2 * Copyright (c) 2011-2015 The DragonFly Project. All rights reserved.
4 * This code is derived from software contributed to The DragonFly Project
5 * by Matthew Dillon <dillon@dragonflybsd.org>
6 * and Venkatesh Srinivas <vsrinivas@dragonflybsd.org>
8 * Redistribution and use in source and binary forms, with or without
9 * modification, are permitted provided that the following conditions
12 * 1. Redistributions of source code must retain the above copyright
13 * notice, this list of conditions and the following disclaimer.
14 * 2. Redistributions in binary form must reproduce the above copyright
15 * notice, this list of conditions and the following disclaimer in
16 * the documentation and/or other materials provided with the
18 * 3. Neither the name of The DragonFly Project nor the names of its
19 * contributors may be used to endorse or promote products derived
20 * from this software without specific, prior written permission.
22 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
23 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
24 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
25 * FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
26 * COPYRIGHT HOLDERS OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
27 * INCIDENTAL, SPECIAL, EXEMPLARY OR CONSEQUENTIAL DAMAGES (INCLUDING,
28 * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
29 * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
30 * AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
31 * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT
32 * OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
36 * This subsystem implements most of the core support functions for
37 * the hammer2_chain structure.
39 * Chains are the in-memory version on media objects (volume header, inodes,
40 * indirect blocks, data blocks, etc). Chains represent a portion of the
43 * Chains are no-longer delete-duplicated. Instead, the original in-memory
44 * chain will be moved along with its block reference (e.g. for things like
45 * renames, hardlink operations, modifications, etc), and will be indexed
46 * on a secondary list for flush handling instead of propagating a flag
49 * Concurrent front-end operations can still run against backend flushes
50 * as long as they do not cross the current flush boundary. An operation
51 * running above the current flush (in areas not yet flushed) can become
52 * part of the current flush while ano peration running below the current
53 * flush can become part of the next flush.
55 #include <sys/cdefs.h>
56 #include <sys/param.h>
57 #include <sys/systm.h>
58 #include <sys/types.h>
60 #include <sys/kern_syscall.h>
63 #include <crypto/sha2/sha2.h>
67 static hammer2_chain_t
*hammer2_chain_create_indirect(
68 hammer2_chain_t
*parent
,
69 hammer2_key_t key
, int keybits
,
70 hammer2_tid_t mtid
, int for_type
, int *errorp
);
71 static hammer2_io_t
*hammer2_chain_drop_data(hammer2_chain_t
*chain
,
73 static hammer2_chain_t
*hammer2_combined_find(
74 hammer2_chain_t
*parent
,
75 hammer2_blockref_t
*base
, int count
,
76 int *cache_indexp
, hammer2_key_t
*key_nextp
,
77 hammer2_key_t key_beg
, hammer2_key_t key_end
,
78 hammer2_blockref_t
**bresp
);
81 * Basic RBTree for chains (core->rbtree and core->dbtree). Chains cannot
82 * overlap in the RB trees. Deleted chains are moved from rbtree to either
85 * Chains in delete-duplicate sequences can always iterate through core_entry
86 * to locate the live version of the chain.
88 RB_GENERATE(hammer2_chain_tree
, hammer2_chain
, rbnode
, hammer2_chain_cmp
);
90 extern int h2timer
[32];
94 #define TIMER(which) do { \
96 h2timer[h2lid] += (int)(ticks - h2last);\
102 hammer2_chain_cmp(hammer2_chain_t
*chain1
, hammer2_chain_t
*chain2
)
104 hammer2_key_t c1_beg
;
105 hammer2_key_t c1_end
;
106 hammer2_key_t c2_beg
;
107 hammer2_key_t c2_end
;
110 * Compare chains. Overlaps are not supposed to happen and catch
111 * any software issues early we count overlaps as a match.
113 c1_beg
= chain1
->bref
.key
;
114 c1_end
= c1_beg
+ ((hammer2_key_t
)1 << chain1
->bref
.keybits
) - 1;
115 c2_beg
= chain2
->bref
.key
;
116 c2_end
= c2_beg
+ ((hammer2_key_t
)1 << chain2
->bref
.keybits
) - 1;
118 if (c1_end
< c2_beg
) /* fully to the left */
120 if (c1_beg
> c2_end
) /* fully to the right */
122 return(0); /* overlap (must not cross edge boundary) */
126 * Make a chain visible to the flusher. The flusher needs to be able to
127 * do flushes of subdirectory chains or single files so it does a top-down
128 * recursion using the ONFLUSH flag for the recursion. It locates MODIFIED
129 * or UPDATE chains and flushes back up the chain to the volume root.
131 * This routine sets ONFLUSH upward until it hits the volume root. For
132 * simplicity we ignore PFSROOT boundaries whos rules can be complex.
133 * Extra ONFLUSH flagging doesn't hurt the filesystem.
136 hammer2_chain_setflush(hammer2_chain_t
*chain
)
138 hammer2_chain_t
*parent
;
140 if ((chain
->flags
& HAMMER2_CHAIN_ONFLUSH
) == 0) {
141 hammer2_spin_sh(&chain
->core
.spin
);
142 while ((chain
->flags
& HAMMER2_CHAIN_ONFLUSH
) == 0) {
143 atomic_set_int(&chain
->flags
, HAMMER2_CHAIN_ONFLUSH
);
144 if ((parent
= chain
->parent
) == NULL
)
146 hammer2_spin_sh(&parent
->core
.spin
);
147 hammer2_spin_unsh(&chain
->core
.spin
);
150 hammer2_spin_unsh(&chain
->core
.spin
);
155 * Allocate a new disconnected chain element representing the specified
156 * bref. chain->refs is set to 1 and the passed bref is copied to
157 * chain->bref. chain->bytes is derived from the bref.
159 * chain->pmp inherits pmp unless the chain is an inode (other than the
162 * NOTE: Returns a referenced but unlocked (because there is no core) chain.
165 hammer2_chain_alloc(hammer2_dev_t
*hmp
, hammer2_pfs_t
*pmp
,
166 hammer2_blockref_t
*bref
)
168 hammer2_chain_t
*chain
;
169 u_int bytes
= 1U << (int)(bref
->data_off
& HAMMER2_OFF_MASK_RADIX
);
171 atomic_add_long(&hammer2_chain_allocs
, 1);
174 * Construct the appropriate system structure.
177 case HAMMER2_BREF_TYPE_INODE
:
178 case HAMMER2_BREF_TYPE_INDIRECT
:
179 case HAMMER2_BREF_TYPE_FREEMAP_NODE
:
180 case HAMMER2_BREF_TYPE_DATA
:
181 case HAMMER2_BREF_TYPE_FREEMAP_LEAF
:
183 * Chain's are really only associated with the hmp but we
184 * maintain a pmp association for per-mount memory tracking
185 * purposes. The pmp can be NULL.
187 chain
= kmalloc(sizeof(*chain
), hmp
->mchain
, M_WAITOK
| M_ZERO
);
189 case HAMMER2_BREF_TYPE_VOLUME
:
190 case HAMMER2_BREF_TYPE_FREEMAP
:
192 * Only hammer2_chain_bulksnap() calls this function with these
195 chain
= kmalloc(sizeof(*chain
), hmp
->mchain
, M_WAITOK
| M_ZERO
);
199 panic("hammer2_chain_alloc: unrecognized blockref type: %d",
204 * Initialize the new chain structure. pmp must be set to NULL for
205 * chains belonging to the super-root topology of a device mount.
207 if (pmp
== hmp
->spmp
)
213 chain
->bytes
= bytes
;
215 chain
->flags
= HAMMER2_CHAIN_ALLOCATED
;
218 * Set the PFS boundary flag if this chain represents a PFS root.
220 if (bref
->flags
& HAMMER2_BREF_FLAG_PFSROOT
)
221 atomic_set_int(&chain
->flags
, HAMMER2_CHAIN_PFSBOUNDARY
);
222 hammer2_chain_core_init(chain
);
228 * Initialize a chain's core structure. This structure used to be allocated
229 * but is now embedded.
231 * The core is not locked. No additional refs on the chain are made.
232 * (trans) must not be NULL if (core) is not NULL.
235 hammer2_chain_core_init(hammer2_chain_t
*chain
)
238 * Fresh core under nchain (no multi-homing of ochain's
241 RB_INIT(&chain
->core
.rbtree
); /* live chains */
242 hammer2_mtx_init(&chain
->lock
, "h2chain");
246 * Add a reference to a chain element, preventing its destruction.
248 * (can be called with spinlock held)
251 hammer2_chain_ref(hammer2_chain_t
*chain
)
253 if (atomic_fetchadd_int(&chain
->refs
, 1) == 0) {
255 * 0->non-zero transition must ensure that chain is removed
258 * NOTE: Already holding lru_spin here so we cannot call
259 * hammer2_chain_ref() to get it off lru_list, do
262 if (chain
->flags
& HAMMER2_CHAIN_ONLRU
) {
263 hammer2_pfs_t
*pmp
= chain
->pmp
;
264 hammer2_spin_ex(&pmp
->lru_spin
);
265 if (chain
->flags
& HAMMER2_CHAIN_ONLRU
) {
266 atomic_add_int(&pmp
->lru_count
, -1);
267 atomic_clear_int(&chain
->flags
,
268 HAMMER2_CHAIN_ONLRU
);
269 TAILQ_REMOVE(&pmp
->lru_list
, chain
, lru_node
);
271 hammer2_spin_unex(&pmp
->lru_spin
);
275 kprintf("REFC %p %d %08x\n", chain
, chain
->refs
- 1, chain
->flags
);
281 * Ref a locked chain and force the data to be held across an unlock.
282 * Chain must be currently locked. The user of the chain who desires
283 * to release the hold must call hammer2_chain_lock_unhold() to lock
284 * and unhold the chain, then unlock normally, or may simply call
285 * hammer2_chain_drop_unhold() (which is safer against deadlocks).
288 hammer2_chain_ref_hold(hammer2_chain_t
*chain
)
290 atomic_add_int(&chain
->persist_refs
, 1);
291 hammer2_chain_ref(chain
);
295 * Insert the chain in the core rbtree.
297 * Normal insertions are placed in the live rbtree. Insertion of a deleted
298 * chain is a special case used by the flush code that is placed on the
299 * unstaged deleted list to avoid confusing the live view.
301 #define HAMMER2_CHAIN_INSERT_SPIN 0x0001
302 #define HAMMER2_CHAIN_INSERT_LIVE 0x0002
303 #define HAMMER2_CHAIN_INSERT_RACE 0x0004
307 hammer2_chain_insert(hammer2_chain_t
*parent
, hammer2_chain_t
*chain
,
308 int flags
, int generation
)
310 hammer2_chain_t
*xchain
;
313 if (flags
& HAMMER2_CHAIN_INSERT_SPIN
)
314 hammer2_spin_ex(&parent
->core
.spin
);
317 * Interlocked by spinlock, check for race
319 if ((flags
& HAMMER2_CHAIN_INSERT_RACE
) &&
320 parent
->core
.generation
!= generation
) {
328 xchain
= RB_INSERT(hammer2_chain_tree
, &parent
->core
.rbtree
, chain
);
329 KASSERT(xchain
== NULL
,
330 ("hammer2_chain_insert: collision %p %p (key=%016jx)",
331 chain
, xchain
, chain
->bref
.key
));
332 atomic_set_int(&chain
->flags
, HAMMER2_CHAIN_ONRBTREE
);
333 chain
->parent
= parent
;
334 ++parent
->core
.chain_count
;
335 ++parent
->core
.generation
; /* XXX incs for _get() too, XXX */
338 * We have to keep track of the effective live-view blockref count
339 * so the create code knows when to push an indirect block.
341 if (flags
& HAMMER2_CHAIN_INSERT_LIVE
)
342 atomic_add_int(&parent
->core
.live_count
, 1);
344 if (flags
& HAMMER2_CHAIN_INSERT_SPIN
)
345 hammer2_spin_unex(&parent
->core
.spin
);
350 * Drop the caller's reference to the chain. When the ref count drops to
351 * zero this function will try to disassociate the chain from its parent and
352 * deallocate it, then recursely drop the parent using the implied ref
353 * from the chain's chain->parent.
355 static hammer2_chain_t
*hammer2_chain_lastdrop(hammer2_chain_t
*chain
);
358 hammer2_chain_drop(hammer2_chain_t
*chain
)
362 if (hammer2_debug
& 0x200000)
365 kprintf("DROP %p %d %08x\n", chain
, chain
->refs
- 1, chain
->flags
);
369 KKASSERT(chain
->refs
> 0);
377 chain
= hammer2_chain_lastdrop(chain
);
379 if (atomic_cmpset_int(&chain
->refs
, refs
, refs
- 1))
381 /* retry the same chain */
387 * Unhold a held and probably not-locked chain. To ensure that the data
388 * is properly dropped we check lockcnt. If lockcnt is 0 we unconditionally
389 * interlock the chain to release its data. We must obtain the lock
390 * unconditionally becuase it is possible for the chain to still be
391 * temporarily locked by a hammer2_chain_unlock() call in a race.
394 hammer2_chain_drop_unhold(hammer2_chain_t
*chain
)
398 atomic_add_int(&chain
->persist_refs
, -1);
400 if (chain
->lockcnt
== 0) {
401 hammer2_mtx_ex(&chain
->lock
);
402 if (chain
->lockcnt
== 0 && chain
->persist_refs
== 0) {
403 dio
= hammer2_chain_drop_data(chain
, 0);
405 hammer2_io_bqrelse(&dio
);
407 hammer2_mtx_unlock(&chain
->lock
);
409 hammer2_chain_drop(chain
);
413 * Safe handling of the 1->0 transition on chain. Returns a chain for
414 * recursive drop or NULL, possibly returning the same chain if the atomic
417 * When two chains need to be recursively dropped we use the chain we
418 * would otherwise free to placehold the additional chain. It's a bit
419 * convoluted but we can't just recurse without potentially blowing out
422 * The chain cannot be freed if it has any children.
423 * The chain cannot be freed if flagged MODIFIED unless we can dispose of that.
424 * The chain cannot be freed if flagged UPDATE unless we can dispose of that.
426 * The core spinlock is allowed nest child-to-parent (not parent-to-child).
430 hammer2_chain_lastdrop(hammer2_chain_t
*chain
)
434 hammer2_chain_t
*parent
;
435 hammer2_chain_t
*rdrop
;
439 * Critical field access.
441 hammer2_spin_ex(&chain
->core
.spin
);
443 if ((parent
= chain
->parent
) != NULL
) {
445 * If the chain has a parent the UPDATE bit prevents scrapping
446 * as the chain is needed to properly flush the parent. Try
447 * to complete the 1->0 transition and return NULL. Retry
448 * (return chain) if we are unable to complete the 1->0
449 * transition, else return NULL (nothing more to do).
451 * If the chain has a parent the MODIFIED bit prevents
454 * Chains with UPDATE/MODIFIED are *not* put on the LRU list!
456 if (chain
->flags
& (HAMMER2_CHAIN_UPDATE
|
457 HAMMER2_CHAIN_MODIFIED
)) {
458 if (atomic_cmpset_int(&chain
->refs
, 1, 0)) {
459 dio
= hammer2_chain_drop_data(chain
, 0);
460 hammer2_spin_unex(&chain
->core
.spin
);
462 hammer2_io_bqrelse(&dio
);
465 hammer2_spin_unex(&chain
->core
.spin
);
469 /* spinlock still held */
472 * The chain has no parent and can be flagged for destruction.
473 * Since it has no parent, UPDATE can also be cleared.
475 atomic_set_int(&chain
->flags
, HAMMER2_CHAIN_DESTROY
);
476 if (chain
->flags
& HAMMER2_CHAIN_UPDATE
)
477 atomic_clear_int(&chain
->flags
, HAMMER2_CHAIN_UPDATE
);
480 * If the chain has children or if it has been MODIFIED and
481 * also recorded for DEDUP, we must still flush the chain.
483 * In the case where it has children, the DESTROY flag test
484 * in the flush code will prevent unnecessary flushes of
485 * MODIFIED chains that are not flagged DEDUP so don't worry
488 if (chain
->core
.chain_count
||
489 (chain
->flags
& (HAMMER2_CHAIN_MODIFIED
|
490 HAMMER2_CHAIN_DEDUP
)) ==
491 (HAMMER2_CHAIN_MODIFIED
| HAMMER2_CHAIN_DEDUP
)) {
493 * Put on flushq (should ensure refs > 1), retry
496 hammer2_spin_unex(&chain
->core
.spin
);
497 hammer2_delayed_flush(chain
);
498 return(chain
); /* retry drop */
502 * Otherwise we can scrap the MODIFIED bit if it is set,
503 * and continue along the freeing path.
505 if (chain
->flags
& HAMMER2_CHAIN_MODIFIED
) {
506 atomic_clear_int(&chain
->flags
, HAMMER2_CHAIN_MODIFIED
);
507 atomic_add_long(&hammer2_count_modified_chains
, -1);
509 hammer2_pfs_memory_wakeup(chain
->pmp
);
511 /* spinlock still held */
514 /* spinlock still held */
518 * If any children exist we must leave the chain intact with refs == 0.
519 * They exist because chains are retained below us which have refs or
520 * may require flushing. This case can occur when parent != NULL.
522 * Retry (return chain) if we fail to transition the refs to 0, else
523 * return NULL indication nothing more to do.
525 * Chains with children are NOT put on the LRU list.
527 if (chain
->core
.chain_count
) {
529 hammer2_spin_ex(&parent
->core
.spin
);
530 if (atomic_cmpset_int(&chain
->refs
, 1, 0)) {
531 dio
= hammer2_chain_drop_data(chain
, 1);
532 hammer2_spin_unex(&chain
->core
.spin
);
534 hammer2_spin_unex(&parent
->core
.spin
);
537 hammer2_io_bqrelse(&dio
);
539 hammer2_spin_unex(&chain
->core
.spin
);
541 hammer2_spin_unex(&parent
->core
.spin
);
545 /* spinlock still held */
546 /* no chains left under us */
549 * chain->core has no children left so no accessors can get to our
550 * chain from there. Now we have to lock the parent core to interlock
551 * remaining possible accessors that might bump chain's refs before
552 * we can safely drop chain's refs with intent to free the chain.
555 pmp
= chain
->pmp
; /* can be NULL */
558 parent
= chain
->parent
;
561 * WARNING! chain's spin lock is still held here, and other spinlocks
562 * will be acquired and released in the code below. We
563 * cannot be making fancy procedure calls!
567 * We can cache the chain if it is associated with a pmp
568 * and not flagged as being destroyed or requesting a full
569 * release. In this situation the chain is not removed
570 * from its parent, i.e. it can still be looked up.
572 * We intentionally do not cache DATA chains because these
573 * were likely used to load data into the logical buffer cache
574 * and will not be accessed again for some time.
577 (HAMMER2_CHAIN_DESTROY
| HAMMER2_CHAIN_RELEASE
)) == 0 &&
579 chain
->bref
.type
!= HAMMER2_BREF_TYPE_DATA
) {
581 hammer2_spin_ex(&parent
->core
.spin
);
582 if (atomic_cmpset_int(&chain
->refs
, 1, 0) == 0) {
584 * 1->0 transition failed, retry. Do not drop
585 * the chain's data yet!
588 hammer2_spin_unex(&parent
->core
.spin
);
589 hammer2_spin_unex(&chain
->core
.spin
);
595 * Success, be sure to clean out the chain's data
596 * before putting it on a queue that it might be
599 dio
= hammer2_chain_drop_data(chain
, 1);
601 KKASSERT((chain
->flags
& HAMMER2_CHAIN_ONLRU
) == 0);
602 hammer2_spin_ex(&pmp
->lru_spin
);
603 atomic_set_int(&chain
->flags
, HAMMER2_CHAIN_ONLRU
);
604 TAILQ_INSERT_TAIL(&pmp
->lru_list
, chain
, lru_node
);
607 * If we are over the LRU limit we need to drop something.
609 if (pmp
->lru_count
> HAMMER2_LRU_LIMIT
) {
610 rdrop
= TAILQ_FIRST(&pmp
->lru_list
);
611 atomic_clear_int(&rdrop
->flags
, HAMMER2_CHAIN_ONLRU
);
612 TAILQ_REMOVE(&pmp
->lru_list
, rdrop
, lru_node
);
613 atomic_add_int(&rdrop
->refs
, 1);
614 atomic_set_int(&rdrop
->flags
, HAMMER2_CHAIN_RELEASE
);
616 atomic_add_int(&pmp
->lru_count
, 1);
618 hammer2_spin_unex(&pmp
->lru_spin
);
620 hammer2_spin_unex(&parent
->core
.spin
);
621 parent
= NULL
; /* safety */
623 hammer2_spin_unex(&chain
->core
.spin
);
625 hammer2_io_bqrelse(&dio
);
632 * Spinlock the parent and try to drop the last ref on chain.
633 * On success determine if we should dispose of the chain
634 * (remove the chain from its parent, etc).
636 * (normal core locks are top-down recursive but we define
637 * core spinlocks as bottom-up recursive, so this is safe).
640 hammer2_spin_ex(&parent
->core
.spin
);
641 if (atomic_cmpset_int(&chain
->refs
, 1, 0) == 0) {
643 /* XXX remove, don't try to drop data on fail */
644 hammer2_spin_unex(&parent
->core
.spin
);
645 dio
= hammer2_chain_drop_data(chain
, 0);
646 hammer2_spin_unex(&chain
->core
.spin
);
648 hammer2_io_bqrelse(&dio
);
651 * 1->0 transition failed, retry.
653 hammer2_spin_unex(&parent
->core
.spin
);
654 hammer2_spin_unex(&chain
->core
.spin
);
660 * 1->0 transition successful, remove chain from the
663 if (chain
->flags
& HAMMER2_CHAIN_ONRBTREE
) {
664 RB_REMOVE(hammer2_chain_tree
,
665 &parent
->core
.rbtree
, chain
);
666 atomic_clear_int(&chain
->flags
, HAMMER2_CHAIN_ONRBTREE
);
667 --parent
->core
.chain_count
;
668 chain
->parent
= NULL
;
672 * If our chain was the last chain in the parent's core the
673 * core is now empty and its parent might have to be
674 * re-dropped if it has 0 refs.
676 if (parent
->core
.chain_count
== 0) {
678 atomic_add_int(&rdrop
->refs
, 1);
680 if (atomic_cmpset_int(&rdrop->refs, 0, 1) == 0)
684 hammer2_spin_unex(&parent
->core
.spin
);
685 parent
= NULL
; /* safety */
690 * Successful 1->0 transition and the chain can be destroyed now.
692 * We still have the core spinlock, and core's chain_count is 0.
693 * Any parent spinlock is gone.
695 hammer2_spin_unex(&chain
->core
.spin
);
696 KKASSERT(RB_EMPTY(&chain
->core
.rbtree
) &&
697 chain
->core
.chain_count
== 0);
700 * All spin locks are gone, no pointers remain to the chain, finish
703 KKASSERT((chain
->flags
& (HAMMER2_CHAIN_UPDATE
|
704 HAMMER2_CHAIN_MODIFIED
)) == 0);
705 dio
= hammer2_chain_drop_data(chain
, 1);
707 hammer2_io_bqrelse(&dio
);
710 * Once chain resources are gone we can use the now dead chain
711 * structure to placehold what might otherwise require a recursive
712 * drop, because we have potentially two things to drop and can only
713 * return one directly.
715 if (chain
->flags
& HAMMER2_CHAIN_ALLOCATED
) {
716 atomic_clear_int(&chain
->flags
, HAMMER2_CHAIN_ALLOCATED
);
718 kfree(chain
, hmp
->mchain
);
722 * Possible chaining loop when parent re-drop needed.
728 * On either last lock release or last drop
730 static hammer2_io_t
*
731 hammer2_chain_drop_data(hammer2_chain_t
*chain
, int lastdrop
)
735 if ((dio
= chain
->dio
) != NULL
) {
739 switch(chain
->bref
.type
) {
740 case HAMMER2_BREF_TYPE_VOLUME
:
741 case HAMMER2_BREF_TYPE_FREEMAP
:
746 if (chain
->data
!= NULL
) {
747 hammer2_spin_unex(&chain
->core
.spin
);
748 panic("chain data not null");
750 KKASSERT(chain
->data
== NULL
);
758 * Lock a referenced chain element, acquiring its data with I/O if necessary,
759 * and specify how you would like the data to be resolved.
761 * If an I/O or other fatal error occurs, chain->error will be set to non-zero.
763 * The lock is allowed to recurse, multiple locking ops will aggregate
764 * the requested resolve types. Once data is assigned it will not be
765 * removed until the last unlock.
767 * HAMMER2_RESOLVE_NEVER - Do not resolve the data element.
768 * (typically used to avoid device/logical buffer
771 * HAMMER2_RESOLVE_MAYBE - Do not resolve data elements for chains in
772 * the INITIAL-create state (indirect blocks only).
774 * Do not resolve data elements for DATA chains.
775 * (typically used to avoid device/logical buffer
778 * HAMMER2_RESOLVE_ALWAYS- Always resolve the data element.
780 * HAMMER2_RESOLVE_SHARED- (flag) The chain is locked shared, otherwise
781 * it will be locked exclusive.
783 * NOTE: Embedded elements (volume header, inodes) are always resolved
786 * NOTE: Specifying HAMMER2_RESOLVE_ALWAYS on a newly-created non-embedded
787 * element will instantiate and zero its buffer, and flush it on
790 * NOTE: (data) elements are normally locked RESOLVE_NEVER or RESOLVE_MAYBE
791 * so as not to instantiate a device buffer, which could alias against
792 * a logical file buffer. However, if ALWAYS is specified the
793 * device buffer will be instantiated anyway.
795 * WARNING! This function blocks on I/O if data needs to be fetched. This
796 * blocking can run concurrent with other compatible lock holders
797 * who do not need data returning. The lock is not upgraded to
798 * exclusive during a data fetch, a separate bit is used to
799 * interlock I/O. However, an exclusive lock holder can still count
800 * on being interlocked against an I/O fetch managed by a shared
804 hammer2_chain_lock(hammer2_chain_t
*chain
, int how
)
807 * Ref and lock the element. Recursive locks are allowed.
809 KKASSERT(chain
->refs
> 0);
810 atomic_add_int(&chain
->lockcnt
, 1);
815 * Get the appropriate lock. If LOCKAGAIN is flagged with SHARED
816 * the caller expects a shared lock to already be present and we
817 * are giving it another ref. This case must importantly not block
818 * if there is a pending exclusive lock request.
820 if (how
& HAMMER2_RESOLVE_SHARED
) {
821 if (how
& HAMMER2_RESOLVE_LOCKAGAIN
) {
822 hammer2_mtx_sh_again(&chain
->lock
);
824 hammer2_mtx_sh(&chain
->lock
);
827 hammer2_mtx_ex(&chain
->lock
);
829 ++curthread
->td_tracker
;
833 * If we already have a valid data pointer no further action is
841 * Do we have to resolve the data?
843 switch(how
& HAMMER2_RESOLVE_MASK
) {
844 case HAMMER2_RESOLVE_NEVER
:
846 case HAMMER2_RESOLVE_MAYBE
:
847 if (chain
->flags
& HAMMER2_CHAIN_INITIAL
)
849 if (chain
->bref
.type
== HAMMER2_BREF_TYPE_DATA
)
852 if (chain
->bref
.type
== HAMMER2_BREF_TYPE_FREEMAP_NODE
)
854 if (chain
->bref
.type
== HAMMER2_BREF_TYPE_FREEMAP_LEAF
)
858 case HAMMER2_RESOLVE_ALWAYS
:
864 * Caller requires data
866 hammer2_chain_load_data(chain
);
870 * Lock the chain and remove the data hold (matches against
871 * hammer2_chain_unlock_hold()). The data remains valid because
872 * the chain is now locked, but will be dropped as per-normal when
873 * the caller does a normal unlock.
876 hammer2_chain_lock_unhold(hammer2_chain_t
*chain
, int how
)
878 atomic_add_int(&chain
->persist_refs
, -1);
879 hammer2_chain_lock(chain
, how
);
884 * Downgrade an exclusive chain lock to a shared chain lock.
886 * NOTE: There is no upgrade equivalent due to the ease of
887 * deadlocks in that direction.
890 hammer2_chain_lock_downgrade(hammer2_chain_t
*chain
)
892 hammer2_mtx_downgrade(&chain
->lock
);
898 * Obtains a second shared lock on the chain, does not account the second
899 * shared lock as being owned by the current thread.
901 * Caller must already own a shared lock on this chain.
903 * The lock function is required to obtain the second shared lock without
904 * blocking on pending exclusive requests.
907 hammer2_chain_push_shared_lock(hammer2_chain_t
*chain
)
909 hammer2_mtx_sh_again(&chain
->lock
);
910 atomic_add_int(&chain
->lockcnt
, 1);
911 /* do not count in td_tracker for this thread */
915 * Accounts for a shared lock that was pushed to us as being owned by our
919 hammer2_chain_pull_shared_lock(hammer2_chain_t
*chain
)
921 ++curthread
->td_tracker
;
926 * Issue I/O and install chain->data. Caller must hold a chain lock, lock
927 * may be of any type.
929 * Once chain->data is set it cannot be disposed of until all locks are
933 hammer2_chain_load_data(hammer2_chain_t
*chain
)
935 hammer2_blockref_t
*bref
;
942 * Degenerate case, data already present.
949 KKASSERT(hmp
!= NULL
);
952 * Gain the IOINPROG bit, interlocked block.
958 oflags
= chain
->flags
;
960 if (oflags
& HAMMER2_CHAIN_IOINPROG
) {
961 nflags
= oflags
| HAMMER2_CHAIN_IOSIGNAL
;
962 tsleep_interlock(&chain
->flags
, 0);
963 if (atomic_cmpset_int(&chain
->flags
, oflags
, nflags
)) {
964 tsleep(&chain
->flags
, PINTERLOCKED
,
969 nflags
= oflags
| HAMMER2_CHAIN_IOINPROG
;
970 if (atomic_cmpset_int(&chain
->flags
, oflags
, nflags
)) {
979 * We own CHAIN_IOINPROG
981 * Degenerate case if we raced another load.
987 * We must resolve to a device buffer, either by issuing I/O or
988 * by creating a zero-fill element. We do not mark the buffer
989 * dirty when creating a zero-fill element (the hammer2_chain_modify()
990 * API must still be used to do that).
992 * The device buffer is variable-sized in powers of 2 down
993 * to HAMMER2_MIN_ALLOC (typically 1K). A 64K physical storage
994 * chunk always contains buffers of the same size. (XXX)
996 * The minimum physical IO size may be larger than the variable
1002 * The getblk() optimization can only be used on newly created
1003 * elements if the physical block size matches the request.
1005 if (chain
->flags
& HAMMER2_CHAIN_INITIAL
) {
1006 error
= hammer2_io_new(hmp
, bref
->type
,
1007 bref
->data_off
, chain
->bytes
,
1010 error
= hammer2_io_bread(hmp
, bref
->type
,
1011 bref
->data_off
, chain
->bytes
,
1013 hammer2_adjreadcounter(&chain
->bref
, chain
->bytes
);
1017 chain
->error
= HAMMER2_ERROR_IO
;
1018 kprintf("hammer2_chain_lock: I/O error %016jx: %d\n",
1019 (intmax_t)bref
->data_off
, error
);
1020 hammer2_io_bqrelse(&chain
->dio
);
1026 * This isn't perfect and can be ignored on OSs which do not have
1027 * an indication as to whether a buffer is coming from cache or
1028 * if I/O was actually issued for the read. TESTEDGOOD will work
1029 * pretty well without the B_IOISSUED logic because chains are
1032 * If the underlying kernel buffer covers the entire chain we can
1033 * use the B_IOISSUED indication to determine if we have to re-run
1034 * the CRC on chain data for chains that managed to stay cached
1035 * across the kernel disposal of the original buffer.
1037 if ((dio
= chain
->dio
) != NULL
&& dio
->bp
) {
1038 struct buf
*bp
= dio
->bp
;
1040 if (dio
->psize
== chain
->bytes
&&
1041 (bp
->b_flags
& B_IOISSUED
)) {
1042 atomic_clear_int(&chain
->flags
,
1043 HAMMER2_CHAIN_TESTEDGOOD
);
1044 bp
->b_flags
&= ~B_IOISSUED
;
1049 * NOTE: A locked chain's data cannot be modified without first
1050 * calling hammer2_chain_modify().
1054 * Clear INITIAL. In this case we used io_new() and the buffer has
1055 * been zero'd and marked dirty.
1057 bdata
= hammer2_io_data(chain
->dio
, chain
->bref
.data_off
);
1059 if (chain
->flags
& HAMMER2_CHAIN_INITIAL
) {
1060 atomic_clear_int(&chain
->flags
, HAMMER2_CHAIN_INITIAL
);
1061 chain
->bref
.flags
|= HAMMER2_BREF_FLAG_ZERO
;
1062 } else if (chain
->flags
& HAMMER2_CHAIN_MODIFIED
) {
1064 * check data not currently synchronized due to
1065 * modification. XXX assumes data stays in the buffer
1066 * cache, which might not be true (need biodep on flush
1067 * to calculate crc? or simple crc?).
1069 } else if ((chain
->flags
& HAMMER2_CHAIN_TESTEDGOOD
) == 0) {
1071 if (hammer2_chain_testcheck(chain
, bdata
) == 0) {
1072 chain
->error
= HAMMER2_ERROR_CHECK
;
1074 atomic_set_int(&chain
->flags
, HAMMER2_CHAIN_TESTEDGOOD
);
1080 * Setup the data pointer, either pointing it to an embedded data
1081 * structure and copying the data from the buffer, or pointing it
1084 * The buffer is not retained when copying to an embedded data
1085 * structure in order to avoid potential deadlocks or recursions
1086 * on the same physical buffer.
1088 * WARNING! Other threads can start using the data the instant we
1089 * set chain->data non-NULL.
1091 switch (bref
->type
) {
1092 case HAMMER2_BREF_TYPE_VOLUME
:
1093 case HAMMER2_BREF_TYPE_FREEMAP
:
1095 * Copy data from bp to embedded buffer
1097 panic("hammer2_chain_lock: called on unresolved volume header");
1099 case HAMMER2_BREF_TYPE_INODE
:
1100 case HAMMER2_BREF_TYPE_FREEMAP_LEAF
:
1101 case HAMMER2_BREF_TYPE_INDIRECT
:
1102 case HAMMER2_BREF_TYPE_DATA
:
1103 case HAMMER2_BREF_TYPE_FREEMAP_NODE
:
1106 * Point data at the device buffer and leave dio intact.
1108 chain
->data
= (void *)bdata
;
1113 * Release HAMMER2_CHAIN_IOINPROG and signal waiters if requested.
1120 oflags
= chain
->flags
;
1121 nflags
= oflags
& ~(HAMMER2_CHAIN_IOINPROG
|
1122 HAMMER2_CHAIN_IOSIGNAL
);
1123 KKASSERT(oflags
& HAMMER2_CHAIN_IOINPROG
);
1124 if (atomic_cmpset_int(&chain
->flags
, oflags
, nflags
)) {
1125 if (oflags
& HAMMER2_CHAIN_IOSIGNAL
)
1126 wakeup(&chain
->flags
);
1134 * Unlock and deref a chain element.
1136 * Remember that the presence of children under chain prevent the chain's
1137 * destruction but do not add additional references, so the dio will still
1141 hammer2_chain_unlock(hammer2_chain_t
*chain
)
1145 --curthread
->td_tracker
;
1147 * If multiple locks are present (or being attempted) on this
1148 * particular chain we can just unlock, drop refs, and return.
1150 * Otherwise fall-through on the 1->0 transition.
1153 lockcnt
= chain
->lockcnt
;
1154 KKASSERT(lockcnt
> 0);
1157 if (atomic_cmpset_int(&chain
->lockcnt
,
1158 lockcnt
, lockcnt
- 1)) {
1159 hammer2_mtx_unlock(&chain
->lock
);
1163 if (atomic_cmpset_int(&chain
->lockcnt
, 1, 0))
1170 * Normally we want to disassociate the data on the last unlock,
1171 * but leave it intact if persist_refs is non-zero. The persist-data
1172 * user modifies persist_refs only while holding the chain locked
1173 * so there should be no race on the last unlock here.
1175 * NOTE: If this was a shared lock we have to temporarily upgrade it
1176 * to prevent data load races. We can only do this non-blocking,
1177 * and unlock/relock-excl can deadlock. If the try fails it
1178 * means someone else got a shared or exclusive lock while we
1179 * we bandying about.
1181 if (chain
->persist_refs
== 0) {
1184 if (hammer2_mtx_upgrade_try(&chain
->lock
) == 0 &&
1185 chain
->lockcnt
== 0 && chain
->persist_refs
== 0) {
1186 dio
= hammer2_chain_drop_data(chain
, 0);
1188 hammer2_io_bqrelse(&dio
);
1191 hammer2_mtx_unlock(&chain
->lock
);
1195 * Unlock and hold chain data intact
1198 hammer2_chain_unlock_hold(hammer2_chain_t
*chain
)
1200 atomic_add_int(&chain
->persist_refs
, 1);
1201 hammer2_chain_unlock(chain
);
1205 * Helper to obtain the blockref[] array base and count for a chain.
1207 * XXX Not widely used yet, various use cases need to be validated and
1208 * converted to use this function.
1211 hammer2_blockref_t
*
1212 hammer2_chain_base_and_count(hammer2_chain_t
*parent
, int *countp
)
1214 hammer2_blockref_t
*base
;
1217 if (parent
->flags
& HAMMER2_CHAIN_INITIAL
) {
1220 switch(parent
->bref
.type
) {
1221 case HAMMER2_BREF_TYPE_INODE
:
1222 count
= HAMMER2_SET_COUNT
;
1224 case HAMMER2_BREF_TYPE_INDIRECT
:
1225 case HAMMER2_BREF_TYPE_FREEMAP_NODE
:
1226 count
= parent
->bytes
/ sizeof(hammer2_blockref_t
);
1228 case HAMMER2_BREF_TYPE_VOLUME
:
1229 count
= HAMMER2_SET_COUNT
;
1231 case HAMMER2_BREF_TYPE_FREEMAP
:
1232 count
= HAMMER2_SET_COUNT
;
1235 panic("hammer2_chain_create_indirect: "
1236 "unrecognized blockref type: %d",
1242 switch(parent
->bref
.type
) {
1243 case HAMMER2_BREF_TYPE_INODE
:
1244 base
= &parent
->data
->ipdata
.u
.blockset
.blockref
[0];
1245 count
= HAMMER2_SET_COUNT
;
1247 case HAMMER2_BREF_TYPE_INDIRECT
:
1248 case HAMMER2_BREF_TYPE_FREEMAP_NODE
:
1249 base
= &parent
->data
->npdata
[0];
1250 count
= parent
->bytes
/ sizeof(hammer2_blockref_t
);
1252 case HAMMER2_BREF_TYPE_VOLUME
:
1253 base
= &parent
->data
->voldata
.
1254 sroot_blockset
.blockref
[0];
1255 count
= HAMMER2_SET_COUNT
;
1257 case HAMMER2_BREF_TYPE_FREEMAP
:
1258 base
= &parent
->data
->blkset
.blockref
[0];
1259 count
= HAMMER2_SET_COUNT
;
1262 panic("hammer2_chain_create_indirect: "
1263 "unrecognized blockref type: %d",
1275 * This counts the number of live blockrefs in a block array and
1276 * also calculates the point at which all remaining blockrefs are empty.
1277 * This routine can only be called on a live chain.
1279 * NOTE: Flag is not set until after the count is complete, allowing
1280 * callers to test the flag without holding the spinlock.
1282 * NOTE: If base is NULL the related chain is still in the INITIAL
1283 * state and there are no blockrefs to count.
1285 * NOTE: live_count may already have some counts accumulated due to
1286 * creation and deletion and could even be initially negative.
1289 hammer2_chain_countbrefs(hammer2_chain_t
*chain
,
1290 hammer2_blockref_t
*base
, int count
)
1292 hammer2_spin_ex(&chain
->core
.spin
);
1293 if ((chain
->flags
& HAMMER2_CHAIN_COUNTEDBREFS
) == 0) {
1295 while (--count
>= 0) {
1296 if (base
[count
].type
)
1299 chain
->core
.live_zero
= count
+ 1;
1300 while (count
>= 0) {
1301 if (base
[count
].type
)
1302 atomic_add_int(&chain
->core
.live_count
,
1307 chain
->core
.live_zero
= 0;
1309 /* else do not modify live_count */
1310 atomic_set_int(&chain
->flags
, HAMMER2_CHAIN_COUNTEDBREFS
);
1312 hammer2_spin_unex(&chain
->core
.spin
);
1316 * Resize the chain's physical storage allocation in-place. This function does
1317 * not adjust the data pointer and must be followed by (typically) a
1318 * hammer2_chain_modify() call to copy any old data over and adjust the
1321 * Chains can be resized smaller without reallocating the storage. Resizing
1322 * larger will reallocate the storage. Excess or prior storage is reclaimed
1323 * asynchronously at a later time.
1325 * Must be passed an exclusively locked parent and chain.
1327 * This function is mostly used with DATA blocks locked RESOLVE_NEVER in order
1328 * to avoid instantiating a device buffer that conflicts with the vnode data
1329 * buffer. However, because H2 can compress or encrypt data, the chain may
1330 * have a dio assigned to it in those situations, and they do not conflict.
1332 * XXX return error if cannot resize.
1335 hammer2_chain_resize(hammer2_inode_t
*ip
,
1336 hammer2_chain_t
*parent
, hammer2_chain_t
*chain
,
1337 hammer2_tid_t mtid
, hammer2_off_t dedup_off
,
1338 int nradix
, int flags
)
1347 * Only data and indirect blocks can be resized for now.
1348 * (The volu root, inodes, and freemap elements use a fixed size).
1350 KKASSERT(chain
!= &hmp
->vchain
);
1351 KKASSERT(chain
->bref
.type
== HAMMER2_BREF_TYPE_DATA
||
1352 chain
->bref
.type
== HAMMER2_BREF_TYPE_INDIRECT
);
1353 KKASSERT(chain
->parent
== parent
);
1356 * Nothing to do if the element is already the proper size
1358 obytes
= chain
->bytes
;
1359 nbytes
= 1U << nradix
;
1360 if (obytes
== nbytes
)
1364 * Make sure the old data is instantiated so we can copy it. If this
1365 * is a data block, the device data may be superfluous since the data
1366 * might be in a logical block, but compressed or encrypted data is
1369 * NOTE: The modify will set BMAPUPD for us if BMAPPED is set.
1371 hammer2_chain_modify(chain
, mtid
, dedup_off
, 0);
1374 * Relocate the block, even if making it smaller (because different
1375 * block sizes may be in different regions).
1377 * (data blocks only, we aren't copying the storage here).
1379 hammer2_freemap_alloc(chain
, nbytes
);
1380 chain
->bytes
= nbytes
;
1381 /*ip->delta_dcount += (ssize_t)(nbytes - obytes);*/ /* XXX atomic */
1384 * We don't want the followup chain_modify() to try to copy data
1385 * from the old (wrong-sized) buffer. It won't know how much to
1386 * copy. This case should only occur during writes when the
1387 * originator already has the data to write in-hand.
1390 KKASSERT(chain
->bref
.type
== HAMMER2_BREF_TYPE_DATA
);
1391 hammer2_io_brelse(&chain
->dio
);
1397 * Helper for chains already flagged as MODIFIED. A new allocation may
1398 * still be required if the existing one has already been used in a de-dup.
1402 modified_needs_new_allocation(hammer2_chain_t
*chain
)
1407 * We only live-dedup data, we do not live-dedup meta-data.
1409 if (chain
->bref
.type
!= HAMMER2_BREF_TYPE_DATA
)
1413 * If this flag is not set the current modification has not been
1414 * recorded for dedup so a new allocation is not needed. The
1415 * recording occurs when dirty file data is flushed from the frontend
1418 if (chain
->flags
& HAMMER2_CHAIN_DEDUP
)
1422 * If the DEDUP flag is set we have one final line of defense to
1423 * allow re-use of a modified buffer, and that is if the DIO_INVALOK
1424 * flag is still set on the underlying DIO. This flag is only set
1425 * for hammer2_io_new() buffers which cover the whole buffer (64KB),
1426 * and is cleared when a dedup operation actually decides to use
1430 if ((dio
= chain
->dio
) != NULL
) {
1431 if (dio
->refs
& HAMMER2_DIO_INVALOK
)
1434 dio
= hammer2_io_getquick(chain
->hmp
, chain
->bref
.data_off
,
1437 if (dio
->refs
& HAMMER2_DIO_INVALOK
) {
1438 hammer2_io_putblk(&dio
);
1441 hammer2_io_putblk(&dio
);
1448 * Set the chain modified so its data can be changed by the caller.
1450 * Sets bref.modify_tid to mtid only if mtid != 0. Note that bref.modify_tid
1451 * is a CLC (cluster level change) field and is not updated by parent
1452 * propagation during a flush.
1454 * If the caller passes a non-zero dedup_off we assign data_off to that
1455 * instead of allocating a ne block. Caller must not modify the data already
1456 * present at the target offset.
1459 hammer2_chain_modify(hammer2_chain_t
*chain
, hammer2_tid_t mtid
,
1460 hammer2_off_t dedup_off
, int flags
)
1462 hammer2_blockref_t obref
;
1471 obref
= chain
->bref
;
1472 KKASSERT((chain
->flags
& HAMMER2_CHAIN_FICTITIOUS
) == 0);
1475 * Data is not optional for freemap chains (we must always be sure
1476 * to copy the data on COW storage allocations).
1478 if (chain
->bref
.type
== HAMMER2_BREF_TYPE_FREEMAP_NODE
||
1479 chain
->bref
.type
== HAMMER2_BREF_TYPE_FREEMAP_LEAF
) {
1480 KKASSERT((chain
->flags
& HAMMER2_CHAIN_INITIAL
) ||
1481 (flags
& HAMMER2_MODIFY_OPTDATA
) == 0);
1485 * Data must be resolved if already assigned, unless explicitly
1486 * flagged otherwise.
1488 if (chain
->data
== NULL
&& (flags
& HAMMER2_MODIFY_OPTDATA
) == 0 &&
1489 (chain
->bref
.data_off
& ~HAMMER2_OFF_MASK_RADIX
)) {
1490 hammer2_chain_load_data(chain
);
1494 * Set MODIFIED to indicate that the chain has been modified.
1495 * Set UPDATE to ensure that the blockref is updated in the parent.
1497 * If MODIFIED is already set determine if we can reuse the assigned
1498 * data block or if we need a new data block. The assigned data block
1499 * can be reused if HAMMER2_DIO_INVALOK is set on the dio.
1501 if ((chain
->flags
& HAMMER2_CHAIN_MODIFIED
) &&
1502 modified_needs_new_allocation(chain
)) {
1504 } else if ((chain
->flags
& HAMMER2_CHAIN_MODIFIED
) == 0) {
1506 * Must set modified bit.
1508 atomic_add_long(&hammer2_count_modified_chains
, 1);
1509 atomic_set_int(&chain
->flags
, HAMMER2_CHAIN_MODIFIED
);
1510 hammer2_pfs_memory_inc(chain
->pmp
); /* can be NULL */
1513 * We may be able to avoid a copy-on-write if the chain's
1514 * check mode is set to NONE and the chain's current
1515 * modify_tid is beyond the last explicit snapshot tid.
1517 * This implements HAMMER2's overwrite-in-place feature.
1519 * NOTE! This data-block cannot be used as a de-duplication
1520 * source when the check mode is set to NONE.
1522 if (chain
->bref
.type
== HAMMER2_BREF_TYPE_DATA
&&
1523 (chain
->flags
& HAMMER2_CHAIN_INITIAL
) == 0 &&
1524 HAMMER2_DEC_CHECK(chain
->bref
.methods
) ==
1525 HAMMER2_CHECK_NONE
&&
1527 chain
->bref
.modify_tid
>
1528 chain
->pmp
->iroot
->meta
.pfs_lsnap_tid
&&
1529 modified_needs_new_allocation(chain
) == 0) {
1531 * Sector overwrite allowed.
1536 * Sector overwrite not allowed, must copy-on-write.
1542 * Already flagged modified, no new allocation is needed.
1548 * Flag parent update required.
1550 if ((chain
->flags
& HAMMER2_CHAIN_UPDATE
) == 0)
1551 atomic_set_int(&chain
->flags
, HAMMER2_CHAIN_UPDATE
);
1554 * The modification or re-modification requires an allocation and
1557 * If dedup_off is non-zero, caller already has a data offset
1558 * containing the caller's desired data. The dedup offset is
1559 * allowed to be in a partially free state and we must be sure
1560 * to reset it to a fully allocated state to force two bulkfree
1561 * passes to free it again.
1563 * XXX can a chain already be marked MODIFIED without a data
1564 * assignment? If not, assert here instead of testing the case.
1566 if (chain
!= &hmp
->vchain
&& chain
!= &hmp
->fchain
) {
1567 if ((chain
->bref
.data_off
& ~HAMMER2_OFF_MASK_RADIX
) == 0 ||
1571 chain
->bref
.data_off
= dedup_off
;
1572 chain
->bytes
= 1 << (dedup_off
&
1573 HAMMER2_OFF_MASK_RADIX
);
1574 atomic_set_int(&chain
->flags
,
1575 HAMMER2_CHAIN_DEDUP
);
1576 hammer2_freemap_adjust(hmp
, &chain
->bref
,
1577 HAMMER2_FREEMAP_DORECOVER
);
1579 hammer2_freemap_alloc(chain
, chain
->bytes
);
1580 atomic_clear_int(&chain
->flags
,
1581 HAMMER2_CHAIN_DEDUP
);
1583 /* XXX failed allocation */
1588 * Update mirror_tid and modify_tid. modify_tid is only updated
1589 * if not passed as zero (during flushes, parent propagation passes
1592 * NOTE: chain->pmp could be the device spmp.
1594 chain
->bref
.mirror_tid
= hmp
->voldata
.mirror_tid
+ 1;
1596 chain
->bref
.modify_tid
= mtid
;
1599 * Set BMAPUPD to tell the flush code that an existing blockmap entry
1600 * requires updating as well as to tell the delete code that the
1601 * chain's blockref might not exactly match (in terms of physical size
1602 * or block offset) the one in the parent's blocktable. The base key
1603 * of course will still match.
1605 if (chain
->flags
& HAMMER2_CHAIN_BMAPPED
)
1606 atomic_set_int(&chain
->flags
, HAMMER2_CHAIN_BMAPUPD
);
1609 * Short-cut data blocks which the caller does not need an actual
1610 * data reference to (aka OPTDATA), as long as the chain does not
1611 * already have a data pointer to the data. This generally means
1612 * that the modifications are being done via the logical buffer cache.
1613 * The INITIAL flag relates only to the device data buffer and thus
1614 * remains unchange in this situation.
1616 if (chain
->bref
.type
== HAMMER2_BREF_TYPE_DATA
&&
1617 (flags
& HAMMER2_MODIFY_OPTDATA
) &&
1618 chain
->data
== NULL
) {
1619 KKASSERT(chain
->dio
== NULL
);
1624 * Clearing the INITIAL flag (for indirect blocks) indicates that
1625 * we've processed the uninitialized storage allocation.
1627 * If this flag is already clear we are likely in a copy-on-write
1628 * situation but we have to be sure NOT to bzero the storage if
1629 * no data is present.
1631 if (chain
->flags
& HAMMER2_CHAIN_INITIAL
) {
1632 atomic_clear_int(&chain
->flags
, HAMMER2_CHAIN_INITIAL
);
1639 * Instantiate data buffer and possibly execute COW operation
1641 switch(chain
->bref
.type
) {
1642 case HAMMER2_BREF_TYPE_VOLUME
:
1643 case HAMMER2_BREF_TYPE_FREEMAP
:
1645 * The data is embedded, no copy-on-write operation is
1648 KKASSERT(chain
->dio
== NULL
);
1650 case HAMMER2_BREF_TYPE_INODE
:
1651 case HAMMER2_BREF_TYPE_FREEMAP_LEAF
:
1652 case HAMMER2_BREF_TYPE_DATA
:
1653 case HAMMER2_BREF_TYPE_INDIRECT
:
1654 case HAMMER2_BREF_TYPE_FREEMAP_NODE
:
1656 * Perform the copy-on-write operation
1658 * zero-fill or copy-on-write depending on whether
1659 * chain->data exists or not and set the dirty state for
1660 * the new buffer. hammer2_io_new() will handle the
1663 * If a dedup_off was supplied this is an existing block
1664 * and no COW, copy, or further modification is required.
1666 KKASSERT(chain
!= &hmp
->vchain
&& chain
!= &hmp
->fchain
);
1668 if (wasinitial
&& dedup_off
== 0) {
1669 error
= hammer2_io_new(hmp
, chain
->bref
.type
,
1670 chain
->bref
.data_off
,
1671 chain
->bytes
, &dio
);
1673 error
= hammer2_io_bread(hmp
, chain
->bref
.type
,
1674 chain
->bref
.data_off
,
1675 chain
->bytes
, &dio
);
1677 hammer2_adjreadcounter(&chain
->bref
, chain
->bytes
);
1680 * If an I/O error occurs make sure callers cannot accidently
1681 * modify the old buffer's contents and corrupt the filesystem.
1684 kprintf("hammer2_chain_modify: hmp=%p I/O error\n",
1686 chain
->error
= HAMMER2_ERROR_IO
;
1687 hammer2_io_brelse(&dio
);
1688 hammer2_io_brelse(&chain
->dio
);
1693 bdata
= hammer2_io_data(dio
, chain
->bref
.data_off
);
1697 * COW (unless a dedup).
1699 KKASSERT(chain
->dio
!= NULL
);
1700 if (chain
->data
!= (void *)bdata
&& dedup_off
== 0) {
1701 bcopy(chain
->data
, bdata
, chain
->bytes
);
1703 } else if (wasinitial
== 0) {
1705 * We have a problem. We were asked to COW but
1706 * we don't have any data to COW with!
1708 panic("hammer2_chain_modify: having a COW %p\n",
1713 * Retire the old buffer, replace with the new. Dirty or
1714 * redirty the new buffer.
1716 * WARNING! The system buffer cache may have already flushed
1717 * the buffer, so we must be sure to [re]dirty it
1718 * for further modification.
1720 * If dedup_off was supplied, the caller is not
1721 * expected to make any further modification to the
1725 hammer2_io_bqrelse(&chain
->dio
);
1726 chain
->data
= (void *)bdata
;
1729 hammer2_io_setdirty(dio
);
1732 panic("hammer2_chain_modify: illegal non-embedded type %d",
1739 * setflush on parent indicating that the parent must recurse down
1740 * to us. Do not call on chain itself which might already have it
1744 hammer2_chain_setflush(chain
->parent
);
1748 * Modify the chain associated with an inode.
1751 hammer2_chain_modify_ip(hammer2_inode_t
*ip
, hammer2_chain_t
*chain
,
1752 hammer2_tid_t mtid
, int flags
)
1754 hammer2_inode_modify(ip
);
1755 hammer2_chain_modify(chain
, mtid
, 0, flags
);
1759 * Volume header data locks
1762 hammer2_voldata_lock(hammer2_dev_t
*hmp
)
1764 lockmgr(&hmp
->vollk
, LK_EXCLUSIVE
);
1768 hammer2_voldata_unlock(hammer2_dev_t
*hmp
)
1770 lockmgr(&hmp
->vollk
, LK_RELEASE
);
1774 hammer2_voldata_modify(hammer2_dev_t
*hmp
)
1776 if ((hmp
->vchain
.flags
& HAMMER2_CHAIN_MODIFIED
) == 0) {
1777 atomic_add_long(&hammer2_count_modified_chains
, 1);
1778 atomic_set_int(&hmp
->vchain
.flags
, HAMMER2_CHAIN_MODIFIED
);
1779 hammer2_pfs_memory_inc(hmp
->vchain
.pmp
);
1784 * This function returns the chain at the nearest key within the specified
1785 * range. The returned chain will be referenced but not locked.
1787 * This function will recurse through chain->rbtree as necessary and will
1788 * return a *key_nextp suitable for iteration. *key_nextp is only set if
1789 * the iteration value is less than the current value of *key_nextp.
1791 * The caller should use (*key_nextp) to calculate the actual range of
1792 * the returned element, which will be (key_beg to *key_nextp - 1), because
1793 * there might be another element which is superior to the returned element
1796 * (*key_nextp) can be passed as key_beg in an iteration only while non-NULL
1797 * chains continue to be returned. On EOF (*key_nextp) may overflow since
1798 * it will wind up being (key_end + 1).
1800 * WARNING! Must be called with child's spinlock held. Spinlock remains
1801 * held through the operation.
1803 struct hammer2_chain_find_info
{
1804 hammer2_chain_t
*best
;
1805 hammer2_key_t key_beg
;
1806 hammer2_key_t key_end
;
1807 hammer2_key_t key_next
;
1810 static int hammer2_chain_find_cmp(hammer2_chain_t
*child
, void *data
);
1811 static int hammer2_chain_find_callback(hammer2_chain_t
*child
, void *data
);
1815 hammer2_chain_find(hammer2_chain_t
*parent
, hammer2_key_t
*key_nextp
,
1816 hammer2_key_t key_beg
, hammer2_key_t key_end
)
1818 struct hammer2_chain_find_info info
;
1821 info
.key_beg
= key_beg
;
1822 info
.key_end
= key_end
;
1823 info
.key_next
= *key_nextp
;
1825 RB_SCAN(hammer2_chain_tree
, &parent
->core
.rbtree
,
1826 hammer2_chain_find_cmp
, hammer2_chain_find_callback
,
1828 *key_nextp
= info
.key_next
;
1830 kprintf("chain_find %p %016jx:%016jx next=%016jx\n",
1831 parent
, key_beg
, key_end
, *key_nextp
);
1839 hammer2_chain_find_cmp(hammer2_chain_t
*child
, void *data
)
1841 struct hammer2_chain_find_info
*info
= data
;
1842 hammer2_key_t child_beg
;
1843 hammer2_key_t child_end
;
1845 child_beg
= child
->bref
.key
;
1846 child_end
= child_beg
+ ((hammer2_key_t
)1 << child
->bref
.keybits
) - 1;
1848 if (child_end
< info
->key_beg
)
1850 if (child_beg
> info
->key_end
)
1857 hammer2_chain_find_callback(hammer2_chain_t
*child
, void *data
)
1859 struct hammer2_chain_find_info
*info
= data
;
1860 hammer2_chain_t
*best
;
1861 hammer2_key_t child_end
;
1864 * WARNING! Layerq is scanned forwards, exact matches should keep
1865 * the existing info->best.
1867 if ((best
= info
->best
) == NULL
) {
1869 * No previous best. Assign best
1872 } else if (best
->bref
.key
<= info
->key_beg
&&
1873 child
->bref
.key
<= info
->key_beg
) {
1878 /*info->best = child;*/
1879 } else if (child
->bref
.key
< best
->bref
.key
) {
1881 * Child has a nearer key and best is not flush with key_beg.
1882 * Set best to child. Truncate key_next to the old best key.
1885 if (info
->key_next
> best
->bref
.key
|| info
->key_next
== 0)
1886 info
->key_next
= best
->bref
.key
;
1887 } else if (child
->bref
.key
== best
->bref
.key
) {
1889 * If our current best is flush with the child then this
1890 * is an illegal overlap.
1892 * key_next will automatically be limited to the smaller of
1893 * the two end-points.
1899 * Keep the current best but truncate key_next to the child's
1902 * key_next will also automatically be limited to the smaller
1903 * of the two end-points (probably not necessary for this case
1904 * but we do it anyway).
1906 if (info
->key_next
> child
->bref
.key
|| info
->key_next
== 0)
1907 info
->key_next
= child
->bref
.key
;
1911 * Always truncate key_next based on child's end-of-range.
1913 child_end
= child
->bref
.key
+ ((hammer2_key_t
)1 << child
->bref
.keybits
);
1914 if (child_end
&& (info
->key_next
> child_end
|| info
->key_next
== 0))
1915 info
->key_next
= child_end
;
1921 * Retrieve the specified chain from a media blockref, creating the
1922 * in-memory chain structure which reflects it.
1924 * To handle insertion races pass the INSERT_RACE flag along with the
1925 * generation number of the core. NULL will be returned if the generation
1926 * number changes before we have a chance to insert the chain. Insert
1927 * races can occur because the parent might be held shared.
1929 * Caller must hold the parent locked shared or exclusive since we may
1930 * need the parent's bref array to find our block.
1932 * WARNING! chain->pmp is always set to NULL for any chain representing
1933 * part of the super-root topology.
1936 hammer2_chain_get(hammer2_chain_t
*parent
, int generation
,
1937 hammer2_blockref_t
*bref
)
1939 hammer2_dev_t
*hmp
= parent
->hmp
;
1940 hammer2_chain_t
*chain
;
1944 * Allocate a chain structure representing the existing media
1945 * entry. Resulting chain has one ref and is not locked.
1947 if (bref
->flags
& HAMMER2_BREF_FLAG_PFSROOT
)
1948 chain
= hammer2_chain_alloc(hmp
, NULL
, bref
);
1950 chain
= hammer2_chain_alloc(hmp
, parent
->pmp
, bref
);
1951 /* ref'd chain returned */
1954 * Flag that the chain is in the parent's blockmap so delete/flush
1955 * knows what to do with it.
1957 atomic_set_int(&chain
->flags
, HAMMER2_CHAIN_BMAPPED
);
1960 * Link the chain into its parent. A spinlock is required to safely
1961 * access the RBTREE, and it is possible to collide with another
1962 * hammer2_chain_get() operation because the caller might only hold
1963 * a shared lock on the parent.
1965 * NOTE: Get races can occur quite often when we distribute
1966 * asynchronous read-aheads across multiple threads.
1968 KKASSERT(parent
->refs
> 0);
1969 error
= hammer2_chain_insert(parent
, chain
,
1970 HAMMER2_CHAIN_INSERT_SPIN
|
1971 HAMMER2_CHAIN_INSERT_RACE
,
1974 KKASSERT((chain
->flags
& HAMMER2_CHAIN_ONRBTREE
) == 0);
1975 /*kprintf("chain %p get race\n", chain);*/
1976 hammer2_chain_drop(chain
);
1979 KKASSERT(chain
->flags
& HAMMER2_CHAIN_ONRBTREE
);
1983 * Return our new chain referenced but not locked, or NULL if
1990 * Lookup initialization/completion API
1993 hammer2_chain_lookup_init(hammer2_chain_t
*parent
, int flags
)
1995 hammer2_chain_ref(parent
);
1996 if (flags
& HAMMER2_LOOKUP_SHARED
) {
1997 hammer2_chain_lock(parent
, HAMMER2_RESOLVE_ALWAYS
|
1998 HAMMER2_RESOLVE_SHARED
);
2000 hammer2_chain_lock(parent
, HAMMER2_RESOLVE_ALWAYS
);
2006 hammer2_chain_lookup_done(hammer2_chain_t
*parent
)
2009 hammer2_chain_unlock(parent
);
2010 hammer2_chain_drop(parent
);
2015 hammer2_chain_getparent(hammer2_chain_t
**parentp
, int how
)
2017 hammer2_chain_t
*oparent
;
2018 hammer2_chain_t
*nparent
;
2021 * Be careful of order, oparent must be unlocked before nparent
2022 * is locked below to avoid a deadlock.
2025 hammer2_spin_ex(&oparent
->core
.spin
);
2026 nparent
= oparent
->parent
;
2027 if (nparent
== NULL
) {
2028 hammer2_spin_unex(&oparent
->core
.spin
);
2029 panic("hammer2_chain_getparent: no parent");
2031 hammer2_chain_ref(nparent
);
2032 hammer2_spin_unex(&oparent
->core
.spin
);
2034 hammer2_chain_unlock(oparent
);
2035 hammer2_chain_drop(oparent
);
2039 hammer2_chain_lock(nparent
, how
);
2046 * Locate the first chain whos key range overlaps (key_beg, key_end) inclusive.
2047 * (*parentp) typically points to an inode but can also point to a related
2048 * indirect block and this function will recurse upwards and find the inode
2051 * (*parentp) must be exclusively locked and referenced and can be an inode
2052 * or an existing indirect block within the inode.
2054 * On return (*parentp) will be modified to point at the deepest parent chain
2055 * element encountered during the search, as a helper for an insertion or
2056 * deletion. The new (*parentp) will be locked and referenced and the old
2057 * will be unlocked and dereferenced (no change if they are both the same).
2059 * The matching chain will be returned exclusively locked. If NOLOCK is
2060 * requested the chain will be returned only referenced. Note that the
2061 * parent chain must always be locked shared or exclusive, matching the
2062 * HAMMER2_LOOKUP_SHARED flag. We can conceivably lock it SHARED temporarily
2063 * when NOLOCK is specified but that complicates matters if *parentp must
2064 * inherit the chain.
2066 * NOLOCK also implies NODATA, since an unlocked chain usually has a NULL
2067 * data pointer or can otherwise be in flux.
2069 * NULL is returned if no match was found, but (*parentp) will still
2070 * potentially be adjusted.
2072 * If a fatal error occurs (typically an I/O error), a dummy chain is
2073 * returned with chain->error and error-identifying information set. This
2074 * chain will assert if you try to do anything fancy with it.
2076 * XXX Depending on where the error occurs we should allow continued iteration.
2078 * On return (*key_nextp) will point to an iterative value for key_beg.
2079 * (If NULL is returned (*key_nextp) is set to (key_end + 1)).
2081 * This function will also recurse up the chain if the key is not within the
2082 * current parent's range. (*parentp) can never be set to NULL. An iteration
2083 * can simply allow (*parentp) to float inside the loop.
2085 * NOTE! chain->data is not always resolved. By default it will not be
2086 * resolved for BREF_TYPE_DATA, FREEMAP_NODE, or FREEMAP_LEAF. Use
2087 * HAMMER2_LOOKUP_ALWAYS to force resolution (but be careful w/
2088 * BREF_TYPE_DATA as the device buffer can alias the logical file
2093 hammer2_chain_lookup(hammer2_chain_t
**parentp
, hammer2_key_t
*key_nextp
,
2094 hammer2_key_t key_beg
, hammer2_key_t key_end
,
2095 int *cache_indexp
, int flags
)
2098 hammer2_chain_t
*parent
;
2099 hammer2_chain_t
*chain
;
2100 hammer2_blockref_t
*base
;
2101 hammer2_blockref_t
*bref
;
2102 hammer2_blockref_t bcopy
;
2103 hammer2_key_t scan_beg
;
2104 hammer2_key_t scan_end
;
2106 int how_always
= HAMMER2_RESOLVE_ALWAYS
;
2107 int how_maybe
= HAMMER2_RESOLVE_MAYBE
;
2110 int maxloops
= 300000;
2114 if (flags
& HAMMER2_LOOKUP_ALWAYS
) {
2115 how_maybe
= how_always
;
2116 how
= HAMMER2_RESOLVE_ALWAYS
;
2117 } else if (flags
& (HAMMER2_LOOKUP_NODATA
| HAMMER2_LOOKUP_NOLOCK
)) {
2118 how
= HAMMER2_RESOLVE_NEVER
;
2120 how
= HAMMER2_RESOLVE_MAYBE
;
2122 if (flags
& HAMMER2_LOOKUP_SHARED
) {
2123 how_maybe
|= HAMMER2_RESOLVE_SHARED
;
2124 how_always
|= HAMMER2_RESOLVE_SHARED
;
2125 how
|= HAMMER2_RESOLVE_SHARED
;
2129 * Recurse (*parentp) upward if necessary until the parent completely
2130 * encloses the key range or we hit the inode.
2132 * Handle races against the flusher deleting indirect nodes on its
2133 * way back up by continuing to recurse upward past the deletion.
2138 while (parent
->bref
.type
== HAMMER2_BREF_TYPE_INDIRECT
||
2139 parent
->bref
.type
== HAMMER2_BREF_TYPE_FREEMAP_NODE
) {
2140 scan_beg
= parent
->bref
.key
;
2141 scan_end
= scan_beg
+
2142 ((hammer2_key_t
)1 << parent
->bref
.keybits
) - 1;
2143 if (parent
->bref
.type
!= HAMMER2_BREF_TYPE_INDIRECT
||
2144 (parent
->flags
& HAMMER2_CHAIN_DELETED
) == 0) {
2145 if (key_beg
>= scan_beg
&& key_end
<= scan_end
)
2148 parent
= hammer2_chain_getparent(parentp
, how_maybe
);
2153 if (--maxloops
== 0)
2154 panic("hammer2_chain_lookup: maxloops");
2156 * Locate the blockref array. Currently we do a fully associative
2157 * search through the array.
2159 switch(parent
->bref
.type
) {
2160 case HAMMER2_BREF_TYPE_INODE
:
2162 * Special shortcut for embedded data returns the inode
2163 * itself. Callers must detect this condition and access
2164 * the embedded data (the strategy code does this for us).
2166 * This is only applicable to regular files and softlinks.
2168 * We need a second lock on parent. Since we already have
2169 * a lock we must pass LOCKAGAIN to prevent unexpected
2170 * blocking (we don't want to block on a second shared
2171 * ref if an exclusive lock is pending)
2173 if (parent
->data
->ipdata
.meta
.op_flags
&
2174 HAMMER2_OPFLAG_DIRECTDATA
) {
2175 if (flags
& HAMMER2_LOOKUP_NODIRECT
) {
2177 *key_nextp
= key_end
+ 1;
2180 hammer2_chain_ref(parent
);
2181 if ((flags
& HAMMER2_LOOKUP_NOLOCK
) == 0)
2182 hammer2_chain_lock(parent
,
2184 HAMMER2_RESOLVE_LOCKAGAIN
);
2185 *key_nextp
= key_end
+ 1;
2188 base
= &parent
->data
->ipdata
.u
.blockset
.blockref
[0];
2189 count
= HAMMER2_SET_COUNT
;
2191 case HAMMER2_BREF_TYPE_FREEMAP_NODE
:
2192 case HAMMER2_BREF_TYPE_INDIRECT
:
2194 * Handle MATCHIND on the parent
2196 if (flags
& HAMMER2_LOOKUP_MATCHIND
) {
2197 scan_beg
= parent
->bref
.key
;
2198 scan_end
= scan_beg
+
2199 ((hammer2_key_t
)1 << parent
->bref
.keybits
) - 1;
2200 if (key_beg
== scan_beg
&& key_end
== scan_end
) {
2202 hammer2_chain_ref(chain
);
2203 hammer2_chain_lock(chain
, how_maybe
);
2204 *key_nextp
= scan_end
+ 1;
2210 * Optimize indirect blocks in the INITIAL state to avoid
2213 if (parent
->flags
& HAMMER2_CHAIN_INITIAL
) {
2216 if (parent
->data
== NULL
) {
2217 kprintf("parent->data is NULL %p\n", parent
);
2219 tsleep(parent
, 0, "xxx", 0);
2221 base
= &parent
->data
->npdata
[0];
2223 count
= parent
->bytes
/ sizeof(hammer2_blockref_t
);
2225 case HAMMER2_BREF_TYPE_VOLUME
:
2226 base
= &parent
->data
->voldata
.sroot_blockset
.blockref
[0];
2227 count
= HAMMER2_SET_COUNT
;
2229 case HAMMER2_BREF_TYPE_FREEMAP
:
2230 base
= &parent
->data
->blkset
.blockref
[0];
2231 count
= HAMMER2_SET_COUNT
;
2234 kprintf("hammer2_chain_lookup: unrecognized "
2235 "blockref(B) type: %d",
2238 tsleep(&base
, 0, "dead", 0);
2239 panic("hammer2_chain_lookup: unrecognized "
2240 "blockref(B) type: %d",
2242 base
= NULL
; /* safety */
2243 count
= 0; /* safety */
2248 * Merged scan to find next candidate.
2250 * hammer2_base_*() functions require the parent->core.live_* fields
2251 * to be synchronized.
2253 * We need to hold the spinlock to access the block array and RB tree
2254 * and to interlock chain creation.
2256 if ((parent
->flags
& HAMMER2_CHAIN_COUNTEDBREFS
) == 0)
2257 hammer2_chain_countbrefs(parent
, base
, count
);
2264 hammer2_spin_ex(&parent
->core
.spin
);
2265 chain
= hammer2_combined_find(parent
, base
, count
,
2266 cache_indexp
, key_nextp
,
2269 generation
= parent
->core
.generation
;
2274 * Exhausted parent chain, iterate.
2278 hammer2_spin_unex(&parent
->core
.spin
);
2279 if (key_beg
== key_end
) /* short cut single-key case */
2283 * Stop if we reached the end of the iteration.
2285 if (parent
->bref
.type
!= HAMMER2_BREF_TYPE_INDIRECT
&&
2286 parent
->bref
.type
!= HAMMER2_BREF_TYPE_FREEMAP_NODE
) {
2291 * Calculate next key, stop if we reached the end of the
2292 * iteration, otherwise go up one level and loop.
2294 key_beg
= parent
->bref
.key
+
2295 ((hammer2_key_t
)1 << parent
->bref
.keybits
);
2296 if (key_beg
== 0 || key_beg
> key_end
)
2298 parent
= hammer2_chain_getparent(parentp
, how_maybe
);
2303 * Selected from blockref or in-memory chain.
2305 if (chain
== NULL
) {
2308 hammer2_spin_unex(&parent
->core
.spin
);
2309 chain
= hammer2_chain_get(parent
, generation
,
2311 if (chain
== NULL
) {
2313 kprintf("retry lookup parent %p keys %016jx:%016jx\n",
2314 parent, key_beg, key_end);
2318 if (bcmp(&bcopy
, bref
, sizeof(bcopy
))) {
2319 hammer2_chain_drop(chain
);
2324 hammer2_chain_ref(chain
);
2325 hammer2_spin_unex(&parent
->core
.spin
);
2330 * chain is referenced but not locked. We must lock the chain
2331 * to obtain definitive state.
2333 if (chain
->bref
.type
== HAMMER2_BREF_TYPE_INDIRECT
||
2334 chain
->bref
.type
== HAMMER2_BREF_TYPE_FREEMAP_NODE
) {
2335 hammer2_chain_lock(chain
, how_maybe
);
2337 hammer2_chain_lock(chain
, how
);
2339 KKASSERT(chain
->parent
== parent
);
2343 * Skip deleted chains (XXX cache 'i' end-of-block-array? XXX)
2345 * NOTE: Chain's key range is not relevant as there might be
2346 * one-offs within the range that are not deleted.
2348 * NOTE: Lookups can race delete-duplicate because
2349 * delete-duplicate does not lock the parent's core
2350 * (they just use the spinlock on the core).
2352 if (chain
->flags
& HAMMER2_CHAIN_DELETED
) {
2353 kprintf("skip deleted chain %016jx.%02x key=%016jx\n",
2354 chain
->bref
.data_off
, chain
->bref
.type
,
2356 hammer2_chain_unlock(chain
);
2357 hammer2_chain_drop(chain
);
2358 key_beg
= *key_nextp
;
2359 if (key_beg
== 0 || key_beg
> key_end
)
2366 * If the chain element is an indirect block it becomes the new
2367 * parent and we loop on it. We must maintain our top-down locks
2368 * to prevent the flusher from interfering (i.e. doing a
2369 * delete-duplicate and leaving us recursing down a deleted chain).
2371 * The parent always has to be locked with at least RESOLVE_MAYBE
2372 * so we can access its data. It might need a fixup if the caller
2373 * passed incompatible flags. Be careful not to cause a deadlock
2374 * as a data-load requires an exclusive lock.
2376 * If HAMMER2_LOOKUP_MATCHIND is set and the indirect block's key
2377 * range is within the requested key range we return the indirect
2378 * block and do NOT loop. This is usually only used to acquire
2381 if (chain
->bref
.type
== HAMMER2_BREF_TYPE_INDIRECT
||
2382 chain
->bref
.type
== HAMMER2_BREF_TYPE_FREEMAP_NODE
) {
2383 hammer2_chain_unlock(parent
);
2384 hammer2_chain_drop(parent
);
2385 *parentp
= parent
= chain
;
2391 * All done, return the chain.
2393 * If the caller does not want a locked chain, replace the lock with
2394 * a ref. Perhaps this can eventually be optimized to not obtain the
2395 * lock in the first place for situations where the data does not
2396 * need to be resolved.
2399 if (flags
& HAMMER2_LOOKUP_NOLOCK
)
2400 hammer2_chain_unlock(chain
);
2408 * After having issued a lookup we can iterate all matching keys.
2410 * If chain is non-NULL we continue the iteration from just after it's index.
2412 * If chain is NULL we assume the parent was exhausted and continue the
2413 * iteration at the next parent.
2415 * If a fatal error occurs (typically an I/O error), a dummy chain is
2416 * returned with chain->error and error-identifying information set. This
2417 * chain will assert if you try to do anything fancy with it.
2419 * XXX Depending on where the error occurs we should allow continued iteration.
2421 * parent must be locked on entry and remains locked throughout. chain's
2422 * lock status must match flags. Chain is always at least referenced.
2424 * WARNING! The MATCHIND flag does not apply to this function.
2427 hammer2_chain_next(hammer2_chain_t
**parentp
, hammer2_chain_t
*chain
,
2428 hammer2_key_t
*key_nextp
,
2429 hammer2_key_t key_beg
, hammer2_key_t key_end
,
2430 int *cache_indexp
, int flags
)
2432 hammer2_chain_t
*parent
;
2436 * Calculate locking flags for upward recursion.
2438 how_maybe
= HAMMER2_RESOLVE_MAYBE
;
2439 if (flags
& HAMMER2_LOOKUP_SHARED
)
2440 how_maybe
|= HAMMER2_RESOLVE_SHARED
;
2445 * Calculate the next index and recalculate the parent if necessary.
2448 key_beg
= chain
->bref
.key
+
2449 ((hammer2_key_t
)1 << chain
->bref
.keybits
);
2450 if ((flags
& (HAMMER2_LOOKUP_NOLOCK
|
2451 HAMMER2_LOOKUP_NOUNLOCK
)) == 0) {
2452 hammer2_chain_unlock(chain
);
2454 hammer2_chain_drop(chain
);
2457 * chain invalid past this point, but we can still do a
2458 * pointer comparison w/parent.
2460 * Any scan where the lookup returned degenerate data embedded
2461 * in the inode has an invalid index and must terminate.
2463 if (chain
== parent
)
2465 if (key_beg
== 0 || key_beg
> key_end
)
2468 } else if (parent
->bref
.type
!= HAMMER2_BREF_TYPE_INDIRECT
&&
2469 parent
->bref
.type
!= HAMMER2_BREF_TYPE_FREEMAP_NODE
) {
2471 * We reached the end of the iteration.
2476 * Continue iteration with next parent unless the current
2477 * parent covers the range.
2479 * (This also handles the case of a deleted, empty indirect
2482 key_beg
= parent
->bref
.key
+
2483 ((hammer2_key_t
)1 << parent
->bref
.keybits
);
2484 if (key_beg
== 0 || key_beg
> key_end
)
2486 parent
= hammer2_chain_getparent(parentp
, how_maybe
);
2492 return (hammer2_chain_lookup(parentp
, key_nextp
,
2494 cache_indexp
, flags
));
2498 * The raw scan function is similar to lookup/next but does not seek to a key.
2499 * Blockrefs are iterated via first_bref = (parent, NULL) and
2500 * next_chain = (parent, bref).
2502 * The passed-in parent must be locked and its data resolved. The function
2503 * nominally returns a locked and referenced *chainp != NULL for chains
2504 * the caller might need to recurse on (and will dipose of any *chainp passed
2505 * in). The caller must check the chain->bref.type either way.
2507 * *chainp is not set for leaf elements.
2509 * This function takes a pointer to a stack-based bref structure whos
2510 * contents is updated for each iteration. The same pointer is returned,
2511 * or NULL when the iteration is complete. *firstp must be set to 1 for
2512 * the first ieration. This function will set it to 0.
2514 hammer2_blockref_t
*
2515 hammer2_chain_scan(hammer2_chain_t
*parent
, hammer2_chain_t
**chainp
,
2516 hammer2_blockref_t
*bref
, int *firstp
,
2517 int *cache_indexp
, int flags
)
2520 hammer2_blockref_t
*base
;
2521 hammer2_blockref_t
*bref_ptr
;
2523 hammer2_key_t next_key
;
2524 hammer2_chain_t
*chain
= NULL
;
2526 int how_always
= HAMMER2_RESOLVE_ALWAYS
;
2527 int how_maybe
= HAMMER2_RESOLVE_MAYBE
;
2530 int maxloops
= 300000;
2535 * Scan flags borrowed from lookup.
2537 if (flags
& HAMMER2_LOOKUP_ALWAYS
) {
2538 how_maybe
= how_always
;
2539 how
= HAMMER2_RESOLVE_ALWAYS
;
2540 } else if (flags
& (HAMMER2_LOOKUP_NODATA
| HAMMER2_LOOKUP_NOLOCK
)) {
2541 how
= HAMMER2_RESOLVE_NEVER
;
2543 how
= HAMMER2_RESOLVE_MAYBE
;
2545 if (flags
& HAMMER2_LOOKUP_SHARED
) {
2546 how_maybe
|= HAMMER2_RESOLVE_SHARED
;
2547 how_always
|= HAMMER2_RESOLVE_SHARED
;
2548 how
|= HAMMER2_RESOLVE_SHARED
;
2552 * Calculate key to locate first/next element, unlocking the previous
2553 * element as we go. Be careful, the key calculation can overflow.
2555 * (also reset bref to NULL)
2561 key
= bref
->key
+ ((hammer2_key_t
)1 << bref
->keybits
);
2562 if ((chain
= *chainp
) != NULL
) {
2564 hammer2_chain_unlock(chain
);
2565 hammer2_chain_drop(chain
);
2575 KKASSERT(parent
->error
== 0); /* XXX case not handled yet */
2576 if (--maxloops
== 0)
2577 panic("hammer2_chain_scan: maxloops");
2579 * Locate the blockref array. Currently we do a fully associative
2580 * search through the array.
2582 switch(parent
->bref
.type
) {
2583 case HAMMER2_BREF_TYPE_INODE
:
2585 * An inode with embedded data has no sub-chains.
2587 * WARNING! Bulk scan code may pass a static chain marked
2588 * as BREF_TYPE_INODE with a copy of the volume
2589 * root blockset to snapshot the volume.
2591 if (parent
->data
->ipdata
.meta
.op_flags
&
2592 HAMMER2_OPFLAG_DIRECTDATA
) {
2596 base
= &parent
->data
->ipdata
.u
.blockset
.blockref
[0];
2597 count
= HAMMER2_SET_COUNT
;
2599 case HAMMER2_BREF_TYPE_FREEMAP_NODE
:
2600 case HAMMER2_BREF_TYPE_INDIRECT
:
2602 * Optimize indirect blocks in the INITIAL state to avoid
2605 if (parent
->flags
& HAMMER2_CHAIN_INITIAL
) {
2608 if (parent
->data
== NULL
)
2609 panic("parent->data is NULL");
2610 base
= &parent
->data
->npdata
[0];
2612 count
= parent
->bytes
/ sizeof(hammer2_blockref_t
);
2614 case HAMMER2_BREF_TYPE_VOLUME
:
2615 base
= &parent
->data
->voldata
.sroot_blockset
.blockref
[0];
2616 count
= HAMMER2_SET_COUNT
;
2618 case HAMMER2_BREF_TYPE_FREEMAP
:
2619 base
= &parent
->data
->blkset
.blockref
[0];
2620 count
= HAMMER2_SET_COUNT
;
2623 panic("hammer2_chain_lookup: unrecognized blockref type: %d",
2625 base
= NULL
; /* safety */
2626 count
= 0; /* safety */
2630 * Merged scan to find next candidate.
2632 * hammer2_base_*() functions require the parent->core.live_* fields
2633 * to be synchronized.
2635 * We need to hold the spinlock to access the block array and RB tree
2636 * and to interlock chain creation.
2638 if ((parent
->flags
& HAMMER2_CHAIN_COUNTEDBREFS
) == 0)
2639 hammer2_chain_countbrefs(parent
, base
, count
);
2643 hammer2_spin_ex(&parent
->core
.spin
);
2644 chain
= hammer2_combined_find(parent
, base
, count
,
2645 cache_indexp
, &next_key
,
2646 key
, HAMMER2_KEY_MAX
,
2648 generation
= parent
->core
.generation
;
2651 * Exhausted parent chain, we're done.
2653 if (bref_ptr
== NULL
) {
2654 hammer2_spin_unex(&parent
->core
.spin
);
2655 KKASSERT(chain
== NULL
);
2661 * Copy into the supplied stack-based blockref.
2666 * Selected from blockref or in-memory chain.
2668 if (chain
== NULL
) {
2669 switch(bref
->type
) {
2670 case HAMMER2_BREF_TYPE_INODE
:
2671 case HAMMER2_BREF_TYPE_FREEMAP_NODE
:
2672 case HAMMER2_BREF_TYPE_INDIRECT
:
2673 case HAMMER2_BREF_TYPE_VOLUME
:
2674 case HAMMER2_BREF_TYPE_FREEMAP
:
2676 * Recursion, always get the chain
2678 hammer2_spin_unex(&parent
->core
.spin
);
2679 chain
= hammer2_chain_get(parent
, generation
, bref
);
2680 if (chain
== NULL
) {
2681 kprintf("retry scan parent %p keys %016jx\n",
2685 if (bcmp(bref
, bref_ptr
, sizeof(*bref
))) {
2686 hammer2_chain_drop(chain
);
2693 * No recursion, do not waste time instantiating
2694 * a chain, just iterate using the bref.
2696 hammer2_spin_unex(&parent
->core
.spin
);
2701 * Recursion or not we need the chain in order to supply
2704 hammer2_chain_ref(chain
);
2705 hammer2_spin_unex(&parent
->core
.spin
);
2709 * chain is referenced but not locked. We must lock the chain
2710 * to obtain definitive state.
2713 hammer2_chain_lock(chain
, how
);
2716 * Skip deleted chains (XXX cache 'i' end-of-block-array? XXX)
2718 * NOTE: chain's key range is not relevant as there might be
2719 * one-offs within the range that are not deleted.
2721 * NOTE: XXX this could create problems with scans used in
2722 * situations other than mount-time recovery.
2724 * NOTE: Lookups can race delete-duplicate because
2725 * delete-duplicate does not lock the parent's core
2726 * (they just use the spinlock on the core).
2728 if (chain
&& (chain
->flags
& HAMMER2_CHAIN_DELETED
)) {
2729 hammer2_chain_unlock(chain
);
2730 hammer2_chain_drop(chain
);
2743 * All done, return the bref or NULL, supply chain if necessary.
2751 * Create and return a new hammer2 system memory structure of the specified
2752 * key, type and size and insert it under (*parentp). This is a full
2753 * insertion, based on the supplied key/keybits, and may involve creating
2754 * indirect blocks and moving other chains around via delete/duplicate.
2756 * THE CALLER MUST HAVE ALREADY PROPERLY SEEKED (*parentp) TO THE INSERTION
2757 * POINT SANS ANY REQUIRED INDIRECT BLOCK CREATIONS DUE TO THE ARRAY BEING
2758 * FULL. This typically means that the caller is creating the chain after
2759 * doing a hammer2_chain_lookup().
2761 * (*parentp) must be exclusive locked and may be replaced on return
2762 * depending on how much work the function had to do.
2764 * (*parentp) must not be errored or this function will assert.
2766 * (*chainp) usually starts out NULL and returns the newly created chain,
2767 * but if the caller desires the caller may allocate a disconnected chain
2768 * and pass it in instead.
2770 * This function should NOT be used to insert INDIRECT blocks. It is
2771 * typically used to create/insert inodes and data blocks.
2773 * Caller must pass-in an exclusively locked parent the new chain is to
2774 * be inserted under, and optionally pass-in a disconnected, exclusively
2775 * locked chain to insert (else we create a new chain). The function will
2776 * adjust (*parentp) as necessary, create or connect the chain, and
2777 * return an exclusively locked chain in *chainp.
2779 * When creating a PFSROOT inode under the super-root, pmp is typically NULL
2780 * and will be reassigned.
2783 hammer2_chain_create(hammer2_chain_t
**parentp
, hammer2_chain_t
**chainp
,
2784 hammer2_pfs_t
*pmp
, int methods
,
2785 hammer2_key_t key
, int keybits
, int type
, size_t bytes
,
2786 hammer2_tid_t mtid
, hammer2_off_t dedup_off
, int flags
)
2789 hammer2_chain_t
*chain
;
2790 hammer2_chain_t
*parent
;
2791 hammer2_blockref_t
*base
;
2792 hammer2_blockref_t dummy
;
2796 int maxloops
= 300000;
2799 * Topology may be crossing a PFS boundary.
2802 KKASSERT(hammer2_mtx_owned(&parent
->lock
));
2803 KKASSERT(parent
->error
== 0);
2807 if (chain
== NULL
) {
2809 * First allocate media space and construct the dummy bref,
2810 * then allocate the in-memory chain structure. Set the
2811 * INITIAL flag for fresh chains which do not have embedded
2814 * XXX for now set the check mode of the child based on
2815 * the parent or, if the parent is an inode, the
2816 * specification in the inode.
2818 bzero(&dummy
, sizeof(dummy
));
2821 dummy
.keybits
= keybits
;
2822 dummy
.data_off
= hammer2_getradix(bytes
);
2825 * Inherit methods from parent by default. Primarily used
2826 * for BREF_TYPE_DATA. Non-data types *must* be set to
2827 * a non-NONE check algorithm.
2830 dummy
.methods
= parent
->bref
.methods
;
2832 dummy
.methods
= (uint8_t)methods
;
2834 if (type
!= HAMMER2_BREF_TYPE_DATA
&&
2835 HAMMER2_DEC_CHECK(dummy
.methods
) == HAMMER2_CHECK_NONE
) {
2837 HAMMER2_ENC_CHECK(HAMMER2_CHECK_DEFAULT
);
2840 chain
= hammer2_chain_alloc(hmp
, pmp
, &dummy
);
2843 * Lock the chain manually, chain_lock will load the chain
2844 * which we do NOT want to do. (note: chain->refs is set
2845 * to 1 by chain_alloc() for us, but lockcnt is not).
2848 hammer2_mtx_ex(&chain
->lock
);
2850 ++curthread
->td_tracker
;
2853 * Set INITIAL to optimize I/O. The flag will generally be
2854 * processed when we call hammer2_chain_modify().
2856 * Recalculate bytes to reflect the actual media block
2859 bytes
= (hammer2_off_t
)1 <<
2860 (int)(chain
->bref
.data_off
& HAMMER2_OFF_MASK_RADIX
);
2861 chain
->bytes
= bytes
;
2864 case HAMMER2_BREF_TYPE_VOLUME
:
2865 case HAMMER2_BREF_TYPE_FREEMAP
:
2866 panic("hammer2_chain_create: called with volume type");
2868 case HAMMER2_BREF_TYPE_INDIRECT
:
2869 panic("hammer2_chain_create: cannot be used to"
2870 "create indirect block");
2872 case HAMMER2_BREF_TYPE_FREEMAP_NODE
:
2873 panic("hammer2_chain_create: cannot be used to"
2874 "create freemap root or node");
2876 case HAMMER2_BREF_TYPE_FREEMAP_LEAF
:
2877 KKASSERT(bytes
== sizeof(chain
->data
->bmdata
));
2879 case HAMMER2_BREF_TYPE_INODE
:
2880 case HAMMER2_BREF_TYPE_DATA
:
2883 * leave chain->data NULL, set INITIAL
2885 KKASSERT(chain
->data
== NULL
);
2886 atomic_set_int(&chain
->flags
, HAMMER2_CHAIN_INITIAL
);
2891 * We are reattaching a previously deleted chain, possibly
2892 * under a new parent and possibly with a new key/keybits.
2893 * The chain does not have to be in a modified state. The
2894 * UPDATE flag will be set later on in this routine.
2896 * Do NOT mess with the current state of the INITIAL flag.
2898 chain
->bref
.key
= key
;
2899 chain
->bref
.keybits
= keybits
;
2900 if (chain
->flags
& HAMMER2_CHAIN_DELETED
)
2901 atomic_clear_int(&chain
->flags
, HAMMER2_CHAIN_DELETED
);
2902 KKASSERT(chain
->parent
== NULL
);
2904 if (flags
& HAMMER2_INSERT_PFSROOT
)
2905 chain
->bref
.flags
|= HAMMER2_BREF_FLAG_PFSROOT
;
2907 chain
->bref
.flags
&= ~HAMMER2_BREF_FLAG_PFSROOT
;
2910 * Calculate how many entries we have in the blockref array and
2911 * determine if an indirect block is required.
2914 if (--maxloops
== 0)
2915 panic("hammer2_chain_create: maxloops");
2917 switch(parent
->bref
.type
) {
2918 case HAMMER2_BREF_TYPE_INODE
:
2919 if ((parent
->data
->ipdata
.meta
.op_flags
&
2920 HAMMER2_OPFLAG_DIRECTDATA
) != 0) {
2921 kprintf("hammer2: parent set for direct-data! "
2922 "pkey=%016jx ckey=%016jx\n",
2926 KKASSERT((parent
->data
->ipdata
.meta
.op_flags
&
2927 HAMMER2_OPFLAG_DIRECTDATA
) == 0);
2928 KKASSERT(parent
->data
!= NULL
);
2929 base
= &parent
->data
->ipdata
.u
.blockset
.blockref
[0];
2930 count
= HAMMER2_SET_COUNT
;
2932 case HAMMER2_BREF_TYPE_INDIRECT
:
2933 case HAMMER2_BREF_TYPE_FREEMAP_NODE
:
2934 if (parent
->flags
& HAMMER2_CHAIN_INITIAL
)
2937 base
= &parent
->data
->npdata
[0];
2938 count
= parent
->bytes
/ sizeof(hammer2_blockref_t
);
2940 case HAMMER2_BREF_TYPE_VOLUME
:
2941 KKASSERT(parent
->data
!= NULL
);
2942 base
= &parent
->data
->voldata
.sroot_blockset
.blockref
[0];
2943 count
= HAMMER2_SET_COUNT
;
2945 case HAMMER2_BREF_TYPE_FREEMAP
:
2946 KKASSERT(parent
->data
!= NULL
);
2947 base
= &parent
->data
->blkset
.blockref
[0];
2948 count
= HAMMER2_SET_COUNT
;
2951 panic("hammer2_chain_create: unrecognized blockref type: %d",
2959 * Make sure we've counted the brefs
2961 if ((parent
->flags
& HAMMER2_CHAIN_COUNTEDBREFS
) == 0)
2962 hammer2_chain_countbrefs(parent
, base
, count
);
2964 KASSERT(parent
->core
.live_count
>= 0 &&
2965 parent
->core
.live_count
<= count
,
2966 ("bad live_count %d/%d (%02x, %d)",
2967 parent
->core
.live_count
, count
,
2968 parent
->bref
.type
, parent
->bytes
));
2971 * If no free blockref could be found we must create an indirect
2972 * block and move a number of blockrefs into it. With the parent
2973 * locked we can safely lock each child in order to delete+duplicate
2974 * it without causing a deadlock.
2976 * This may return the new indirect block or the old parent depending
2977 * on where the key falls. NULL is returned on error.
2979 if (parent
->core
.live_count
== count
) {
2980 hammer2_chain_t
*nparent
;
2982 nparent
= hammer2_chain_create_indirect(parent
, key
, keybits
,
2983 mtid
, type
, &error
);
2984 if (nparent
== NULL
) {
2986 hammer2_chain_drop(chain
);
2990 if (parent
!= nparent
) {
2991 hammer2_chain_unlock(parent
);
2992 hammer2_chain_drop(parent
);
2993 parent
= *parentp
= nparent
;
2998 if (chain
->flags
& HAMMER2_CHAIN_DELETED
)
2999 kprintf("Inserting deleted chain @%016jx\n",
3003 * Link the chain into its parent.
3005 if (chain
->parent
!= NULL
)
3006 panic("hammer2: hammer2_chain_create: chain already connected");
3007 KKASSERT(chain
->parent
== NULL
);
3008 hammer2_chain_insert(parent
, chain
,
3009 HAMMER2_CHAIN_INSERT_SPIN
|
3010 HAMMER2_CHAIN_INSERT_LIVE
,
3015 * Mark the newly created chain modified. This will cause
3016 * UPDATE to be set and process the INITIAL flag.
3018 * Device buffers are not instantiated for DATA elements
3019 * as these are handled by logical buffers.
3021 * Indirect and freemap node indirect blocks are handled
3022 * by hammer2_chain_create_indirect() and not by this
3025 * Data for all other bref types is expected to be
3026 * instantiated (INODE, LEAF).
3028 switch(chain
->bref
.type
) {
3029 case HAMMER2_BREF_TYPE_DATA
:
3030 case HAMMER2_BREF_TYPE_FREEMAP_LEAF
:
3031 case HAMMER2_BREF_TYPE_INODE
:
3032 hammer2_chain_modify(chain
, mtid
, dedup_off
,
3033 HAMMER2_MODIFY_OPTDATA
);
3037 * Remaining types are not supported by this function.
3038 * In particular, INDIRECT and LEAF_NODE types are
3039 * handled by create_indirect().
3041 panic("hammer2_chain_create: bad type: %d",
3048 * When reconnecting a chain we must set UPDATE and
3049 * setflush so the flush recognizes that it must update
3050 * the bref in the parent.
3052 if ((chain
->flags
& HAMMER2_CHAIN_UPDATE
) == 0)
3053 atomic_set_int(&chain
->flags
, HAMMER2_CHAIN_UPDATE
);
3057 * We must setflush(parent) to ensure that it recurses through to
3058 * chain. setflush(chain) might not work because ONFLUSH is possibly
3059 * already set in the chain (so it won't recurse up to set it in the
3062 hammer2_chain_setflush(parent
);
3071 * Move the chain from its old parent to a new parent. The chain must have
3072 * already been deleted or already disconnected (or never associated) with
3073 * a parent. The chain is reassociated with the new parent and the deleted
3074 * flag will be cleared (no longer deleted). The chain's modification state
3077 * THE CALLER MUST HAVE ALREADY PROPERLY SEEKED (parent) TO THE INSERTION
3078 * POINT SANS ANY REQUIRED INDIRECT BLOCK CREATIONS DUE TO THE ARRAY BEING
3079 * FULL. This typically means that the caller is creating the chain after
3080 * doing a hammer2_chain_lookup().
3082 * A non-NULL bref is typically passed when key and keybits must be overridden.
3083 * Note that hammer2_cluster_duplicate() *ONLY* uses the key and keybits fields
3084 * from a passed-in bref and uses the old chain's bref for everything else.
3086 * Neither (parent) or (chain) can be errored.
3088 * If (parent) is non-NULL then the chain is inserted under the parent.
3090 * If (parent) is NULL then the newly duplicated chain is not inserted
3091 * anywhere, similar to if it had just been chain_alloc()'d (suitable for
3092 * passing into hammer2_chain_create() after this function returns).
3094 * WARNING! This function calls create which means it can insert indirect
3095 * blocks. This can cause other unrelated chains in the parent to
3096 * be moved to a newly inserted indirect block in addition to the
3100 hammer2_chain_rename(hammer2_blockref_t
*bref
,
3101 hammer2_chain_t
**parentp
, hammer2_chain_t
*chain
,
3102 hammer2_tid_t mtid
, int flags
)
3105 hammer2_chain_t
*parent
;
3109 * WARNING! We should never resolve DATA to device buffers
3110 * (XXX allow it if the caller did?), and since
3111 * we currently do not have the logical buffer cache
3112 * buffer in-hand to fix its cached physical offset
3113 * we also force the modify code to not COW it. XXX
3116 KKASSERT(chain
->parent
== NULL
);
3117 KKASSERT(chain
->error
== 0);
3120 * Now create a duplicate of the chain structure, associating
3121 * it with the same core, making it the same size, pointing it
3122 * to the same bref (the same media block).
3125 bref
= &chain
->bref
;
3126 bytes
= (hammer2_off_t
)1 <<
3127 (int)(bref
->data_off
& HAMMER2_OFF_MASK_RADIX
);
3130 * If parent is not NULL the duplicated chain will be entered under
3131 * the parent and the UPDATE bit set to tell flush to update
3134 * We must setflush(parent) to ensure that it recurses through to
3135 * chain. setflush(chain) might not work because ONFLUSH is possibly
3136 * already set in the chain (so it won't recurse up to set it in the
3139 * Having both chains locked is extremely important for atomicy.
3141 if (parentp
&& (parent
= *parentp
) != NULL
) {
3142 KKASSERT(hammer2_mtx_owned(&parent
->lock
));
3143 KKASSERT(parent
->refs
> 0);
3144 KKASSERT(parent
->error
== 0);
3146 hammer2_chain_create(parentp
, &chain
,
3147 chain
->pmp
, HAMMER2_METH_DEFAULT
,
3148 bref
->key
, bref
->keybits
, bref
->type
,
3149 chain
->bytes
, mtid
, 0, flags
);
3150 KKASSERT(chain
->flags
& HAMMER2_CHAIN_UPDATE
);
3151 hammer2_chain_setflush(*parentp
);
3156 * Helper function for deleting chains.
3158 * The chain is removed from the live view (the RBTREE) as well as the parent's
3159 * blockmap. Both chain and its parent must be locked.
3161 * parent may not be errored. chain can be errored.
3164 _hammer2_chain_delete_helper(hammer2_chain_t
*parent
, hammer2_chain_t
*chain
,
3165 hammer2_tid_t mtid
, int flags
)
3169 KKASSERT((chain
->flags
& (HAMMER2_CHAIN_DELETED
|
3170 HAMMER2_CHAIN_FICTITIOUS
)) == 0);
3171 KKASSERT(chain
->parent
== parent
);
3174 if (chain
->flags
& HAMMER2_CHAIN_BMAPPED
) {
3176 * Chain is blockmapped, so there must be a parent.
3177 * Atomically remove the chain from the parent and remove
3178 * the blockmap entry. The parent must be set modified
3179 * to remove the blockmap entry.
3181 hammer2_blockref_t
*base
;
3184 KKASSERT(parent
!= NULL
);
3185 KKASSERT(parent
->error
== 0);
3186 KKASSERT((parent
->flags
& HAMMER2_CHAIN_INITIAL
) == 0);
3187 hammer2_chain_modify(parent
, mtid
, 0, HAMMER2_MODIFY_OPTDATA
);
3190 * Calculate blockmap pointer
3192 KKASSERT(chain
->flags
& HAMMER2_CHAIN_ONRBTREE
);
3193 hammer2_spin_ex(&parent
->core
.spin
);
3195 atomic_set_int(&chain
->flags
, HAMMER2_CHAIN_DELETED
);
3196 atomic_add_int(&parent
->core
.live_count
, -1);
3197 ++parent
->core
.generation
;
3198 RB_REMOVE(hammer2_chain_tree
, &parent
->core
.rbtree
, chain
);
3199 atomic_clear_int(&chain
->flags
, HAMMER2_CHAIN_ONRBTREE
);
3200 --parent
->core
.chain_count
;
3201 chain
->parent
= NULL
;
3203 switch(parent
->bref
.type
) {
3204 case HAMMER2_BREF_TYPE_INODE
:
3206 * Access the inode's block array. However, there
3207 * is no block array if the inode is flagged
3208 * DIRECTDATA. The DIRECTDATA case typicaly only
3209 * occurs when a hardlink has been shifted up the
3210 * tree and the original inode gets replaced with
3211 * an OBJTYPE_HARDLINK placeholding inode.
3214 (parent
->data
->ipdata
.meta
.op_flags
&
3215 HAMMER2_OPFLAG_DIRECTDATA
) == 0) {
3217 &parent
->data
->ipdata
.u
.blockset
.blockref
[0];
3221 count
= HAMMER2_SET_COUNT
;
3223 case HAMMER2_BREF_TYPE_INDIRECT
:
3224 case HAMMER2_BREF_TYPE_FREEMAP_NODE
:
3226 base
= &parent
->data
->npdata
[0];
3229 count
= parent
->bytes
/ sizeof(hammer2_blockref_t
);
3231 case HAMMER2_BREF_TYPE_VOLUME
:
3232 base
= &parent
->data
->voldata
.
3233 sroot_blockset
.blockref
[0];
3234 count
= HAMMER2_SET_COUNT
;
3236 case HAMMER2_BREF_TYPE_FREEMAP
:
3237 base
= &parent
->data
->blkset
.blockref
[0];
3238 count
= HAMMER2_SET_COUNT
;
3243 panic("hammer2_flush_pass2: "
3244 "unrecognized blockref type: %d",
3249 * delete blockmapped chain from its parent.
3251 * The parent is not affected by any statistics in chain
3252 * which are pending synchronization. That is, there is
3253 * nothing to undo in the parent since they have not yet
3254 * been incorporated into the parent.
3256 * The parent is affected by statistics stored in inodes.
3257 * Those have already been synchronized, so they must be
3258 * undone. XXX split update possible w/delete in middle?
3261 int cache_index
= -1;
3262 hammer2_base_delete(parent
, base
, count
,
3263 &cache_index
, chain
);
3265 hammer2_spin_unex(&parent
->core
.spin
);
3266 } else if (chain
->flags
& HAMMER2_CHAIN_ONRBTREE
) {
3268 * Chain is not blockmapped but a parent is present.
3269 * Atomically remove the chain from the parent. There is
3270 * no blockmap entry to remove.
3272 * Because chain was associated with a parent but not
3273 * synchronized, the chain's *_count_up fields contain
3274 * inode adjustment statistics which must be undone.
3276 hammer2_spin_ex(&parent
->core
.spin
);
3277 atomic_set_int(&chain
->flags
, HAMMER2_CHAIN_DELETED
);
3278 atomic_add_int(&parent
->core
.live_count
, -1);
3279 ++parent
->core
.generation
;
3280 RB_REMOVE(hammer2_chain_tree
, &parent
->core
.rbtree
, chain
);
3281 atomic_clear_int(&chain
->flags
, HAMMER2_CHAIN_ONRBTREE
);
3282 --parent
->core
.chain_count
;
3283 chain
->parent
= NULL
;
3284 hammer2_spin_unex(&parent
->core
.spin
);
3287 * Chain is not blockmapped and has no parent. This
3288 * is a degenerate case.
3290 atomic_set_int(&chain
->flags
, HAMMER2_CHAIN_DELETED
);
3295 * Create an indirect block that covers one or more of the elements in the
3296 * current parent. Either returns the existing parent with no locking or
3297 * ref changes or returns the new indirect block locked and referenced
3298 * and leaving the original parent lock/ref intact as well.
3300 * If an error occurs, NULL is returned and *errorp is set to the error.
3302 * The returned chain depends on where the specified key falls.
3304 * The key/keybits for the indirect mode only needs to follow three rules:
3306 * (1) That all elements underneath it fit within its key space and
3308 * (2) That all elements outside it are outside its key space.
3310 * (3) When creating the new indirect block any elements in the current
3311 * parent that fit within the new indirect block's keyspace must be
3312 * moved into the new indirect block.
3314 * (4) The keyspace chosen for the inserted indirect block CAN cover a wider
3315 * keyspace the the current parent, but lookup/iteration rules will
3316 * ensure (and must ensure) that rule (2) for all parents leading up
3317 * to the nearest inode or the root volume header is adhered to. This
3318 * is accomplished by always recursing through matching keyspaces in
3319 * the hammer2_chain_lookup() and hammer2_chain_next() API.
3321 * The current implementation calculates the current worst-case keyspace by
3322 * iterating the current parent and then divides it into two halves, choosing
3323 * whichever half has the most elements (not necessarily the half containing
3324 * the requested key).
3326 * We can also opt to use the half with the least number of elements. This
3327 * causes lower-numbered keys (aka logical file offsets) to recurse through
3328 * fewer indirect blocks and higher-numbered keys to recurse through more.
3329 * This also has the risk of not moving enough elements to the new indirect
3330 * block and being forced to create several indirect blocks before the element
3333 * Must be called with an exclusively locked parent.
3335 static int hammer2_chain_indkey_freemap(hammer2_chain_t
*parent
,
3336 hammer2_key_t
*keyp
, int keybits
,
3337 hammer2_blockref_t
*base
, int count
);
3338 static int hammer2_chain_indkey_file(hammer2_chain_t
*parent
,
3339 hammer2_key_t
*keyp
, int keybits
,
3340 hammer2_blockref_t
*base
, int count
,
3342 static int hammer2_chain_indkey_dir(hammer2_chain_t
*parent
,
3343 hammer2_key_t
*keyp
, int keybits
,
3344 hammer2_blockref_t
*base
, int count
,
3348 hammer2_chain_create_indirect(hammer2_chain_t
*parent
,
3349 hammer2_key_t create_key
, int create_bits
,
3350 hammer2_tid_t mtid
, int for_type
, int *errorp
)
3353 hammer2_blockref_t
*base
;
3354 hammer2_blockref_t
*bref
;
3355 hammer2_blockref_t bcopy
;
3356 hammer2_chain_t
*chain
;
3357 hammer2_chain_t
*ichain
;
3358 hammer2_chain_t dummy
;
3359 hammer2_key_t key
= create_key
;
3360 hammer2_key_t key_beg
;
3361 hammer2_key_t key_end
;
3362 hammer2_key_t key_next
;
3363 int keybits
= create_bits
;
3371 int maxloops
= 300000;
3374 * Calculate the base blockref pointer or NULL if the chain
3375 * is known to be empty. We need to calculate the array count
3376 * for RB lookups either way.
3380 KKASSERT(hammer2_mtx_owned(&parent
->lock
));
3382 /*hammer2_chain_modify(&parent, HAMMER2_MODIFY_OPTDATA);*/
3383 base
= hammer2_chain_base_and_count(parent
, &count
);
3386 * dummy used in later chain allocation (no longer used for lookups).
3388 bzero(&dummy
, sizeof(dummy
));
3391 * How big should our new indirect block be? It has to be at least
3392 * as large as its parent.
3394 * The freemap uses a specific indirect block size. The number of
3395 * levels are built dynamically and ultimately depend on the size
3396 * volume. Because freemap blocks are taken from the reserved areas
3397 * of the volume our goal is efficiency (fewer levels) and not so
3398 * much to save disk space.
3400 * The first indirect block level for a directory usually uses
3401 * HAMMER2_IND_BYTES_MIN (4KB = 32 directory entries).
3402 * (the 4 entries built-into the inode can handle 4 directory
3405 * The first indirect block level for a file usually uses
3406 * HAMMER2_IND_BYTES_NOM (16KB = 128 blockrefs = ~8MB file).
3407 * (the 4 entries built-into the inode can handle a 256KB file).
3409 * The first indirect block level down from an inode typically
3410 * uses LBUFSIZE (16384), else it uses PBUFSIZE (65536).
3412 if (for_type
== HAMMER2_BREF_TYPE_FREEMAP_NODE
||
3413 for_type
== HAMMER2_BREF_TYPE_FREEMAP_LEAF
) {
3414 nbytes
= HAMMER2_FREEMAP_LEVELN_PSIZE
;
3415 } else if (parent
->bref
.type
== HAMMER2_BREF_TYPE_INODE
) {
3416 if (parent
->data
->ipdata
.meta
.type
==
3417 HAMMER2_OBJTYPE_DIRECTORY
)
3418 nbytes
= HAMMER2_IND_BYTES_MIN
; /* 4KB = 32 entries */
3420 nbytes
= HAMMER2_IND_BYTES_NOM
; /* 16KB = ~8MB file */
3423 nbytes
= HAMMER2_IND_BYTES_MAX
;
3425 if (nbytes
< count
* sizeof(hammer2_blockref_t
)) {
3426 KKASSERT(for_type
!= HAMMER2_BREF_TYPE_FREEMAP_NODE
&&
3427 for_type
!= HAMMER2_BREF_TYPE_FREEMAP_LEAF
);
3428 nbytes
= count
* sizeof(hammer2_blockref_t
);
3430 ncount
= nbytes
/ sizeof(hammer2_blockref_t
);
3433 * When creating an indirect block for a freemap node or leaf
3434 * the key/keybits must be fitted to static radix levels because
3435 * particular radix levels use particular reserved blocks in the
3438 * This routine calculates the key/radix of the indirect block
3439 * we need to create, and whether it is on the high-side or the
3443 case HAMMER2_BREF_TYPE_FREEMAP_NODE
:
3444 case HAMMER2_BREF_TYPE_FREEMAP_LEAF
:
3445 keybits
= hammer2_chain_indkey_freemap(parent
, &key
, keybits
,
3448 case HAMMER2_BREF_TYPE_DATA
:
3449 keybits
= hammer2_chain_indkey_file(parent
, &key
, keybits
,
3450 base
, count
, ncount
);
3452 case HAMMER2_BREF_TYPE_INODE
:
3453 keybits
= hammer2_chain_indkey_dir(parent
, &key
, keybits
,
3454 base
, count
, ncount
);
3459 * Normalize the key for the radix being represented, keeping the
3460 * high bits and throwing away the low bits.
3462 key
&= ~(((hammer2_key_t
)1 << keybits
) - 1);
3465 * Ok, create our new indirect block
3467 if (for_type
== HAMMER2_BREF_TYPE_FREEMAP_NODE
||
3468 for_type
== HAMMER2_BREF_TYPE_FREEMAP_LEAF
) {
3469 dummy
.bref
.type
= HAMMER2_BREF_TYPE_FREEMAP_NODE
;
3471 dummy
.bref
.type
= HAMMER2_BREF_TYPE_INDIRECT
;
3473 dummy
.bref
.key
= key
;
3474 dummy
.bref
.keybits
= keybits
;
3475 dummy
.bref
.data_off
= hammer2_getradix(nbytes
);
3476 dummy
.bref
.methods
=
3477 HAMMER2_ENC_CHECK(HAMMER2_DEC_CHECK(parent
->bref
.methods
)) |
3478 HAMMER2_ENC_COMP(HAMMER2_COMP_NONE
);
3480 ichain
= hammer2_chain_alloc(hmp
, parent
->pmp
, &dummy
.bref
);
3481 atomic_set_int(&ichain
->flags
, HAMMER2_CHAIN_INITIAL
);
3482 hammer2_chain_lock(ichain
, HAMMER2_RESOLVE_MAYBE
);
3483 /* ichain has one ref at this point */
3486 * We have to mark it modified to allocate its block, but use
3487 * OPTDATA to allow it to remain in the INITIAL state. Otherwise
3488 * it won't be acted upon by the flush code.
3490 hammer2_chain_modify(ichain
, mtid
, 0, HAMMER2_MODIFY_OPTDATA
);
3493 * Iterate the original parent and move the matching brefs into
3494 * the new indirect block.
3496 * XXX handle flushes.
3499 key_end
= HAMMER2_KEY_MAX
;
3500 key_next
= 0; /* avoid gcc warnings */
3502 hammer2_spin_ex(&parent
->core
.spin
);
3508 * Parent may have been modified, relocating its block array.
3509 * Reload the base pointer.
3511 base
= hammer2_chain_base_and_count(parent
, &count
);
3513 if (++loops
> 100000) {
3514 hammer2_spin_unex(&parent
->core
.spin
);
3515 panic("excessive loops r=%d p=%p base/count %p:%d %016jx\n",
3516 reason
, parent
, base
, count
, key_next
);
3520 * NOTE: spinlock stays intact, returned chain (if not NULL)
3521 * is not referenced or locked which means that we
3522 * cannot safely check its flagged / deletion status
3525 chain
= hammer2_combined_find(parent
, base
, count
,
3526 &cache_index
, &key_next
,
3529 generation
= parent
->core
.generation
;
3532 key_next
= bref
->key
+ ((hammer2_key_t
)1 << bref
->keybits
);
3535 * Skip keys that are not within the key/radix of the new
3536 * indirect block. They stay in the parent.
3538 if ((~(((hammer2_key_t
)1 << keybits
) - 1) &
3539 (key
^ bref
->key
)) != 0) {
3540 goto next_key_spinlocked
;
3544 * Load the new indirect block by acquiring the related
3545 * chains (potentially from media as it might not be
3546 * in-memory). Then move it to the new parent (ichain).
3548 * chain is referenced but not locked. We must lock the
3549 * chain to obtain definitive state.
3553 * Use chain already present in the RBTREE
3555 hammer2_chain_ref(chain
);
3556 hammer2_spin_unex(&parent
->core
.spin
);
3557 hammer2_chain_lock(chain
, HAMMER2_RESOLVE_NEVER
);
3560 * Get chain for blockref element. _get returns NULL
3561 * on insertion race.
3564 hammer2_spin_unex(&parent
->core
.spin
);
3565 chain
= hammer2_chain_get(parent
, generation
, &bcopy
);
3566 if (chain
== NULL
) {
3568 hammer2_spin_ex(&parent
->core
.spin
);
3571 if (bcmp(&bcopy
, bref
, sizeof(bcopy
))) {
3572 kprintf("REASON 2\n");
3574 hammer2_chain_drop(chain
);
3575 hammer2_spin_ex(&parent
->core
.spin
);
3578 hammer2_chain_lock(chain
, HAMMER2_RESOLVE_NEVER
);
3582 * This is always live so if the chain has been deleted
3583 * we raced someone and we have to retry.
3585 * NOTE: Lookups can race delete-duplicate because
3586 * delete-duplicate does not lock the parent's core
3587 * (they just use the spinlock on the core).
3589 * (note reversed logic for this one)
3591 if (chain
->flags
& HAMMER2_CHAIN_DELETED
) {
3592 hammer2_chain_unlock(chain
);
3593 hammer2_chain_drop(chain
);
3598 * Shift the chain to the indirect block.
3600 * WARNING! No reason for us to load chain data, pass NOSTATS
3601 * to prevent delete/insert from trying to access
3602 * inode stats (and thus asserting if there is no
3603 * chain->data loaded).
3605 * WARNING! The (parent, chain) deletion may modify the parent
3606 * and invalidate the base pointer.
3608 hammer2_chain_delete(parent
, chain
, mtid
, 0);
3609 hammer2_chain_rename(NULL
, &ichain
, chain
, mtid
, 0);
3610 hammer2_chain_unlock(chain
);
3611 hammer2_chain_drop(chain
);
3612 KKASSERT(parent
->refs
> 0);
3614 base
= NULL
; /* safety */
3616 hammer2_spin_ex(&parent
->core
.spin
);
3617 next_key_spinlocked
:
3618 if (--maxloops
== 0)
3619 panic("hammer2_chain_create_indirect: maxloops");
3621 if (key_next
== 0 || key_next
> key_end
)
3626 hammer2_spin_unex(&parent
->core
.spin
);
3629 * Insert the new indirect block into the parent now that we've
3630 * cleared out some entries in the parent. We calculated a good
3631 * insertion index in the loop above (ichain->index).
3633 * We don't have to set UPDATE here because we mark ichain
3634 * modified down below (so the normal modified -> flush -> set-moved
3635 * sequence applies).
3637 * The insertion shouldn't race as this is a completely new block
3638 * and the parent is locked.
3640 base
= NULL
; /* safety, parent modify may change address */
3641 KKASSERT((ichain
->flags
& HAMMER2_CHAIN_ONRBTREE
) == 0);
3642 hammer2_chain_insert(parent
, ichain
,
3643 HAMMER2_CHAIN_INSERT_SPIN
|
3644 HAMMER2_CHAIN_INSERT_LIVE
,
3648 * Make sure flushes propogate after our manual insertion.
3650 hammer2_chain_setflush(ichain
);
3651 hammer2_chain_setflush(parent
);
3654 * Figure out what to return.
3656 if (~(((hammer2_key_t
)1 << keybits
) - 1) &
3657 (create_key
^ key
)) {
3659 * Key being created is outside the key range,
3660 * return the original parent.
3662 hammer2_chain_unlock(ichain
);
3663 hammer2_chain_drop(ichain
);
3666 * Otherwise its in the range, return the new parent.
3667 * (leave both the new and old parent locked).
3676 * Freemap indirect blocks
3678 * Calculate the keybits and highside/lowside of the freemap node the
3679 * caller is creating.
3681 * This routine will specify the next higher-level freemap key/radix
3682 * representing the lowest-ordered set. By doing so, eventually all
3683 * low-ordered sets will be moved one level down.
3685 * We have to be careful here because the freemap reserves a limited
3686 * number of blocks for a limited number of levels. So we can't just
3687 * push indiscriminately.
3690 hammer2_chain_indkey_freemap(hammer2_chain_t
*parent
, hammer2_key_t
*keyp
,
3691 int keybits
, hammer2_blockref_t
*base
, int count
)
3693 hammer2_chain_t
*chain
;
3694 hammer2_blockref_t
*bref
;
3696 hammer2_key_t key_beg
;
3697 hammer2_key_t key_end
;
3698 hammer2_key_t key_next
;
3702 int maxloops
= 300000;
3710 * Calculate the range of keys in the array being careful to skip
3711 * slots which are overridden with a deletion.
3714 key_end
= HAMMER2_KEY_MAX
;
3716 hammer2_spin_ex(&parent
->core
.spin
);
3719 if (--maxloops
== 0) {
3720 panic("indkey_freemap shit %p %p:%d\n",
3721 parent
, base
, count
);
3723 chain
= hammer2_combined_find(parent
, base
, count
,
3724 &cache_index
, &key_next
,
3735 * Skip deleted chains.
3737 if (chain
&& (chain
->flags
& HAMMER2_CHAIN_DELETED
)) {
3738 if (key_next
== 0 || key_next
> key_end
)
3745 * Use the full live (not deleted) element for the scan
3746 * iteration. HAMMER2 does not allow partial replacements.
3748 * XXX should be built into hammer2_combined_find().
3750 key_next
= bref
->key
+ ((hammer2_key_t
)1 << bref
->keybits
);
3752 if (keybits
> bref
->keybits
) {
3754 keybits
= bref
->keybits
;
3755 } else if (keybits
== bref
->keybits
&& bref
->key
< key
) {
3762 hammer2_spin_unex(&parent
->core
.spin
);
3765 * Return the keybits for a higher-level FREEMAP_NODE covering
3769 case HAMMER2_FREEMAP_LEVEL0_RADIX
:
3770 keybits
= HAMMER2_FREEMAP_LEVEL1_RADIX
;
3772 case HAMMER2_FREEMAP_LEVEL1_RADIX
:
3773 keybits
= HAMMER2_FREEMAP_LEVEL2_RADIX
;
3775 case HAMMER2_FREEMAP_LEVEL2_RADIX
:
3776 keybits
= HAMMER2_FREEMAP_LEVEL3_RADIX
;
3778 case HAMMER2_FREEMAP_LEVEL3_RADIX
:
3779 keybits
= HAMMER2_FREEMAP_LEVEL4_RADIX
;
3781 case HAMMER2_FREEMAP_LEVEL4_RADIX
:
3782 keybits
= HAMMER2_FREEMAP_LEVEL5_RADIX
;
3784 case HAMMER2_FREEMAP_LEVEL5_RADIX
:
3785 panic("hammer2_chain_indkey_freemap: level too high");
3788 panic("hammer2_chain_indkey_freemap: bad radix");
3797 * File indirect blocks
3799 * Calculate the key/keybits for the indirect block to create by scanning
3800 * existing keys. The key being created is also passed in *keyp and can be
3801 * inside or outside the indirect block. Regardless, the indirect block
3802 * must hold at least two keys in order to guarantee sufficient space.
3804 * We use a modified version of the freemap's fixed radix tree, but taylored
3805 * for file data. Basically we configure an indirect block encompassing the
3809 hammer2_chain_indkey_file(hammer2_chain_t
*parent
, hammer2_key_t
*keyp
,
3810 int keybits
, hammer2_blockref_t
*base
, int count
,
3813 hammer2_chain_t
*chain
;
3814 hammer2_blockref_t
*bref
;
3816 hammer2_key_t key_beg
;
3817 hammer2_key_t key_end
;
3818 hammer2_key_t key_next
;
3823 int maxloops
= 300000;
3831 * Calculate the range of keys in the array being careful to skip
3832 * slots which are overridden with a deletion.
3834 * Locate the smallest key.
3837 key_end
= HAMMER2_KEY_MAX
;
3839 hammer2_spin_ex(&parent
->core
.spin
);
3842 if (--maxloops
== 0) {
3843 panic("indkey_freemap shit %p %p:%d\n",
3844 parent
, base
, count
);
3846 chain
= hammer2_combined_find(parent
, base
, count
,
3847 &cache_index
, &key_next
,
3858 * Skip deleted chains.
3860 if (chain
&& (chain
->flags
& HAMMER2_CHAIN_DELETED
)) {
3861 if (key_next
== 0 || key_next
> key_end
)
3868 * Use the full live (not deleted) element for the scan
3869 * iteration. HAMMER2 does not allow partial replacements.
3871 * XXX should be built into hammer2_combined_find().
3873 key_next
= bref
->key
+ ((hammer2_key_t
)1 << bref
->keybits
);
3875 if (keybits
> bref
->keybits
) {
3877 keybits
= bref
->keybits
;
3878 } else if (keybits
== bref
->keybits
&& bref
->key
< key
) {
3885 hammer2_spin_unex(&parent
->core
.spin
);
3888 * Calculate the static keybits for a higher-level indirect block
3889 * that contains the key.
3894 case HAMMER2_IND_BYTES_MIN
/ sizeof(hammer2_blockref_t
):
3895 nradix
= HAMMER2_IND_RADIX_MIN
- HAMMER2_BLOCKREF_RADIX
;
3897 case HAMMER2_IND_BYTES_NOM
/ sizeof(hammer2_blockref_t
):
3898 nradix
= HAMMER2_IND_RADIX_NOM
- HAMMER2_BLOCKREF_RADIX
;
3900 case HAMMER2_IND_BYTES_MAX
/ sizeof(hammer2_blockref_t
):
3901 nradix
= HAMMER2_IND_RADIX_MAX
- HAMMER2_BLOCKREF_RADIX
;
3904 panic("bad ncount %d\n", ncount
);
3910 * The largest radix that can be returned for an indirect block is
3911 * 63 bits. (The largest practical indirect block radix is actually
3912 * 62 bits because the top-level inode or volume root contains four
3913 * entries, but allow 63 to be returned).
3918 return keybits
+ nradix
;
3924 * Directory indirect blocks.
3926 * Covers both the inode index (directory of inodes), and directory contents
3927 * (filenames hardlinked to inodes).
3929 * Because directory keys are hashed we generally try to cut the space in
3930 * half. We accomodate the inode index (which tends to have linearly
3931 * increasing inode numbers) by ensuring that the keyspace is at least large
3932 * enough to fill up the indirect block being created.
3935 hammer2_chain_indkey_dir(hammer2_chain_t
*parent
, hammer2_key_t
*keyp
,
3936 int keybits
, hammer2_blockref_t
*base
, int count
,
3939 hammer2_blockref_t
*bref
;
3940 hammer2_chain_t
*chain
;
3941 hammer2_key_t key_beg
;
3942 hammer2_key_t key_end
;
3943 hammer2_key_t key_next
;
3949 int maxloops
= 300000;
3952 * Shortcut if the parent is the inode. In this situation the
3953 * parent has 4+1 directory entries and we are creating an indirect
3954 * block capable of holding many more.
3956 if (parent
->bref
.type
== HAMMER2_BREF_TYPE_INODE
) {
3965 * Calculate the range of keys in the array being careful to skip
3966 * slots which are overridden with a deletion.
3969 key_end
= HAMMER2_KEY_MAX
;
3971 hammer2_spin_ex(&parent
->core
.spin
);
3974 if (--maxloops
== 0) {
3975 panic("indkey_freemap shit %p %p:%d\n",
3976 parent
, base
, count
);
3978 chain
= hammer2_combined_find(parent
, base
, count
,
3979 &cache_index
, &key_next
,
3992 if (chain
&& (chain
->flags
& HAMMER2_CHAIN_DELETED
)) {
3993 if (key_next
== 0 || key_next
> key_end
)
4000 * Use the full live (not deleted) element for the scan
4001 * iteration. HAMMER2 does not allow partial replacements.
4003 * XXX should be built into hammer2_combined_find().
4005 key_next
= bref
->key
+ ((hammer2_key_t
)1 << bref
->keybits
);
4008 * Expand our calculated key range (key, keybits) to fit
4009 * the scanned key. nkeybits represents the full range
4010 * that we will later cut in half (two halves @ nkeybits - 1).
4013 if (nkeybits
< bref
->keybits
) {
4014 if (bref
->keybits
> 64) {
4015 kprintf("bad bref chain %p bref %p\n",
4019 nkeybits
= bref
->keybits
;
4021 while (nkeybits
< 64 &&
4022 (~(((hammer2_key_t
)1 << nkeybits
) - 1) &
4023 (key
^ bref
->key
)) != 0) {
4028 * If the new key range is larger we have to determine
4029 * which side of the new key range the existing keys fall
4030 * under by checking the high bit, then collapsing the
4031 * locount into the hicount or vise-versa.
4033 if (keybits
!= nkeybits
) {
4034 if (((hammer2_key_t
)1 << (nkeybits
- 1)) & key
) {
4045 * The newly scanned key will be in the lower half or the
4046 * upper half of the (new) key range.
4048 if (((hammer2_key_t
)1 << (nkeybits
- 1)) & bref
->key
)
4057 hammer2_spin_unex(&parent
->core
.spin
);
4058 bref
= NULL
; /* now invalid (safety) */
4061 * Adjust keybits to represent half of the full range calculated
4062 * above (radix 63 max) for our new indirect block.
4067 * Expand keybits to hold at least ncount elements. ncount will be
4068 * a power of 2. This is to try to completely fill leaf nodes (at
4069 * least for keys which are not hashes).
4071 * We aren't counting 'in' or 'out', we are counting 'high side'
4072 * and 'low side' based on the bit at (1LL << keybits). We want
4073 * everything to be inside in these cases so shift it all to
4074 * the low or high side depending on the new high bit.
4076 while (((hammer2_key_t
)1 << keybits
) < ncount
) {
4078 if (key
& ((hammer2_key_t
)1 << keybits
)) {
4087 if (hicount
> locount
)
4088 key
|= (hammer2_key_t
)1 << keybits
;
4090 key
&= ~(hammer2_key_t
)1 << keybits
;
4100 * Directory indirect blocks.
4102 * Covers both the inode index (directory of inodes), and directory contents
4103 * (filenames hardlinked to inodes).
4105 * Because directory keys are hashed we generally try to cut the space in
4106 * half. We accomodate the inode index (which tends to have linearly
4107 * increasing inode numbers) by ensuring that the keyspace is at least large
4108 * enough to fill up the indirect block being created.
4111 hammer2_chain_indkey_dir(hammer2_chain_t
*parent
, hammer2_key_t
*keyp
,
4112 int keybits
, hammer2_blockref_t
*base
, int count
,
4115 hammer2_blockref_t
*bref
;
4116 hammer2_chain_t
*chain
;
4117 hammer2_key_t key_beg
;
4118 hammer2_key_t key_end
;
4119 hammer2_key_t key_next
;
4125 int maxloops
= 300000;
4128 * Shortcut if the parent is the inode. In this situation the
4129 * parent has 4+1 directory entries and we are creating an indirect
4130 * block capable of holding many more.
4132 if (parent
->bref
.type
== HAMMER2_BREF_TYPE_INODE
) {
4141 * Calculate the range of keys in the array being careful to skip
4142 * slots which are overridden with a deletion.
4145 key_end
= HAMMER2_KEY_MAX
;
4147 hammer2_spin_ex(&parent
->core
.spin
);
4150 if (--maxloops
== 0) {
4151 panic("indkey_freemap shit %p %p:%d\n",
4152 parent
, base
, count
);
4154 chain
= hammer2_combined_find(parent
, base
, count
,
4155 &cache_index
, &key_next
,
4168 if (chain
&& (chain
->flags
& HAMMER2_CHAIN_DELETED
)) {
4169 if (key_next
== 0 || key_next
> key_end
)
4176 * Use the full live (not deleted) element for the scan
4177 * iteration. HAMMER2 does not allow partial replacements.
4179 * XXX should be built into hammer2_combined_find().
4181 key_next
= bref
->key
+ ((hammer2_key_t
)1 << bref
->keybits
);
4184 * Expand our calculated key range (key, keybits) to fit
4185 * the scanned key. nkeybits represents the full range
4186 * that we will later cut in half (two halves @ nkeybits - 1).
4189 if (nkeybits
< bref
->keybits
) {
4190 if (bref
->keybits
> 64) {
4191 kprintf("bad bref chain %p bref %p\n",
4195 nkeybits
= bref
->keybits
;
4197 while (nkeybits
< 64 &&
4198 (~(((hammer2_key_t
)1 << nkeybits
) - 1) &
4199 (key
^ bref
->key
)) != 0) {
4204 * If the new key range is larger we have to determine
4205 * which side of the new key range the existing keys fall
4206 * under by checking the high bit, then collapsing the
4207 * locount into the hicount or vise-versa.
4209 if (keybits
!= nkeybits
) {
4210 if (((hammer2_key_t
)1 << (nkeybits
- 1)) & key
) {
4221 * The newly scanned key will be in the lower half or the
4222 * upper half of the (new) key range.
4224 if (((hammer2_key_t
)1 << (nkeybits
- 1)) & bref
->key
)
4233 hammer2_spin_unex(&parent
->core
.spin
);
4234 bref
= NULL
; /* now invalid (safety) */
4237 * Adjust keybits to represent half of the full range calculated
4238 * above (radix 63 max) for our new indirect block.
4243 * Expand keybits to hold at least ncount elements. ncount will be
4244 * a power of 2. This is to try to completely fill leaf nodes (at
4245 * least for keys which are not hashes).
4247 * We aren't counting 'in' or 'out', we are counting 'high side'
4248 * and 'low side' based on the bit at (1LL << keybits). We want
4249 * everything to be inside in these cases so shift it all to
4250 * the low or high side depending on the new high bit.
4252 while (((hammer2_key_t
)1 << keybits
) < ncount
) {
4254 if (key
& ((hammer2_key_t
)1 << keybits
)) {
4263 if (hicount
> locount
)
4264 key
|= (hammer2_key_t
)1 << keybits
;
4266 key
&= ~(hammer2_key_t
)1 << keybits
;
4276 * Sets CHAIN_DELETED and remove the chain's blockref from the parent if
4279 * Both parent and chain must be locked exclusively.
4281 * This function will modify the parent if the blockref requires removal
4282 * from the parent's block table.
4284 * This function is NOT recursive. Any entity already pushed into the
4285 * chain (such as an inode) may still need visibility into its contents,
4286 * as well as the ability to read and modify the contents. For example,
4287 * for an unlinked file which is still open.
4289 * Also note that the flusher is responsible for cleaning up empty
4293 hammer2_chain_delete(hammer2_chain_t
*parent
, hammer2_chain_t
*chain
,
4294 hammer2_tid_t mtid
, int flags
)
4296 KKASSERT(hammer2_mtx_owned(&chain
->lock
));
4299 * Nothing to do if already marked.
4301 * We need the spinlock on the core whos RBTREE contains chain
4302 * to protect against races.
4304 if ((chain
->flags
& HAMMER2_CHAIN_DELETED
) == 0) {
4305 KKASSERT((chain
->flags
& HAMMER2_CHAIN_DELETED
) == 0 &&
4306 chain
->parent
== parent
);
4307 _hammer2_chain_delete_helper(parent
, chain
, mtid
, flags
);
4311 * Permanent deletions mark the chain as destroyed.
4313 if (flags
& HAMMER2_DELETE_PERMANENT
) {
4314 atomic_set_int(&chain
->flags
, HAMMER2_CHAIN_DESTROY
);
4316 /* XXX might not be needed */
4317 hammer2_chain_setflush(chain
);
4322 * Returns the index of the nearest element in the blockref array >= elm.
4323 * Returns (count) if no element could be found.
4325 * Sets *key_nextp to the next key for loop purposes but does not modify
4326 * it if the next key would be higher than the current value of *key_nextp.
4327 * Note that *key_nexp can overflow to 0, which should be tested by the
4330 * (*cache_indexp) is a heuristic and can be any value without effecting
4333 * WARNING! Must be called with parent's spinlock held. Spinlock remains
4334 * held through the operation.
4337 hammer2_base_find(hammer2_chain_t
*parent
,
4338 hammer2_blockref_t
*base
, int count
,
4339 int *cache_indexp
, hammer2_key_t
*key_nextp
,
4340 hammer2_key_t key_beg
, hammer2_key_t key_end
)
4342 hammer2_blockref_t
*scan
;
4343 hammer2_key_t scan_end
;
4348 * Require the live chain's already have their core's counted
4349 * so we can optimize operations.
4351 KKASSERT(parent
->flags
& HAMMER2_CHAIN_COUNTEDBREFS
);
4356 if (count
== 0 || base
== NULL
)
4360 * Sequential optimization using *cache_indexp. This is the most
4363 * We can avoid trailing empty entries on live chains, otherwise
4364 * we might have to check the whole block array.
4368 limit
= parent
->core
.live_zero
;
4373 KKASSERT(i
< count
);
4379 while (i
> 0 && (scan
->type
== 0 || scan
->key
> key_beg
)) {
4386 * Search forwards, stop when we find a scan element which
4387 * encloses the key or until we know that there are no further
4391 if (scan
->type
!= 0) {
4392 scan_end
= scan
->key
+
4393 ((hammer2_key_t
)1 << scan
->keybits
) - 1;
4394 if (scan
->key
> key_beg
|| scan_end
>= key_beg
)
4407 scan_end
= scan
->key
+
4408 ((hammer2_key_t
)1 << scan
->keybits
);
4409 if (scan_end
&& (*key_nextp
> scan_end
||
4411 *key_nextp
= scan_end
;
4419 * Do a combined search and return the next match either from the blockref
4420 * array or from the in-memory chain. Sets *bresp to the returned bref in
4421 * both cases, or sets it to NULL if the search exhausted. Only returns
4422 * a non-NULL chain if the search matched from the in-memory chain.
4424 * When no in-memory chain has been found and a non-NULL bref is returned
4428 * The returned chain is not locked or referenced. Use the returned bref
4429 * to determine if the search exhausted or not. Iterate if the base find
4430 * is chosen but matches a deleted chain.
4432 * WARNING! Must be called with parent's spinlock held. Spinlock remains
4433 * held through the operation.
4435 static hammer2_chain_t
*
4436 hammer2_combined_find(hammer2_chain_t
*parent
,
4437 hammer2_blockref_t
*base
, int count
,
4438 int *cache_indexp
, hammer2_key_t
*key_nextp
,
4439 hammer2_key_t key_beg
, hammer2_key_t key_end
,
4440 hammer2_blockref_t
**bresp
)
4442 hammer2_blockref_t
*bref
;
4443 hammer2_chain_t
*chain
;
4447 * Lookup in block array and in rbtree.
4449 *key_nextp
= key_end
+ 1;
4450 i
= hammer2_base_find(parent
, base
, count
, cache_indexp
,
4451 key_nextp
, key_beg
, key_end
);
4452 chain
= hammer2_chain_find(parent
, key_nextp
, key_beg
, key_end
);
4457 if (i
== count
&& chain
== NULL
) {
4463 * Only chain matched.
4466 bref
= &chain
->bref
;
4471 * Only blockref matched.
4473 if (chain
== NULL
) {
4479 * Both in-memory and blockref matched, select the nearer element.
4481 * If both are flush with the left-hand side or both are the
4482 * same distance away, select the chain. In this situation the
4483 * chain must have been loaded from the matching blockmap.
4485 if ((chain
->bref
.key
<= key_beg
&& base
[i
].key
<= key_beg
) ||
4486 chain
->bref
.key
== base
[i
].key
) {
4487 KKASSERT(chain
->bref
.key
== base
[i
].key
);
4488 bref
= &chain
->bref
;
4493 * Select the nearer key
4495 if (chain
->bref
.key
< base
[i
].key
) {
4496 bref
= &chain
->bref
;
4503 * If the bref is out of bounds we've exhausted our search.
4506 if (bref
->key
> key_end
) {
4516 * Locate the specified block array element and delete it. The element
4519 * The spin lock on the related chain must be held.
4521 * NOTE: live_count was adjusted when the chain was deleted, so it does not
4522 * need to be adjusted when we commit the media change.
4525 hammer2_base_delete(hammer2_chain_t
*parent
,
4526 hammer2_blockref_t
*base
, int count
,
4527 int *cache_indexp
, hammer2_chain_t
*chain
)
4529 hammer2_blockref_t
*elm
= &chain
->bref
;
4530 hammer2_key_t key_next
;
4534 * Delete element. Expect the element to exist.
4536 * XXX see caller, flush code not yet sophisticated enough to prevent
4537 * re-flushed in some cases.
4539 key_next
= 0; /* max range */
4540 i
= hammer2_base_find(parent
, base
, count
, cache_indexp
,
4541 &key_next
, elm
->key
, elm
->key
);
4542 if (i
== count
|| base
[i
].type
== 0 ||
4543 base
[i
].key
!= elm
->key
||
4544 ((chain
->flags
& HAMMER2_CHAIN_BMAPUPD
) == 0 &&
4545 base
[i
].keybits
!= elm
->keybits
)) {
4546 hammer2_spin_unex(&parent
->core
.spin
);
4547 panic("delete base %p element not found at %d/%d elm %p\n",
4548 base
, i
, count
, elm
);
4553 * Update stats and zero the entry
4555 parent
->bref
.data_count
-= base
[i
].data_count
;
4556 parent
->bref
.data_count
-= (hammer2_off_t
)1 <<
4557 (int)(base
[i
].data_off
& HAMMER2_OFF_MASK_RADIX
);
4558 parent
->bref
.inode_count
-= base
[i
].inode_count
;
4559 if (base
[i
].type
== HAMMER2_BREF_TYPE_INODE
)
4560 parent
->bref
.inode_count
-= 1;
4562 bzero(&base
[i
], sizeof(*base
));
4565 * We can only optimize parent->core.live_zero for live chains.
4567 if (parent
->core
.live_zero
== i
+ 1) {
4568 while (--i
>= 0 && base
[i
].type
== 0)
4570 parent
->core
.live_zero
= i
+ 1;
4574 * Clear appropriate blockmap flags in chain.
4576 atomic_clear_int(&chain
->flags
, HAMMER2_CHAIN_BMAPPED
|
4577 HAMMER2_CHAIN_BMAPUPD
);
4581 * Insert the specified element. The block array must not already have the
4582 * element and must have space available for the insertion.
4584 * The spin lock on the related chain must be held.
4586 * NOTE: live_count was adjusted when the chain was deleted, so it does not
4587 * need to be adjusted when we commit the media change.
4590 hammer2_base_insert(hammer2_chain_t
*parent
,
4591 hammer2_blockref_t
*base
, int count
,
4592 int *cache_indexp
, hammer2_chain_t
*chain
)
4594 hammer2_blockref_t
*elm
= &chain
->bref
;
4595 hammer2_key_t key_next
;
4604 * Insert new element. Expect the element to not already exist
4605 * unless we are replacing it.
4607 * XXX see caller, flush code not yet sophisticated enough to prevent
4608 * re-flushed in some cases.
4610 key_next
= 0; /* max range */
4611 i
= hammer2_base_find(parent
, base
, count
, cache_indexp
,
4612 &key_next
, elm
->key
, elm
->key
);
4615 * Shortcut fill optimization, typical ordered insertion(s) may not
4618 KKASSERT(i
>= 0 && i
<= count
);
4621 * Set appropriate blockmap flags in chain.
4623 atomic_set_int(&chain
->flags
, HAMMER2_CHAIN_BMAPPED
);
4626 * Update stats and zero the entry
4628 parent
->bref
.data_count
+= elm
->data_count
;
4629 parent
->bref
.data_count
+= (hammer2_off_t
)1 <<
4630 (int)(elm
->data_off
& HAMMER2_OFF_MASK_RADIX
);
4631 parent
->bref
.inode_count
+= elm
->inode_count
;
4632 if (elm
->type
== HAMMER2_BREF_TYPE_INODE
)
4633 parent
->bref
.inode_count
+= 1;
4637 * We can only optimize parent->core.live_zero for live chains.
4639 if (i
== count
&& parent
->core
.live_zero
< count
) {
4640 i
= parent
->core
.live_zero
++;
4645 xkey
= elm
->key
+ ((hammer2_key_t
)1 << elm
->keybits
) - 1;
4646 if (i
!= count
&& (base
[i
].key
< elm
->key
|| xkey
>= base
[i
].key
)) {
4647 hammer2_spin_unex(&parent
->core
.spin
);
4648 panic("insert base %p overlapping elements at %d elm %p\n",
4653 * Try to find an empty slot before or after.
4657 while (j
> 0 || k
< count
) {
4659 if (j
>= 0 && base
[j
].type
== 0) {
4663 bcopy(&base
[j
+1], &base
[j
],
4664 (i
- j
- 1) * sizeof(*base
));
4670 if (k
< count
&& base
[k
].type
== 0) {
4671 bcopy(&base
[i
], &base
[i
+1],
4672 (k
- i
) * sizeof(hammer2_blockref_t
));
4676 * We can only update parent->core.live_zero for live
4679 if (parent
->core
.live_zero
<= k
)
4680 parent
->core
.live_zero
= k
+ 1;
4685 panic("hammer2_base_insert: no room!");
4692 for (l
= 0; l
< count
; ++l
) {
4694 key_next
= base
[l
].key
+
4695 ((hammer2_key_t
)1 << base
[l
].keybits
) - 1;
4699 while (++l
< count
) {
4701 if (base
[l
].key
<= key_next
)
4702 panic("base_insert %d %d,%d,%d fail %p:%d", u
, i
, j
, k
, base
, l
);
4703 key_next
= base
[l
].key
+
4704 ((hammer2_key_t
)1 << base
[l
].keybits
) - 1;
4714 * Sort the blockref array for the chain. Used by the flush code to
4715 * sort the blockref[] array.
4717 * The chain must be exclusively locked AND spin-locked.
4719 typedef hammer2_blockref_t
*hammer2_blockref_p
;
4723 hammer2_base_sort_callback(const void *v1
, const void *v2
)
4725 hammer2_blockref_p bref1
= *(const hammer2_blockref_p
*)v1
;
4726 hammer2_blockref_p bref2
= *(const hammer2_blockref_p
*)v2
;
4729 * Make sure empty elements are placed at the end of the array
4731 if (bref1
->type
== 0) {
4732 if (bref2
->type
== 0)
4735 } else if (bref2
->type
== 0) {
4742 if (bref1
->key
< bref2
->key
)
4744 if (bref1
->key
> bref2
->key
)
4750 hammer2_base_sort(hammer2_chain_t
*chain
)
4752 hammer2_blockref_t
*base
;
4755 switch(chain
->bref
.type
) {
4756 case HAMMER2_BREF_TYPE_INODE
:
4758 * Special shortcut for embedded data returns the inode
4759 * itself. Callers must detect this condition and access
4760 * the embedded data (the strategy code does this for us).
4762 * This is only applicable to regular files and softlinks.
4764 if (chain
->data
->ipdata
.meta
.op_flags
&
4765 HAMMER2_OPFLAG_DIRECTDATA
) {
4768 base
= &chain
->data
->ipdata
.u
.blockset
.blockref
[0];
4769 count
= HAMMER2_SET_COUNT
;
4771 case HAMMER2_BREF_TYPE_FREEMAP_NODE
:
4772 case HAMMER2_BREF_TYPE_INDIRECT
:
4774 * Optimize indirect blocks in the INITIAL state to avoid
4777 KKASSERT((chain
->flags
& HAMMER2_CHAIN_INITIAL
) == 0);
4778 base
= &chain
->data
->npdata
[0];
4779 count
= chain
->bytes
/ sizeof(hammer2_blockref_t
);
4781 case HAMMER2_BREF_TYPE_VOLUME
:
4782 base
= &chain
->data
->voldata
.sroot_blockset
.blockref
[0];
4783 count
= HAMMER2_SET_COUNT
;
4785 case HAMMER2_BREF_TYPE_FREEMAP
:
4786 base
= &chain
->data
->blkset
.blockref
[0];
4787 count
= HAMMER2_SET_COUNT
;
4790 kprintf("hammer2_chain_lookup: unrecognized "
4791 "blockref(A) type: %d",
4794 tsleep(&base
, 0, "dead", 0);
4795 panic("hammer2_chain_lookup: unrecognized "
4796 "blockref(A) type: %d",
4798 base
= NULL
; /* safety */
4799 count
= 0; /* safety */
4801 kqsort(base
, count
, sizeof(*base
), hammer2_base_sort_callback
);
4807 * Chain memory management
4810 hammer2_chain_wait(hammer2_chain_t
*chain
)
4812 tsleep(chain
, 0, "chnflw", 1);
4815 const hammer2_media_data_t
*
4816 hammer2_chain_rdata(hammer2_chain_t
*chain
)
4818 KKASSERT(chain
->data
!= NULL
);
4819 return (chain
->data
);
4822 hammer2_media_data_t
*
4823 hammer2_chain_wdata(hammer2_chain_t
*chain
)
4825 KKASSERT(chain
->data
!= NULL
);
4826 return (chain
->data
);
4830 * Set the check data for a chain. This can be a heavy-weight operation
4831 * and typically only runs on-flush. For file data check data is calculated
4832 * when the logical buffers are flushed.
4835 hammer2_chain_setcheck(hammer2_chain_t
*chain
, void *bdata
)
4837 chain
->bref
.flags
&= ~HAMMER2_BREF_FLAG_ZERO
;
4839 switch(HAMMER2_DEC_CHECK(chain
->bref
.methods
)) {
4840 case HAMMER2_CHECK_NONE
:
4842 case HAMMER2_CHECK_DISABLED
:
4844 case HAMMER2_CHECK_ISCSI32
:
4845 chain
->bref
.check
.iscsi32
.value
=
4846 hammer2_icrc32(bdata
, chain
->bytes
);
4848 case HAMMER2_CHECK_XXHASH64
:
4849 chain
->bref
.check
.xxhash64
.value
=
4850 XXH64(bdata
, chain
->bytes
, XXH_HAMMER2_SEED
);
4852 case HAMMER2_CHECK_SHA192
:
4854 SHA256_CTX hash_ctx
;
4856 uint8_t digest
[SHA256_DIGEST_LENGTH
];
4857 uint64_t digest64
[SHA256_DIGEST_LENGTH
/8];
4860 SHA256_Init(&hash_ctx
);
4861 SHA256_Update(&hash_ctx
, bdata
, chain
->bytes
);
4862 SHA256_Final(u
.digest
, &hash_ctx
);
4863 u
.digest64
[2] ^= u
.digest64
[3];
4865 chain
->bref
.check
.sha192
.data
,
4866 sizeof(chain
->bref
.check
.sha192
.data
));
4869 case HAMMER2_CHECK_FREEMAP
:
4870 chain
->bref
.check
.freemap
.icrc32
=
4871 hammer2_icrc32(bdata
, chain
->bytes
);
4874 kprintf("hammer2_chain_setcheck: unknown check type %02x\n",
4875 chain
->bref
.methods
);
4881 hammer2_chain_testcheck(hammer2_chain_t
*chain
, void *bdata
)
4887 if (chain
->bref
.flags
& HAMMER2_BREF_FLAG_ZERO
)
4890 switch(HAMMER2_DEC_CHECK(chain
->bref
.methods
)) {
4891 case HAMMER2_CHECK_NONE
:
4894 case HAMMER2_CHECK_DISABLED
:
4897 case HAMMER2_CHECK_ISCSI32
:
4898 check32
= hammer2_icrc32(bdata
, chain
->bytes
);
4899 r
= (chain
->bref
.check
.iscsi32
.value
== check32
);
4901 kprintf("chain %016jx.%02x meth=%02x CHECK FAIL "
4902 "(flags=%08x, bref/data %08x/%08x)\n",
4903 chain
->bref
.data_off
,
4905 chain
->bref
.methods
,
4907 chain
->bref
.check
.iscsi32
.value
,
4910 hammer2_check_icrc32
+= chain
->bytes
;
4912 case HAMMER2_CHECK_XXHASH64
:
4913 check64
= XXH64(bdata
, chain
->bytes
, XXH_HAMMER2_SEED
);
4914 r
= (chain
->bref
.check
.xxhash64
.value
== check64
);
4916 kprintf("chain %016jx.%02x key=%016jx "
4917 "meth=%02x CHECK FAIL "
4918 "(flags=%08x, bref/data %016jx/%016jx)\n",
4919 chain
->bref
.data_off
,
4922 chain
->bref
.methods
,
4924 chain
->bref
.check
.xxhash64
.value
,
4927 hammer2_check_xxhash64
+= chain
->bytes
;
4929 case HAMMER2_CHECK_SHA192
:
4931 SHA256_CTX hash_ctx
;
4933 uint8_t digest
[SHA256_DIGEST_LENGTH
];
4934 uint64_t digest64
[SHA256_DIGEST_LENGTH
/8];
4937 SHA256_Init(&hash_ctx
);
4938 SHA256_Update(&hash_ctx
, bdata
, chain
->bytes
);
4939 SHA256_Final(u
.digest
, &hash_ctx
);
4940 u
.digest64
[2] ^= u
.digest64
[3];
4942 chain
->bref
.check
.sha192
.data
,
4943 sizeof(chain
->bref
.check
.sha192
.data
)) == 0) {
4947 kprintf("chain %016jx.%02x meth=%02x "
4949 chain
->bref
.data_off
,
4951 chain
->bref
.methods
);
4955 case HAMMER2_CHECK_FREEMAP
:
4956 r
= (chain
->bref
.check
.freemap
.icrc32
==
4957 hammer2_icrc32(bdata
, chain
->bytes
));
4959 kprintf("chain %016jx.%02x meth=%02x "
4961 chain
->bref
.data_off
,
4963 chain
->bref
.methods
);
4964 kprintf("freemap.icrc %08x icrc32 %08x (%d)\n",
4965 chain
->bref
.check
.freemap
.icrc32
,
4966 hammer2_icrc32(bdata
, chain
->bytes
),
4969 kprintf("dio %p buf %016jx,%d bdata %p/%p\n",
4970 chain
->dio
, chain
->dio
->bp
->b_loffset
,
4971 chain
->dio
->bp
->b_bufsize
, bdata
,
4972 chain
->dio
->bp
->b_data
);
4977 kprintf("hammer2_chain_setcheck: unknown check type %02x\n",
4978 chain
->bref
.methods
);
4986 * The caller presents a shared-locked (parent, chain) where the chain
4987 * is of type HAMMER2_OBJTYPE_HARDLINK.
4989 * The flags passed in are LOOKUP flags, not RESOLVE flags. Only
4990 * HAMMER2_LOOKUP_SHARED is supported.
4992 * We locate the actual inode chain & parent.
4994 * If we are unable to locate the hardlink, EIO is returned and
4995 * (*chainp) is unlocked and dropped.
4998 hammer2_chain_hardlink_find(hammer2_chain_t
**parentp
, hammer2_chain_t
**chainp
,
4999 int clindex
, int flags
)
5001 hammer2_chain_t
*parent
;
5002 hammer2_chain_t
*rchain
;
5004 hammer2_key_t key_dummy
;
5006 int cache_index
= -1;
5009 resolve_flags
= (flags
& HAMMER2_LOOKUP_SHARED
) ?
5010 HAMMER2_RESOLVE_SHARED
: 0;
5013 * Obtain the key for the hardlink from *chainp.
5017 lhc
= rchain
->data
->ipdata
.meta
.inum
;
5018 hammer2_chain_unlock(rchain
);
5019 hammer2_chain_drop(rchain
);
5023 * Hardlinks hang off of iroot
5026 hammer2_chain_unlock(*parentp
);
5027 hammer2_chain_drop(*parentp
);
5029 parent
= hammer2_inode_chain(pmp
->iroot
, clindex
, resolve_flags
);
5030 rchain
= hammer2_chain_lookup(&parent
, &key_dummy
,
5032 &cache_index
, flags
);
5035 return (rchain
? 0 : EINVAL
);
5039 * Used by the bulkscan code to snapshot the synchronized storage for
5040 * a volume, allowing it to be scanned concurrently against normal
5044 hammer2_chain_bulksnap(hammer2_chain_t
*chain
)
5046 hammer2_chain_t
*copy
;
5048 copy
= hammer2_chain_alloc(chain
->hmp
, chain
->pmp
, &chain
->bref
);
5049 switch(chain
->bref
.type
) {
5050 case HAMMER2_BREF_TYPE_VOLUME
:
5051 copy
->data
= kmalloc(sizeof(copy
->data
->voldata
),
5054 hammer2_spin_ex(&chain
->core
.spin
);
5055 copy
->data
->voldata
= chain
->data
->voldata
;
5056 hammer2_spin_unex(&chain
->core
.spin
);
5058 case HAMMER2_BREF_TYPE_FREEMAP
:
5059 copy
->data
= kmalloc(sizeof(hammer2_blockset_t
),
5062 hammer2_spin_ex(&chain
->core
.spin
);
5063 copy
->data
->blkset
= chain
->data
->blkset
;
5064 hammer2_spin_unex(&chain
->core
.spin
);
5073 hammer2_chain_bulkdrop(hammer2_chain_t
*copy
)
5075 switch(copy
->bref
.type
) {
5076 case HAMMER2_BREF_TYPE_VOLUME
:
5077 case HAMMER2_BREF_TYPE_FREEMAP
:
5078 KKASSERT(copy
->data
);
5079 kfree(copy
->data
, copy
->hmp
->mchain
);
5081 atomic_add_long(&hammer2_chain_allocs
, -1);
5086 hammer2_chain_drop(copy
);
5090 * Create a snapshot of the specified {parent, ochain} with the specified
5091 * label. The originating hammer2_inode must be exclusively locked for
5094 * The ioctl code has already synced the filesystem.
5097 hammer2_chain_snapshot(hammer2_chain_t
*chain
, hammer2_ioc_pfs_t
*pmp
,
5101 const hammer2_inode_data_t
*ripdata
;
5102 hammer2_inode_data_t
*wipdata
;
5103 hammer2_chain_t
*nchain
;
5104 hammer2_inode_t
*nip
;
5113 kprintf("snapshot %s\n", pmp
->name
);
5115 name_len
= strlen(pmp
->name
);
5116 lhc
= hammer2_dirhash(pmp
->name
, name_len
);
5121 ripdata
= &chain
->data
->ipdata
;
5123 opfs_clid
= ripdata
->meta
.pfs_clid
;
5128 * Create the snapshot directory under the super-root
5130 * Set PFS type, generate a unique filesystem id, and generate
5131 * a cluster id. Use the same clid when snapshotting a PFS root,
5132 * which theoretically allows the snapshot to be used as part of
5133 * the same cluster (perhaps as a cache).
5135 * Copy the (flushed) blockref array. Theoretically we could use
5136 * chain_duplicate() but it becomes difficult to disentangle
5137 * the shared core so for now just brute-force it.
5142 nip
= hammer2_inode_create(hmp
->spmp
->iroot
, hmp
->spmp
->iroot
,
5143 &vat
, proc0
.p_ucred
,
5144 pmp
->name
, name_len
, 0,
5146 HAMMER2_INSERT_PFSROOT
, &error
);
5149 hammer2_inode_modify(nip
);
5150 nchain
= hammer2_inode_chain(nip
, 0, HAMMER2_RESOLVE_ALWAYS
);
5151 hammer2_chain_modify(nchain
, mtid
, 0, 0);
5152 wipdata
= &nchain
->data
->ipdata
;
5154 nip
->meta
.pfs_type
= HAMMER2_PFSTYPE_MASTER
;
5155 nip
->meta
.pfs_subtype
= HAMMER2_PFSSUBTYPE_SNAPSHOT
;
5156 nip
->meta
.op_flags
|= HAMMER2_OPFLAG_PFSROOT
;
5157 kern_uuidgen(&nip
->meta
.pfs_fsid
, 1);
5160 * Give the snapshot its own private cluster id. As a
5161 * snapshot no further synchronization with the original
5162 * cluster will be done.
5165 if (chain
->flags
& HAMMER2_CHAIN_PFSBOUNDARY
)
5166 nip
->meta
.pfs_clid
= opfs_clid
;
5168 kern_uuidgen(&nip
->meta
.pfs_clid
, 1);
5170 kern_uuidgen(&nip
->meta
.pfs_clid
, 1);
5171 nchain
->bref
.flags
|= HAMMER2_BREF_FLAG_PFSROOT
;
5173 /* XXX hack blockset copy */
5174 /* XXX doesn't work with real cluster */
5175 wipdata
->meta
= nip
->meta
;
5176 wipdata
->u
.blockset
= ripdata
->u
.blockset
;
5177 hammer2_flush(nchain
, 1);
5178 hammer2_chain_unlock(nchain
);
5179 hammer2_chain_drop(nchain
);
5180 hammer2_inode_unlock(nip
);