Sync with HEAD.
[dragonfly.git] / sys / net / dummynet / ip_dummynet.c
blob244e4db66613804133450c2dd21896afd275f706
1 /*
2 * Copyright (c) 1998-2002 Luigi Rizzo, Universita` di Pisa
3 * Portions Copyright (c) 2000 Akamba Corp.
4 * All rights reserved
6 * Redistribution and use in source and binary forms, with or without
7 * modification, are permitted provided that the following conditions
8 * are met:
9 * 1. Redistributions of source code must retain the above copyright
10 * notice, this list of conditions and the following disclaimer.
11 * 2. Redistributions in binary form must reproduce the above copyright
12 * notice, this list of conditions and the following disclaimer in the
13 * documentation and/or other materials provided with the distribution.
15 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
16 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
17 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
18 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
19 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
20 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
21 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
22 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
23 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
24 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
25 * SUCH DAMAGE.
27 * $FreeBSD: src/sys/netinet/ip_dummynet.c,v 1.24.2.22 2003/05/13 09:31:06 maxim Exp $
28 * $DragonFly: src/sys/net/dummynet/ip_dummynet.c,v 1.53 2007/12/08 04:33:58 sephe Exp $
31 #ifdef DUMMYNET_DEBUG
32 #define DPRINTF(fmt, ...) kprintf(fmt, __VA_ARGS__)
33 #else
34 #define DPRINTF(fmt, ...) ((void)0)
35 #endif
38 * This module implements IP dummynet, a bandwidth limiter/delay emulator.
39 * Description of the data structures used is in ip_dummynet.h
40 * Here you mainly find the following blocks of code:
41 * + variable declarations;
42 * + heap management functions;
43 * + scheduler and dummynet functions;
44 * + configuration and initialization.
46 * Most important Changes:
48 * 011004: KLDable
49 * 010124: Fixed WF2Q behaviour
50 * 010122: Fixed spl protection.
51 * 000601: WF2Q support
52 * 000106: Large rewrite, use heaps to handle very many pipes.
53 * 980513: Initial release
56 #include <sys/param.h>
57 #include <sys/kernel.h>
58 #include <sys/malloc.h>
59 #include <sys/mbuf.h>
60 #include <sys/socketvar.h>
61 #include <sys/sysctl.h>
62 #include <sys/systimer.h>
63 #include <sys/thread2.h>
65 #include <net/ethernet.h>
66 #include <net/netmsg2.h>
67 #include <net/route.h>
69 #include <netinet/in_var.h>
70 #include <netinet/ip_var.h>
72 #include <net/dummynet/ip_dummynet.h>
74 #ifndef DN_CALLOUT_FREQ_MAX
75 #define DN_CALLOUT_FREQ_MAX 10000
76 #endif
79 * The maximum/minimum hash table size for queues.
80 * These values must be a power of 2.
82 #define DN_MIN_HASH_SIZE 4
83 #define DN_MAX_HASH_SIZE 65536
86 * Some macros are used to compare key values and handle wraparounds.
87 * MAX64 returns the largest of two key values.
89 #define DN_KEY_LT(a, b) ((int64_t)((a) - (b)) < 0)
90 #define DN_KEY_LEQ(a, b) ((int64_t)((a) - (b)) <= 0)
91 #define DN_KEY_GT(a, b) ((int64_t)((a) - (b)) > 0)
92 #define DN_KEY_GEQ(a, b) ((int64_t)((a) - (b)) >= 0)
93 #define MAX64(x, y) ((((int64_t)((y) - (x))) > 0) ? (y) : (x))
95 #define DN_NR_HASH_MAX 16
96 #define DN_NR_HASH_MASK (DN_NR_HASH_MAX - 1)
97 #define DN_NR_HASH(nr) \
98 ((((nr) >> 12) ^ ((nr) >> 8) ^ ((nr) >> 4) ^ (nr)) & DN_NR_HASH_MASK)
100 MALLOC_DEFINE(M_DUMMYNET, "dummynet", "dummynet heap");
102 extern int ip_dn_cpu;
104 static dn_key curr_time = 0; /* current simulation time */
105 static int dn_hash_size = 64; /* default hash size */
106 static int pipe_expire = 1; /* expire queue if empty */
107 static int dn_max_ratio = 16; /* max queues/buckets ratio */
110 * Statistics on number of queue searches and search steps
112 static int searches;
113 static int search_steps;
116 * RED parameters
118 static int red_lookup_depth = 256; /* default lookup table depth */
119 static int red_avg_pkt_size = 512; /* default medium packet size */
120 static int red_max_pkt_size = 1500;/* default max packet size */
123 * Three heaps contain queues and pipes that the scheduler handles:
125 * + ready_heap contains all dn_flow_queue related to fixed-rate pipes.
126 * + wfq_ready_heap contains the pipes associated with WF2Q flows
127 * + extract_heap contains pipes associated with delay lines.
129 static struct dn_heap ready_heap;
130 static struct dn_heap extract_heap;
131 static struct dn_heap wfq_ready_heap;
133 static struct dn_pipe_head pipe_table[DN_NR_HASH_MAX];
134 static struct dn_flowset_head flowset_table[DN_NR_HASH_MAX];
137 * Variables for dummynet systimer
139 static struct netmsg dn_netmsg;
140 static struct systimer dn_clock;
141 static int dn_hz = 1000;
143 static int sysctl_dn_hz(SYSCTL_HANDLER_ARGS);
145 SYSCTL_DECL(_net_inet_ip_dummynet);
147 SYSCTL_INT(_net_inet_ip_dummynet, OID_AUTO, hash_size, CTLFLAG_RW,
148 &dn_hash_size, 0, "Default hash table size");
149 SYSCTL_INT(_net_inet_ip_dummynet, OID_AUTO, curr_time, CTLFLAG_RD,
150 &curr_time, 0, "Current tick");
151 SYSCTL_INT(_net_inet_ip_dummynet, OID_AUTO, expire, CTLFLAG_RW,
152 &pipe_expire, 0, "Expire queue if empty");
153 SYSCTL_INT(_net_inet_ip_dummynet, OID_AUTO, max_chain_len, CTLFLAG_RW,
154 &dn_max_ratio, 0, "Max ratio between dynamic queues and buckets");
156 SYSCTL_INT(_net_inet_ip_dummynet, OID_AUTO, ready_heap, CTLFLAG_RD,
157 &ready_heap.size, 0, "Size of ready heap");
158 SYSCTL_INT(_net_inet_ip_dummynet, OID_AUTO, extract_heap, CTLFLAG_RD,
159 &extract_heap.size, 0, "Size of extract heap");
161 SYSCTL_INT(_net_inet_ip_dummynet, OID_AUTO, searches, CTLFLAG_RD,
162 &searches, 0, "Number of queue searches");
163 SYSCTL_INT(_net_inet_ip_dummynet, OID_AUTO, search_steps, CTLFLAG_RD,
164 &search_steps, 0, "Number of queue search steps");
166 SYSCTL_INT(_net_inet_ip_dummynet, OID_AUTO, red_lookup_depth, CTLFLAG_RD,
167 &red_lookup_depth, 0, "Depth of RED lookup table");
168 SYSCTL_INT(_net_inet_ip_dummynet, OID_AUTO, red_avg_pkt_size, CTLFLAG_RD,
169 &red_avg_pkt_size, 0, "RED Medium packet size");
170 SYSCTL_INT(_net_inet_ip_dummynet, OID_AUTO, red_max_pkt_size, CTLFLAG_RD,
171 &red_max_pkt_size, 0, "RED Max packet size");
173 SYSCTL_PROC(_net_inet_ip_dummynet, OID_AUTO, hz, CTLTYPE_INT | CTLFLAG_RW,
174 0, 0, sysctl_dn_hz, "I", "Dummynet callout frequency");
176 static int heap_init(struct dn_heap *, int);
177 static int heap_insert(struct dn_heap *, dn_key, void *);
178 static void heap_extract(struct dn_heap *, void *);
180 static void transmit_event(struct dn_pipe *);
181 static void ready_event(struct dn_flow_queue *);
182 static void ready_event_wfq(struct dn_pipe *);
184 static int config_pipe(struct dn_ioc_pipe *);
185 static void dummynet_flush(void);
187 static void dummynet_clock(systimer_t, struct intrframe *);
188 static void dummynet(struct netmsg *);
190 static struct dn_pipe *dn_find_pipe(int);
191 static struct dn_flow_set *dn_locate_flowset(int, int);
193 typedef void (*dn_pipe_iter_t)(struct dn_pipe *, void *);
194 static void dn_iterate_pipe(dn_pipe_iter_t, void *);
196 typedef void (*dn_flowset_iter_t)(struct dn_flow_set *, void *);
197 static void dn_iterate_flowset(dn_flowset_iter_t, void *);
199 static ip_dn_io_t dummynet_io;
200 static ip_dn_ctl_t dummynet_ctl;
203 * Heap management functions.
205 * In the heap, first node is element 0. Children of i are 2i+1 and 2i+2.
206 * Some macros help finding parent/children so we can optimize them.
208 * heap_init() is called to expand the heap when needed.
209 * Increment size in blocks of 16 entries.
210 * XXX failure to allocate a new element is a pretty bad failure
211 * as we basically stall a whole queue forever!!
212 * Returns 1 on error, 0 on success
214 #define HEAP_FATHER(x) (((x) - 1) / 2)
215 #define HEAP_LEFT(x) (2*(x) + 1)
216 #define HEAP_IS_LEFT(x) ((x) & 1)
217 #define HEAP_RIGHT(x) (2*(x) + 2)
218 #define HEAP_SWAP(a, b, buffer) { buffer = a; a = b; b = buffer; }
219 #define HEAP_INCREMENT 15
221 static int
222 heap_init(struct dn_heap *h, int new_size)
224 struct dn_heap_entry *p;
226 if (h->size >= new_size) {
227 kprintf("%s, Bogus call, have %d want %d\n", __func__,
228 h->size, new_size);
229 return 0;
232 new_size = (new_size + HEAP_INCREMENT) & ~HEAP_INCREMENT;
233 p = kmalloc(new_size * sizeof(*p), M_DUMMYNET, M_WAITOK | M_ZERO);
234 if (h->size > 0) {
235 bcopy(h->p, p, h->size * sizeof(*p));
236 kfree(h->p, M_DUMMYNET);
238 h->p = p;
239 h->size = new_size;
240 return 0;
244 * Insert element in heap. Normally, p != NULL, we insert p in
245 * a new position and bubble up. If p == NULL, then the element is
246 * already in place, and key is the position where to start the
247 * bubble-up.
248 * Returns 1 on failure (cannot allocate new heap entry)
250 * If offset > 0 the position (index, int) of the element in the heap is
251 * also stored in the element itself at the given offset in bytes.
253 #define SET_OFFSET(heap, node) \
254 if (heap->offset > 0) \
255 *((int *)((char *)(heap->p[node].object) + heap->offset)) = node;
258 * RESET_OFFSET is used for sanity checks. It sets offset to an invalid value.
260 #define RESET_OFFSET(heap, node) \
261 if (heap->offset > 0) \
262 *((int *)((char *)(heap->p[node].object) + heap->offset)) = -1;
264 static int
265 heap_insert(struct dn_heap *h, dn_key key1, void *p)
267 int son = h->elements;
269 if (p == NULL) { /* Data already there, set starting point */
270 son = key1;
271 } else { /* Insert new element at the end, possibly resize */
272 son = h->elements;
273 if (son == h->size) { /* Need resize... */
274 if (heap_init(h, h->elements + 1))
275 return 1; /* Failure... */
277 h->p[son].object = p;
278 h->p[son].key = key1;
279 h->elements++;
282 while (son > 0) { /* Bubble up */
283 int father = HEAP_FATHER(son);
284 struct dn_heap_entry tmp;
286 if (DN_KEY_LT(h->p[father].key, h->p[son].key))
287 break; /* Found right position */
289 /* 'son' smaller than 'father', swap and repeat */
290 HEAP_SWAP(h->p[son], h->p[father], tmp);
291 SET_OFFSET(h, son);
292 son = father;
294 SET_OFFSET(h, son);
295 return 0;
299 * Remove top element from heap, or obj if obj != NULL
301 static void
302 heap_extract(struct dn_heap *h, void *obj)
304 int child, father, max = h->elements - 1;
306 if (max < 0) {
307 kprintf("warning, extract from empty heap 0x%p\n", h);
308 return;
311 father = 0; /* Default: move up smallest child */
312 if (obj != NULL) { /* Extract specific element, index is at offset */
313 if (h->offset <= 0)
314 panic("%s from middle not supported on this heap!!!\n", __func__);
316 father = *((int *)((char *)obj + h->offset));
317 if (father < 0 || father >= h->elements) {
318 panic("%s father %d out of bound 0..%d\n", __func__,
319 father, h->elements);
322 RESET_OFFSET(h, father);
324 child = HEAP_LEFT(father); /* Left child */
325 while (child <= max) { /* Valid entry */
326 if (child != max && DN_KEY_LT(h->p[child + 1].key, h->p[child].key))
327 child = child + 1; /* Take right child, otherwise left */
328 h->p[father] = h->p[child];
329 SET_OFFSET(h, father);
330 father = child;
331 child = HEAP_LEFT(child); /* Left child for next loop */
333 h->elements--;
334 if (father != max) {
336 * Fill hole with last entry and bubble up, reusing the insert code
338 h->p[father] = h->p[max];
339 heap_insert(h, father, NULL); /* This one cannot fail */
344 * heapify() will reorganize data inside an array to maintain the
345 * heap property. It is needed when we delete a bunch of entries.
347 static void
348 heapify(struct dn_heap *h)
350 int i;
352 for (i = 0; i < h->elements; i++)
353 heap_insert(h, i , NULL);
357 * Cleanup the heap and free data structure
359 static void
360 heap_free(struct dn_heap *h)
362 if (h->size > 0)
363 kfree(h->p, M_DUMMYNET);
364 bzero(h, sizeof(*h));
368 * --- End of heap management functions ---
372 * Scheduler functions:
374 * transmit_event() is called when the delay-line needs to enter
375 * the scheduler, either because of existing pkts getting ready,
376 * or new packets entering the queue. The event handled is the delivery
377 * time of the packet.
379 * ready_event() does something similar with fixed-rate queues, and the
380 * event handled is the finish time of the head pkt.
382 * ready_event_wfq() does something similar with WF2Q queues, and the
383 * event handled is the start time of the head pkt.
385 * In all cases, we make sure that the data structures are consistent
386 * before passing pkts out, because this might trigger recursive
387 * invocations of the procedures.
389 static void
390 transmit_event(struct dn_pipe *pipe)
392 struct dn_pkt *pkt;
394 while ((pkt = TAILQ_FIRST(&pipe->p_queue)) &&
395 DN_KEY_LEQ(pkt->output_time, curr_time)) {
396 TAILQ_REMOVE(&pipe->p_queue, pkt, dn_next);
397 ip_dn_packet_redispatch(pkt);
401 * If there are leftover packets, put into the heap for next event
403 if ((pkt = TAILQ_FIRST(&pipe->p_queue)) != NULL) {
405 * XXX should check errors on heap_insert, by draining the
406 * whole pipe and hoping in the future we are more successful
408 heap_insert(&extract_heap, pkt->output_time, pipe);
413 * The following macro computes how many ticks we have to wait
414 * before being able to transmit a packet. The credit is taken from
415 * either a pipe (WF2Q) or a flow_queue (per-flow queueing)
417 #define SET_TICKS(pkt, q, p) \
418 (pkt->dn_m->m_pkthdr.len*8*dn_hz - (q)->numbytes + p->bandwidth - 1 ) / \
419 p->bandwidth;
422 * Extract pkt from queue, compute output time (could be now)
423 * and put into delay line (p_queue)
425 static void
426 move_pkt(struct dn_pkt *pkt, struct dn_flow_queue *q,
427 struct dn_pipe *p, int len)
429 TAILQ_REMOVE(&q->queue, pkt, dn_next);
430 q->len--;
431 q->len_bytes -= len;
433 pkt->output_time = curr_time + p->delay;
435 TAILQ_INSERT_TAIL(&p->p_queue, pkt, dn_next);
439 * ready_event() is invoked every time the queue must enter the
440 * scheduler, either because the first packet arrives, or because
441 * a previously scheduled event fired.
442 * On invokation, drain as many pkts as possible (could be 0) and then
443 * if there are leftover packets reinsert the pkt in the scheduler.
445 static void
446 ready_event(struct dn_flow_queue *q)
448 struct dn_pkt *pkt;
449 struct dn_pipe *p = q->fs->pipe;
450 int p_was_empty;
452 if (p == NULL) {
453 kprintf("ready_event- pipe is gone\n");
454 return;
456 p_was_empty = TAILQ_EMPTY(&p->p_queue);
459 * Schedule fixed-rate queues linked to this pipe:
460 * Account for the bw accumulated since last scheduling, then
461 * drain as many pkts as allowed by q->numbytes and move to
462 * the delay line (in p) computing output time.
463 * bandwidth==0 (no limit) means we can drain the whole queue,
464 * setting len_scaled = 0 does the job.
466 q->numbytes += (curr_time - q->sched_time) * p->bandwidth;
467 while ((pkt = TAILQ_FIRST(&q->queue)) != NULL) {
468 int len = pkt->dn_m->m_pkthdr.len;
469 int len_scaled = p->bandwidth ? len*8*dn_hz : 0;
471 if (len_scaled > q->numbytes)
472 break;
473 q->numbytes -= len_scaled;
474 move_pkt(pkt, q, p, len);
478 * If we have more packets queued, schedule next ready event
479 * (can only occur when bandwidth != 0, otherwise we would have
480 * flushed the whole queue in the previous loop).
481 * To this purpose we record the current time and compute how many
482 * ticks to go for the finish time of the packet.
484 if ((pkt = TAILQ_FIRST(&q->queue)) != NULL) {
485 /* This implies bandwidth != 0 */
486 dn_key t = SET_TICKS(pkt, q, p); /* ticks i have to wait */
488 q->sched_time = curr_time;
491 * XXX should check errors on heap_insert, and drain the whole
492 * queue on error hoping next time we are luckier.
494 heap_insert(&ready_heap, curr_time + t, q);
495 } else { /* RED needs to know when the queue becomes empty */
496 q->q_time = curr_time;
497 q->numbytes = 0;
501 * If the delay line was empty call transmit_event(p) now.
502 * Otherwise, the scheduler will take care of it.
504 if (p_was_empty)
505 transmit_event(p);
509 * Called when we can transmit packets on WF2Q queues. Take pkts out of
510 * the queues at their start time, and enqueue into the delay line.
511 * Packets are drained until p->numbytes < 0. As long as
512 * len_scaled >= p->numbytes, the packet goes into the delay line
513 * with a deadline p->delay. For the last packet, if p->numbytes < 0,
514 * there is an additional delay.
516 static void
517 ready_event_wfq(struct dn_pipe *p)
519 int p_was_empty = TAILQ_EMPTY(&p->p_queue);
520 struct dn_heap *sch = &p->scheduler_heap;
521 struct dn_heap *neh = &p->not_eligible_heap;
523 p->numbytes += (curr_time - p->sched_time) * p->bandwidth;
526 * While we have backlogged traffic AND credit, we need to do
527 * something on the queue.
529 while (p->numbytes >= 0 && (sch->elements > 0 || neh->elements > 0)) {
530 if (sch->elements > 0) { /* Have some eligible pkts to send out */
531 struct dn_flow_queue *q = sch->p[0].object;
532 struct dn_pkt *pkt = TAILQ_FIRST(&q->queue);
533 struct dn_flow_set *fs = q->fs;
534 uint64_t len = pkt->dn_m->m_pkthdr.len;
535 int len_scaled = p->bandwidth ? len*8*dn_hz : 0;
537 heap_extract(sch, NULL); /* Remove queue from heap */
538 p->numbytes -= len_scaled;
539 move_pkt(pkt, q, p, len);
541 p->V += (len << MY_M) / p->sum; /* Update V */
542 q->S = q->F; /* Update start time */
544 if (q->len == 0) { /* Flow not backlogged any more */
545 fs->backlogged--;
546 heap_insert(&p->idle_heap, q->F, q);
547 } else { /* Still backlogged */
549 * Update F and position in backlogged queue, then
550 * put flow in not_eligible_heap (we will fix this later).
552 len = TAILQ_FIRST(&q->queue)->dn_m->m_pkthdr.len;
553 q->F += (len << MY_M) / (uint64_t)fs->weight;
554 if (DN_KEY_LEQ(q->S, p->V))
555 heap_insert(neh, q->S, q);
556 else
557 heap_insert(sch, q->F, q);
562 * Now compute V = max(V, min(S_i)). Remember that all elements in
563 * sch have by definition S_i <= V so if sch is not empty, V is surely
564 * the max and we must not update it. Conversely, if sch is empty
565 * we only need to look at neh.
567 if (sch->elements == 0 && neh->elements > 0)
568 p->V = MAX64(p->V, neh->p[0].key);
571 * Move from neh to sch any packets that have become eligible
573 while (neh->elements > 0 && DN_KEY_LEQ(neh->p[0].key, p->V)) {
574 struct dn_flow_queue *q = neh->p[0].object;
576 heap_extract(neh, NULL);
577 heap_insert(sch, q->F, q);
581 if (sch->elements == 0 && neh->elements == 0 && p->numbytes >= 0 &&
582 p->idle_heap.elements > 0) {
584 * No traffic and no events scheduled. We can get rid of idle-heap.
586 int i;
588 for (i = 0; i < p->idle_heap.elements; i++) {
589 struct dn_flow_queue *q = p->idle_heap.p[i].object;
591 q->F = 0;
592 q->S = q->F + 1;
594 p->sum = 0;
595 p->V = 0;
596 p->idle_heap.elements = 0;
600 * If we are getting clocks from dummynet and if we are under credit,
601 * schedule the next ready event.
602 * Also fix the delivery time of the last packet.
604 if (p->numbytes < 0) { /* This implies bandwidth>0 */
605 dn_key t = 0; /* Number of ticks i have to wait */
607 if (p->bandwidth > 0)
608 t = (p->bandwidth - 1 - p->numbytes) / p->bandwidth;
609 TAILQ_LAST(&p->p_queue, dn_pkt_queue)->output_time += t;
610 p->sched_time = curr_time;
613 * XXX should check errors on heap_insert, and drain the whole
614 * queue on error hoping next time we are luckier.
616 heap_insert(&wfq_ready_heap, curr_time + t, p);
620 * If the delay line was empty call transmit_event(p) now.
621 * Otherwise, the scheduler will take care of it.
623 if (p_was_empty)
624 transmit_event(p);
627 static void
628 dn_expire_pipe_cb(struct dn_pipe *pipe, void *dummy __unused)
630 if (pipe->idle_heap.elements > 0 &&
631 DN_KEY_LT(pipe->idle_heap.p[0].key, pipe->V)) {
632 struct dn_flow_queue *q = pipe->idle_heap.p[0].object;
634 heap_extract(&pipe->idle_heap, NULL);
635 q->S = q->F + 1; /* Mark timestamp as invalid */
636 pipe->sum -= q->fs->weight;
641 * This is called once per tick, or dn_hz times per second. It is used to
642 * increment the current tick counter and schedule expired events.
644 static void
645 dummynet(struct netmsg *msg)
647 void *p;
648 struct dn_heap *h;
649 struct dn_heap *heaps[3];
650 int i;
652 heaps[0] = &ready_heap; /* Fixed-rate queues */
653 heaps[1] = &wfq_ready_heap; /* WF2Q queues */
654 heaps[2] = &extract_heap; /* Delay line */
656 /* Reply ASAP */
657 crit_enter();
658 lwkt_replymsg(&msg->nm_lmsg, 0);
659 crit_exit();
661 curr_time++;
662 for (i = 0; i < 3; i++) {
663 h = heaps[i];
664 while (h->elements > 0 && DN_KEY_LEQ(h->p[0].key, curr_time)) {
665 if (h->p[0].key > curr_time) {
666 kprintf("-- dummynet: warning, heap %d is %d ticks late\n",
667 i, (int)(curr_time - h->p[0].key));
670 p = h->p[0].object; /* Store a copy before heap_extract */
671 heap_extract(h, NULL); /* Need to extract before processing */
673 if (i == 0)
674 ready_event(p);
675 else if (i == 1)
676 ready_event_wfq(p);
677 else
678 transmit_event(p);
682 /* Sweep pipes trying to expire idle flow_queues */
683 dn_iterate_pipe(dn_expire_pipe_cb, NULL);
687 * Unconditionally expire empty queues in case of shortage.
688 * Returns the number of queues freed.
690 static int
691 expire_queues(struct dn_flow_set *fs)
693 int i, initial_elements = fs->rq_elements;
695 if (fs->last_expired == time_second)
696 return 0;
698 fs->last_expired = time_second;
700 for (i = 0; i <= fs->rq_size; i++) { /* Last one is overflow */
701 struct dn_flow_queue *q, *qn;
703 LIST_FOREACH_MUTABLE(q, &fs->rq[i], q_link, qn) {
704 if (!TAILQ_EMPTY(&q->queue) || q->S != q->F + 1)
705 continue;
708 * Entry is idle, expire it
710 LIST_REMOVE(q, q_link);
711 kfree(q, M_DUMMYNET);
713 KASSERT(fs->rq_elements > 0,
714 ("invalid rq_elements %d\n", fs->rq_elements));
715 fs->rq_elements--;
718 return initial_elements - fs->rq_elements;
722 * If room, create a new queue and put at head of slot i;
723 * otherwise, create or use the default queue.
725 static struct dn_flow_queue *
726 create_queue(struct dn_flow_set *fs, int i)
728 struct dn_flow_queue *q;
730 if (fs->rq_elements > fs->rq_size * dn_max_ratio &&
731 expire_queues(fs) == 0) {
733 * No way to get room, use or create overflow queue.
735 i = fs->rq_size;
736 if (!LIST_EMPTY(&fs->rq[i]))
737 return LIST_FIRST(&fs->rq[i]);
740 q = kmalloc(sizeof(*q), M_DUMMYNET, M_INTWAIT | M_NULLOK | M_ZERO);
741 if (q == NULL)
742 return NULL;
744 q->fs = fs;
745 q->hash_slot = i;
746 q->S = q->F + 1; /* hack - mark timestamp as invalid */
747 TAILQ_INIT(&q->queue);
749 LIST_INSERT_HEAD(&fs->rq[i], q, q_link);
750 fs->rq_elements++;
752 return q;
756 * Given a flow_set and a pkt in last_pkt, find a matching queue
757 * after appropriate masking. The queue is moved to front
758 * so that further searches take less time.
760 static struct dn_flow_queue *
761 find_queue(struct dn_flow_set *fs, struct dn_flow_id *id)
763 struct dn_flow_queue *q;
764 int i = 0;
766 if (!(fs->flags_fs & DN_HAVE_FLOW_MASK)) {
767 q = LIST_FIRST(&fs->rq[0]);
768 } else {
769 struct dn_flow_queue *qn;
771 /* First, do the masking */
772 id->fid_dst_ip &= fs->flow_mask.fid_dst_ip;
773 id->fid_src_ip &= fs->flow_mask.fid_src_ip;
774 id->fid_dst_port &= fs->flow_mask.fid_dst_port;
775 id->fid_src_port &= fs->flow_mask.fid_src_port;
776 id->fid_proto &= fs->flow_mask.fid_proto;
777 id->fid_flags = 0; /* we don't care about this one */
779 /* Then, hash function */
780 i = ((id->fid_dst_ip) & 0xffff) ^
781 ((id->fid_dst_ip >> 15) & 0xffff) ^
782 ((id->fid_src_ip << 1) & 0xffff) ^
783 ((id->fid_src_ip >> 16 ) & 0xffff) ^
784 (id->fid_dst_port << 1) ^ (id->fid_src_port) ^
785 (id->fid_proto);
786 i = i % fs->rq_size;
789 * Finally, scan the current list for a match and
790 * expire idle flow queues
792 searches++;
793 LIST_FOREACH_MUTABLE(q, &fs->rq[i], q_link, qn) {
794 search_steps++;
795 if (id->fid_dst_ip == q->id.fid_dst_ip &&
796 id->fid_src_ip == q->id.fid_src_ip &&
797 id->fid_dst_port == q->id.fid_dst_port &&
798 id->fid_src_port == q->id.fid_src_port &&
799 id->fid_proto == q->id.fid_proto &&
800 id->fid_flags == q->id.fid_flags) {
801 break; /* Found */
802 } else if (pipe_expire && TAILQ_EMPTY(&q->queue) &&
803 q->S == q->F + 1) {
805 * Entry is idle and not in any heap, expire it
807 LIST_REMOVE(q, q_link);
808 kfree(q, M_DUMMYNET);
810 KASSERT(fs->rq_elements > 0,
811 ("invalid rq_elements %d\n", fs->rq_elements));
812 fs->rq_elements--;
815 if (q && LIST_FIRST(&fs->rq[i]) != q) { /* Found and not in front */
816 LIST_REMOVE(q, q_link);
817 LIST_INSERT_HEAD(&fs->rq[i], q, q_link);
820 if (q == NULL) { /* No match, need to allocate a new entry */
821 q = create_queue(fs, i);
822 if (q != NULL)
823 q->id = *id;
825 return q;
828 static int
829 red_drops(struct dn_flow_set *fs, struct dn_flow_queue *q, int len)
832 * RED algorithm
834 * RED calculates the average queue size (avg) using a low-pass filter
835 * with an exponential weighted (w_q) moving average:
836 * avg <- (1-w_q) * avg + w_q * q_size
837 * where q_size is the queue length (measured in bytes or * packets).
839 * If q_size == 0, we compute the idle time for the link, and set
840 * avg = (1 - w_q)^(idle/s)
841 * where s is the time needed for transmitting a medium-sized packet.
843 * Now, if avg < min_th the packet is enqueued.
844 * If avg > max_th the packet is dropped. Otherwise, the packet is
845 * dropped with probability P function of avg.
848 int64_t p_b = 0;
849 u_int q_size = (fs->flags_fs & DN_QSIZE_IS_BYTES) ? q->len_bytes : q->len;
851 DPRINTF("\n%d q: %2u ", (int)curr_time, q_size);
853 /* Average queue size estimation */
854 if (q_size != 0) {
856 * Queue is not empty, avg <- avg + (q_size - avg) * w_q
858 int diff = SCALE(q_size) - q->avg;
859 int64_t v = SCALE_MUL((int64_t)diff, (int64_t)fs->w_q);
861 q->avg += (int)v;
862 } else {
864 * Queue is empty, find for how long the queue has been
865 * empty and use a lookup table for computing
866 * (1 - * w_q)^(idle_time/s) where s is the time to send a
867 * (small) packet.
868 * XXX check wraps...
870 if (q->avg) {
871 u_int t = (curr_time - q->q_time) / fs->lookup_step;
873 q->avg = (t < fs->lookup_depth) ?
874 SCALE_MUL(q->avg, fs->w_q_lookup[t]) : 0;
877 DPRINTF("avg: %u ", SCALE_VAL(q->avg));
879 /* Should i drop? */
881 if (q->avg < fs->min_th) {
882 /* Accept packet */
883 q->count = -1;
884 return 0;
887 if (q->avg >= fs->max_th) { /* Average queue >= Max threshold */
888 if (fs->flags_fs & DN_IS_GENTLE_RED) {
890 * According to Gentle-RED, if avg is greater than max_th the
891 * packet is dropped with a probability
892 * p_b = c_3 * avg - c_4
893 * where c_3 = (1 - max_p) / max_th, and c_4 = 1 - 2 * max_p
895 p_b = SCALE_MUL((int64_t)fs->c_3, (int64_t)q->avg) - fs->c_4;
896 } else {
897 q->count = -1;
898 kprintf("- drop\n");
899 return 1;
901 } else if (q->avg > fs->min_th) {
903 * We compute p_b using the linear dropping function p_b = c_1 *
904 * avg - c_2, where c_1 = max_p / (max_th - min_th), and c_2 =
905 * max_p * min_th / (max_th - min_th)
907 p_b = SCALE_MUL((int64_t)fs->c_1, (int64_t)q->avg) - fs->c_2;
909 if (fs->flags_fs & DN_QSIZE_IS_BYTES)
910 p_b = (p_b * len) / fs->max_pkt_size;
912 if (++q->count == 0) {
913 q->random = krandom() & 0xffff;
914 } else {
916 * q->count counts packets arrived since last drop, so a greater
917 * value of q->count means a greater packet drop probability.
919 if (SCALE_MUL(p_b, SCALE((int64_t)q->count)) > q->random) {
920 q->count = 0;
921 DPRINTF("%s", "- red drop");
922 /* After a drop we calculate a new random value */
923 q->random = krandom() & 0xffff;
924 return 1; /* Drop */
927 /* End of RED algorithm */
928 return 0; /* Accept */
931 static void
932 dn_iterate_pipe(dn_pipe_iter_t func, void *arg)
934 int i;
936 for (i = 0; i < DN_NR_HASH_MAX; ++i) {
937 struct dn_pipe_head *pipe_hdr = &pipe_table[i];
938 struct dn_pipe *pipe, *pipe_next;
940 LIST_FOREACH_MUTABLE(pipe, pipe_hdr, p_link, pipe_next)
941 func(pipe, arg);
945 static void
946 dn_iterate_flowset(dn_flowset_iter_t func, void *arg)
948 int i;
950 for (i = 0; i < DN_NR_HASH_MAX; ++i) {
951 struct dn_flowset_head *fs_hdr = &flowset_table[i];
952 struct dn_flow_set *fs, *fs_next;
954 LIST_FOREACH_MUTABLE(fs, fs_hdr, fs_link, fs_next)
955 func(fs, arg);
959 static struct dn_pipe *
960 dn_find_pipe(int pipe_nr)
962 struct dn_pipe_head *pipe_hdr;
963 struct dn_pipe *p;
965 pipe_hdr = &pipe_table[DN_NR_HASH(pipe_nr)];
966 LIST_FOREACH(p, pipe_hdr, p_link) {
967 if (p->pipe_nr == pipe_nr)
968 break;
970 return p;
973 static struct dn_flow_set *
974 dn_find_flowset(int fs_nr)
976 struct dn_flowset_head *fs_hdr;
977 struct dn_flow_set *fs;
979 fs_hdr = &flowset_table[DN_NR_HASH(fs_nr)];
980 LIST_FOREACH(fs, fs_hdr, fs_link) {
981 if (fs->fs_nr == fs_nr)
982 break;
984 return fs;
987 static struct dn_flow_set *
988 dn_locate_flowset(int pipe_nr, int is_pipe)
990 struct dn_flow_set *fs = NULL;
992 if (!is_pipe) {
993 fs = dn_find_flowset(pipe_nr);
994 } else {
995 struct dn_pipe *p;
997 p = dn_find_pipe(pipe_nr);
998 if (p != NULL)
999 fs = &p->fs;
1001 return fs;
1005 * Dummynet hook for packets. Below 'pipe' is a pipe or a queue
1006 * depending on whether WF2Q or fixed bw is used.
1008 * pipe_nr pipe or queue the packet is destined for.
1009 * dir where shall we send the packet after dummynet.
1010 * m the mbuf with the packet
1011 * fwa->oif the 'ifp' parameter from the caller.
1012 * NULL in ip_input, destination interface in ip_output
1013 * fwa->ro route parameter (only used in ip_output, NULL otherwise)
1014 * fwa->dst destination address, only used by ip_output
1015 * fwa->rule matching rule, in case of multiple passes
1016 * fwa->flags flags from the caller, only used in ip_output
1018 static int
1019 dummynet_io(struct mbuf *m)
1021 struct dn_pkt *pkt;
1022 struct m_tag *tag;
1023 struct dn_flow_set *fs;
1024 struct dn_pipe *pipe;
1025 uint64_t len = m->m_pkthdr.len;
1026 struct dn_flow_queue *q = NULL;
1027 int is_pipe, pipe_nr;
1029 tag = m_tag_find(m, PACKET_TAG_DUMMYNET, NULL);
1030 pkt = m_tag_data(tag);
1032 is_pipe = pkt->dn_flags & DN_FLAGS_IS_PIPE;
1033 pipe_nr = pkt->pipe_nr;
1036 * This is a dummynet rule, so we expect a O_PIPE or O_QUEUE rule
1038 fs = dn_locate_flowset(pipe_nr, is_pipe);
1039 if (fs == NULL)
1040 goto dropit; /* This queue/pipe does not exist! */
1042 pipe = fs->pipe;
1043 if (pipe == NULL) { /* Must be a queue, try find a matching pipe */
1044 pipe = dn_find_pipe(fs->parent_nr);
1045 if (pipe != NULL) {
1046 fs->pipe = pipe;
1047 } else {
1048 kprintf("No pipe %d for queue %d, drop pkt\n",
1049 fs->parent_nr, fs->fs_nr);
1050 goto dropit;
1054 q = find_queue(fs, &pkt->id);
1055 if (q == NULL)
1056 goto dropit; /* Cannot allocate queue */
1059 * Update statistics, then check reasons to drop pkt
1061 q->tot_bytes += len;
1062 q->tot_pkts++;
1064 if (fs->plr && krandom() < fs->plr)
1065 goto dropit; /* Random pkt drop */
1067 if (fs->flags_fs & DN_QSIZE_IS_BYTES) {
1068 if (q->len_bytes > fs->qsize)
1069 goto dropit; /* Queue size overflow */
1070 } else {
1071 if (q->len >= fs->qsize)
1072 goto dropit; /* Queue count overflow */
1075 if ((fs->flags_fs & DN_IS_RED) && red_drops(fs, q, len))
1076 goto dropit;
1078 TAILQ_INSERT_TAIL(&q->queue, pkt, dn_next);
1079 q->len++;
1080 q->len_bytes += len;
1082 if (TAILQ_FIRST(&q->queue) != pkt) /* Flow was not idle, we are done */
1083 goto done;
1086 * If we reach this point the flow was previously idle, so we need
1087 * to schedule it. This involves different actions for fixed-rate
1088 * or WF2Q queues.
1090 if (is_pipe) {
1092 * Fixed-rate queue: just insert into the ready_heap.
1094 dn_key t = 0;
1096 if (pipe->bandwidth)
1097 t = SET_TICKS(pkt, q, pipe);
1099 q->sched_time = curr_time;
1100 if (t == 0) /* Must process it now */
1101 ready_event(q);
1102 else
1103 heap_insert(&ready_heap, curr_time + t, q);
1104 } else {
1106 * WF2Q:
1107 * First, compute start time S: if the flow was idle (S=F+1)
1108 * set S to the virtual time V for the controlling pipe, and update
1109 * the sum of weights for the pipe; otherwise, remove flow from
1110 * idle_heap and set S to max(F, V).
1111 * Second, compute finish time F = S + len/weight.
1112 * Third, if pipe was idle, update V = max(S, V).
1113 * Fourth, count one more backlogged flow.
1115 if (DN_KEY_GT(q->S, q->F)) { /* Means timestamps are invalid */
1116 q->S = pipe->V;
1117 pipe->sum += fs->weight; /* Add weight of new queue */
1118 } else {
1119 heap_extract(&pipe->idle_heap, q);
1120 q->S = MAX64(q->F, pipe->V);
1122 q->F = q->S + (len << MY_M) / (uint64_t)fs->weight;
1124 if (pipe->not_eligible_heap.elements == 0 &&
1125 pipe->scheduler_heap.elements == 0)
1126 pipe->V = MAX64(q->S, pipe->V);
1128 fs->backlogged++;
1131 * Look at eligibility. A flow is not eligibile if S>V (when
1132 * this happens, it means that there is some other flow already
1133 * scheduled for the same pipe, so the scheduler_heap cannot be
1134 * empty). If the flow is not eligible we just store it in the
1135 * not_eligible_heap. Otherwise, we store in the scheduler_heap
1136 * and possibly invoke ready_event_wfq() right now if there is
1137 * leftover credit.
1138 * Note that for all flows in scheduler_heap (SCH), S_i <= V,
1139 * and for all flows in not_eligible_heap (NEH), S_i > V.
1140 * So when we need to compute max(V, min(S_i)) forall i in SCH+NEH,
1141 * we only need to look into NEH.
1143 if (DN_KEY_GT(q->S, pipe->V)) { /* Not eligible */
1144 if (pipe->scheduler_heap.elements == 0)
1145 kprintf("++ ouch! not eligible but empty scheduler!\n");
1146 heap_insert(&pipe->not_eligible_heap, q->S, q);
1147 } else {
1148 heap_insert(&pipe->scheduler_heap, q->F, q);
1149 if (pipe->numbytes >= 0) { /* Pipe is idle */
1150 if (pipe->scheduler_heap.elements != 1)
1151 kprintf("*** OUCH! pipe should have been idle!\n");
1152 DPRINTF("Waking up pipe %d at %d\n",
1153 pipe->pipe_nr, (int)(q->F >> MY_M));
1154 pipe->sched_time = curr_time;
1155 ready_event_wfq(pipe);
1159 done:
1160 return 0;
1162 dropit:
1163 if (q)
1164 q->drops++;
1165 return ENOBUFS;
1169 * Dispose all packets and flow_queues on a flow_set.
1170 * If all=1, also remove red lookup table and other storage,
1171 * including the descriptor itself.
1172 * For the one in dn_pipe MUST also cleanup ready_heap...
1174 static void
1175 purge_flow_set(struct dn_flow_set *fs, int all)
1177 int i;
1178 #ifdef INVARIANTS
1179 int rq_elements = 0;
1180 #endif
1182 for (i = 0; i <= fs->rq_size; i++) {
1183 struct dn_flow_queue *q;
1185 while ((q = LIST_FIRST(&fs->rq[i])) != NULL) {
1186 struct dn_pkt *pkt;
1188 while ((pkt = TAILQ_FIRST(&q->queue)) != NULL) {
1189 TAILQ_REMOVE(&q->queue, pkt, dn_next);
1190 ip_dn_packet_free(pkt);
1193 LIST_REMOVE(q, q_link);
1194 kfree(q, M_DUMMYNET);
1196 #ifdef INVARIANTS
1197 rq_elements++;
1198 #endif
1201 KASSERT(rq_elements == fs->rq_elements,
1202 ("# rq elements mismatch, freed %d, total %d\n",
1203 rq_elements, fs->rq_elements));
1204 fs->rq_elements = 0;
1206 if (all) {
1207 /* RED - free lookup table */
1208 if (fs->w_q_lookup)
1209 kfree(fs->w_q_lookup, M_DUMMYNET);
1211 if (fs->rq)
1212 kfree(fs->rq, M_DUMMYNET);
1215 * If this fs is not part of a pipe, free it
1217 * fs->pipe == NULL could happen, if 'fs' is a WF2Q and
1218 * - No packet belongs to that flow set is delivered by
1219 * dummynet_io(), i.e. parent pipe is not installed yet.
1220 * - Parent pipe is deleted.
1222 if (fs->pipe == NULL || (fs->pipe && fs != &fs->pipe->fs))
1223 kfree(fs, M_DUMMYNET);
1228 * Dispose all packets queued on a pipe (not a flow_set).
1229 * Also free all resources associated to a pipe, which is about
1230 * to be deleted.
1232 static void
1233 purge_pipe(struct dn_pipe *pipe)
1235 struct dn_pkt *pkt;
1237 purge_flow_set(&pipe->fs, 1);
1239 while ((pkt = TAILQ_FIRST(&pipe->p_queue)) != NULL) {
1240 TAILQ_REMOVE(&pipe->p_queue, pkt, dn_next);
1241 ip_dn_packet_free(pkt);
1244 heap_free(&pipe->scheduler_heap);
1245 heap_free(&pipe->not_eligible_heap);
1246 heap_free(&pipe->idle_heap);
1250 * Delete all pipes and heaps returning memory.
1252 static void
1253 dummynet_flush(void)
1255 struct dn_pipe_head pipe_list;
1256 struct dn_flowset_head fs_list;
1257 struct dn_pipe *p;
1258 struct dn_flow_set *fs;
1259 int i;
1262 * Prevent future matches...
1264 LIST_INIT(&pipe_list);
1265 for (i = 0; i < DN_NR_HASH_MAX; ++i) {
1266 struct dn_pipe_head *pipe_hdr = &pipe_table[i];
1268 while ((p = LIST_FIRST(pipe_hdr)) != NULL) {
1269 LIST_REMOVE(p, p_link);
1270 LIST_INSERT_HEAD(&pipe_list, p, p_link);
1274 LIST_INIT(&fs_list);
1275 for (i = 0; i < DN_NR_HASH_MAX; ++i) {
1276 struct dn_flowset_head *fs_hdr = &flowset_table[i];
1278 while ((fs = LIST_FIRST(fs_hdr)) != NULL) {
1279 LIST_REMOVE(fs, fs_link);
1280 LIST_INSERT_HEAD(&fs_list, fs, fs_link);
1284 /* Free heaps so we don't have unwanted events */
1285 heap_free(&ready_heap);
1286 heap_free(&wfq_ready_heap);
1287 heap_free(&extract_heap);
1290 * Now purge all queued pkts and delete all pipes
1292 /* Scan and purge all flow_sets. */
1293 while ((fs = LIST_FIRST(&fs_list)) != NULL) {
1294 LIST_REMOVE(fs, fs_link);
1295 purge_flow_set(fs, 1);
1298 while ((p = LIST_FIRST(&pipe_list)) != NULL) {
1299 LIST_REMOVE(p, p_link);
1300 purge_pipe(p);
1301 kfree(p, M_DUMMYNET);
1306 * setup RED parameters
1308 static int
1309 config_red(const struct dn_ioc_flowset *ioc_fs, struct dn_flow_set *x)
1311 int i;
1313 x->w_q = ioc_fs->w_q;
1314 x->min_th = SCALE(ioc_fs->min_th);
1315 x->max_th = SCALE(ioc_fs->max_th);
1316 x->max_p = ioc_fs->max_p;
1318 x->c_1 = ioc_fs->max_p / (ioc_fs->max_th - ioc_fs->min_th);
1319 x->c_2 = SCALE_MUL(x->c_1, SCALE(ioc_fs->min_th));
1320 if (x->flags_fs & DN_IS_GENTLE_RED) {
1321 x->c_3 = (SCALE(1) - ioc_fs->max_p) / ioc_fs->max_th;
1322 x->c_4 = (SCALE(1) - 2 * ioc_fs->max_p);
1325 /* If the lookup table already exist, free and create it again */
1326 if (x->w_q_lookup) {
1327 kfree(x->w_q_lookup, M_DUMMYNET);
1328 x->w_q_lookup = NULL ;
1331 if (red_lookup_depth == 0) {
1332 kprintf("net.inet.ip.dummynet.red_lookup_depth must be > 0\n");
1333 kfree(x, M_DUMMYNET);
1334 return EINVAL;
1336 x->lookup_depth = red_lookup_depth;
1337 x->w_q_lookup = kmalloc(x->lookup_depth * sizeof(int),
1338 M_DUMMYNET, M_WAITOK);
1340 /* Fill the lookup table with (1 - w_q)^x */
1341 x->lookup_step = ioc_fs->lookup_step;
1342 x->lookup_weight = ioc_fs->lookup_weight;
1344 x->w_q_lookup[0] = SCALE(1) - x->w_q;
1345 for (i = 1; i < x->lookup_depth; i++)
1346 x->w_q_lookup[i] = SCALE_MUL(x->w_q_lookup[i - 1], x->lookup_weight);
1348 if (red_avg_pkt_size < 1)
1349 red_avg_pkt_size = 512;
1350 x->avg_pkt_size = red_avg_pkt_size;
1352 if (red_max_pkt_size < 1)
1353 red_max_pkt_size = 1500;
1354 x->max_pkt_size = red_max_pkt_size;
1356 return 0;
1359 static void
1360 alloc_hash(struct dn_flow_set *x, const struct dn_ioc_flowset *ioc_fs)
1362 int i, alloc_size;
1364 if (x->flags_fs & DN_HAVE_FLOW_MASK) {
1365 int l = ioc_fs->rq_size;
1367 /* Allocate some slots */
1368 if (l == 0)
1369 l = dn_hash_size;
1371 if (l < DN_MIN_HASH_SIZE)
1372 l = DN_MIN_HASH_SIZE;
1373 else if (l > DN_MAX_HASH_SIZE)
1374 l = DN_MAX_HASH_SIZE;
1376 x->rq_size = l;
1377 } else {
1378 /* One is enough for null mask */
1379 x->rq_size = 1;
1381 alloc_size = x->rq_size + 1;
1383 x->rq = kmalloc(alloc_size * sizeof(struct dn_flowqueue_head),
1384 M_DUMMYNET, M_WAITOK | M_ZERO);
1385 x->rq_elements = 0;
1387 for (i = 0; i < alloc_size; ++i)
1388 LIST_INIT(&x->rq[i]);
1391 static void
1392 set_flowid_parms(struct dn_flow_id *id, const struct dn_ioc_flowid *ioc_id)
1394 id->fid_dst_ip = ioc_id->u.ip.dst_ip;
1395 id->fid_src_ip = ioc_id->u.ip.src_ip;
1396 id->fid_dst_port = ioc_id->u.ip.dst_port;
1397 id->fid_src_port = ioc_id->u.ip.src_port;
1398 id->fid_proto = ioc_id->u.ip.proto;
1399 id->fid_flags = ioc_id->u.ip.flags;
1402 static void
1403 set_fs_parms(struct dn_flow_set *x, const struct dn_ioc_flowset *ioc_fs)
1405 x->flags_fs = ioc_fs->flags_fs;
1406 x->qsize = ioc_fs->qsize;
1407 x->plr = ioc_fs->plr;
1408 set_flowid_parms(&x->flow_mask, &ioc_fs->flow_mask);
1409 if (x->flags_fs & DN_QSIZE_IS_BYTES) {
1410 if (x->qsize > 1024 * 1024)
1411 x->qsize = 1024 * 1024;
1412 } else {
1413 if (x->qsize == 0 || x->qsize > 100)
1414 x->qsize = 50;
1417 /* Configuring RED */
1418 if (x->flags_fs & DN_IS_RED)
1419 config_red(ioc_fs, x); /* XXX should check errors */
1423 * setup pipe or queue parameters.
1426 static int
1427 config_pipe(struct dn_ioc_pipe *ioc_pipe)
1429 struct dn_ioc_flowset *ioc_fs = &ioc_pipe->fs;
1430 int error;
1433 * The config program passes parameters as follows:
1434 * bw bits/second (0 means no limits)
1435 * delay ms (must be translated into ticks)
1436 * qsize slots or bytes
1438 ioc_pipe->delay = (ioc_pipe->delay * dn_hz) / 1000;
1441 * We need either a pipe number or a flow_set number
1443 if (ioc_pipe->pipe_nr == 0 && ioc_fs->fs_nr == 0)
1444 return EINVAL;
1445 if (ioc_pipe->pipe_nr != 0 && ioc_fs->fs_nr != 0)
1446 return EINVAL;
1449 * Validate pipe number
1451 if (ioc_pipe->pipe_nr > DN_PIPE_NR_MAX || ioc_pipe->pipe_nr < 0)
1452 return EINVAL;
1454 error = EINVAL;
1455 if (ioc_pipe->pipe_nr != 0) { /* This is a pipe */
1456 struct dn_pipe *x, *p;
1458 /* Locate pipe */
1459 p = dn_find_pipe(ioc_pipe->pipe_nr);
1461 if (p == NULL) { /* New pipe */
1462 x = kmalloc(sizeof(struct dn_pipe), M_DUMMYNET, M_WAITOK | M_ZERO);
1463 x->pipe_nr = ioc_pipe->pipe_nr;
1464 x->fs.pipe = x;
1465 TAILQ_INIT(&x->p_queue);
1468 * idle_heap is the only one from which we extract from the middle.
1470 x->idle_heap.size = x->idle_heap.elements = 0;
1471 x->idle_heap.offset = __offsetof(struct dn_flow_queue, heap_pos);
1472 } else {
1473 int i;
1475 x = p;
1477 /* Flush accumulated credit for all queues */
1478 for (i = 0; i <= x->fs.rq_size; i++) {
1479 struct dn_flow_queue *q;
1481 LIST_FOREACH(q, &x->fs.rq[i], q_link)
1482 q->numbytes = 0;
1486 x->bandwidth = ioc_pipe->bandwidth;
1487 x->numbytes = 0; /* Just in case... */
1488 x->delay = ioc_pipe->delay;
1490 set_fs_parms(&x->fs, ioc_fs);
1492 if (x->fs.rq == NULL) { /* A new pipe */
1493 struct dn_pipe_head *pipe_hdr;
1495 alloc_hash(&x->fs, ioc_fs);
1497 pipe_hdr = &pipe_table[DN_NR_HASH(x->pipe_nr)];
1498 LIST_INSERT_HEAD(pipe_hdr, x, p_link);
1500 } else { /* Config flow_set */
1501 struct dn_flow_set *x, *fs;
1503 /* Locate flow_set */
1504 fs = dn_find_flowset(ioc_fs->fs_nr);
1506 if (fs == NULL) { /* New flow_set */
1507 if (ioc_fs->parent_nr == 0) /* Need link to a pipe */
1508 goto back;
1510 x = kmalloc(sizeof(struct dn_flow_set), M_DUMMYNET,
1511 M_WAITOK | M_ZERO);
1512 x->fs_nr = ioc_fs->fs_nr;
1513 x->parent_nr = ioc_fs->parent_nr;
1514 x->weight = ioc_fs->weight;
1515 if (x->weight == 0)
1516 x->weight = 1;
1517 else if (x->weight > 100)
1518 x->weight = 100;
1519 } else {
1520 /* Change parent pipe not allowed; must delete and recreate */
1521 if (ioc_fs->parent_nr != 0 && fs->parent_nr != ioc_fs->parent_nr)
1522 goto back;
1523 x = fs;
1526 set_fs_parms(x, ioc_fs);
1528 if (x->rq == NULL) { /* A new flow_set */
1529 struct dn_flowset_head *fs_hdr;
1531 alloc_hash(x, ioc_fs);
1533 fs_hdr = &flowset_table[DN_NR_HASH(x->fs_nr)];
1534 LIST_INSERT_HEAD(fs_hdr, x, fs_link);
1537 error = 0;
1539 back:
1540 return error;
1544 * Helper function to remove from a heap queues which are linked to
1545 * a flow_set about to be deleted.
1547 static void
1548 fs_remove_from_heap(struct dn_heap *h, struct dn_flow_set *fs)
1550 int i = 0, found = 0;
1552 while (i < h->elements) {
1553 if (((struct dn_flow_queue *)h->p[i].object)->fs == fs) {
1554 h->elements--;
1555 h->p[i] = h->p[h->elements];
1556 found++;
1557 } else {
1558 i++;
1561 if (found)
1562 heapify(h);
1566 * helper function to remove a pipe from a heap (can be there at most once)
1568 static void
1569 pipe_remove_from_heap(struct dn_heap *h, struct dn_pipe *p)
1571 if (h->elements > 0) {
1572 int i;
1574 for (i = 0; i < h->elements; i++) {
1575 if (h->p[i].object == p) { /* found it */
1576 h->elements--;
1577 h->p[i] = h->p[h->elements];
1578 heapify(h);
1579 break;
1585 static void
1586 dn_unref_pipe_cb(struct dn_flow_set *fs, void *pipe0)
1588 struct dn_pipe *pipe = pipe0;
1590 if (fs->pipe == pipe) {
1591 kprintf("++ ref to pipe %d from fs %d\n",
1592 pipe->pipe_nr, fs->fs_nr);
1593 fs->pipe = NULL;
1594 purge_flow_set(fs, 0);
1599 * Fully delete a pipe or a queue, cleaning up associated info.
1601 static int
1602 delete_pipe(const struct dn_ioc_pipe *ioc_pipe)
1604 struct dn_pipe *p;
1605 int error;
1607 if (ioc_pipe->pipe_nr == 0 && ioc_pipe->fs.fs_nr == 0)
1608 return EINVAL;
1609 if (ioc_pipe->pipe_nr != 0 && ioc_pipe->fs.fs_nr != 0)
1610 return EINVAL;
1612 if (ioc_pipe->pipe_nr > DN_NR_HASH_MAX || ioc_pipe->pipe_nr < 0)
1613 return EINVAL;
1615 error = EINVAL;
1616 if (ioc_pipe->pipe_nr != 0) { /* This is an old-style pipe */
1617 /* Locate pipe */
1618 p = dn_find_pipe(ioc_pipe->pipe_nr);
1619 if (p == NULL)
1620 goto back; /* Not found */
1622 /* Unlink from pipe hash table */
1623 LIST_REMOVE(p, p_link);
1625 /* Remove all references to this pipe from flow_sets */
1626 dn_iterate_flowset(dn_unref_pipe_cb, p);
1628 fs_remove_from_heap(&ready_heap, &p->fs);
1629 purge_pipe(p); /* Remove all data associated to this pipe */
1631 /* Remove reference to here from extract_heap and wfq_ready_heap */
1632 pipe_remove_from_heap(&extract_heap, p);
1633 pipe_remove_from_heap(&wfq_ready_heap, p);
1635 kfree(p, M_DUMMYNET);
1636 } else { /* This is a WF2Q queue (dn_flow_set) */
1637 struct dn_flow_set *fs;
1639 /* Locate flow_set */
1640 fs = dn_find_flowset(ioc_pipe->fs.fs_nr);
1641 if (fs == NULL)
1642 goto back; /* Not found */
1644 LIST_REMOVE(fs, fs_link);
1646 if ((p = fs->pipe) != NULL) {
1647 /* Update total weight on parent pipe and cleanup parent heaps */
1648 p->sum -= fs->weight * fs->backlogged;
1649 fs_remove_from_heap(&p->not_eligible_heap, fs);
1650 fs_remove_from_heap(&p->scheduler_heap, fs);
1651 #if 1 /* XXX should i remove from idle_heap as well ? */
1652 fs_remove_from_heap(&p->idle_heap, fs);
1653 #endif
1655 purge_flow_set(fs, 1);
1657 error = 0;
1659 back:
1660 return error;
1664 * helper function used to copy data from kernel in DUMMYNET_GET
1666 static void
1667 dn_copy_flowid(const struct dn_flow_id *id, struct dn_ioc_flowid *ioc_id)
1669 ioc_id->type = ETHERTYPE_IP;
1670 ioc_id->u.ip.dst_ip = id->fid_dst_ip;
1671 ioc_id->u.ip.src_ip = id->fid_src_ip;
1672 ioc_id->u.ip.dst_port = id->fid_dst_port;
1673 ioc_id->u.ip.src_port = id->fid_src_port;
1674 ioc_id->u.ip.proto = id->fid_proto;
1675 ioc_id->u.ip.flags = id->fid_flags;
1678 static void *
1679 dn_copy_flowqueues(const struct dn_flow_set *fs, void *bp)
1681 struct dn_ioc_flowqueue *ioc_fq = bp;
1682 int i, copied = 0;
1684 for (i = 0; i <= fs->rq_size; i++) {
1685 const struct dn_flow_queue *q;
1687 LIST_FOREACH(q, &fs->rq[i], q_link) {
1688 if (q->hash_slot != i) { /* XXX ASSERT */
1689 kprintf("++ at %d: wrong slot (have %d, "
1690 "should be %d)\n", copied, q->hash_slot, i);
1692 if (q->fs != fs) { /* XXX ASSERT */
1693 kprintf("++ at %d: wrong fs ptr (have %p, should be %p)\n",
1694 i, q->fs, fs);
1697 copied++;
1699 ioc_fq->len = q->len;
1700 ioc_fq->len_bytes = q->len_bytes;
1701 ioc_fq->tot_pkts = q->tot_pkts;
1702 ioc_fq->tot_bytes = q->tot_bytes;
1703 ioc_fq->drops = q->drops;
1704 ioc_fq->hash_slot = q->hash_slot;
1705 ioc_fq->S = q->S;
1706 ioc_fq->F = q->F;
1707 dn_copy_flowid(&q->id, &ioc_fq->id);
1709 ioc_fq++;
1713 if (copied != fs->rq_elements) { /* XXX ASSERT */
1714 kprintf("++ wrong count, have %d should be %d\n",
1715 copied, fs->rq_elements);
1717 return ioc_fq;
1720 static void
1721 dn_copy_flowset(const struct dn_flow_set *fs, struct dn_ioc_flowset *ioc_fs,
1722 u_short fs_type)
1724 ioc_fs->fs_type = fs_type;
1726 ioc_fs->fs_nr = fs->fs_nr;
1727 ioc_fs->flags_fs = fs->flags_fs;
1728 ioc_fs->parent_nr = fs->parent_nr;
1730 ioc_fs->weight = fs->weight;
1731 ioc_fs->qsize = fs->qsize;
1732 ioc_fs->plr = fs->plr;
1734 ioc_fs->rq_size = fs->rq_size;
1735 ioc_fs->rq_elements = fs->rq_elements;
1737 ioc_fs->w_q = fs->w_q;
1738 ioc_fs->max_th = fs->max_th;
1739 ioc_fs->min_th = fs->min_th;
1740 ioc_fs->max_p = fs->max_p;
1742 dn_copy_flowid(&fs->flow_mask, &ioc_fs->flow_mask);
1745 static void
1746 dn_calc_pipe_size_cb(struct dn_pipe *pipe, void *sz)
1748 size_t *size = sz;
1750 *size += sizeof(struct dn_ioc_pipe) +
1751 pipe->fs.rq_elements * sizeof(struct dn_ioc_flowqueue);
1754 static void
1755 dn_calc_fs_size_cb(struct dn_flow_set *fs, void *sz)
1757 size_t *size = sz;
1759 *size += sizeof(struct dn_ioc_flowset) +
1760 fs->rq_elements * sizeof(struct dn_ioc_flowqueue);
1763 static void
1764 dn_copyout_pipe_cb(struct dn_pipe *pipe, void *bp0)
1766 char **bp = bp0;
1767 struct dn_ioc_pipe *ioc_pipe = (struct dn_ioc_pipe *)(*bp);
1770 * Copy flow set descriptor associated with this pipe
1772 dn_copy_flowset(&pipe->fs, &ioc_pipe->fs, DN_IS_PIPE);
1775 * Copy pipe descriptor
1777 ioc_pipe->bandwidth = pipe->bandwidth;
1778 ioc_pipe->pipe_nr = pipe->pipe_nr;
1779 ioc_pipe->V = pipe->V;
1780 /* Convert delay to milliseconds */
1781 ioc_pipe->delay = (pipe->delay * 1000) / dn_hz;
1784 * Copy flow queue descriptors
1786 *bp += sizeof(*ioc_pipe);
1787 *bp = dn_copy_flowqueues(&pipe->fs, *bp);
1790 static void
1791 dn_copyout_fs_cb(struct dn_flow_set *fs, void *bp0)
1793 char **bp = bp0;
1794 struct dn_ioc_flowset *ioc_fs = (struct dn_ioc_flowset *)(*bp);
1797 * Copy flow set descriptor
1799 dn_copy_flowset(fs, ioc_fs, DN_IS_QUEUE);
1802 * Copy flow queue descriptors
1804 *bp += sizeof(*ioc_fs);
1805 *bp = dn_copy_flowqueues(fs, *bp);
1808 static int
1809 dummynet_get(struct dn_sopt *dn_sopt)
1811 char *buf, *bp;
1812 size_t size = 0;
1815 * Compute size of data structures: list of pipes and flow_sets.
1817 dn_iterate_pipe(dn_calc_pipe_size_cb, &size);
1818 dn_iterate_flowset(dn_calc_fs_size_cb, &size);
1821 * Copyout pipe/flow_set/flow_queue
1823 bp = buf = kmalloc(size, M_TEMP, M_WAITOK | M_ZERO);
1824 dn_iterate_pipe(dn_copyout_pipe_cb, &bp);
1825 dn_iterate_flowset(dn_copyout_fs_cb, &bp);
1827 /* Temp memory will be freed by caller */
1828 dn_sopt->dn_sopt_arg = buf;
1829 dn_sopt->dn_sopt_arglen = size;
1830 return 0;
1834 * Handler for the various dummynet socket options (get, flush, config, del)
1836 static int
1837 dummynet_ctl(struct dn_sopt *dn_sopt)
1839 int error = 0;
1841 switch (dn_sopt->dn_sopt_name) {
1842 case IP_DUMMYNET_GET:
1843 error = dummynet_get(dn_sopt);
1844 break;
1846 case IP_DUMMYNET_FLUSH:
1847 dummynet_flush();
1848 break;
1850 case IP_DUMMYNET_CONFIGURE:
1851 KKASSERT(dn_sopt->dn_sopt_arglen == sizeof(struct dn_ioc_pipe));
1852 error = config_pipe(dn_sopt->dn_sopt_arg);
1853 break;
1855 case IP_DUMMYNET_DEL: /* Remove a pipe or flow_set */
1856 KKASSERT(dn_sopt->dn_sopt_arglen == sizeof(struct dn_ioc_pipe));
1857 error = delete_pipe(dn_sopt->dn_sopt_arg);
1858 break;
1860 default:
1861 kprintf("%s -- unknown option %d\n", __func__, dn_sopt->dn_sopt_name);
1862 error = EINVAL;
1863 break;
1865 return error;
1868 static void
1869 dummynet_clock(systimer_t info __unused, struct intrframe *frame __unused)
1871 KASSERT(mycpuid == ip_dn_cpu,
1872 ("dummynet systimer comes on cpu%d, should be %d!\n",
1873 mycpuid, ip_dn_cpu));
1875 crit_enter();
1876 if (DUMMYNET_LOADED && (dn_netmsg.nm_lmsg.ms_flags & MSGF_DONE))
1877 lwkt_sendmsg(cpu_portfn(mycpuid), &dn_netmsg.nm_lmsg);
1878 crit_exit();
1881 static int
1882 sysctl_dn_hz(SYSCTL_HANDLER_ARGS)
1884 int error, val;
1886 val = dn_hz;
1887 error = sysctl_handle_int(oidp, &val, 0, req);
1888 if (error || req->newptr == NULL)
1889 return error;
1890 if (val <= 0)
1891 return EINVAL;
1892 else if (val > DN_CALLOUT_FREQ_MAX)
1893 val = DN_CALLOUT_FREQ_MAX;
1895 crit_enter();
1896 dn_hz = val;
1897 systimer_adjust_periodic(&dn_clock, val);
1898 crit_exit();
1900 return 0;
1903 static void
1904 ip_dn_init_dispatch(struct netmsg *msg)
1906 int i, error = 0;
1908 KASSERT(mycpuid == ip_dn_cpu,
1909 ("%s runs on cpu%d, instead of cpu%d", __func__,
1910 mycpuid, ip_dn_cpu));
1912 crit_enter();
1914 if (DUMMYNET_LOADED) {
1915 kprintf("DUMMYNET already loaded\n");
1916 error = EEXIST;
1917 goto back;
1920 kprintf("DUMMYNET initialized (011031)\n");
1922 for (i = 0; i < DN_NR_HASH_MAX; ++i)
1923 LIST_INIT(&pipe_table[i]);
1925 for (i = 0; i < DN_NR_HASH_MAX; ++i)
1926 LIST_INIT(&flowset_table[i]);
1928 ready_heap.size = ready_heap.elements = 0;
1929 ready_heap.offset = 0;
1931 wfq_ready_heap.size = wfq_ready_heap.elements = 0;
1932 wfq_ready_heap.offset = 0;
1934 extract_heap.size = extract_heap.elements = 0;
1935 extract_heap.offset = 0;
1937 ip_dn_ctl_ptr = dummynet_ctl;
1938 ip_dn_io_ptr = dummynet_io;
1940 netmsg_init(&dn_netmsg, &netisr_adone_rport, 0, dummynet);
1941 systimer_init_periodic_nq(&dn_clock, dummynet_clock, NULL, dn_hz);
1943 back:
1944 crit_exit();
1945 lwkt_replymsg(&msg->nm_lmsg, error);
1948 static void
1949 ip_dn_stop_dispatch(struct netmsg *msg)
1951 crit_enter();
1953 dummynet_flush();
1955 ip_dn_ctl_ptr = NULL;
1956 ip_dn_io_ptr = NULL;
1958 systimer_del(&dn_clock);
1960 crit_exit();
1961 lwkt_replymsg(&msg->nm_lmsg, 0);
1964 static int
1965 ip_dn_init(void)
1967 struct netmsg smsg;
1969 if (ip_dn_cpu >= ncpus) {
1970 kprintf("%s: CPU%d does not exist, switch to CPU0\n",
1971 __func__, ip_dn_cpu);
1972 ip_dn_cpu = 0;
1975 netmsg_init(&smsg, &curthread->td_msgport, 0, ip_dn_init_dispatch);
1976 lwkt_domsg(cpu_portfn(ip_dn_cpu), &smsg.nm_lmsg, 0);
1977 return smsg.nm_lmsg.ms_error;
1980 static void
1981 ip_dn_stop(void)
1983 struct netmsg smsg;
1985 netmsg_init(&smsg, &curthread->td_msgport, 0, ip_dn_stop_dispatch);
1986 lwkt_domsg(cpu_portfn(ip_dn_cpu), &smsg.nm_lmsg, 0);
1988 netmsg_service_sync();
1991 static int
1992 dummynet_modevent(module_t mod, int type, void *data)
1994 switch (type) {
1995 case MOD_LOAD:
1996 return ip_dn_init();
1998 case MOD_UNLOAD:
1999 #ifndef KLD_MODULE
2000 kprintf("dummynet statically compiled, cannot unload\n");
2001 return EINVAL;
2002 #else
2003 ip_dn_stop();
2004 #endif
2005 break;
2007 default:
2008 break;
2010 return 0;
2013 static moduledata_t dummynet_mod = {
2014 "dummynet",
2015 dummynet_modevent,
2016 NULL
2018 DECLARE_MODULE(dummynet, dummynet_mod, SI_SUB_PROTO_END, SI_ORDER_ANY);
2019 MODULE_VERSION(dummynet, 1);