NTFS VFS - Fix dangling vnode panic on umount
[dragonfly.git] / sys / net / zlib.c
blobd60b2d1dc563cedf698cbf4aae91f02f600097f0
1 /*
2 * This file is derived from various .h and .c files from the zlib-1.0.4
3 * distribution by Jean-loup Gailly and Mark Adler, with some additions
4 * by Paul Mackerras to aid in implementing Deflate compression and
5 * decompression for PPP packets. See zlib.h for conditions of
6 * distribution and use.
8 * Changes that have been made include:
9 * - added Z_PACKET_FLUSH (see zlib.h for details)
10 * - added inflateIncomp and deflateOutputPending
11 * - allow strm->next_out to be NULL, meaning discard the output
13 * $FreeBSD: src/sys/net/zlib.c,v 1.10.2.3 2002/03/24 23:12:48 jedgar Exp $
14 * $DragonFly: src/sys/net/zlib.c,v 1.11 2007/01/07 00:41:29 dillon Exp $
17 /*
18 * ==FILEVERSION 971210==
20 * This marker is used by the Linux installation script to determine
21 * whether an up-to-date version of this file is already installed.
24 #define NO_DUMMY_DECL
25 #define NO_ZCFUNCS
26 #define MY_ZCALLOC
28 #if (defined(__DragonFly__) || defined(__FreeBSD__)) && defined(_KERNEL)
29 #define inflate inflate_ppp /* FreeBSD already has an inflate :-( */
30 #endif
33 /* +++ zutil.h */
34 /* zutil.h -- internal interface and configuration of the compression library
35 * Copyright (C) 1995-1996 Jean-loup Gailly.
36 * For conditions of distribution and use, see copyright notice in zlib.h
39 /* WARNING: this file should *not* be used by applications. It is
40 part of the implementation of the compression library and is
41 subject to change. Applications should only use zlib.h.
44 /* From: zutil.h,v 1.16 1996/07/24 13:41:13 me Exp $ */
46 #ifndef _Z_UTIL_H
47 #define _Z_UTIL_H
49 #ifdef _KERNEL
50 #include <net/zlib.h>
51 #else
52 #include "zlib.h"
53 #endif
55 #ifdef _KERNEL
56 /* Assume this is a *BSD or SVR4 kernel */
57 #include <sys/param.h>
58 #include <sys/types.h>
59 #include <sys/time.h>
60 #include <sys/systm.h>
61 #include <sys/module.h>
62 # define HAVE_MEMCPY
63 # define memcpy(d, s, n) bcopy((s), (d), (n))
64 # define memset(d, v, n) bzero((d), (n))
65 # define memcmp bcmp
67 #else
68 #if defined(__KERNEL__)
69 /* Assume this is a Linux kernel */
70 #include <linux/string.h>
71 #define HAVE_MEMCPY
73 #else /* not kernel */
75 #if defined(MSDOS)||defined(VMS)||defined(CRAY)||defined(WIN32)||defined(RISCOS)
76 # include <stddef.h>
77 # include <errno.h>
78 #else
79 extern int errno;
80 #endif
81 #ifdef STDC
82 # include <string.h>
83 # include <stdlib.h>
84 #endif
85 #endif /* __KERNEL__ */
86 #endif /* _KERNEL */
88 #ifndef local
89 # define local static
90 #endif
91 /* compile with -Dlocal if your debugger can't find static symbols */
93 typedef unsigned char uch;
94 typedef uch FAR uchf;
95 typedef unsigned short ush;
96 typedef ush FAR ushf;
97 typedef unsigned long ulg;
99 static const char *z_errmsg[10] = {
100 "need dictionary", /* Z_NEED_DICT 2 */
101 "stream end", /* Z_STREAM_END 1 */
102 "", /* Z_OK 0 */
103 "file error", /* Z_ERRNO (-1) */
104 "stream error", /* Z_STREAM_ERROR (-2) */
105 "data error", /* Z_DATA_ERROR (-3) */
106 "insufficient memory", /* Z_MEM_ERROR (-4) */
107 "buffer error", /* Z_BUF_ERROR (-5) */
108 "incompatible version",/* Z_VERSION_ERROR (-6) */
109 ""};
111 #define ERR_MSG(err) z_errmsg[Z_NEED_DICT-(err)]
113 #define ERR_RETURN(strm,err) \
114 return (strm->msg = (const char*)ERR_MSG(err), (err))
115 /* To be used only when the state is known to be valid */
117 /* common constants */
119 #ifndef DEF_WBITS
120 # define DEF_WBITS MAX_WBITS
121 #endif
122 /* default windowBits for decompression. MAX_WBITS is for compression only */
124 #if MAX_MEM_LEVEL >= 8
125 # define DEF_MEM_LEVEL 8
126 #else
127 # define DEF_MEM_LEVEL MAX_MEM_LEVEL
128 #endif
129 /* default memLevel */
131 #define STORED_BLOCK 0
132 #define STATIC_TREES 1
133 #define DYN_TREES 2
134 /* The three kinds of block type */
136 #define MIN_MATCH 3
137 #define MAX_MATCH 258
138 /* The minimum and maximum match lengths */
140 #define PRESET_DICT 0x20 /* preset dictionary flag in zlib header */
142 /* target dependencies */
144 #ifdef MSDOS
145 # define OS_CODE 0x00
146 # ifdef __TURBOC__
147 # include <alloc.h>
148 # else /* MSC or DJGPP */
149 # include <malloc.h>
150 # endif
151 #endif
153 #ifdef OS2
154 # define OS_CODE 0x06
155 #endif
157 #ifdef WIN32 /* Window 95 & Windows NT */
158 # define OS_CODE 0x0b
159 #endif
161 #if defined(VAXC) || defined(VMS)
162 # define OS_CODE 0x02
163 # define FOPEN(name, mode) \
164 fopen((name), (mode), "mbc=60", "ctx=stm", "rfm=fix", "mrs=512")
165 #endif
167 #ifdef AMIGA
168 # define OS_CODE 0x01
169 #endif
171 #if defined(ATARI) || defined(atarist)
172 # define OS_CODE 0x05
173 #endif
175 #ifdef MACOS
176 # define OS_CODE 0x07
177 #endif
179 #ifdef __50SERIES /* Prime/PRIMOS */
180 # define OS_CODE 0x0F
181 #endif
183 #ifdef TOPS20
184 # define OS_CODE 0x0a
185 #endif
187 #if defined(_BEOS_) || defined(RISCOS)
188 # define fdopen(fd,mode) NULL /* No fdopen() */
189 #endif
191 /* Common defaults */
193 #ifndef OS_CODE
194 # define OS_CODE 0x03 /* assume Unix */
195 #endif
197 #ifndef FOPEN
198 # define FOPEN(name, mode) fopen((name), (mode))
199 #endif
201 /* functions */
203 #ifdef HAVE_STRERROR
204 extern char *strerror OF((int));
205 # define zstrerror(errnum) strerror(errnum)
206 #else
207 # define zstrerror(errnum) ""
208 #endif
210 #if defined(pyr)
211 # define NO_MEMCPY
212 #endif
213 #if (defined(M_I86SM) || defined(M_I86MM)) && !defined(_MSC_VER)
214 /* Use our own functions for small and medium model with MSC <= 5.0.
215 * You may have to use the same strategy for Borland C (untested).
217 # define NO_MEMCPY
218 #endif
219 #if defined(STDC) && !defined(HAVE_MEMCPY) && !defined(NO_MEMCPY)
220 # define HAVE_MEMCPY
221 #endif
222 #ifdef HAVE_MEMCPY
223 # ifdef SMALL_MEDIUM /* MSDOS small or medium model */
224 # define zmemcpy _fmemcpy
225 # define zmemcmp _fmemcmp
226 # define zmemzero(dest, len) _fmemset(dest, 0, len)
227 # else
228 # define zmemcpy memcpy
229 # define zmemcmp memcmp
230 # define zmemzero(dest, len) memset(dest, 0, len)
231 # endif
232 #else
233 extern void zmemcpy OF((Bytef* dest, Bytef* source, uInt len));
234 extern int zmemcmp OF((Bytef* s1, Bytef* s2, uInt len));
235 extern void zmemzero OF((Bytef* dest, uInt len));
236 #endif
238 /* Diagnostic functions */
239 #ifdef DEBUG_ZLIB
240 # include <stdio.h>
241 # ifndef verbose
242 # define verbose 0
243 # endif
244 extern void z_error OF((char *m));
245 # define Assert(cond,msg) {if(!(cond)) z_error(msg);}
246 # define Trace(x) fprintf x
247 # define Tracev(x) {if (verbose) fprintf x ;}
248 # define Tracevv(x) {if (verbose>1) fprintf x ;}
249 # define Tracec(c,x) {if (verbose && (c)) fprintf x ;}
250 # define Tracecv(c,x) {if (verbose>1 && (c)) fprintf x ;}
251 #else
252 # define Assert(cond,msg)
253 # define Trace(x)
254 # define Tracev(x)
255 # define Tracevv(x)
256 # define Tracec(c,x)
257 # define Tracecv(c,x)
258 #endif
261 typedef uLong (*check_func) OF((uLong check, const Bytef *buf, uInt len));
263 voidpf zcalloc OF((voidpf opaque, unsigned items, unsigned size));
264 void zcfree OF((voidpf opaque, voidpf ptr));
266 #define ZALLOC(strm, items, size) \
267 (*((strm)->zalloc))((strm)->opaque, (items), (size))
268 #define ZFREE(strm, addr) (*((strm)->zfree))((strm)->opaque, (voidpf)(addr))
269 #define TRY_FREE(s, p) {if (p) ZFREE(s, p);}
271 #endif /* _Z_UTIL_H */
272 /* --- zutil.h */
274 /* +++ deflate.h */
275 /* deflate.h -- internal compression state
276 * Copyright (C) 1995-1996 Jean-loup Gailly
277 * For conditions of distribution and use, see copyright notice in zlib.h
280 /* WARNING: this file should *not* be used by applications. It is
281 part of the implementation of the compression library and is
282 subject to change. Applications should only use zlib.h.
285 /* From: deflate.h,v 1.10 1996/07/02 12:41:00 me Exp $ */
287 #ifndef _DEFLATE_H
288 #define _DEFLATE_H
290 /* #include "zutil.h" */
292 /* ===========================================================================
293 * Internal compression state.
296 #define LENGTH_CODES 29
297 /* number of length codes, not counting the special END_BLOCK code */
299 #define LITERALS 256
300 /* number of literal bytes 0..255 */
302 #define L_CODES (LITERALS+1+LENGTH_CODES)
303 /* number of Literal or Length codes, including the END_BLOCK code */
305 #define D_CODES 30
306 /* number of distance codes */
308 #define BL_CODES 19
309 /* number of codes used to transfer the bit lengths */
311 #define HEAP_SIZE (2*L_CODES+1)
312 /* maximum heap size */
314 #define MAX_BITS 15
315 /* All codes must not exceed MAX_BITS bits */
317 #define INIT_STATE 42
318 #define BUSY_STATE 113
319 #define FINISH_STATE 666
320 /* Stream status */
323 /* Data structure describing a single value and its code string. */
324 typedef struct ct_data_s {
325 union {
326 ush freq; /* frequency count */
327 ush code; /* bit string */
328 } fc;
329 union {
330 ush dad; /* father node in Huffman tree */
331 ush len; /* length of bit string */
332 } dl;
333 } FAR ct_data;
335 #define Freq fc.freq
336 #define Code fc.code
337 #define Dad dl.dad
338 #define Len dl.len
340 typedef struct static_tree_desc_s static_tree_desc;
342 typedef struct tree_desc_s {
343 ct_data *dyn_tree; /* the dynamic tree */
344 int max_code; /* largest code with non zero frequency */
345 static_tree_desc *stat_desc; /* the corresponding static tree */
346 } FAR tree_desc;
348 typedef ush Pos;
349 typedef Pos FAR Posf;
350 typedef unsigned IPos;
352 /* A Pos is an index in the character window. We use short instead of int to
353 * save space in the various tables. IPos is used only for parameter passing.
356 typedef struct deflate_state {
357 z_streamp strm; /* pointer back to this zlib stream */
358 int status; /* as the name implies */
359 Bytef *pending_buf; /* output still pending */
360 ulg pending_buf_size; /* size of pending_buf */
361 Bytef *pending_out; /* next pending byte to output to the stream */
362 int pending; /* nb of bytes in the pending buffer */
363 int noheader; /* suppress zlib header and adler32 */
364 Byte data_type; /* UNKNOWN, BINARY or ASCII */
365 Byte method; /* STORED (for zip only) or DEFLATED */
366 int last_flush; /* value of flush param for previous deflate call */
368 /* used by deflate.c: */
370 uInt w_size; /* LZ77 window size (32K by default) */
371 uInt w_bits; /* log2(w_size) (8..16) */
372 uInt w_mask; /* w_size - 1 */
374 Bytef *window;
375 /* Sliding window. Input bytes are read into the second half of the window,
376 * and move to the first half later to keep a dictionary of at least wSize
377 * bytes. With this organization, matches are limited to a distance of
378 * wSize-MAX_MATCH bytes, but this ensures that IO is always
379 * performed with a length multiple of the block size. Also, it limits
380 * the window size to 64K, which is quite useful on MSDOS.
381 * To do: use the user input buffer as sliding window.
384 ulg window_size;
385 /* Actual size of window: 2*wSize, except when the user input buffer
386 * is directly used as sliding window.
389 Posf *prev;
390 /* Link to older string with same hash index. To limit the size of this
391 * array to 64K, this link is maintained only for the last 32K strings.
392 * An index in this array is thus a window index modulo 32K.
395 Posf *head; /* Heads of the hash chains or NIL. */
397 uInt ins_h; /* hash index of string to be inserted */
398 uInt hash_size; /* number of elements in hash table */
399 uInt hash_bits; /* log2(hash_size) */
400 uInt hash_mask; /* hash_size-1 */
402 uInt hash_shift;
403 /* Number of bits by which ins_h must be shifted at each input
404 * step. It must be such that after MIN_MATCH steps, the oldest
405 * byte no longer takes part in the hash key, that is:
406 * hash_shift * MIN_MATCH >= hash_bits
409 long block_start;
410 /* Window position at the beginning of the current output block. Gets
411 * negative when the window is moved backwards.
414 uInt match_length; /* length of best match */
415 IPos prev_match; /* previous match */
416 int match_available; /* set if previous match exists */
417 uInt strstart; /* start of string to insert */
418 uInt match_start; /* start of matching string */
419 uInt lookahead; /* number of valid bytes ahead in window */
421 uInt prev_length;
422 /* Length of the best match at previous step. Matches not greater than this
423 * are discarded. This is used in the lazy match evaluation.
426 uInt max_chain_length;
427 /* To speed up deflation, hash chains are never searched beyond this
428 * length. A higher limit improves compression ratio but degrades the
429 * speed.
432 uInt max_lazy_match;
433 /* Attempt to find a better match only when the current match is strictly
434 * smaller than this value. This mechanism is used only for compression
435 * levels >= 4.
437 # define max_insert_length max_lazy_match
438 /* Insert new strings in the hash table only if the match length is not
439 * greater than this length. This saves time but degrades compression.
440 * max_insert_length is used only for compression levels <= 3.
443 int level; /* compression level (1..9) */
444 int strategy; /* favor or force Huffman coding*/
446 uInt good_match;
447 /* Use a faster search when the previous match is longer than this */
449 int nice_match; /* Stop searching when current match exceeds this */
451 /* used by trees.c: */
452 /* Didn't use ct_data typedef below to supress compiler warning */
453 struct ct_data_s dyn_ltree[HEAP_SIZE]; /* literal and length tree */
454 struct ct_data_s dyn_dtree[2*D_CODES+1]; /* distance tree */
455 struct ct_data_s bl_tree[2*BL_CODES+1]; /* Huffman tree for bit lengths */
457 struct tree_desc_s l_desc; /* desc. for literal tree */
458 struct tree_desc_s d_desc; /* desc. for distance tree */
459 struct tree_desc_s bl_desc; /* desc. for bit length tree */
461 ush bl_count[MAX_BITS+1];
462 /* number of codes at each bit length for an optimal tree */
464 int heap[2*L_CODES+1]; /* heap used to build the Huffman trees */
465 int heap_len; /* number of elements in the heap */
466 int heap_max; /* element of largest frequency */
467 /* The sons of heap[n] are heap[2*n] and heap[2*n+1]. heap[0] is not used.
468 * The same heap array is used to build all trees.
471 uch depth[2*L_CODES+1];
472 /* Depth of each subtree used as tie breaker for trees of equal frequency
475 uchf *l_buf; /* buffer for literals or lengths */
477 uInt lit_bufsize;
478 /* Size of match buffer for literals/lengths. There are 4 reasons for
479 * limiting lit_bufsize to 64K:
480 * - frequencies can be kept in 16 bit counters
481 * - if compression is not successful for the first block, all input
482 * data is still in the window so we can still emit a stored block even
483 * when input comes from standard input. (This can also be done for
484 * all blocks if lit_bufsize is not greater than 32K.)
485 * - if compression is not successful for a file smaller than 64K, we can
486 * even emit a stored file instead of a stored block (saving 5 bytes).
487 * This is applicable only for zip (not gzip or zlib).
488 * - creating new Huffman trees less frequently may not provide fast
489 * adaptation to changes in the input data statistics. (Take for
490 * example a binary file with poorly compressible code followed by
491 * a highly compressible string table.) Smaller buffer sizes give
492 * fast adaptation but have of course the overhead of transmitting
493 * trees more frequently.
494 * - I can't count above 4
497 uInt last_lit; /* running index in l_buf */
499 ushf *d_buf;
500 /* Buffer for distances. To simplify the code, d_buf and l_buf have
501 * the same number of elements. To use different lengths, an extra flag
502 * array would be necessary.
505 ulg opt_len; /* bit length of current block with optimal trees */
506 ulg static_len; /* bit length of current block with static trees */
507 ulg compressed_len; /* total bit length of compressed file */
508 uInt matches; /* number of string matches in current block */
509 int last_eob_len; /* bit length of EOB code for last block */
511 #ifdef DEBUG_ZLIB
512 ulg bits_sent; /* bit length of the compressed data */
513 #endif
515 ush bi_buf;
516 /* Output buffer. bits are inserted starting at the bottom (least
517 * significant bits).
519 int bi_valid;
520 /* Number of valid bits in bi_buf. All bits above the last valid bit
521 * are always zero.
524 } FAR deflate_state;
526 /* Output a byte on the stream.
527 * IN assertion: there is enough room in pending_buf.
529 #define put_byte(s, c) {s->pending_buf[s->pending++] = (c);}
532 #define MIN_LOOKAHEAD (MAX_MATCH+MIN_MATCH+1)
533 /* Minimum amount of lookahead, except at the end of the input file.
534 * See deflate.c for comments about the MIN_MATCH+1.
537 #define MAX_DIST(s) ((s)->w_size-MIN_LOOKAHEAD)
538 /* In order to simplify the code, particularly on 16 bit machines, match
539 * distances are limited to MAX_DIST instead of WSIZE.
542 /* in trees.c */
543 void _tr_init OF((deflate_state *s));
544 int _tr_tally OF((deflate_state *s, unsigned dist, unsigned lc));
545 ulg _tr_flush_block OF((deflate_state *s, charf *buf, ulg stored_len,
546 int eof));
547 void _tr_align OF((deflate_state *s));
548 void _tr_stored_block OF((deflate_state *s, charf *buf, ulg stored_len,
549 int eof));
550 void _tr_stored_type_only OF((deflate_state *));
552 #endif
553 /* --- deflate.h */
555 /* +++ deflate.c */
556 /* deflate.c -- compress data using the deflation algorithm
557 * Copyright (C) 1995-1996 Jean-loup Gailly.
558 * For conditions of distribution and use, see copyright notice in zlib.h
562 * ALGORITHM
564 * The "deflation" process depends on being able to identify portions
565 * of the input text which are identical to earlier input (within a
566 * sliding window trailing behind the input currently being processed).
568 * The most straightforward technique turns out to be the fastest for
569 * most input files: try all possible matches and select the longest.
570 * The key feature of this algorithm is that insertions into the string
571 * dictionary are very simple and thus fast, and deletions are avoided
572 * completely. Insertions are performed at each input character, whereas
573 * string matches are performed only when the previous match ends. So it
574 * is preferable to spend more time in matches to allow very fast string
575 * insertions and avoid deletions. The matching algorithm for small
576 * strings is inspired from that of Rabin & Karp. A brute force approach
577 * is used to find longer strings when a small match has been found.
578 * A similar algorithm is used in comic (by Jan-Mark Wams) and freeze
579 * (by Leonid Broukhis).
580 * A previous version of this file used a more sophisticated algorithm
581 * (by Fiala and Greene) which is guaranteed to run in linear amortized
582 * time, but has a larger average cost, uses more memory and is patented.
583 * However the F&G algorithm may be faster for some highly redundant
584 * files if the parameter max_chain_length (described below) is too large.
586 * ACKNOWLEDGEMENTS
588 * The idea of lazy evaluation of matches is due to Jan-Mark Wams, and
589 * I found it in 'freeze' written by Leonid Broukhis.
590 * Thanks to many people for bug reports and testing.
592 * REFERENCES
594 * Deutsch, L.P.,"DEFLATE Compressed Data Format Specification".
595 * Available in ftp://ds.internic.net/rfc/rfc1951.txt
597 * A description of the Rabin and Karp algorithm is given in the book
598 * "Algorithms" by R. Sedgewick, Addison-Wesley, p252.
600 * Fiala,E.R., and Greene,D.H.
601 * Data Compression with Finite Windows, Comm.ACM, 32,4 (1989) 490-595
605 /* From: deflate.c,v 1.15 1996/07/24 13:40:58 me Exp $ */
607 /* #include "deflate.h" */
609 char deflate_copyright[] = " deflate 1.0.4 Copyright 1995-1996 Jean-loup Gailly ";
611 If you use the zlib library in a product, an acknowledgment is welcome
612 in the documentation of your product. If for some reason you cannot
613 include such an acknowledgment, I would appreciate that you keep this
614 copyright string in the executable of your product.
617 /* ===========================================================================
618 * Function prototypes.
620 typedef enum {
621 need_more, /* block not completed, need more input or more output */
622 block_done, /* block flush performed */
623 finish_started, /* finish started, need only more output at next deflate */
624 finish_done /* finish done, accept no more input or output */
625 } block_state;
627 typedef block_state (*compress_func) OF((deflate_state *s, int flush));
628 /* Compression function. Returns the block state after the call. */
630 local void fill_window OF((deflate_state *s));
631 local block_state deflate_stored OF((deflate_state *s, int flush));
632 local block_state deflate_fast OF((deflate_state *s, int flush));
633 local block_state deflate_slow OF((deflate_state *s, int flush));
634 local void lm_init OF((deflate_state *s));
635 local void putShortMSB OF((deflate_state *s, uInt b));
636 local void flush_pending OF((z_streamp strm));
637 local int read_buf OF((z_streamp strm, charf *buf, unsigned size));
638 #ifdef ASMV
639 void match_init OF((void)); /* asm code initialization */
640 uInt longest_match OF((deflate_state *s, IPos cur_match));
641 #else
642 local uInt longest_match OF((deflate_state *s, IPos cur_match));
643 #endif
645 #ifdef DEBUG_ZLIB
646 local void check_match OF((deflate_state *s, IPos start, IPos match,
647 int length));
648 #endif
650 /* ===========================================================================
651 * Local data
654 #define NIL 0
655 /* Tail of hash chains */
657 #ifndef TOO_FAR
658 # define TOO_FAR 4096
659 #endif
660 /* Matches of length 3 are discarded if their distance exceeds TOO_FAR */
662 #define MIN_LOOKAHEAD (MAX_MATCH+MIN_MATCH+1)
663 /* Minimum amount of lookahead, except at the end of the input file.
664 * See deflate.c for comments about the MIN_MATCH+1.
667 /* Values for max_lazy_match, good_match and max_chain_length, depending on
668 * the desired pack level (0..9). The values given below have been tuned to
669 * exclude worst case performance for pathological files. Better values may be
670 * found for specific files.
672 typedef struct config_s {
673 ush good_length; /* reduce lazy search above this match length */
674 ush max_lazy; /* do not perform lazy search above this match length */
675 ush nice_length; /* quit search above this match length */
676 ush max_chain;
677 compress_func func;
678 } config;
680 local config configuration_table[10] = {
681 /* good lazy nice chain */
682 /* 0 */ {0, 0, 0, 0, deflate_stored}, /* store only */
683 /* 1 */ {4, 4, 8, 4, deflate_fast}, /* maximum speed, no lazy matches */
684 /* 2 */ {4, 5, 16, 8, deflate_fast},
685 /* 3 */ {4, 6, 32, 32, deflate_fast},
687 /* 4 */ {4, 4, 16, 16, deflate_slow}, /* lazy matches */
688 /* 5 */ {8, 16, 32, 32, deflate_slow},
689 /* 6 */ {8, 16, 128, 128, deflate_slow},
690 /* 7 */ {8, 32, 128, 256, deflate_slow},
691 /* 8 */ {32, 128, 258, 1024, deflate_slow},
692 /* 9 */ {32, 258, 258, 4096, deflate_slow}}; /* maximum compression */
694 /* Note: the deflate() code requires max_lazy >= MIN_MATCH and max_chain >= 4
695 * For deflate_fast() (levels <= 3) good is ignored and lazy has a different
696 * meaning.
699 #define EQUAL 0
700 /* result of memcmp for equal strings */
702 #ifndef NO_DUMMY_DECL
703 struct static_tree_desc_s {int dummy;}; /* for buggy compilers */
704 #endif
706 /* ===========================================================================
707 * Update a hash value with the given input byte
708 * IN assertion: all calls to to UPDATE_HASH are made with consecutive
709 * input characters, so that a running hash key can be computed from the
710 * previous key instead of complete recalculation each time.
712 #define UPDATE_HASH(s,h,c) (h = (((h)<<s->hash_shift) ^ (c)) & s->hash_mask)
715 /* ===========================================================================
716 * Insert string str in the dictionary and set match_head to the previous head
717 * of the hash chain (the most recent string with same hash key). Return
718 * the previous length of the hash chain.
719 * IN assertion: all calls to to INSERT_STRING are made with consecutive
720 * input characters and the first MIN_MATCH bytes of str are valid
721 * (except for the last MIN_MATCH-1 bytes of the input file).
723 #define INSERT_STRING(s, str, match_head) \
724 (UPDATE_HASH(s, s->ins_h, s->window[(str) + (MIN_MATCH-1)]), \
725 s->prev[(str) & s->w_mask] = match_head = s->head[s->ins_h], \
726 s->head[s->ins_h] = (Pos)(str))
728 /* ===========================================================================
729 * Initialize the hash table (avoiding 64K overflow for 16 bit systems).
730 * prev[] will be initialized on the fly.
732 #define CLEAR_HASH(s) \
733 s->head[s->hash_size-1] = NIL; \
734 zmemzero((charf *)s->head, (unsigned)(s->hash_size-1)*sizeof(*s->head));
736 /* ========================================================================= */
738 deflateInit_(z_streamp strm, int level, const char * version,
739 int stream_size)
741 return deflateInit2_(strm, level, Z_DEFLATED, MAX_WBITS, DEF_MEM_LEVEL,
742 Z_DEFAULT_STRATEGY, version, stream_size);
743 /* To do: ignore strm->next_in if we use it as window */
746 /* ========================================================================= */
748 deflateInit2_(z_streamp strm, int level, int method, int windowBits,
749 int memLevel, int strategy, const char *version,
750 int stream_size)
752 deflate_state *s;
753 int noheader = 0;
754 static char* my_version = ZLIB_VERSION;
756 ushf *overlay;
757 /* We overlay pending_buf and d_buf+l_buf. This works since the average
758 * output size for (length,distance) codes is <= 24 bits.
761 if (version == Z_NULL || version[0] != my_version[0] ||
762 stream_size != sizeof(z_stream)) {
763 return Z_VERSION_ERROR;
765 if (strm == Z_NULL) return Z_STREAM_ERROR;
767 strm->msg = Z_NULL;
768 #ifndef NO_ZCFUNCS
769 if (strm->zalloc == Z_NULL) {
770 strm->zalloc = zcalloc;
771 strm->opaque = (voidpf)0;
773 if (strm->zfree == Z_NULL) strm->zfree = zcfree;
774 #endif
776 if (level == Z_DEFAULT_COMPRESSION) level = 6;
778 if (windowBits < 0) { /* undocumented feature: suppress zlib header */
779 noheader = 1;
780 windowBits = -windowBits;
782 if (memLevel < 1 || memLevel > MAX_MEM_LEVEL || method != Z_DEFLATED ||
783 windowBits < 9 || windowBits > 15 || level < 0 || level > 9 ||
784 strategy < 0 || strategy > Z_HUFFMAN_ONLY) {
785 return Z_STREAM_ERROR;
787 s = (deflate_state *) ZALLOC(strm, 1, sizeof(deflate_state));
788 if (s == Z_NULL) return Z_MEM_ERROR;
789 strm->state = (struct internal_state FAR *)s;
790 s->strm = strm;
792 s->noheader = noheader;
793 s->w_bits = windowBits;
794 s->w_size = 1 << s->w_bits;
795 s->w_mask = s->w_size - 1;
797 s->hash_bits = memLevel + 7;
798 s->hash_size = 1 << s->hash_bits;
799 s->hash_mask = s->hash_size - 1;
800 s->hash_shift = ((s->hash_bits+MIN_MATCH-1)/MIN_MATCH);
802 s->window = (Bytef *) ZALLOC(strm, s->w_size, 2*sizeof(Byte));
803 s->prev = (Posf *) ZALLOC(strm, s->w_size, sizeof(Pos));
804 s->head = (Posf *) ZALLOC(strm, s->hash_size, sizeof(Pos));
806 s->lit_bufsize = 1 << (memLevel + 6); /* 16K elements by default */
808 overlay = (ushf *) ZALLOC(strm, s->lit_bufsize, sizeof(ush)+2);
809 s->pending_buf = (uchf *) overlay;
810 s->pending_buf_size = (ulg)s->lit_bufsize * (sizeof(ush)+2L);
812 if (s->window == Z_NULL || s->prev == Z_NULL || s->head == Z_NULL ||
813 s->pending_buf == Z_NULL) {
814 strm->msg = (const char*)ERR_MSG(Z_MEM_ERROR);
815 deflateEnd (strm);
816 return Z_MEM_ERROR;
818 s->d_buf = overlay + s->lit_bufsize/sizeof(ush);
819 s->l_buf = s->pending_buf + (1+sizeof(ush))*s->lit_bufsize;
821 s->level = level;
822 s->strategy = strategy;
823 s->method = (Byte)method;
825 return deflateReset(strm);
828 /* ========================================================================= */
830 deflateSetDictionary(z_streamp strm, const Bytef *dictionary, uInt dictLength)
832 deflate_state *s;
833 uInt length = dictLength;
834 uInt n;
835 IPos hash_head = 0;
837 if (strm == Z_NULL || strm->state == Z_NULL || dictionary == Z_NULL)
838 return Z_STREAM_ERROR;
840 s = (deflate_state *) strm->state;
841 if (s->status != INIT_STATE) return Z_STREAM_ERROR;
843 strm->adler = adler32(strm->adler, dictionary, dictLength);
845 if (length < MIN_MATCH) return Z_OK;
846 if (length > MAX_DIST(s)) {
847 length = MAX_DIST(s);
848 #ifndef USE_DICT_HEAD
849 dictionary += dictLength - length; /* use the tail of the dictionary */
850 #endif
852 zmemcpy((charf *)s->window, dictionary, length);
853 s->strstart = length;
854 s->block_start = (long)length;
856 /* Insert all strings in the hash table (except for the last two bytes).
857 * s->lookahead stays null, so s->ins_h will be recomputed at the next
858 * call of fill_window.
860 s->ins_h = s->window[0];
861 UPDATE_HASH(s, s->ins_h, s->window[1]);
862 for (n = 0; n <= length - MIN_MATCH; n++) {
863 INSERT_STRING(s, n, hash_head);
865 if (hash_head) hash_head = 0; /* to make compiler happy */
866 return Z_OK;
869 /* ========================================================================= */
871 deflateReset(z_streamp strm)
873 deflate_state *s;
875 if (strm == Z_NULL || strm->state == Z_NULL ||
876 strm->zalloc == Z_NULL || strm->zfree == Z_NULL) return Z_STREAM_ERROR;
878 strm->total_in = strm->total_out = 0;
879 strm->msg = Z_NULL; /* use zfree if we ever allocate msg dynamically */
880 strm->data_type = Z_UNKNOWN;
882 s = (deflate_state *)strm->state;
883 s->pending = 0;
884 s->pending_out = s->pending_buf;
886 if (s->noheader < 0) {
887 s->noheader = 0; /* was set to -1 by deflate(..., Z_FINISH); */
889 s->status = s->noheader ? BUSY_STATE : INIT_STATE;
890 strm->adler = 1;
891 s->last_flush = Z_NO_FLUSH;
893 _tr_init(s);
894 lm_init(s);
896 return Z_OK;
899 /* ========================================================================= */
901 deflateParams(z_streamp strm, int level, int strategy)
903 deflate_state *s;
904 compress_func func;
905 int err = Z_OK;
907 if (strm == Z_NULL || strm->state == Z_NULL) return Z_STREAM_ERROR;
908 s = (deflate_state *) strm->state;
910 if (level == Z_DEFAULT_COMPRESSION) {
911 level = 6;
913 if (level < 0 || level > 9 || strategy < 0 || strategy > Z_HUFFMAN_ONLY) {
914 return Z_STREAM_ERROR;
916 func = configuration_table[s->level].func;
918 if (func != configuration_table[level].func && strm->total_in != 0) {
919 /* Flush the last buffer: */
920 err = deflate(strm, Z_PARTIAL_FLUSH);
922 if (s->level != level) {
923 s->level = level;
924 s->max_lazy_match = configuration_table[level].max_lazy;
925 s->good_match = configuration_table[level].good_length;
926 s->nice_match = configuration_table[level].nice_length;
927 s->max_chain_length = configuration_table[level].max_chain;
929 s->strategy = strategy;
930 return err;
933 /* =========================================================================
934 * Put a short in the pending buffer. The 16-bit value is put in MSB order.
935 * IN assertion: the stream state is correct and there is enough room in
936 * pending_buf.
938 local void
939 putShortMSB(deflate_state *s, uInt b)
941 put_byte(s, (Byte)(b >> 8));
942 put_byte(s, (Byte)(b & 0xff));
945 /* =========================================================================
946 * Flush as much pending output as possible. All deflate() output goes
947 * through this function so some applications may wish to modify it
948 * to avoid allocating a large strm->next_out buffer and copying into it.
949 * (See also read_buf()).
951 local void
952 flush_pending(z_streamp strm)
954 deflate_state *s = (deflate_state *) strm->state;
955 unsigned len = s->pending;
957 if (len > strm->avail_out) len = strm->avail_out;
958 if (len == 0) return;
960 if (strm->next_out != Z_NULL) {
961 zmemcpy(strm->next_out, s->pending_out, len);
962 strm->next_out += len;
964 s->pending_out += len;
965 strm->total_out += len;
966 strm->avail_out -= len;
967 s->pending -= len;
968 if (s->pending == 0) {
969 s->pending_out = s->pending_buf;
973 /* ========================================================================= */
975 deflate(z_streamp strm, int flush)
977 int old_flush; /* value of flush param for previous deflate call */
978 deflate_state *s;
980 if (strm == Z_NULL || strm->state == Z_NULL ||
981 flush > Z_FINISH || flush < 0) {
982 return Z_STREAM_ERROR;
984 s = (deflate_state *) strm->state;
986 if ((strm->next_in == Z_NULL && strm->avail_in != 0) ||
987 (s->status == FINISH_STATE && flush != Z_FINISH)) {
988 ERR_RETURN(strm, Z_STREAM_ERROR);
990 if (strm->avail_out == 0) ERR_RETURN(strm, Z_BUF_ERROR);
992 s->strm = strm; /* just in case */
993 old_flush = s->last_flush;
994 s->last_flush = flush;
996 /* Write the zlib header */
997 if (s->status == INIT_STATE) {
999 uInt header = (Z_DEFLATED + ((s->w_bits-8)<<4)) << 8;
1000 uInt level_flags = (s->level-1) >> 1;
1002 if (level_flags > 3) level_flags = 3;
1003 header |= (level_flags << 6);
1004 if (s->strstart != 0) header |= PRESET_DICT;
1005 header += 31 - (header % 31);
1007 s->status = BUSY_STATE;
1008 putShortMSB(s, header);
1010 /* Save the adler32 of the preset dictionary: */
1011 if (s->strstart != 0) {
1012 putShortMSB(s, (uInt)(strm->adler >> 16));
1013 putShortMSB(s, (uInt)(strm->adler & 0xffff));
1015 strm->adler = 1L;
1018 /* Flush as much pending output as possible */
1019 if (s->pending != 0) {
1020 flush_pending(strm);
1021 if (strm->avail_out == 0) {
1022 /* Since avail_out is 0, deflate will be called again with
1023 * more output space, but possibly with both pending and
1024 * avail_in equal to zero. There won't be anything to do,
1025 * but this is not an error situation so make sure we
1026 * return OK instead of BUF_ERROR at next call of deflate:
1028 s->last_flush = -1;
1029 return Z_OK;
1032 /* Make sure there is something to do and avoid duplicate consecutive
1033 * flushes. For repeated and useless calls with Z_FINISH, we keep
1034 * returning Z_STREAM_END instead of Z_BUFF_ERROR.
1036 } else if (strm->avail_in == 0 && flush <= old_flush &&
1037 flush != Z_FINISH) {
1038 ERR_RETURN(strm, Z_BUF_ERROR);
1041 /* User must not provide more input after the first FINISH: */
1042 if (s->status == FINISH_STATE && strm->avail_in != 0) {
1043 ERR_RETURN(strm, Z_BUF_ERROR);
1046 /* Start a new block or continue the current one.
1048 if (strm->avail_in != 0 || s->lookahead != 0 ||
1049 (flush != Z_NO_FLUSH && s->status != FINISH_STATE)) {
1050 block_state bstate;
1052 bstate = (*(configuration_table[s->level].func))(s, flush);
1054 if (bstate == finish_started || bstate == finish_done) {
1055 s->status = FINISH_STATE;
1057 if (bstate == need_more || bstate == finish_started) {
1058 if (strm->avail_out == 0) {
1059 s->last_flush = -1; /* avoid BUF_ERROR next call, see above */
1061 return Z_OK;
1062 /* If flush != Z_NO_FLUSH && avail_out == 0, the next call
1063 * of deflate should use the same flush parameter to make sure
1064 * that the flush is complete. So we don't have to output an
1065 * empty block here, this will be done at next call. This also
1066 * ensures that for a very small output buffer, we emit at most
1067 * one empty block.
1070 if (bstate == block_done) {
1071 if (flush == Z_PARTIAL_FLUSH) {
1072 _tr_align(s);
1073 } else if (flush == Z_PACKET_FLUSH) {
1074 /* Output just the 3-bit `stored' block type value,
1075 but not a zero length. */
1076 _tr_stored_type_only(s);
1077 } else { /* FULL_FLUSH or SYNC_FLUSH */
1078 _tr_stored_block(s, NULL, 0L, 0);
1079 /* For a full flush, this empty block will be recognized
1080 * as a special marker by inflate_sync().
1082 if (flush == Z_FULL_FLUSH) {
1083 CLEAR_HASH(s); /* forget history */
1086 flush_pending(strm);
1087 if (strm->avail_out == 0) {
1088 s->last_flush = -1; /* avoid BUF_ERROR at next call, see above */
1089 return Z_OK;
1093 Assert(strm->avail_out > 0, "bug2");
1095 if (flush != Z_FINISH) return Z_OK;
1096 if (s->noheader) return Z_STREAM_END;
1098 /* Write the zlib trailer (adler32) */
1099 putShortMSB(s, (uInt)(strm->adler >> 16));
1100 putShortMSB(s, (uInt)(strm->adler & 0xffff));
1101 flush_pending(strm);
1102 /* If avail_out is zero, the application will call deflate again
1103 * to flush the rest.
1105 s->noheader = -1; /* write the trailer only once! */
1106 return s->pending != 0 ? Z_OK : Z_STREAM_END;
1109 /* ========================================================================= */
1111 deflateEnd(z_streamp strm)
1113 int status;
1114 deflate_state *s;
1116 if (strm == Z_NULL || strm->state == Z_NULL) return Z_STREAM_ERROR;
1117 s = (deflate_state *) strm->state;
1119 status = s->status;
1120 if (status != INIT_STATE && status != BUSY_STATE &&
1121 status != FINISH_STATE) {
1122 return Z_STREAM_ERROR;
1125 /* Deallocate in reverse order of allocations: */
1126 TRY_FREE(strm, s->pending_buf);
1127 TRY_FREE(strm, s->head);
1128 TRY_FREE(strm, s->prev);
1129 TRY_FREE(strm, s->window);
1131 ZFREE(strm, s);
1132 strm->state = Z_NULL;
1134 return status == BUSY_STATE ? Z_DATA_ERROR : Z_OK;
1137 /* =========================================================================
1138 * Copy the source state to the destination state.
1141 deflateCopy(z_streamp dest, z_streamp source)
1143 deflate_state *ds;
1144 deflate_state *ss;
1145 ushf *overlay;
1147 if (source == Z_NULL || dest == Z_NULL || source->state == Z_NULL)
1148 return Z_STREAM_ERROR;
1149 ss = (deflate_state *) source->state;
1151 zmemcpy(dest, source, sizeof(*dest));
1153 ds = (deflate_state *) ZALLOC(dest, 1, sizeof(deflate_state));
1154 if (ds == Z_NULL) return Z_MEM_ERROR;
1155 dest->state = (struct internal_state FAR *) ds;
1156 zmemcpy(ds, ss, sizeof(*ds));
1157 ds->strm = dest;
1159 ds->window = (Bytef *) ZALLOC(dest, ds->w_size, 2*sizeof(Byte));
1160 ds->prev = (Posf *) ZALLOC(dest, ds->w_size, sizeof(Pos));
1161 ds->head = (Posf *) ZALLOC(dest, ds->hash_size, sizeof(Pos));
1162 overlay = (ushf *) ZALLOC(dest, ds->lit_bufsize, sizeof(ush)+2);
1163 ds->pending_buf = (uchf *) overlay;
1165 if (ds->window == Z_NULL || ds->prev == Z_NULL || ds->head == Z_NULL ||
1166 ds->pending_buf == Z_NULL) {
1167 deflateEnd (dest);
1168 return Z_MEM_ERROR;
1170 /* ??? following zmemcpy doesn't work for 16-bit MSDOS */
1171 zmemcpy(ds->window, ss->window, ds->w_size * 2 * sizeof(Byte));
1172 zmemcpy(ds->prev, ss->prev, ds->w_size * sizeof(Pos));
1173 zmemcpy(ds->head, ss->head, ds->hash_size * sizeof(Pos));
1174 zmemcpy(ds->pending_buf, ss->pending_buf, (uInt)ds->pending_buf_size);
1176 ds->pending_out = ds->pending_buf + (ss->pending_out - ss->pending_buf);
1177 ds->d_buf = overlay + ds->lit_bufsize/sizeof(ush);
1178 ds->l_buf = ds->pending_buf + (1+sizeof(ush))*ds->lit_bufsize;
1180 ds->l_desc.dyn_tree = ds->dyn_ltree;
1181 ds->d_desc.dyn_tree = ds->dyn_dtree;
1182 ds->bl_desc.dyn_tree = ds->bl_tree;
1184 return Z_OK;
1187 /* ===========================================================================
1188 * Return the number of bytes of output which are immediately available
1189 * for output from the decompressor.
1192 deflateOutputPending(z_streamp strm)
1194 if (strm == Z_NULL || strm->state == Z_NULL) return 0;
1196 return ((deflate_state *)(strm->state))->pending;
1199 /* ===========================================================================
1200 * Read a new buffer from the current input stream, update the adler32
1201 * and total number of bytes read. All deflate() input goes through
1202 * this function so some applications may wish to modify it to avoid
1203 * allocating a large strm->next_in buffer and copying from it.
1204 * (See also flush_pending()).
1206 local int
1207 read_buf(z_streamp strm, charf *buf, unsigned size)
1209 unsigned len = strm->avail_in;
1211 if (len > size) len = size;
1212 if (len == 0) return 0;
1214 strm->avail_in -= len;
1216 if (!((deflate_state *)(strm->state))->noheader) {
1217 strm->adler = adler32(strm->adler, strm->next_in, len);
1219 zmemcpy(buf, strm->next_in, len);
1220 strm->next_in += len;
1221 strm->total_in += len;
1223 return (int)len;
1226 /* ===========================================================================
1227 * Initialize the "longest match" routines for a new zlib stream
1229 local void
1230 lm_init(deflate_state *s)
1232 s->window_size = (ulg)2L*s->w_size;
1234 CLEAR_HASH(s);
1236 /* Set the default configuration parameters:
1238 s->max_lazy_match = configuration_table[s->level].max_lazy;
1239 s->good_match = configuration_table[s->level].good_length;
1240 s->nice_match = configuration_table[s->level].nice_length;
1241 s->max_chain_length = configuration_table[s->level].max_chain;
1243 s->strstart = 0;
1244 s->block_start = 0L;
1245 s->lookahead = 0;
1246 s->match_length = s->prev_length = MIN_MATCH-1;
1247 s->match_available = 0;
1248 s->ins_h = 0;
1249 #ifdef ASMV
1250 match_init(); /* initialize the asm code */
1251 #endif
1254 /* ===========================================================================
1255 * Set match_start to the longest match starting at the given string and
1256 * return its length. Matches shorter or equal to prev_length are discarded,
1257 * in which case the result is equal to prev_length and match_start is
1258 * garbage.
1259 * IN assertions: cur_match is the head of the hash chain for the current
1260 * string (strstart) and its distance is <= MAX_DIST, and prev_length >= 1
1261 * OUT assertion: the match length is not greater than s->lookahead.
1263 * Parameters:
1264 * cur_match: current match
1266 #ifndef ASMV
1267 /* For 80x86 and 680x0, an optimized version will be provided in match.asm or
1268 * match.S. The code will be functionally equivalent.
1270 local uInt
1271 longest_match(deflate_state *s, IPos cur_match)
1273 unsigned chain_length = s->max_chain_length;/* max hash chain length */
1274 Bytef *scan = s->window + s->strstart; /* current string */
1275 Bytef *match; /* matched string */
1276 int len; /* length of current match */
1277 int best_len = s->prev_length; /* best match length so far */
1278 int nice_match = s->nice_match; /* stop if match long enough */
1279 IPos limit = s->strstart > (IPos)MAX_DIST(s) ?
1280 s->strstart - (IPos)MAX_DIST(s) : NIL;
1281 /* Stop when cur_match becomes <= limit. To simplify the code,
1282 * we prevent matches with the string of window index 0.
1284 Posf *prev = s->prev;
1285 uInt wmask = s->w_mask;
1287 #ifdef UNALIGNED_OK
1288 /* Compare two bytes at a time. Note: this is not always beneficial.
1289 * Try with and without -DUNALIGNED_OK to check.
1291 Bytef *strend = s->window + s->strstart + MAX_MATCH - 1;
1292 ush scan_start = *(ushf*)scan;
1293 ush scan_end = *(ushf*)(scan+best_len-1);
1294 #else
1295 Bytef *strend = s->window + s->strstart + MAX_MATCH;
1296 Byte scan_end1 = scan[best_len-1];
1297 Byte scan_end = scan[best_len];
1298 #endif
1300 /* The code is optimized for HASH_BITS >= 8 and MAX_MATCH-2 multiple of 16.
1301 * It is easy to get rid of this optimization if necessary.
1303 Assert(s->hash_bits >= 8 && MAX_MATCH == 258, "Code too clever");
1305 /* Do not waste too much time if we already have a good match: */
1306 if (s->prev_length >= s->good_match) {
1307 chain_length >>= 2;
1309 /* Do not look for matches beyond the end of the input. This is necessary
1310 * to make deflate deterministic.
1312 if ((uInt)nice_match > s->lookahead) nice_match = s->lookahead;
1314 Assert((ulg)s->strstart <= s->window_size-MIN_LOOKAHEAD, "need lookahead");
1316 do {
1317 Assert(cur_match < s->strstart, "no future");
1318 match = s->window + cur_match;
1320 /* Skip to next match if the match length cannot increase
1321 * or if the match length is less than 2:
1323 #if (defined(UNALIGNED_OK) && MAX_MATCH == 258)
1324 /* This code assumes sizeof(unsigned short) == 2. Do not use
1325 * UNALIGNED_OK if your compiler uses a different size.
1327 if (*(ushf*)(match+best_len-1) != scan_end ||
1328 *(ushf*)match != scan_start) continue;
1330 /* It is not necessary to compare scan[2] and match[2] since they are
1331 * always equal when the other bytes match, given that the hash keys
1332 * are equal and that HASH_BITS >= 8. Compare 2 bytes at a time at
1333 * strstart+3, +5, ... up to strstart+257. We check for insufficient
1334 * lookahead only every 4th comparison; the 128th check will be made
1335 * at strstart+257. If MAX_MATCH-2 is not a multiple of 8, it is
1336 * necessary to put more guard bytes at the end of the window, or
1337 * to check more often for insufficient lookahead.
1339 Assert(scan[2] == match[2], "scan[2]?");
1340 scan++, match++;
1341 do {
1342 } while (*(ushf*)(scan+=2) == *(ushf*)(match+=2) &&
1343 *(ushf*)(scan+=2) == *(ushf*)(match+=2) &&
1344 *(ushf*)(scan+=2) == *(ushf*)(match+=2) &&
1345 *(ushf*)(scan+=2) == *(ushf*)(match+=2) &&
1346 scan < strend);
1347 /* The funny "do {}" generates better code on most compilers */
1349 /* Here, scan <= window+strstart+257 */
1350 Assert(scan <= s->window+(unsigned)(s->window_size-1), "wild scan");
1351 if (*scan == *match) scan++;
1353 len = (MAX_MATCH - 1) - (int)(strend-scan);
1354 scan = strend - (MAX_MATCH-1);
1356 #else /* UNALIGNED_OK */
1358 if (match[best_len] != scan_end ||
1359 match[best_len-1] != scan_end1 ||
1360 *match != *scan ||
1361 *++match != scan[1]) continue;
1363 /* The check at best_len-1 can be removed because it will be made
1364 * again later. (This heuristic is not always a win.)
1365 * It is not necessary to compare scan[2] and match[2] since they
1366 * are always equal when the other bytes match, given that
1367 * the hash keys are equal and that HASH_BITS >= 8.
1369 scan += 2, match++;
1370 Assert(*scan == *match, "match[2]?");
1372 /* We check for insufficient lookahead only every 8th comparison;
1373 * the 256th check will be made at strstart+258.
1375 do {
1376 } while (*++scan == *++match && *++scan == *++match &&
1377 *++scan == *++match && *++scan == *++match &&
1378 *++scan == *++match && *++scan == *++match &&
1379 *++scan == *++match && *++scan == *++match &&
1380 scan < strend);
1382 Assert(scan <= s->window+(unsigned)(s->window_size-1), "wild scan");
1384 len = MAX_MATCH - (int)(strend - scan);
1385 scan = strend - MAX_MATCH;
1387 #endif /* UNALIGNED_OK */
1389 if (len > best_len) {
1390 s->match_start = cur_match;
1391 best_len = len;
1392 if (len >= nice_match) break;
1393 #ifdef UNALIGNED_OK
1394 scan_end = *(ushf*)(scan+best_len-1);
1395 #else
1396 scan_end1 = scan[best_len-1];
1397 scan_end = scan[best_len];
1398 #endif
1400 } while ((cur_match = prev[cur_match & wmask]) > limit
1401 && --chain_length != 0);
1403 if ((uInt)best_len <= s->lookahead) return best_len;
1404 return s->lookahead;
1406 #endif /* ASMV */
1408 #ifdef DEBUG_ZLIB
1409 /* ===========================================================================
1410 * Check that the match at match_start is indeed a match.
1412 local void
1413 check_match(deflate_state *s, IPos start, IPos match, int length)
1415 /* check that the match is indeed a match */
1416 if (zmemcmp((charf *)s->window + match,
1417 (charf *)s->window + start, length) != EQUAL) {
1418 fprintf(stderr, " start %u, match %u, length %d\n",
1419 start, match, length);
1420 do {
1421 fprintf(stderr, "%c%c", s->window[match++], s->window[start++]);
1422 } while (--length != 0);
1423 z_error("invalid match");
1425 if (z_verbose > 1) {
1426 fprintf(stderr,"\\[%d,%d]", start-match, length);
1427 do { putc(s->window[start++], stderr); } while (--length != 0);
1430 #else
1431 # define check_match(s, start, match, length)
1432 #endif
1434 /* ===========================================================================
1435 * Fill the window when the lookahead becomes insufficient.
1436 * Updates strstart and lookahead.
1438 * IN assertion: lookahead < MIN_LOOKAHEAD
1439 * OUT assertions: strstart <= window_size-MIN_LOOKAHEAD
1440 * At least one byte has been read, or avail_in == 0; reads are
1441 * performed for at least two bytes (required for the zip translate_eol
1442 * option -- not supported here).
1444 local void
1445 fill_window(deflate_state *s)
1447 unsigned n, m;
1448 Posf *p;
1449 unsigned more; /* Amount of free space at the end of the window. */
1450 uInt wsize = s->w_size;
1452 do {
1453 more = (unsigned)(s->window_size -(ulg)s->lookahead -(ulg)s->strstart);
1455 /* Deal with !@#$% 64K limit: */
1456 if (more == 0 && s->strstart == 0 && s->lookahead == 0) {
1457 more = wsize;
1459 } else if (more == (unsigned)(-1)) {
1460 /* Very unlikely, but possible on 16 bit machine if strstart == 0
1461 * and lookahead == 1 (input done one byte at time)
1463 more--;
1465 /* If the window is almost full and there is insufficient lookahead,
1466 * move the upper half to the lower one to make room in the upper half.
1468 } else if (s->strstart >= wsize+MAX_DIST(s)) {
1470 zmemcpy((charf *)s->window, (charf *)s->window+wsize,
1471 (unsigned)wsize);
1472 s->match_start -= wsize;
1473 s->strstart -= wsize; /* we now have strstart >= MAX_DIST */
1474 s->block_start -= (long) wsize;
1476 /* Slide the hash table (could be avoided with 32 bit values
1477 at the expense of memory usage). We slide even when level == 0
1478 to keep the hash table consistent if we switch back to level > 0
1479 later. (Using level 0 permanently is not an optimal usage of
1480 zlib, so we don't care about this pathological case.)
1482 n = s->hash_size;
1483 p = &s->head[n];
1484 do {
1485 m = *--p;
1486 *p = (Pos)(m >= wsize ? m-wsize : NIL);
1487 } while (--n);
1489 n = wsize;
1490 p = &s->prev[n];
1491 do {
1492 m = *--p;
1493 *p = (Pos)(m >= wsize ? m-wsize : NIL);
1494 /* If n is not on any hash chain, prev[n] is garbage but
1495 * its value will never be used.
1497 } while (--n);
1498 more += wsize;
1500 if (s->strm->avail_in == 0) return;
1502 /* If there was no sliding:
1503 * strstart <= WSIZE+MAX_DIST-1 && lookahead <= MIN_LOOKAHEAD - 1 &&
1504 * more == window_size - lookahead - strstart
1505 * => more >= window_size - (MIN_LOOKAHEAD-1 + WSIZE + MAX_DIST-1)
1506 * => more >= window_size - 2*WSIZE + 2
1507 * In the BIG_MEM or MMAP case (not yet supported),
1508 * window_size == input_size + MIN_LOOKAHEAD &&
1509 * strstart + s->lookahead <= input_size => more >= MIN_LOOKAHEAD.
1510 * Otherwise, window_size == 2*WSIZE so more >= 2.
1511 * If there was sliding, more >= WSIZE. So in all cases, more >= 2.
1513 Assert(more >= 2, "more < 2");
1515 n = read_buf(s->strm, (charf *)s->window + s->strstart + s->lookahead,
1516 more);
1517 s->lookahead += n;
1519 /* Initialize the hash value now that we have some input: */
1520 if (s->lookahead >= MIN_MATCH) {
1521 s->ins_h = s->window[s->strstart];
1522 UPDATE_HASH(s, s->ins_h, s->window[s->strstart+1]);
1523 #if MIN_MATCH != 3
1524 Call UPDATE_HASH() MIN_MATCH-3 more times
1525 #endif
1527 /* If the whole input has less than MIN_MATCH bytes, ins_h is garbage,
1528 * but this is not important since only literal bytes will be emitted.
1531 } while (s->lookahead < MIN_LOOKAHEAD && s->strm->avail_in != 0);
1534 /* ===========================================================================
1535 * Flush the current block, with given end-of-file flag.
1536 * IN assertion: strstart is set to the end of the current match.
1538 #define FLUSH_BLOCK_ONLY(s, eof) { \
1539 _tr_flush_block(s, (s->block_start >= 0L ? \
1540 (charf *)&s->window[(unsigned)s->block_start] : \
1541 (charf *)Z_NULL), \
1542 (ulg)((long)s->strstart - s->block_start), \
1543 (eof)); \
1544 s->block_start = s->strstart; \
1545 flush_pending(s->strm); \
1546 Tracev((stderr,"[FLUSH]")); \
1549 /* Same but force premature exit if necessary. */
1550 #define FLUSH_BLOCK(s, eof) { \
1551 FLUSH_BLOCK_ONLY(s, eof); \
1552 if (s->strm->avail_out == 0) return (eof) ? finish_started : need_more; \
1555 /* ===========================================================================
1556 * Copy without compression as much as possible from the input stream, return
1557 * the current block state.
1558 * This function does not insert new strings in the dictionary since
1559 * uncompressible data is probably not useful. This function is used
1560 * only for the level=0 compression option.
1561 * NOTE: this function should be optimized to avoid extra copying from
1562 * window to pending_buf.
1564 local block_state
1565 deflate_stored(deflate_state *s, int flush)
1567 /* Stored blocks are limited to 0xffff bytes, pending_buf is limited
1568 * to pending_buf_size, and each stored block has a 5 byte header:
1570 ulg max_block_size = 0xffff;
1571 ulg max_start;
1573 if (max_block_size > s->pending_buf_size - 5) {
1574 max_block_size = s->pending_buf_size - 5;
1577 /* Copy as much as possible from input to output: */
1578 for (;;) {
1579 /* Fill the window as much as possible: */
1580 if (s->lookahead <= 1) {
1582 Assert(s->strstart < s->w_size+MAX_DIST(s) ||
1583 s->block_start >= (long)s->w_size, "slide too late");
1585 fill_window(s);
1586 if (s->lookahead == 0 && flush == Z_NO_FLUSH) return need_more;
1588 if (s->lookahead == 0) break; /* flush the current block */
1590 Assert(s->block_start >= 0L, "block gone");
1592 s->strstart += s->lookahead;
1593 s->lookahead = 0;
1595 /* Emit a stored block if pending_buf will be full: */
1596 max_start = s->block_start + max_block_size;
1597 if (s->strstart == 0 || (ulg)s->strstart >= max_start) {
1598 /* strstart == 0 is possible when wraparound on 16-bit machine */
1599 s->lookahead = (uInt)(s->strstart - max_start);
1600 s->strstart = (uInt)max_start;
1601 FLUSH_BLOCK(s, 0);
1603 /* Flush if we may have to slide, otherwise block_start may become
1604 * negative and the data will be gone:
1606 if (s->strstart - (uInt)s->block_start >= MAX_DIST(s)) {
1607 FLUSH_BLOCK(s, 0);
1610 FLUSH_BLOCK(s, flush == Z_FINISH);
1611 return flush == Z_FINISH ? finish_done : block_done;
1614 /* ===========================================================================
1615 * Compress as much as possible from the input stream, return the current
1616 * block state.
1617 * This function does not perform lazy evaluation of matches and inserts
1618 * new strings in the dictionary only for unmatched strings or for short
1619 * matches. It is used only for the fast compression options.
1621 local block_state
1622 deflate_fast(deflate_state *s, int flush)
1624 IPos hash_head = NIL; /* head of the hash chain */
1625 int bflush; /* set if current block must be flushed */
1627 for (;;) {
1628 /* Make sure that we always have enough lookahead, except
1629 * at the end of the input file. We need MAX_MATCH bytes
1630 * for the next match, plus MIN_MATCH bytes to insert the
1631 * string following the next match.
1633 if (s->lookahead < MIN_LOOKAHEAD) {
1634 fill_window(s);
1635 if (s->lookahead < MIN_LOOKAHEAD && flush == Z_NO_FLUSH) {
1636 return need_more;
1638 if (s->lookahead == 0) break; /* flush the current block */
1641 /* Insert the string window[strstart .. strstart+2] in the
1642 * dictionary, and set hash_head to the head of the hash chain:
1644 if (s->lookahead >= MIN_MATCH) {
1645 INSERT_STRING(s, s->strstart, hash_head);
1648 /* Find the longest match, discarding those <= prev_length.
1649 * At this point we have always match_length < MIN_MATCH
1651 if (hash_head != NIL && s->strstart - hash_head <= MAX_DIST(s)) {
1652 /* To simplify the code, we prevent matches with the string
1653 * of window index 0 (in particular we have to avoid a match
1654 * of the string with itself at the start of the input file).
1656 if (s->strategy != Z_HUFFMAN_ONLY) {
1657 s->match_length = longest_match (s, hash_head);
1659 /* longest_match() sets match_start */
1661 if (s->match_length >= MIN_MATCH) {
1662 check_match(s, s->strstart, s->match_start, s->match_length);
1664 bflush = _tr_tally(s, s->strstart - s->match_start,
1665 s->match_length - MIN_MATCH);
1667 s->lookahead -= s->match_length;
1669 /* Insert new strings in the hash table only if the match length
1670 * is not too large. This saves time but degrades compression.
1672 if (s->match_length <= s->max_insert_length &&
1673 s->lookahead >= MIN_MATCH) {
1674 s->match_length--; /* string at strstart already in hash table */
1675 do {
1676 s->strstart++;
1677 INSERT_STRING(s, s->strstart, hash_head);
1678 /* strstart never exceeds WSIZE-MAX_MATCH, so there are
1679 * always MIN_MATCH bytes ahead.
1681 } while (--s->match_length != 0);
1682 s->strstart++;
1683 } else {
1684 s->strstart += s->match_length;
1685 s->match_length = 0;
1686 s->ins_h = s->window[s->strstart];
1687 UPDATE_HASH(s, s->ins_h, s->window[s->strstart+1]);
1688 #if MIN_MATCH != 3
1689 Call UPDATE_HASH() MIN_MATCH-3 more times
1690 #endif
1691 /* If lookahead < MIN_MATCH, ins_h is garbage, but it does not
1692 * matter since it will be recomputed at next deflate call.
1695 } else {
1696 /* No match, output a literal byte */
1697 Tracevv((stderr,"%c", s->window[s->strstart]));
1698 bflush = _tr_tally (s, 0, s->window[s->strstart]);
1699 s->lookahead--;
1700 s->strstart++;
1702 if (bflush) FLUSH_BLOCK(s, 0);
1704 FLUSH_BLOCK(s, flush == Z_FINISH);
1705 return flush == Z_FINISH ? finish_done : block_done;
1708 /* ===========================================================================
1709 * Same as above, but achieves better compression. We use a lazy
1710 * evaluation for matches: a match is finally adopted only if there is
1711 * no better match at the next window position.
1713 local block_state
1714 deflate_slow(deflate_state *s, int flush)
1716 IPos hash_head = NIL; /* head of hash chain */
1717 int bflush; /* set if current block must be flushed */
1719 /* Process the input block. */
1720 for (;;) {
1721 /* Make sure that we always have enough lookahead, except
1722 * at the end of the input file. We need MAX_MATCH bytes
1723 * for the next match, plus MIN_MATCH bytes to insert the
1724 * string following the next match.
1726 if (s->lookahead < MIN_LOOKAHEAD) {
1727 fill_window(s);
1728 if (s->lookahead < MIN_LOOKAHEAD && flush == Z_NO_FLUSH) {
1729 return need_more;
1731 if (s->lookahead == 0) break; /* flush the current block */
1734 /* Insert the string window[strstart .. strstart+2] in the
1735 * dictionary, and set hash_head to the head of the hash chain:
1737 if (s->lookahead >= MIN_MATCH) {
1738 INSERT_STRING(s, s->strstart, hash_head);
1741 /* Find the longest match, discarding those <= prev_length.
1743 s->prev_length = s->match_length, s->prev_match = s->match_start;
1744 s->match_length = MIN_MATCH-1;
1746 if (hash_head != NIL && s->prev_length < s->max_lazy_match &&
1747 s->strstart - hash_head <= MAX_DIST(s)) {
1748 /* To simplify the code, we prevent matches with the string
1749 * of window index 0 (in particular we have to avoid a match
1750 * of the string with itself at the start of the input file).
1752 if (s->strategy != Z_HUFFMAN_ONLY) {
1753 s->match_length = longest_match (s, hash_head);
1755 /* longest_match() sets match_start */
1757 if (s->match_length <= 5 && (s->strategy == Z_FILTERED ||
1758 (s->match_length == MIN_MATCH &&
1759 s->strstart - s->match_start > TOO_FAR))) {
1761 /* If prev_match is also MIN_MATCH, match_start is garbage
1762 * but we will ignore the current match anyway.
1764 s->match_length = MIN_MATCH-1;
1767 /* If there was a match at the previous step and the current
1768 * match is not better, output the previous match:
1770 if (s->prev_length >= MIN_MATCH && s->match_length <= s->prev_length) {
1771 uInt max_insert = s->strstart + s->lookahead - MIN_MATCH;
1772 /* Do not insert strings in hash table beyond this. */
1774 check_match(s, s->strstart-1, s->prev_match, s->prev_length);
1776 bflush = _tr_tally(s, s->strstart -1 - s->prev_match,
1777 s->prev_length - MIN_MATCH);
1779 /* Insert in hash table all strings up to the end of the match.
1780 * strstart-1 and strstart are already inserted. If there is not
1781 * enough lookahead, the last two strings are not inserted in
1782 * the hash table.
1784 s->lookahead -= s->prev_length-1;
1785 s->prev_length -= 2;
1786 do {
1787 if (++s->strstart <= max_insert) {
1788 INSERT_STRING(s, s->strstart, hash_head);
1790 } while (--s->prev_length != 0);
1791 s->match_available = 0;
1792 s->match_length = MIN_MATCH-1;
1793 s->strstart++;
1795 if (bflush) FLUSH_BLOCK(s, 0);
1797 } else if (s->match_available) {
1798 /* If there was no match at the previous position, output a
1799 * single literal. If there was a match but the current match
1800 * is longer, truncate the previous match to a single literal.
1802 Tracevv((stderr,"%c", s->window[s->strstart-1]));
1803 if (_tr_tally (s, 0, s->window[s->strstart-1])) {
1804 FLUSH_BLOCK_ONLY(s, 0);
1806 s->strstart++;
1807 s->lookahead--;
1808 if (s->strm->avail_out == 0) return need_more;
1809 } else {
1810 /* There is no previous match to compare with, wait for
1811 * the next step to decide.
1813 s->match_available = 1;
1814 s->strstart++;
1815 s->lookahead--;
1818 Assert (flush != Z_NO_FLUSH, "no flush?");
1819 if (s->match_available) {
1820 Tracevv((stderr,"%c", s->window[s->strstart-1]));
1821 _tr_tally (s, 0, s->window[s->strstart-1]);
1822 s->match_available = 0;
1824 FLUSH_BLOCK(s, flush == Z_FINISH);
1825 return flush == Z_FINISH ? finish_done : block_done;
1827 /* --- deflate.c */
1829 /* +++ trees.c */
1830 /* trees.c -- output deflated data using Huffman coding
1831 * Copyright (C) 1995-1996 Jean-loup Gailly
1832 * For conditions of distribution and use, see copyright notice in zlib.h
1836 * ALGORITHM
1838 * The "deflation" process uses several Huffman trees. The more
1839 * common source values are represented by shorter bit sequences.
1841 * Each code tree is stored in a compressed form which is itself
1842 * a Huffman encoding of the lengths of all the code strings (in
1843 * ascending order by source values). The actual code strings are
1844 * reconstructed from the lengths in the inflate process, as described
1845 * in the deflate specification.
1847 * REFERENCES
1849 * Deutsch, L.P.,"'Deflate' Compressed Data Format Specification".
1850 * Available in ftp.uu.net:/pub/archiving/zip/doc/deflate-1.1.doc
1852 * Storer, James A.
1853 * Data Compression: Methods and Theory, pp. 49-50.
1854 * Computer Science Press, 1988. ISBN 0-7167-8156-5.
1856 * Sedgewick, R.
1857 * Algorithms, p290.
1858 * Addison-Wesley, 1983. ISBN 0-201-06672-6.
1861 /* From: trees.c,v 1.11 1996/07/24 13:41:06 me Exp $ */
1863 /* #include "deflate.h" */
1865 #ifdef DEBUG_ZLIB
1866 # include <ctype.h>
1867 #endif
1869 /* ===========================================================================
1870 * Constants
1873 #define MAX_BL_BITS 7
1874 /* Bit length codes must not exceed MAX_BL_BITS bits */
1876 #define END_BLOCK 256
1877 /* end of block literal code */
1879 #define REP_3_6 16
1880 /* repeat previous bit length 3-6 times (2 bits of repeat count) */
1882 #define REPZ_3_10 17
1883 /* repeat a zero length 3-10 times (3 bits of repeat count) */
1885 #define REPZ_11_138 18
1886 /* repeat a zero length 11-138 times (7 bits of repeat count) */
1888 local int extra_lbits[LENGTH_CODES] /* extra bits for each length code */
1889 = {0,0,0,0,0,0,0,0,1,1,1,1,2,2,2,2,3,3,3,3,4,4,4,4,5,5,5,5,0};
1891 local int extra_dbits[D_CODES] /* extra bits for each distance code */
1892 = {0,0,0,0,1,1,2,2,3,3,4,4,5,5,6,6,7,7,8,8,9,9,10,10,11,11,12,12,13,13};
1894 local int extra_blbits[BL_CODES]/* extra bits for each bit length code */
1895 = {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,3,7};
1897 local uch bl_order[BL_CODES]
1898 = {16,17,18,0,8,7,9,6,10,5,11,4,12,3,13,2,14,1,15};
1899 /* The lengths of the bit length codes are sent in order of decreasing
1900 * probability, to avoid transmitting the lengths for unused bit length codes.
1903 #define Buf_size (8 * 2*sizeof(char))
1904 /* Number of bits used within bi_buf. (bi_buf might be implemented on
1905 * more than 16 bits on some systems.)
1908 /* ===========================================================================
1909 * Local data. These are initialized only once.
1912 local ct_data static_ltree[L_CODES+2];
1913 /* The static literal tree. Since the bit lengths are imposed, there is no
1914 * need for the L_CODES extra codes used during heap construction. However
1915 * The codes 286 and 287 are needed to build a canonical tree (see _tr_init
1916 * below).
1919 local ct_data static_dtree[D_CODES];
1920 /* The static distance tree. (Actually a trivial tree since all codes use
1921 * 5 bits.)
1924 local uch dist_code[512];
1925 /* distance codes. The first 256 values correspond to the distances
1926 * 3 .. 258, the last 256 values correspond to the top 8 bits of
1927 * the 15 bit distances.
1930 local uch length_code[MAX_MATCH-MIN_MATCH+1];
1931 /* length code for each normalized match length (0 == MIN_MATCH) */
1933 local int base_length[LENGTH_CODES];
1934 /* First normalized length for each code (0 = MIN_MATCH) */
1936 local int base_dist[D_CODES];
1937 /* First normalized distance for each code (0 = distance of 1) */
1939 struct static_tree_desc_s {
1940 ct_data *static_tree; /* static tree or NULL */
1941 intf *extra_bits; /* extra bits for each code or NULL */
1942 int extra_base; /* base index for extra_bits */
1943 int elems; /* max number of elements in the tree */
1944 int max_length; /* max bit length for the codes */
1947 local static_tree_desc static_l_desc =
1948 {static_ltree, extra_lbits, LITERALS+1, L_CODES, MAX_BITS};
1950 local static_tree_desc static_d_desc =
1951 {static_dtree, extra_dbits, 0, D_CODES, MAX_BITS};
1953 local static_tree_desc static_bl_desc =
1954 {NULL, extra_blbits, 0, BL_CODES, MAX_BL_BITS};
1956 /* ===========================================================================
1957 * Local (static) routines in this file.
1960 local void tr_static_init OF((void));
1961 local void init_block OF((deflate_state *s));
1962 local void pqdownheap OF((deflate_state *s, ct_data *tree, int k));
1963 local void gen_bitlen OF((deflate_state *s, tree_desc *desc));
1964 local void gen_codes OF((ct_data *tree, int max_code, ushf *bl_count));
1965 local void build_tree OF((deflate_state *s, tree_desc *desc));
1966 local void scan_tree OF((deflate_state *s, ct_data *tree, int max_code));
1967 local void send_tree OF((deflate_state *s, ct_data *tree, int max_code));
1968 local int build_bl_tree OF((deflate_state *s));
1969 local void send_all_trees OF((deflate_state *s, int lcodes, int dcodes,
1970 int blcodes));
1971 local void compress_block OF((deflate_state *s, ct_data *ltree,
1972 ct_data *dtree));
1973 local void set_data_type OF((deflate_state *s));
1974 local unsigned bi_reverse OF((unsigned value, int length));
1975 local void bi_windup OF((deflate_state *s));
1976 local void bi_flush OF((deflate_state *s));
1977 local void copy_block OF((deflate_state *s, charf *buf, unsigned len,
1978 int header));
1980 #ifndef DEBUG_ZLIB
1981 # define send_code(s, c, tree) send_bits(s, tree[c].Code, tree[c].Len)
1982 /* Send a code of the given tree. c and tree must not have side effects */
1984 #else /* DEBUG_ZLIB */
1985 # define send_code(s, c, tree) \
1986 { if (verbose>2) fprintf(stderr,"\ncd %3d ",(c)); \
1987 send_bits(s, tree[c].Code, tree[c].Len); }
1988 #endif
1990 #define d_code(dist) \
1991 ((dist) < 256 ? dist_code[dist] : dist_code[256+((dist)>>7)])
1992 /* Mapping from a distance to a distance code. dist is the distance - 1 and
1993 * must not have side effects. dist_code[256] and dist_code[257] are never
1994 * used.
1997 /* ===========================================================================
1998 * Output a short LSB first on the stream.
1999 * IN assertion: there is enough room in pendingBuf.
2001 #define put_short(s, w) { \
2002 put_byte(s, (uch)((w) & 0xff)); \
2003 put_byte(s, (uch)((ush)(w) >> 8)); \
2006 /* ===========================================================================
2007 * Send a value on a given number of bits.
2008 * IN assertion: length <= 16 and value fits in length bits.
2010 * Parameters:
2011 * value: value to send
2012 * length: number of bits
2014 #ifdef DEBUG_ZLIB
2015 local void send_bits OF((deflate_state *s, int value, int length));
2017 local void
2018 send_bits(deflate_state *s, int value, int length)
2020 Tracevv((stderr," l %2d v %4x ", length, value));
2021 Assert(length > 0 && length <= 15, "invalid length");
2022 s->bits_sent += (ulg)length;
2024 /* If not enough room in bi_buf, use (valid) bits from bi_buf and
2025 * (16 - bi_valid) bits from value, leaving (width - (16-bi_valid))
2026 * unused bits in value.
2028 if (s->bi_valid > (int)Buf_size - length) {
2029 s->bi_buf |= (value << s->bi_valid);
2030 put_short(s, s->bi_buf);
2031 s->bi_buf = (ush)value >> (Buf_size - s->bi_valid);
2032 s->bi_valid += length - Buf_size;
2033 } else {
2034 s->bi_buf |= value << s->bi_valid;
2035 s->bi_valid += length;
2038 #else /* !DEBUG_ZLIB */
2040 #define send_bits(s, value, length) \
2041 { int len = length;\
2042 if (s->bi_valid > (int)Buf_size - len) {\
2043 int val = value;\
2044 s->bi_buf |= (val << s->bi_valid);\
2045 put_short(s, s->bi_buf);\
2046 s->bi_buf = (ush)val >> (Buf_size - s->bi_valid);\
2047 s->bi_valid += len - Buf_size;\
2048 } else {\
2049 s->bi_buf |= (value) << s->bi_valid;\
2050 s->bi_valid += len;\
2053 #endif /* DEBUG_ZLIB */
2055 /* the arguments must not have side effects */
2057 /* ===========================================================================
2058 * Initialize the various 'constant' tables. In a multi-threaded environment,
2059 * this function may be called by two threads concurrently, but this is
2060 * harmless since both invocations do exactly the same thing.
2062 local void
2063 tr_static_init(void)
2065 static int static_init_done = 0;
2066 int n; /* iterates over tree elements */
2067 int bits; /* bit counter */
2068 int length; /* length value */
2069 int code; /* code value */
2070 int dist; /* distance index */
2071 ush bl_count[MAX_BITS+1];
2072 /* number of codes at each bit length for an optimal tree */
2074 if (static_init_done) return;
2076 /* Initialize the mapping length (0..255) -> length code (0..28) */
2077 length = 0;
2078 for (code = 0; code < LENGTH_CODES-1; code++) {
2079 base_length[code] = length;
2080 for (n = 0; n < (1<<extra_lbits[code]); n++) {
2081 length_code[length++] = (uch)code;
2084 Assert (length == 256, "tr_static_init: length != 256");
2085 /* Note that the length 255 (match length 258) can be represented
2086 * in two different ways: code 284 + 5 bits or code 285, so we
2087 * overwrite length_code[255] to use the best encoding:
2089 length_code[length-1] = (uch)code;
2091 /* Initialize the mapping dist (0..32K) -> dist code (0..29) */
2092 dist = 0;
2093 for (code = 0 ; code < 16; code++) {
2094 base_dist[code] = dist;
2095 for (n = 0; n < (1<<extra_dbits[code]); n++) {
2096 dist_code[dist++] = (uch)code;
2099 Assert (dist == 256, "tr_static_init: dist != 256");
2100 dist >>= 7; /* from now on, all distances are divided by 128 */
2101 for ( ; code < D_CODES; code++) {
2102 base_dist[code] = dist << 7;
2103 for (n = 0; n < (1<<(extra_dbits[code]-7)); n++) {
2104 dist_code[256 + dist++] = (uch)code;
2107 Assert (dist == 256, "tr_static_init: 256+dist != 512");
2109 /* Construct the codes of the static literal tree */
2110 for (bits = 0; bits <= MAX_BITS; bits++) bl_count[bits] = 0;
2111 n = 0;
2112 while (n <= 143) static_ltree[n++].Len = 8, bl_count[8]++;
2113 while (n <= 255) static_ltree[n++].Len = 9, bl_count[9]++;
2114 while (n <= 279) static_ltree[n++].Len = 7, bl_count[7]++;
2115 while (n <= 287) static_ltree[n++].Len = 8, bl_count[8]++;
2116 /* Codes 286 and 287 do not exist, but we must include them in the
2117 * tree construction to get a canonical Huffman tree (longest code
2118 * all ones)
2120 gen_codes((ct_data *)static_ltree, L_CODES+1, bl_count);
2122 /* The static distance tree is trivial: */
2123 for (n = 0; n < D_CODES; n++) {
2124 static_dtree[n].Len = 5;
2125 static_dtree[n].Code = bi_reverse((unsigned)n, 5);
2127 static_init_done = 1;
2130 /* ===========================================================================
2131 * Initialize the tree data structures for a new zlib stream.
2133 void
2134 _tr_init(deflate_state *s)
2136 tr_static_init();
2138 s->compressed_len = 0L;
2140 s->l_desc.dyn_tree = s->dyn_ltree;
2141 s->l_desc.stat_desc = &static_l_desc;
2143 s->d_desc.dyn_tree = s->dyn_dtree;
2144 s->d_desc.stat_desc = &static_d_desc;
2146 s->bl_desc.dyn_tree = s->bl_tree;
2147 s->bl_desc.stat_desc = &static_bl_desc;
2149 s->bi_buf = 0;
2150 s->bi_valid = 0;
2151 s->last_eob_len = 8; /* enough lookahead for inflate */
2152 #ifdef DEBUG_ZLIB
2153 s->bits_sent = 0L;
2154 #endif
2156 /* Initialize the first block of the first file: */
2157 init_block(s);
2160 /* ===========================================================================
2161 * Initialize a new block.
2163 local void
2164 init_block(deflate_state *s)
2166 int n; /* iterates over tree elements */
2168 /* Initialize the trees. */
2169 for (n = 0; n < L_CODES; n++) s->dyn_ltree[n].Freq = 0;
2170 for (n = 0; n < D_CODES; n++) s->dyn_dtree[n].Freq = 0;
2171 for (n = 0; n < BL_CODES; n++) s->bl_tree[n].Freq = 0;
2173 s->dyn_ltree[END_BLOCK].Freq = 1;
2174 s->opt_len = s->static_len = 0L;
2175 s->last_lit = s->matches = 0;
2178 #define SMALLEST 1
2179 /* Index within the heap array of least frequent node in the Huffman tree */
2182 /* ===========================================================================
2183 * Remove the smallest element from the heap and recreate the heap with
2184 * one less element. Updates heap and heap_len.
2186 #define pqremove(s, tree, top) \
2188 top = s->heap[SMALLEST]; \
2189 s->heap[SMALLEST] = s->heap[s->heap_len--]; \
2190 pqdownheap(s, tree, SMALLEST); \
2193 /* ===========================================================================
2194 * Compares to subtrees, using the tree depth as tie breaker when
2195 * the subtrees have equal frequency. This minimizes the worst case length.
2197 #define smaller(tree, n, m, depth) \
2198 (tree[n].Freq < tree[m].Freq || \
2199 (tree[n].Freq == tree[m].Freq && depth[n] <= depth[m]))
2201 /* ===========================================================================
2202 * Restore the heap property by moving down the tree starting at node k,
2203 * exchanging a node with the smallest of its two sons if necessary, stopping
2204 * when the heap property is re-established (each father smaller than its
2205 * two sons).
2207 * Parameters:
2208 * tree: the tree to restore
2209 * k: node to move down
2211 local void
2212 pqdownheap(deflate_state *s, ct_data *tree, int k)
2214 int v = s->heap[k];
2215 int j = k << 1; /* left son of k */
2216 while (j <= s->heap_len) {
2217 /* Set j to the smallest of the two sons: */
2218 if (j < s->heap_len &&
2219 smaller(tree, s->heap[j+1], s->heap[j], s->depth)) {
2220 j++;
2222 /* Exit if v is smaller than both sons */
2223 if (smaller(tree, v, s->heap[j], s->depth)) break;
2225 /* Exchange v with the smallest son */
2226 s->heap[k] = s->heap[j]; k = j;
2228 /* And continue down the tree, setting j to the left son of k */
2229 j <<= 1;
2231 s->heap[k] = v;
2234 /* ===========================================================================
2235 * Compute the optimal bit lengths for a tree and update the total bit length
2236 * for the current block.
2237 * IN assertion: the fields freq and dad are set, heap[heap_max] and
2238 * above are the tree nodes sorted by increasing frequency.
2239 * OUT assertions: the field len is set to the optimal bit length, the
2240 * array bl_count contains the frequencies for each bit length.
2241 * The length opt_len is updated; static_len is also updated if stree is
2242 * not null.
2244 * Parameters:
2245 * desc: the tree descriptor
2247 local void
2248 gen_bitlen(deflate_state *s, tree_desc *desc)
2250 ct_data *tree = desc->dyn_tree;
2251 int max_code = desc->max_code;
2252 ct_data *stree = desc->stat_desc->static_tree;
2253 intf *extra = desc->stat_desc->extra_bits;
2254 int base = desc->stat_desc->extra_base;
2255 int max_length = desc->stat_desc->max_length;
2256 int h; /* heap index */
2257 int n, m; /* iterate over the tree elements */
2258 int bits; /* bit length */
2259 int xbits; /* extra bits */
2260 ush f; /* frequency */
2261 int overflow = 0; /* number of elements with bit length too large */
2263 for (bits = 0; bits <= MAX_BITS; bits++) s->bl_count[bits] = 0;
2265 /* In a first pass, compute the optimal bit lengths (which may
2266 * overflow in the case of the bit length tree).
2268 tree[s->heap[s->heap_max]].Len = 0; /* root of the heap */
2270 for (h = s->heap_max+1; h < HEAP_SIZE; h++) {
2271 n = s->heap[h];
2272 bits = tree[tree[n].Dad].Len + 1;
2273 if (bits > max_length) bits = max_length, overflow++;
2274 tree[n].Len = (ush)bits;
2275 /* We overwrite tree[n].Dad which is no longer needed */
2277 if (n > max_code) continue; /* not a leaf node */
2279 s->bl_count[bits]++;
2280 xbits = 0;
2281 if (n >= base) xbits = extra[n-base];
2282 f = tree[n].Freq;
2283 s->opt_len += (ulg)f * (bits + xbits);
2284 if (stree) s->static_len += (ulg)f * (stree[n].Len + xbits);
2286 if (overflow == 0) return;
2288 Trace((stderr,"\nbit length overflow\n"));
2289 /* This happens for example on obj2 and pic of the Calgary corpus */
2291 /* Find the first bit length which could increase: */
2292 do {
2293 bits = max_length-1;
2294 while (s->bl_count[bits] == 0) bits--;
2295 s->bl_count[bits]--; /* move one leaf down the tree */
2296 s->bl_count[bits+1] += 2; /* move one overflow item as its brother */
2297 s->bl_count[max_length]--;
2298 /* The brother of the overflow item also moves one step up,
2299 * but this does not affect bl_count[max_length]
2301 overflow -= 2;
2302 } while (overflow > 0);
2304 /* Now recompute all bit lengths, scanning in increasing frequency.
2305 * h is still equal to HEAP_SIZE. (It is simpler to reconstruct all
2306 * lengths instead of fixing only the wrong ones. This idea is taken
2307 * from 'ar' written by Haruhiko Okumura.)
2309 for (bits = max_length; bits != 0; bits--) {
2310 n = s->bl_count[bits];
2311 while (n != 0) {
2312 m = s->heap[--h];
2313 if (m > max_code) continue;
2314 if (tree[m].Len != (unsigned) bits) {
2315 Trace((stderr,"code %d bits %d->%d\n", m, tree[m].Len, bits));
2316 s->opt_len += ((long)bits - (long)tree[m].Len)
2317 *(long)tree[m].Freq;
2318 tree[m].Len = (ush)bits;
2320 n--;
2325 /* ===========================================================================
2326 * Generate the codes for a given tree and bit counts (which need not be
2327 * optimal).
2328 * IN assertion: the array bl_count contains the bit length statistics for
2329 * the given tree and the field len is set for all tree elements.
2330 * OUT assertion: the field code is set for all tree elements of non
2331 * zero code length.
2333 * Parameters:
2334 * tree: the tree to decorate
2335 * max_code: largest code with non zero frequency
2336 * bl_count: number of codes at each bit length
2338 local void
2339 gen_codes(ct_data *tree, int max_code, ushf *bl_count)
2341 ush next_code[MAX_BITS+1]; /* next code value for each bit length */
2342 ush code = 0; /* running code value */
2343 int bits; /* bit index */
2344 int n; /* code index */
2346 /* The distribution counts are first used to generate the code values
2347 * without bit reversal.
2349 for (bits = 1; bits <= MAX_BITS; bits++) {
2350 next_code[bits] = code = (code + bl_count[bits-1]) << 1;
2352 /* Check that the bit counts in bl_count are consistent. The last code
2353 * must be all ones.
2355 Assert (code + bl_count[MAX_BITS]-1 == (1<<MAX_BITS)-1,
2356 "inconsistent bit counts");
2357 Tracev((stderr,"\ngen_codes: max_code %d ", max_code));
2359 for (n = 0; n <= max_code; n++) {
2360 int len = tree[n].Len;
2361 if (len == 0) continue;
2362 /* Now reverse the bits */
2363 tree[n].Code = bi_reverse(next_code[len]++, len);
2365 Tracecv(tree != static_ltree, (stderr,"\nn %3d %c l %2d c %4x (%x) ",
2366 n, (isgraph(n) ? n : ' '), len, tree[n].Code, next_code[len]-1));
2370 /* ===========================================================================
2371 * Construct one Huffman tree and assigns the code bit strings and lengths.
2372 * Update the total bit length for the current block.
2373 * IN assertion: the field freq is set for all tree elements.
2374 * OUT assertions: the fields len and code are set to the optimal bit length
2375 * and corresponding code. The length opt_len is updated; static_len is
2376 * also updated if stree is not null. The field max_code is set.
2378 * Parameters:
2379 * desc: the tree descriptor
2381 local void
2382 build_tree(deflate_state *s, tree_desc *desc)
2384 ct_data *tree = desc->dyn_tree;
2385 ct_data *stree = desc->stat_desc->static_tree;
2386 int elems = desc->stat_desc->elems;
2387 int n, m; /* iterate over heap elements */
2388 int max_code = -1; /* largest code with non zero frequency */
2389 int node; /* new node being created */
2391 /* Construct the initial heap, with least frequent element in
2392 * heap[SMALLEST]. The sons of heap[n] are heap[2*n] and heap[2*n+1].
2393 * heap[0] is not used.
2395 s->heap_len = 0, s->heap_max = HEAP_SIZE;
2397 for (n = 0; n < elems; n++) {
2398 if (tree[n].Freq != 0) {
2399 s->heap[++(s->heap_len)] = max_code = n;
2400 s->depth[n] = 0;
2401 } else {
2402 tree[n].Len = 0;
2406 /* The pkzip format requires that at least one distance code exists,
2407 * and that at least one bit should be sent even if there is only one
2408 * possible code. So to avoid special checks later on we force at least
2409 * two codes of non zero frequency.
2411 while (s->heap_len < 2) {
2412 node = s->heap[++(s->heap_len)] = (max_code < 2 ? ++max_code : 0);
2413 tree[node].Freq = 1;
2414 s->depth[node] = 0;
2415 s->opt_len--; if (stree) s->static_len -= stree[node].Len;
2416 /* node is 0 or 1 so it does not have extra bits */
2418 desc->max_code = max_code;
2420 /* The elements heap[heap_len/2+1 .. heap_len] are leaves of the tree,
2421 * establish sub-heaps of increasing lengths:
2423 for (n = s->heap_len/2; n >= 1; n--) pqdownheap(s, tree, n);
2425 /* Construct the Huffman tree by repeatedly combining the least two
2426 * frequent nodes.
2428 node = elems; /* next internal node of the tree */
2429 do {
2430 pqremove(s, tree, n); /* n = node of least frequency */
2431 m = s->heap[SMALLEST]; /* m = node of next least frequency */
2433 s->heap[--(s->heap_max)] = n; /* keep the nodes sorted by frequency */
2434 s->heap[--(s->heap_max)] = m;
2436 /* Create a new node father of n and m */
2437 tree[node].Freq = tree[n].Freq + tree[m].Freq;
2438 s->depth[node] = (uch) (MAX(s->depth[n], s->depth[m]) + 1);
2439 tree[n].Dad = tree[m].Dad = (ush)node;
2440 #ifdef DUMP_BL_TREE
2441 if (tree == s->bl_tree) {
2442 fprintf(stderr,"\nnode %d(%d), sons %d(%d) %d(%d)",
2443 node, tree[node].Freq, n, tree[n].Freq, m, tree[m].Freq);
2445 #endif
2446 /* and insert the new node in the heap */
2447 s->heap[SMALLEST] = node++;
2448 pqdownheap(s, tree, SMALLEST);
2450 } while (s->heap_len >= 2);
2452 s->heap[--(s->heap_max)] = s->heap[SMALLEST];
2454 /* At this point, the fields freq and dad are set. We can now
2455 * generate the bit lengths.
2457 gen_bitlen(s, (tree_desc *)desc);
2459 /* The field len is now set, we can generate the bit codes */
2460 gen_codes ((ct_data *)tree, max_code, s->bl_count);
2463 /* ===========================================================================
2464 * Scan a literal or distance tree to determine the frequencies of the codes
2465 * in the bit length tree.
2467 * Parameters:
2468 * tree: the tree to be scanned
2469 * max_code: and its largest code of non zero frequency
2471 local void
2472 scan_tree (deflate_state *s, ct_data *tree, int max_code)
2474 int n; /* iterates over all tree elements */
2475 int prevlen = -1; /* last emitted length */
2476 int curlen; /* length of current code */
2477 int nextlen = tree[0].Len; /* length of next code */
2478 int count = 0; /* repeat count of the current code */
2479 int max_count = 7; /* max repeat count */
2480 int min_count = 4; /* min repeat count */
2482 if (nextlen == 0) max_count = 138, min_count = 3;
2483 tree[max_code+1].Len = (ush)0xffff; /* guard */
2485 for (n = 0; n <= max_code; n++) {
2486 curlen = nextlen; nextlen = tree[n+1].Len;
2487 if (++count < max_count && curlen == nextlen) {
2488 continue;
2489 } else if (count < min_count) {
2490 s->bl_tree[curlen].Freq += count;
2491 } else if (curlen != 0) {
2492 if (curlen != prevlen) s->bl_tree[curlen].Freq++;
2493 s->bl_tree[REP_3_6].Freq++;
2494 } else if (count <= 10) {
2495 s->bl_tree[REPZ_3_10].Freq++;
2496 } else {
2497 s->bl_tree[REPZ_11_138].Freq++;
2499 count = 0; prevlen = curlen;
2500 if (nextlen == 0) {
2501 max_count = 138, min_count = 3;
2502 } else if (curlen == nextlen) {
2503 max_count = 6, min_count = 3;
2504 } else {
2505 max_count = 7, min_count = 4;
2510 /* ===========================================================================
2511 * Send a literal or distance tree in compressed form, using the codes in
2512 * bl_tree.
2514 * Parameters:
2515 * tree: the tree to be scanned
2516 * max_code: and its largest code of non zero frequency
2518 local void
2519 send_tree(deflate_state *s, ct_data *tree, int max_code)
2521 int n; /* iterates over all tree elements */
2522 int prevlen = -1; /* last emitted length */
2523 int curlen; /* length of current code */
2524 int nextlen = tree[0].Len; /* length of next code */
2525 int count = 0; /* repeat count of the current code */
2526 int max_count = 7; /* max repeat count */
2527 int min_count = 4; /* min repeat count */
2529 /* tree[max_code+1].Len = -1; */ /* guard already set */
2530 if (nextlen == 0) max_count = 138, min_count = 3;
2532 for (n = 0; n <= max_code; n++) {
2533 curlen = nextlen; nextlen = tree[n+1].Len;
2534 if (++count < max_count && curlen == nextlen) {
2535 continue;
2536 } else if (count < min_count) {
2537 do { send_code(s, curlen, s->bl_tree); } while (--count != 0);
2539 } else if (curlen != 0) {
2540 if (curlen != prevlen) {
2541 send_code(s, curlen, s->bl_tree); count--;
2543 Assert(count >= 3 && count <= 6, " 3_6?");
2544 send_code(s, REP_3_6, s->bl_tree); send_bits(s, count-3, 2);
2546 } else if (count <= 10) {
2547 send_code(s, REPZ_3_10, s->bl_tree); send_bits(s, count-3, 3);
2549 } else {
2550 send_code(s, REPZ_11_138, s->bl_tree); send_bits(s, count-11, 7);
2552 count = 0; prevlen = curlen;
2553 if (nextlen == 0) {
2554 max_count = 138, min_count = 3;
2555 } else if (curlen == nextlen) {
2556 max_count = 6, min_count = 3;
2557 } else {
2558 max_count = 7, min_count = 4;
2563 /* ===========================================================================
2564 * Construct the Huffman tree for the bit lengths and return the index in
2565 * bl_order of the last bit length code to send.
2567 local int
2568 build_bl_tree(deflate_state *s)
2570 int max_blindex; /* index of last bit length code of non zero freq */
2572 /* Determine the bit length frequencies for literal and distance trees */
2573 scan_tree(s, (ct_data *)s->dyn_ltree, s->l_desc.max_code);
2574 scan_tree(s, (ct_data *)s->dyn_dtree, s->d_desc.max_code);
2576 /* Build the bit length tree: */
2577 build_tree(s, (tree_desc *)(&(s->bl_desc)));
2578 /* opt_len now includes the length of the tree representations, except
2579 * the lengths of the bit lengths codes and the 5+5+4 bits for the counts.
2582 /* Determine the number of bit length codes to send. The pkzip format
2583 * requires that at least 4 bit length codes be sent. (appnote.txt says
2584 * 3 but the actual value used is 4.)
2586 for (max_blindex = BL_CODES-1; max_blindex >= 3; max_blindex--) {
2587 if (s->bl_tree[bl_order[max_blindex]].Len != 0) break;
2589 /* Update opt_len to include the bit length tree and counts */
2590 s->opt_len += 3*(max_blindex+1) + 5+5+4;
2591 Tracev((stderr, "\ndyn trees: dyn %ld, stat %ld",
2592 s->opt_len, s->static_len));
2594 return max_blindex;
2597 /* ===========================================================================
2598 * Send the header for a block using dynamic Huffman trees: the counts, the
2599 * lengths of the bit length codes, the literal tree and the distance tree.
2600 * IN assertion: lcodes >= 257, dcodes >= 1, blcodes >= 4.
2602 * Parameters:
2603 * lcodes, dcodes, blcodes: number of codes for each tree
2605 local void
2606 send_all_trees(deflate_state *s, int lcodes, int dcodes, int blcodes)
2608 int rank; /* index in bl_order */
2610 Assert (lcodes >= 257 && dcodes >= 1 && blcodes >= 4, "not enough codes");
2611 Assert (lcodes <= L_CODES && dcodes <= D_CODES && blcodes <= BL_CODES,
2612 "too many codes");
2613 Tracev((stderr, "\nbl counts: "));
2614 send_bits(s, lcodes-257, 5); /* not +255 as stated in appnote.txt */
2615 send_bits(s, dcodes-1, 5);
2616 send_bits(s, blcodes-4, 4); /* not -3 as stated in appnote.txt */
2617 for (rank = 0; rank < blcodes; rank++) {
2618 Tracev((stderr, "\nbl code %2d ", bl_order[rank]));
2619 send_bits(s, s->bl_tree[bl_order[rank]].Len, 3);
2621 Tracev((stderr, "\nbl tree: sent %ld", s->bits_sent));
2623 send_tree(s, (ct_data *)s->dyn_ltree, lcodes-1); /* literal tree */
2624 Tracev((stderr, "\nlit tree: sent %ld", s->bits_sent));
2626 send_tree(s, (ct_data *)s->dyn_dtree, dcodes-1); /* distance tree */
2627 Tracev((stderr, "\ndist tree: sent %ld", s->bits_sent));
2630 /* ===========================================================================
2631 * Send a stored block
2633 * Parameters:
2634 * buf: input block
2635 * stored_len: length of input block
2636 * eof: true if this is the last block for a file
2638 void
2639 _tr_stored_block(deflate_state *s, charf *buf, ulg stored_len, int eof)
2641 send_bits(s, (STORED_BLOCK<<1)+eof, 3); /* send block type */
2642 s->compressed_len = (s->compressed_len + 3 + 7) & (ulg)~7L;
2643 s->compressed_len += (stored_len + 4) << 3;
2645 copy_block(s, buf, (unsigned)stored_len, 1); /* with header */
2648 /* Send just the `stored block' type code without any length bytes or data.
2650 void
2651 _tr_stored_type_only(deflate_state *s)
2653 send_bits(s, (STORED_BLOCK << 1), 3);
2654 bi_windup(s);
2655 s->compressed_len = (s->compressed_len + 3) & ~7L;
2659 /* ===========================================================================
2660 * Send one empty static block to give enough lookahead for inflate.
2661 * This takes 10 bits, of which 7 may remain in the bit buffer.
2662 * The current inflate code requires 9 bits of lookahead. If the
2663 * last two codes for the previous block (real code plus EOB) were coded
2664 * on 5 bits or less, inflate may have only 5+3 bits of lookahead to decode
2665 * the last real code. In this case we send two empty static blocks instead
2666 * of one. (There are no problems if the previous block is stored or fixed.)
2667 * To simplify the code, we assume the worst case of last real code encoded
2668 * on one bit only.
2670 void
2671 _tr_align(deflate_state *s)
2673 send_bits(s, STATIC_TREES<<1, 3);
2674 send_code(s, END_BLOCK, static_ltree);
2675 s->compressed_len += 10L; /* 3 for block type, 7 for EOB */
2676 bi_flush(s);
2677 /* Of the 10 bits for the empty block, we have already sent
2678 * (10 - bi_valid) bits. The lookahead for the last real code (before
2679 * the EOB of the previous block) was thus at least one plus the length
2680 * of the EOB plus what we have just sent of the empty static block.
2682 if (1 + s->last_eob_len + 10 - s->bi_valid < 9) {
2683 send_bits(s, STATIC_TREES<<1, 3);
2684 send_code(s, END_BLOCK, static_ltree);
2685 s->compressed_len += 10L;
2686 bi_flush(s);
2688 s->last_eob_len = 7;
2691 /* ===========================================================================
2692 * Determine the best encoding for the current block: dynamic trees, static
2693 * trees or store, and output the encoded block to the zip file. This function
2694 * returns the total compressed length for the file so far.
2696 * Parameters:
2697 * buf: input block, or NULL if too old
2698 * stored_len: length of input block
2699 * eof: true if this is the last block for a file
2702 _tr_flush_block(deflate_state *s, charf *buf, ulg stored_len, int eof)
2704 ulg opt_lenb, static_lenb; /* opt_len and static_len in bytes */
2705 int max_blindex = 0; /* index of last bit length code of non zero freq */
2707 /* Build the Huffman trees unless a stored block is forced */
2708 if (s->level > 0) {
2710 /* Check if the file is ascii or binary */
2711 if (s->data_type == Z_UNKNOWN) set_data_type(s);
2713 /* Construct the literal and distance trees */
2714 build_tree(s, (tree_desc *)(&(s->l_desc)));
2715 Tracev((stderr, "\nlit data: dyn %ld, stat %ld", s->opt_len,
2716 s->static_len));
2718 build_tree(s, (tree_desc *)(&(s->d_desc)));
2719 Tracev((stderr, "\ndist data: dyn %ld, stat %ld", s->opt_len,
2720 s->static_len));
2721 /* At this point, opt_len and static_len are the total bit lengths of
2722 * the compressed block data, excluding the tree representations.
2725 /* Build the bit length tree for the above two trees, and get the index
2726 * in bl_order of the last bit length code to send.
2728 max_blindex = build_bl_tree(s);
2730 /* Determine the best encoding. Compute first the block length in bytes*/
2731 opt_lenb = (s->opt_len+3+7)>>3;
2732 static_lenb = (s->static_len+3+7)>>3;
2734 Tracev((stderr, "\nopt %lu(%lu) stat %lu(%lu) stored %lu lit %u ",
2735 opt_lenb, s->opt_len, static_lenb, s->static_len, stored_len,
2736 s->last_lit));
2738 if (static_lenb <= opt_lenb) opt_lenb = static_lenb;
2740 } else {
2741 Assert(buf != NULL, "lost buf");
2742 opt_lenb = static_lenb = stored_len + 5; /* force a stored block */
2745 /* If compression failed and this is the first and last block,
2746 * and if the .zip file can be seeked (to rewrite the local header),
2747 * the whole file is transformed into a stored file:
2749 #ifdef STORED_FILE_OK
2750 # ifdef FORCE_STORED_FILE
2751 if (eof && s->compressed_len == 0L) { /* force stored file */
2752 # else
2753 if (stored_len <= opt_lenb && eof && s->compressed_len==0L && seekable()) {
2754 # endif
2755 /* Since LIT_BUFSIZE <= 2*WSIZE, the input data must be there: */
2756 if (buf == NULL) error ("block vanished");
2758 copy_block(s, buf, (unsigned)stored_len, 0); /* without header */
2759 s->compressed_len = stored_len << 3;
2760 s->method = STORED;
2761 } else
2762 #endif /* STORED_FILE_OK */
2764 #ifdef FORCE_STORED
2765 if (buf != NULL) { /* force stored block */
2766 #else
2767 if (stored_len+4 <= opt_lenb && buf != NULL) {
2768 /* 4: two words for the lengths */
2769 #endif
2770 /* The test buf != NULL is only necessary if LIT_BUFSIZE > WSIZE.
2771 * Otherwise we can't have processed more than WSIZE input bytes since
2772 * the last block flush, because compression would have been
2773 * successful. If LIT_BUFSIZE <= WSIZE, it is never too late to
2774 * transform a block into a stored block.
2776 _tr_stored_block(s, buf, stored_len, eof);
2778 #ifdef FORCE_STATIC
2779 } else if (static_lenb >= 0) { /* force static trees */
2780 #else
2781 } else if (static_lenb == opt_lenb) {
2782 #endif
2783 send_bits(s, (STATIC_TREES<<1)+eof, 3);
2784 compress_block(s, (ct_data *)static_ltree, (ct_data *)static_dtree);
2785 s->compressed_len += 3 + s->static_len;
2786 } else {
2787 send_bits(s, (DYN_TREES<<1)+eof, 3);
2788 send_all_trees(s, s->l_desc.max_code+1, s->d_desc.max_code+1,
2789 max_blindex+1);
2790 compress_block(s, (ct_data *)s->dyn_ltree, (ct_data *)s->dyn_dtree);
2791 s->compressed_len += 3 + s->opt_len;
2793 Assert (s->compressed_len == s->bits_sent, "bad compressed size");
2794 init_block(s);
2796 if (eof) {
2797 bi_windup(s);
2798 s->compressed_len += 7; /* align on byte boundary */
2800 Tracev((stderr,"\ncomprlen %lu(%lu) ", s->compressed_len>>3,
2801 s->compressed_len-7*eof));
2803 return s->compressed_len >> 3;
2806 /* ===========================================================================
2807 * Save the match info and tally the frequency counts. Return true if
2808 * the current block must be flushed.
2810 * Parameters:
2811 * dist: distance of matched string
2812 * lc: match length-MIN_MATCH or unmatched char (if dist==0)
2815 _tr_tally(deflate_state *s, unsigned dist, unsigned lc)
2817 s->d_buf[s->last_lit] = (ush)dist;
2818 s->l_buf[s->last_lit++] = (uch)lc;
2819 if (dist == 0) {
2820 /* lc is the unmatched char */
2821 s->dyn_ltree[lc].Freq++;
2822 } else {
2823 s->matches++;
2824 /* Here, lc is the match length - MIN_MATCH */
2825 dist--; /* dist = match distance - 1 */
2826 Assert((ush)dist < (ush)MAX_DIST(s) &&
2827 (ush)lc <= (ush)(MAX_MATCH-MIN_MATCH) &&
2828 (ush)d_code(dist) < (ush)D_CODES, "_tr_tally: bad match");
2830 s->dyn_ltree[length_code[lc]+LITERALS+1].Freq++;
2831 s->dyn_dtree[d_code(dist)].Freq++;
2834 /* Try to guess if it is profitable to stop the current block here */
2835 if (s->level > 2 && (s->last_lit & 0xfff) == 0) {
2836 /* Compute an upper bound for the compressed length */
2837 ulg out_length = (ulg)s->last_lit*8L;
2838 ulg in_length = (ulg)((long)s->strstart - s->block_start);
2839 int dcode;
2840 for (dcode = 0; dcode < D_CODES; dcode++) {
2841 out_length += (ulg)s->dyn_dtree[dcode].Freq *
2842 (5L+extra_dbits[dcode]);
2844 out_length >>= 3;
2845 Tracev((stderr,"\nlast_lit %u, in %ld, out ~%ld(%ld%%) ",
2846 s->last_lit, in_length, out_length,
2847 100L - out_length*100L/in_length));
2848 if (s->matches < s->last_lit/2 && out_length < in_length/2) return 1;
2850 return (s->last_lit == s->lit_bufsize-1);
2851 /* We avoid equality with lit_bufsize because of wraparound at 64K
2852 * on 16 bit machines and because stored blocks are restricted to
2853 * 64K-1 bytes.
2857 /* ===========================================================================
2858 * Send the block data compressed using the given Huffman trees
2860 * Parameters:
2861 * ltree: literal tree
2862 * dtree: distance tree
2864 local void
2865 compress_block(deflate_state *s, ct_data *ltree, ct_data *dtree)
2867 unsigned dist; /* distance of matched string */
2868 int lc; /* match length or unmatched char (if dist == 0) */
2869 unsigned lx = 0; /* running index in l_buf */
2870 unsigned code; /* the code to send */
2871 int extra; /* number of extra bits to send */
2873 if (s->last_lit != 0) do {
2874 dist = s->d_buf[lx];
2875 lc = s->l_buf[lx++];
2876 if (dist == 0) {
2877 send_code(s, lc, ltree); /* send a literal byte */
2878 Tracecv(isgraph(lc), (stderr," '%c' ", lc));
2879 } else {
2880 /* Here, lc is the match length - MIN_MATCH */
2881 code = length_code[lc];
2882 send_code(s, code+LITERALS+1, ltree); /* send the length code */
2883 extra = extra_lbits[code];
2884 if (extra != 0) {
2885 lc -= base_length[code];
2886 send_bits(s, lc, extra); /* send the extra length bits */
2888 dist--; /* dist is now the match distance - 1 */
2889 code = d_code(dist);
2890 Assert (code < D_CODES, "bad d_code");
2892 send_code(s, code, dtree); /* send the distance code */
2893 extra = extra_dbits[code];
2894 if (extra != 0) {
2895 dist -= base_dist[code];
2896 send_bits(s, dist, extra); /* send the extra distance bits */
2898 } /* literal or match pair ? */
2900 /* Check that the overlay between pending_buf and d_buf+l_buf is ok: */
2901 Assert(s->pending < s->lit_bufsize + 2*lx, "pendingBuf overflow");
2903 } while (lx < s->last_lit);
2905 send_code(s, END_BLOCK, ltree);
2906 s->last_eob_len = ltree[END_BLOCK].Len;
2909 /* ===========================================================================
2910 * Set the data type to ASCII or BINARY, using a crude approximation:
2911 * binary if more than 20% of the bytes are <= 6 or >= 128, ascii otherwise.
2912 * IN assertion: the fields freq of dyn_ltree are set and the total of all
2913 * frequencies does not exceed 64K (to fit in an int on 16 bit machines).
2915 local void
2916 set_data_type(deflate_state *s)
2918 int n = 0;
2919 unsigned ascii_freq = 0;
2920 unsigned bin_freq = 0;
2921 while (n < 7) bin_freq += s->dyn_ltree[n++].Freq;
2922 while (n < 128) ascii_freq += s->dyn_ltree[n++].Freq;
2923 while (n < LITERALS) bin_freq += s->dyn_ltree[n++].Freq;
2924 s->data_type = (Byte)(bin_freq > (ascii_freq >> 2) ? Z_BINARY : Z_ASCII);
2927 /* ===========================================================================
2928 * Reverse the first len bits of a code, using straightforward code (a faster
2929 * method would use a table)
2930 * IN assertion: 1 <= len <= 15
2932 * Parameters:
2933 * code: the value to invert
2934 * len: its bit length
2936 local unsigned
2937 bi_reverse(unsigned code, int len)
2939 unsigned res = 0;
2940 do {
2941 res |= code & 1;
2942 code >>= 1, res <<= 1;
2943 } while (--len > 0);
2944 return res >> 1;
2947 /* ===========================================================================
2948 * Flush the bit buffer, keeping at most 7 bits in it.
2950 local void
2951 bi_flush(deflate_state *s)
2953 if (s->bi_valid == 16) {
2954 put_short(s, s->bi_buf);
2955 s->bi_buf = 0;
2956 s->bi_valid = 0;
2957 } else if (s->bi_valid >= 8) {
2958 put_byte(s, (Byte)s->bi_buf);
2959 s->bi_buf >>= 8;
2960 s->bi_valid -= 8;
2964 /* ===========================================================================
2965 * Flush the bit buffer and align the output on a byte boundary
2967 local void
2968 bi_windup(deflate_state *s)
2970 if (s->bi_valid > 8) {
2971 put_short(s, s->bi_buf);
2972 } else if (s->bi_valid > 0) {
2973 put_byte(s, (Byte)s->bi_buf);
2975 s->bi_buf = 0;
2976 s->bi_valid = 0;
2977 #ifdef DEBUG_ZLIB
2978 s->bits_sent = (s->bits_sent+7) & ~7;
2979 #endif
2982 /* ===========================================================================
2983 * Copy a stored block, storing first the length and its
2984 * one's complement if requested.
2986 * Parameters:
2987 * buf: the input data
2988 * len: its length
2989 * header: true if block header must be written
2991 local void
2992 copy_block(deflate_state *s, charf *buf, unsigned len, int header)
2994 bi_windup(s); /* align on byte boundary */
2995 s->last_eob_len = 8; /* enough lookahead for inflate */
2997 if (header) {
2998 put_short(s, (ush)len);
2999 put_short(s, (ush)~len);
3000 #ifdef DEBUG_ZLIB
3001 s->bits_sent += 2*16;
3002 #endif
3004 #ifdef DEBUG_ZLIB
3005 s->bits_sent += (ulg)len<<3;
3006 #endif
3007 /* bundle up the put_byte(s, *buf++) calls */
3008 zmemcpy(&s->pending_buf[s->pending], buf, len);
3009 s->pending += len;
3011 /* --- trees.c */
3013 /* +++ inflate.c */
3014 /* inflate.c -- zlib interface to inflate modules
3015 * Copyright (C) 1995-1996 Mark Adler
3016 * For conditions of distribution and use, see copyright notice in zlib.h
3019 /* #include "zutil.h" */
3021 /* +++ infblock.h */
3022 /* infblock.h -- header to use infblock.c
3023 * Copyright (C) 1995-1996 Mark Adler
3024 * For conditions of distribution and use, see copyright notice in zlib.h
3027 /* WARNING: this file should *not* be used by applications. It is
3028 part of the implementation of the compression library and is
3029 subject to change. Applications should only use zlib.h.
3032 struct inflate_blocks_state;
3033 typedef struct inflate_blocks_state FAR inflate_blocks_statef;
3035 extern inflate_blocks_statef * inflate_blocks_new OF((
3036 z_streamp z,
3037 check_func c, /* check function */
3038 uInt w)); /* window size */
3040 extern int inflate_blocks OF((
3041 inflate_blocks_statef *,
3042 z_streamp ,
3043 int)); /* initial return code */
3045 extern void inflate_blocks_reset OF((
3046 inflate_blocks_statef *,
3047 z_streamp ,
3048 uLongf *)); /* check value on output */
3050 extern int inflate_blocks_free OF((
3051 inflate_blocks_statef *,
3052 z_streamp ,
3053 uLongf *)); /* check value on output */
3055 extern void inflate_set_dictionary OF((
3056 inflate_blocks_statef *s,
3057 const Bytef *d, /* dictionary */
3058 uInt n)); /* dictionary length */
3060 extern int inflate_addhistory OF((
3061 inflate_blocks_statef *,
3062 z_streamp));
3064 extern int inflate_packet_flush OF((
3065 inflate_blocks_statef *));
3066 /* --- infblock.h */
3068 #ifndef NO_DUMMY_DECL
3069 struct inflate_blocks_state {int dummy;}; /* for buggy compilers */
3070 #endif
3072 /* inflate private state */
3073 struct internal_state {
3075 /* mode */
3076 enum {
3077 METHOD, /* waiting for method byte */
3078 FLAG, /* waiting for flag byte */
3079 DICT4, /* four dictionary check bytes to go */
3080 DICT3, /* three dictionary check bytes to go */
3081 DICT2, /* two dictionary check bytes to go */
3082 DICT1, /* one dictionary check byte to go */
3083 DICT0, /* waiting for inflateSetDictionary */
3084 BLOCKS, /* decompressing blocks */
3085 CHECK4, /* four check bytes to go */
3086 CHECK3, /* three check bytes to go */
3087 CHECK2, /* two check bytes to go */
3088 CHECK1, /* one check byte to go */
3089 DONE, /* finished check, done */
3090 BAD} /* got an error--stay here */
3091 mode; /* current inflate mode */
3093 /* mode dependent information */
3094 union {
3095 uInt method; /* if FLAGS, method byte */
3096 struct {
3097 uLong was; /* computed check value */
3098 uLong need; /* stream check value */
3099 } check; /* if CHECK, check values to compare */
3100 uInt marker; /* if BAD, inflateSync's marker bytes count */
3101 } sub; /* submode */
3103 /* mode independent information */
3104 int nowrap; /* flag for no wrapper */
3105 uInt wbits; /* log2(window size) (8..15, defaults to 15) */
3106 inflate_blocks_statef
3107 *blocks; /* current inflate_blocks state */
3113 inflateReset(z_streamp z)
3115 uLong c;
3117 if (z == Z_NULL || z->state == Z_NULL)
3118 return Z_STREAM_ERROR;
3119 z->total_in = z->total_out = 0;
3120 z->msg = Z_NULL;
3121 z->state->mode = z->state->nowrap ? BLOCKS : METHOD;
3122 inflate_blocks_reset(z->state->blocks, z, &c);
3123 Trace((stderr, "inflate: reset\n"));
3124 return Z_OK;
3129 inflateEnd(z_streamp z)
3131 uLong c;
3133 if (z == Z_NULL || z->state == Z_NULL || z->zfree == Z_NULL)
3134 return Z_STREAM_ERROR;
3135 if (z->state->blocks != Z_NULL)
3136 inflate_blocks_free(z->state->blocks, z, &c);
3137 ZFREE(z, z->state);
3138 z->state = Z_NULL;
3139 Trace((stderr, "inflate: end\n"));
3140 return Z_OK;
3145 inflateInit2_(z_streamp z, int w, const char *version, int stream_size)
3147 if (version == Z_NULL || version[0] != ZLIB_VERSION[0] ||
3148 stream_size != sizeof(z_stream))
3149 return Z_VERSION_ERROR;
3151 /* initialize state */
3152 if (z == Z_NULL)
3153 return Z_STREAM_ERROR;
3154 z->msg = Z_NULL;
3155 #ifndef NO_ZCFUNCS
3156 if (z->zalloc == Z_NULL)
3158 z->zalloc = zcalloc;
3159 z->opaque = (voidpf)0;
3161 if (z->zfree == Z_NULL) z->zfree = zcfree;
3162 #endif
3163 if ((z->state = (struct internal_state FAR *)
3164 ZALLOC(z,1,sizeof(struct internal_state))) == Z_NULL)
3165 return Z_MEM_ERROR;
3166 z->state->blocks = Z_NULL;
3168 /* handle undocumented nowrap option (no zlib header or check) */
3169 z->state->nowrap = 0;
3170 if (w < 0)
3172 w = - w;
3173 z->state->nowrap = 1;
3176 /* set window size */
3177 if (w < 8 || w > 15)
3179 inflateEnd(z);
3180 return Z_STREAM_ERROR;
3182 z->state->wbits = (uInt)w;
3184 /* create inflate_blocks state */
3185 if ((z->state->blocks =
3186 inflate_blocks_new(z, z->state->nowrap ? Z_NULL : adler32, (uInt)1 << w))
3187 == Z_NULL)
3189 inflateEnd(z);
3190 return Z_MEM_ERROR;
3192 Trace((stderr, "inflate: allocated\n"));
3194 /* reset state */
3195 inflateReset(z);
3196 return Z_OK;
3201 inflateInit_(z_streamp z, const char *version, int stream_size)
3203 return inflateInit2_(z, DEF_WBITS, version, stream_size);
3207 #define NEEDBYTE {if(z->avail_in==0)goto empty;r=Z_OK;}
3208 #define NEXTBYTE (z->avail_in--,z->total_in++,*z->next_in++)
3211 inflate(z_streamp z, int f)
3213 int r;
3214 uInt b;
3216 if (z == Z_NULL || z->state == Z_NULL || z->next_in == Z_NULL || f < 0)
3217 return Z_STREAM_ERROR;
3218 r = Z_BUF_ERROR;
3219 while (1) switch (z->state->mode)
3221 case METHOD:
3222 NEEDBYTE
3223 if (((z->state->sub.method = NEXTBYTE) & 0xf) != Z_DEFLATED)
3225 z->state->mode = BAD;
3226 z->msg = (char*)"unknown compression method";
3227 z->state->sub.marker = 5; /* can't try inflateSync */
3228 break;
3230 if ((z->state->sub.method >> 4) + 8 > z->state->wbits)
3232 z->state->mode = BAD;
3233 z->msg = (char*)"invalid window size";
3234 z->state->sub.marker = 5; /* can't try inflateSync */
3235 break;
3237 z->state->mode = FLAG;
3238 case FLAG:
3239 NEEDBYTE
3240 b = NEXTBYTE;
3241 if (((z->state->sub.method << 8) + b) % 31)
3243 z->state->mode = BAD;
3244 z->msg = (char*)"incorrect header check";
3245 z->state->sub.marker = 5; /* can't try inflateSync */
3246 break;
3248 Trace((stderr, "inflate: zlib header ok\n"));
3249 if (!(b & PRESET_DICT))
3251 z->state->mode = BLOCKS;
3252 break;
3254 z->state->mode = DICT4;
3255 case DICT4:
3256 NEEDBYTE
3257 z->state->sub.check.need = (uLong)NEXTBYTE << 24;
3258 z->state->mode = DICT3;
3259 case DICT3:
3260 NEEDBYTE
3261 z->state->sub.check.need += (uLong)NEXTBYTE << 16;
3262 z->state->mode = DICT2;
3263 case DICT2:
3264 NEEDBYTE
3265 z->state->sub.check.need += (uLong)NEXTBYTE << 8;
3266 z->state->mode = DICT1;
3267 case DICT1:
3268 NEEDBYTE
3269 z->state->sub.check.need += (uLong)NEXTBYTE;
3270 z->adler = z->state->sub.check.need;
3271 z->state->mode = DICT0;
3272 return Z_NEED_DICT;
3273 case DICT0:
3274 z->state->mode = BAD;
3275 z->msg = (char*)"need dictionary";
3276 z->state->sub.marker = 0; /* can try inflateSync */
3277 return Z_STREAM_ERROR;
3278 case BLOCKS:
3279 r = inflate_blocks(z->state->blocks, z, r);
3280 if (f == Z_PACKET_FLUSH && z->avail_in == 0 && z->avail_out != 0)
3281 r = inflate_packet_flush(z->state->blocks);
3282 if (r == Z_DATA_ERROR)
3284 z->state->mode = BAD;
3285 z->state->sub.marker = 0; /* can try inflateSync */
3286 break;
3288 if (r != Z_STREAM_END)
3289 return r;
3290 r = Z_OK;
3291 inflate_blocks_reset(z->state->blocks, z, &z->state->sub.check.was);
3292 if (z->state->nowrap)
3294 z->state->mode = DONE;
3295 break;
3297 z->state->mode = CHECK4;
3298 case CHECK4:
3299 NEEDBYTE
3300 z->state->sub.check.need = (uLong)NEXTBYTE << 24;
3301 z->state->mode = CHECK3;
3302 case CHECK3:
3303 NEEDBYTE
3304 z->state->sub.check.need += (uLong)NEXTBYTE << 16;
3305 z->state->mode = CHECK2;
3306 case CHECK2:
3307 NEEDBYTE
3308 z->state->sub.check.need += (uLong)NEXTBYTE << 8;
3309 z->state->mode = CHECK1;
3310 case CHECK1:
3311 NEEDBYTE
3312 z->state->sub.check.need += (uLong)NEXTBYTE;
3314 if (z->state->sub.check.was != z->state->sub.check.need)
3316 z->state->mode = BAD;
3317 z->msg = (char*)"incorrect data check";
3318 z->state->sub.marker = 5; /* can't try inflateSync */
3319 break;
3321 Trace((stderr, "inflate: zlib check ok\n"));
3322 z->state->mode = DONE;
3323 case DONE:
3324 return Z_STREAM_END;
3325 case BAD:
3326 return Z_DATA_ERROR;
3327 default:
3328 return Z_STREAM_ERROR;
3331 empty:
3332 if (f != Z_PACKET_FLUSH)
3333 return r;
3334 z->state->mode = BAD;
3335 z->msg = (char *)"need more for packet flush";
3336 z->state->sub.marker = 0; /* can try inflateSync */
3337 return Z_DATA_ERROR;
3342 inflateSetDictionary(z_streamp z, const Bytef *dictionary, uInt dictLength)
3344 uInt length = dictLength;
3346 if (z == Z_NULL || z->state == Z_NULL || z->state->mode != DICT0)
3347 return Z_STREAM_ERROR;
3349 if (adler32(1L, dictionary, dictLength) != z->adler) return Z_DATA_ERROR;
3350 z->adler = 1L;
3352 if (length >= ((uInt)1<<z->state->wbits))
3354 length = (1<<z->state->wbits)-1;
3355 dictionary += dictLength - length;
3357 inflate_set_dictionary(z->state->blocks, dictionary, length);
3358 z->state->mode = BLOCKS;
3359 return Z_OK;
3363 * This subroutine adds the data at next_in/avail_in to the output history
3364 * without performing any output. The output buffer must be "caught up";
3365 * i.e. no pending output (hence s->read equals s->write), and the state must
3366 * be BLOCKS (i.e. we should be willing to see the start of a series of
3367 * BLOCKS). On exit, the output will also be caught up, and the checksum
3368 * will have been updated if need be.
3372 inflateIncomp(z_stream *z)
3374 if (z->state->mode != BLOCKS)
3375 return Z_DATA_ERROR;
3376 return inflate_addhistory(z->state->blocks, z);
3381 inflateSync(z_streamp z)
3383 uInt n; /* number of bytes to look at */
3384 Bytef *p; /* pointer to bytes */
3385 uInt m; /* number of marker bytes found in a row */
3386 uLong r, w; /* temporaries to save total_in and total_out */
3388 /* set up */
3389 if (z == Z_NULL || z->state == Z_NULL)
3390 return Z_STREAM_ERROR;
3391 if (z->state->mode != BAD)
3393 z->state->mode = BAD;
3394 z->state->sub.marker = 0;
3396 if ((n = z->avail_in) == 0)
3397 return Z_BUF_ERROR;
3398 p = z->next_in;
3399 m = z->state->sub.marker;
3401 /* search */
3402 while (n && m < 4)
3404 if (*p == (Byte)(m < 2 ? 0 : 0xff))
3405 m++;
3406 else if (*p)
3407 m = 0;
3408 else
3409 m = 4 - m;
3410 p++, n--;
3413 /* restore */
3414 z->total_in += p - z->next_in;
3415 z->next_in = p;
3416 z->avail_in = n;
3417 z->state->sub.marker = m;
3419 /* return no joy or set up to restart on a new block */
3420 if (m != 4)
3421 return Z_DATA_ERROR;
3422 r = z->total_in; w = z->total_out;
3423 inflateReset(z);
3424 z->total_in = r; z->total_out = w;
3425 z->state->mode = BLOCKS;
3426 return Z_OK;
3429 #undef NEEDBYTE
3430 #undef NEXTBYTE
3431 /* --- inflate.c */
3433 /* +++ infblock.c */
3434 /* infblock.c -- interpret and process block types to last block
3435 * Copyright (C) 1995-1996 Mark Adler
3436 * For conditions of distribution and use, see copyright notice in zlib.h
3439 /* #include "zutil.h" */
3440 /* #include "infblock.h" */
3442 /* +++ inftrees.h */
3443 /* inftrees.h -- header to use inftrees.c
3444 * Copyright (C) 1995-1996 Mark Adler
3445 * For conditions of distribution and use, see copyright notice in zlib.h
3448 /* WARNING: this file should *not* be used by applications. It is
3449 part of the implementation of the compression library and is
3450 subject to change. Applications should only use zlib.h.
3453 /* Huffman code lookup table entry--this entry is four bytes for machines
3454 that have 16-bit pointers (e.g. PC's in the small or medium model). */
3456 typedef struct inflate_huft_s FAR inflate_huft;
3458 struct inflate_huft_s {
3459 union {
3460 struct {
3461 Byte Exop; /* number of extra bits or operation */
3462 Byte Bits; /* number of bits in this code or subcode */
3463 } what;
3464 Bytef *pad; /* pad structure to a power of 2 (4 bytes for */
3465 } word; /* 16-bit, 8 bytes for 32-bit machines) */
3466 union {
3467 uInt Base; /* literal, length base, or distance base */
3468 inflate_huft *Next; /* pointer to next level of table */
3469 } more;
3472 #ifdef DEBUG_ZLIB
3473 extern uInt inflate_hufts;
3474 #endif
3476 extern int inflate_trees_bits OF((
3477 uIntf *, /* 19 code lengths */
3478 uIntf *, /* bits tree desired/actual depth */
3479 inflate_huft * FAR *, /* bits tree result */
3480 z_streamp )); /* for zalloc, zfree functions */
3482 extern int inflate_trees_dynamic OF((
3483 uInt, /* number of literal/length codes */
3484 uInt, /* number of distance codes */
3485 uIntf *, /* that many (total) code lengths */
3486 uIntf *, /* literal desired/actual bit depth */
3487 uIntf *, /* distance desired/actual bit depth */
3488 inflate_huft * FAR *, /* literal/length tree result */
3489 inflate_huft * FAR *, /* distance tree result */
3490 z_streamp )); /* for zalloc, zfree functions */
3492 extern int inflate_trees_fixed OF((
3493 uIntf *, /* literal desired/actual bit depth */
3494 uIntf *, /* distance desired/actual bit depth */
3495 inflate_huft * FAR *, /* literal/length tree result */
3496 inflate_huft * FAR *)); /* distance tree result */
3498 extern int inflate_trees_free OF((
3499 inflate_huft *, /* tables to free */
3500 z_streamp )); /* for zfree function */
3502 /* --- inftrees.h */
3504 /* +++ infcodes.h */
3505 /* infcodes.h -- header to use infcodes.c
3506 * Copyright (C) 1995-1996 Mark Adler
3507 * For conditions of distribution and use, see copyright notice in zlib.h
3510 /* WARNING: this file should *not* be used by applications. It is
3511 part of the implementation of the compression library and is
3512 subject to change. Applications should only use zlib.h.
3515 struct inflate_codes_state;
3516 typedef struct inflate_codes_state FAR inflate_codes_statef;
3518 extern inflate_codes_statef *inflate_codes_new OF((
3519 uInt, uInt,
3520 inflate_huft *, inflate_huft *,
3521 z_streamp ));
3523 extern int inflate_codes OF((
3524 inflate_blocks_statef *,
3525 z_streamp ,
3526 int));
3528 extern void inflate_codes_free OF((
3529 inflate_codes_statef *,
3530 z_streamp ));
3532 /* --- infcodes.h */
3534 /* +++ infutil.h */
3535 /* infutil.h -- types and macros common to blocks and codes
3536 * Copyright (C) 1995-1996 Mark Adler
3537 * For conditions of distribution and use, see copyright notice in zlib.h
3540 /* WARNING: this file should *not* be used by applications. It is
3541 part of the implementation of the compression library and is
3542 subject to change. Applications should only use zlib.h.
3545 #ifndef _INFUTIL_H
3546 #define _INFUTIL_H
3548 typedef enum {
3549 TYPE, /* get type bits (3, including end bit) */
3550 LENS, /* get lengths for stored */
3551 STORED, /* processing stored block */
3552 TABLE, /* get table lengths */
3553 BTREE, /* get bit lengths tree for a dynamic block */
3554 DTREE, /* get length, distance trees for a dynamic block */
3555 CODES, /* processing fixed or dynamic block */
3556 DRY, /* output remaining window bytes */
3557 DONEB, /* finished last block, done */
3558 BADB} /* got a data error--stuck here */
3559 inflate_block_mode;
3561 /* inflate blocks semi-private state */
3562 struct inflate_blocks_state {
3564 /* mode */
3565 inflate_block_mode mode; /* current inflate_block mode */
3567 /* mode dependent information */
3568 union {
3569 uInt left; /* if STORED, bytes left to copy */
3570 struct {
3571 uInt table; /* table lengths (14 bits) */
3572 uInt index; /* index into blens (or border) */
3573 uIntf *blens; /* bit lengths of codes */
3574 uInt bb; /* bit length tree depth */
3575 inflate_huft *tb; /* bit length decoding tree */
3576 } trees; /* if DTREE, decoding info for trees */
3577 struct {
3578 inflate_huft *tl;
3579 inflate_huft *td; /* trees to free */
3580 inflate_codes_statef
3581 *codes;
3582 } decode; /* if CODES, current state */
3583 } sub; /* submode */
3584 uInt last; /* true if this block is the last block */
3586 /* mode independent information */
3587 uInt bitk; /* bits in bit buffer */
3588 uLong bitb; /* bit buffer */
3589 Bytef *window; /* sliding window */
3590 Bytef *end; /* one byte after sliding window */
3591 Bytef *read; /* window read pointer */
3592 Bytef *write; /* window write pointer */
3593 check_func checkfn; /* check function */
3594 uLong check; /* check on output */
3599 /* defines for inflate input/output */
3600 /* update pointers and return */
3601 #define UPDBITS {s->bitb=b;s->bitk=k;}
3602 #define UPDIN {z->avail_in=n;z->total_in+=p-z->next_in;z->next_in=p;}
3603 #define UPDOUT {s->write=q;}
3604 #define UPDATE {UPDBITS UPDIN UPDOUT}
3605 #define LEAVE {UPDATE return inflate_flush(s,z,r);}
3606 /* get bytes and bits */
3607 #define LOADIN {p=z->next_in;n=z->avail_in;b=s->bitb;k=s->bitk;}
3608 #define NEEDBYTE {if(n)r=Z_OK;else LEAVE}
3609 #define NEXTBYTE (n--,*p++)
3610 #define NEEDBITS(j) {while(k<(j)){NEEDBYTE;b|=((uLong)NEXTBYTE)<<k;k+=8;}}
3611 #define DUMPBITS(j) {b>>=(j);k-=(j);}
3612 /* output bytes */
3613 #define WAVAIL (uInt)(q<s->read?s->read-q-1:s->end-q)
3614 #define LOADOUT {q=s->write;m=(uInt)WAVAIL;}
3615 #define WWRAP {if(q==s->end&&s->read!=s->window){q=s->window;m=(uInt)WAVAIL;}}
3616 #define FLUSH {UPDOUT r=inflate_flush(s,z,r); LOADOUT}
3617 #define NEEDOUT {if(m==0){WWRAP if(m==0){FLUSH WWRAP if(m==0) LEAVE}}r=Z_OK;}
3618 #define OUTBYTE(a) {*q++=(Byte)(a);m--;}
3619 /* load local pointers */
3620 #define LOAD {LOADIN LOADOUT}
3622 /* masks for lower bits (size given to avoid silly warnings with Visual C++) */
3623 extern uInt inflate_mask[17];
3625 /* copy as much as possible from the sliding window to the output area */
3626 extern int inflate_flush OF((
3627 inflate_blocks_statef *,
3628 z_streamp ,
3629 int));
3631 #ifndef NO_DUMMY_DECL
3632 struct internal_state {int dummy;}; /* for buggy compilers */
3633 #endif
3635 #endif
3636 /* --- infutil.h */
3638 #ifndef NO_DUMMY_DECL
3639 struct inflate_codes_state {int dummy;}; /* for buggy compilers */
3640 #endif
3642 /* Table for deflate from PKZIP's appnote.txt. */
3643 local const uInt border[] = { /* Order of the bit length code lengths */
3644 16, 17, 18, 0, 8, 7, 9, 6, 10, 5, 11, 4, 12, 3, 13, 2, 14, 1, 15};
3647 Notes beyond the 1.93a appnote.txt:
3649 1. Distance pointers never point before the beginning of the output
3650 stream.
3651 2. Distance pointers can point back across blocks, up to 32k away.
3652 3. There is an implied maximum of 7 bits for the bit length table and
3653 15 bits for the actual data.
3654 4. If only one code exists, then it is encoded using one bit. (Zero
3655 would be more efficient, but perhaps a little confusing.) If two
3656 codes exist, they are coded using one bit each (0 and 1).
3657 5. There is no way of sending zero distance codes--a dummy must be
3658 sent if there are none. (History: a pre 2.0 version of PKZIP would
3659 store blocks with no distance codes, but this was discovered to be
3660 too harsh a criterion.) Valid only for 1.93a. 2.04c does allow
3661 zero distance codes, which is sent as one code of zero bits in
3662 length.
3663 6. There are up to 286 literal/length codes. Code 256 represents the
3664 end-of-block. Note however that the static length tree defines
3665 288 codes just to fill out the Huffman codes. Codes 286 and 287
3666 cannot be used though, since there is no length base or extra bits
3667 defined for them. Similarily, there are up to 30 distance codes.
3668 However, static trees define 32 codes (all 5 bits) to fill out the
3669 Huffman codes, but the last two had better not show up in the data.
3670 7. Unzip can check dynamic Huffman blocks for complete code sets.
3671 The exception is that a single code would not be complete (see #4).
3672 8. The five bits following the block type is really the number of
3673 literal codes sent minus 257.
3674 9. Length codes 8,16,16 are interpreted as 13 length codes of 8 bits
3675 (1+6+6). Therefore, to output three times the length, you output
3676 three codes (1+1+1), whereas to output four times the same length,
3677 you only need two codes (1+3). Hmm.
3678 10. In the tree reconstruction algorithm, Code = Code + Increment
3679 only if BitLength(i) is not zero. (Pretty obvious.)
3680 11. Correction: 4 Bits: # of Bit Length codes - 4 (4 - 19)
3681 12. Note: length code 284 can represent 227-258, but length code 285
3682 really is 258. The last length deserves its own, short code
3683 since it gets used a lot in very redundant files. The length
3684 258 is special since 258 - 3 (the min match length) is 255.
3685 13. The literal/length and distance code bit lengths are read as a
3686 single stream of lengths. It is possible (and advantageous) for
3687 a repeat code (16, 17, or 18) to go across the boundary between
3688 the two sets of lengths.
3692 void
3693 inflate_blocks_reset(inflate_blocks_statef *s, z_streamp z, uLongf *c)
3695 if (s->checkfn != Z_NULL)
3696 *c = s->check;
3697 if (s->mode == BTREE || s->mode == DTREE)
3698 ZFREE(z, s->sub.trees.blens);
3699 if (s->mode == CODES)
3701 inflate_codes_free(s->sub.decode.codes, z);
3702 inflate_trees_free(s->sub.decode.td, z);
3703 inflate_trees_free(s->sub.decode.tl, z);
3705 s->mode = TYPE;
3706 s->bitk = 0;
3707 s->bitb = 0;
3708 s->read = s->write = s->window;
3709 if (s->checkfn != Z_NULL)
3710 z->adler = s->check = (*s->checkfn)(0L, Z_NULL, 0);
3711 Trace((stderr, "inflate: blocks reset\n"));
3715 inflate_blocks_statef *
3716 inflate_blocks_new(z_streamp z, check_func c, uInt w)
3718 inflate_blocks_statef *s;
3720 if ((s = (inflate_blocks_statef *)ZALLOC
3721 (z,1,sizeof(struct inflate_blocks_state))) == Z_NULL)
3722 return s;
3723 if ((s->window = (Bytef *)ZALLOC(z, 1, w)) == Z_NULL)
3725 ZFREE(z, s);
3726 return Z_NULL;
3728 s->end = s->window + w;
3729 s->checkfn = c;
3730 s->mode = TYPE;
3731 Trace((stderr, "inflate: blocks allocated\n"));
3732 inflate_blocks_reset(s, z, &s->check);
3733 return s;
3737 #ifdef DEBUG_ZLIB
3738 extern uInt inflate_hufts;
3739 #endif
3742 inflate_blocks(inflate_blocks_statef *s, z_streamp z, int r)
3744 uInt t; /* temporary storage */
3745 uLong b; /* bit buffer */
3746 uInt k; /* bits in bit buffer */
3747 Bytef *p; /* input data pointer */
3748 uInt n; /* bytes available there */
3749 Bytef *q; /* output window write pointer */
3750 uInt m; /* bytes to end of window or read pointer */
3752 /* copy input/output information to locals (UPDATE macro restores) */
3753 LOAD
3755 /* process input based on current state */
3756 while (1) switch (s->mode)
3758 case TYPE:
3759 NEEDBITS(3)
3760 t = (uInt)b & 7;
3761 s->last = t & 1;
3762 switch (t >> 1)
3764 case 0: /* stored */
3765 Trace((stderr, "inflate: stored block%s\n",
3766 s->last ? " (last)" : ""));
3767 DUMPBITS(3)
3768 t = k & 7; /* go to byte boundary */
3769 DUMPBITS(t)
3770 s->mode = LENS; /* get length of stored block */
3771 break;
3772 case 1: /* fixed */
3773 Trace((stderr, "inflate: fixed codes block%s\n",
3774 s->last ? " (last)" : ""));
3776 uInt bl, bd;
3777 inflate_huft *tl, *td;
3779 inflate_trees_fixed(&bl, &bd, &tl, &td);
3780 s->sub.decode.codes = inflate_codes_new(bl, bd, tl, td, z);
3781 if (s->sub.decode.codes == Z_NULL)
3783 r = Z_MEM_ERROR;
3784 LEAVE
3786 s->sub.decode.tl = Z_NULL; /* don't try to free these */
3787 s->sub.decode.td = Z_NULL;
3789 DUMPBITS(3)
3790 s->mode = CODES;
3791 break;
3792 case 2: /* dynamic */
3793 Trace((stderr, "inflate: dynamic codes block%s\n",
3794 s->last ? " (last)" : ""));
3795 DUMPBITS(3)
3796 s->mode = TABLE;
3797 break;
3798 case 3: /* illegal */
3799 DUMPBITS(3)
3800 s->mode = BADB;
3801 z->msg = (char*)"invalid block type";
3802 r = Z_DATA_ERROR;
3803 LEAVE
3805 break;
3806 case LENS:
3807 NEEDBITS(32)
3808 if ((((~b) >> 16) & 0xffff) != (b & 0xffff))
3810 s->mode = BADB;
3811 z->msg = (char*)"invalid stored block lengths";
3812 r = Z_DATA_ERROR;
3813 LEAVE
3815 s->sub.left = (uInt)b & 0xffff;
3816 b = k = 0; /* dump bits */
3817 Tracev((stderr, "inflate: stored length %u\n", s->sub.left));
3818 s->mode = s->sub.left ? STORED : (s->last ? DRY : TYPE);
3819 break;
3820 case STORED:
3821 if (n == 0)
3822 LEAVE
3823 NEEDOUT
3824 t = s->sub.left;
3825 if (t > n) t = n;
3826 if (t > m) t = m;
3827 zmemcpy(q, p, t);
3828 p += t; n -= t;
3829 q += t; m -= t;
3830 if ((s->sub.left -= t) != 0)
3831 break;
3832 Tracev((stderr, "inflate: stored end, %lu total out\n",
3833 z->total_out + (q >= s->read ? q - s->read :
3834 (s->end - s->read) + (q - s->window))));
3835 s->mode = s->last ? DRY : TYPE;
3836 break;
3837 case TABLE:
3838 NEEDBITS(14)
3839 s->sub.trees.table = t = (uInt)b & 0x3fff;
3840 #ifndef PKZIP_BUG_WORKAROUND
3841 if ((t & 0x1f) > 29 || ((t >> 5) & 0x1f) > 29)
3843 s->mode = BADB;
3844 z->msg = (char*)"too many length or distance symbols";
3845 r = Z_DATA_ERROR;
3846 LEAVE
3848 #endif
3849 t = 258 + (t & 0x1f) + ((t >> 5) & 0x1f);
3850 if (t < 19)
3851 t = 19;
3852 if ((s->sub.trees.blens = (uIntf*)ZALLOC(z, t, sizeof(uInt))) == Z_NULL)
3854 r = Z_MEM_ERROR;
3855 LEAVE
3857 DUMPBITS(14)
3858 s->sub.trees.index = 0;
3859 Tracev((stderr, "inflate: table sizes ok\n"));
3860 s->mode = BTREE;
3861 case BTREE:
3862 while (s->sub.trees.index < 4 + (s->sub.trees.table >> 10))
3864 NEEDBITS(3)
3865 s->sub.trees.blens[border[s->sub.trees.index++]] = (uInt)b & 7;
3866 DUMPBITS(3)
3868 while (s->sub.trees.index < 19)
3869 s->sub.trees.blens[border[s->sub.trees.index++]] = 0;
3870 s->sub.trees.bb = 7;
3871 t = inflate_trees_bits(s->sub.trees.blens, &s->sub.trees.bb,
3872 &s->sub.trees.tb, z);
3873 if (t != Z_OK)
3875 r = t;
3876 if (r == Z_DATA_ERROR) {
3877 ZFREE(z, s->sub.trees.blens);
3878 s->mode = BADB;
3880 LEAVE
3882 s->sub.trees.index = 0;
3883 Tracev((stderr, "inflate: bits tree ok\n"));
3884 s->mode = DTREE;
3885 case DTREE:
3886 while (t = s->sub.trees.table,
3887 s->sub.trees.index < 258 + (t & 0x1f) + ((t >> 5) & 0x1f))
3889 inflate_huft *h;
3890 uInt i, j, c;
3892 t = s->sub.trees.bb;
3893 NEEDBITS(t)
3894 h = s->sub.trees.tb + ((uInt)b & inflate_mask[t]);
3895 t = h->word.what.Bits;
3896 c = h->more.Base;
3897 if (c < 16)
3899 DUMPBITS(t)
3900 s->sub.trees.blens[s->sub.trees.index++] = c;
3902 else /* c == 16..18 */
3904 i = c == 18 ? 7 : c - 14;
3905 j = c == 18 ? 11 : 3;
3906 NEEDBITS(t + i)
3907 DUMPBITS(t)
3908 j += (uInt)b & inflate_mask[i];
3909 DUMPBITS(i)
3910 i = s->sub.trees.index;
3911 t = s->sub.trees.table;
3912 if (i + j > 258 + (t & 0x1f) + ((t >> 5) & 0x1f) ||
3913 (c == 16 && i < 1))
3915 inflate_trees_free(s->sub.trees.tb, z);
3916 ZFREE(z, s->sub.trees.blens);
3917 s->mode = BADB;
3918 z->msg = (char*)"invalid bit length repeat";
3919 r = Z_DATA_ERROR;
3920 LEAVE
3922 c = c == 16 ? s->sub.trees.blens[i - 1] : 0;
3923 do {
3924 s->sub.trees.blens[i++] = c;
3925 } while (--j);
3926 s->sub.trees.index = i;
3929 inflate_trees_free(s->sub.trees.tb, z);
3930 s->sub.trees.tb = Z_NULL;
3932 uInt bl, bd;
3933 inflate_huft *tl, *td;
3934 inflate_codes_statef *c;
3936 bl = 9; /* must be <= 9 for lookahead assumptions */
3937 bd = 6; /* must be <= 9 for lookahead assumptions */
3938 t = s->sub.trees.table;
3939 #ifdef DEBUG_ZLIB
3940 inflate_hufts = 0;
3941 #endif
3942 t = inflate_trees_dynamic(257 + (t & 0x1f), 1 + ((t >> 5) & 0x1f),
3943 s->sub.trees.blens, &bl, &bd, &tl, &td, z);
3944 if (t != Z_OK)
3946 if (t == (uInt)Z_DATA_ERROR) {
3947 ZFREE(z, s->sub.trees.blens);
3948 s->mode = BADB;
3950 r = t;
3951 LEAVE
3953 Tracev((stderr, "inflate: trees ok, %d * %d bytes used\n",
3954 inflate_hufts, sizeof(inflate_huft)));
3955 if ((c = inflate_codes_new(bl, bd, tl, td, z)) == Z_NULL)
3957 inflate_trees_free(td, z);
3958 inflate_trees_free(tl, z);
3959 r = Z_MEM_ERROR;
3960 LEAVE
3963 * this ZFREE must occur *BEFORE* we mess with sub.decode, because
3964 * sub.trees is union'd with sub.decode.
3966 ZFREE(z, s->sub.trees.blens);
3967 s->sub.decode.codes = c;
3968 s->sub.decode.tl = tl;
3969 s->sub.decode.td = td;
3971 s->mode = CODES;
3972 case CODES:
3973 UPDATE
3974 if ((r = inflate_codes(s, z, r)) != Z_STREAM_END)
3975 return inflate_flush(s, z, r);
3976 r = Z_OK;
3977 inflate_codes_free(s->sub.decode.codes, z);
3978 inflate_trees_free(s->sub.decode.td, z);
3979 inflate_trees_free(s->sub.decode.tl, z);
3980 LOAD
3981 Tracev((stderr, "inflate: codes end, %lu total out\n",
3982 z->total_out + (q >= s->read ? q - s->read :
3983 (s->end - s->read) + (q - s->window))));
3984 if (!s->last)
3986 s->mode = TYPE;
3987 break;
3989 if (k > 7) /* return unused byte, if any */
3991 Assert(k < 16, "inflate_codes grabbed too many bytes")
3992 k -= 8;
3993 n++;
3994 p--; /* can always return one */
3996 s->mode = DRY;
3997 case DRY:
3998 FLUSH
3999 if (s->read != s->write)
4000 LEAVE
4001 s->mode = DONEB;
4002 case DONEB:
4003 r = Z_STREAM_END;
4004 LEAVE
4005 case BADB:
4006 r = Z_DATA_ERROR;
4007 LEAVE
4008 default:
4009 r = Z_STREAM_ERROR;
4010 LEAVE
4016 inflate_blocks_free(inflate_blocks_statef *s, z_streamp z, uLongf *c)
4018 inflate_blocks_reset(s, z, c);
4019 ZFREE(z, s->window);
4020 ZFREE(z, s);
4021 Trace((stderr, "inflate: blocks freed\n"));
4022 return Z_OK;
4026 void
4027 inflate_set_dictionary(inflate_blocks_statef *s, const Bytef *d, uInt n)
4029 zmemcpy((charf *)s->window, d, n);
4030 s->read = s->write = s->window + n;
4034 * This subroutine adds the data at next_in/avail_in to the output history
4035 * without performing any output. The output buffer must be "caught up";
4036 * i.e. no pending output (hence s->read equals s->write), and the state must
4037 * be BLOCKS (i.e. we should be willing to see the start of a series of
4038 * BLOCKS). On exit, the output will also be caught up, and the checksum
4039 * will have been updated if need be.
4042 inflate_addhistory(inflate_blocks_statef *s, z_stream *z)
4044 uLong b; /* bit buffer */ /* NOT USED HERE */
4045 uInt k; /* bits in bit buffer */ /* NOT USED HERE */
4046 uInt t; /* temporary storage */
4047 Bytef *p; /* input data pointer */
4048 uInt n; /* bytes available there */
4049 Bytef *q; /* output window write pointer */
4050 uInt m; /* bytes to end of window or read pointer */
4052 if (s->read != s->write)
4053 return Z_STREAM_ERROR;
4054 if (s->mode != TYPE)
4055 return Z_DATA_ERROR;
4057 /* we're ready to rock */
4058 LOAD
4059 /* while there is input ready, copy to output buffer, moving
4060 * pointers as needed.
4062 while (n) {
4063 t = n; /* how many to do */
4064 /* is there room until end of buffer? */
4065 if (t > m) t = m;
4066 /* update check information */
4067 if (s->checkfn != Z_NULL)
4068 s->check = (*s->checkfn)(s->check, q, t);
4069 zmemcpy(q, p, t);
4070 q += t;
4071 p += t;
4072 n -= t;
4073 z->total_out += t;
4074 s->read = q; /* drag read pointer forward */
4075 /* WWRAP */ /* expand WWRAP macro by hand to handle s->read */
4076 if (q == s->end) {
4077 s->read = q = s->window;
4078 m = WAVAIL;
4081 UPDATE
4082 return Z_OK;
4087 * At the end of a Deflate-compressed PPP packet, we expect to have seen
4088 * a `stored' block type value but not the (zero) length bytes.
4091 inflate_packet_flush(inflate_blocks_statef *s)
4093 if (s->mode != LENS)
4094 return Z_DATA_ERROR;
4095 s->mode = TYPE;
4096 return Z_OK;
4098 /* --- infblock.c */
4100 /* +++ inftrees.c */
4101 /* inftrees.c -- generate Huffman trees for efficient decoding
4102 * Copyright (C) 1995-1996 Mark Adler
4103 * For conditions of distribution and use, see copyright notice in zlib.h
4106 /* #include "zutil.h" */
4107 /* #include "inftrees.h" */
4109 char inflate_copyright[] = " inflate 1.0.4 Copyright 1995-1996 Mark Adler ";
4111 If you use the zlib library in a product, an acknowledgment is welcome
4112 in the documentation of your product. If for some reason you cannot
4113 include such an acknowledgment, I would appreciate that you keep this
4114 copyright string in the executable of your product.
4117 #ifndef NO_DUMMY_DECL
4118 struct internal_state {int dummy;}; /* for buggy compilers */
4119 #endif
4121 /* simplify the use of the inflate_huft type with some defines */
4122 #define base more.Base
4123 #define next more.Next
4124 #define exop word.what.Exop
4125 #define bits word.what.Bits
4128 local int huft_build OF((
4129 uIntf *, /* code lengths in bits */
4130 uInt, /* number of codes */
4131 uInt, /* number of "simple" codes */
4132 const uIntf *, /* list of base values for non-simple codes */
4133 const uIntf *, /* list of extra bits for non-simple codes */
4134 inflate_huft * FAR*,/* result: starting table */
4135 uIntf *, /* maximum lookup bits (returns actual) */
4136 z_streamp )); /* for zalloc function */
4138 local voidpf zfalloc OF((
4139 voidpf, /* opaque pointer (not used) */
4140 uInt, /* number of items */
4141 uInt)); /* size of item */
4143 /* Tables for deflate from PKZIP's appnote.txt. */
4144 local const uInt cplens[31] = { /* Copy lengths for literal codes 257..285 */
4145 3, 4, 5, 6, 7, 8, 9, 10, 11, 13, 15, 17, 19, 23, 27, 31,
4146 35, 43, 51, 59, 67, 83, 99, 115, 131, 163, 195, 227, 258, 0, 0};
4147 /* see note #13 above about 258 */
4148 local const uInt cplext[31] = { /* Extra bits for literal codes 257..285 */
4149 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 2, 2, 2, 2,
4150 3, 3, 3, 3, 4, 4, 4, 4, 5, 5, 5, 5, 0, 112, 112}; /* 112==invalid */
4151 local const uInt cpdist[30] = { /* Copy offsets for distance codes 0..29 */
4152 1, 2, 3, 4, 5, 7, 9, 13, 17, 25, 33, 49, 65, 97, 129, 193,
4153 257, 385, 513, 769, 1025, 1537, 2049, 3073, 4097, 6145,
4154 8193, 12289, 16385, 24577};
4155 local const uInt cpdext[30] = { /* Extra bits for distance codes */
4156 0, 0, 0, 0, 1, 1, 2, 2, 3, 3, 4, 4, 5, 5, 6, 6,
4157 7, 7, 8, 8, 9, 9, 10, 10, 11, 11,
4158 12, 12, 13, 13};
4161 Huffman code decoding is performed using a multi-level table lookup.
4162 The fastest way to decode is to simply build a lookup table whose
4163 size is determined by the longest code. However, the time it takes
4164 to build this table can also be a factor if the data being decoded
4165 is not very long. The most common codes are necessarily the
4166 shortest codes, so those codes dominate the decoding time, and hence
4167 the speed. The idea is you can have a shorter table that decodes the
4168 shorter, more probable codes, and then point to subsidiary tables for
4169 the longer codes. The time it costs to decode the longer codes is
4170 then traded against the time it takes to make longer tables.
4172 This results of this trade are in the variables lbits and dbits
4173 below. lbits is the number of bits the first level table for literal/
4174 length codes can decode in one step, and dbits is the same thing for
4175 the distance codes. Subsequent tables are also less than or equal to
4176 those sizes. These values may be adjusted either when all of the
4177 codes are shorter than that, in which case the longest code length in
4178 bits is used, or when the shortest code is *longer* than the requested
4179 table size, in which case the length of the shortest code in bits is
4180 used.
4182 There are two different values for the two tables, since they code a
4183 different number of possibilities each. The literal/length table
4184 codes 286 possible values, or in a flat code, a little over eight
4185 bits. The distance table codes 30 possible values, or a little less
4186 than five bits, flat. The optimum values for speed end up being
4187 about one bit more than those, so lbits is 8+1 and dbits is 5+1.
4188 The optimum values may differ though from machine to machine, and
4189 possibly even between compilers. Your mileage may vary.
4193 /* If BMAX needs to be larger than 16, then h and x[] should be uLong. */
4194 #define BMAX 15 /* maximum bit length of any code */
4195 #define N_MAX 288 /* maximum number of codes in any set */
4197 #ifdef DEBUG_ZLIB
4198 uInt inflate_hufts;
4199 #endif
4202 * Parameters:
4203 * b: code lengths in bits (all assumed <= BMAX)
4204 * n: number of codes (assumed <= N_MAX)
4205 * s: number of simple-valued codes (0..s-1)
4206 * d: list of base values for non-simple codes
4207 * e: list of extra bits for non-simple codes
4208 * t: result: starting table
4209 * m: maximum lookup bits, returns actual
4210 * zs: for zalloc function
4212 * Given a list of code lengths and a maximum table size, make a set of
4213 * tables to decode that set of codes. Return Z_OK on success, Z_BUF_ERROR
4214 * if the given code set is incomplete (the tables are still built in this
4215 * case), Z_DATA_ERROR if the input is invalid (an over-subscribed set of
4216 * lengths), or Z_MEM_ERROR if not enough memory.
4218 local int
4219 huft_build(uIntf *b, uInt n, uInt s, const uIntf *d, const uIntf *e,
4220 inflate_huft * FAR *t, uIntf *m, z_streamp zs)
4223 uInt a; /* counter for codes of length k */
4224 uInt c[BMAX+1]; /* bit length count table */
4225 uInt f; /* i repeats in table every f entries */
4226 int g; /* maximum code length */
4227 int h; /* table level */
4228 uInt i; /* counter, current code */
4229 uInt j; /* counter */
4230 int k; /* number of bits in current code */
4231 int l; /* bits per table (returned in m) */
4232 uIntf *p; /* pointer into c[], b[], or v[] */
4233 inflate_huft *q; /* points to current table */
4234 struct inflate_huft_s r; /* table entry for structure assignment */
4235 inflate_huft *u[BMAX]; /* table stack */
4236 uInt v[N_MAX]; /* values in order of bit length */
4237 int w; /* bits before this table == (l * h) */
4238 uInt x[BMAX+1]; /* bit offsets, then code stack */
4239 uIntf *xp; /* pointer into x */
4240 int y; /* number of dummy codes added */
4241 uInt z; /* number of entries in current table */
4244 /* Generate counts for each bit length */
4245 p = c;
4246 #define C0 *p++ = 0;
4247 #define C2 C0 C0 C0 C0
4248 #define C4 C2 C2 C2 C2
4249 C4 /* clear c[]--assume BMAX+1 is 16 */
4250 p = b; i = n;
4251 do {
4252 c[*p++]++; /* assume all entries <= BMAX */
4253 } while (--i);
4254 if (c[0] == n) /* null input--all zero length codes */
4256 *t = (inflate_huft *)Z_NULL;
4257 *m = 0;
4258 return Z_OK;
4262 /* Find minimum and maximum length, bound *m by those */
4263 l = *m;
4264 for (j = 1; j <= BMAX; j++)
4265 if (c[j])
4266 break;
4267 k = j; /* minimum code length */
4268 if ((uInt)l < j)
4269 l = j;
4270 for (i = BMAX; i; i--)
4271 if (c[i])
4272 break;
4273 g = i; /* maximum code length */
4274 if ((uInt)l > i)
4275 l = i;
4276 *m = l;
4279 /* Adjust last length count to fill out codes, if needed */
4280 for (y = 1 << j; j < i; j++, y <<= 1)
4281 if ((y -= c[j]) < 0)
4282 return Z_DATA_ERROR;
4283 if ((y -= c[i]) < 0)
4284 return Z_DATA_ERROR;
4285 c[i] += y;
4288 /* Generate starting offsets into the value table for each length */
4289 x[1] = j = 0;
4290 p = c + 1; xp = x + 2;
4291 while (--i) { /* note that i == g from above */
4292 *xp++ = (j += *p++);
4296 /* Make a table of values in order of bit lengths */
4297 p = b; i = 0;
4298 do {
4299 if ((j = *p++) != 0)
4300 v[x[j]++] = i;
4301 } while (++i < n);
4302 n = x[g]; /* set n to length of v */
4305 /* Generate the Huffman codes and for each, make the table entries */
4306 x[0] = i = 0; /* first Huffman code is zero */
4307 p = v; /* grab values in bit order */
4308 h = -1; /* no tables yet--level -1 */
4309 w = -l; /* bits decoded == (l * h) */
4310 u[0] = (inflate_huft *)Z_NULL; /* just to keep compilers happy */
4311 q = (inflate_huft *)Z_NULL; /* ditto */
4312 z = 0; /* ditto */
4314 /* go through the bit lengths (k already is bits in shortest code) */
4315 for (; k <= g; k++)
4317 a = c[k];
4318 while (a--)
4320 /* here i is the Huffman code of length k bits for value *p */
4321 /* make tables up to required level */
4322 while (k > w + l)
4324 h++;
4325 w += l; /* previous table always l bits */
4327 /* compute minimum size table less than or equal to l bits */
4328 z = g - w;
4329 z = z > (uInt)l ? l : z; /* table size upper limit */
4330 if ((f = 1 << (j = k - w)) > a + 1) /* try a k-w bit table */
4331 { /* too few codes for k-w bit table */
4332 f -= a + 1; /* deduct codes from patterns left */
4333 xp = c + k;
4334 if (j < z)
4335 while (++j < z) /* try smaller tables up to z bits */
4337 if ((f <<= 1) <= *++xp)
4338 break; /* enough codes to use up j bits */
4339 f -= *xp; /* else deduct codes from patterns */
4342 z = 1 << j; /* table entries for j-bit table */
4344 /* allocate and link in new table */
4345 if ((q = (inflate_huft *)ZALLOC
4346 (zs,z + 1,sizeof(inflate_huft))) == Z_NULL)
4348 if (h)
4349 inflate_trees_free(u[0], zs);
4350 return Z_MEM_ERROR; /* not enough memory */
4352 #ifdef DEBUG_ZLIB
4353 inflate_hufts += z + 1;
4354 #endif
4355 *t = q + 1; /* link to list for huft_free() */
4356 *(t = &(q->next)) = Z_NULL;
4357 u[h] = ++q; /* table starts after link */
4359 /* connect to last table, if there is one */
4360 if (h)
4362 x[h] = i; /* save pattern for backing up */
4363 r.bits = (Byte)l; /* bits to dump before this table */
4364 r.exop = (Byte)j; /* bits in this table */
4365 r.next = q; /* pointer to this table */
4366 j = i >> (w - l); /* (get around Turbo C bug) */
4367 u[h-1][j] = r; /* connect to last table */
4371 /* set up table entry in r */
4372 r.bits = (Byte)(k - w);
4373 if (p >= v + n)
4374 r.exop = 128 + 64; /* out of values--invalid code */
4375 else if (*p < s)
4377 r.exop = (Byte)(*p < 256 ? 0 : 32 + 64); /* 256 is end-of-block */
4378 r.base = *p++; /* simple code is just the value */
4380 else
4382 r.exop = (Byte)(e[*p - s] + 16 + 64);/* non-simple--look up in lists */
4383 r.base = d[*p++ - s];
4386 /* fill code-like entries with r */
4387 f = 1 << (k - w);
4388 for (j = i >> w; j < z; j += f)
4389 q[j] = r;
4391 /* backwards increment the k-bit code i */
4392 for (j = 1 << (k - 1); i & j; j >>= 1)
4393 i ^= j;
4394 i ^= j;
4396 /* backup over finished tables */
4397 while ((i & ((1 << w) - 1)) != x[h])
4399 h--; /* don't need to update q */
4400 w -= l;
4406 /* Return Z_BUF_ERROR if we were given an incomplete table */
4407 return y != 0 && g != 1 ? Z_BUF_ERROR : Z_OK;
4411 * Parameters:
4412 * c: 19 code lengths
4413 * bb: bits tree desired/actual depth
4414 * tb: bits tree result
4415 * z: for zfree function
4418 inflate_trees_bits(uIntf *c, uIntf *bb, inflate_huft * FAR *tb, z_streamp z)
4420 int r;
4422 r = huft_build(c, 19, 19, (uIntf*)Z_NULL, (uIntf*)Z_NULL, tb, bb, z);
4423 if (r == Z_DATA_ERROR)
4424 z->msg = (char*)"oversubscribed dynamic bit lengths tree";
4425 else if (r == Z_BUF_ERROR || *bb == 0)
4427 inflate_trees_free(*tb, z);
4428 z->msg = (char*)"incomplete dynamic bit lengths tree";
4429 r = Z_DATA_ERROR;
4431 return r;
4435 * Parameters:
4436 * nl: number of literal/length codes
4437 * nd: number of distance codes
4438 * c: that many (total) code lengths
4439 * bl: literal desired/actual bit depth
4440 * bd: distance desired/actual bit depth
4441 * tl: literal/length tree result
4442 * td: distance tree result
4443 * z: for zfree function
4446 inflate_trees_dynamic(uInt nl, uInt nd, uIntf *c, uIntf *bl, uIntf *bd,
4447 inflate_huft * FAR *tl, inflate_huft * FAR *td,
4448 z_streamp z)
4450 int r;
4452 /* build literal/length tree */
4453 r = huft_build(c, nl, 257, cplens, cplext, tl, bl, z);
4454 if (r != Z_OK || *bl == 0)
4456 if (r == Z_DATA_ERROR)
4457 z->msg = (char*)"oversubscribed literal/length tree";
4458 else if (r != Z_MEM_ERROR)
4460 inflate_trees_free(*tl, z);
4461 z->msg = (char*)"incomplete literal/length tree";
4462 r = Z_DATA_ERROR;
4464 return r;
4467 /* build distance tree */
4468 r = huft_build(c + nl, nd, 0, cpdist, cpdext, td, bd, z);
4469 if (r != Z_OK || (*bd == 0 && nl > 257))
4471 if (r == Z_DATA_ERROR)
4472 z->msg = (char*)"oversubscribed distance tree";
4473 else if (r == Z_BUF_ERROR) {
4474 #ifdef PKZIP_BUG_WORKAROUND
4475 r = Z_OK;
4477 #else
4478 inflate_trees_free(*td, z);
4479 z->msg = (char*)"incomplete distance tree";
4480 r = Z_DATA_ERROR;
4482 else if (r != Z_MEM_ERROR)
4484 z->msg = (char*)"empty distance tree with lengths";
4485 r = Z_DATA_ERROR;
4487 inflate_trees_free(*tl, z);
4488 return r;
4489 #endif
4492 /* done */
4493 return Z_OK;
4497 /* build fixed tables only once--keep them here */
4498 local int fixed_built = 0;
4499 #define FIXEDH 530 /* number of hufts used by fixed tables */
4500 local inflate_huft fixed_mem[FIXEDH];
4501 local uInt fixed_bl;
4502 local uInt fixed_bd;
4503 local inflate_huft *fixed_tl;
4504 local inflate_huft *fixed_td;
4507 * Parameters:
4508 * q: opaque pointer
4509 * n: number of items
4510 * s: size of item
4512 local voidpf
4513 zfalloc(voidpf q, uInt n, uInt s)
4515 Assert(s == sizeof(inflate_huft) && n <= *(intf *)q,
4516 "inflate_trees zfalloc overflow");
4517 *(intf *)q -= n+s-s; /* s-s to avoid warning */
4518 return (voidpf)(fixed_mem + *(intf *)q);
4522 * Parameters:
4523 * bl: literal desired/actual bit depth
4524 * bd: distance desired/actual bit depth
4525 * tl: literal/length tree result
4526 * td: distance tree result
4529 inflate_trees_fixed(uIntf *bl, uIntf *bd, inflate_huft * FAR *tl,
4530 inflate_huft * FAR *td)
4532 /* build fixed tables if not already (multiple overlapped executions ok) */
4533 if (!fixed_built)
4535 int k; /* temporary variable */
4536 unsigned c[288]; /* length list for huft_build */
4537 z_stream z; /* for zfalloc function */
4538 int f = FIXEDH; /* number of hufts left in fixed_mem */
4540 /* set up fake z_stream for memory routines */
4541 z.zalloc = zfalloc;
4542 z.zfree = Z_NULL;
4543 z.opaque = (voidpf)&f;
4545 /* literal table */
4546 for (k = 0; k < 144; k++)
4547 c[k] = 8;
4548 for (; k < 256; k++)
4549 c[k] = 9;
4550 for (; k < 280; k++)
4551 c[k] = 7;
4552 for (; k < 288; k++)
4553 c[k] = 8;
4554 fixed_bl = 7;
4555 huft_build(c, 288, 257, cplens, cplext, &fixed_tl, &fixed_bl, &z);
4557 /* distance table */
4558 for (k = 0; k < 30; k++)
4559 c[k] = 5;
4560 fixed_bd = 5;
4561 huft_build(c, 30, 0, cpdist, cpdext, &fixed_td, &fixed_bd, &z);
4563 /* done */
4564 Assert(f == 0, "invalid build of fixed tables");
4565 fixed_built = 1;
4567 *bl = fixed_bl;
4568 *bd = fixed_bd;
4569 *tl = fixed_tl;
4570 *td = fixed_td;
4571 return Z_OK;
4575 * Parameters:
4576 * t: table to free
4577 * z: for zfree function
4578 * Free the malloc'ed tables built by huft_build(), which makes a linked
4579 * list of the tables it made, with the links in a dummy first entry of
4580 * each table.
4583 inflate_trees_free(inflate_huft *t, z_streamp z)
4585 inflate_huft *p, *q, *r;
4587 /* Reverse linked list */
4588 p = Z_NULL;
4589 q = t;
4590 while (q != Z_NULL)
4592 r = (q - 1)->next;
4593 (q - 1)->next = p;
4594 p = q;
4595 q = r;
4597 /* Go through linked list, freeing from the malloced (t[-1]) address. */
4598 while (p != Z_NULL)
4600 q = (--p)->next;
4601 ZFREE(z,p);
4602 p = q;
4604 return Z_OK;
4606 /* --- inftrees.c */
4608 /* +++ infcodes.c */
4609 /* infcodes.c -- process literals and length/distance pairs
4610 * Copyright (C) 1995-1996 Mark Adler
4611 * For conditions of distribution and use, see copyright notice in zlib.h
4614 /* #include "zutil.h" */
4615 /* #include "inftrees.h" */
4616 /* #include "infblock.h" */
4617 /* #include "infcodes.h" */
4618 /* #include "infutil.h" */
4620 /* +++ inffast.h */
4621 /* inffast.h -- header to use inffast.c
4622 * Copyright (C) 1995-1996 Mark Adler
4623 * For conditions of distribution and use, see copyright notice in zlib.h
4626 /* WARNING: this file should *not* be used by applications. It is
4627 part of the implementation of the compression library and is
4628 subject to change. Applications should only use zlib.h.
4631 extern int inflate_fast OF((
4632 uInt,
4633 uInt,
4634 inflate_huft *,
4635 inflate_huft *,
4636 inflate_blocks_statef *,
4637 z_streamp ));
4638 /* --- inffast.h */
4640 /* simplify the use of the inflate_huft type with some defines */
4641 #define base more.Base
4642 #define next more.Next
4643 #define exop word.what.Exop
4644 #define bits word.what.Bits
4646 /* inflate codes private state */
4647 struct inflate_codes_state {
4649 /* mode */
4650 enum { /* waiting for "i:"=input, "o:"=output, "x:"=nothing */
4651 START, /* x: set up for LEN */
4652 LEN, /* i: get length/literal/eob next */
4653 LENEXT, /* i: getting length extra (have base) */
4654 DIST, /* i: get distance next */
4655 DISTEXT, /* i: getting distance extra */
4656 COPY, /* o: copying bytes in window, waiting for space */
4657 LIT, /* o: got literal, waiting for output space */
4658 WASH, /* o: got eob, possibly still output waiting */
4659 END, /* x: got eob and all data flushed */
4660 BADCODE} /* x: got error */
4661 mode; /* current inflate_codes mode */
4663 /* mode dependent information */
4664 uInt len;
4665 union {
4666 struct {
4667 inflate_huft *tree; /* pointer into tree */
4668 uInt need; /* bits needed */
4669 } code; /* if LEN or DIST, where in tree */
4670 uInt lit; /* if LIT, literal */
4671 struct {
4672 uInt get; /* bits to get for extra */
4673 uInt dist; /* distance back to copy from */
4674 } copy; /* if EXT or COPY, where and how much */
4675 } sub; /* submode */
4677 /* mode independent information */
4678 Byte lbits; /* ltree bits decoded per branch */
4679 Byte dbits; /* dtree bits decoder per branch */
4680 inflate_huft *ltree; /* literal/length/eob tree */
4681 inflate_huft *dtree; /* distance tree */
4686 * Parameters:
4687 * td: need separate declaration for Borland C++
4689 inflate_codes_statef *
4690 inflate_codes_new(uInt bl, uInt bd, inflate_huft *tl, inflate_huft *td,
4691 z_streamp z)
4693 inflate_codes_statef *c;
4695 if ((c = (inflate_codes_statef *)
4696 ZALLOC(z,1,sizeof(struct inflate_codes_state))) != Z_NULL)
4698 c->mode = START;
4699 c->lbits = (Byte)bl;
4700 c->dbits = (Byte)bd;
4701 c->ltree = tl;
4702 c->dtree = td;
4703 Tracev((stderr, "inflate: codes new\n"));
4705 return c;
4710 inflate_codes(inflate_blocks_statef *s, z_streamp z, int r)
4712 uInt j; /* temporary storage */
4713 inflate_huft *t; /* temporary pointer */
4714 uInt e; /* extra bits or operation */
4715 uLong b; /* bit buffer */
4716 uInt k; /* bits in bit buffer */
4717 Bytef *p; /* input data pointer */
4718 uInt n; /* bytes available there */
4719 Bytef *q; /* output window write pointer */
4720 uInt m; /* bytes to end of window or read pointer */
4721 Bytef *f; /* pointer to copy strings from */
4722 inflate_codes_statef *c = s->sub.decode.codes; /* codes state */
4724 /* copy input/output information to locals (UPDATE macro restores) */
4725 LOAD
4727 /* process input and output based on current state */
4728 while (1) switch (c->mode)
4729 { /* waiting for "i:"=input, "o:"=output, "x:"=nothing */
4730 case START: /* x: set up for LEN */
4731 #ifndef SLOW
4732 if (m >= 258 && n >= 10)
4734 UPDATE
4735 r = inflate_fast(c->lbits, c->dbits, c->ltree, c->dtree, s, z);
4736 LOAD
4737 if (r != Z_OK)
4739 c->mode = r == Z_STREAM_END ? WASH : BADCODE;
4740 break;
4743 #endif /* !SLOW */
4744 c->sub.code.need = c->lbits;
4745 c->sub.code.tree = c->ltree;
4746 c->mode = LEN;
4747 case LEN: /* i: get length/literal/eob next */
4748 j = c->sub.code.need;
4749 NEEDBITS(j)
4750 t = c->sub.code.tree + ((uInt)b & inflate_mask[j]);
4751 DUMPBITS(t->bits)
4752 e = (uInt)(t->exop);
4753 if (e == 0) /* literal */
4755 c->sub.lit = t->base;
4756 Tracevv((stderr, t->base >= 0x20 && t->base < 0x7f ?
4757 "inflate: literal '%c'\n" :
4758 "inflate: literal 0x%02x\n", t->base));
4759 c->mode = LIT;
4760 break;
4762 if (e & 16) /* length */
4764 c->sub.copy.get = e & 15;
4765 c->len = t->base;
4766 c->mode = LENEXT;
4767 break;
4769 if ((e & 64) == 0) /* next table */
4771 c->sub.code.need = e;
4772 c->sub.code.tree = t->next;
4773 break;
4775 if (e & 32) /* end of block */
4777 Tracevv((stderr, "inflate: end of block\n"));
4778 c->mode = WASH;
4779 break;
4781 c->mode = BADCODE; /* invalid code */
4782 z->msg = (char*)"invalid literal/length code";
4783 r = Z_DATA_ERROR;
4784 LEAVE
4785 case LENEXT: /* i: getting length extra (have base) */
4786 j = c->sub.copy.get;
4787 NEEDBITS(j)
4788 c->len += (uInt)b & inflate_mask[j];
4789 DUMPBITS(j)
4790 c->sub.code.need = c->dbits;
4791 c->sub.code.tree = c->dtree;
4792 Tracevv((stderr, "inflate: length %u\n", c->len));
4793 c->mode = DIST;
4794 case DIST: /* i: get distance next */
4795 j = c->sub.code.need;
4796 NEEDBITS(j)
4797 t = c->sub.code.tree + ((uInt)b & inflate_mask[j]);
4798 DUMPBITS(t->bits)
4799 e = (uInt)(t->exop);
4800 if (e & 16) /* distance */
4802 c->sub.copy.get = e & 15;
4803 c->sub.copy.dist = t->base;
4804 c->mode = DISTEXT;
4805 break;
4807 if ((e & 64) == 0) /* next table */
4809 c->sub.code.need = e;
4810 c->sub.code.tree = t->next;
4811 break;
4813 c->mode = BADCODE; /* invalid code */
4814 z->msg = (char*)"invalid distance code";
4815 r = Z_DATA_ERROR;
4816 LEAVE
4817 case DISTEXT: /* i: getting distance extra */
4818 j = c->sub.copy.get;
4819 NEEDBITS(j)
4820 c->sub.copy.dist += (uInt)b & inflate_mask[j];
4821 DUMPBITS(j)
4822 Tracevv((stderr, "inflate: distance %u\n", c->sub.copy.dist));
4823 c->mode = COPY;
4824 case COPY: /* o: copying bytes in window, waiting for space */
4825 #ifndef __TURBOC__ /* Turbo C bug for following expression */
4826 f = (uInt)(q - s->window) < c->sub.copy.dist ?
4827 s->end - (c->sub.copy.dist - (q - s->window)) :
4828 q - c->sub.copy.dist;
4829 #else
4830 f = q - c->sub.copy.dist;
4831 if ((uInt)(q - s->window) < c->sub.copy.dist)
4832 f = s->end - (c->sub.copy.dist - (uInt)(q - s->window));
4833 #endif
4834 while (c->len)
4836 NEEDOUT
4837 OUTBYTE(*f++)
4838 if (f == s->end)
4839 f = s->window;
4840 c->len--;
4842 c->mode = START;
4843 break;
4844 case LIT: /* o: got literal, waiting for output space */
4845 NEEDOUT
4846 OUTBYTE(c->sub.lit)
4847 c->mode = START;
4848 break;
4849 case WASH: /* o: got eob, possibly more output */
4850 FLUSH
4851 if (s->read != s->write)
4852 LEAVE
4853 c->mode = END;
4854 case END:
4855 r = Z_STREAM_END;
4856 LEAVE
4857 case BADCODE: /* x: got error */
4858 r = Z_DATA_ERROR;
4859 LEAVE
4860 default:
4861 r = Z_STREAM_ERROR;
4862 LEAVE
4867 void
4868 inflate_codes_free(inflate_codes_statef *c, z_streamp z)
4870 ZFREE(z, c);
4871 Tracev((stderr, "inflate: codes free\n"));
4873 /* --- infcodes.c */
4875 /* +++ infutil.c */
4876 /* inflate_util.c -- data and routines common to blocks and codes
4877 * Copyright (C) 1995-1996 Mark Adler
4878 * For conditions of distribution and use, see copyright notice in zlib.h
4881 /* #include "zutil.h" */
4882 /* #include "infblock.h" */
4883 /* #include "inftrees.h" */
4884 /* #include "infcodes.h" */
4885 /* #include "infutil.h" */
4887 #ifndef NO_DUMMY_DECL
4888 struct inflate_codes_state {int dummy;}; /* for buggy compilers */
4889 #endif
4891 /* And'ing with mask[n] masks the lower n bits */
4892 uInt inflate_mask[17] = {
4893 0x0000,
4894 0x0001, 0x0003, 0x0007, 0x000f, 0x001f, 0x003f, 0x007f, 0x00ff,
4895 0x01ff, 0x03ff, 0x07ff, 0x0fff, 0x1fff, 0x3fff, 0x7fff, 0xffff
4899 /* copy as much as possible from the sliding window to the output area */
4901 inflate_flush(inflate_blocks_statef *s, z_streamp z, int r)
4903 uInt n;
4904 Bytef *p;
4905 Bytef *q;
4907 /* local copies of source and destination pointers */
4908 p = z->next_out;
4909 q = s->read;
4911 /* compute number of bytes to copy as far as end of window */
4912 n = (uInt)((q <= s->write ? s->write : s->end) - q);
4913 if (n > z->avail_out) n = z->avail_out;
4914 if (n && r == Z_BUF_ERROR) r = Z_OK;
4916 /* update counters */
4917 z->avail_out -= n;
4918 z->total_out += n;
4920 /* update check information */
4921 if (s->checkfn != Z_NULL)
4922 z->adler = s->check = (*s->checkfn)(s->check, q, n);
4924 /* copy as far as end of window */
4925 if (p != Z_NULL) {
4926 zmemcpy(p, q, n);
4927 p += n;
4929 q += n;
4931 /* see if more to copy at beginning of window */
4932 if (q == s->end)
4934 /* wrap pointers */
4935 q = s->window;
4936 if (s->write == s->end)
4937 s->write = s->window;
4939 /* compute bytes to copy */
4940 n = (uInt)(s->write - q);
4941 if (n > z->avail_out) n = z->avail_out;
4942 if (n && r == Z_BUF_ERROR) r = Z_OK;
4944 /* update counters */
4945 z->avail_out -= n;
4946 z->total_out += n;
4948 /* update check information */
4949 if (s->checkfn != Z_NULL)
4950 z->adler = s->check = (*s->checkfn)(s->check, q, n);
4952 /* copy */
4953 if (p != Z_NULL) {
4954 zmemcpy(p, q, n);
4955 p += n;
4957 q += n;
4960 /* update pointers */
4961 z->next_out = p;
4962 s->read = q;
4964 /* done */
4965 return r;
4967 /* --- infutil.c */
4969 /* +++ inffast.c */
4970 /* inffast.c -- process literals and length/distance pairs fast
4971 * Copyright (C) 1995-1996 Mark Adler
4972 * For conditions of distribution and use, see copyright notice in zlib.h
4975 /* #include "zutil.h" */
4976 /* #include "inftrees.h" */
4977 /* #include "infblock.h" */
4978 /* #include "infcodes.h" */
4979 /* #include "infutil.h" */
4980 /* #include "inffast.h" */
4982 #ifndef NO_DUMMY_DECL
4983 struct inflate_codes_state {int dummy;}; /* for buggy compilers */
4984 #endif
4986 /* simplify the use of the inflate_huft type with some defines */
4987 #define base more.Base
4988 #define next more.Next
4989 #define exop word.what.Exop
4990 #define bits word.what.Bits
4992 /* macros for bit input with no checking and for returning unused bytes */
4993 #define GRABBITS(j) {while(k<(j)){b|=((uLong)NEXTBYTE)<<k;k+=8;}}
4994 #define UNGRAB {n+=(c=k>>3);p-=c;k&=7;}
4996 /* Called with number of bytes left to write in window at least 258
4997 * (the maximum string length) and number of input bytes available
4998 * at least ten. The ten bytes are six bytes for the longest length/
4999 * distance pair plus four bytes for overloading the bit buffer.
5001 * Parameters:
5002 * td: need separate declaration for Borland C++
5005 inflate_fast(uInt bl, uInt bd, inflate_huft *tl, inflate_huft *td,
5006 inflate_blocks_statef *s, z_streamp z)
5008 inflate_huft *t; /* temporary pointer */
5009 uInt e; /* extra bits or operation */
5010 uLong b; /* bit buffer */
5011 uInt k; /* bits in bit buffer */
5012 Bytef *p; /* input data pointer */
5013 uInt n; /* bytes available there */
5014 Bytef *q; /* output window write pointer */
5015 uInt m; /* bytes to end of window or read pointer */
5016 uInt ml; /* mask for literal/length tree */
5017 uInt md; /* mask for distance tree */
5018 uInt c; /* bytes to copy */
5019 uInt d; /* distance back to copy from */
5020 Bytef *r; /* copy source pointer */
5022 /* load input, output, bit values */
5023 LOAD
5025 /* initialize masks */
5026 ml = inflate_mask[bl];
5027 md = inflate_mask[bd];
5029 /* do until not enough input or output space for fast loop */
5030 do { /* assume called with m >= 258 && n >= 10 */
5031 /* get literal/length code */
5032 GRABBITS(20) /* max bits for literal/length code */
5033 if ((e = (t = tl + ((uInt)b & ml))->exop) == 0)
5035 DUMPBITS(t->bits)
5036 Tracevv((stderr, t->base >= 0x20 && t->base < 0x7f ?
5037 "inflate: * literal '%c'\n" :
5038 "inflate: * literal 0x%02x\n", t->base));
5039 *q++ = (Byte)t->base;
5040 m--;
5041 continue;
5043 do {
5044 DUMPBITS(t->bits)
5045 if (e & 16)
5047 /* get extra bits for length */
5048 e &= 15;
5049 c = t->base + ((uInt)b & inflate_mask[e]);
5050 DUMPBITS(e)
5051 Tracevv((stderr, "inflate: * length %u\n", c));
5053 /* decode distance base of block to copy */
5054 GRABBITS(15); /* max bits for distance code */
5055 e = (t = td + ((uInt)b & md))->exop;
5056 do {
5057 DUMPBITS(t->bits)
5058 if (e & 16)
5060 /* get extra bits to add to distance base */
5061 e &= 15;
5062 GRABBITS(e) /* get extra bits (up to 13) */
5063 d = t->base + ((uInt)b & inflate_mask[e]);
5064 DUMPBITS(e)
5065 Tracevv((stderr, "inflate: * distance %u\n", d));
5067 /* do the copy */
5068 m -= c;
5069 if ((uInt)(q - s->window) >= d) /* offset before dest */
5070 { /* just copy */
5071 r = q - d;
5072 *q++ = *r++; c--; /* minimum count is three, */
5073 *q++ = *r++; c--; /* so unroll loop a little */
5075 else /* else offset after destination */
5077 e = d - (uInt)(q - s->window); /* bytes from offset to end */
5078 r = s->end - e; /* pointer to offset */
5079 if (c > e) /* if source crosses, */
5081 c -= e; /* copy to end of window */
5082 do {
5083 *q++ = *r++;
5084 } while (--e);
5085 r = s->window; /* copy rest from start of window */
5088 do { /* copy all or what's left */
5089 *q++ = *r++;
5090 } while (--c);
5091 break;
5093 else if ((e & 64) == 0)
5094 e = (t = t->next + ((uInt)b & inflate_mask[e]))->exop;
5095 else
5097 z->msg = (char*)"invalid distance code";
5098 UNGRAB
5099 UPDATE
5100 return Z_DATA_ERROR;
5102 } while (1);
5103 break;
5105 if ((e & 64) == 0)
5107 if ((e = (t = t->next + ((uInt)b & inflate_mask[e]))->exop) == 0)
5109 DUMPBITS(t->bits)
5110 Tracevv((stderr, t->base >= 0x20 && t->base < 0x7f ?
5111 "inflate: * literal '%c'\n" :
5112 "inflate: * literal 0x%02x\n", t->base));
5113 *q++ = (Byte)t->base;
5114 m--;
5115 break;
5118 else if (e & 32)
5120 Tracevv((stderr, "inflate: * end of block\n"));
5121 UNGRAB
5122 UPDATE
5123 return Z_STREAM_END;
5125 else
5127 z->msg = (char*)"invalid literal/length code";
5128 UNGRAB
5129 UPDATE
5130 return Z_DATA_ERROR;
5132 } while (1);
5133 } while (m >= 258 && n >= 10);
5135 /* not enough input or output--restore pointers and return */
5136 UNGRAB
5137 UPDATE
5138 return Z_OK;
5140 /* --- inffast.c */
5142 /* +++ zutil.c */
5143 /* zutil.c -- target dependent utility functions for the compression library
5144 * Copyright (C) 1995-1996 Jean-loup Gailly.
5145 * For conditions of distribution and use, see copyright notice in zlib.h
5148 /* From: zutil.c,v 1.17 1996/07/24 13:41:12 me Exp $ */
5150 #ifdef DEBUG_ZLIB
5151 #include <stdio.h>
5152 #endif
5154 /* #include "zutil.h" */
5156 #ifndef NO_DUMMY_DECL
5157 struct internal_state {int dummy;}; /* for buggy compilers */
5158 #endif
5160 #ifndef STDC
5161 extern void exit OF((int));
5162 #endif
5164 const char
5165 *zlibVersion(void)
5167 return ZLIB_VERSION;
5170 #ifdef DEBUG_ZLIB
5171 void
5172 z_error(char *m)
5174 fprintf(stderr, "%s\n", m);
5175 exit(1);
5177 #endif
5179 #ifndef HAVE_MEMCPY
5181 void
5182 zmemcpy(Bytef *dest, Bytef *source, uInt len)
5184 if (len == 0) return;
5185 do {
5186 *dest++ = *source++; /* ??? to be unrolled */
5187 } while (--len != 0);
5191 zmemcmp(Bytef *s1, Bytef *s2, uInt len)
5193 uInt j;
5195 for (j = 0; j < len; j++) {
5196 if (s1[j] != s2[j]) return 2*(s1[j] > s2[j])-1;
5198 return 0;
5201 void
5202 zmemzero(Bytef *dest, uInt len)
5204 if (len == 0) return;
5205 do {
5206 *dest++ = 0; /* ??? to be unrolled */
5207 } while (--len != 0);
5209 #endif
5211 #ifdef __TURBOC__
5212 #if (defined( __BORLANDC__) || !defined(SMALL_MEDIUM)) && !defined(__32BIT__)
5213 /* Small and medium model in Turbo C are for now limited to near allocation
5214 * with reduced MAX_WBITS and MAX_MEM_LEVEL
5216 # define MY_ZCALLOC
5218 /* Turbo C malloc() does not allow dynamic allocation of 64K bytes
5219 * and farmalloc(64K) returns a pointer with an offset of 8, so we
5220 * must fix the pointer. Warning: the pointer must be put back to its
5221 * original form in order to free it, use zcfree().
5224 #define MAX_PTR 10
5225 /* 10*64K = 640K */
5227 local int next_ptr = 0;
5229 typedef struct ptr_table_s {
5230 voidpf org_ptr;
5231 voidpf new_ptr;
5232 } ptr_table;
5234 local ptr_table table[MAX_PTR];
5235 /* This table is used to remember the original form of pointers
5236 * to large buffers (64K). Such pointers are normalized with a zero offset.
5237 * Since MSDOS is not a preemptive multitasking OS, this table is not
5238 * protected from concurrent access. This hack doesn't work anyway on
5239 * a protected system like OS/2. Use Microsoft C instead.
5242 voidpf
5243 zcalloc(voidpf opaque, unsigned items, unsigned size)
5245 voidpf buf = opaque; /* just to make some compilers happy */
5246 ulg bsize = (ulg)items*size;
5248 /* If we allocate less than 65520 bytes, we assume that farmalloc
5249 * will return a usable pointer which doesn't have to be normalized.
5251 if (bsize < 65520L) {
5252 buf = farmalloc(bsize);
5253 if (*(ush*)&buf != 0) return buf;
5254 } else {
5255 buf = farmalloc(bsize + 16L);
5257 if (buf == NULL || next_ptr >= MAX_PTR) return NULL;
5258 table[next_ptr].org_ptr = buf;
5260 /* Normalize the pointer to seg:0 */
5261 *((ush*)&buf+1) += ((ush)((uch*)buf-0) + 15) >> 4;
5262 *(ush*)&buf = 0;
5263 table[next_ptr++].new_ptr = buf;
5264 return buf;
5267 void
5268 zcfree(voidpf opaque, voidpf ptr)
5270 int n;
5271 if (*(ush*)&ptr != 0) { /* object < 64K */
5272 farfree(ptr);
5273 return;
5275 /* Find the original pointer */
5276 for (n = 0; n < next_ptr; n++) {
5277 if (ptr != table[n].new_ptr) continue;
5279 farfree(table[n].org_ptr);
5280 while (++n < next_ptr) {
5281 table[n-1] = table[n];
5283 next_ptr--;
5284 return;
5286 ptr = opaque; /* just to make some compilers happy */
5287 Assert(0, "zcfree: ptr not found");
5289 #endif
5290 #endif /* __TURBOC__ */
5293 #if defined(M_I86) && !defined(__32BIT__)
5294 /* Microsoft C in 16-bit mode */
5296 # define MY_ZCALLOC
5298 #if (!defined(_MSC_VER) || (_MSC_VER < 600))
5299 # define _halloc halloc
5300 # define _hfree hfree
5301 #endif
5303 voidpf
5304 zcalloc(voidpf opaque, unsigned items, unsigned size)
5306 if (opaque) opaque = 0; /* to make compiler happy */
5307 return _halloc((long)items, size);
5310 void
5311 zcfree(voidpf opaque, voidpf ptr)
5313 if (opaque) opaque = 0; /* to make compiler happy */
5314 _hfree(ptr);
5317 #endif /* MSC */
5320 #ifndef MY_ZCALLOC /* Any system without a special alloc function */
5322 #ifndef STDC
5323 extern voidp calloc OF((uInt items, uInt size));
5324 extern void free OF((voidpf ptr));
5325 #endif
5327 voidpf
5328 zcalloc(voidpf opaque, unsigned items, unsigned size)
5330 if (opaque) items += size - size; /* make compiler happy */
5331 return (voidpf)calloc(items, size);
5334 void
5335 zcfree(voidpf opaque, voidpf ptr)
5337 free(ptr);
5338 if (opaque) return; /* make compiler happy */
5341 #endif /* MY_ZCALLOC */
5342 /* --- zutil.c */
5344 /* +++ adler32.c */
5345 /* adler32.c -- compute the Adler-32 checksum of a data stream
5346 * Copyright (C) 1995-1996 Mark Adler
5347 * For conditions of distribution and use, see copyright notice in zlib.h
5350 /* From: adler32.c,v 1.10 1996/05/22 11:52:18 me Exp $ */
5352 /* #include "zlib.h" */
5354 #define BASE 65521L /* largest prime smaller than 65536 */
5355 #define NMAX 5552
5356 /* NMAX is the largest n such that 255n(n+1)/2 + (n+1)(BASE-1) <= 2^32-1 */
5358 #define DO1(buf,i) {s1 += buf[i]; s2 += s1;}
5359 #define DO2(buf,i) DO1(buf,i); DO1(buf,i+1);
5360 #define DO4(buf,i) DO2(buf,i); DO2(buf,i+2);
5361 #define DO8(buf,i) DO4(buf,i); DO4(buf,i+4);
5362 #define DO16(buf) DO8(buf,0); DO8(buf,8);
5364 /* ========================================================================= */
5365 uLong
5366 adler32(uLong adler, const Bytef *buf, uInt len)
5368 unsigned long s1 = adler & 0xffff;
5369 unsigned long s2 = (adler >> 16) & 0xffff;
5370 int k;
5372 if (buf == Z_NULL) return 1L;
5374 while (len > 0) {
5375 k = len < NMAX ? len : NMAX;
5376 len -= k;
5377 while (k >= 16) {
5378 DO16(buf);
5379 buf += 16;
5380 k -= 16;
5382 if (k != 0) do {
5383 s1 += *buf++;
5384 s2 += s1;
5385 } while (--k);
5386 s1 %= BASE;
5387 s2 %= BASE;
5389 return (s2 << 16) | s1;
5391 /* --- adler32.c */
5393 MODULE_VERSION(zlib, 1);