ipfw3: Fix kernel building without DEBUG in the config as well.
[dragonfly.git] / sys / net / netisr.c
blob6afc269e58abb7f6acd60ed72d0c8151cbb291cf
1 /*
2 * Copyright (c) 2003, 2004 Matthew Dillon. All rights reserved.
3 * Copyright (c) 2003, 2004 Jeffrey M. Hsu. All rights reserved.
4 * Copyright (c) 2003 Jonathan Lemon. All rights reserved.
5 * Copyright (c) 2003, 2004 The DragonFly Project. All rights reserved.
7 * This code is derived from software contributed to The DragonFly Project
8 * by Jonathan Lemon, Jeffrey M. Hsu, and Matthew Dillon.
10 * Jonathan Lemon gave Jeffrey Hsu permission to combine his copyright
11 * into this one around July 8 2004.
13 * Redistribution and use in source and binary forms, with or without
14 * modification, are permitted provided that the following conditions
15 * are met:
16 * 1. Redistributions of source code must retain the above copyright
17 * notice, this list of conditions and the following disclaimer.
18 * 2. Redistributions in binary form must reproduce the above copyright
19 * notice, this list of conditions and the following disclaimer in the
20 * documentation and/or other materials provided with the distribution.
21 * 3. Neither the name of The DragonFly Project nor the names of its
22 * contributors may be used to endorse or promote products derived
23 * from this software without specific, prior written permission.
25 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
26 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
27 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
28 * FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
29 * COPYRIGHT HOLDERS OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
30 * INCIDENTAL, SPECIAL, EXEMPLARY OR CONSEQUENTIAL DAMAGES (INCLUDING,
31 * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
32 * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
33 * AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
34 * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT
35 * OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
36 * SUCH DAMAGE.
39 #include <sys/param.h>
40 #include <sys/systm.h>
41 #include <sys/kernel.h>
42 #include <sys/malloc.h>
43 #include <sys/msgport.h>
44 #include <sys/proc.h>
45 #include <sys/interrupt.h>
46 #include <sys/socket.h>
47 #include <sys/sysctl.h>
48 #include <sys/socketvar.h>
49 #include <net/if.h>
50 #include <net/if_var.h>
51 #include <net/netisr2.h>
52 #include <machine/cpufunc.h>
53 #include <machine/smp.h>
55 #include <sys/thread2.h>
56 #include <sys/msgport2.h>
57 #include <net/netmsg2.h>
58 #include <sys/mplock2.h>
60 #include <vm/vm_extern.h>
62 static void netmsg_service_port_init(lwkt_port_t);
63 static void netmsg_service_loop(void *arg);
64 static void netisr_hashfn0(struct mbuf **mp, int hoff);
65 static void netisr_nohashck(struct mbuf *, const struct pktinfo *);
67 struct netmsg_port_registration {
68 TAILQ_ENTRY(netmsg_port_registration) npr_entry;
69 lwkt_port_t npr_port;
72 struct netisr_rollup {
73 TAILQ_ENTRY(netisr_rollup) ru_entry;
74 netisr_ru_t ru_func;
75 int ru_prio;
76 void *ru_key;
79 struct netmsg_rollup {
80 struct netmsg_base base;
81 netisr_ru_t func;
82 int prio;
83 void *key;
86 struct netmsg_barrier {
87 struct netmsg_base base;
88 volatile cpumask_t *br_cpumask;
89 volatile uint32_t br_done;
92 #define NETISR_BR_NOTDONE 0x1
93 #define NETISR_BR_WAITDONE 0x80000000
95 struct netisr_barrier {
96 struct netmsg_barrier *br_msgs[MAXCPU];
97 int br_isset;
100 struct netisr_data {
101 struct thread thread;
102 #ifdef INVARIANTS
103 void *netlastfunc;
104 #endif
105 TAILQ_HEAD(, netisr_rollup) netrulist;
108 static struct netisr_data *netisr_data[MAXCPU];
110 static struct netisr netisrs[NETISR_MAX];
111 static TAILQ_HEAD(,netmsg_port_registration) netreglist;
113 /* Per-CPU thread to handle any protocol. */
114 struct thread *netisr_threads[MAXCPU];
116 lwkt_port netisr_afree_rport;
117 lwkt_port netisr_afree_free_so_rport;
118 lwkt_port netisr_adone_rport;
119 lwkt_port netisr_apanic_rport;
120 lwkt_port netisr_sync_port;
122 static int (*netmsg_fwd_port_fn)(lwkt_port_t, lwkt_msg_t);
124 SYSCTL_NODE(_net, OID_AUTO, netisr, CTLFLAG_RW, 0, "netisr");
126 static int netisr_rollup_limit = 32;
127 SYSCTL_INT(_net_netisr, OID_AUTO, rollup_limit, CTLFLAG_RW,
128 &netisr_rollup_limit, 0, "Message to process before rollup");
130 int netisr_ncpus;
131 TUNABLE_INT("net.netisr.ncpus", &netisr_ncpus);
132 SYSCTL_INT(_net_netisr, OID_AUTO, ncpus, CTLFLAG_RD,
133 &netisr_ncpus, 0, "# of CPUs to handle network messages");
136 * netisr_afree_rport replymsg function, only used to handle async
137 * messages which the sender has abandoned to their fate.
139 static void
140 netisr_autofree_reply(lwkt_port_t port, lwkt_msg_t msg)
142 kfree(msg, M_LWKTMSG);
145 static void
146 netisr_autofree_free_so_reply(lwkt_port_t port, lwkt_msg_t msg)
148 sofree(((netmsg_t)msg)->base.nm_so);
149 kfree(msg, M_LWKTMSG);
153 * We need a custom putport function to handle the case where the
154 * message target is the current thread's message port. This case
155 * can occur when the TCP or UDP stack does a direct callback to NFS and NFS
156 * then turns around and executes a network operation synchronously.
158 * To prevent deadlocking, we must execute these self-referential messages
159 * synchronously, effectively turning the message into a glorified direct
160 * procedure call back into the protocol stack. The operation must be
161 * complete on return or we will deadlock, so panic if it isn't.
163 * However, the target function is under no obligation to immediately
164 * reply the message. It may forward it elsewhere.
166 static int
167 netmsg_put_port(lwkt_port_t port, lwkt_msg_t lmsg)
169 netmsg_base_t nmsg = (void *)lmsg;
171 if ((lmsg->ms_flags & MSGF_SYNC) && port == &curthread->td_msgport) {
172 nmsg->nm_dispatch((netmsg_t)nmsg);
173 return(EASYNC);
174 } else {
175 return(netmsg_fwd_port_fn(port, lmsg));
180 * UNIX DOMAIN sockets still have to run their uipc functions synchronously,
181 * because they depend on the user proc context for a number of things
182 * (like creds) which we have not yet incorporated into the message structure.
184 * However, we maintain or message/port abstraction. Having a special
185 * synchronous port which runs the commands synchronously gives us the
186 * ability to serialize operations in one place later on when we start
187 * removing the BGL.
189 static int
190 netmsg_sync_putport(lwkt_port_t port, lwkt_msg_t lmsg)
192 netmsg_base_t nmsg = (void *)lmsg;
194 KKASSERT((lmsg->ms_flags & MSGF_DONE) == 0);
196 lmsg->ms_target_port = port; /* required for abort */
197 nmsg->nm_dispatch((netmsg_t)nmsg);
198 return(EASYNC);
201 static void
202 netisr_init(void)
204 int i;
206 if (netisr_ncpus <= 0 || netisr_ncpus > ncpus) {
207 /* Default. */
208 netisr_ncpus = ncpus;
210 if (netisr_ncpus > NETISR_CPUMAX)
211 netisr_ncpus = NETISR_CPUMAX;
213 TAILQ_INIT(&netreglist);
216 * Create default per-cpu threads for generic protocol handling.
218 for (i = 0; i < ncpus; ++i) {
219 struct netisr_data *nd;
221 nd = (void *)kmem_alloc3(&kernel_map, sizeof(*nd),
222 VM_SUBSYS_GD, KM_CPU(i));
223 memset(nd, 0, sizeof(*nd));
224 TAILQ_INIT(&nd->netrulist);
225 netisr_data[i] = nd;
227 lwkt_create(netmsg_service_loop, NULL, &netisr_threads[i],
228 &nd->thread, TDF_NOSTART|TDF_FORCE_SPINPORT|TDF_FIXEDCPU,
229 i, "netisr %d", i);
230 netmsg_service_port_init(&netisr_threads[i]->td_msgport);
231 lwkt_schedule(netisr_threads[i]);
235 * The netisr_afree_rport is a special reply port which automatically
236 * frees the replied message. The netisr_adone_rport simply marks
237 * the message as being done. The netisr_apanic_rport panics if
238 * the message is replied to.
240 lwkt_initport_replyonly(&netisr_afree_rport, netisr_autofree_reply);
241 lwkt_initport_replyonly(&netisr_afree_free_so_rport,
242 netisr_autofree_free_so_reply);
243 lwkt_initport_replyonly_null(&netisr_adone_rport);
244 lwkt_initport_panic(&netisr_apanic_rport);
247 * The netisr_syncport is a special port which executes the message
248 * synchronously and waits for it if EASYNC is returned.
250 lwkt_initport_putonly(&netisr_sync_port, netmsg_sync_putport);
252 SYSINIT(netisr, SI_SUB_PRE_DRIVERS, SI_ORDER_FIRST, netisr_init, NULL);
255 * Finish initializing the message port for a netmsg service. This also
256 * registers the port for synchronous cleanup operations such as when an
257 * ifnet is being destroyed. There is no deregistration API yet.
259 static void
260 netmsg_service_port_init(lwkt_port_t port)
262 struct netmsg_port_registration *reg;
265 * Override the putport function. Our custom function checks for
266 * self-references and executes such commands synchronously.
268 if (netmsg_fwd_port_fn == NULL)
269 netmsg_fwd_port_fn = port->mp_putport;
270 KKASSERT(netmsg_fwd_port_fn == port->mp_putport);
271 port->mp_putport = netmsg_put_port;
274 * Keep track of ports using the netmsg API so we can synchronize
275 * certain operations (such as freeing an ifnet structure) across all
276 * consumers.
278 reg = kmalloc(sizeof(*reg), M_TEMP, M_WAITOK|M_ZERO);
279 reg->npr_port = port;
280 TAILQ_INSERT_TAIL(&netreglist, reg, npr_entry);
284 * This function synchronizes the caller with all netmsg services. For
285 * example, if an interface is being removed we must make sure that all
286 * packets related to that interface complete processing before the structure
287 * can actually be freed. This sort of synchronization is an alternative to
288 * ref-counting the netif, removing the ref counting overhead in favor of
289 * placing additional overhead in the netif freeing sequence (where it is
290 * inconsequential).
292 void
293 netmsg_service_sync(void)
295 struct netmsg_port_registration *reg;
296 struct netmsg_base smsg;
298 netmsg_init(&smsg, NULL, &curthread->td_msgport, 0, netmsg_sync_handler);
300 TAILQ_FOREACH(reg, &netreglist, npr_entry) {
301 lwkt_domsg(reg->npr_port, &smsg.lmsg, 0);
306 * The netmsg function simply replies the message. API semantics require
307 * EASYNC to be returned if the netmsg function disposes of the message.
309 void
310 netmsg_sync_handler(netmsg_t msg)
312 lwkt_replymsg(&msg->lmsg, 0);
316 * Generic netmsg service loop. Some protocols may roll their own but all
317 * must do the basic command dispatch function call done here.
319 static void
320 netmsg_service_loop(void *arg)
322 netmsg_base_t msg;
323 thread_t td = curthread;
324 int limit;
325 struct netisr_data *nd = netisr_data[mycpuid];
327 td->td_type = TD_TYPE_NETISR;
329 while ((msg = lwkt_waitport(&td->td_msgport, 0))) {
330 struct netisr_rollup *ru;
333 * Run up to 512 pending netmsgs.
335 limit = netisr_rollup_limit;
336 do {
337 KASSERT(msg->nm_dispatch != NULL,
338 ("netmsg_service isr %d badmsg",
339 msg->lmsg.u.ms_result));
341 * Don't match so_port, if the msg explicitly
342 * asks us to ignore its so_port.
344 if ((msg->lmsg.ms_flags & MSGF_IGNSOPORT) == 0 &&
345 msg->nm_so &&
346 msg->nm_so->so_port != &td->td_msgport) {
348 * Sockets undergoing connect or disconnect
349 * ops can change ports on us. Chase the
350 * port.
352 #ifdef foo
354 * This could be quite common for protocols
355 * which support asynchronous pru_connect,
356 * e.g. TCP, so kprintf socket port chasing
357 * could be too verbose for the console.
359 kprintf("%s: Warning, port changed so=%p\n",
360 __func__, msg->nm_so);
361 #endif
362 lwkt_forwardmsg(msg->nm_so->so_port,
363 &msg->lmsg);
364 } else {
366 * We are on the correct port, dispatch it.
368 #ifdef INVARIANTS
369 nd->netlastfunc = msg->nm_dispatch;
370 #endif
371 msg->nm_dispatch((netmsg_t)msg);
373 if (--limit == 0)
374 break;
375 } while ((msg = lwkt_getport(&td->td_msgport)) != NULL);
378 * Run all registered rollup functions for this cpu
379 * (e.g. tcp_willblock()).
381 TAILQ_FOREACH(ru, &nd->netrulist, ru_entry)
382 ru->ru_func();
387 * Forward a packet to a netisr service function.
389 * If the packet has not been assigned to a protocol thread we call
390 * the port characterization function to assign it. The caller must
391 * clear M_HASH (or not have set it in the first place) if the caller
392 * wishes the packet to be recharacterized.
395 netisr_queue(int num, struct mbuf *m)
397 struct netisr *ni;
398 struct netmsg_packet *pmsg;
399 lwkt_port_t port;
401 KASSERT((num > 0 && num <= NELEM(netisrs)),
402 ("Bad isr %d", num));
404 ni = &netisrs[num];
405 if (ni->ni_handler == NULL) {
406 kprintf("%s: Unregistered isr %d\n", __func__, num);
407 m_freem(m);
408 return (EIO);
412 * Figure out which protocol thread to send to. This does not
413 * have to be perfect but performance will be really good if it
414 * is correct. Major protocol inputs such as ip_input() will
415 * re-characterize the packet as necessary.
417 if ((m->m_flags & M_HASH) == 0) {
418 ni->ni_hashfn(&m, 0);
419 if (m == NULL)
420 return (EIO);
421 if ((m->m_flags & M_HASH) == 0) {
422 kprintf("%s(%d): packet hash failed\n",
423 __func__, num);
424 m_freem(m);
425 return (EIO);
430 * Get the protocol port based on the packet hash, initialize
431 * the netmsg, and send it off.
433 port = netisr_hashport(m->m_pkthdr.hash);
434 pmsg = &m->m_hdr.mh_netmsg;
435 netmsg_init(&pmsg->base, NULL, &netisr_apanic_rport,
436 0, ni->ni_handler);
437 pmsg->nm_packet = m;
438 pmsg->base.lmsg.u.ms_result = num;
439 lwkt_sendmsg(port, &pmsg->base.lmsg);
441 return (0);
445 * Run a netisr service function on the packet.
447 * The packet must have been correctly characterized!
450 netisr_handle(int num, struct mbuf *m)
452 struct netisr *ni;
453 struct netmsg_packet *pmsg;
454 lwkt_port_t port;
457 * Get the protocol port based on the packet hash
459 KASSERT((m->m_flags & M_HASH), ("packet not characterized"));
460 port = netisr_hashport(m->m_pkthdr.hash);
461 KASSERT(&curthread->td_msgport == port, ("wrong msgport"));
463 KASSERT((num > 0 && num <= NELEM(netisrs)), ("bad isr %d", num));
464 ni = &netisrs[num];
465 if (ni->ni_handler == NULL) {
466 kprintf("%s: unregistered isr %d\n", __func__, num);
467 m_freem(m);
468 return EIO;
472 * Initialize the netmsg, and run the handler directly.
474 pmsg = &m->m_hdr.mh_netmsg;
475 netmsg_init(&pmsg->base, NULL, &netisr_apanic_rport,
476 0, ni->ni_handler);
477 pmsg->nm_packet = m;
478 pmsg->base.lmsg.u.ms_result = num;
479 ni->ni_handler((netmsg_t)&pmsg->base);
481 return 0;
485 * Pre-characterization of a deeper portion of the packet for the
486 * requested isr.
488 * The base of the ISR type (e.g. IP) that we want to characterize is
489 * at (hoff) relative to the beginning of the mbuf. This allows
490 * e.g. ether_characterize() to not have to adjust the m_data/m_len.
492 void
493 netisr_characterize(int num, struct mbuf **mp, int hoff)
495 struct netisr *ni;
496 struct mbuf *m;
499 * Validation
501 m = *mp;
502 KKASSERT(m != NULL);
504 if (num < 0 || num >= NETISR_MAX) {
505 if (num == NETISR_MAX) {
506 m_sethash(m, 0);
507 return;
509 panic("Bad isr %d", num);
513 * Valid netisr?
515 ni = &netisrs[num];
516 if (ni->ni_handler == NULL) {
517 kprintf("%s: Unregistered isr %d\n", __func__, num);
518 m_freem(m);
519 *mp = NULL;
523 * Characterize the packet
525 if ((m->m_flags & M_HASH) == 0) {
526 ni->ni_hashfn(mp, hoff);
527 m = *mp;
528 if (m && (m->m_flags & M_HASH) == 0) {
529 kprintf("%s(%d): packet hash failed\n",
530 __func__, num);
535 void
536 netisr_register(int num, netisr_fn_t handler, netisr_hashfn_t hashfn)
538 struct netisr *ni;
540 KASSERT((num > 0 && num <= NELEM(netisrs)),
541 ("netisr_register: bad isr %d", num));
542 KKASSERT(handler != NULL);
544 if (hashfn == NULL)
545 hashfn = netisr_hashfn0;
547 ni = &netisrs[num];
549 ni->ni_handler = handler;
550 ni->ni_hashck = netisr_nohashck;
551 ni->ni_hashfn = hashfn;
552 netmsg_init(&ni->ni_netmsg, NULL, &netisr_adone_rport, 0, NULL);
555 void
556 netisr_register_hashcheck(int num, netisr_hashck_t hashck)
558 struct netisr *ni;
560 KASSERT((num > 0 && num <= NELEM(netisrs)),
561 ("netisr_register: bad isr %d", num));
563 ni = &netisrs[num];
564 ni->ni_hashck = hashck;
567 static void
568 netisr_register_rollup_dispatch(netmsg_t nmsg)
570 struct netmsg_rollup *nm = (struct netmsg_rollup *)nmsg;
571 int cpuid = mycpuid;
572 struct netisr_data *nd = netisr_data[cpuid];
573 struct netisr_rollup *new_ru, *ru;
575 new_ru = kmalloc(sizeof(*new_ru), M_TEMP, M_WAITOK|M_ZERO);
576 new_ru->ru_func = nm->func;
577 new_ru->ru_prio = nm->prio;
580 * Higher priority "rollup" appears first
582 TAILQ_FOREACH(ru, &nd->netrulist, ru_entry) {
583 if (ru->ru_prio < new_ru->ru_prio) {
584 TAILQ_INSERT_BEFORE(ru, new_ru, ru_entry);
585 goto done;
588 TAILQ_INSERT_TAIL(&nd->netrulist, new_ru, ru_entry);
589 done:
590 if (cpuid == 0)
591 nm->key = new_ru;
592 KKASSERT(nm->key != NULL);
593 new_ru->ru_key = nm->key;
595 netisr_forwardmsg_all(&nm->base, cpuid + 1);
598 struct netisr_rollup *
599 netisr_register_rollup(netisr_ru_t func, int prio)
601 struct netmsg_rollup nm;
603 netmsg_init(&nm.base, NULL, &curthread->td_msgport, MSGF_PRIORITY,
604 netisr_register_rollup_dispatch);
605 nm.func = func;
606 nm.prio = prio;
607 nm.key = NULL;
608 netisr_domsg_global(&nm.base);
610 KKASSERT(nm.key != NULL);
611 return (nm.key);
614 static void
615 netisr_unregister_rollup_dispatch(netmsg_t nmsg)
617 struct netmsg_rollup *nm = (struct netmsg_rollup *)nmsg;
618 int cpuid = mycpuid;
619 struct netisr_data *nd = netisr_data[cpuid];
620 struct netisr_rollup *ru;
622 TAILQ_FOREACH(ru, &nd->netrulist, ru_entry) {
623 if (ru->ru_key == nm->key)
624 break;
626 if (ru == NULL)
627 panic("netisr: no rullup for %p", nm->key);
629 TAILQ_REMOVE(&nd->netrulist, ru, ru_entry);
630 kfree(ru, M_TEMP);
632 netisr_forwardmsg_all(&nm->base, cpuid + 1);
635 void
636 netisr_unregister_rollup(struct netisr_rollup *key)
638 struct netmsg_rollup nm;
640 netmsg_init(&nm.base, NULL, &curthread->td_msgport, MSGF_PRIORITY,
641 netisr_unregister_rollup_dispatch);
642 nm.key = key;
643 netisr_domsg_global(&nm.base);
647 * Return a default protocol control message processing thread port
649 lwkt_port_t
650 cpu0_ctlport(int cmd __unused, struct sockaddr *sa __unused,
651 void *extra __unused, int *cpuid)
653 *cpuid = 0;
654 return netisr_cpuport(*cpuid);
658 * This is a default netisr packet characterization function which
659 * sets M_HASH. If a netisr is registered with a NULL hashfn function
660 * this one is assigned.
662 * This function makes no attempt to validate the packet.
664 static void
665 netisr_hashfn0(struct mbuf **mp, int hoff __unused)
668 m_sethash(*mp, 0);
672 * schednetisr() is used to call the netisr handler from the appropriate
673 * netisr thread for polling and other purposes.
675 * This function may be called from a hard interrupt or IPI and must be
676 * MP SAFE and non-blocking. We use a fixed per-cpu message instead of
677 * trying to allocate one. We must get ourselves onto the target cpu
678 * to safely check the MSGF_DONE bit on the message but since the message
679 * will be sent to that cpu anyway this does not add any extra work beyond
680 * what lwkt_sendmsg() would have already had to do to schedule the target
681 * thread.
683 static void
684 schednetisr_remote(void *data)
686 int num = (int)(intptr_t)data;
687 struct netisr *ni = &netisrs[num];
688 lwkt_port_t port = &netisr_threads[0]->td_msgport;
689 netmsg_base_t pmsg;
691 pmsg = &netisrs[num].ni_netmsg;
692 if (pmsg->lmsg.ms_flags & MSGF_DONE) {
693 netmsg_init(pmsg, NULL, &netisr_adone_rport, 0, ni->ni_handler);
694 pmsg->lmsg.u.ms_result = num;
695 lwkt_sendmsg(port, &pmsg->lmsg);
699 void
700 schednetisr(int num)
702 KASSERT((num > 0 && num <= NELEM(netisrs)),
703 ("schednetisr: bad isr %d", num));
704 KKASSERT(netisrs[num].ni_handler != NULL);
705 if (mycpu->gd_cpuid != 0) {
706 lwkt_send_ipiq(globaldata_find(0),
707 schednetisr_remote, (void *)(intptr_t)num);
708 } else {
709 crit_enter();
710 schednetisr_remote((void *)(intptr_t)num);
711 crit_exit();
715 static void
716 netisr_barrier_dispatch(netmsg_t nmsg)
718 struct netmsg_barrier *msg = (struct netmsg_barrier *)nmsg;
720 ATOMIC_CPUMASK_NANDBIT(*msg->br_cpumask, mycpu->gd_cpuid);
721 if (CPUMASK_TESTZERO(*msg->br_cpumask))
722 wakeup(msg->br_cpumask);
724 for (;;) {
725 uint32_t done = msg->br_done;
727 cpu_ccfence();
728 if ((done & NETISR_BR_NOTDONE) == 0)
729 break;
731 tsleep_interlock(&msg->br_done, 0);
732 if (atomic_cmpset_int(&msg->br_done,
733 done, done | NETISR_BR_WAITDONE))
734 tsleep(&msg->br_done, PINTERLOCKED, "nbrdsp", 0);
737 lwkt_replymsg(&nmsg->lmsg, 0);
740 struct netisr_barrier *
741 netisr_barrier_create(void)
743 struct netisr_barrier *br;
745 br = kmalloc(sizeof(*br), M_LWKTMSG, M_WAITOK | M_ZERO);
746 return br;
749 void
750 netisr_barrier_set(struct netisr_barrier *br)
752 volatile cpumask_t other_cpumask;
753 int i, cur_cpuid;
755 ASSERT_NETISR0;
756 KKASSERT(!br->br_isset);
758 other_cpumask = mycpu->gd_other_cpus;
759 CPUMASK_ANDMASK(other_cpumask, smp_active_mask);
760 cur_cpuid = mycpuid;
762 for (i = 0; i < ncpus; ++i) {
763 struct netmsg_barrier *msg;
765 if (i == cur_cpuid)
766 continue;
768 msg = kmalloc(sizeof(struct netmsg_barrier),
769 M_LWKTMSG, M_WAITOK);
772 * Don't use priority message here; mainly to keep
773 * it ordered w/ the previous data packets sent by
774 * the caller.
776 netmsg_init(&msg->base, NULL, &netisr_afree_rport, 0,
777 netisr_barrier_dispatch);
778 msg->br_cpumask = &other_cpumask;
779 msg->br_done = NETISR_BR_NOTDONE;
781 KKASSERT(br->br_msgs[i] == NULL);
782 br->br_msgs[i] = msg;
785 for (i = 0; i < ncpus; ++i) {
786 if (i == cur_cpuid)
787 continue;
788 lwkt_sendmsg(netisr_cpuport(i), &br->br_msgs[i]->base.lmsg);
791 while (CPUMASK_TESTNZERO(other_cpumask)) {
792 tsleep_interlock(&other_cpumask, 0);
793 if (CPUMASK_TESTNZERO(other_cpumask))
794 tsleep(&other_cpumask, PINTERLOCKED, "nbrset", 0);
796 br->br_isset = 1;
799 void
800 netisr_barrier_rem(struct netisr_barrier *br)
802 int i, cur_cpuid;
804 ASSERT_NETISR0;
805 KKASSERT(br->br_isset);
807 cur_cpuid = mycpuid;
808 for (i = 0; i < ncpus; ++i) {
809 struct netmsg_barrier *msg = br->br_msgs[i];
810 uint32_t done;
812 msg = br->br_msgs[i];
813 br->br_msgs[i] = NULL;
815 if (i == cur_cpuid)
816 continue;
818 done = atomic_swap_int(&msg->br_done, 0);
819 if (done & NETISR_BR_WAITDONE)
820 wakeup(&msg->br_done);
822 br->br_isset = 0;
825 static void
826 netisr_nohashck(struct mbuf *m, const struct pktinfo *pi __unused)
828 m->m_flags &= ~M_HASH;
831 void
832 netisr_hashcheck(int num, struct mbuf *m, const struct pktinfo *pi)
834 struct netisr *ni;
836 if (num < 0 || num >= NETISR_MAX)
837 panic("Bad isr %d", num);
840 * Valid netisr?
842 ni = &netisrs[num];
843 if (ni->ni_handler == NULL)
844 panic("Unregistered isr %d", num);
846 ni->ni_hashck(m, pi);