kernel: Remove the COMPAT_43 kernel option along with all related code.
[dragonfly.git] / sys / platform / vkernel64 / x86_64 / cpu_regs.c
blob550e78cf5f9b8acebd54971a34bb770a6ec33976
1 /*-
2 * Copyright (c) 1992 Terrence R. Lambert.
3 * Copyright (C) 1994, David Greenman
4 * Copyright (c) 1982, 1987, 1990, 1993
5 * The Regents of the University of California. All rights reserved.
7 * This code is derived from software contributed to Berkeley by
8 * William Jolitz.
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 * notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in the
17 * documentation and/or other materials provided with the distribution.
18 * 3. All advertising materials mentioning features or use of this software
19 * must display the following acknowledgement:
20 * This product includes software developed by the University of
21 * California, Berkeley and its contributors.
22 * 4. Neither the name of the University nor the names of its contributors
23 * may be used to endorse or promote products derived from this software
24 * without specific prior written permission.
26 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
27 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
28 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
29 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
30 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
31 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
32 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
33 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
34 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
35 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
36 * SUCH DAMAGE.
38 * from: @(#)machdep.c 7.4 (Berkeley) 6/3/91
39 * $FreeBSD: src/sys/i386/i386/machdep.c,v 1.385.2.30 2003/05/31 08:48:05 alc Exp $
42 #include "opt_ddb.h"
43 #include "opt_directio.h"
44 #include "opt_inet.h"
45 #include "opt_msgbuf.h"
46 #include "opt_swap.h"
48 #include <sys/param.h>
49 #include <sys/systm.h>
50 #include <sys/sysproto.h>
51 #include <sys/signalvar.h>
52 #include <sys/kernel.h>
53 #include <sys/linker.h>
54 #include <sys/malloc.h>
55 #include <sys/proc.h>
56 #include <sys/buf.h>
57 #include <sys/reboot.h>
58 #include <sys/mbuf.h>
59 #include <sys/msgbuf.h>
60 #include <sys/sysent.h>
61 #include <sys/sysctl.h>
62 #include <sys/vmmeter.h>
63 #include <sys/bus.h>
64 #include <sys/usched.h>
65 #include <sys/reg.h>
67 #include <vm/vm.h>
68 #include <vm/vm_param.h>
69 #include <sys/lock.h>
70 #include <vm/vm_kern.h>
71 #include <vm/vm_object.h>
72 #include <vm/vm_page.h>
73 #include <vm/vm_map.h>
74 #include <vm/vm_pager.h>
75 #include <vm/vm_extern.h>
77 #include <sys/thread2.h>
78 #include <sys/mplock2.h>
80 #include <sys/user.h>
81 #include <sys/exec.h>
82 #include <sys/cons.h>
84 #include <ddb/ddb.h>
86 #include <machine/cpu.h>
87 #include <machine/clock.h>
88 #include <machine/specialreg.h>
89 #include <machine/md_var.h>
90 #include <machine/pcb_ext.h> /* pcb.h included via sys/user.h */
91 #include <machine/globaldata.h> /* CPU_prvspace */
92 #include <machine/smp.h>
93 #include <machine/cputypes.h>
95 #include <bus/isa/rtc.h>
96 #include <sys/random.h>
97 #include <sys/ptrace.h>
98 #include <machine/sigframe.h>
99 #include <unistd.h> /* umtx_* functions */
100 #include <pthread.h> /* pthread_yield() */
102 extern void dblfault_handler (void);
104 static void set_fpregs_xmm (struct save87 *, struct savexmm *);
105 static void fill_fpregs_xmm (struct savexmm *, struct save87 *);
106 #ifdef DIRECTIO
107 extern void ffs_rawread_setup(void);
108 #endif /* DIRECTIO */
110 int64_t tsc_offsets[MAXCPU];
112 #if defined(SWTCH_OPTIM_STATS)
113 extern int swtch_optim_stats;
114 SYSCTL_INT(_debug, OID_AUTO, swtch_optim_stats,
115 CTLFLAG_RD, &swtch_optim_stats, 0, "");
116 SYSCTL_INT(_debug, OID_AUTO, tlb_flush_count,
117 CTLFLAG_RD, &tlb_flush_count, 0, "");
118 #endif
120 static int
121 sysctl_hw_physmem(SYSCTL_HANDLER_ARGS)
123 u_long pmem = ctob(physmem);
125 int error = sysctl_handle_long(oidp, &pmem, 0, req);
126 return (error);
129 SYSCTL_PROC(_hw, HW_PHYSMEM, physmem, CTLTYPE_ULONG|CTLFLAG_RD,
130 0, 0, sysctl_hw_physmem, "LU", "Total system memory in bytes (number of pages * page size)");
132 static int
133 sysctl_hw_usermem(SYSCTL_HANDLER_ARGS)
135 /* JG */
136 int error = sysctl_handle_int(oidp, 0,
137 ctob((int)Maxmem - vmstats.v_wire_count), req);
138 return (error);
141 SYSCTL_PROC(_hw, HW_USERMEM, usermem, CTLTYPE_INT|CTLFLAG_RD,
142 0, 0, sysctl_hw_usermem, "IU", "");
144 SYSCTL_ULONG(_hw, OID_AUTO, availpages, CTLFLAG_RD, &Maxmem, 0, "");
147 * Send an interrupt to process.
149 * Stack is set up to allow sigcode stored
150 * at top to call routine, followed by kcall
151 * to sigreturn routine below. After sigreturn
152 * resets the signal mask, the stack, and the
153 * frame pointer, it returns to the user
154 * specified pc, psl.
156 void
157 sendsig(sig_t catcher, int sig, sigset_t *mask, u_long code)
159 struct lwp *lp = curthread->td_lwp;
160 struct proc *p = lp->lwp_proc;
161 struct trapframe *regs;
162 struct sigacts *psp = p->p_sigacts;
163 struct sigframe sf, *sfp;
164 int oonstack;
165 char *sp;
167 regs = lp->lwp_md.md_regs;
168 oonstack = (lp->lwp_sigstk.ss_flags & SS_ONSTACK) ? 1 : 0;
170 /* Save user context */
171 bzero(&sf, sizeof(struct sigframe));
172 sf.sf_uc.uc_sigmask = *mask;
173 sf.sf_uc.uc_stack = lp->lwp_sigstk;
174 sf.sf_uc.uc_mcontext.mc_onstack = oonstack;
175 KKASSERT(__offsetof(struct trapframe, tf_rdi) == 0);
176 bcopy(regs, &sf.sf_uc.uc_mcontext.mc_rdi, sizeof(struct trapframe));
178 /* Make the size of the saved context visible to userland */
179 sf.sf_uc.uc_mcontext.mc_len = sizeof(sf.sf_uc.uc_mcontext);
181 /* Allocate and validate space for the signal handler context. */
182 if ((lp->lwp_flags & LWP_ALTSTACK) != 0 && !oonstack &&
183 SIGISMEMBER(psp->ps_sigonstack, sig)) {
184 sp = (char *)(lp->lwp_sigstk.ss_sp + lp->lwp_sigstk.ss_size -
185 sizeof(struct sigframe));
186 lp->lwp_sigstk.ss_flags |= SS_ONSTACK;
187 } else {
188 /* We take red zone into account */
189 sp = (char *)regs->tf_rsp - sizeof(struct sigframe) - 128;
192 /* Align to 16 bytes */
193 sfp = (struct sigframe *)((intptr_t)sp & ~0xFUL);
195 /* Translate the signal is appropriate */
196 if (p->p_sysent->sv_sigtbl) {
197 if (sig <= p->p_sysent->sv_sigsize)
198 sig = p->p_sysent->sv_sigtbl[_SIG_IDX(sig)];
202 * Build the argument list for the signal handler.
204 * Arguments are in registers (%rdi, %rsi, %rdx, %rcx)
206 regs->tf_rdi = sig; /* argument 1 */
207 regs->tf_rdx = (register_t)&sfp->sf_uc; /* argument 3 */
209 if (SIGISMEMBER(psp->ps_siginfo, sig)) {
211 * Signal handler installed with SA_SIGINFO.
213 * action(signo, siginfo, ucontext)
215 regs->tf_rsi = (register_t)&sfp->sf_si; /* argument 2 */
216 regs->tf_rcx = (register_t)regs->tf_err; /* argument 4 */
217 sf.sf_ahu.sf_action = (__siginfohandler_t *)catcher;
219 /* fill siginfo structure */
220 sf.sf_si.si_signo = sig;
221 sf.sf_si.si_code = code;
222 sf.sf_si.si_addr = (void *)regs->tf_addr;
223 } else {
225 * Old FreeBSD-style arguments.
227 * handler (signo, code, [uc], addr)
229 regs->tf_rsi = (register_t)code; /* argument 2 */
230 regs->tf_rcx = (register_t)regs->tf_addr; /* argument 4 */
231 sf.sf_ahu.sf_handler = catcher;
234 #if 0
236 * If we're a vm86 process, we want to save the segment registers.
237 * We also change eflags to be our emulated eflags, not the actual
238 * eflags.
240 if (regs->tf_eflags & PSL_VM) {
241 struct trapframe_vm86 *tf = (struct trapframe_vm86 *)regs;
242 struct vm86_kernel *vm86 = &lp->lwp_thread->td_pcb->pcb_ext->ext_vm86;
244 sf.sf_uc.uc_mcontext.mc_gs = tf->tf_vm86_gs;
245 sf.sf_uc.uc_mcontext.mc_fs = tf->tf_vm86_fs;
246 sf.sf_uc.uc_mcontext.mc_es = tf->tf_vm86_es;
247 sf.sf_uc.uc_mcontext.mc_ds = tf->tf_vm86_ds;
249 if (vm86->vm86_has_vme == 0)
250 sf.sf_uc.uc_mcontext.mc_eflags =
251 (tf->tf_eflags & ~(PSL_VIF | PSL_VIP)) |
252 (vm86->vm86_eflags & (PSL_VIF | PSL_VIP));
255 * Clear PSL_NT to inhibit T_TSSFLT faults on return from
256 * syscalls made by the signal handler. This just avoids
257 * wasting time for our lazy fixup of such faults. PSL_NT
258 * does nothing in vm86 mode, but vm86 programs can set it
259 * almost legitimately in probes for old cpu types.
261 tf->tf_eflags &= ~(PSL_VM | PSL_NT | PSL_VIF | PSL_VIP);
263 #endif
266 * Save the FPU state and reinit the FP unit
268 npxpush(&sf.sf_uc.uc_mcontext);
271 * Copy the sigframe out to the user's stack.
273 if (copyout(&sf, sfp, sizeof(struct sigframe)) != 0) {
275 * Something is wrong with the stack pointer.
276 * ...Kill the process.
278 sigexit(lp, SIGILL);
281 regs->tf_rsp = (register_t)sfp;
282 regs->tf_rip = PS_STRINGS - *(p->p_sysent->sv_szsigcode);
285 * i386 abi specifies that the direction flag must be cleared
286 * on function entry
288 regs->tf_rflags &= ~(PSL_T|PSL_D);
291 * 64 bit mode has a code and stack selector but
292 * no data or extra selector. %fs and %gs are not
293 * stored in-context.
295 regs->tf_cs = _ucodesel;
296 regs->tf_ss = _udatasel;
300 * Sanitize the trapframe for a virtual kernel passing control to a custom
301 * VM context. Remove any items that would otherwise create a privilage
302 * issue.
304 * XXX at the moment we allow userland to set the resume flag. Is this a
305 * bad idea?
308 cpu_sanitize_frame(struct trapframe *frame)
310 frame->tf_cs = _ucodesel;
311 frame->tf_ss = _udatasel;
312 /* XXX VM (8086) mode not supported? */
313 frame->tf_rflags &= (PSL_RF | PSL_USERCHANGE | PSL_VM_UNSUPP);
314 frame->tf_rflags |= PSL_RESERVED_DEFAULT | PSL_I;
316 return(0);
320 * Sanitize the tls so loading the descriptor does not blow up
321 * on us. For x86_64 we don't have to do anything.
324 cpu_sanitize_tls(struct savetls *tls)
326 return(0);
330 * sigreturn(ucontext_t *sigcntxp)
332 * System call to cleanup state after a signal
333 * has been taken. Reset signal mask and
334 * stack state from context left by sendsig (above).
335 * Return to previous pc and psl as specified by
336 * context left by sendsig. Check carefully to
337 * make sure that the user has not modified the
338 * state to gain improper privileges.
340 #define EFL_SECURE(ef, oef) ((((ef) ^ (oef)) & ~PSL_USERCHANGE) == 0)
341 #define CS_SECURE(cs) (ISPL(cs) == SEL_UPL)
344 sys_sigreturn(struct sigreturn_args *uap)
346 struct lwp *lp = curthread->td_lwp;
347 struct trapframe *regs;
348 ucontext_t uc;
349 ucontext_t *ucp;
350 register_t rflags;
351 int cs;
352 int error;
355 * We have to copy the information into kernel space so userland
356 * can't modify it while we are sniffing it.
358 regs = lp->lwp_md.md_regs;
359 error = copyin(uap->sigcntxp, &uc, sizeof(uc));
360 if (error)
361 return (error);
362 ucp = &uc;
363 rflags = ucp->uc_mcontext.mc_rflags;
365 /* VM (8086) mode not supported */
366 rflags &= ~PSL_VM_UNSUPP;
368 #if 0
369 if (eflags & PSL_VM) {
370 struct trapframe_vm86 *tf = (struct trapframe_vm86 *)regs;
371 struct vm86_kernel *vm86;
374 * if pcb_ext == 0 or vm86_inited == 0, the user hasn't
375 * set up the vm86 area, and we can't enter vm86 mode.
377 if (lp->lwp_thread->td_pcb->pcb_ext == 0)
378 return (EINVAL);
379 vm86 = &lp->lwp_thread->td_pcb->pcb_ext->ext_vm86;
380 if (vm86->vm86_inited == 0)
381 return (EINVAL);
383 /* go back to user mode if both flags are set */
384 if ((eflags & PSL_VIP) && (eflags & PSL_VIF))
385 trapsignal(lp->lwp_proc, SIGBUS, 0);
387 if (vm86->vm86_has_vme) {
388 eflags = (tf->tf_eflags & ~VME_USERCHANGE) |
389 (eflags & VME_USERCHANGE) | PSL_VM;
390 } else {
391 vm86->vm86_eflags = eflags; /* save VIF, VIP */
392 eflags = (tf->tf_eflags & ~VM_USERCHANGE) | (eflags & VM_USERCHANGE) | PSL_VM;
394 bcopy(&ucp.uc_mcontext.mc_gs, tf, sizeof(struct trapframe));
395 tf->tf_eflags = eflags;
396 tf->tf_vm86_ds = tf->tf_ds;
397 tf->tf_vm86_es = tf->tf_es;
398 tf->tf_vm86_fs = tf->tf_fs;
399 tf->tf_vm86_gs = tf->tf_gs;
400 tf->tf_ds = _udatasel;
401 tf->tf_es = _udatasel;
402 #if 0
403 tf->tf_fs = _udatasel;
404 tf->tf_gs = _udatasel;
405 #endif
406 } else
407 #endif
410 * Don't allow users to change privileged or reserved flags.
413 * XXX do allow users to change the privileged flag PSL_RF.
414 * The cpu sets PSL_RF in tf_eflags for faults. Debuggers
415 * should sometimes set it there too. tf_eflags is kept in
416 * the signal context during signal handling and there is no
417 * other place to remember it, so the PSL_RF bit may be
418 * corrupted by the signal handler without us knowing.
419 * Corruption of the PSL_RF bit at worst causes one more or
420 * one less debugger trap, so allowing it is fairly harmless.
422 if (!EFL_SECURE(rflags & ~PSL_RF, regs->tf_rflags & ~PSL_RF)) {
423 kprintf("sigreturn: rflags = 0x%lx\n", (long)rflags);
424 return(EINVAL);
428 * Don't allow users to load a valid privileged %cs. Let the
429 * hardware check for invalid selectors, excess privilege in
430 * other selectors, invalid %eip's and invalid %esp's.
432 cs = ucp->uc_mcontext.mc_cs;
433 if (!CS_SECURE(cs)) {
434 kprintf("sigreturn: cs = 0x%x\n", cs);
435 trapsignal(lp, SIGBUS, T_PROTFLT);
436 return(EINVAL);
438 bcopy(&ucp->uc_mcontext.mc_rdi, regs, sizeof(struct trapframe));
442 * Restore the FPU state from the frame
444 npxpop(&ucp->uc_mcontext);
446 if (ucp->uc_mcontext.mc_onstack & 1)
447 lp->lwp_sigstk.ss_flags |= SS_ONSTACK;
448 else
449 lp->lwp_sigstk.ss_flags &= ~SS_ONSTACK;
451 lp->lwp_sigmask = ucp->uc_sigmask;
452 SIG_CANTMASK(lp->lwp_sigmask);
453 return(EJUSTRETURN);
457 * cpu_idle() represents the idle LWKT. You cannot return from this function
458 * (unless you want to blow things up!). Instead we look for runnable threads
459 * and loop or halt as appropriate. Giant is not held on entry to the thread.
461 * The main loop is entered with a critical section held, we must release
462 * the critical section before doing anything else. lwkt_switch() will
463 * check for pending interrupts due to entering and exiting its own
464 * critical section.
466 * Note on cpu_idle_hlt: On an SMP system we rely on a scheduler IPI
467 * to wake a HLTed cpu up.
469 static int cpu_idle_hlt = 1;
470 static int cpu_idle_hltcnt;
471 static int cpu_idle_spincnt;
472 SYSCTL_INT(_machdep, OID_AUTO, cpu_idle_hlt, CTLFLAG_RW,
473 &cpu_idle_hlt, 0, "Idle loop HLT enable");
474 SYSCTL_INT(_machdep, OID_AUTO, cpu_idle_hltcnt, CTLFLAG_RW,
475 &cpu_idle_hltcnt, 0, "Idle loop entry halts");
476 SYSCTL_INT(_machdep, OID_AUTO, cpu_idle_spincnt, CTLFLAG_RW,
477 &cpu_idle_spincnt, 0, "Idle loop entry spins");
479 void
480 cpu_idle(void)
482 struct thread *td = curthread;
483 struct mdglobaldata *gd = mdcpu;
484 int reqflags;
486 crit_exit();
487 KKASSERT(td->td_critcount == 0);
488 cpu_enable_intr();
490 for (;;) {
492 * See if there are any LWKTs ready to go.
494 lwkt_switch();
497 * The idle loop halts only if no threads are scheduleable
498 * and no signals have occured.
500 if (cpu_idle_hlt &&
501 (td->td_gd->gd_reqflags & RQF_IDLECHECK_WK_MASK) == 0) {
502 splz();
503 if ((td->td_gd->gd_reqflags & RQF_IDLECHECK_WK_MASK) == 0) {
504 #ifdef DEBUGIDLE
505 struct timeval tv1, tv2;
506 gettimeofday(&tv1, NULL);
507 #endif
508 reqflags = gd->mi.gd_reqflags &
509 ~RQF_IDLECHECK_WK_MASK;
510 KKASSERT(gd->mi.gd_processing_ipiq == 0);
511 umtx_sleep(&gd->mi.gd_reqflags, reqflags,
512 1000000);
513 #ifdef DEBUGIDLE
514 gettimeofday(&tv2, NULL);
515 if (tv2.tv_usec - tv1.tv_usec +
516 (tv2.tv_sec - tv1.tv_sec) * 1000000
517 > 500000) {
518 kprintf("cpu %d idlelock %08x %08x\n",
519 gd->mi.gd_cpuid,
520 gd->mi.gd_reqflags,
521 gd->gd_fpending);
523 #endif
525 ++cpu_idle_hltcnt;
526 } else {
527 splz();
528 __asm __volatile("pause");
529 ++cpu_idle_spincnt;
535 * Called by the spinlock code with or without a critical section held
536 * when a spinlock is found to be seriously constested.
538 * We need to enter a critical section to prevent signals from recursing
539 * into pthreads.
541 void
542 cpu_spinlock_contested(void)
544 cpu_pause();
548 * Clear registers on exec
550 void
551 exec_setregs(u_long entry, u_long stack, u_long ps_strings)
553 struct thread *td = curthread;
554 struct lwp *lp = td->td_lwp;
555 struct pcb *pcb = td->td_pcb;
556 struct trapframe *regs = lp->lwp_md.md_regs;
558 /* was i386_user_cleanup() in NetBSD */
559 user_ldt_free(pcb);
561 bzero((char *)regs, sizeof(struct trapframe));
562 regs->tf_rip = entry;
563 regs->tf_rsp = ((stack - 8) & ~0xFul) + 8; /* align the stack */
564 regs->tf_rdi = stack; /* argv */
565 regs->tf_rflags = PSL_USER | (regs->tf_rflags & PSL_T);
566 regs->tf_ss = _udatasel;
567 regs->tf_cs = _ucodesel;
568 regs->tf_rbx = ps_strings;
571 * Reset the hardware debug registers if they were in use.
572 * They won't have any meaning for the newly exec'd process.
574 if (pcb->pcb_flags & PCB_DBREGS) {
575 pcb->pcb_dr0 = 0;
576 pcb->pcb_dr1 = 0;
577 pcb->pcb_dr2 = 0;
578 pcb->pcb_dr3 = 0;
579 pcb->pcb_dr6 = 0;
580 pcb->pcb_dr7 = 0; /* JG set bit 10? */
581 if (pcb == td->td_pcb) {
583 * Clear the debug registers on the running
584 * CPU, otherwise they will end up affecting
585 * the next process we switch to.
587 reset_dbregs();
589 pcb->pcb_flags &= ~PCB_DBREGS;
593 * Initialize the math emulator (if any) for the current process.
594 * Actually, just clear the bit that says that the emulator has
595 * been initialized. Initialization is delayed until the process
596 * traps to the emulator (if it is done at all) mainly because
597 * emulators don't provide an entry point for initialization.
599 pcb->pcb_flags &= ~FP_SOFTFP;
602 * NOTE: do not set CR0_TS here. npxinit() must do it after clearing
603 * gd_npxthread. Otherwise a preemptive interrupt thread
604 * may panic in npxdna().
606 crit_enter();
607 #if 0
608 load_cr0(rcr0() | CR0_MP);
609 #endif
612 * NOTE: The MSR values must be correct so we can return to
613 * userland. gd_user_fs/gs must be correct so the switch
614 * code knows what the current MSR values are.
616 pcb->pcb_fsbase = 0; /* Values loaded from PCB on switch */
617 pcb->pcb_gsbase = 0;
618 /* Initialize the npx (if any) for the current process. */
619 npxinit();
620 crit_exit();
623 * note: linux emulator needs edx to be 0x0 on entry, which is
624 * handled in execve simply by setting the 64 bit syscall
625 * return value to 0.
629 void
630 cpu_setregs(void)
632 #if 0
633 unsigned int cr0;
635 cr0 = rcr0();
636 cr0 |= CR0_NE; /* Done by npxinit() */
637 cr0 |= CR0_MP | CR0_TS; /* Done at every execve() too. */
638 cr0 |= CR0_WP | CR0_AM;
639 load_cr0(cr0);
640 load_gs(_udatasel);
641 #endif
644 static int
645 sysctl_machdep_adjkerntz(SYSCTL_HANDLER_ARGS)
647 int error;
648 error = sysctl_handle_int(oidp, oidp->oid_arg1, oidp->oid_arg2,
649 req);
650 if (!error && req->newptr)
651 resettodr();
652 return (error);
655 SYSCTL_PROC(_machdep, CPU_ADJKERNTZ, adjkerntz, CTLTYPE_INT|CTLFLAG_RW,
656 &adjkerntz, 0, sysctl_machdep_adjkerntz, "I", "");
658 extern u_long bootdev; /* not a cdev_t - encoding is different */
659 SYSCTL_ULONG(_machdep, OID_AUTO, guessed_bootdev,
660 CTLFLAG_RD, &bootdev, 0, "Boot device (not in cdev_t format)");
663 * Initialize 386 and configure to run kernel
667 * Initialize segments & interrupt table
670 extern struct user *proc0paddr;
672 #if 0
674 extern inthand_t
675 IDTVEC(div), IDTVEC(dbg), IDTVEC(nmi), IDTVEC(bpt), IDTVEC(ofl),
676 IDTVEC(bnd), IDTVEC(ill), IDTVEC(dna), IDTVEC(fpusegm),
677 IDTVEC(tss), IDTVEC(missing), IDTVEC(stk), IDTVEC(prot),
678 IDTVEC(page), IDTVEC(mchk), IDTVEC(rsvd), IDTVEC(fpu), IDTVEC(align),
679 IDTVEC(xmm), IDTVEC(dblfault),
680 IDTVEC(fast_syscall), IDTVEC(fast_syscall32);
681 #endif
684 ptrace_set_pc(struct lwp *lp, unsigned long addr)
686 lp->lwp_md.md_regs->tf_rip = addr;
687 return (0);
691 ptrace_single_step(struct lwp *lp)
693 lp->lwp_md.md_regs->tf_rflags |= PSL_T;
694 return (0);
698 fill_regs(struct lwp *lp, struct reg *regs)
700 struct trapframe *tp;
702 if ((tp = lp->lwp_md.md_regs) == NULL)
703 return EINVAL;
704 bcopy(&tp->tf_rdi, &regs->r_rdi, sizeof(*regs));
705 return (0);
709 set_regs(struct lwp *lp, struct reg *regs)
711 struct trapframe *tp;
713 tp = lp->lwp_md.md_regs;
714 if (!EFL_SECURE(regs->r_rflags, tp->tf_rflags) ||
715 !CS_SECURE(regs->r_cs))
716 return (EINVAL);
717 bcopy(&regs->r_rdi, &tp->tf_rdi, sizeof(*regs));
718 return (0);
721 static void
722 fill_fpregs_xmm(struct savexmm *sv_xmm, struct save87 *sv_87)
724 struct env87 *penv_87 = &sv_87->sv_env;
725 struct envxmm *penv_xmm = &sv_xmm->sv_env;
726 int i;
728 /* FPU control/status */
729 penv_87->en_cw = penv_xmm->en_cw;
730 penv_87->en_sw = penv_xmm->en_sw;
731 penv_87->en_tw = penv_xmm->en_tw;
732 penv_87->en_fip = penv_xmm->en_fip;
733 penv_87->en_fcs = penv_xmm->en_fcs;
734 penv_87->en_opcode = penv_xmm->en_opcode;
735 penv_87->en_foo = penv_xmm->en_foo;
736 penv_87->en_fos = penv_xmm->en_fos;
738 /* FPU registers */
739 for (i = 0; i < 8; ++i)
740 sv_87->sv_ac[i] = sv_xmm->sv_fp[i].fp_acc;
743 static void
744 set_fpregs_xmm(struct save87 *sv_87, struct savexmm *sv_xmm)
746 struct env87 *penv_87 = &sv_87->sv_env;
747 struct envxmm *penv_xmm = &sv_xmm->sv_env;
748 int i;
750 /* FPU control/status */
751 penv_xmm->en_cw = penv_87->en_cw;
752 penv_xmm->en_sw = penv_87->en_sw;
753 penv_xmm->en_tw = penv_87->en_tw;
754 penv_xmm->en_fip = penv_87->en_fip;
755 penv_xmm->en_fcs = penv_87->en_fcs;
756 penv_xmm->en_opcode = penv_87->en_opcode;
757 penv_xmm->en_foo = penv_87->en_foo;
758 penv_xmm->en_fos = penv_87->en_fos;
760 /* FPU registers */
761 for (i = 0; i < 8; ++i)
762 sv_xmm->sv_fp[i].fp_acc = sv_87->sv_ac[i];
766 fill_fpregs(struct lwp *lp, struct fpreg *fpregs)
768 if (lp->lwp_thread == NULL || lp->lwp_thread->td_pcb == NULL)
769 return EINVAL;
770 if (cpu_fxsr) {
771 fill_fpregs_xmm(&lp->lwp_thread->td_pcb->pcb_save.sv_xmm,
772 (struct save87 *)fpregs);
773 return (0);
775 bcopy(&lp->lwp_thread->td_pcb->pcb_save.sv_87, fpregs, sizeof *fpregs);
776 return (0);
780 set_fpregs(struct lwp *lp, struct fpreg *fpregs)
782 if (cpu_fxsr) {
783 set_fpregs_xmm((struct save87 *)fpregs,
784 &lp->lwp_thread->td_pcb->pcb_save.sv_xmm);
785 return (0);
787 bcopy(fpregs, &lp->lwp_thread->td_pcb->pcb_save.sv_87, sizeof *fpregs);
788 return (0);
792 fill_dbregs(struct lwp *lp, struct dbreg *dbregs)
794 return (ENOSYS);
798 set_dbregs(struct lwp *lp, struct dbreg *dbregs)
800 return (ENOSYS);
803 #if 0
805 * Return > 0 if a hardware breakpoint has been hit, and the
806 * breakpoint was in user space. Return 0, otherwise.
809 user_dbreg_trap(void)
811 u_int32_t dr7, dr6; /* debug registers dr6 and dr7 */
812 u_int32_t bp; /* breakpoint bits extracted from dr6 */
813 int nbp; /* number of breakpoints that triggered */
814 caddr_t addr[4]; /* breakpoint addresses */
815 int i;
817 dr7 = rdr7();
818 if ((dr7 & 0x000000ff) == 0) {
820 * all GE and LE bits in the dr7 register are zero,
821 * thus the trap couldn't have been caused by the
822 * hardware debug registers
824 return 0;
827 nbp = 0;
828 dr6 = rdr6();
829 bp = dr6 & 0x0000000f;
831 if (!bp) {
833 * None of the breakpoint bits are set meaning this
834 * trap was not caused by any of the debug registers
836 return 0;
840 * at least one of the breakpoints were hit, check to see
841 * which ones and if any of them are user space addresses
844 if (bp & 0x01) {
845 addr[nbp++] = (caddr_t)rdr0();
847 if (bp & 0x02) {
848 addr[nbp++] = (caddr_t)rdr1();
850 if (bp & 0x04) {
851 addr[nbp++] = (caddr_t)rdr2();
853 if (bp & 0x08) {
854 addr[nbp++] = (caddr_t)rdr3();
857 for (i=0; i<nbp; i++) {
858 if (addr[i] <
859 (caddr_t)VM_MAX_USER_ADDRESS) {
861 * addr[i] is in user space
863 return nbp;
868 * None of the breakpoints are in user space.
870 return 0;
873 #endif
875 void
876 identcpu(void)
878 int regs[4];
880 do_cpuid(1, regs);
881 cpu_feature = regs[3];
885 #ifndef DDB
886 void
887 Debugger(const char *msg)
889 kprintf("Debugger(\"%s\") called.\n", msg);
891 #endif /* no DDB */