Sync with HEAD.
[dragonfly.git] / sys / dev / netif / ural / if_ural.c
blobf2e9d7e7d9575fefb699917695b360d9a3f138cb
1 /* $FreeBSD: src/sys/dev/usb/if_ural.c,v 1.10.2.8 2006/07/08 07:48:43 maxim Exp $ */
2 /* $DragonFly: src/sys/dev/netif/ural/if_ural.c,v 1.26 2008/05/14 11:59:22 sephe Exp $ */
4 /*-
5 * Copyright (c) 2005, 2006
6 * Damien Bergamini <damien.bergamini@free.fr>
8 * Permission to use, copy, modify, and distribute this software for any
9 * purpose with or without fee is hereby granted, provided that the above
10 * copyright notice and this permission notice appear in all copies.
12 * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
13 * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
14 * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
15 * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
16 * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
17 * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
18 * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
21 /*-
22 * Ralink Technology RT2500USB chipset driver
23 * http://www.ralinktech.com/
26 #include <sys/param.h>
27 #include <sys/bus.h>
28 #include <sys/endian.h>
29 #include <sys/kernel.h>
30 #include <sys/malloc.h>
31 #include <sys/mbuf.h>
32 #include <sys/rman.h>
33 #include <sys/socket.h>
34 #include <sys/sockio.h>
35 #include <sys/sysctl.h>
37 #include <net/bpf.h>
38 #include <net/ethernet.h>
39 #include <net/if.h>
40 #include <net/if_arp.h>
41 #include <net/if_dl.h>
42 #include <net/if_media.h>
43 #include <net/ifq_var.h>
45 #include <netproto/802_11/ieee80211_var.h>
46 #include <netproto/802_11/ieee80211_radiotap.h>
47 #include <netproto/802_11/wlan_ratectl/onoe/ieee80211_onoe_param.h>
49 #include <bus/usb/usb.h>
50 #include <bus/usb/usbdi.h>
51 #include <bus/usb/usbdi_util.h>
53 #include <dev/netif/ural/if_uralreg.h>
54 #include <dev/netif/ural/if_uralvar.h>
56 #ifdef USB_DEBUG
57 #define DPRINTF(x) do { if (uraldebug > 0) kprintf x; } while (0)
58 #define DPRINTFN(n, x) do { if (uraldebug >= (n)) kprintf x; } while (0)
59 int uraldebug = 0;
60 SYSCTL_NODE(_hw_usb, OID_AUTO, ural, CTLFLAG_RW, 0, "USB ural");
61 SYSCTL_INT(_hw_usb_ural, OID_AUTO, debug, CTLFLAG_RW, &uraldebug, 0,
62 "ural debug level");
63 #else
64 #define DPRINTF(x)
65 #define DPRINTFN(n, x)
66 #endif
68 #define URAL_RSSI(rssi) \
69 ((rssi) > (RAL_NOISE_FLOOR + RAL_RSSI_CORR) ? \
70 ((rssi) - (RAL_NOISE_FLOOR + RAL_RSSI_CORR)) : 0)
72 /* various supported device vendors/products */
73 static const struct usb_devno ural_devs[] = {
74 { USB_DEVICE(0x0411, 0x005e) }, /* Melco WLI-U2-KG54-YB */
75 { USB_DEVICE(0x0411, 0x0066) }, /* Melco WLI-U2-KG54 */
76 { USB_DEVICE(0x0411, 0x0067) }, /* Melco WLI-U2-KG54-AI */
77 { USB_DEVICE(0x0411, 0x008b) }, /* Melco Nintendo Wi-Fi */
78 { USB_DEVICE(0x050d, 0x7050) }, /* Belkin Components F5D7050 */
79 { USB_DEVICE(0x06f8, 0xe000) }, /* Guillemot HWGUSB254 */
80 { USB_DEVICE(0x0769, 0x11f3) }, /* Surecom RT2570 */
81 { USB_DEVICE(0x0b05, 0x1706) }, /* Ralink (XXX) RT2500USB */
82 { USB_DEVICE(0x0b05, 0x1707) }, /* Asus WL167G */
83 { USB_DEVICE(0x0db0, 0x6861) }, /* MSI RT2570 */
84 { USB_DEVICE(0x0db0, 0x6865) }, /* MSI RT2570 */
85 { USB_DEVICE(0x0db0, 0x6869) }, /* MSI RT2570 */
86 { USB_DEVICE(0x0eb0, 0x9020) }, /* Nova Technology NV-902W */
87 { USB_DEVICE(0x0f88, 0x3012) }, /* VTech RT2570 */
88 { USB_DEVICE(0x1044, 0x8007) }, /* GIGABYTE GN-WBKG */
89 { USB_DEVICE(0x114b, 0x0110) }, /* Sphairon UB801R */
90 { USB_DEVICE(0x148f, 0x1706) }, /* Ralink RT2570 */
91 { USB_DEVICE(0x148f, 0x2570) }, /* Ralink RT2570 */
92 { USB_DEVICE(0x148f, 0x9020) }, /* Ralink RT2570 */
93 { USB_DEVICE(0x14b2, 0x3c02) }, /* Conceptronic C54RU */
94 { USB_DEVICE(0x1737, 0x000d) }, /* Linksys WUSB54G */
95 { USB_DEVICE(0x1737, 0x0011) }, /* Linksys WUSB54GP */
96 { USB_DEVICE(0x1737, 0x001a) }, /* Linksys HU200TS */
97 { USB_DEVICE(0x2001, 0x3c00) }, /* D-Link DWL-G122 */
98 { USB_DEVICE(0x5a57, 0x0260) }, /* Zinwell RT2570 */
101 static int ural_alloc_tx_list(struct ural_softc *);
102 static void ural_free_tx_list(struct ural_softc *);
103 static int ural_alloc_rx_list(struct ural_softc *);
104 static void ural_free_rx_list(struct ural_softc *);
105 static int ural_media_change(struct ifnet *);
106 static void ural_next_scan(void *);
107 static void ural_task(void *);
108 static int ural_newstate(struct ieee80211com *,
109 enum ieee80211_state, int);
110 static int ural_rxrate(struct ural_rx_desc *);
111 static void ural_txeof(usbd_xfer_handle, usbd_private_handle,
112 usbd_status);
113 static void ural_rxeof(usbd_xfer_handle, usbd_private_handle,
114 usbd_status);
115 static uint8_t ural_plcp_signal(int);
116 static void ural_setup_tx_desc(struct ural_softc *,
117 struct ural_tx_desc *, uint32_t, int, int);
118 static int ural_tx_bcn(struct ural_softc *, struct mbuf *,
119 struct ieee80211_node *);
120 static int ural_tx_mgt(struct ural_softc *, struct mbuf *,
121 struct ieee80211_node *);
122 static int ural_tx_data(struct ural_softc *, struct mbuf *,
123 struct ieee80211_node *);
124 static void ural_start(struct ifnet *);
125 static void ural_watchdog(struct ifnet *);
126 static int ural_reset(struct ifnet *);
127 static int ural_ioctl(struct ifnet *, u_long, caddr_t,
128 struct ucred *);
129 static void ural_set_testmode(struct ural_softc *);
130 static void ural_eeprom_read(struct ural_softc *, uint16_t, void *,
131 int);
132 static uint16_t ural_read(struct ural_softc *, uint16_t);
133 static void ural_read_multi(struct ural_softc *, uint16_t, void *,
134 int);
135 static void ural_write(struct ural_softc *, uint16_t, uint16_t);
136 static void ural_write_multi(struct ural_softc *, uint16_t, void *,
137 int) __unused;
138 static void ural_bbp_write(struct ural_softc *, uint8_t, uint8_t);
139 static uint8_t ural_bbp_read(struct ural_softc *, uint8_t);
140 static void ural_rf_write(struct ural_softc *, uint8_t, uint32_t);
141 static void ural_set_chan(struct ural_softc *,
142 struct ieee80211_channel *);
143 static void ural_disable_rf_tune(struct ural_softc *);
144 static void ural_enable_tsf_sync(struct ural_softc *);
145 static void ural_update_slot(struct ifnet *);
146 static void ural_set_txpreamble(struct ural_softc *);
147 static void ural_set_basicrates(struct ural_softc *);
148 static void ural_set_bssid(struct ural_softc *, uint8_t *);
149 static void ural_set_macaddr(struct ural_softc *, uint8_t *);
150 static void ural_update_promisc(struct ural_softc *);
151 static const char *ural_get_rf(int);
152 static void ural_read_eeprom(struct ural_softc *);
153 static int ural_bbp_init(struct ural_softc *);
154 static void ural_set_txantenna(struct ural_softc *, int);
155 static void ural_set_rxantenna(struct ural_softc *, int);
156 static void ural_init(void *);
157 static void ural_stop(struct ural_softc *);
158 static void ural_stats(struct ieee80211com *,
159 struct ieee80211_node *,
160 struct ieee80211_ratectl_stats *);
161 static void ural_stats_update(usbd_xfer_handle,
162 usbd_private_handle, usbd_status);
163 static void ural_stats_timeout(void *);
164 static void *ural_ratectl_attach(struct ieee80211com *ic, u_int);
167 * Supported rates for 802.11a/b/g modes (in 500Kbps unit).
169 static const struct ieee80211_rateset ural_rateset_11a =
170 { 8, { 12, 18, 24, 36, 48, 72, 96, 108 } };
172 static const struct ieee80211_rateset ural_rateset_11b =
173 { 4, { 2, 4, 11, 22 } };
175 static const struct ieee80211_rateset ural_rateset_11g =
176 { 12, { 2, 4, 11, 22, 12, 18, 24, 36, 48, 72, 96, 108 } };
179 * Default values for MAC registers; values taken from the reference driver.
181 static const struct {
182 uint16_t reg;
183 uint16_t val;
184 } ural_def_mac[] = {
185 { RAL_TXRX_CSR5, 0x8c8d },
186 { RAL_TXRX_CSR6, 0x8b8a },
187 { RAL_TXRX_CSR7, 0x8687 },
188 { RAL_TXRX_CSR8, 0x0085 },
189 { RAL_MAC_CSR13, 0x1111 },
190 { RAL_MAC_CSR14, 0x1e11 },
191 { RAL_TXRX_CSR21, 0xe78f },
192 { RAL_MAC_CSR9, 0xff1d },
193 { RAL_MAC_CSR11, 0x0002 },
194 { RAL_MAC_CSR22, 0x0053 },
195 { RAL_MAC_CSR15, 0x0000 },
196 { RAL_MAC_CSR8, 0x0780 },
197 { RAL_TXRX_CSR19, 0x0000 },
198 { RAL_TXRX_CSR18, 0x005a },
199 { RAL_PHY_CSR2, 0x0000 },
200 { RAL_TXRX_CSR0, 0x1ec0 },
201 { RAL_PHY_CSR4, 0x000f }
205 * Default values for BBP registers; values taken from the reference driver.
207 static const struct {
208 uint8_t reg;
209 uint8_t val;
210 } ural_def_bbp[] = {
211 { 3, 0x02 },
212 { 4, 0x19 },
213 { 14, 0x1c },
214 { 15, 0x30 },
215 { 16, 0xac },
216 { 17, 0x48 },
217 { 18, 0x18 },
218 { 19, 0xff },
219 { 20, 0x1e },
220 { 21, 0x08 },
221 { 22, 0x08 },
222 { 23, 0x08 },
223 { 24, 0x80 },
224 { 25, 0x50 },
225 { 26, 0x08 },
226 { 27, 0x23 },
227 { 30, 0x10 },
228 { 31, 0x2b },
229 { 32, 0xb9 },
230 { 34, 0x12 },
231 { 35, 0x50 },
232 { 39, 0xc4 },
233 { 40, 0x02 },
234 { 41, 0x60 },
235 { 53, 0x10 },
236 { 54, 0x18 },
237 { 56, 0x08 },
238 { 57, 0x10 },
239 { 58, 0x08 },
240 { 61, 0x60 },
241 { 62, 0x10 },
242 { 75, 0xff }
246 * Default values for RF register R2 indexed by channel numbers.
248 static const uint32_t ural_rf2522_r2[] = {
249 0x307f6, 0x307fb, 0x30800, 0x30805, 0x3080a, 0x3080f, 0x30814,
250 0x30819, 0x3081e, 0x30823, 0x30828, 0x3082d, 0x30832, 0x3083e
253 static const uint32_t ural_rf2523_r2[] = {
254 0x00327, 0x00328, 0x00329, 0x0032a, 0x0032b, 0x0032c, 0x0032d,
255 0x0032e, 0x0032f, 0x00340, 0x00341, 0x00342, 0x00343, 0x00346
258 static const uint32_t ural_rf2524_r2[] = {
259 0x00327, 0x00328, 0x00329, 0x0032a, 0x0032b, 0x0032c, 0x0032d,
260 0x0032e, 0x0032f, 0x00340, 0x00341, 0x00342, 0x00343, 0x00346
263 static const uint32_t ural_rf2525_r2[] = {
264 0x20327, 0x20328, 0x20329, 0x2032a, 0x2032b, 0x2032c, 0x2032d,
265 0x2032e, 0x2032f, 0x20340, 0x20341, 0x20342, 0x20343, 0x20346
268 static const uint32_t ural_rf2525_hi_r2[] = {
269 0x2032f, 0x20340, 0x20341, 0x20342, 0x20343, 0x20344, 0x20345,
270 0x20346, 0x20347, 0x20348, 0x20349, 0x2034a, 0x2034b, 0x2034e
273 static const uint32_t ural_rf2525e_r2[] = {
274 0x2044d, 0x2044e, 0x2044f, 0x20460, 0x20461, 0x20462, 0x20463,
275 0x20464, 0x20465, 0x20466, 0x20467, 0x20468, 0x20469, 0x2046b
278 static const uint32_t ural_rf2526_hi_r2[] = {
279 0x0022a, 0x0022b, 0x0022b, 0x0022c, 0x0022c, 0x0022d, 0x0022d,
280 0x0022e, 0x0022e, 0x0022f, 0x0022d, 0x00240, 0x00240, 0x00241
283 static const uint32_t ural_rf2526_r2[] = {
284 0x00226, 0x00227, 0x00227, 0x00228, 0x00228, 0x00229, 0x00229,
285 0x0022a, 0x0022a, 0x0022b, 0x0022b, 0x0022c, 0x0022c, 0x0022d
289 * For dual-band RF, RF registers R1 and R4 also depend on channel number;
290 * values taken from the reference driver.
292 static const struct {
293 uint8_t chan;
294 uint32_t r1;
295 uint32_t r2;
296 uint32_t r4;
297 } ural_rf5222[] = {
298 { 1, 0x08808, 0x0044d, 0x00282 },
299 { 2, 0x08808, 0x0044e, 0x00282 },
300 { 3, 0x08808, 0x0044f, 0x00282 },
301 { 4, 0x08808, 0x00460, 0x00282 },
302 { 5, 0x08808, 0x00461, 0x00282 },
303 { 6, 0x08808, 0x00462, 0x00282 },
304 { 7, 0x08808, 0x00463, 0x00282 },
305 { 8, 0x08808, 0x00464, 0x00282 },
306 { 9, 0x08808, 0x00465, 0x00282 },
307 { 10, 0x08808, 0x00466, 0x00282 },
308 { 11, 0x08808, 0x00467, 0x00282 },
309 { 12, 0x08808, 0x00468, 0x00282 },
310 { 13, 0x08808, 0x00469, 0x00282 },
311 { 14, 0x08808, 0x0046b, 0x00286 },
313 { 36, 0x08804, 0x06225, 0x00287 },
314 { 40, 0x08804, 0x06226, 0x00287 },
315 { 44, 0x08804, 0x06227, 0x00287 },
316 { 48, 0x08804, 0x06228, 0x00287 },
317 { 52, 0x08804, 0x06229, 0x00287 },
318 { 56, 0x08804, 0x0622a, 0x00287 },
319 { 60, 0x08804, 0x0622b, 0x00287 },
320 { 64, 0x08804, 0x0622c, 0x00287 },
322 { 100, 0x08804, 0x02200, 0x00283 },
323 { 104, 0x08804, 0x02201, 0x00283 },
324 { 108, 0x08804, 0x02202, 0x00283 },
325 { 112, 0x08804, 0x02203, 0x00283 },
326 { 116, 0x08804, 0x02204, 0x00283 },
327 { 120, 0x08804, 0x02205, 0x00283 },
328 { 124, 0x08804, 0x02206, 0x00283 },
329 { 128, 0x08804, 0x02207, 0x00283 },
330 { 132, 0x08804, 0x02208, 0x00283 },
331 { 136, 0x08804, 0x02209, 0x00283 },
332 { 140, 0x08804, 0x0220a, 0x00283 },
334 { 149, 0x08808, 0x02429, 0x00281 },
335 { 153, 0x08808, 0x0242b, 0x00281 },
336 { 157, 0x08808, 0x0242d, 0x00281 },
337 { 161, 0x08808, 0x0242f, 0x00281 }
340 static device_probe_t ural_match;
341 static device_attach_t ural_attach;
342 static device_detach_t ural_detach;
344 static devclass_t ural_devclass;
346 static kobj_method_t ural_methods[] = {
347 DEVMETHOD(device_probe, ural_match),
348 DEVMETHOD(device_attach, ural_attach),
349 DEVMETHOD(device_detach, ural_detach),
350 {0,0}
353 static driver_t ural_driver = {
354 "ural",
355 ural_methods,
356 sizeof(struct ural_softc)
359 DRIVER_MODULE(ural, uhub, ural_driver, ural_devclass, usbd_driver_load, 0);
361 MODULE_DEPEND(ural, usb, 1, 1, 1);
362 MODULE_DEPEND(ural, wlan, 1, 1, 1);
363 MODULE_DEPEND(ural, wlan_ratectl_onoe, 1, 1, 1);
365 static int
366 ural_match(device_t self)
368 struct usb_attach_arg *uaa = device_get_ivars(self);
370 if (uaa->iface != NULL)
371 return UMATCH_NONE;
373 return (usb_lookup(ural_devs, uaa->vendor, uaa->product) != NULL) ?
374 UMATCH_VENDOR_PRODUCT : UMATCH_NONE;
377 static int
378 ural_attach(device_t self)
380 struct ural_softc *sc = device_get_softc(self);
381 struct usb_attach_arg *uaa = device_get_ivars(self);
382 struct ifnet *ifp;
383 struct ieee80211com *ic = &sc->sc_ic;
384 usb_interface_descriptor_t *id;
385 usb_endpoint_descriptor_t *ed;
386 usbd_status error;
387 int i;
389 sc->sc_udev = uaa->device;
390 sc->sc_tx_retries = 7; /* TODO tunable/sysctl */
392 sc->sc_dev = self;
394 if (usbd_set_config_no(sc->sc_udev, RAL_CONFIG_NO, 0) != 0) {
395 kprintf("%s: could not set configuration no\n",
396 device_get_nameunit(sc->sc_dev));
397 return ENXIO;
400 /* get the first interface handle */
401 error = usbd_device2interface_handle(sc->sc_udev, RAL_IFACE_INDEX,
402 &sc->sc_iface);
403 if (error != 0) {
404 kprintf("%s: could not get interface handle\n",
405 device_get_nameunit(sc->sc_dev));
406 return ENXIO;
410 * Find endpoints.
412 id = usbd_get_interface_descriptor(sc->sc_iface);
414 sc->sc_rx_no = sc->sc_tx_no = -1;
415 for (i = 0; i < id->bNumEndpoints; i++) {
416 ed = usbd_interface2endpoint_descriptor(sc->sc_iface, i);
417 if (ed == NULL) {
418 kprintf("%s: no endpoint descriptor for %d\n",
419 device_get_nameunit(sc->sc_dev), i);
420 return ENXIO;
423 if (UE_GET_DIR(ed->bEndpointAddress) == UE_DIR_IN &&
424 UE_GET_XFERTYPE(ed->bmAttributes) == UE_BULK)
425 sc->sc_rx_no = ed->bEndpointAddress;
426 else if (UE_GET_DIR(ed->bEndpointAddress) == UE_DIR_OUT &&
427 UE_GET_XFERTYPE(ed->bmAttributes) == UE_BULK)
428 sc->sc_tx_no = ed->bEndpointAddress;
430 if (sc->sc_rx_no == -1 || sc->sc_tx_no == -1) {
431 kprintf("%s: missing endpoint\n", device_get_nameunit(sc->sc_dev));
432 return ENXIO;
435 usb_init_task(&sc->sc_task, ural_task, sc);
436 callout_init(&sc->scan_ch);
437 callout_init(&sc->stats_ch);
439 /* retrieve RT2570 rev. no */
440 sc->asic_rev = ural_read(sc, RAL_MAC_CSR0);
442 /* retrieve MAC address and various other things from EEPROM */
443 ural_read_eeprom(sc);
445 kprintf("%s: MAC/BBP RT2570 (rev 0x%02x), RF %s\n",
446 device_get_nameunit(sc->sc_dev), sc->asic_rev, ural_get_rf(sc->rf_rev));
448 ifp = &ic->ic_if;
449 ifp->if_softc = sc;
450 if_initname(ifp, "ural", device_get_unit(sc->sc_dev));
451 ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
452 ifp->if_init = ural_init;
453 ifp->if_ioctl = ural_ioctl;
454 ifp->if_start = ural_start;
455 ifp->if_watchdog = ural_watchdog;
456 ifq_set_maxlen(&ifp->if_snd, IFQ_MAXLEN);
457 ifq_set_ready(&ifp->if_snd);
459 IEEE80211_ONOE_PARAM_SETUP(&sc->sc_onoe_param);
460 sc->sc_onoe_param.onoe_raise = 20;
461 ic->ic_ratectl.rc_st_ratectl_cap = IEEE80211_RATECTL_CAP_ONOE;
462 ic->ic_ratectl.rc_st_ratectl = IEEE80211_RATECTL_ONOE;
463 ic->ic_ratectl.rc_st_stats = ural_stats;
464 ic->ic_ratectl.rc_st_attach = ural_ratectl_attach;
466 ic->ic_phytype = IEEE80211_T_OFDM; /* not only, but not used */
467 ic->ic_opmode = IEEE80211_M_STA; /* default to BSS mode */
468 ic->ic_state = IEEE80211_S_INIT;
470 /* set device capabilities */
471 ic->ic_caps =
472 IEEE80211_C_IBSS | /* IBSS mode supported */
473 IEEE80211_C_MONITOR | /* monitor mode supported */
474 IEEE80211_C_HOSTAP | /* HostAp mode supported */
475 IEEE80211_C_TXPMGT | /* tx power management */
476 IEEE80211_C_SHPREAMBLE | /* short preamble supported */
477 IEEE80211_C_SHSLOT | /* short slot time supported */
478 IEEE80211_C_WPA; /* 802.11i */
480 if (sc->rf_rev == RAL_RF_5222) {
481 /* set supported .11a rates */
482 ic->ic_sup_rates[IEEE80211_MODE_11A] = ural_rateset_11a;
484 /* set supported .11a channels */
485 for (i = 36; i <= 64; i += 4) {
486 ic->ic_channels[i].ic_freq =
487 ieee80211_ieee2mhz(i, IEEE80211_CHAN_5GHZ);
488 ic->ic_channels[i].ic_flags = IEEE80211_CHAN_A;
490 for (i = 100; i <= 140; i += 4) {
491 ic->ic_channels[i].ic_freq =
492 ieee80211_ieee2mhz(i, IEEE80211_CHAN_5GHZ);
493 ic->ic_channels[i].ic_flags = IEEE80211_CHAN_A;
495 for (i = 149; i <= 161; i += 4) {
496 ic->ic_channels[i].ic_freq =
497 ieee80211_ieee2mhz(i, IEEE80211_CHAN_5GHZ);
498 ic->ic_channels[i].ic_flags = IEEE80211_CHAN_A;
502 /* set supported .11b and .11g rates */
503 ic->ic_sup_rates[IEEE80211_MODE_11B] = ural_rateset_11b;
504 ic->ic_sup_rates[IEEE80211_MODE_11G] = ural_rateset_11g;
506 /* set supported .11b and .11g channels (1 through 14) */
507 for (i = 1; i <= 14; i++) {
508 ic->ic_channels[i].ic_freq =
509 ieee80211_ieee2mhz(i, IEEE80211_CHAN_2GHZ);
510 ic->ic_channels[i].ic_flags =
511 IEEE80211_CHAN_CCK | IEEE80211_CHAN_OFDM |
512 IEEE80211_CHAN_DYN | IEEE80211_CHAN_2GHZ;
515 sc->sc_sifs = IEEE80211_DUR_SIFS; /* Default SIFS */
517 ieee80211_ifattach(ic);
518 ic->ic_reset = ural_reset;
519 /* enable s/w bmiss handling in sta mode */
520 ic->ic_flags_ext |= IEEE80211_FEXT_SWBMISS;
522 /* override state transition machine */
523 sc->sc_newstate = ic->ic_newstate;
524 ic->ic_newstate = ural_newstate;
525 ieee80211_media_init(ic, ural_media_change, ieee80211_media_status);
527 bpfattach_dlt(ifp, DLT_IEEE802_11_RADIO,
528 sizeof(struct ieee80211_frame) + 64, &sc->sc_drvbpf);
530 sc->sc_rxtap_len = sizeof sc->sc_rxtapu;
531 sc->sc_rxtap.wr_ihdr.it_len = htole16(sc->sc_rxtap_len);
532 sc->sc_rxtap.wr_ihdr.it_present = htole32(RAL_RX_RADIOTAP_PRESENT);
534 sc->sc_txtap_len = sizeof sc->sc_txtapu;
535 sc->sc_txtap.wt_ihdr.it_len = htole16(sc->sc_txtap_len);
536 sc->sc_txtap.wt_ihdr.it_present = htole32(RAL_TX_RADIOTAP_PRESENT);
538 if (bootverbose)
539 ieee80211_announce(ic);
541 return 0;
544 static int
545 ural_detach(device_t self)
547 struct ural_softc *sc = device_get_softc(self);
548 struct ieee80211com *ic = &sc->sc_ic;
549 struct ifnet *ifp = &ic->ic_if;
550 #ifdef INVARIANTS
551 int i;
552 #endif
554 crit_enter();
556 callout_stop(&sc->scan_ch);
557 callout_stop(&sc->stats_ch);
559 lwkt_serialize_enter(ifp->if_serializer);
560 ural_stop(sc);
561 lwkt_serialize_exit(ifp->if_serializer);
563 usb_rem_task(sc->sc_udev, &sc->sc_task);
565 bpfdetach(ifp);
566 ieee80211_ifdetach(ic);
568 crit_exit();
570 KKASSERT(sc->stats_xfer == NULL);
571 KKASSERT(sc->sc_rx_pipeh == NULL);
572 KKASSERT(sc->sc_tx_pipeh == NULL);
574 #ifdef INVARIANTS
576 * Make sure TX/RX list is empty
578 for (i = 0; i < RAL_TX_LIST_COUNT; i++) {
579 struct ural_tx_data *data = &sc->tx_data[i];
581 KKASSERT(data->xfer == NULL);
582 KKASSERT(data->ni == NULL);
583 KKASSERT(data->m == NULL);
585 for (i = 0; i < RAL_RX_LIST_COUNT; i++) {
586 struct ural_rx_data *data = &sc->rx_data[i];
588 KKASSERT(data->xfer == NULL);
589 KKASSERT(data->m == NULL);
591 #endif
593 return 0;
596 static int
597 ural_alloc_tx_list(struct ural_softc *sc)
599 int i;
601 sc->tx_queued = 0;
603 for (i = 0; i < RAL_TX_LIST_COUNT; i++) {
604 struct ural_tx_data *data = &sc->tx_data[i];
606 data->sc = sc;
608 data->xfer = usbd_alloc_xfer(sc->sc_udev);
609 if (data->xfer == NULL) {
610 kprintf("%s: could not allocate tx xfer\n",
611 device_get_nameunit(sc->sc_dev));
612 return ENOMEM;
615 data->buf = usbd_alloc_buffer(data->xfer,
616 RAL_TX_DESC_SIZE + MCLBYTES);
617 if (data->buf == NULL) {
618 kprintf("%s: could not allocate tx buffer\n",
619 device_get_nameunit(sc->sc_dev));
620 return ENOMEM;
623 return 0;
626 static void
627 ural_free_tx_list(struct ural_softc *sc)
629 int i;
631 for (i = 0; i < RAL_TX_LIST_COUNT; i++) {
632 struct ural_tx_data *data = &sc->tx_data[i];
634 if (data->xfer != NULL) {
635 usbd_free_xfer(data->xfer);
636 data->xfer = NULL;
639 if (data->ni != NULL) {
640 ieee80211_free_node(data->ni);
641 data->ni = NULL;
643 if (data->m != NULL) {
644 m_freem(data->m);
645 data->m = NULL;
648 sc->tx_queued = 0;
651 static int
652 ural_alloc_rx_list(struct ural_softc *sc)
654 int i;
656 for (i = 0; i < RAL_RX_LIST_COUNT; i++) {
657 struct ural_rx_data *data = &sc->rx_data[i];
659 data->sc = sc;
661 data->xfer = usbd_alloc_xfer(sc->sc_udev);
662 if (data->xfer == NULL) {
663 kprintf("%s: could not allocate rx xfer\n",
664 device_get_nameunit(sc->sc_dev));
665 return ENOMEM;
668 if (usbd_alloc_buffer(data->xfer, MCLBYTES) == NULL) {
669 kprintf("%s: could not allocate rx buffer\n",
670 device_get_nameunit(sc->sc_dev));
671 return ENOMEM;
674 data->m = m_getcl(MB_DONTWAIT, MT_DATA, M_PKTHDR);
675 if (data->m == NULL) {
676 kprintf("%s: could not allocate rx mbuf\n",
677 device_get_nameunit(sc->sc_dev));
678 return ENOMEM;
681 data->buf = mtod(data->m, uint8_t *);
683 return 0;
686 static void
687 ural_free_rx_list(struct ural_softc *sc)
689 int i;
691 for (i = 0; i < RAL_RX_LIST_COUNT; i++) {
692 struct ural_rx_data *data = &sc->rx_data[i];
694 if (data->xfer != NULL) {
695 usbd_free_xfer(data->xfer);
696 data->xfer = NULL;
699 if (data->m != NULL) {
700 m_freem(data->m);
701 data->m = NULL;
706 static int
707 ural_media_change(struct ifnet *ifp)
709 struct ural_softc *sc = ifp->if_softc;
710 int error;
712 error = ieee80211_media_change(ifp);
713 if (error != ENETRESET)
714 return error;
716 if ((ifp->if_flags & (IFF_UP | IFF_RUNNING)) == (IFF_UP | IFF_RUNNING))
717 ural_init(sc);
719 return 0;
723 * This function is called periodically (every 200ms) during scanning to
724 * switch from one channel to another.
726 static void
727 ural_next_scan(void *arg)
729 struct ural_softc *sc = arg;
730 struct ieee80211com *ic = &sc->sc_ic;
731 struct ifnet *ifp = &ic->ic_if;
733 if (sc->sc_stopped)
734 return;
736 crit_enter();
738 if (ic->ic_state == IEEE80211_S_SCAN) {
739 lwkt_serialize_enter(ifp->if_serializer);
740 ieee80211_next_scan(ic);
741 lwkt_serialize_exit(ifp->if_serializer);
744 crit_exit();
747 static void
748 ural_task(void *xarg)
750 struct ural_softc *sc = xarg;
751 struct ieee80211com *ic = &sc->sc_ic;
752 struct ifnet *ifp = &ic->ic_if;
753 enum ieee80211_state nstate;
754 struct ieee80211_node *ni;
755 struct mbuf *m;
756 int arg;
758 if (sc->sc_stopped)
759 return;
761 crit_enter();
763 nstate = sc->sc_state;
764 arg = sc->sc_arg;
766 KASSERT(nstate != IEEE80211_S_INIT,
767 ("->INIT state transition should not be defered\n"));
768 ural_set_chan(sc, ic->ic_curchan);
770 switch (sc->sc_state) {
771 case IEEE80211_S_RUN:
772 ni = ic->ic_bss;
774 if (ic->ic_opmode != IEEE80211_M_MONITOR) {
775 ural_update_slot(&ic->ic_if);
776 ural_set_txpreamble(sc);
777 ural_set_basicrates(sc);
778 ural_set_bssid(sc, ni->ni_bssid);
781 if (ic->ic_opmode == IEEE80211_M_HOSTAP ||
782 ic->ic_opmode == IEEE80211_M_IBSS) {
783 lwkt_serialize_enter(ifp->if_serializer);
784 m = ieee80211_beacon_alloc(ic, ni, &sc->sc_bo);
785 lwkt_serialize_exit(ifp->if_serializer);
787 if (m == NULL) {
788 kprintf("%s: could not allocate beacon\n",
789 device_get_nameunit(sc->sc_dev));
790 crit_exit();
791 return;
794 if (ural_tx_bcn(sc, m, ni) != 0) {
795 kprintf("%s: could not send beacon\n",
796 device_get_nameunit(sc->sc_dev));
797 crit_exit();
798 return;
802 /* make tx led blink on tx (controlled by ASIC) */
803 ural_write(sc, RAL_MAC_CSR20, 1);
805 if (ic->ic_opmode != IEEE80211_M_MONITOR)
806 ural_enable_tsf_sync(sc);
808 /* clear statistic registers (STA_CSR0 to STA_CSR10) */
809 ural_read_multi(sc, RAL_STA_CSR0, sc->sta, sizeof(sc->sta));
811 callout_reset(&sc->stats_ch, 4 * hz / 5,
812 ural_stats_timeout, sc);
813 break;
815 case IEEE80211_S_SCAN:
816 callout_reset(&sc->scan_ch, hz / 5, ural_next_scan, sc);
817 break;
819 default:
820 break;
823 lwkt_serialize_enter(ifp->if_serializer);
824 ieee80211_ratectl_newstate(ic, sc->sc_state);
825 sc->sc_newstate(ic, sc->sc_state, arg);
826 lwkt_serialize_exit(ifp->if_serializer);
828 crit_exit();
831 static int
832 ural_newstate(struct ieee80211com *ic, enum ieee80211_state nstate, int arg)
834 struct ifnet *ifp = &ic->ic_if;
835 struct ural_softc *sc = ifp->if_softc;
837 ASSERT_SERIALIZED(ifp->if_serializer);
839 crit_enter();
841 callout_stop(&sc->scan_ch);
842 callout_stop(&sc->stats_ch);
844 /* do it in a process context */
845 sc->sc_state = nstate;
846 sc->sc_arg = arg;
848 lwkt_serialize_exit(ifp->if_serializer);
849 usb_rem_task(sc->sc_udev, &sc->sc_task);
851 if (nstate == IEEE80211_S_INIT) {
852 lwkt_serialize_enter(ifp->if_serializer);
853 ieee80211_ratectl_newstate(ic, nstate);
854 sc->sc_newstate(ic, nstate, arg);
855 } else {
856 usb_add_task(sc->sc_udev, &sc->sc_task, USB_TASKQ_DRIVER);
857 lwkt_serialize_enter(ifp->if_serializer);
860 crit_exit();
861 return 0;
864 /* quickly determine if a given rate is CCK or OFDM */
865 #define RAL_RATE_IS_OFDM(rate) ((rate) >= 12 && (rate) != 22)
867 #define RAL_ACK_SIZE (sizeof(struct ieee80211_frame_ack) + IEEE80211_CRC_LEN)
869 #define RAL_RXTX_TURNAROUND 5 /* us */
872 * This function is only used by the Rx radiotap code.
874 static int
875 ural_rxrate(struct ural_rx_desc *desc)
877 if (le32toh(desc->flags) & RAL_RX_OFDM) {
878 /* reverse function of ural_plcp_signal */
879 switch (desc->rate) {
880 case 0xb: return 12;
881 case 0xf: return 18;
882 case 0xa: return 24;
883 case 0xe: return 36;
884 case 0x9: return 48;
885 case 0xd: return 72;
886 case 0x8: return 96;
887 case 0xc: return 108;
889 } else {
890 if (desc->rate == 10)
891 return 2;
892 if (desc->rate == 20)
893 return 4;
894 if (desc->rate == 55)
895 return 11;
896 if (desc->rate == 110)
897 return 22;
899 return 2; /* should not get there */
902 static void
903 ural_txeof(usbd_xfer_handle xfer, usbd_private_handle priv, usbd_status status)
905 struct ural_tx_data *data = priv;
906 struct ural_softc *sc = data->sc;
907 struct ieee80211_node *ni;
908 struct ifnet *ifp = &sc->sc_ic.ic_if;
910 if (sc->sc_stopped)
911 return;
913 crit_enter();
915 if (status != USBD_NORMAL_COMPLETION) {
916 if (status == USBD_NOT_STARTED || status == USBD_CANCELLED) {
917 crit_exit();
918 return;
921 kprintf("%s: could not transmit buffer: %s\n",
922 device_get_nameunit(sc->sc_dev), usbd_errstr(status));
924 if (status == USBD_STALLED)
925 usbd_clear_endpoint_stall_async(sc->sc_rx_pipeh);
927 ifp->if_oerrors++;
928 crit_exit();
929 return;
932 m_freem(data->m);
933 data->m = NULL;
934 ni = data->ni;
935 data->ni = NULL;
937 sc->tx_queued--;
938 ifp->if_opackets++;
940 DPRINTFN(10, ("tx done\n"));
942 sc->sc_tx_timer = 0;
943 ifp->if_flags &= ~IFF_OACTIVE;
945 lwkt_serialize_enter(ifp->if_serializer);
946 ieee80211_free_node(ni);
947 ifp->if_start(ifp);
948 lwkt_serialize_exit(ifp->if_serializer);
950 crit_exit();
953 static void
954 ural_rxeof(usbd_xfer_handle xfer, usbd_private_handle priv, usbd_status status)
956 struct ural_rx_data *data = priv;
957 struct ural_softc *sc = data->sc;
958 struct ieee80211com *ic = &sc->sc_ic;
959 struct ifnet *ifp = &ic->ic_if;
960 struct ural_rx_desc *desc;
961 struct ieee80211_frame *wh;
962 struct ieee80211_node *ni;
963 struct mbuf *mnew, *m;
964 int len;
966 if (sc->sc_stopped)
967 return;
969 crit_enter();
971 if (status != USBD_NORMAL_COMPLETION) {
972 if (status == USBD_NOT_STARTED || status == USBD_CANCELLED) {
973 crit_exit();
974 return;
977 if (status == USBD_STALLED)
978 usbd_clear_endpoint_stall_async(sc->sc_rx_pipeh);
979 goto skip;
982 usbd_get_xfer_status(xfer, NULL, NULL, &len, NULL);
984 if (len < RAL_RX_DESC_SIZE + IEEE80211_MIN_LEN) {
985 DPRINTF(("%s: xfer too short %d\n", device_get_nameunit(sc->sc_dev),
986 len));
987 ifp->if_ierrors++;
988 goto skip;
991 /* rx descriptor is located at the end */
992 desc = (struct ural_rx_desc *)(data->buf + len - RAL_RX_DESC_SIZE);
994 if ((le32toh(desc->flags) & RAL_RX_PHY_ERROR) ||
995 (le32toh(desc->flags) & RAL_RX_CRC_ERROR)) {
997 * This should not happen since we did not request to receive
998 * those frames when we filled RAL_TXRX_CSR2.
1000 DPRINTFN(5, ("PHY or CRC error\n"));
1001 ifp->if_ierrors++;
1002 goto skip;
1005 mnew = m_getcl(MB_DONTWAIT, MT_DATA, M_PKTHDR);
1006 if (mnew == NULL) {
1007 ifp->if_ierrors++;
1008 goto skip;
1011 m = data->m;
1012 data->m = NULL;
1013 data->buf = NULL;
1015 lwkt_serialize_enter(ifp->if_serializer);
1017 /* finalize mbuf */
1018 m->m_pkthdr.rcvif = ifp;
1019 m->m_pkthdr.len = m->m_len = (le32toh(desc->flags) >> 16) & 0xfff;
1021 if (sc->sc_drvbpf != NULL) {
1022 struct ural_rx_radiotap_header *tap = &sc->sc_rxtap;
1024 tap->wr_flags = IEEE80211_RADIOTAP_F_FCS; /* h/w leaves FCS */
1025 tap->wr_rate = ural_rxrate(desc);
1026 tap->wr_chan_freq = htole16(ic->ic_curchan->ic_freq);
1027 tap->wr_chan_flags = htole16(ic->ic_curchan->ic_flags);
1028 tap->wr_antenna = sc->rx_ant;
1029 tap->wr_antsignal = URAL_RSSI(desc->rssi);
1031 bpf_ptap(sc->sc_drvbpf, m, tap, sc->sc_rxtap_len);
1034 /* trim CRC here so WEP can find its own CRC at the end of packet. */
1035 m_adj(m, -IEEE80211_CRC_LEN);
1037 wh = mtod(m, struct ieee80211_frame *);
1038 ni = ieee80211_find_rxnode(ic, (struct ieee80211_frame_min *)wh);
1040 /* send the frame to the 802.11 layer */
1041 ieee80211_input(ic, m, ni, URAL_RSSI(desc->rssi), 0);
1043 /* node is no longer needed */
1044 ieee80211_free_node(ni);
1046 lwkt_serialize_exit(ifp->if_serializer);
1048 data->m = mnew;
1049 data->buf = mtod(data->m, uint8_t *);
1051 DPRINTFN(15, ("rx done\n"));
1053 skip: /* setup a new transfer */
1054 usbd_setup_xfer(xfer, sc->sc_rx_pipeh, data, data->buf, MCLBYTES,
1055 USBD_SHORT_XFER_OK, USBD_NO_TIMEOUT, ural_rxeof);
1056 usbd_transfer(xfer);
1058 crit_exit();
1061 static uint8_t
1062 ural_plcp_signal(int rate)
1064 switch (rate) {
1065 /* CCK rates (returned values are device-dependent) */
1066 case 2: return 0x0;
1067 case 4: return 0x1;
1068 case 11: return 0x2;
1069 case 22: return 0x3;
1071 /* OFDM rates (cf IEEE Std 802.11a-1999, pp. 14 Table 80) */
1072 case 12: return 0xb;
1073 case 18: return 0xf;
1074 case 24: return 0xa;
1075 case 36: return 0xe;
1076 case 48: return 0x9;
1077 case 72: return 0xd;
1078 case 96: return 0x8;
1079 case 108: return 0xc;
1081 /* unsupported rates (should not get there) */
1082 default: return 0xff;
1086 static void
1087 ural_setup_tx_desc(struct ural_softc *sc, struct ural_tx_desc *desc,
1088 uint32_t flags, int len, int rate)
1090 struct ieee80211com *ic = &sc->sc_ic;
1091 uint16_t plcp_length;
1092 int remainder;
1094 desc->flags = htole32(flags);
1095 desc->flags |= htole32(RAL_TX_NEWSEQ);
1096 desc->flags |= htole32(len << 16);
1098 desc->wme = htole16(RAL_AIFSN(2) | RAL_LOGCWMIN(3) | RAL_LOGCWMAX(5));
1099 desc->wme |= htole16(RAL_IVOFFSET(sizeof (struct ieee80211_frame)));
1101 /* setup PLCP fields */
1102 desc->plcp_signal = ural_plcp_signal(rate);
1103 desc->plcp_service = 4;
1105 len += IEEE80211_CRC_LEN;
1106 if (RAL_RATE_IS_OFDM(rate)) {
1107 desc->flags |= htole32(RAL_TX_OFDM);
1109 plcp_length = len & 0xfff;
1110 desc->plcp_length_hi = plcp_length >> 6;
1111 desc->plcp_length_lo = plcp_length & 0x3f;
1112 } else {
1113 plcp_length = (16 * len + rate - 1) / rate;
1114 if (rate == 22) {
1115 remainder = (16 * len) % 22;
1116 if (remainder != 0 && remainder < 7)
1117 desc->plcp_service |= RAL_PLCP_LENGEXT;
1119 desc->plcp_length_hi = plcp_length >> 8;
1120 desc->plcp_length_lo = plcp_length & 0xff;
1122 if (rate != 2 && (ic->ic_flags & IEEE80211_F_SHPREAMBLE))
1123 desc->plcp_signal |= 0x08;
1126 desc->iv = 0;
1127 desc->eiv = 0;
1130 #define RAL_TX_TIMEOUT 5000
1132 static int
1133 ural_tx_bcn(struct ural_softc *sc, struct mbuf *m0, struct ieee80211_node *ni)
1135 struct ural_tx_desc *desc;
1136 usbd_xfer_handle xfer;
1137 uint8_t cmd = 0;
1138 usbd_status error;
1139 uint8_t *buf;
1140 int xferlen, rate;
1142 rate = IEEE80211_IS_CHAN_5GHZ(ni->ni_chan) ? 12 : 2;
1144 xfer = usbd_alloc_xfer(sc->sc_udev);
1145 if (xfer == NULL)
1146 return ENOMEM;
1148 /* xfer length needs to be a multiple of two! */
1149 xferlen = (RAL_TX_DESC_SIZE + m0->m_pkthdr.len + 1) & ~1;
1151 buf = usbd_alloc_buffer(xfer, xferlen);
1152 if (buf == NULL) {
1153 usbd_free_xfer(xfer);
1154 return ENOMEM;
1157 usbd_setup_xfer(xfer, sc->sc_tx_pipeh, NULL, &cmd, sizeof cmd,
1158 USBD_FORCE_SHORT_XFER, RAL_TX_TIMEOUT, NULL);
1160 error = usbd_sync_transfer(xfer);
1161 if (error != 0) {
1162 usbd_free_xfer(xfer);
1163 return error;
1166 desc = (struct ural_tx_desc *)buf;
1168 m_copydata(m0, 0, m0->m_pkthdr.len, buf + RAL_TX_DESC_SIZE);
1169 ural_setup_tx_desc(sc, desc, RAL_TX_IFS_NEWBACKOFF | RAL_TX_TIMESTAMP,
1170 m0->m_pkthdr.len, rate);
1172 DPRINTFN(10, ("sending beacon frame len=%u rate=%u xfer len=%u\n",
1173 m0->m_pkthdr.len, rate, xferlen));
1175 usbd_setup_xfer(xfer, sc->sc_tx_pipeh, NULL, buf, xferlen,
1176 USBD_FORCE_SHORT_XFER | USBD_NO_COPY, RAL_TX_TIMEOUT, NULL);
1178 error = usbd_sync_transfer(xfer);
1179 usbd_free_xfer(xfer);
1181 return error;
1184 static int
1185 ural_tx_mgt(struct ural_softc *sc, struct mbuf *m0, struct ieee80211_node *ni)
1187 struct ieee80211com *ic = &sc->sc_ic;
1188 struct ifnet *ifp = &ic->ic_if;
1189 struct ural_tx_desc *desc;
1190 struct ural_tx_data *data;
1191 struct ieee80211_frame *wh;
1192 uint32_t flags = 0;
1193 uint16_t dur;
1194 usbd_status error;
1195 int xferlen, rate;
1197 data = &sc->tx_data[0];
1198 desc = (struct ural_tx_desc *)data->buf;
1200 rate = IEEE80211_IS_CHAN_5GHZ(ic->ic_curchan) ? 12 : 2;
1202 data->m = m0;
1203 data->ni = ni;
1205 wh = mtod(m0, struct ieee80211_frame *);
1207 if (!IEEE80211_IS_MULTICAST(wh->i_addr1)) {
1208 flags |= RAL_TX_ACK;
1210 dur = ieee80211_txtime(ni, RAL_ACK_SIZE, rate, ic->ic_flags) +
1211 sc->sc_sifs;
1212 *(uint16_t *)wh->i_dur = htole16(dur);
1214 /* tell hardware to add timestamp for probe responses */
1215 if ((wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK) ==
1216 IEEE80211_FC0_TYPE_MGT &&
1217 (wh->i_fc[0] & IEEE80211_FC0_SUBTYPE_MASK) ==
1218 IEEE80211_FC0_SUBTYPE_PROBE_RESP)
1219 flags |= RAL_TX_TIMESTAMP;
1222 if (sc->sc_drvbpf != NULL) {
1223 struct ural_tx_radiotap_header *tap = &sc->sc_txtap;
1225 tap->wt_flags = 0;
1226 tap->wt_rate = rate;
1227 tap->wt_chan_freq = htole16(ic->ic_curchan->ic_freq);
1228 tap->wt_chan_flags = htole16(ic->ic_curchan->ic_flags);
1229 tap->wt_antenna = sc->tx_ant;
1231 bpf_ptap(sc->sc_drvbpf, m0, tap, sc->sc_txtap_len);
1234 m_copydata(m0, 0, m0->m_pkthdr.len, data->buf + RAL_TX_DESC_SIZE);
1235 ural_setup_tx_desc(sc, desc, flags, m0->m_pkthdr.len, rate);
1237 /* align end on a 2-bytes boundary */
1238 xferlen = (RAL_TX_DESC_SIZE + m0->m_pkthdr.len + 1) & ~1;
1241 * No space left in the last URB to store the extra 2 bytes, force
1242 * sending of another URB.
1244 if ((xferlen % 64) == 0)
1245 xferlen += 2;
1247 DPRINTFN(10, ("sending mgt frame len=%u rate=%u xfer len=%u\n",
1248 m0->m_pkthdr.len, rate, xferlen));
1250 lwkt_serialize_exit(ifp->if_serializer);
1252 usbd_setup_xfer(data->xfer, sc->sc_tx_pipeh, data, data->buf,
1253 xferlen, USBD_FORCE_SHORT_XFER | USBD_NO_COPY, RAL_TX_TIMEOUT,
1254 ural_txeof);
1256 error = usbd_transfer(data->xfer);
1257 if (error != USBD_NORMAL_COMPLETION && error != USBD_IN_PROGRESS) {
1258 m_freem(m0);
1259 data->m = NULL;
1260 data->ni = NULL;
1261 } else {
1262 sc->tx_queued++;
1263 error = 0;
1266 lwkt_serialize_enter(ifp->if_serializer);
1267 return error;
1270 static int
1271 ural_tx_data(struct ural_softc *sc, struct mbuf *m0, struct ieee80211_node *ni)
1273 struct ieee80211com *ic = &sc->sc_ic;
1274 struct ifnet *ifp = &ic->ic_if;
1275 struct ural_tx_desc *desc;
1276 struct ural_tx_data *data;
1277 struct ieee80211_frame *wh;
1278 struct ieee80211_key *k;
1279 uint32_t flags = 0;
1280 uint16_t dur;
1281 usbd_status error;
1282 int xferlen, rate, rate_idx;
1284 wh = mtod(m0, struct ieee80211_frame *);
1286 ieee80211_ratectl_findrate(ni, m0->m_pkthdr.len, &rate_idx, 1);
1287 rate = IEEE80211_RS_RATE(&ni->ni_rates, rate_idx);
1289 if (wh->i_fc[1] & IEEE80211_FC1_WEP) {
1290 k = ieee80211_crypto_encap(ic, ni, m0);
1291 if (k == NULL) {
1292 m_freem(m0);
1293 return ENOBUFS;
1296 /* packet header may have moved, reset our local pointer */
1297 wh = mtod(m0, struct ieee80211_frame *);
1300 data = &sc->tx_data[0];
1301 desc = (struct ural_tx_desc *)data->buf;
1303 data->m = m0;
1304 data->ni = ni;
1306 if (!IEEE80211_IS_MULTICAST(wh->i_addr1)) {
1307 flags |= RAL_TX_ACK;
1308 flags |= RAL_TX_RETRY(sc->sc_tx_retries);
1310 dur = ieee80211_txtime(ni, RAL_ACK_SIZE,
1311 ieee80211_ack_rate(ni, rate), ic->ic_flags) +
1312 sc->sc_sifs;
1313 *(uint16_t *)wh->i_dur = htole16(dur);
1316 if (sc->sc_drvbpf != NULL) {
1317 struct ural_tx_radiotap_header *tap = &sc->sc_txtap;
1319 tap->wt_flags = 0;
1320 tap->wt_rate = rate;
1321 tap->wt_chan_freq = htole16(ic->ic_curchan->ic_freq);
1322 tap->wt_chan_flags = htole16(ic->ic_curchan->ic_flags);
1323 tap->wt_antenna = sc->tx_ant;
1325 bpf_ptap(sc->sc_drvbpf, m0, tap, sc->sc_txtap_len);
1328 m_copydata(m0, 0, m0->m_pkthdr.len, data->buf + RAL_TX_DESC_SIZE);
1329 ural_setup_tx_desc(sc, desc, flags, m0->m_pkthdr.len, rate);
1331 /* align end on a 2-bytes boundary */
1332 xferlen = (RAL_TX_DESC_SIZE + m0->m_pkthdr.len + 1) & ~1;
1335 * No space left in the last URB to store the extra 2 bytes, force
1336 * sending of another URB.
1338 if ((xferlen % 64) == 0)
1339 xferlen += 2;
1341 DPRINTFN(10, ("sending data frame len=%u rate=%u xfer len=%u\n",
1342 m0->m_pkthdr.len, rate, xferlen));
1344 lwkt_serialize_exit(ifp->if_serializer);
1346 usbd_setup_xfer(data->xfer, sc->sc_tx_pipeh, data, data->buf,
1347 xferlen, USBD_FORCE_SHORT_XFER | USBD_NO_COPY, RAL_TX_TIMEOUT,
1348 ural_txeof);
1350 error = usbd_transfer(data->xfer);
1351 if (error != USBD_NORMAL_COMPLETION && error != USBD_IN_PROGRESS) {
1352 m_freem(m0);
1353 data->m = NULL;
1354 data->ni = NULL;
1355 } else {
1356 sc->tx_queued++;
1357 error = 0;
1360 lwkt_serialize_enter(ifp->if_serializer);
1361 return error;
1364 static void
1365 ural_start(struct ifnet *ifp)
1367 struct ural_softc *sc = ifp->if_softc;
1368 struct ieee80211com *ic = &sc->sc_ic;
1370 ASSERT_SERIALIZED(ifp->if_serializer);
1372 if (sc->sc_stopped) {
1373 ifq_purge(&ifp->if_snd);
1374 return;
1377 crit_enter();
1379 if ((ifp->if_flags & (IFF_OACTIVE | IFF_RUNNING)) != IFF_RUNNING) {
1380 crit_exit();
1381 return;
1384 for (;;) {
1385 struct ieee80211_node *ni;
1386 struct mbuf *m0;
1388 if (!IF_QEMPTY(&ic->ic_mgtq)) {
1389 if (sc->tx_queued >= RAL_TX_LIST_COUNT) {
1390 ifp->if_flags |= IFF_OACTIVE;
1391 break;
1393 IF_DEQUEUE(&ic->ic_mgtq, m0);
1395 ni = (struct ieee80211_node *)m0->m_pkthdr.rcvif;
1396 m0->m_pkthdr.rcvif = NULL;
1398 if (ic->ic_rawbpf != NULL)
1399 bpf_mtap(ic->ic_rawbpf, m0);
1401 if (ural_tx_mgt(sc, m0, ni) != 0) {
1402 ieee80211_free_node(ni);
1403 break;
1405 } else {
1406 struct ether_header *eh;
1408 if (ic->ic_state != IEEE80211_S_RUN) {
1409 ifq_purge(&ifp->if_snd);
1410 break;
1413 if (sc->tx_queued >= RAL_TX_LIST_COUNT) {
1414 ifp->if_flags |= IFF_OACTIVE;
1415 break;
1418 m0 = ifq_dequeue(&ifp->if_snd, NULL);
1419 if (m0 == NULL)
1420 break;
1422 if (m0->m_len < sizeof (struct ether_header)) {
1423 m0 = m_pullup(m0, sizeof (struct ether_header));
1424 if (m0 == NULL) {
1425 ifp->if_oerrors++;
1426 continue;
1430 eh = mtod(m0, struct ether_header *);
1431 ni = ieee80211_find_txnode(ic, eh->ether_dhost);
1432 if (ni == NULL) {
1433 m_freem(m0);
1434 continue;
1436 BPF_MTAP(ifp, m0);
1438 m0 = ieee80211_encap(ic, m0, ni);
1439 if (m0 == NULL) {
1440 ieee80211_free_node(ni);
1441 continue;
1444 if (ic->ic_rawbpf != NULL)
1445 bpf_mtap(ic->ic_rawbpf, m0);
1447 if (ural_tx_data(sc, m0, ni) != 0) {
1448 ieee80211_free_node(ni);
1449 ifp->if_oerrors++;
1450 break;
1454 sc->sc_tx_timer = 5;
1455 ifp->if_timer = 1;
1458 crit_exit();
1461 static void
1462 ural_watchdog(struct ifnet *ifp)
1464 struct ural_softc *sc = ifp->if_softc;
1465 struct ieee80211com *ic = &sc->sc_ic;
1467 ASSERT_SERIALIZED(ifp->if_serializer);
1469 crit_enter();
1471 ifp->if_timer = 0;
1473 if (sc->sc_tx_timer > 0) {
1474 if (--sc->sc_tx_timer == 0) {
1475 device_printf(sc->sc_dev, "device timeout\n");
1476 /*ural_init(sc); XXX needs a process context! */
1477 ifp->if_oerrors++;
1479 crit_exit();
1480 return;
1482 ifp->if_timer = 1;
1484 ieee80211_watchdog(ic);
1486 crit_exit();
1490 * This function allows for fast channel switching in monitor mode (used by
1491 * net-mgmt/kismet). In IBSS mode, we must explicitly reset the interface to
1492 * generate a new beacon frame.
1494 static int
1495 ural_reset(struct ifnet *ifp)
1497 struct ural_softc *sc = ifp->if_softc;
1498 struct ieee80211com *ic = &sc->sc_ic;
1500 ASSERT_SERIALIZED(ifp->if_serializer);
1502 if (ic->ic_opmode != IEEE80211_M_MONITOR)
1503 return ENETRESET;
1505 crit_enter();
1507 lwkt_serialize_exit(ifp->if_serializer);
1508 ural_set_chan(sc, ic->ic_curchan);
1509 lwkt_serialize_enter(ifp->if_serializer);
1511 crit_exit();
1513 return 0;
1516 static int
1517 ural_ioctl(struct ifnet *ifp, u_long cmd, caddr_t data, struct ucred *cr)
1519 struct ural_softc *sc = ifp->if_softc;
1520 struct ieee80211com *ic = &sc->sc_ic;
1521 int error = 0;
1523 ASSERT_SERIALIZED(ifp->if_serializer);
1525 crit_enter();
1527 switch (cmd) {
1528 case SIOCSIFFLAGS:
1529 if (ifp->if_flags & IFF_UP) {
1530 if (ifp->if_flags & IFF_RUNNING) {
1531 lwkt_serialize_exit(ifp->if_serializer);
1532 ural_update_promisc(sc);
1533 lwkt_serialize_enter(ifp->if_serializer);
1534 } else {
1535 ural_init(sc);
1537 } else {
1538 if (ifp->if_flags & IFF_RUNNING)
1539 ural_stop(sc);
1541 break;
1543 default:
1544 error = ieee80211_ioctl(ic, cmd, data, cr);
1547 if (error == ENETRESET) {
1548 if ((ifp->if_flags & (IFF_UP | IFF_RUNNING)) ==
1549 (IFF_UP | IFF_RUNNING) &&
1550 ic->ic_roaming != IEEE80211_ROAMING_MANUAL)
1551 ural_init(sc);
1552 error = 0;
1555 crit_exit();
1556 return error;
1559 static void
1560 ural_set_testmode(struct ural_softc *sc)
1562 usb_device_request_t req;
1563 usbd_status error;
1565 req.bmRequestType = UT_WRITE_VENDOR_DEVICE;
1566 req.bRequest = RAL_VENDOR_REQUEST;
1567 USETW(req.wValue, 4);
1568 USETW(req.wIndex, 1);
1569 USETW(req.wLength, 0);
1571 error = usbd_do_request(sc->sc_udev, &req, NULL);
1572 if (error != 0) {
1573 kprintf("%s: could not set test mode: %s\n",
1574 device_get_nameunit(sc->sc_dev), usbd_errstr(error));
1578 static void
1579 ural_eeprom_read(struct ural_softc *sc, uint16_t addr, void *buf, int len)
1581 usb_device_request_t req;
1582 usbd_status error;
1584 req.bmRequestType = UT_READ_VENDOR_DEVICE;
1585 req.bRequest = RAL_READ_EEPROM;
1586 USETW(req.wValue, 0);
1587 USETW(req.wIndex, addr);
1588 USETW(req.wLength, len);
1590 error = usbd_do_request(sc->sc_udev, &req, buf);
1591 if (error != 0) {
1592 kprintf("%s: could not read EEPROM: %s\n",
1593 device_get_nameunit(sc->sc_dev), usbd_errstr(error));
1597 static uint16_t
1598 ural_read(struct ural_softc *sc, uint16_t reg)
1600 usb_device_request_t req;
1601 usbd_status error;
1602 uint16_t val;
1604 req.bmRequestType = UT_READ_VENDOR_DEVICE;
1605 req.bRequest = RAL_READ_MAC;
1606 USETW(req.wValue, 0);
1607 USETW(req.wIndex, reg);
1608 USETW(req.wLength, sizeof (uint16_t));
1610 error = usbd_do_request(sc->sc_udev, &req, &val);
1611 if (error != 0) {
1612 kprintf("%s: could not read MAC register: %s\n",
1613 device_get_nameunit(sc->sc_dev), usbd_errstr(error));
1614 return 0;
1617 return le16toh(val);
1620 static void
1621 ural_read_multi(struct ural_softc *sc, uint16_t reg, void *buf, int len)
1623 usb_device_request_t req;
1624 usbd_status error;
1626 req.bmRequestType = UT_READ_VENDOR_DEVICE;
1627 req.bRequest = RAL_READ_MULTI_MAC;
1628 USETW(req.wValue, 0);
1629 USETW(req.wIndex, reg);
1630 USETW(req.wLength, len);
1632 error = usbd_do_request(sc->sc_udev, &req, buf);
1633 if (error != 0) {
1634 kprintf("%s: could not read MAC register: %s\n",
1635 device_get_nameunit(sc->sc_dev), usbd_errstr(error));
1639 static void
1640 ural_write(struct ural_softc *sc, uint16_t reg, uint16_t val)
1642 usb_device_request_t req;
1643 usbd_status error;
1645 req.bmRequestType = UT_WRITE_VENDOR_DEVICE;
1646 req.bRequest = RAL_WRITE_MAC;
1647 USETW(req.wValue, val);
1648 USETW(req.wIndex, reg);
1649 USETW(req.wLength, 0);
1651 error = usbd_do_request(sc->sc_udev, &req, NULL);
1652 if (error != 0) {
1653 kprintf("%s: could not write MAC register: %s\n",
1654 device_get_nameunit(sc->sc_dev), usbd_errstr(error));
1658 static void
1659 ural_write_multi(struct ural_softc *sc, uint16_t reg, void *buf, int len)
1661 usb_device_request_t req;
1662 usbd_status error;
1664 req.bmRequestType = UT_WRITE_VENDOR_DEVICE;
1665 req.bRequest = RAL_WRITE_MULTI_MAC;
1666 USETW(req.wValue, 0);
1667 USETW(req.wIndex, reg);
1668 USETW(req.wLength, len);
1670 error = usbd_do_request(sc->sc_udev, &req, buf);
1671 if (error != 0) {
1672 kprintf("%s: could not write MAC register: %s\n",
1673 device_get_nameunit(sc->sc_dev), usbd_errstr(error));
1677 static void
1678 ural_bbp_write(struct ural_softc *sc, uint8_t reg, uint8_t val)
1680 uint16_t tmp;
1681 int ntries;
1683 for (ntries = 0; ntries < 5; ntries++) {
1684 if (!(ural_read(sc, RAL_PHY_CSR8) & RAL_BBP_BUSY))
1685 break;
1687 if (ntries == 5) {
1688 kprintf("%s: could not write to BBP\n", device_get_nameunit(sc->sc_dev));
1689 return;
1692 tmp = reg << 8 | val;
1693 ural_write(sc, RAL_PHY_CSR7, tmp);
1696 static uint8_t
1697 ural_bbp_read(struct ural_softc *sc, uint8_t reg)
1699 uint16_t val;
1700 int ntries;
1702 val = RAL_BBP_WRITE | reg << 8;
1703 ural_write(sc, RAL_PHY_CSR7, val);
1705 for (ntries = 0; ntries < 5; ntries++) {
1706 if (!(ural_read(sc, RAL_PHY_CSR8) & RAL_BBP_BUSY))
1707 break;
1709 if (ntries == 5) {
1710 kprintf("%s: could not read BBP\n", device_get_nameunit(sc->sc_dev));
1711 return 0;
1714 return ural_read(sc, RAL_PHY_CSR7) & 0xff;
1717 static void
1718 ural_rf_write(struct ural_softc *sc, uint8_t reg, uint32_t val)
1720 uint32_t tmp;
1721 int ntries;
1723 for (ntries = 0; ntries < 5; ntries++) {
1724 if (!(ural_read(sc, RAL_PHY_CSR10) & RAL_RF_LOBUSY))
1725 break;
1727 if (ntries == 5) {
1728 kprintf("%s: could not write to RF\n", device_get_nameunit(sc->sc_dev));
1729 return;
1732 tmp = RAL_RF_BUSY | RAL_RF_20BIT | (val & 0xfffff) << 2 | (reg & 0x3);
1733 ural_write(sc, RAL_PHY_CSR9, tmp & 0xffff);
1734 ural_write(sc, RAL_PHY_CSR10, tmp >> 16);
1736 /* remember last written value in sc */
1737 sc->rf_regs[reg] = val;
1739 DPRINTFN(15, ("RF R[%u] <- 0x%05x\n", reg & 0x3, val & 0xfffff));
1742 static void
1743 ural_set_chan(struct ural_softc *sc, struct ieee80211_channel *c)
1745 struct ieee80211com *ic = &sc->sc_ic;
1746 uint8_t power, tmp;
1747 u_int i, chan;
1749 chan = ieee80211_chan2ieee(ic, c);
1750 if (chan == 0 || chan == IEEE80211_CHAN_ANY)
1751 return;
1753 if (IEEE80211_IS_CHAN_2GHZ(c))
1754 power = min(sc->txpow[chan - 1], 31);
1755 else
1756 power = 31;
1758 /* adjust txpower using ifconfig settings */
1759 power -= (100 - ic->ic_txpowlimit) / 8;
1761 DPRINTFN(2, ("setting channel to %u, txpower to %u\n", chan, power));
1763 switch (sc->rf_rev) {
1764 case RAL_RF_2522:
1765 ural_rf_write(sc, RAL_RF1, 0x00814);
1766 ural_rf_write(sc, RAL_RF2, ural_rf2522_r2[chan - 1]);
1767 ural_rf_write(sc, RAL_RF3, power << 7 | 0x00040);
1768 break;
1770 case RAL_RF_2523:
1771 ural_rf_write(sc, RAL_RF1, 0x08804);
1772 ural_rf_write(sc, RAL_RF2, ural_rf2523_r2[chan - 1]);
1773 ural_rf_write(sc, RAL_RF3, power << 7 | 0x38044);
1774 ural_rf_write(sc, RAL_RF4, (chan == 14) ? 0x00280 : 0x00286);
1775 break;
1777 case RAL_RF_2524:
1778 ural_rf_write(sc, RAL_RF1, 0x0c808);
1779 ural_rf_write(sc, RAL_RF2, ural_rf2524_r2[chan - 1]);
1780 ural_rf_write(sc, RAL_RF3, power << 7 | 0x00040);
1781 ural_rf_write(sc, RAL_RF4, (chan == 14) ? 0x00280 : 0x00286);
1782 break;
1784 case RAL_RF_2525:
1785 ural_rf_write(sc, RAL_RF1, 0x08808);
1786 ural_rf_write(sc, RAL_RF2, ural_rf2525_hi_r2[chan - 1]);
1787 ural_rf_write(sc, RAL_RF3, power << 7 | 0x18044);
1788 ural_rf_write(sc, RAL_RF4, (chan == 14) ? 0x00280 : 0x00286);
1790 ural_rf_write(sc, RAL_RF1, 0x08808);
1791 ural_rf_write(sc, RAL_RF2, ural_rf2525_r2[chan - 1]);
1792 ural_rf_write(sc, RAL_RF3, power << 7 | 0x18044);
1793 ural_rf_write(sc, RAL_RF4, (chan == 14) ? 0x00280 : 0x00286);
1794 break;
1796 case RAL_RF_2525E:
1797 ural_rf_write(sc, RAL_RF1, 0x08808);
1798 ural_rf_write(sc, RAL_RF2, ural_rf2525e_r2[chan - 1]);
1799 ural_rf_write(sc, RAL_RF3, power << 7 | 0x18044);
1800 ural_rf_write(sc, RAL_RF4, (chan == 14) ? 0x00286 : 0x00282);
1801 break;
1803 case RAL_RF_2526:
1804 ural_rf_write(sc, RAL_RF2, ural_rf2526_hi_r2[chan - 1]);
1805 ural_rf_write(sc, RAL_RF4, (chan & 1) ? 0x00386 : 0x00381);
1806 ural_rf_write(sc, RAL_RF1, 0x08804);
1808 ural_rf_write(sc, RAL_RF2, ural_rf2526_r2[chan - 1]);
1809 ural_rf_write(sc, RAL_RF3, power << 7 | 0x18044);
1810 ural_rf_write(sc, RAL_RF4, (chan & 1) ? 0x00386 : 0x00381);
1811 break;
1813 /* dual-band RF */
1814 case RAL_RF_5222:
1815 for (i = 0; ural_rf5222[i].chan != chan; i++)
1816 ; /* EMPTY */
1818 ural_rf_write(sc, RAL_RF1, ural_rf5222[i].r1);
1819 ural_rf_write(sc, RAL_RF2, ural_rf5222[i].r2);
1820 ural_rf_write(sc, RAL_RF3, power << 7 | 0x00040);
1821 ural_rf_write(sc, RAL_RF4, ural_rf5222[i].r4);
1822 break;
1825 if (ic->ic_opmode != IEEE80211_M_MONITOR &&
1826 ic->ic_state != IEEE80211_S_SCAN) {
1827 /* set Japan filter bit for channel 14 */
1828 tmp = ural_bbp_read(sc, 70);
1830 tmp &= ~RAL_JAPAN_FILTER;
1831 if (chan == 14)
1832 tmp |= RAL_JAPAN_FILTER;
1834 ural_bbp_write(sc, 70, tmp);
1836 /* clear CRC errors */
1837 ural_read(sc, RAL_STA_CSR0);
1839 DELAY(10000);
1840 ural_disable_rf_tune(sc);
1843 sc->sc_sifs = IEEE80211_IS_CHAN_5GHZ(c) ? IEEE80211_DUR_OFDM_SIFS
1844 : IEEE80211_DUR_SIFS;
1848 * Disable RF auto-tuning.
1850 static void
1851 ural_disable_rf_tune(struct ural_softc *sc)
1853 uint32_t tmp;
1855 if (sc->rf_rev != RAL_RF_2523) {
1856 tmp = sc->rf_regs[RAL_RF1] & ~RAL_RF1_AUTOTUNE;
1857 ural_rf_write(sc, RAL_RF1, tmp);
1860 tmp = sc->rf_regs[RAL_RF3] & ~RAL_RF3_AUTOTUNE;
1861 ural_rf_write(sc, RAL_RF3, tmp);
1863 DPRINTFN(2, ("disabling RF autotune\n"));
1867 * Refer to IEEE Std 802.11-1999 pp. 123 for more information on TSF
1868 * synchronization.
1870 static void
1871 ural_enable_tsf_sync(struct ural_softc *sc)
1873 struct ieee80211com *ic = &sc->sc_ic;
1874 uint16_t logcwmin, preload, tmp;
1876 /* first, disable TSF synchronization */
1877 ural_write(sc, RAL_TXRX_CSR19, 0);
1879 tmp = (16 * ic->ic_bss->ni_intval) << 4;
1880 ural_write(sc, RAL_TXRX_CSR18, tmp);
1882 logcwmin = (ic->ic_opmode == IEEE80211_M_IBSS) ? 2 : 0;
1883 preload = (ic->ic_opmode == IEEE80211_M_IBSS) ? 320 : 6;
1884 tmp = logcwmin << 12 | preload;
1885 ural_write(sc, RAL_TXRX_CSR20, tmp);
1887 /* finally, enable TSF synchronization */
1888 tmp = RAL_ENABLE_TSF | RAL_ENABLE_TBCN;
1889 if (ic->ic_opmode == IEEE80211_M_STA)
1890 tmp |= RAL_ENABLE_TSF_SYNC(1);
1891 else
1892 tmp |= RAL_ENABLE_TSF_SYNC(2) | RAL_ENABLE_BEACON_GENERATOR;
1893 ural_write(sc, RAL_TXRX_CSR19, tmp);
1895 DPRINTF(("enabling TSF synchronization\n"));
1898 static void
1899 ural_update_slot(struct ifnet *ifp)
1901 struct ural_softc *sc = ifp->if_softc;
1902 struct ieee80211com *ic = &sc->sc_ic;
1903 uint16_t slottime, sifs, eifs;
1905 slottime = (ic->ic_flags & IEEE80211_F_SHSLOT) ? 9 : 20;
1908 * These settings may sound a bit inconsistent but this is what the
1909 * reference driver does.
1911 if (ic->ic_curmode == IEEE80211_MODE_11B) {
1912 sifs = 16 - RAL_RXTX_TURNAROUND;
1913 eifs = 364;
1914 } else {
1915 sifs = 10 - RAL_RXTX_TURNAROUND;
1916 eifs = 64;
1919 ural_write(sc, RAL_MAC_CSR10, slottime);
1920 ural_write(sc, RAL_MAC_CSR11, sifs);
1921 ural_write(sc, RAL_MAC_CSR12, eifs);
1924 static void
1925 ural_set_txpreamble(struct ural_softc *sc)
1927 uint16_t tmp;
1929 tmp = ural_read(sc, RAL_TXRX_CSR10);
1931 tmp &= ~RAL_SHORT_PREAMBLE;
1932 if (sc->sc_ic.ic_flags & IEEE80211_F_SHPREAMBLE)
1933 tmp |= RAL_SHORT_PREAMBLE;
1935 ural_write(sc, RAL_TXRX_CSR10, tmp);
1938 static void
1939 ural_set_basicrates(struct ural_softc *sc)
1941 struct ieee80211com *ic = &sc->sc_ic;
1943 /* update basic rate set */
1944 if (ic->ic_curmode == IEEE80211_MODE_11B) {
1945 /* 11b basic rates: 1, 2Mbps */
1946 ural_write(sc, RAL_TXRX_CSR11, 0x3);
1947 } else if (IEEE80211_IS_CHAN_5GHZ(ic->ic_bss->ni_chan)) {
1948 /* 11a basic rates: 6, 12, 24Mbps */
1949 ural_write(sc, RAL_TXRX_CSR11, 0x150);
1950 } else {
1951 /* 11g basic rates: 1, 2, 5.5, 11, 6, 12, 24Mbps */
1952 ural_write(sc, RAL_TXRX_CSR11, 0x15f);
1956 static void
1957 ural_set_bssid(struct ural_softc *sc, uint8_t *bssid)
1959 uint16_t tmp;
1961 tmp = bssid[0] | bssid[1] << 8;
1962 ural_write(sc, RAL_MAC_CSR5, tmp);
1964 tmp = bssid[2] | bssid[3] << 8;
1965 ural_write(sc, RAL_MAC_CSR6, tmp);
1967 tmp = bssid[4] | bssid[5] << 8;
1968 ural_write(sc, RAL_MAC_CSR7, tmp);
1970 DPRINTF(("setting BSSID to %6D\n", bssid, ":"));
1973 static void
1974 ural_set_macaddr(struct ural_softc *sc, uint8_t *addr)
1976 uint16_t tmp;
1978 tmp = addr[0] | addr[1] << 8;
1979 ural_write(sc, RAL_MAC_CSR2, tmp);
1981 tmp = addr[2] | addr[3] << 8;
1982 ural_write(sc, RAL_MAC_CSR3, tmp);
1984 tmp = addr[4] | addr[5] << 8;
1985 ural_write(sc, RAL_MAC_CSR4, tmp);
1987 DPRINTF(("setting MAC address to %6D\n", addr, ":"));
1990 static void
1991 ural_update_promisc(struct ural_softc *sc)
1993 struct ifnet *ifp = &sc->sc_ic.ic_if;
1994 uint32_t tmp;
1996 tmp = ural_read(sc, RAL_TXRX_CSR2);
1998 tmp &= ~RAL_DROP_NOT_TO_ME;
1999 if (!(ifp->if_flags & IFF_PROMISC))
2000 tmp |= RAL_DROP_NOT_TO_ME;
2002 ural_write(sc, RAL_TXRX_CSR2, tmp);
2004 DPRINTF(("%s promiscuous mode\n", (ifp->if_flags & IFF_PROMISC) ?
2005 "entering" : "leaving"));
2008 static const char *
2009 ural_get_rf(int rev)
2011 switch (rev) {
2012 case RAL_RF_2522: return "RT2522";
2013 case RAL_RF_2523: return "RT2523";
2014 case RAL_RF_2524: return "RT2524";
2015 case RAL_RF_2525: return "RT2525";
2016 case RAL_RF_2525E: return "RT2525e";
2017 case RAL_RF_2526: return "RT2526";
2018 case RAL_RF_5222: return "RT5222";
2019 default: return "unknown";
2023 static void
2024 ural_read_eeprom(struct ural_softc *sc)
2026 struct ieee80211com *ic = &sc->sc_ic;
2027 uint16_t val;
2029 ural_eeprom_read(sc, RAL_EEPROM_CONFIG0, &val, 2);
2030 val = le16toh(val);
2031 sc->rf_rev = (val >> 11) & 0x7;
2032 sc->hw_radio = (val >> 10) & 0x1;
2033 sc->led_mode = (val >> 6) & 0x7;
2034 sc->rx_ant = (val >> 4) & 0x3;
2035 sc->tx_ant = (val >> 2) & 0x3;
2036 sc->nb_ant = val & 0x3;
2038 /* read MAC address */
2039 ural_eeprom_read(sc, RAL_EEPROM_ADDRESS, ic->ic_myaddr, 6);
2041 /* read default values for BBP registers */
2042 ural_eeprom_read(sc, RAL_EEPROM_BBP_BASE, sc->bbp_prom, 2 * 16);
2044 /* read Tx power for all b/g channels */
2045 ural_eeprom_read(sc, RAL_EEPROM_TXPOWER, sc->txpow, 14);
2048 static int
2049 ural_bbp_init(struct ural_softc *sc)
2051 #define N(a) (sizeof (a) / sizeof ((a)[0]))
2052 int i, ntries;
2054 /* wait for BBP to be ready */
2055 for (ntries = 0; ntries < 100; ntries++) {
2056 if (ural_bbp_read(sc, RAL_BBP_VERSION) != 0)
2057 break;
2058 DELAY(1000);
2060 if (ntries == 100) {
2061 device_printf(sc->sc_dev, "timeout waiting for BBP\n");
2062 return EIO;
2065 /* initialize BBP registers to default values */
2066 for (i = 0; i < N(ural_def_bbp); i++)
2067 ural_bbp_write(sc, ural_def_bbp[i].reg, ural_def_bbp[i].val);
2069 #if 0
2070 /* initialize BBP registers to values stored in EEPROM */
2071 for (i = 0; i < 16; i++) {
2072 if (sc->bbp_prom[i].reg == 0xff)
2073 continue;
2074 ural_bbp_write(sc, sc->bbp_prom[i].reg, sc->bbp_prom[i].val);
2076 #endif
2078 return 0;
2079 #undef N
2082 static void
2083 ural_set_txantenna(struct ural_softc *sc, int antenna)
2085 uint16_t tmp;
2086 uint8_t tx;
2088 tx = ural_bbp_read(sc, RAL_BBP_TX) & ~RAL_BBP_ANTMASK;
2089 if (antenna == 1)
2090 tx |= RAL_BBP_ANTA;
2091 else if (antenna == 2)
2092 tx |= RAL_BBP_ANTB;
2093 else
2094 tx |= RAL_BBP_DIVERSITY;
2096 /* need to force I/Q flip for RF 2525e, 2526 and 5222 */
2097 if (sc->rf_rev == RAL_RF_2525E || sc->rf_rev == RAL_RF_2526 ||
2098 sc->rf_rev == RAL_RF_5222)
2099 tx |= RAL_BBP_FLIPIQ;
2101 ural_bbp_write(sc, RAL_BBP_TX, tx);
2103 /* update values in PHY_CSR5 and PHY_CSR6 */
2104 tmp = ural_read(sc, RAL_PHY_CSR5) & ~0x7;
2105 ural_write(sc, RAL_PHY_CSR5, tmp | (tx & 0x7));
2107 tmp = ural_read(sc, RAL_PHY_CSR6) & ~0x7;
2108 ural_write(sc, RAL_PHY_CSR6, tmp | (tx & 0x7));
2111 static void
2112 ural_set_rxantenna(struct ural_softc *sc, int antenna)
2114 uint8_t rx;
2116 rx = ural_bbp_read(sc, RAL_BBP_RX) & ~RAL_BBP_ANTMASK;
2117 if (antenna == 1)
2118 rx |= RAL_BBP_ANTA;
2119 else if (antenna == 2)
2120 rx |= RAL_BBP_ANTB;
2121 else
2122 rx |= RAL_BBP_DIVERSITY;
2124 /* need to force no I/Q flip for RF 2525e and 2526 */
2125 if (sc->rf_rev == RAL_RF_2525E || sc->rf_rev == RAL_RF_2526)
2126 rx &= ~RAL_BBP_FLIPIQ;
2128 ural_bbp_write(sc, RAL_BBP_RX, rx);
2131 static void
2132 ural_init(void *priv)
2134 #define N(a) (sizeof (a) / sizeof ((a)[0]))
2135 struct ural_softc *sc = priv;
2136 struct ieee80211com *ic = &sc->sc_ic;
2137 struct ifnet *ifp = &ic->ic_if;
2138 struct ural_rx_data *data;
2139 uint16_t tmp;
2140 usbd_status usb_err;
2141 int i, ntries, error;
2143 ASSERT_SERIALIZED(ifp->if_serializer);
2145 crit_enter();
2147 lwkt_serialize_exit(ifp->if_serializer);
2148 ural_set_testmode(sc);
2149 ural_write(sc, 0x308, 0x00f0); /* XXX magic */
2150 lwkt_serialize_enter(ifp->if_serializer);
2152 ural_stop(sc);
2153 sc->sc_stopped = 0;
2155 lwkt_serialize_exit(ifp->if_serializer);
2157 /* initialize MAC registers to default values */
2158 for (i = 0; i < N(ural_def_mac); i++)
2159 ural_write(sc, ural_def_mac[i].reg, ural_def_mac[i].val);
2161 /* wait for BBP and RF to wake up (this can take a long time!) */
2162 for (ntries = 0; ntries < 100; ntries++) {
2163 tmp = ural_read(sc, RAL_MAC_CSR17);
2164 if ((tmp & (RAL_BBP_AWAKE | RAL_RF_AWAKE)) ==
2165 (RAL_BBP_AWAKE | RAL_RF_AWAKE))
2166 break;
2167 DELAY(1000);
2169 if (ntries == 100) {
2170 kprintf("%s: timeout waiting for BBP/RF to wakeup\n",
2171 device_get_nameunit(sc->sc_dev));
2172 error = ETIMEDOUT;
2173 goto fail;
2176 /* we're ready! */
2177 ural_write(sc, RAL_MAC_CSR1, RAL_HOST_READY);
2179 /* set basic rate set (will be updated later) */
2180 ural_write(sc, RAL_TXRX_CSR11, 0x15f);
2182 error = ural_bbp_init(sc);
2183 if (error)
2184 goto fail;
2186 /* set default BSS channel */
2187 ural_set_chan(sc, ic->ic_curchan);
2189 /* clear statistic registers (STA_CSR0 to STA_CSR10) */
2190 ural_read_multi(sc, RAL_STA_CSR0, sc->sta, sizeof sc->sta);
2192 ural_set_txantenna(sc, sc->tx_ant);
2193 ural_set_rxantenna(sc, sc->rx_ant);
2195 IEEE80211_ADDR_COPY(ic->ic_myaddr, IF_LLADDR(ifp));
2196 ural_set_macaddr(sc, ic->ic_myaddr);
2199 * Allocate xfer for AMRR statistics requests.
2201 sc->stats_xfer = usbd_alloc_xfer(sc->sc_udev);
2202 if (sc->stats_xfer == NULL) {
2203 kprintf("%s: could not allocate AMRR xfer\n",
2204 device_get_nameunit(sc->sc_dev));
2205 error = ENOMEM;
2206 goto fail;
2210 * Open Tx and Rx USB bulk pipes.
2212 usb_err = usbd_open_pipe(sc->sc_iface, sc->sc_tx_no, USBD_EXCLUSIVE_USE,
2213 &sc->sc_tx_pipeh);
2214 if (usb_err != 0) {
2215 kprintf("%s: could not open Tx pipe: %s\n",
2216 device_get_nameunit(sc->sc_dev), usbd_errstr(usb_err));
2217 error = ENOMEM;
2218 goto fail;
2221 usb_err = usbd_open_pipe(sc->sc_iface, sc->sc_rx_no, USBD_EXCLUSIVE_USE,
2222 &sc->sc_rx_pipeh);
2223 if (usb_err != 0) {
2224 kprintf("%s: could not open Rx pipe: %s\n",
2225 device_get_nameunit(sc->sc_dev), usbd_errstr(usb_err));
2226 error = ENOMEM;
2227 goto fail;
2231 * Allocate Tx and Rx xfer queues.
2233 error = ural_alloc_tx_list(sc);
2234 if (error) {
2235 kprintf("%s: could not allocate Tx list\n",
2236 device_get_nameunit(sc->sc_dev));
2237 goto fail;
2240 error = ural_alloc_rx_list(sc);
2241 if (error) {
2242 kprintf("%s: could not allocate Rx list\n",
2243 device_get_nameunit(sc->sc_dev));
2244 goto fail;
2248 * Start up the receive pipe.
2250 for (i = 0; i < RAL_RX_LIST_COUNT; i++) {
2251 data = &sc->rx_data[i];
2253 usbd_setup_xfer(data->xfer, sc->sc_rx_pipeh, data, data->buf,
2254 MCLBYTES, USBD_SHORT_XFER_OK, USBD_NO_TIMEOUT, ural_rxeof);
2255 usbd_transfer(data->xfer);
2258 /* kick Rx */
2259 tmp = RAL_DROP_PHY | RAL_DROP_CRC;
2260 if (ic->ic_opmode != IEEE80211_M_MONITOR) {
2261 tmp |= RAL_DROP_CTL | RAL_DROP_BAD_VERSION;
2262 if (ic->ic_opmode != IEEE80211_M_HOSTAP)
2263 tmp |= RAL_DROP_TODS;
2264 if (!(ifp->if_flags & IFF_PROMISC))
2265 tmp |= RAL_DROP_NOT_TO_ME;
2267 ural_write(sc, RAL_TXRX_CSR2, tmp);
2269 /* clear statistic registers (STA_CSR0 to STA_CSR10) */
2270 ural_read_multi(sc, RAL_STA_CSR0, sc->sta, sizeof(sc->sta));
2271 fail:
2272 lwkt_serialize_enter(ifp->if_serializer);
2273 if (error) {
2274 ural_stop(sc);
2275 } else {
2276 ifp->if_flags &= ~IFF_OACTIVE;
2277 ifp->if_flags |= IFF_RUNNING;
2279 if (ic->ic_opmode != IEEE80211_M_MONITOR) {
2280 if (ic->ic_roaming != IEEE80211_ROAMING_MANUAL)
2281 ieee80211_new_state(ic, IEEE80211_S_SCAN, -1);
2282 } else {
2283 ieee80211_new_state(ic, IEEE80211_S_RUN, -1);
2287 crit_exit();
2288 #undef N
2291 static void
2292 ural_stop(struct ural_softc *sc)
2294 struct ieee80211com *ic = &sc->sc_ic;
2295 struct ifnet *ifp = &ic->ic_if;
2297 ASSERT_SERIALIZED(ifp->if_serializer);
2299 crit_enter();
2301 ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
2302 sc->sc_stopped = 1;
2304 ieee80211_new_state(ic, IEEE80211_S_INIT, -1);
2306 sc->sc_tx_timer = 0;
2307 ifp->if_timer = 0;
2309 lwkt_serialize_exit(ifp->if_serializer);
2311 /* disable Rx */
2312 ural_write(sc, RAL_TXRX_CSR2, RAL_DISABLE_RX);
2314 /* reset ASIC and BBP (but won't reset MAC registers!) */
2315 ural_write(sc, RAL_MAC_CSR1, RAL_RESET_ASIC | RAL_RESET_BBP);
2316 ural_write(sc, RAL_MAC_CSR1, 0);
2318 if (sc->stats_xfer != NULL) {
2319 usbd_free_xfer(sc->stats_xfer);
2320 sc->stats_xfer = NULL;
2323 if (sc->sc_rx_pipeh != NULL) {
2324 usbd_abort_pipe(sc->sc_rx_pipeh);
2325 usbd_close_pipe(sc->sc_rx_pipeh);
2326 sc->sc_rx_pipeh = NULL;
2329 if (sc->sc_tx_pipeh != NULL) {
2330 usbd_abort_pipe(sc->sc_tx_pipeh);
2331 usbd_close_pipe(sc->sc_tx_pipeh);
2332 sc->sc_tx_pipeh = NULL;
2335 lwkt_serialize_enter(ifp->if_serializer);
2337 ural_free_rx_list(sc);
2338 ural_free_tx_list(sc);
2340 crit_exit();
2343 static void
2344 ural_stats_timeout(void *arg)
2346 struct ural_softc *sc = (struct ural_softc *)arg;
2347 usb_device_request_t req;
2349 if (sc->sc_stopped)
2350 return;
2352 crit_enter();
2355 * Asynchronously read statistic registers (cleared by read).
2357 req.bmRequestType = UT_READ_VENDOR_DEVICE;
2358 req.bRequest = RAL_READ_MULTI_MAC;
2359 USETW(req.wValue, 0);
2360 USETW(req.wIndex, RAL_STA_CSR0);
2361 USETW(req.wLength, sizeof(sc->sta));
2363 usbd_setup_default_xfer(sc->stats_xfer, sc->sc_udev, sc,
2364 USBD_DEFAULT_TIMEOUT, &req,
2365 sc->sta, sizeof(sc->sta), 0,
2366 ural_stats_update);
2367 usbd_transfer(sc->stats_xfer);
2369 crit_exit();
2372 static void
2373 ural_stats_update(usbd_xfer_handle xfer, usbd_private_handle priv,
2374 usbd_status status)
2376 struct ural_softc *sc = (struct ural_softc *)priv;
2377 struct ifnet *ifp = &sc->sc_ic.ic_if;
2378 struct ieee80211_ratectl_stats *stats = &sc->sc_stats;
2380 if (status != USBD_NORMAL_COMPLETION) {
2381 device_printf(sc->sc_dev, "could not retrieve Tx statistics - "
2382 "cancelling automatic rate control\n");
2383 return;
2386 crit_enter();
2388 /* count TX retry-fail as Tx errors */
2389 ifp->if_oerrors += sc->sta[RAL_TX_PKT_FAIL];
2391 stats->stats_pkt_ok += sc->sta[RAL_TX_PKT_NO_RETRY] +
2392 sc->sta[RAL_TX_PKT_ONE_RETRY] +
2393 sc->sta[RAL_TX_PKT_MULTI_RETRY];
2395 stats->stats_pkt_err += sc->sta[RAL_TX_PKT_FAIL];
2397 stats->stats_pkt_noretry += sc->sta[RAL_TX_PKT_NO_RETRY];
2399 stats->stats_retries += sc->sta[RAL_TX_PKT_ONE_RETRY];
2400 #if 1
2402 * XXX Estimated average:
2403 * Actual number of retries for each packet should belong to
2404 * [2, sc->sc_tx_retries]
2406 stats->stats_retries += sc->sta[RAL_TX_PKT_MULTI_RETRY] *
2407 ((2 + sc->sc_tx_retries) / 2);
2408 #else
2409 stats->stats_retries += sc->sta[RAL_TX_PKT_MULTI_RETRY];
2410 #endif
2411 stats->stats_retries += sc->sta[RAL_TX_PKT_FAIL] * sc->sc_tx_retries;
2413 callout_reset(&sc->stats_ch, 4 * hz / 5, ural_stats_timeout, sc);
2415 crit_exit();
2418 static void
2419 ural_stats(struct ieee80211com *ic, struct ieee80211_node *ni __unused,
2420 struct ieee80211_ratectl_stats *stats)
2422 struct ifnet *ifp = &ic->ic_if;
2423 struct ural_softc *sc = ifp->if_softc;
2425 ASSERT_SERIALIZED(ifp->if_serializer);
2427 bcopy(&sc->sc_stats, stats, sizeof(*stats));
2428 bzero(&sc->sc_stats, sizeof(sc->sc_stats));
2431 static void *
2432 ural_ratectl_attach(struct ieee80211com *ic, u_int rc)
2434 struct ural_softc *sc = ic->ic_if.if_softc;
2436 switch (rc) {
2437 case IEEE80211_RATECTL_ONOE:
2438 return &sc->sc_onoe_param;
2439 case IEEE80211_RATECTL_NONE:
2440 /* This could only happen during detaching */
2441 return NULL;
2442 default:
2443 panic("unknown rate control algo %u\n", rc);
2444 return NULL;