; nothing to do except forward.
1570 off
--; /* 0 origin */
1571 if (off
> optlen
- (int)sizeof(struct in_addr
)) {
1573 * End of source route. Should be for us.
1575 if (!ip_acceptsourceroute
)
1576 goto nosourcerouting
;
1577 save_rte(m
, cp
, ip
->ip_src
);
1582 if (!ip_dosourceroute
) {
1584 char buf
[sizeof "aaa.bbb.ccc.ddd"];
1587 * Acting as a router, so generate ICMP
1590 strcpy(buf
, inet_ntoa(ip
->ip_dst
));
1592 "attempted source route from %s to %s\n",
1593 inet_ntoa(ip
->ip_src
), buf
);
1594 type
= ICMP_UNREACH
;
1595 code
= ICMP_UNREACH_SRCFAIL
;
1599 * Not acting as a router,
1603 ipstat
.ips_cantforward
++;
1610 * locate outgoing interface
1612 memcpy(&ipaddr
.sin_addr
, cp
+ off
,
1613 sizeof ipaddr
.sin_addr
);
1615 if (opt
== IPOPT_SSRR
) {
1616 #define INA struct in_ifaddr *
1617 #define SA struct sockaddr *
1618 if ((ia
= (INA
)ifa_ifwithdstaddr((SA
)&ipaddr
))
1620 ia
= (INA
)ifa_ifwithnet((SA
)&ipaddr
);
1622 ia
= ip_rtaddr(ipaddr
.sin_addr
, NULL
);
1625 type
= ICMP_UNREACH
;
1626 code
= ICMP_UNREACH_SRCFAIL
;
1629 ip
->ip_dst
= ipaddr
.sin_addr
;
1630 memcpy(cp
+ off
, &IA_SIN(ia
)->sin_addr
,
1631 sizeof(struct in_addr
));
1632 cp
[IPOPT_OFFSET
] += sizeof(struct in_addr
);
1634 * Let ip_intr's mcast routing check handle mcast pkts
1636 forward
= !IN_MULTICAST(ntohl(ip
->ip_dst
.s_addr
));
1640 if (ipstealth
&& pass
== 0)
1642 if (optlen
< IPOPT_OFFSET
+ sizeof(*cp
)) {
1643 code
= &cp
[IPOPT_OFFSET
] - (u_char
*)ip
;
1646 if ((off
= cp
[IPOPT_OFFSET
]) < IPOPT_MINOFF
) {
1647 code
= &cp
[IPOPT_OFFSET
] - (u_char
*)ip
;
1651 * If no space remains, ignore.
1653 off
--; /* 0 origin */
1654 if (off
> optlen
- (int)sizeof(struct in_addr
))
1656 memcpy(&ipaddr
.sin_addr
, &ip
->ip_dst
,
1657 sizeof ipaddr
.sin_addr
);
1659 * locate outgoing interface; if we're the destination,
1660 * use the incoming interface (should be same).
1662 if ((ia
= (INA
)ifa_ifwithaddr((SA
)&ipaddr
)) == NULL
&&
1663 (ia
= ip_rtaddr(ipaddr
.sin_addr
, NULL
)) == NULL
) {
1664 type
= ICMP_UNREACH
;
1665 code
= ICMP_UNREACH_HOST
;
1668 memcpy(cp
+ off
, &IA_SIN(ia
)->sin_addr
,
1669 sizeof(struct in_addr
));
1670 cp
[IPOPT_OFFSET
] += sizeof(struct in_addr
);
1674 if (ipstealth
&& pass
== 0)
1676 code
= cp
- (u_char
*)ip
;
1677 if (optlen
< 4 || optlen
> 40) {
1678 code
= &cp
[IPOPT_OLEN
] - (u_char
*)ip
;
1681 if ((off
= cp
[IPOPT_OFFSET
]) < 5) {
1682 code
= &cp
[IPOPT_OLEN
] - (u_char
*)ip
;
1685 if (off
> optlen
- (int)sizeof(int32_t)) {
1686 cp
[IPOPT_OFFSET
+ 1] += (1 << 4);
1687 if ((cp
[IPOPT_OFFSET
+ 1] & 0xf0) == 0) {
1688 code
= &cp
[IPOPT_OFFSET
] - (u_char
*)ip
;
1693 off
--; /* 0 origin */
1694 sin
= (struct in_addr
*)(cp
+ off
);
1695 switch (cp
[IPOPT_OFFSET
+ 1] & 0x0f) {
1697 case IPOPT_TS_TSONLY
:
1700 case IPOPT_TS_TSANDADDR
:
1701 if (off
+ sizeof(n_time
) +
1702 sizeof(struct in_addr
) > optlen
) {
1703 code
= &cp
[IPOPT_OFFSET
] - (u_char
*)ip
;
1706 ipaddr
.sin_addr
= dst
;
1707 ia
= (INA
)ifaof_ifpforaddr((SA
)&ipaddr
,
1711 memcpy(sin
, &IA_SIN(ia
)->sin_addr
,
1712 sizeof(struct in_addr
));
1713 cp
[IPOPT_OFFSET
] += sizeof(struct in_addr
);
1714 off
+= sizeof(struct in_addr
);
1717 case IPOPT_TS_PRESPEC
:
1718 if (off
+ sizeof(n_time
) +
1719 sizeof(struct in_addr
) > optlen
) {
1720 code
= &cp
[IPOPT_OFFSET
] - (u_char
*)ip
;
1723 memcpy(&ipaddr
.sin_addr
, sin
,
1724 sizeof(struct in_addr
));
1725 if (ifa_ifwithaddr((SA
)&ipaddr
) == NULL
)
1727 cp
[IPOPT_OFFSET
] += sizeof(struct in_addr
);
1728 off
+= sizeof(struct in_addr
);
1732 code
= &cp
[IPOPT_OFFSET
+ 1] - (u_char
*)ip
;
1736 memcpy(cp
+ off
, &ntime
, sizeof(n_time
));
1737 cp
[IPOPT_OFFSET
] += sizeof(n_time
);
1740 if (forward
&& ipforwarding
) {
1741 ip_forward(m
, TRUE
, next_hop
);
1746 icmp_error(m
, type
, code
, 0, 0);
1747 ipstat
.ips_badoptions
++;
1752 * Given address of next destination (final or next hop),
1753 * return internet address info of interface to be used to get there.
1756 ip_rtaddr(struct in_addr dst
, struct route
*ro0
)
1758 struct route sro
, *ro
;
1759 struct sockaddr_in
*sin
;
1760 struct in_ifaddr
*ia
;
1765 bzero(&sro
, sizeof(sro
));
1769 sin
= (struct sockaddr_in
*)&ro
->ro_dst
;
1771 if (ro
->ro_rt
== NULL
|| dst
.s_addr
!= sin
->sin_addr
.s_addr
) {
1772 if (ro
->ro_rt
!= NULL
) {
1776 sin
->sin_family
= AF_INET
;
1777 sin
->sin_len
= sizeof *sin
;
1778 sin
->sin_addr
= dst
;
1779 rtalloc_ign(ro
, RTF_PRCLONING
);
1782 if (ro
->ro_rt
== NULL
)
1785 ia
= ifatoia(ro
->ro_rt
->rt_ifa
);
1793 * Save incoming source route for use in replies,
1794 * to be picked up later by ip_srcroute if the receiver is interested.
1797 save_rte(struct mbuf
*m
, u_char
*option
, struct in_addr dst
)
1800 struct ip_srcrt_opt
*opt
;
1803 mtag
= m_tag_get(PACKET_TAG_IPSRCRT
, sizeof(*opt
), M_NOWAIT
);
1806 opt
= m_tag_data(mtag
);
1808 olen
= option
[IPOPT_OLEN
];
1811 kprintf("save_rte: olen %d\n", olen
);
1813 if (olen
> sizeof(opt
->ip_srcrt
) - (1 + sizeof(dst
))) {
1817 bcopy(option
, opt
->ip_srcrt
.srcopt
, olen
);
1818 opt
->ip_nhops
= (olen
- IPOPT_OFFSET
- 1) / sizeof(struct in_addr
);
1819 opt
->ip_srcrt
.dst
= dst
;
1820 m_tag_prepend(m
, mtag
);
1824 * Retrieve incoming source route for use in replies,
1825 * in the same form used by setsockopt.
1826 * The first hop is placed before the options, will be removed later.
1829 ip_srcroute(struct mbuf
*m0
)
1831 struct in_addr
*p
, *q
;
1834 struct ip_srcrt_opt
*opt
;
1839 mtag
= m_tag_find(m0
, PACKET_TAG_IPSRCRT
, NULL
);
1842 opt
= m_tag_data(mtag
);
1844 if (opt
->ip_nhops
== 0)
1846 m
= m_get(M_NOWAIT
, MT_HEADER
);
1850 #define OPTSIZ (sizeof(opt->ip_srcrt.nop) + sizeof(opt->ip_srcrt.srcopt))
1852 /* length is (nhops+1)*sizeof(addr) + sizeof(nop + srcrt header) */
1853 m
->m_len
= opt
->ip_nhops
* sizeof(struct in_addr
) +
1854 sizeof(struct in_addr
) + OPTSIZ
;
1857 kprintf("ip_srcroute: nhops %d mlen %d",
1858 opt
->ip_nhops
, m
->m_len
);
1863 * First save first hop for return route
1865 p
= &opt
->ip_srcrt
.route
[opt
->ip_nhops
- 1];
1866 *(mtod(m
, struct in_addr
*)) = *p
--;
1869 kprintf(" hops %x", ntohl(mtod(m
, struct in_addr
*)->s_addr
));
1873 * Copy option fields and padding (nop) to mbuf.
1875 opt
->ip_srcrt
.nop
= IPOPT_NOP
;
1876 opt
->ip_srcrt
.srcopt
[IPOPT_OFFSET
] = IPOPT_MINOFF
;
1877 memcpy(mtod(m
, caddr_t
) + sizeof(struct in_addr
), &opt
->ip_srcrt
.nop
,
1879 q
= (struct in_addr
*)(mtod(m
, caddr_t
) +
1880 sizeof(struct in_addr
) + OPTSIZ
);
1883 * Record return path as an IP source route,
1884 * reversing the path (pointers are now aligned).
1886 while (p
>= opt
->ip_srcrt
.route
) {
1889 kprintf(" %x", ntohl(q
->s_addr
));
1894 * Last hop goes to final destination.
1896 *q
= opt
->ip_srcrt
.dst
;
1897 m_tag_delete(m0
, mtag
);
1900 kprintf(" %x\n", ntohl(q
->s_addr
));
1906 * Strip out IP options.
1909 ip_stripoptions(struct mbuf
*m
)
1912 struct ip
*ip
= mtod(m
, struct ip
*);
1916 optlen
= (IP_VHL_HL(ip
->ip_vhl
) << 2) - sizeof(struct ip
);
1917 opts
= (caddr_t
)(ip
+ 1);
1918 datalen
= m
->m_len
- (sizeof(struct ip
) + optlen
);
1919 bcopy(opts
+ optlen
, opts
, datalen
);
1921 if (m
->m_flags
& M_PKTHDR
)
1922 m
->m_pkthdr
.len
-= optlen
;
1923 ip
->ip_vhl
= IP_MAKE_VHL(IPVERSION
, sizeof(struct ip
) >> 2);
1926 u_char inetctlerrmap
[PRC_NCMDS
] = {
1928 0, EMSGSIZE
, EHOSTDOWN
, EHOSTUNREACH
,
1929 EHOSTUNREACH
, EHOSTUNREACH
, ECONNREFUSED
, ECONNREFUSED
,
1930 EMSGSIZE
, EHOSTUNREACH
, 0, 0,
1932 ENOPROTOOPT
, ECONNREFUSED
1936 * Forward a packet. If some error occurs return the sender
1937 * an icmp packet. Note we can't always generate a meaningful
1938 * icmp message because icmp doesn't have a large enough repertoire
1939 * of codes and types.
1941 * If not forwarding, just drop the packet. This could be confusing
1942 * if ipforwarding was zero but some routing protocol was advancing
1943 * us as a gateway to somewhere. However, we must let the routing
1944 * protocol deal with that.
1946 * The using_srcrt parameter indicates whether the packet is being forwarded
1947 * via a source route.
1950 ip_forward(struct mbuf
*m
, boolean_t using_srcrt
, struct sockaddr_in
*next_hop
)
1952 struct ip
*ip
= mtod(m
, struct ip
*);
1954 struct route fwd_ro
;
1955 int error
, type
= 0, code
= 0, destmtu
= 0;
1956 struct mbuf
*mcopy
, *mtemp
= NULL
;
1958 struct in_addr pkt_dst
;
1962 * Cache the destination address of the packet; this may be
1963 * changed by use of 'ipfw fwd'.
1965 pkt_dst
= (next_hop
!= NULL
) ? next_hop
->sin_addr
: ip
->ip_dst
;
1969 kprintf("forward: src %x dst %x ttl %x\n",
1970 ip
->ip_src
.s_addr
, pkt_dst
.s_addr
, ip
->ip_ttl
);
1973 if (m
->m_flags
& (M_BCAST
| M_MCAST
) || !in_canforward(pkt_dst
)) {
1974 ipstat
.ips_cantforward
++;
1978 if (!ipstealth
&& ip
->ip_ttl
<= IPTTLDEC
) {
1979 icmp_error(m
, ICMP_TIMXCEED
, ICMP_TIMXCEED_INTRANS
, dest
, 0);
1983 bzero(&fwd_ro
, sizeof(fwd_ro
));
1984 ip_rtaddr(pkt_dst
, &fwd_ro
);
1985 if (fwd_ro
.ro_rt
== NULL
) {
1986 icmp_error(m
, ICMP_UNREACH
, ICMP_UNREACH_HOST
, dest
, 0);
1991 if (curthread
->td_type
== TD_TYPE_NETISR
) {
1993 * Save the IP header and at most 8 bytes of the payload,
1994 * in case we need to generate an ICMP message to the src.
1996 mtemp
= ipforward_mtemp
[mycpuid
];
1997 KASSERT((mtemp
->m_flags
& M_EXT
) == 0 &&
1998 mtemp
->m_data
== mtemp
->m_pktdat
&&
1999 m_tag_first(mtemp
) == NULL
,
2000 ("ip_forward invalid mtemp1"));
2002 if (!m_dup_pkthdr(mtemp
, m
, M_NOWAIT
)) {
2004 * It's probably ok if the pkthdr dup fails (because
2005 * the deep copy of the tag chain failed), but for now
2006 * be conservative and just discard the copy since
2007 * code below may some day want the tags.
2011 mtemp
->m_type
= m
->m_type
;
2012 mtemp
->m_len
= imin((IP_VHL_HL(ip
->ip_vhl
) << 2) + 8,
2014 mtemp
->m_pkthdr
.len
= mtemp
->m_len
;
2015 m_copydata(m
, 0, mtemp
->m_len
, mtod(mtemp
, caddr_t
));
2020 ip
->ip_ttl
-= IPTTLDEC
;
2023 * If forwarding packet using same interface that it came in on,
2024 * perhaps should send a redirect to sender to shortcut a hop.
2025 * Only send redirect if source is sending directly to us,
2026 * and if packet was not source routed (or has any options).
2027 * Also, don't send redirect if forwarding using a default route
2028 * or a route modified by a redirect.
2030 if (rt
->rt_ifp
== m
->m_pkthdr
.rcvif
&&
2031 !(rt
->rt_flags
& (RTF_DYNAMIC
| RTF_MODIFIED
)) &&
2032 satosin(rt_key(rt
))->sin_addr
.s_addr
!= INADDR_ANY
&&
2033 ipsendredirects
&& !using_srcrt
&& next_hop
== NULL
) {
2034 u_long src
= ntohl(ip
->ip_src
.s_addr
);
2035 struct in_ifaddr
*rt_ifa
= (struct in_ifaddr
*)rt
->rt_ifa
;
2037 if (rt_ifa
!= NULL
&&
2038 (src
& rt_ifa
->ia_subnetmask
) == rt_ifa
->ia_subnet
) {
2039 if (rt
->rt_flags
& RTF_GATEWAY
)
2040 dest
= satosin(rt
->rt_gateway
)->sin_addr
.s_addr
;
2042 dest
= pkt_dst
.s_addr
;
2044 * Router requirements says to only send
2047 type
= ICMP_REDIRECT
;
2048 code
= ICMP_REDIRECT_HOST
;
2051 kprintf("redirect (%d) to %x\n", code
, dest
);
2056 error
= ip_output(m
, NULL
, &fwd_ro
, IP_FORWARDING
, NULL
, NULL
);
2058 ipstat
.ips_forward
++;
2061 ipflow_create(&fwd_ro
, mtemp
);
2064 ipstat
.ips_redirectsent
++;
2066 ipstat
.ips_cantforward
++;
2073 * Errors that do not require generating ICMP message
2078 * A router should not generate ICMP_SOURCEQUENCH as
2079 * required in RFC1812 Requirements for IP Version 4 Routers.
2080 * Source quench could be a big problem under DoS attacks,
2081 * or if the underlying interface is rate-limited.
2082 * Those who need source quench packets may re-enable them
2083 * via the net.inet.ip.sendsourcequench sysctl.
2085 if (!ip_sendsourcequench
)
2089 case EACCES
: /* ipfw denied packet */
2093 KASSERT((mtemp
->m_flags
& M_EXT
) == 0 &&
2094 mtemp
->m_data
== mtemp
->m_pktdat
,
2095 ("ip_forward invalid mtemp2"));
2096 mcopy
= m_copym(mtemp
, 0, mtemp
->m_len
, M_NOWAIT
);
2101 * Send ICMP message.
2104 case 0: /* forwarded, but need redirect */
2105 /* type, code set above */
2108 case ENETUNREACH
: /* shouldn't happen, checked above */
2113 type
= ICMP_UNREACH
;
2114 code
= ICMP_UNREACH_HOST
;
2118 type
= ICMP_UNREACH
;
2119 code
= ICMP_UNREACH_NEEDFRAG
;
2122 * If the packet is routed over IPsec tunnel, tell the
2123 * originator the tunnel MTU.
2124 * tunnel MTU = if MTU - sizeof(IP) - ESP/AH hdrsiz
2127 if (fwd_ro
.ro_rt
!= NULL
) {
2128 struct secpolicy
*sp
= NULL
;
2133 sp
= ipsec4_getpolicybyaddr(mcopy
,
2139 destmtu
= fwd_ro
.ro_rt
->rt_ifp
->if_mtu
;
2141 /* count IPsec header size */
2142 ipsechdr
= ipsec4_hdrsiz(mcopy
,
2147 * find the correct route for outer IPv4
2148 * header, compute tunnel MTU.
2151 if (sp
->req
!= NULL
&& sp
->req
->sav
!= NULL
&&
2152 sp
->req
->sav
->sah
!= NULL
) {
2153 ro
= &sp
->req
->sav
->sah
->sa_route
;
2154 if (ro
->ro_rt
!= NULL
&&
2155 ro
->ro_rt
->rt_ifp
!= NULL
) {
2157 ro
->ro_rt
->rt_ifp
->if_mtu
;
2158 destmtu
-= ipsechdr
;
2165 #elif defined(FAST_IPSEC)
2167 * If the packet is routed over IPsec tunnel, tell the
2168 * originator the tunnel MTU.
2169 * tunnel MTU = if MTU - sizeof(IP) - ESP/AH hdrsiz
2172 if (fwd_ro
.ro_rt
!= NULL
) {
2173 struct secpolicy
*sp
= NULL
;
2178 sp
= ipsec_getpolicybyaddr(mcopy
,
2184 destmtu
= fwd_ro
.ro_rt
->rt_ifp
->if_mtu
;
2186 /* count IPsec header size */
2187 ipsechdr
= ipsec4_hdrsiz(mcopy
,
2192 * find the correct route for outer IPv4
2193 * header, compute tunnel MTU.
2196 if (sp
->req
!= NULL
&&
2197 sp
->req
->sav
!= NULL
&&
2198 sp
->req
->sav
->sah
!= NULL
) {
2199 ro
= &sp
->req
->sav
->sah
->sa_route
;
2200 if (ro
->ro_rt
!= NULL
&&
2201 ro
->ro_rt
->rt_ifp
!= NULL
) {
2203 ro
->ro_rt
->rt_ifp
->if_mtu
;
2204 destmtu
-= ipsechdr
;
2211 #else /* !IPSEC && !FAST_IPSEC */
2212 if (fwd_ro
.ro_rt
!= NULL
)
2213 destmtu
= fwd_ro
.ro_rt
->rt_ifp
->if_mtu
;
2215 ipstat
.ips_cantfrag
++;
2219 type
= ICMP_SOURCEQUENCH
;
2223 case EACCES
: /* ipfw denied packet */
2224 panic("ip_forward EACCES should not reach");
2226 icmp_error(mcopy
, type
, code
, dest
, destmtu
);
2229 m_tag_delete_chain(mtemp
);
2230 if (fwd_ro
.ro_rt
!= NULL
)
2231 RTFREE(fwd_ro
.ro_rt
);
2235 ip_savecontrol(struct inpcb
*inp
, struct mbuf
**mp
, struct ip
*ip
,
2238 if (inp
->inp_socket
->so_options
& SO_TIMESTAMP
) {
2242 *mp
= sbcreatecontrol((caddr_t
) &tv
, sizeof(tv
),
2243 SCM_TIMESTAMP
, SOL_SOCKET
);
2245 mp
= &(*mp
)->m_next
;
2247 if (inp
->inp_flags
& INP_RECVDSTADDR
) {
2248 *mp
= sbcreatecontrol((caddr_t
) &ip
->ip_dst
,
2249 sizeof(struct in_addr
), IP_RECVDSTADDR
, IPPROTO_IP
);
2251 mp
= &(*mp
)->m_next
;
2253 if (inp
->inp_flags
& INP_RECVTTL
) {
2254 *mp
= sbcreatecontrol((caddr_t
) &ip
->ip_ttl
,
2255 sizeof(u_char
), IP_RECVTTL
, IPPROTO_IP
);
2257 mp
= &(*mp
)->m_next
;
2261 * Moving these out of udp_input() made them even more broken
2262 * than they already were.
2264 /* options were tossed already */
2265 if (inp
->inp_flags
& INP_RECVOPTS
) {
2266 *mp
= sbcreatecontrol((caddr_t
) opts_deleted_above
,
2267 sizeof(struct in_addr
), IP_RECVOPTS
, IPPROTO_IP
);
2269 mp
= &(*mp
)->m_next
;
2271 /* ip_srcroute doesn't do what we want here, need to fix */
2272 if (inp
->inp_flags
& INP_RECVRETOPTS
) {
2273 *mp
= sbcreatecontrol((caddr_t
) ip_srcroute(m
),
2274 sizeof(struct in_addr
), IP_RECVRETOPTS
, IPPROTO_IP
);
2276 mp
= &(*mp
)->m_next
;
2279 if (inp
->inp_flags
& INP_RECVIF
) {
2282 struct sockaddr_dl sdl
;
2285 struct sockaddr_dl
*sdp
;
2286 struct sockaddr_dl
*sdl2
= &sdlbuf
.sdl
;
2288 if (((ifp
= m
->m_pkthdr
.rcvif
)) &&
2289 ((ifp
->if_index
!= 0) && (ifp
->if_index
<= if_index
))) {
2290 sdp
= IF_LLSOCKADDR(ifp
);
2292 * Change our mind and don't try copy.
2294 if ((sdp
->sdl_family
!= AF_LINK
) ||
2295 (sdp
->sdl_len
> sizeof(sdlbuf
))) {
2298 bcopy(sdp
, sdl2
, sdp
->sdl_len
);
2302 offsetof(struct sockaddr_dl
, sdl_data
[0]);
2303 sdl2
->sdl_family
= AF_LINK
;
2304 sdl2
->sdl_index
= 0;
2305 sdl2
->sdl_nlen
= sdl2
->sdl_alen
= sdl2
->sdl_slen
= 0;
2307 *mp
= sbcreatecontrol((caddr_t
) sdl2
, sdl2
->sdl_len
,
2308 IP_RECVIF
, IPPROTO_IP
);
2310 mp
= &(*mp
)->m_next
;
2315 * XXX these routines are called from the upper part of the kernel.
2317 * They could also be moved to ip_mroute.c, since all the RSVP
2318 * handling is done there already.
2321 ip_rsvp_init(struct socket
*so
)
2323 if (so
->so_type
!= SOCK_RAW
||
2324 so
->so_proto
->pr_protocol
!= IPPROTO_RSVP
)
2327 if (ip_rsvpd
!= NULL
)
2332 * This may seem silly, but we need to be sure we don't over-increment
2333 * the RSVP counter, in case something slips up.
2348 * This may seem silly, but we need to be sure we don't over-decrement
2349 * the RSVP counter, in case something slips up.
2359 rsvp_input(struct mbuf
**mp
, int *offp
, int proto
)
2361 struct mbuf
*m
= *mp
;
2365 if (rsvp_input_p
) { /* call the real one if loaded */
2367 rsvp_input_p(mp
, offp
, proto
);
2368 return(IPPROTO_DONE
);
2371 /* Can still get packets with rsvp_on = 0 if there is a local member
2372 * of the group to which the RSVP packet is addressed. But in this
2373 * case we want to throw the packet away.
2378 return(IPPROTO_DONE
);
2381 if (ip_rsvpd
!= NULL
) {
2383 rip_input(mp
, offp
, proto
);
2384 return(IPPROTO_DONE
);
2386 /* Drop the packet */
2388 return(IPPROTO_DONE
);