kernel: Remove the COMPAT_43 kernel option along with all related code.
[dragonfly.git] / sys / platform / pc64 / x86_64 / machdep.c
bloba7232d2f07e12e381dd1d8f8128d6d21358997fa
1 /*-
2 * Copyright (c) 1982, 1987, 1990 The Regents of the University of California.
3 * Copyright (c) 1992 Terrence R. Lambert.
4 * Copyright (c) 2003 Peter Wemm.
5 * Copyright (c) 2008 The DragonFly Project.
6 * All rights reserved.
8 * This code is derived from software contributed to Berkeley by
9 * William Jolitz.
11 * Redistribution and use in source and binary forms, with or without
12 * modification, are permitted provided that the following conditions
13 * are met:
14 * 1. Redistributions of source code must retain the above copyright
15 * notice, this list of conditions and the following disclaimer.
16 * 2. Redistributions in binary form must reproduce the above copyright
17 * notice, this list of conditions and the following disclaimer in the
18 * documentation and/or other materials provided with the distribution.
19 * 3. All advertising materials mentioning features or use of this software
20 * must display the following acknowledgement:
21 * This product includes software developed by the University of
22 * California, Berkeley and its contributors.
23 * 4. Neither the name of the University nor the names of its contributors
24 * may be used to endorse or promote products derived from this software
25 * without specific prior written permission.
27 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
28 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
29 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
30 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
31 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
32 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
33 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
34 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
35 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
36 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
37 * SUCH DAMAGE.
39 * from: @(#)machdep.c 7.4 (Berkeley) 6/3/91
40 * $FreeBSD: src/sys/i386/i386/machdep.c,v 1.385.2.30 2003/05/31 08:48:05 alc Exp $
43 //#include "use_npx.h"
44 #include "use_isa.h"
45 #include "opt_cpu.h"
46 #include "opt_ddb.h"
47 #include "opt_directio.h"
48 #include "opt_inet.h"
49 #include "opt_msgbuf.h"
50 #include "opt_swap.h"
52 #include <sys/param.h>
53 #include <sys/systm.h>
54 #include <sys/sysproto.h>
55 #include <sys/signalvar.h>
56 #include <sys/kernel.h>
57 #include <sys/linker.h>
58 #include <sys/malloc.h>
59 #include <sys/proc.h>
60 #include <sys/priv.h>
61 #include <sys/buf.h>
62 #include <sys/reboot.h>
63 #include <sys/mbuf.h>
64 #include <sys/msgbuf.h>
65 #include <sys/sysent.h>
66 #include <sys/sysctl.h>
67 #include <sys/vmmeter.h>
68 #include <sys/bus.h>
69 #include <sys/usched.h>
70 #include <sys/reg.h>
71 #include <sys/sbuf.h>
72 #include <sys/ctype.h>
73 #include <sys/serialize.h>
74 #include <sys/systimer.h>
76 #include <vm/vm.h>
77 #include <vm/vm_param.h>
78 #include <sys/lock.h>
79 #include <vm/vm_kern.h>
80 #include <vm/vm_object.h>
81 #include <vm/vm_page.h>
82 #include <vm/vm_map.h>
83 #include <vm/vm_pager.h>
84 #include <vm/vm_extern.h>
86 #include <sys/thread2.h>
87 #include <sys/mplock2.h>
88 #include <sys/mutex2.h>
90 #include <sys/user.h>
91 #include <sys/exec.h>
92 #include <sys/cons.h>
94 #include <sys/efi.h>
96 #include <ddb/ddb.h>
98 #include <machine/cpu.h>
99 #include <machine/clock.h>
100 #include <machine/specialreg.h>
101 #if 0 /* JG */
102 #include <machine/bootinfo.h>
103 #endif
104 #include <machine/md_var.h>
105 #include <machine/metadata.h>
106 #include <machine/pc/bios.h>
107 #include <machine/pcb_ext.h> /* pcb.h included via sys/user.h */
108 #include <machine/globaldata.h> /* CPU_prvspace */
109 #include <machine/smp.h>
110 #include <machine/cputypes.h>
111 #include <machine/intr_machdep.h>
112 #include <machine/framebuffer.h>
114 #ifdef OLD_BUS_ARCH
115 #include <bus/isa/isa_device.h>
116 #endif
117 #include <machine_base/isa/isa_intr.h>
118 #include <bus/isa/rtc.h>
119 #include <sys/random.h>
120 #include <sys/ptrace.h>
121 #include <machine/sigframe.h>
123 #include <sys/machintr.h>
124 #include <machine_base/icu/icu_abi.h>
125 #include <machine_base/icu/elcr_var.h>
126 #include <machine_base/apic/lapic.h>
127 #include <machine_base/apic/ioapic.h>
128 #include <machine_base/apic/ioapic_abi.h>
129 #include <machine/mptable.h>
131 #define PHYSMAP_ENTRIES 10
133 extern u_int64_t hammer_time(u_int64_t, u_int64_t);
135 extern void printcpuinfo(void); /* XXX header file */
136 extern void identify_cpu(void);
137 #if 0 /* JG */
138 extern void finishidentcpu(void);
139 #endif
140 extern void panicifcpuunsupported(void);
142 static void cpu_startup(void *);
143 static void pic_finish(void *);
144 static void cpu_finish(void *);
146 static void set_fpregs_xmm(struct save87 *, struct savexmm *);
147 static void fill_fpregs_xmm(struct savexmm *, struct save87 *);
148 #ifdef DIRECTIO
149 extern void ffs_rawread_setup(void);
150 #endif /* DIRECTIO */
151 static void init_locks(void);
153 extern void pcpu_timer_always(struct intrframe *);
155 SYSINIT(cpu, SI_BOOT2_START_CPU, SI_ORDER_FIRST, cpu_startup, NULL);
156 SYSINIT(pic_finish, SI_BOOT2_FINISH_PIC, SI_ORDER_FIRST, pic_finish, NULL);
157 SYSINIT(cpu_finish, SI_BOOT2_FINISH_CPU, SI_ORDER_FIRST, cpu_finish, NULL);
159 #ifdef DDB
160 extern vm_offset_t ksym_start, ksym_end;
161 #endif
163 struct privatespace CPU_prvspace_bsp __aligned(4096);
164 struct privatespace *CPU_prvspace[MAXCPU] = { &CPU_prvspace_bsp };
166 int _udatasel, _ucodesel, _ucode32sel;
167 u_long atdevbase;
168 int64_t tsc_offsets[MAXCPU];
169 cpumask_t smp_idleinvl_mask;
170 cpumask_t smp_idleinvl_reqs;
172 static int cpu_mwait_halt_global; /* MWAIT hint (EAX) or CPU_MWAIT_HINT_ */
174 #if defined(SWTCH_OPTIM_STATS)
175 extern int swtch_optim_stats;
176 SYSCTL_INT(_debug, OID_AUTO, swtch_optim_stats,
177 CTLFLAG_RD, &swtch_optim_stats, 0, "");
178 SYSCTL_INT(_debug, OID_AUTO, tlb_flush_count,
179 CTLFLAG_RD, &tlb_flush_count, 0, "");
180 #endif
181 SYSCTL_INT(_hw, OID_AUTO, cpu_mwait_halt,
182 CTLFLAG_RD, &cpu_mwait_halt_global, 0, "");
183 SYSCTL_INT(_hw, OID_AUTO, cpu_mwait_spin, CTLFLAG_RD, &cpu_mwait_spin, 0,
184 "monitor/mwait target state");
186 #define CPU_MWAIT_HAS_CX \
187 ((cpu_feature2 & CPUID2_MON) && \
188 (cpu_mwait_feature & CPUID_MWAIT_EXT))
190 #define CPU_MWAIT_CX_NAMELEN 16
192 #define CPU_MWAIT_C1 1
193 #define CPU_MWAIT_C2 2
194 #define CPU_MWAIT_C3 3
195 #define CPU_MWAIT_CX_MAX 8
197 #define CPU_MWAIT_HINT_AUTO -1 /* C1 and C2 */
198 #define CPU_MWAIT_HINT_AUTODEEP -2 /* C3+ */
200 SYSCTL_NODE(_machdep, OID_AUTO, mwait, CTLFLAG_RW, 0, "MWAIT features");
201 SYSCTL_NODE(_machdep_mwait, OID_AUTO, CX, CTLFLAG_RW, 0, "MWAIT Cx settings");
203 struct cpu_mwait_cx {
204 int subcnt;
205 char name[4];
206 struct sysctl_ctx_list sysctl_ctx;
207 struct sysctl_oid *sysctl_tree;
209 static struct cpu_mwait_cx cpu_mwait_cx_info[CPU_MWAIT_CX_MAX];
210 static char cpu_mwait_cx_supported[256];
212 static int cpu_mwait_c1_hints_cnt;
213 static int cpu_mwait_hints_cnt;
214 static int *cpu_mwait_hints;
216 static int cpu_mwait_deep_hints_cnt;
217 static int *cpu_mwait_deep_hints;
219 #define CPU_IDLE_REPEAT_DEFAULT 750
221 static u_int cpu_idle_repeat = CPU_IDLE_REPEAT_DEFAULT;
222 static u_long cpu_idle_repeat_max = CPU_IDLE_REPEAT_DEFAULT;
223 static u_int cpu_mwait_repeat_shift = 1;
225 #define CPU_MWAIT_C3_PREAMBLE_BM_ARB 0x1
226 #define CPU_MWAIT_C3_PREAMBLE_BM_STS 0x2
228 static int cpu_mwait_c3_preamble =
229 CPU_MWAIT_C3_PREAMBLE_BM_ARB |
230 CPU_MWAIT_C3_PREAMBLE_BM_STS;
232 SYSCTL_STRING(_machdep_mwait_CX, OID_AUTO, supported, CTLFLAG_RD,
233 cpu_mwait_cx_supported, 0, "MWAIT supported C states");
234 SYSCTL_INT(_machdep_mwait_CX, OID_AUTO, c3_preamble, CTLFLAG_RD,
235 &cpu_mwait_c3_preamble, 0, "C3+ preamble mask");
237 static int cpu_mwait_cx_select_sysctl(SYSCTL_HANDLER_ARGS,
238 int *, boolean_t);
239 static int cpu_mwait_cx_idle_sysctl(SYSCTL_HANDLER_ARGS);
240 static int cpu_mwait_cx_pcpu_idle_sysctl(SYSCTL_HANDLER_ARGS);
241 static int cpu_mwait_cx_spin_sysctl(SYSCTL_HANDLER_ARGS);
243 SYSCTL_PROC(_machdep_mwait_CX, OID_AUTO, idle, CTLTYPE_STRING|CTLFLAG_RW,
244 NULL, 0, cpu_mwait_cx_idle_sysctl, "A", "");
245 SYSCTL_PROC(_machdep_mwait_CX, OID_AUTO, spin, CTLTYPE_STRING|CTLFLAG_RW,
246 NULL, 0, cpu_mwait_cx_spin_sysctl, "A", "");
247 SYSCTL_UINT(_machdep_mwait_CX, OID_AUTO, repeat_shift, CTLFLAG_RW,
248 &cpu_mwait_repeat_shift, 0, "");
250 long physmem = 0;
252 u_long ebda_addr = 0;
254 int imcr_present = 0;
256 int naps = 0; /* # of Applications processors */
258 u_int base_memory;
259 struct mtx dt_lock; /* lock for GDT and LDT */
261 static int
262 sysctl_hw_physmem(SYSCTL_HANDLER_ARGS)
264 u_long pmem = ctob(physmem);
266 int error = sysctl_handle_long(oidp, &pmem, 0, req);
267 return (error);
270 SYSCTL_PROC(_hw, HW_PHYSMEM, physmem, CTLTYPE_ULONG|CTLFLAG_RD,
271 0, 0, sysctl_hw_physmem, "LU", "Total system memory in bytes (number of pages * page size)");
273 static int
274 sysctl_hw_usermem(SYSCTL_HANDLER_ARGS)
276 int error = sysctl_handle_int(oidp, 0,
277 ctob(physmem - vmstats.v_wire_count), req);
278 return (error);
281 SYSCTL_PROC(_hw, HW_USERMEM, usermem, CTLTYPE_INT|CTLFLAG_RD,
282 0, 0, sysctl_hw_usermem, "IU", "");
284 static int
285 sysctl_hw_availpages(SYSCTL_HANDLER_ARGS)
287 int error = sysctl_handle_int(oidp, 0,
288 x86_64_btop(avail_end - avail_start), req);
289 return (error);
292 SYSCTL_PROC(_hw, OID_AUTO, availpages, CTLTYPE_INT|CTLFLAG_RD,
293 0, 0, sysctl_hw_availpages, "I", "");
295 vm_paddr_t Maxmem;
296 vm_paddr_t Realmem;
299 * The number of PHYSMAP entries must be one less than the number of
300 * PHYSSEG entries because the PHYSMAP entry that spans the largest
301 * physical address that is accessible by ISA DMA is split into two
302 * PHYSSEG entries.
304 #define PHYSMAP_SIZE (2 * (VM_PHYSSEG_MAX - 1))
306 vm_paddr_t phys_avail[PHYSMAP_SIZE + 2];
307 vm_paddr_t dump_avail[PHYSMAP_SIZE + 2];
309 /* must be 2 less so 0 0 can signal end of chunks */
310 #define PHYS_AVAIL_ARRAY_END (NELEM(phys_avail) - 2)
311 #define DUMP_AVAIL_ARRAY_END (NELEM(dump_avail) - 2)
313 static vm_offset_t buffer_sva, buffer_eva;
314 vm_offset_t clean_sva, clean_eva;
315 static vm_offset_t pager_sva, pager_eva;
316 static struct trapframe proc0_tf;
318 static void
319 cpu_startup(void *dummy)
321 caddr_t v;
322 vm_size_t size = 0;
323 vm_offset_t firstaddr;
326 * Good {morning,afternoon,evening,night}.
328 kprintf("%s", version);
329 startrtclock();
330 printcpuinfo();
331 panicifcpuunsupported();
332 kprintf("real memory = %ju (%ju MB)\n",
333 (intmax_t)Realmem,
334 (intmax_t)Realmem / 1024 / 1024);
336 * Display any holes after the first chunk of extended memory.
338 if (bootverbose) {
339 int indx;
341 kprintf("Physical memory chunk(s):\n");
342 for (indx = 0; phys_avail[indx + 1] != 0; indx += 2) {
343 vm_paddr_t size1 = phys_avail[indx + 1] - phys_avail[indx];
345 kprintf("0x%08jx - 0x%08jx, %ju bytes (%ju pages)\n",
346 (intmax_t)phys_avail[indx],
347 (intmax_t)phys_avail[indx + 1] - 1,
348 (intmax_t)size1,
349 (intmax_t)(size1 / PAGE_SIZE));
354 * Allocate space for system data structures.
355 * The first available kernel virtual address is in "v".
356 * As pages of kernel virtual memory are allocated, "v" is incremented.
357 * As pages of memory are allocated and cleared,
358 * "firstaddr" is incremented.
359 * An index into the kernel page table corresponding to the
360 * virtual memory address maintained in "v" is kept in "mapaddr".
364 * Make two passes. The first pass calculates how much memory is
365 * needed and allocates it. The second pass assigns virtual
366 * addresses to the various data structures.
368 firstaddr = 0;
369 again:
370 v = (caddr_t)firstaddr;
372 #define valloc(name, type, num) \
373 (name) = (type *)v; v = (caddr_t)((name)+(num))
374 #define valloclim(name, type, num, lim) \
375 (name) = (type *)v; v = (caddr_t)((lim) = ((name)+(num)))
378 * The nominal buffer size (and minimum KVA allocation) is MAXBSIZE.
379 * For the first 64MB of ram nominally allocate sufficient buffers to
380 * cover 1/4 of our ram. Beyond the first 64MB allocate additional
381 * buffers to cover 1/20 of our ram over 64MB. When auto-sizing
382 * the buffer cache we limit the eventual kva reservation to
383 * maxbcache bytes.
385 * factor represents the 1/4 x ram conversion.
387 if (nbuf == 0) {
388 long factor = 4 * NBUFCALCSIZE / 1024;
389 long kbytes = physmem * (PAGE_SIZE / 1024);
391 nbuf = 50;
392 if (kbytes > 4096)
393 nbuf += min((kbytes - 4096) / factor, 65536 / factor);
394 if (kbytes > 65536)
395 nbuf += (kbytes - 65536) * 2 / (factor * 5);
396 if (maxbcache && nbuf > maxbcache / NBUFCALCSIZE)
397 nbuf = maxbcache / NBUFCALCSIZE;
401 * Do not allow the buffer_map to be more then 1/2 the size of the
402 * kernel_map.
404 if (nbuf > (virtual_end - virtual_start +
405 virtual2_end - virtual2_start) / (MAXBSIZE * 2)) {
406 nbuf = (virtual_end - virtual_start +
407 virtual2_end - virtual2_start) / (MAXBSIZE * 2);
408 kprintf("Warning: nbufs capped at %ld due to kvm\n", nbuf);
412 * Do not allow the buffer_map to use more than 50% of available
413 * physical-equivalent memory. Since the VM pages which back
414 * individual buffers are typically wired, having too many bufs
415 * can prevent the system from paging properly.
417 if (nbuf > physmem * PAGE_SIZE / (NBUFCALCSIZE * 2)) {
418 nbuf = physmem * PAGE_SIZE / (NBUFCALCSIZE * 2);
419 kprintf("Warning: nbufs capped at %ld due to physmem\n", nbuf);
423 * Do not allow the sizeof(struct buf) * nbuf to exceed half of
424 * the valloc space which is just the virtual_end - virtual_start
425 * section. We use valloc() to allocate the buf header array.
427 if (nbuf > (virtual_end - virtual_start) / sizeof(struct buf) / 2) {
428 nbuf = (virtual_end - virtual_start) /
429 sizeof(struct buf) / 2;
430 kprintf("Warning: nbufs capped at %ld due to valloc "
431 "considerations\n", nbuf);
434 nswbuf_mem = lmax(lmin(nbuf / 32, 512), 8);
435 #ifdef NSWBUF_MIN
436 if (nswbuf_mem < NSWBUF_MIN)
437 nswbuf_mem = NSWBUF_MIN;
438 #endif
439 nswbuf_kva = lmax(lmin(nbuf / 4, 512), 16);
440 #ifdef NSWBUF_MIN
441 if (nswbuf_kva < NSWBUF_MIN)
442 nswbuf_kva = NSWBUF_MIN;
443 #endif
444 #ifdef DIRECTIO
445 ffs_rawread_setup();
446 #endif
448 valloc(swbuf_mem, struct buf, nswbuf_mem);
449 valloc(swbuf_kva, struct buf, nswbuf_kva);
450 valloc(buf, struct buf, nbuf);
453 * End of first pass, size has been calculated so allocate memory
455 if (firstaddr == 0) {
456 size = (vm_size_t)(v - firstaddr);
457 firstaddr = kmem_alloc(&kernel_map, round_page(size));
458 if (firstaddr == 0)
459 panic("startup: no room for tables");
460 goto again;
464 * End of second pass, addresses have been assigned
466 * nbuf is an int, make sure we don't overflow the field.
468 * On 64-bit systems we always reserve maximal allocations for
469 * buffer cache buffers and there are no fragmentation issues,
470 * so the KVA segment does not have to be excessively oversized.
472 if ((vm_size_t)(v - firstaddr) != size)
473 panic("startup: table size inconsistency");
475 kmem_suballoc(&kernel_map, &clean_map, &clean_sva, &clean_eva,
476 ((vm_offset_t)(nbuf + 16) * MAXBSIZE) +
477 ((nswbuf_mem + nswbuf_kva) * MAXPHYS) + pager_map_size);
478 kmem_suballoc(&clean_map, &buffer_map, &buffer_sva, &buffer_eva,
479 ((vm_offset_t)(nbuf + 16) * MAXBSIZE));
480 buffer_map.system_map = 1;
481 kmem_suballoc(&clean_map, &pager_map, &pager_sva, &pager_eva,
482 ((vm_offset_t)(nswbuf_mem + nswbuf_kva) * MAXPHYS) +
483 pager_map_size);
484 pager_map.system_map = 1;
485 kprintf("avail memory = %ju (%ju MB)\n",
486 (uintmax_t)ptoa(vmstats.v_free_count + vmstats.v_dma_pages),
487 (uintmax_t)ptoa(vmstats.v_free_count + vmstats.v_dma_pages) /
488 1024 / 1024);
491 struct cpu_idle_stat {
492 int hint;
493 int reserved;
494 u_long halt;
495 u_long spin;
496 u_long repeat;
497 u_long repeat_last;
498 u_long repeat_delta;
499 u_long mwait_cx[CPU_MWAIT_CX_MAX];
500 } __cachealign;
502 #define CPU_IDLE_STAT_HALT -1
503 #define CPU_IDLE_STAT_SPIN -2
505 static struct cpu_idle_stat cpu_idle_stats[MAXCPU];
507 static int
508 sysctl_cpu_idle_cnt(SYSCTL_HANDLER_ARGS)
510 int idx = arg2, cpu, error;
511 u_long val = 0;
513 if (idx == CPU_IDLE_STAT_HALT) {
514 for (cpu = 0; cpu < ncpus; ++cpu)
515 val += cpu_idle_stats[cpu].halt;
516 } else if (idx == CPU_IDLE_STAT_SPIN) {
517 for (cpu = 0; cpu < ncpus; ++cpu)
518 val += cpu_idle_stats[cpu].spin;
519 } else {
520 KASSERT(idx >= 0 && idx < CPU_MWAIT_CX_MAX,
521 ("invalid index %d", idx));
522 for (cpu = 0; cpu < ncpus; ++cpu)
523 val += cpu_idle_stats[cpu].mwait_cx[idx];
526 error = sysctl_handle_quad(oidp, &val, 0, req);
527 if (error || req->newptr == NULL)
528 return error;
530 if (idx == CPU_IDLE_STAT_HALT) {
531 for (cpu = 0; cpu < ncpus; ++cpu)
532 cpu_idle_stats[cpu].halt = 0;
533 cpu_idle_stats[0].halt = val;
534 } else if (idx == CPU_IDLE_STAT_SPIN) {
535 for (cpu = 0; cpu < ncpus; ++cpu)
536 cpu_idle_stats[cpu].spin = 0;
537 cpu_idle_stats[0].spin = val;
538 } else {
539 KASSERT(idx >= 0 && idx < CPU_MWAIT_CX_MAX,
540 ("invalid index %d", idx));
541 for (cpu = 0; cpu < ncpus; ++cpu)
542 cpu_idle_stats[cpu].mwait_cx[idx] = 0;
543 cpu_idle_stats[0].mwait_cx[idx] = val;
545 return 0;
548 static void
549 cpu_mwait_attach(void)
551 struct sbuf sb;
552 int hint_idx, i;
554 if (!CPU_MWAIT_HAS_CX)
555 return;
557 if (cpu_vendor_id == CPU_VENDOR_INTEL &&
558 (CPUID_TO_FAMILY(cpu_id) > 0xf ||
559 (CPUID_TO_FAMILY(cpu_id) == 0x6 &&
560 CPUID_TO_MODEL(cpu_id) >= 0xf))) {
561 int bm_sts = 1;
564 * Pentium dual-core, Core 2 and beyond do not need any
565 * additional activities to enter deep C-state, i.e. C3(+).
567 cpu_mwait_cx_no_bmarb();
569 TUNABLE_INT_FETCH("machdep.cpu.mwait.bm_sts", &bm_sts);
570 if (!bm_sts)
571 cpu_mwait_cx_no_bmsts();
574 sbuf_new(&sb, cpu_mwait_cx_supported,
575 sizeof(cpu_mwait_cx_supported), SBUF_FIXEDLEN);
577 for (i = 0; i < CPU_MWAIT_CX_MAX; ++i) {
578 struct cpu_mwait_cx *cx = &cpu_mwait_cx_info[i];
579 int sub;
581 ksnprintf(cx->name, sizeof(cx->name), "C%d", i);
583 sysctl_ctx_init(&cx->sysctl_ctx);
584 cx->sysctl_tree = SYSCTL_ADD_NODE(&cx->sysctl_ctx,
585 SYSCTL_STATIC_CHILDREN(_machdep_mwait), OID_AUTO,
586 cx->name, CTLFLAG_RW, NULL, "Cx control/info");
587 if (cx->sysctl_tree == NULL)
588 continue;
590 cx->subcnt = CPUID_MWAIT_CX_SUBCNT(cpu_mwait_extemu, i);
591 SYSCTL_ADD_INT(&cx->sysctl_ctx,
592 SYSCTL_CHILDREN(cx->sysctl_tree), OID_AUTO,
593 "subcnt", CTLFLAG_RD, &cx->subcnt, 0,
594 "sub-state count");
595 SYSCTL_ADD_PROC(&cx->sysctl_ctx,
596 SYSCTL_CHILDREN(cx->sysctl_tree), OID_AUTO,
597 "entered", (CTLTYPE_QUAD | CTLFLAG_RW), 0,
598 i, sysctl_cpu_idle_cnt, "Q", "# of times entered");
600 for (sub = 0; sub < cx->subcnt; ++sub)
601 sbuf_printf(&sb, "C%d/%d ", i, sub);
603 sbuf_trim(&sb);
604 sbuf_finish(&sb);
607 * Non-deep C-states
609 cpu_mwait_c1_hints_cnt = cpu_mwait_cx_info[CPU_MWAIT_C1].subcnt;
610 for (i = CPU_MWAIT_C1; i < CPU_MWAIT_C3; ++i)
611 cpu_mwait_hints_cnt += cpu_mwait_cx_info[i].subcnt;
612 cpu_mwait_hints = kmalloc(sizeof(int) * cpu_mwait_hints_cnt,
613 M_DEVBUF, M_WAITOK);
615 hint_idx = 0;
616 for (i = CPU_MWAIT_C1; i < CPU_MWAIT_C3; ++i) {
617 int j, subcnt;
619 subcnt = cpu_mwait_cx_info[i].subcnt;
620 for (j = 0; j < subcnt; ++j) {
621 KASSERT(hint_idx < cpu_mwait_hints_cnt,
622 ("invalid mwait hint index %d", hint_idx));
623 cpu_mwait_hints[hint_idx] = MWAIT_EAX_HINT(i, j);
624 ++hint_idx;
627 KASSERT(hint_idx == cpu_mwait_hints_cnt,
628 ("mwait hint count %d != index %d",
629 cpu_mwait_hints_cnt, hint_idx));
631 if (bootverbose) {
632 kprintf("MWAIT hints (%d C1 hints):\n", cpu_mwait_c1_hints_cnt);
633 for (i = 0; i < cpu_mwait_hints_cnt; ++i) {
634 int hint = cpu_mwait_hints[i];
636 kprintf(" C%d/%d hint 0x%04x\n",
637 MWAIT_EAX_TO_CX(hint), MWAIT_EAX_TO_CX_SUB(hint),
638 hint);
643 * Deep C-states
645 for (i = CPU_MWAIT_C1; i < CPU_MWAIT_CX_MAX; ++i)
646 cpu_mwait_deep_hints_cnt += cpu_mwait_cx_info[i].subcnt;
647 cpu_mwait_deep_hints = kmalloc(sizeof(int) * cpu_mwait_deep_hints_cnt,
648 M_DEVBUF, M_WAITOK);
650 hint_idx = 0;
651 for (i = CPU_MWAIT_C1; i < CPU_MWAIT_CX_MAX; ++i) {
652 int j, subcnt;
654 subcnt = cpu_mwait_cx_info[i].subcnt;
655 for (j = 0; j < subcnt; ++j) {
656 KASSERT(hint_idx < cpu_mwait_deep_hints_cnt,
657 ("invalid mwait deep hint index %d", hint_idx));
658 cpu_mwait_deep_hints[hint_idx] = MWAIT_EAX_HINT(i, j);
659 ++hint_idx;
662 KASSERT(hint_idx == cpu_mwait_deep_hints_cnt,
663 ("mwait deep hint count %d != index %d",
664 cpu_mwait_deep_hints_cnt, hint_idx));
666 if (bootverbose) {
667 kprintf("MWAIT deep hints:\n");
668 for (i = 0; i < cpu_mwait_deep_hints_cnt; ++i) {
669 int hint = cpu_mwait_deep_hints[i];
671 kprintf(" C%d/%d hint 0x%04x\n",
672 MWAIT_EAX_TO_CX(hint), MWAIT_EAX_TO_CX_SUB(hint),
673 hint);
676 cpu_idle_repeat_max = 256 * cpu_mwait_deep_hints_cnt;
678 for (i = 0; i < ncpus; ++i) {
679 char name[16];
681 ksnprintf(name, sizeof(name), "idle%d", i);
682 SYSCTL_ADD_PROC(NULL,
683 SYSCTL_STATIC_CHILDREN(_machdep_mwait_CX), OID_AUTO,
684 name, (CTLTYPE_STRING | CTLFLAG_RW), &cpu_idle_stats[i],
685 0, cpu_mwait_cx_pcpu_idle_sysctl, "A", "");
689 static void
690 cpu_finish(void *dummy __unused)
692 cpu_setregs();
693 cpu_mwait_attach();
696 static void
697 pic_finish(void *dummy __unused)
699 /* Log ELCR information */
700 elcr_dump();
702 /* Log MPTABLE information */
703 mptable_pci_int_dump();
705 /* Finalize PCI */
706 MachIntrABI.finalize();
710 * Send an interrupt to process.
712 * Stack is set up to allow sigcode stored
713 * at top to call routine, followed by kcall
714 * to sigreturn routine below. After sigreturn
715 * resets the signal mask, the stack, and the
716 * frame pointer, it returns to the user
717 * specified pc, psl.
719 void
720 sendsig(sig_t catcher, int sig, sigset_t *mask, u_long code)
722 struct lwp *lp = curthread->td_lwp;
723 struct proc *p = lp->lwp_proc;
724 struct trapframe *regs;
725 struct sigacts *psp = p->p_sigacts;
726 struct sigframe sf, *sfp;
727 int oonstack;
728 char *sp;
730 regs = lp->lwp_md.md_regs;
731 oonstack = (lp->lwp_sigstk.ss_flags & SS_ONSTACK) ? 1 : 0;
733 /* Save user context */
734 bzero(&sf, sizeof(struct sigframe));
735 sf.sf_uc.uc_sigmask = *mask;
736 sf.sf_uc.uc_stack = lp->lwp_sigstk;
737 sf.sf_uc.uc_mcontext.mc_onstack = oonstack;
738 KKASSERT(__offsetof(struct trapframe, tf_rdi) == 0);
739 bcopy(regs, &sf.sf_uc.uc_mcontext.mc_rdi, sizeof(struct trapframe));
741 /* Make the size of the saved context visible to userland */
742 sf.sf_uc.uc_mcontext.mc_len = sizeof(sf.sf_uc.uc_mcontext);
744 /* Allocate and validate space for the signal handler context. */
745 if ((lp->lwp_flags & LWP_ALTSTACK) != 0 && !oonstack &&
746 SIGISMEMBER(psp->ps_sigonstack, sig)) {
747 sp = (char *)(lp->lwp_sigstk.ss_sp + lp->lwp_sigstk.ss_size -
748 sizeof(struct sigframe));
749 lp->lwp_sigstk.ss_flags |= SS_ONSTACK;
750 } else {
751 /* We take red zone into account */
752 sp = (char *)regs->tf_rsp - sizeof(struct sigframe) - 128;
756 * XXX AVX needs 64-byte alignment but sigframe has other fields and
757 * the embedded ucontext is not at the front, so aligning this won't
758 * help us. Fortunately we bcopy in/out of the sigframe, so the
759 * kernel is ok.
761 * The problem though is if userland winds up trying to use the
762 * context directly.
764 sfp = (struct sigframe *)((intptr_t)sp & ~(intptr_t)0xF);
766 /* Translate the signal is appropriate */
767 if (p->p_sysent->sv_sigtbl) {
768 if (sig <= p->p_sysent->sv_sigsize)
769 sig = p->p_sysent->sv_sigtbl[_SIG_IDX(sig)];
773 * Build the argument list for the signal handler.
775 * Arguments are in registers (%rdi, %rsi, %rdx, %rcx)
777 regs->tf_rdi = sig; /* argument 1 */
778 regs->tf_rdx = (register_t)&sfp->sf_uc; /* argument 3 */
780 if (SIGISMEMBER(psp->ps_siginfo, sig)) {
782 * Signal handler installed with SA_SIGINFO.
784 * action(signo, siginfo, ucontext)
786 regs->tf_rsi = (register_t)&sfp->sf_si; /* argument 2 */
787 regs->tf_rcx = (register_t)regs->tf_addr; /* argument 4 */
788 sf.sf_ahu.sf_action = (__siginfohandler_t *)catcher;
790 /* fill siginfo structure */
791 sf.sf_si.si_signo = sig;
792 sf.sf_si.si_code = code;
793 sf.sf_si.si_addr = (void *)regs->tf_addr;
794 } else {
796 * Old FreeBSD-style arguments.
798 * handler (signo, code, [uc], addr)
800 regs->tf_rsi = (register_t)code; /* argument 2 */
801 regs->tf_rcx = (register_t)regs->tf_addr; /* argument 4 */
802 sf.sf_ahu.sf_handler = catcher;
806 * If we're a vm86 process, we want to save the segment registers.
807 * We also change eflags to be our emulated eflags, not the actual
808 * eflags.
810 #if 0 /* JG */
811 if (regs->tf_eflags & PSL_VM) {
812 struct trapframe_vm86 *tf = (struct trapframe_vm86 *)regs;
813 struct vm86_kernel *vm86 = &lp->lwp_thread->td_pcb->pcb_ext->ext_vm86;
815 sf.sf_uc.uc_mcontext.mc_gs = tf->tf_vm86_gs;
816 sf.sf_uc.uc_mcontext.mc_fs = tf->tf_vm86_fs;
817 sf.sf_uc.uc_mcontext.mc_es = tf->tf_vm86_es;
818 sf.sf_uc.uc_mcontext.mc_ds = tf->tf_vm86_ds;
820 if (vm86->vm86_has_vme == 0)
821 sf.sf_uc.uc_mcontext.mc_eflags =
822 (tf->tf_eflags & ~(PSL_VIF | PSL_VIP)) |
823 (vm86->vm86_eflags & (PSL_VIF | PSL_VIP));
826 * Clear PSL_NT to inhibit T_TSSFLT faults on return from
827 * syscalls made by the signal handler. This just avoids
828 * wasting time for our lazy fixup of such faults. PSL_NT
829 * does nothing in vm86 mode, but vm86 programs can set it
830 * almost legitimately in probes for old cpu types.
832 tf->tf_eflags &= ~(PSL_VM | PSL_NT | PSL_VIF | PSL_VIP);
834 #endif
837 * Save the FPU state and reinit the FP unit
839 npxpush(&sf.sf_uc.uc_mcontext);
842 * Copy the sigframe out to the user's stack.
844 if (copyout(&sf, sfp, sizeof(struct sigframe)) != 0) {
846 * Something is wrong with the stack pointer.
847 * ...Kill the process.
849 sigexit(lp, SIGILL);
852 regs->tf_rsp = (register_t)sfp;
853 regs->tf_rip = PS_STRINGS - *(p->p_sysent->sv_szsigcode);
856 * i386 abi specifies that the direction flag must be cleared
857 * on function entry
859 regs->tf_rflags &= ~(PSL_T|PSL_D);
862 * 64 bit mode has a code and stack selector but
863 * no data or extra selector. %fs and %gs are not
864 * stored in-context.
866 regs->tf_cs = _ucodesel;
867 regs->tf_ss = _udatasel;
868 clear_quickret();
872 * Sanitize the trapframe for a virtual kernel passing control to a custom
873 * VM context. Remove any items that would otherwise create a privilage
874 * issue.
876 * XXX at the moment we allow userland to set the resume flag. Is this a
877 * bad idea?
880 cpu_sanitize_frame(struct trapframe *frame)
882 frame->tf_cs = _ucodesel;
883 frame->tf_ss = _udatasel;
884 /* XXX VM (8086) mode not supported? */
885 frame->tf_rflags &= (PSL_RF | PSL_USERCHANGE | PSL_VM_UNSUPP);
886 frame->tf_rflags |= PSL_RESERVED_DEFAULT | PSL_I;
888 return(0);
892 * Sanitize the tls so loading the descriptor does not blow up
893 * on us. For x86_64 we don't have to do anything.
896 cpu_sanitize_tls(struct savetls *tls)
898 return(0);
902 * sigreturn(ucontext_t *sigcntxp)
904 * System call to cleanup state after a signal
905 * has been taken. Reset signal mask and
906 * stack state from context left by sendsig (above).
907 * Return to previous pc and psl as specified by
908 * context left by sendsig. Check carefully to
909 * make sure that the user has not modified the
910 * state to gain improper privileges.
912 * MPSAFE
914 #define EFL_SECURE(ef, oef) ((((ef) ^ (oef)) & ~PSL_USERCHANGE) == 0)
915 #define CS_SECURE(cs) (ISPL(cs) == SEL_UPL)
918 sys_sigreturn(struct sigreturn_args *uap)
920 struct lwp *lp = curthread->td_lwp;
921 struct trapframe *regs;
922 ucontext_t uc;
923 ucontext_t *ucp;
924 register_t rflags;
925 int cs;
926 int error;
929 * We have to copy the information into kernel space so userland
930 * can't modify it while we are sniffing it.
932 regs = lp->lwp_md.md_regs;
933 error = copyin(uap->sigcntxp, &uc, sizeof(uc));
934 if (error)
935 return (error);
936 ucp = &uc;
937 rflags = ucp->uc_mcontext.mc_rflags;
939 /* VM (8086) mode not supported */
940 rflags &= ~PSL_VM_UNSUPP;
942 #if 0 /* JG */
943 if (eflags & PSL_VM) {
944 struct trapframe_vm86 *tf = (struct trapframe_vm86 *)regs;
945 struct vm86_kernel *vm86;
948 * if pcb_ext == 0 or vm86_inited == 0, the user hasn't
949 * set up the vm86 area, and we can't enter vm86 mode.
951 if (lp->lwp_thread->td_pcb->pcb_ext == 0)
952 return (EINVAL);
953 vm86 = &lp->lwp_thread->td_pcb->pcb_ext->ext_vm86;
954 if (vm86->vm86_inited == 0)
955 return (EINVAL);
957 /* go back to user mode if both flags are set */
958 if ((eflags & PSL_VIP) && (eflags & PSL_VIF))
959 trapsignal(lp, SIGBUS, 0);
961 if (vm86->vm86_has_vme) {
962 eflags = (tf->tf_eflags & ~VME_USERCHANGE) |
963 (eflags & VME_USERCHANGE) | PSL_VM;
964 } else {
965 vm86->vm86_eflags = eflags; /* save VIF, VIP */
966 eflags = (tf->tf_eflags & ~VM_USERCHANGE) |
967 (eflags & VM_USERCHANGE) | PSL_VM;
969 bcopy(&ucp->uc_mcontext.mc_gs, tf, sizeof(struct trapframe));
970 tf->tf_eflags = eflags;
971 tf->tf_vm86_ds = tf->tf_ds;
972 tf->tf_vm86_es = tf->tf_es;
973 tf->tf_vm86_fs = tf->tf_fs;
974 tf->tf_vm86_gs = tf->tf_gs;
975 tf->tf_ds = _udatasel;
976 tf->tf_es = _udatasel;
977 tf->tf_fs = _udatasel;
978 tf->tf_gs = _udatasel;
979 } else
980 #endif
983 * Don't allow users to change privileged or reserved flags.
986 * XXX do allow users to change the privileged flag PSL_RF.
987 * The cpu sets PSL_RF in tf_eflags for faults. Debuggers
988 * should sometimes set it there too. tf_eflags is kept in
989 * the signal context during signal handling and there is no
990 * other place to remember it, so the PSL_RF bit may be
991 * corrupted by the signal handler without us knowing.
992 * Corruption of the PSL_RF bit at worst causes one more or
993 * one less debugger trap, so allowing it is fairly harmless.
995 if (!EFL_SECURE(rflags & ~PSL_RF, regs->tf_rflags & ~PSL_RF)) {
996 kprintf("sigreturn: rflags = 0x%lx\n", (long)rflags);
997 return(EINVAL);
1001 * Don't allow users to load a valid privileged %cs. Let the
1002 * hardware check for invalid selectors, excess privilege in
1003 * other selectors, invalid %eip's and invalid %esp's.
1005 cs = ucp->uc_mcontext.mc_cs;
1006 if (!CS_SECURE(cs)) {
1007 kprintf("sigreturn: cs = 0x%x\n", cs);
1008 trapsignal(lp, SIGBUS, T_PROTFLT);
1009 return(EINVAL);
1011 bcopy(&ucp->uc_mcontext.mc_rdi, regs, sizeof(struct trapframe));
1015 * Restore the FPU state from the frame
1017 crit_enter();
1018 npxpop(&ucp->uc_mcontext);
1020 if (ucp->uc_mcontext.mc_onstack & 1)
1021 lp->lwp_sigstk.ss_flags |= SS_ONSTACK;
1022 else
1023 lp->lwp_sigstk.ss_flags &= ~SS_ONSTACK;
1025 lp->lwp_sigmask = ucp->uc_sigmask;
1026 SIG_CANTMASK(lp->lwp_sigmask);
1027 clear_quickret();
1028 crit_exit();
1029 return(EJUSTRETURN);
1033 * Machine dependent boot() routine
1035 * I haven't seen anything to put here yet
1036 * Possibly some stuff might be grafted back here from boot()
1038 void
1039 cpu_boot(int howto)
1044 * Shutdown the CPU as much as possible
1046 void
1047 cpu_halt(void)
1049 for (;;)
1050 __asm__ __volatile("hlt");
1054 * cpu_idle() represents the idle LWKT. You cannot return from this function
1055 * (unless you want to blow things up!). Instead we look for runnable threads
1056 * and loop or halt as appropriate. Giant is not held on entry to the thread.
1058 * The main loop is entered with a critical section held, we must release
1059 * the critical section before doing anything else. lwkt_switch() will
1060 * check for pending interrupts due to entering and exiting its own
1061 * critical section.
1063 * NOTE: On an SMP system we rely on a scheduler IPI to wake a HLTed cpu up.
1064 * However, there are cases where the idlethread will be entered with
1065 * the possibility that no IPI will occur and in such cases
1066 * lwkt_switch() sets TDF_IDLE_NOHLT.
1068 * NOTE: cpu_idle_repeat determines how many entries into the idle thread
1069 * must occur before it starts using ACPI halt.
1071 * NOTE: Value overridden in hammer_time().
1073 static int cpu_idle_hlt = 2;
1074 SYSCTL_INT(_machdep, OID_AUTO, cpu_idle_hlt, CTLFLAG_RW,
1075 &cpu_idle_hlt, 0, "Idle loop HLT enable");
1076 SYSCTL_INT(_machdep, OID_AUTO, cpu_idle_repeat, CTLFLAG_RW,
1077 &cpu_idle_repeat, 0, "Idle entries before acpi hlt");
1079 SYSCTL_PROC(_machdep, OID_AUTO, cpu_idle_hltcnt, (CTLTYPE_QUAD | CTLFLAG_RW),
1080 0, CPU_IDLE_STAT_HALT, sysctl_cpu_idle_cnt, "Q", "Idle loop entry halts");
1081 SYSCTL_PROC(_machdep, OID_AUTO, cpu_idle_spincnt, (CTLTYPE_QUAD | CTLFLAG_RW),
1082 0, CPU_IDLE_STAT_SPIN, sysctl_cpu_idle_cnt, "Q", "Idle loop entry spins");
1084 static void
1085 cpu_idle_default_hook(void)
1088 * We must guarentee that hlt is exactly the instruction
1089 * following the sti.
1091 __asm __volatile("sti; hlt");
1094 /* Other subsystems (e.g., ACPI) can hook this later. */
1095 void (*cpu_idle_hook)(void) = cpu_idle_default_hook;
1097 static __inline int
1098 cpu_mwait_cx_hint(struct cpu_idle_stat *stat)
1100 int hint, cx_idx;
1101 u_int idx;
1103 hint = stat->hint;
1104 if (hint >= 0)
1105 goto done;
1107 idx = (stat->repeat + stat->repeat_last + stat->repeat_delta) >>
1108 cpu_mwait_repeat_shift;
1109 if (idx >= cpu_mwait_c1_hints_cnt) {
1110 /* Step up faster, once we walked through all C1 states */
1111 stat->repeat_delta += 1 << (cpu_mwait_repeat_shift + 1);
1113 if (hint == CPU_MWAIT_HINT_AUTODEEP) {
1114 if (idx >= cpu_mwait_deep_hints_cnt)
1115 idx = cpu_mwait_deep_hints_cnt - 1;
1116 hint = cpu_mwait_deep_hints[idx];
1117 } else {
1118 if (idx >= cpu_mwait_hints_cnt)
1119 idx = cpu_mwait_hints_cnt - 1;
1120 hint = cpu_mwait_hints[idx];
1122 done:
1123 cx_idx = MWAIT_EAX_TO_CX(hint);
1124 if (cx_idx >= 0 && cx_idx < CPU_MWAIT_CX_MAX)
1125 stat->mwait_cx[cx_idx]++;
1126 return hint;
1129 void
1130 cpu_idle(void)
1132 globaldata_t gd = mycpu;
1133 struct cpu_idle_stat *stat = &cpu_idle_stats[gd->gd_cpuid];
1134 struct thread *td __debugvar = gd->gd_curthread;
1135 int reqflags;
1136 int quick;
1138 stat->repeat = stat->repeat_last = cpu_idle_repeat_max;
1140 crit_exit();
1141 KKASSERT(td->td_critcount == 0);
1143 for (;;) {
1145 * See if there are any LWKTs ready to go.
1147 lwkt_switch();
1150 * When halting inside a cli we must check for reqflags
1151 * races, particularly [re]schedule requests. Running
1152 * splz() does the job.
1154 * cpu_idle_hlt:
1155 * 0 Never halt, just spin
1157 * 1 Always use HLT (or MONITOR/MWAIT if avail).
1159 * Better default for modern (Haswell+) Intel
1160 * cpus.
1162 * 2 Use HLT/MONITOR/MWAIT up to a point and then
1163 * use the ACPI halt (default). This is a hybrid
1164 * approach. See machdep.cpu_idle_repeat.
1166 * Better default for modern AMD cpus and older
1167 * Intel cpus.
1169 * 3 Always use the ACPI halt. This typically
1170 * eats the least amount of power but the cpu
1171 * will be slow waking up. Slows down e.g.
1172 * compiles and other pipe/event oriented stuff.
1174 * 4 Always use HLT.
1176 * NOTE: Interrupts are enabled and we are not in a critical
1177 * section.
1179 * NOTE: Preemptions do not reset gd_idle_repeat. Also we
1180 * don't bother capping gd_idle_repeat, it is ok if
1181 * it overflows.
1183 * Implement optimized invltlb operations when halted
1184 * in idle. By setting the bit in smp_idleinvl_mask
1185 * we inform other cpus that they can set _reqs to
1186 * request an invltlb. Current the code to do that
1187 * sets the bits in _reqs anyway, but then check _mask
1188 * to determine if they can assume the invltlb will execute.
1190 * A critical section is required to ensure that interrupts
1191 * do not fully run until after we've had a chance to execute
1192 * the request.
1194 if (gd->gd_idle_repeat == 0) {
1195 stat->repeat = (stat->repeat + stat->repeat_last) >> 1;
1196 if (stat->repeat > cpu_idle_repeat_max)
1197 stat->repeat = cpu_idle_repeat_max;
1198 stat->repeat_last = 0;
1199 stat->repeat_delta = 0;
1201 ++stat->repeat_last;
1203 ++gd->gd_idle_repeat;
1204 reqflags = gd->gd_reqflags;
1205 quick = (cpu_idle_hlt == 1) ||
1206 (cpu_idle_hlt < 3 &&
1207 gd->gd_idle_repeat < cpu_idle_repeat);
1209 if (quick && (cpu_mi_feature & CPU_MI_MONITOR) &&
1210 (reqflags & RQF_IDLECHECK_WK_MASK) == 0) {
1211 splz(); /* XXX */
1212 crit_enter_gd(gd);
1213 ATOMIC_CPUMASK_ORBIT(smp_idleinvl_mask, gd->gd_cpuid);
1214 cpu_mmw_pause_int(&gd->gd_reqflags, reqflags,
1215 cpu_mwait_cx_hint(stat), 0);
1216 stat->halt++;
1217 ATOMIC_CPUMASK_NANDBIT(smp_idleinvl_mask, gd->gd_cpuid);
1218 if (ATOMIC_CPUMASK_TESTANDCLR(smp_idleinvl_reqs,
1219 gd->gd_cpuid)) {
1220 cpu_invltlb();
1221 cpu_mfence();
1223 crit_exit_gd(gd);
1224 } else if (cpu_idle_hlt) {
1225 __asm __volatile("cli");
1226 splz();
1227 crit_enter_gd(gd);
1228 ATOMIC_CPUMASK_ORBIT(smp_idleinvl_mask, gd->gd_cpuid);
1229 if ((gd->gd_reqflags & RQF_IDLECHECK_WK_MASK) == 0) {
1230 if (quick)
1231 cpu_idle_default_hook();
1232 else
1233 cpu_idle_hook();
1235 __asm __volatile("sti");
1236 stat->halt++;
1237 ATOMIC_CPUMASK_NANDBIT(smp_idleinvl_mask, gd->gd_cpuid);
1238 if (ATOMIC_CPUMASK_TESTANDCLR(smp_idleinvl_reqs,
1239 gd->gd_cpuid)) {
1240 cpu_invltlb();
1241 cpu_mfence();
1243 crit_exit_gd(gd);
1244 } else {
1245 splz();
1246 __asm __volatile("sti");
1247 stat->spin++;
1253 * This routine is called if a spinlock has been held through the
1254 * exponential backoff period and is seriously contested. On a real cpu
1255 * we let it spin.
1257 void
1258 cpu_spinlock_contested(void)
1260 cpu_pause();
1264 * Clear registers on exec
1266 void
1267 exec_setregs(u_long entry, u_long stack, u_long ps_strings)
1269 struct thread *td = curthread;
1270 struct lwp *lp = td->td_lwp;
1271 struct pcb *pcb = td->td_pcb;
1272 struct trapframe *regs = lp->lwp_md.md_regs;
1274 /* was i386_user_cleanup() in NetBSD */
1275 user_ldt_free(pcb);
1277 clear_quickret();
1278 bzero((char *)regs, sizeof(struct trapframe));
1279 regs->tf_rip = entry;
1280 regs->tf_rsp = ((stack - 8) & ~0xFul) + 8; /* align the stack */
1281 regs->tf_rdi = stack; /* argv */
1282 regs->tf_rflags = PSL_USER | (regs->tf_rflags & PSL_T);
1283 regs->tf_ss = _udatasel;
1284 regs->tf_cs = _ucodesel;
1285 regs->tf_rbx = ps_strings;
1288 * Reset the hardware debug registers if they were in use.
1289 * They won't have any meaning for the newly exec'd process.
1291 if (pcb->pcb_flags & PCB_DBREGS) {
1292 pcb->pcb_dr0 = 0;
1293 pcb->pcb_dr1 = 0;
1294 pcb->pcb_dr2 = 0;
1295 pcb->pcb_dr3 = 0;
1296 pcb->pcb_dr6 = 0;
1297 pcb->pcb_dr7 = 0; /* JG set bit 10? */
1298 if (pcb == td->td_pcb) {
1300 * Clear the debug registers on the running
1301 * CPU, otherwise they will end up affecting
1302 * the next process we switch to.
1304 reset_dbregs();
1306 pcb->pcb_flags &= ~PCB_DBREGS;
1310 * Initialize the math emulator (if any) for the current process.
1311 * Actually, just clear the bit that says that the emulator has
1312 * been initialized. Initialization is delayed until the process
1313 * traps to the emulator (if it is done at all) mainly because
1314 * emulators don't provide an entry point for initialization.
1316 pcb->pcb_flags &= ~FP_SOFTFP;
1319 * NOTE: do not set CR0_TS here. npxinit() must do it after clearing
1320 * gd_npxthread. Otherwise a preemptive interrupt thread
1321 * may panic in npxdna().
1323 crit_enter();
1324 load_cr0(rcr0() | CR0_MP);
1327 * NOTE: The MSR values must be correct so we can return to
1328 * userland. gd_user_fs/gs must be correct so the switch
1329 * code knows what the current MSR values are.
1331 pcb->pcb_fsbase = 0; /* Values loaded from PCB on switch */
1332 pcb->pcb_gsbase = 0;
1333 mdcpu->gd_user_fs = 0; /* Cache of current MSR values */
1334 mdcpu->gd_user_gs = 0;
1335 wrmsr(MSR_FSBASE, 0); /* Set MSR values for return to userland */
1336 wrmsr(MSR_KGSBASE, 0);
1338 /* Initialize the npx (if any) for the current process. */
1339 npxinit();
1340 crit_exit();
1342 pcb->pcb_ds = _udatasel;
1343 pcb->pcb_es = _udatasel;
1344 pcb->pcb_fs = _udatasel;
1345 pcb->pcb_gs = _udatasel;
1348 void
1349 cpu_setregs(void)
1351 register_t cr0;
1353 cr0 = rcr0();
1354 cr0 |= CR0_NE; /* Done by npxinit() */
1355 cr0 |= CR0_MP | CR0_TS; /* Done at every execve() too. */
1356 cr0 |= CR0_WP | CR0_AM;
1357 load_cr0(cr0);
1358 load_gs(_udatasel);
1361 static int
1362 sysctl_machdep_adjkerntz(SYSCTL_HANDLER_ARGS)
1364 int error;
1365 error = sysctl_handle_int(oidp, oidp->oid_arg1, oidp->oid_arg2,
1366 req);
1367 if (!error && req->newptr)
1368 resettodr();
1369 return (error);
1372 SYSCTL_PROC(_machdep, CPU_ADJKERNTZ, adjkerntz, CTLTYPE_INT|CTLFLAG_RW,
1373 &adjkerntz, 0, sysctl_machdep_adjkerntz, "I", "");
1375 SYSCTL_INT(_machdep, CPU_DISRTCSET, disable_rtc_set,
1376 CTLFLAG_RW, &disable_rtc_set, 0, "");
1378 #if 0 /* JG */
1379 SYSCTL_STRUCT(_machdep, CPU_BOOTINFO, bootinfo,
1380 CTLFLAG_RD, &bootinfo, bootinfo, "");
1381 #endif
1383 SYSCTL_INT(_machdep, CPU_WALLCLOCK, wall_cmos_clock,
1384 CTLFLAG_RW, &wall_cmos_clock, 0, "");
1386 extern u_long bootdev; /* not a cdev_t - encoding is different */
1387 SYSCTL_ULONG(_machdep, OID_AUTO, guessed_bootdev,
1388 CTLFLAG_RD, &bootdev, 0, "Boot device (not in cdev_t format)");
1391 * Initialize 386 and configure to run kernel
1395 * Initialize segments & interrupt table
1398 int _default_ldt;
1399 struct user_segment_descriptor gdt[NGDT * MAXCPU]; /* global descriptor table */
1400 struct gate_descriptor idt_arr[MAXCPU][NIDT];
1401 #if 0 /* JG */
1402 union descriptor ldt[NLDT]; /* local descriptor table */
1403 #endif
1405 /* table descriptors - used to load tables by cpu */
1406 struct region_descriptor r_gdt;
1407 struct region_descriptor r_idt_arr[MAXCPU];
1409 /* JG proc0paddr is a virtual address */
1410 void *proc0paddr;
1411 /* JG alignment? */
1412 char proc0paddr_buff[LWKT_THREAD_STACK];
1415 /* software prototypes -- in more palatable form */
1416 struct soft_segment_descriptor gdt_segs[] = {
1417 /* GNULL_SEL 0 Null Descriptor */
1418 { 0x0, /* segment base address */
1419 0x0, /* length */
1420 0, /* segment type */
1421 0, /* segment descriptor priority level */
1422 0, /* segment descriptor present */
1423 0, /* long */
1424 0, /* default 32 vs 16 bit size */
1425 0 /* limit granularity (byte/page units)*/ },
1426 /* GCODE_SEL 1 Code Descriptor for kernel */
1427 { 0x0, /* segment base address */
1428 0xfffff, /* length - all address space */
1429 SDT_MEMERA, /* segment type */
1430 SEL_KPL, /* segment descriptor priority level */
1431 1, /* segment descriptor present */
1432 1, /* long */
1433 0, /* default 32 vs 16 bit size */
1434 1 /* limit granularity (byte/page units)*/ },
1435 /* GDATA_SEL 2 Data Descriptor for kernel */
1436 { 0x0, /* segment base address */
1437 0xfffff, /* length - all address space */
1438 SDT_MEMRWA, /* segment type */
1439 SEL_KPL, /* segment descriptor priority level */
1440 1, /* segment descriptor present */
1441 1, /* long */
1442 0, /* default 32 vs 16 bit size */
1443 1 /* limit granularity (byte/page units)*/ },
1444 /* GUCODE32_SEL 3 32 bit Code Descriptor for user */
1445 { 0x0, /* segment base address */
1446 0xfffff, /* length - all address space */
1447 SDT_MEMERA, /* segment type */
1448 SEL_UPL, /* segment descriptor priority level */
1449 1, /* segment descriptor present */
1450 0, /* long */
1451 1, /* default 32 vs 16 bit size */
1452 1 /* limit granularity (byte/page units)*/ },
1453 /* GUDATA_SEL 4 32/64 bit Data Descriptor for user */
1454 { 0x0, /* segment base address */
1455 0xfffff, /* length - all address space */
1456 SDT_MEMRWA, /* segment type */
1457 SEL_UPL, /* segment descriptor priority level */
1458 1, /* segment descriptor present */
1459 0, /* long */
1460 1, /* default 32 vs 16 bit size */
1461 1 /* limit granularity (byte/page units)*/ },
1462 /* GUCODE_SEL 5 64 bit Code Descriptor for user */
1463 { 0x0, /* segment base address */
1464 0xfffff, /* length - all address space */
1465 SDT_MEMERA, /* segment type */
1466 SEL_UPL, /* segment descriptor priority level */
1467 1, /* segment descriptor present */
1468 1, /* long */
1469 0, /* default 32 vs 16 bit size */
1470 1 /* limit granularity (byte/page units)*/ },
1471 /* GPROC0_SEL 6 Proc 0 Tss Descriptor */
1473 0x0, /* segment base address */
1474 sizeof(struct x86_64tss)-1,/* length - all address space */
1475 SDT_SYSTSS, /* segment type */
1476 SEL_KPL, /* segment descriptor priority level */
1477 1, /* segment descriptor present */
1478 0, /* long */
1479 0, /* unused - default 32 vs 16 bit size */
1480 0 /* limit granularity (byte/page units)*/ },
1481 /* Actually, the TSS is a system descriptor which is double size */
1482 { 0x0, /* segment base address */
1483 0x0, /* length */
1484 0, /* segment type */
1485 0, /* segment descriptor priority level */
1486 0, /* segment descriptor present */
1487 0, /* long */
1488 0, /* default 32 vs 16 bit size */
1489 0 /* limit granularity (byte/page units)*/ },
1490 /* GUGS32_SEL 8 32 bit GS Descriptor for user */
1491 { 0x0, /* segment base address */
1492 0xfffff, /* length - all address space */
1493 SDT_MEMRWA, /* segment type */
1494 SEL_UPL, /* segment descriptor priority level */
1495 1, /* segment descriptor present */
1496 0, /* long */
1497 1, /* default 32 vs 16 bit size */
1498 1 /* limit granularity (byte/page units)*/ },
1501 void
1502 setidt_global(int idx, inthand_t *func, int typ, int dpl, int ist)
1504 int cpu;
1506 for (cpu = 0; cpu < MAXCPU; ++cpu) {
1507 struct gate_descriptor *ip = &idt_arr[cpu][idx];
1509 ip->gd_looffset = (uintptr_t)func;
1510 ip->gd_selector = GSEL(GCODE_SEL, SEL_KPL);
1511 ip->gd_ist = ist;
1512 ip->gd_xx = 0;
1513 ip->gd_type = typ;
1514 ip->gd_dpl = dpl;
1515 ip->gd_p = 1;
1516 ip->gd_hioffset = ((uintptr_t)func)>>16 ;
1520 void
1521 setidt(int idx, inthand_t *func, int typ, int dpl, int ist, int cpu)
1523 struct gate_descriptor *ip;
1525 KASSERT(cpu >= 0 && cpu < ncpus, ("invalid cpu %d", cpu));
1527 ip = &idt_arr[cpu][idx];
1528 ip->gd_looffset = (uintptr_t)func;
1529 ip->gd_selector = GSEL(GCODE_SEL, SEL_KPL);
1530 ip->gd_ist = ist;
1531 ip->gd_xx = 0;
1532 ip->gd_type = typ;
1533 ip->gd_dpl = dpl;
1534 ip->gd_p = 1;
1535 ip->gd_hioffset = ((uintptr_t)func)>>16 ;
1538 #define IDTVEC(name) __CONCAT(X,name)
1540 extern inthand_t
1541 IDTVEC(div), IDTVEC(dbg), IDTVEC(nmi), IDTVEC(bpt), IDTVEC(ofl),
1542 IDTVEC(bnd), IDTVEC(ill), IDTVEC(dna), IDTVEC(fpusegm),
1543 IDTVEC(tss), IDTVEC(missing), IDTVEC(stk), IDTVEC(prot),
1544 IDTVEC(page), IDTVEC(mchk), IDTVEC(rsvd), IDTVEC(fpu), IDTVEC(align),
1545 IDTVEC(xmm), IDTVEC(dblfault),
1546 IDTVEC(fast_syscall), IDTVEC(fast_syscall32);
1548 void
1549 sdtossd(struct user_segment_descriptor *sd, struct soft_segment_descriptor *ssd)
1551 ssd->ssd_base = (sd->sd_hibase << 24) | sd->sd_lobase;
1552 ssd->ssd_limit = (sd->sd_hilimit << 16) | sd->sd_lolimit;
1553 ssd->ssd_type = sd->sd_type;
1554 ssd->ssd_dpl = sd->sd_dpl;
1555 ssd->ssd_p = sd->sd_p;
1556 ssd->ssd_def32 = sd->sd_def32;
1557 ssd->ssd_gran = sd->sd_gran;
1560 void
1561 ssdtosd(struct soft_segment_descriptor *ssd, struct user_segment_descriptor *sd)
1564 sd->sd_lobase = (ssd->ssd_base) & 0xffffff;
1565 sd->sd_hibase = (ssd->ssd_base >> 24) & 0xff;
1566 sd->sd_lolimit = (ssd->ssd_limit) & 0xffff;
1567 sd->sd_hilimit = (ssd->ssd_limit >> 16) & 0xf;
1568 sd->sd_type = ssd->ssd_type;
1569 sd->sd_dpl = ssd->ssd_dpl;
1570 sd->sd_p = ssd->ssd_p;
1571 sd->sd_long = ssd->ssd_long;
1572 sd->sd_def32 = ssd->ssd_def32;
1573 sd->sd_gran = ssd->ssd_gran;
1576 void
1577 ssdtosyssd(struct soft_segment_descriptor *ssd,
1578 struct system_segment_descriptor *sd)
1581 sd->sd_lobase = (ssd->ssd_base) & 0xffffff;
1582 sd->sd_hibase = (ssd->ssd_base >> 24) & 0xfffffffffful;
1583 sd->sd_lolimit = (ssd->ssd_limit) & 0xffff;
1584 sd->sd_hilimit = (ssd->ssd_limit >> 16) & 0xf;
1585 sd->sd_type = ssd->ssd_type;
1586 sd->sd_dpl = ssd->ssd_dpl;
1587 sd->sd_p = ssd->ssd_p;
1588 sd->sd_gran = ssd->ssd_gran;
1592 * Populate the (physmap) array with base/bound pairs describing the
1593 * available physical memory in the system, then test this memory and
1594 * build the phys_avail array describing the actually-available memory.
1596 * If we cannot accurately determine the physical memory map, then use
1597 * value from the 0xE801 call, and failing that, the RTC.
1599 * Total memory size may be set by the kernel environment variable
1600 * hw.physmem or the compile-time define MAXMEM.
1602 * Memory is aligned to PHYSMAP_ALIGN which must be a multiple
1603 * of PAGE_SIZE. This also greatly reduces the memory test time
1604 * which would otherwise be excessive on machines with > 8G of ram.
1606 * XXX first should be vm_paddr_t.
1609 #define PHYSMAP_ALIGN (vm_paddr_t)(128 * 1024)
1610 #define PHYSMAP_ALIGN_MASK (vm_paddr_t)(PHYSMAP_ALIGN - 1)
1611 vm_paddr_t physmap[PHYSMAP_SIZE];
1612 struct bios_smap *smapbase, *smap, *smapend;
1613 struct efi_map_header *efihdrbase;
1614 u_int32_t smapsize;
1615 #define PHYSMAP_HANDWAVE (vm_paddr_t)(2 * 1024 * 1024)
1616 #define PHYSMAP_HANDWAVE_MASK (PHYSMAP_HANDWAVE - 1)
1618 static void
1619 add_smap_entries(int *physmap_idx)
1621 int i;
1623 smapsize = *((u_int32_t *)smapbase - 1);
1624 smapend = (struct bios_smap *)((uintptr_t)smapbase + smapsize);
1626 for (smap = smapbase; smap < smapend; smap++) {
1627 if (boothowto & RB_VERBOSE)
1628 kprintf("SMAP type=%02x base=%016lx len=%016lx\n",
1629 smap->type, smap->base, smap->length);
1631 if (smap->type != SMAP_TYPE_MEMORY)
1632 continue;
1634 if (smap->length == 0)
1635 continue;
1637 for (i = 0; i <= *physmap_idx; i += 2) {
1638 if (smap->base < physmap[i + 1]) {
1639 if (boothowto & RB_VERBOSE) {
1640 kprintf("Overlapping or non-monotonic "
1641 "memory region, ignoring "
1642 "second region\n");
1644 break;
1647 if (i <= *physmap_idx)
1648 continue;
1650 Realmem += smap->length;
1652 if (smap->base == physmap[*physmap_idx + 1]) {
1653 physmap[*physmap_idx + 1] += smap->length;
1654 continue;
1657 *physmap_idx += 2;
1658 if (*physmap_idx == PHYSMAP_SIZE) {
1659 kprintf("Too many segments in the physical "
1660 "address map, giving up\n");
1661 break;
1663 physmap[*physmap_idx] = smap->base;
1664 physmap[*physmap_idx + 1] = smap->base + smap->length;
1668 #define efi_next_descriptor(ptr, size) \
1669 ((struct efi_md *)(((uint8_t *) ptr) + size))
1671 static void
1672 add_efi_map_entries(int *physmap_idx)
1674 struct efi_md *map, *p;
1675 const char *type;
1676 size_t efisz;
1677 int i, ndesc;
1679 static const char *types[] = {
1680 "Reserved",
1681 "LoaderCode",
1682 "LoaderData",
1683 "BootServicesCode",
1684 "BootServicesData",
1685 "RuntimeServicesCode",
1686 "RuntimeServicesData",
1687 "ConventionalMemory",
1688 "UnusableMemory",
1689 "ACPIReclaimMemory",
1690 "ACPIMemoryNVS",
1691 "MemoryMappedIO",
1692 "MemoryMappedIOPortSpace",
1693 "PalCode"
1697 * Memory map data provided by UEFI via the GetMemoryMap
1698 * Boot Services API.
1700 efisz = (sizeof(struct efi_map_header) + 0xf) & ~0xf;
1701 map = (struct efi_md *)((uint8_t *)efihdrbase + efisz);
1703 if (efihdrbase->descriptor_size == 0)
1704 return;
1705 ndesc = efihdrbase->memory_size / efihdrbase->descriptor_size;
1707 if (boothowto & RB_VERBOSE)
1708 kprintf("%23s %12s %12s %8s %4s\n",
1709 "Type", "Physical", "Virtual", "#Pages", "Attr");
1711 for (i = 0, p = map; i < ndesc; i++,
1712 p = efi_next_descriptor(p, efihdrbase->descriptor_size)) {
1713 if (boothowto & RB_VERBOSE) {
1714 if (p->md_type <= EFI_MD_TYPE_PALCODE)
1715 type = types[p->md_type];
1716 else
1717 type = "<INVALID>";
1718 kprintf("%23s %012lx %12p %08lx ", type, p->md_phys,
1719 p->md_virt, p->md_pages);
1720 if (p->md_attr & EFI_MD_ATTR_UC)
1721 kprintf("UC ");
1722 if (p->md_attr & EFI_MD_ATTR_WC)
1723 kprintf("WC ");
1724 if (p->md_attr & EFI_MD_ATTR_WT)
1725 kprintf("WT ");
1726 if (p->md_attr & EFI_MD_ATTR_WB)
1727 kprintf("WB ");
1728 if (p->md_attr & EFI_MD_ATTR_UCE)
1729 kprintf("UCE ");
1730 if (p->md_attr & EFI_MD_ATTR_WP)
1731 kprintf("WP ");
1732 if (p->md_attr & EFI_MD_ATTR_RP)
1733 kprintf("RP ");
1734 if (p->md_attr & EFI_MD_ATTR_XP)
1735 kprintf("XP ");
1736 if (p->md_attr & EFI_MD_ATTR_RT)
1737 kprintf("RUNTIME");
1738 kprintf("\n");
1741 switch (p->md_type) {
1742 case EFI_MD_TYPE_CODE:
1743 case EFI_MD_TYPE_DATA:
1744 case EFI_MD_TYPE_BS_CODE:
1745 case EFI_MD_TYPE_BS_DATA:
1746 case EFI_MD_TYPE_FREE:
1748 * We're allowed to use any entry with these types.
1750 break;
1751 default:
1752 continue;
1755 Realmem += p->md_pages * PAGE_SIZE;
1757 if (p->md_phys == physmap[*physmap_idx + 1]) {
1758 physmap[*physmap_idx + 1] += p->md_pages * PAGE_SIZE;
1759 continue;
1762 *physmap_idx += 2;
1763 if (*physmap_idx == PHYSMAP_SIZE) {
1764 kprintf("Too many segments in the physical "
1765 "address map, giving up\n");
1766 break;
1768 physmap[*physmap_idx] = p->md_phys;
1769 physmap[*physmap_idx + 1] = p->md_phys + p->md_pages * PAGE_SIZE;
1773 struct fb_info efi_fb_info;
1774 static int have_efi_framebuffer = 0;
1776 static void
1777 efi_fb_init_vaddr(int direct_map)
1779 uint64_t sz;
1780 vm_offset_t addr, v;
1782 v = efi_fb_info.vaddr;
1783 sz = efi_fb_info.stride * efi_fb_info.height;
1785 if (direct_map) {
1786 addr = PHYS_TO_DMAP(efi_fb_info.paddr);
1787 if (addr >= DMAP_MIN_ADDRESS && addr + sz < DMAP_MAX_ADDRESS)
1788 efi_fb_info.vaddr = addr;
1789 } else {
1790 efi_fb_info.vaddr = (vm_offset_t)pmap_mapdev_attr(
1791 efi_fb_info.paddr, sz, PAT_WRITE_COMBINING);
1794 if (v == 0 && efi_fb_info.vaddr != 0)
1795 memset((void *)efi_fb_info.vaddr, 0x77, sz);
1799 probe_efi_fb(int early)
1801 struct efi_fb *efifb;
1802 caddr_t kmdp;
1804 if (have_efi_framebuffer) {
1805 if (!early &&
1806 (efi_fb_info.vaddr == 0 ||
1807 efi_fb_info.vaddr == PHYS_TO_DMAP(efi_fb_info.paddr)))
1808 efi_fb_init_vaddr(0);
1809 return 0;
1812 kmdp = preload_search_by_type("elf kernel");
1813 if (kmdp == NULL)
1814 kmdp = preload_search_by_type("elf64 kernel");
1815 efifb = (struct efi_fb *)preload_search_info(kmdp,
1816 MODINFO_METADATA | MODINFOMD_EFI_FB);
1817 if (efifb == NULL)
1818 return 1;
1820 have_efi_framebuffer = 1;
1822 efi_fb_info.is_vga_boot_display = 1;
1823 efi_fb_info.width = efifb->fb_width;
1824 efi_fb_info.height = efifb->fb_height;
1825 efi_fb_info.stride = efifb->fb_stride * 4;
1826 efi_fb_info.depth = 32;
1827 efi_fb_info.paddr = efifb->fb_addr;
1828 if (early) {
1829 efi_fb_info.vaddr = 0;
1830 } else {
1831 efi_fb_init_vaddr(0);
1833 efi_fb_info.restore = NULL;
1834 efi_fb_info.device = NULL;
1836 return 0;
1839 static void
1840 efifb_startup(void *arg)
1842 probe_efi_fb(0);
1845 SYSINIT(efi_fb_info, SI_BOOT1_POST, SI_ORDER_FIRST, efifb_startup, NULL);
1847 static void
1848 getmemsize(caddr_t kmdp, u_int64_t first)
1850 int off, physmap_idx, pa_indx, da_indx;
1851 int i, j;
1852 vm_paddr_t pa;
1853 vm_paddr_t msgbuf_size;
1854 u_long physmem_tunable;
1855 pt_entry_t *pte;
1856 quad_t dcons_addr, dcons_size;
1858 bzero(physmap, sizeof(physmap));
1859 physmap_idx = 0;
1862 * get memory map from INT 15:E820, kindly supplied by the loader.
1864 * subr_module.c says:
1865 * "Consumer may safely assume that size value precedes data."
1866 * ie: an int32_t immediately precedes smap.
1868 efihdrbase = (struct efi_map_header *)preload_search_info(kmdp,
1869 MODINFO_METADATA | MODINFOMD_EFI_MAP);
1870 smapbase = (struct bios_smap *)preload_search_info(kmdp,
1871 MODINFO_METADATA | MODINFOMD_SMAP);
1872 if (smapbase == NULL && efihdrbase == NULL)
1873 panic("No BIOS smap or EFI map info from loader!");
1875 if (efihdrbase == NULL)
1876 add_smap_entries(&physmap_idx);
1877 else
1878 add_efi_map_entries(&physmap_idx);
1880 base_memory = physmap[1] / 1024;
1881 /* make hole for AP bootstrap code */
1882 physmap[1] = mp_bootaddress(base_memory);
1884 /* Save EBDA address, if any */
1885 ebda_addr = (u_long)(*(u_short *)(KERNBASE + 0x40e));
1886 ebda_addr <<= 4;
1889 * Maxmem isn't the "maximum memory", it's one larger than the
1890 * highest page of the physical address space. It should be
1891 * called something like "Maxphyspage". We may adjust this
1892 * based on ``hw.physmem'' and the results of the memory test.
1894 Maxmem = atop(physmap[physmap_idx + 1]);
1896 #ifdef MAXMEM
1897 Maxmem = MAXMEM / 4;
1898 #endif
1900 if (TUNABLE_ULONG_FETCH("hw.physmem", &physmem_tunable))
1901 Maxmem = atop(physmem_tunable);
1904 * Don't allow MAXMEM or hw.physmem to extend the amount of memory
1905 * in the system.
1907 if (Maxmem > atop(physmap[physmap_idx + 1]))
1908 Maxmem = atop(physmap[physmap_idx + 1]);
1911 * Blowing out the DMAP will blow up the system.
1913 if (Maxmem > atop(DMAP_MAX_ADDRESS - DMAP_MIN_ADDRESS)) {
1914 kprintf("Limiting Maxmem due to DMAP size\n");
1915 Maxmem = atop(DMAP_MAX_ADDRESS - DMAP_MIN_ADDRESS);
1918 if (atop(physmap[physmap_idx + 1]) != Maxmem &&
1919 (boothowto & RB_VERBOSE)) {
1920 kprintf("Physical memory use set to %ldK\n", Maxmem * 4);
1924 * Call pmap initialization to make new kernel address space
1926 * Mask off page 0.
1928 pmap_bootstrap(&first);
1929 physmap[0] = PAGE_SIZE;
1932 * Align the physmap to PHYSMAP_ALIGN and cut out anything
1933 * exceeding Maxmem.
1935 for (i = j = 0; i <= physmap_idx; i += 2) {
1936 if (physmap[i+1] > ptoa(Maxmem))
1937 physmap[i+1] = ptoa(Maxmem);
1938 physmap[i] = (physmap[i] + PHYSMAP_ALIGN_MASK) &
1939 ~PHYSMAP_ALIGN_MASK;
1940 physmap[i+1] = physmap[i+1] & ~PHYSMAP_ALIGN_MASK;
1942 physmap[j] = physmap[i];
1943 physmap[j+1] = physmap[i+1];
1945 if (physmap[i] < physmap[i+1])
1946 j += 2;
1948 physmap_idx = j - 2;
1951 * Align anything else used in the validation loop.
1953 first = (first + PHYSMAP_ALIGN_MASK) & ~PHYSMAP_ALIGN_MASK;
1956 * Size up each available chunk of physical memory.
1958 pa_indx = 0;
1959 da_indx = 1;
1960 phys_avail[pa_indx++] = physmap[0];
1961 phys_avail[pa_indx] = physmap[0];
1962 dump_avail[da_indx] = physmap[0];
1963 pte = CMAP1;
1966 * Get dcons buffer address
1968 if (kgetenv_quad("dcons.addr", &dcons_addr) == 0 ||
1969 kgetenv_quad("dcons.size", &dcons_size) == 0)
1970 dcons_addr = 0;
1973 * Validate the physical memory. The physical memory segments
1974 * have already been aligned to PHYSMAP_ALIGN which is a multiple
1975 * of PAGE_SIZE.
1977 for (i = 0; i <= physmap_idx; i += 2) {
1978 vm_paddr_t end;
1979 vm_paddr_t incr = PHYSMAP_ALIGN;
1981 end = physmap[i + 1];
1983 for (pa = physmap[i]; pa < end; pa += incr) {
1984 int page_bad, full;
1985 volatile uint64_t *ptr = (uint64_t *)CADDR1;
1986 uint64_t tmp;
1988 incr = PHYSMAP_ALIGN;
1989 full = FALSE;
1992 * block out kernel memory as not available.
1994 if (pa >= 0x200000 && pa < first)
1995 goto do_dump_avail;
1998 * block out dcons buffer
2000 if (dcons_addr > 0
2001 && pa >= trunc_page(dcons_addr)
2002 && pa < dcons_addr + dcons_size) {
2003 goto do_dump_avail;
2006 page_bad = FALSE;
2009 * Always test the first and last block supplied in
2010 * the map entry, but it just takes too long to run
2011 * the test these days and we already have to skip
2012 * pages. Handwave it on PHYSMAP_HANDWAVE boundaries.
2014 if (pa != physmap[i]) {
2015 vm_paddr_t bytes = end - pa;
2016 if ((pa & PHYSMAP_HANDWAVE_MASK) == 0 &&
2017 bytes >= PHYSMAP_HANDWAVE + PHYSMAP_ALIGN) {
2018 incr = PHYSMAP_HANDWAVE;
2019 goto handwaved;
2024 * map page into kernel: valid, read/write,non-cacheable
2026 *pte = pa |
2027 kernel_pmap.pmap_bits[PG_V_IDX] |
2028 kernel_pmap.pmap_bits[PG_RW_IDX] |
2029 kernel_pmap.pmap_bits[PG_N_IDX];
2030 cpu_invlpg(__DEVOLATILE(void *, ptr));
2031 cpu_mfence();
2033 tmp = *ptr;
2035 * Test for alternating 1's and 0's
2037 *ptr = 0xaaaaaaaaaaaaaaaaLLU;
2038 cpu_mfence();
2039 if (*ptr != 0xaaaaaaaaaaaaaaaaLLU)
2040 page_bad = TRUE;
2042 * Test for alternating 0's and 1's
2044 *ptr = 0x5555555555555555LLU;
2045 cpu_mfence();
2046 if (*ptr != 0x5555555555555555LLU)
2047 page_bad = TRUE;
2049 * Test for all 1's
2051 *ptr = 0xffffffffffffffffLLU;
2052 cpu_mfence();
2053 if (*ptr != 0xffffffffffffffffLLU)
2054 page_bad = TRUE;
2056 * Test for all 0's
2058 *ptr = 0x0;
2059 cpu_mfence();
2060 if (*ptr != 0x0)
2061 page_bad = TRUE;
2063 * Restore original value.
2065 *ptr = tmp;
2066 handwaved:
2069 * Adjust array of valid/good pages.
2071 if (page_bad == TRUE)
2072 continue;
2075 * If this good page is a continuation of the
2076 * previous set of good pages, then just increase
2077 * the end pointer. Otherwise start a new chunk.
2078 * Note that "end" points one higher than end,
2079 * making the range >= start and < end.
2080 * If we're also doing a speculative memory
2081 * test and we at or past the end, bump up Maxmem
2082 * so that we keep going. The first bad page
2083 * will terminate the loop.
2085 if (phys_avail[pa_indx] == pa) {
2086 phys_avail[pa_indx] += incr;
2087 } else {
2088 pa_indx++;
2089 if (pa_indx == PHYS_AVAIL_ARRAY_END) {
2090 kprintf(
2091 "Too many holes in the physical address space, giving up\n");
2092 pa_indx--;
2093 full = TRUE;
2094 goto do_dump_avail;
2096 phys_avail[pa_indx++] = pa;
2097 phys_avail[pa_indx] = pa + incr;
2099 physmem += incr / PAGE_SIZE;
2100 do_dump_avail:
2101 if (dump_avail[da_indx] == pa) {
2102 dump_avail[da_indx] += incr;
2103 } else {
2104 da_indx++;
2105 if (da_indx == DUMP_AVAIL_ARRAY_END) {
2106 da_indx--;
2107 goto do_next;
2109 dump_avail[da_indx++] = pa;
2110 dump_avail[da_indx] = pa + incr;
2112 do_next:
2113 if (full)
2114 break;
2117 *pte = 0;
2118 cpu_invltlb();
2119 cpu_mfence();
2122 * The last chunk must contain at least one page plus the message
2123 * buffer to avoid complicating other code (message buffer address
2124 * calculation, etc.).
2126 msgbuf_size = (MSGBUF_SIZE + PHYSMAP_ALIGN_MASK) & ~PHYSMAP_ALIGN_MASK;
2128 while (phys_avail[pa_indx - 1] + PHYSMAP_ALIGN +
2129 msgbuf_size >= phys_avail[pa_indx]) {
2130 physmem -= atop(phys_avail[pa_indx] - phys_avail[pa_indx - 1]);
2131 phys_avail[pa_indx--] = 0;
2132 phys_avail[pa_indx--] = 0;
2135 Maxmem = atop(phys_avail[pa_indx]);
2137 /* Trim off space for the message buffer. */
2138 phys_avail[pa_indx] -= msgbuf_size;
2140 avail_end = phys_avail[pa_indx];
2142 /* Map the message buffer. */
2143 for (off = 0; off < msgbuf_size; off += PAGE_SIZE) {
2144 pmap_kenter((vm_offset_t)msgbufp + off,
2145 phys_avail[pa_indx] + off);
2147 /* Try to get EFI framebuffer working as early as possible */
2148 if (have_efi_framebuffer)
2149 efi_fb_init_vaddr(1);
2152 struct machintr_abi MachIntrABI;
2155 * IDT VECTORS:
2156 * 0 Divide by zero
2157 * 1 Debug
2158 * 2 NMI
2159 * 3 BreakPoint
2160 * 4 OverFlow
2161 * 5 Bound-Range
2162 * 6 Invalid OpCode
2163 * 7 Device Not Available (x87)
2164 * 8 Double-Fault
2165 * 9 Coprocessor Segment overrun (unsupported, reserved)
2166 * 10 Invalid-TSS
2167 * 11 Segment not present
2168 * 12 Stack
2169 * 13 General Protection
2170 * 14 Page Fault
2171 * 15 Reserved
2172 * 16 x87 FP Exception pending
2173 * 17 Alignment Check
2174 * 18 Machine Check
2175 * 19 SIMD floating point
2176 * 20-31 reserved
2177 * 32-255 INTn/external sources
2179 u_int64_t
2180 hammer_time(u_int64_t modulep, u_int64_t physfree)
2182 caddr_t kmdp;
2183 int gsel_tss, x, cpu;
2184 #if 0 /* JG */
2185 int metadata_missing, off;
2186 #endif
2187 struct mdglobaldata *gd;
2188 u_int64_t msr;
2191 * Prevent lowering of the ipl if we call tsleep() early.
2193 gd = &CPU_prvspace[0]->mdglobaldata;
2194 bzero(gd, sizeof(*gd));
2197 * Note: on both UP and SMP curthread must be set non-NULL
2198 * early in the boot sequence because the system assumes
2199 * that 'curthread' is never NULL.
2202 gd->mi.gd_curthread = &thread0;
2203 thread0.td_gd = &gd->mi;
2205 atdevbase = ISA_HOLE_START + PTOV_OFFSET;
2207 #if 0 /* JG */
2208 metadata_missing = 0;
2209 if (bootinfo.bi_modulep) {
2210 preload_metadata = (caddr_t)bootinfo.bi_modulep + KERNBASE;
2211 preload_bootstrap_relocate(KERNBASE);
2212 } else {
2213 metadata_missing = 1;
2215 if (bootinfo.bi_envp)
2216 kern_envp = (caddr_t)bootinfo.bi_envp + KERNBASE;
2217 #endif
2219 preload_metadata = (caddr_t)(uintptr_t)(modulep + PTOV_OFFSET);
2220 preload_bootstrap_relocate(PTOV_OFFSET);
2221 kmdp = preload_search_by_type("elf kernel");
2222 if (kmdp == NULL)
2223 kmdp = preload_search_by_type("elf64 kernel");
2224 boothowto = MD_FETCH(kmdp, MODINFOMD_HOWTO, int);
2225 kern_envp = MD_FETCH(kmdp, MODINFOMD_ENVP, char *) + PTOV_OFFSET;
2226 #ifdef DDB
2227 ksym_start = MD_FETCH(kmdp, MODINFOMD_SSYM, uintptr_t);
2228 ksym_end = MD_FETCH(kmdp, MODINFOMD_ESYM, uintptr_t);
2229 #endif
2231 if (boothowto & RB_VERBOSE)
2232 bootverbose++;
2235 * Default MachIntrABI to ICU
2237 MachIntrABI = MachIntrABI_ICU;
2240 * start with one cpu. Note: with one cpu, ncpus2_shift, ncpus2_mask,
2241 * and ncpus_fit_mask remain 0.
2243 ncpus = 1;
2244 ncpus2 = 1;
2245 ncpus_fit = 1;
2246 /* Init basic tunables, hz etc */
2247 init_param1();
2250 * make gdt memory segments
2252 gdt_segs[GPROC0_SEL].ssd_base =
2253 (uintptr_t) &CPU_prvspace[0]->mdglobaldata.gd_common_tss;
2255 gd->mi.gd_prvspace = CPU_prvspace[0];
2257 for (x = 0; x < NGDT; x++) {
2258 if (x != GPROC0_SEL && x != (GPROC0_SEL + 1))
2259 ssdtosd(&gdt_segs[x], &gdt[x]);
2261 ssdtosyssd(&gdt_segs[GPROC0_SEL],
2262 (struct system_segment_descriptor *)&gdt[GPROC0_SEL]);
2264 r_gdt.rd_limit = NGDT * sizeof(gdt[0]) - 1;
2265 r_gdt.rd_base = (long) gdt;
2266 lgdt(&r_gdt);
2268 wrmsr(MSR_FSBASE, 0); /* User value */
2269 wrmsr(MSR_GSBASE, (u_int64_t)&gd->mi);
2270 wrmsr(MSR_KGSBASE, 0); /* User value while in the kernel */
2272 mi_gdinit(&gd->mi, 0);
2273 cpu_gdinit(gd, 0);
2274 proc0paddr = proc0paddr_buff;
2275 mi_proc0init(&gd->mi, proc0paddr);
2276 safepri = TDPRI_MAX;
2278 /* spinlocks and the BGL */
2279 init_locks();
2281 /* exceptions */
2282 for (x = 0; x < NIDT; x++)
2283 setidt_global(x, &IDTVEC(rsvd), SDT_SYSIGT, SEL_KPL, 0);
2284 setidt_global(IDT_DE, &IDTVEC(div), SDT_SYSIGT, SEL_KPL, 0);
2285 setidt_global(IDT_DB, &IDTVEC(dbg), SDT_SYSIGT, SEL_KPL, 0);
2286 setidt_global(IDT_NMI, &IDTVEC(nmi), SDT_SYSIGT, SEL_KPL, 1);
2287 setidt_global(IDT_BP, &IDTVEC(bpt), SDT_SYSIGT, SEL_UPL, 0);
2288 setidt_global(IDT_OF, &IDTVEC(ofl), SDT_SYSIGT, SEL_KPL, 0);
2289 setidt_global(IDT_BR, &IDTVEC(bnd), SDT_SYSIGT, SEL_KPL, 0);
2290 setidt_global(IDT_UD, &IDTVEC(ill), SDT_SYSIGT, SEL_KPL, 0);
2291 setidt_global(IDT_NM, &IDTVEC(dna), SDT_SYSIGT, SEL_KPL, 0);
2292 setidt_global(IDT_DF, &IDTVEC(dblfault), SDT_SYSIGT, SEL_KPL, 1);
2293 setidt_global(IDT_FPUGP, &IDTVEC(fpusegm), SDT_SYSIGT, SEL_KPL, 0);
2294 setidt_global(IDT_TS, &IDTVEC(tss), SDT_SYSIGT, SEL_KPL, 0);
2295 setidt_global(IDT_NP, &IDTVEC(missing), SDT_SYSIGT, SEL_KPL, 0);
2296 setidt_global(IDT_SS, &IDTVEC(stk), SDT_SYSIGT, SEL_KPL, 0);
2297 setidt_global(IDT_GP, &IDTVEC(prot), SDT_SYSIGT, SEL_KPL, 0);
2298 setidt_global(IDT_PF, &IDTVEC(page), SDT_SYSIGT, SEL_KPL, 0);
2299 setidt_global(IDT_MF, &IDTVEC(fpu), SDT_SYSIGT, SEL_KPL, 0);
2300 setidt_global(IDT_AC, &IDTVEC(align), SDT_SYSIGT, SEL_KPL, 0);
2301 setidt_global(IDT_MC, &IDTVEC(mchk), SDT_SYSIGT, SEL_KPL, 0);
2302 setidt_global(IDT_XF, &IDTVEC(xmm), SDT_SYSIGT, SEL_KPL, 0);
2304 for (cpu = 0; cpu < MAXCPU; ++cpu) {
2305 r_idt_arr[cpu].rd_limit = sizeof(idt_arr[cpu]) - 1;
2306 r_idt_arr[cpu].rd_base = (long) &idt_arr[cpu][0];
2309 lidt(&r_idt_arr[0]);
2312 * Initialize the console before we print anything out.
2314 cninit();
2316 #if 0 /* JG */
2317 if (metadata_missing)
2318 kprintf("WARNING: loader(8) metadata is missing!\n");
2319 #endif
2321 #if NISA >0
2322 elcr_probe();
2323 isa_defaultirq();
2324 #endif
2325 rand_initialize();
2328 * Initialize IRQ mapping
2330 * NOTE:
2331 * SHOULD be after elcr_probe()
2333 MachIntrABI_ICU.initmap();
2334 MachIntrABI_IOAPIC.initmap();
2336 #ifdef DDB
2337 kdb_init();
2338 if (boothowto & RB_KDB)
2339 Debugger("Boot flags requested debugger");
2340 #endif
2342 #if 0 /* JG */
2343 finishidentcpu(); /* Final stage of CPU initialization */
2344 setidt(6, &IDTVEC(ill), SDT_SYS386IGT, SEL_KPL, GSEL(GCODE_SEL, SEL_KPL));
2345 setidt(13, &IDTVEC(prot), SDT_SYS386IGT, SEL_KPL, GSEL(GCODE_SEL, SEL_KPL));
2346 #endif
2347 identify_cpu(); /* Final stage of CPU initialization */
2348 initializecpu(0); /* Initialize CPU registers */
2351 * On modern intel cpus, haswell or later, cpu_idle_hlt=1 is better
2352 * because the cpu does significant power management in MWAIT
2353 * (also suggested is to set sysctl machdep.mwait.CX.idle=AUTODEEP).
2355 * On modern amd cpus cpu_idle_hlt=3 is better, because the cpu does
2356 * significant power management in HLT or ACPI (but cpu_idle_hlt=1
2357 * would try to use MWAIT).
2359 * On older amd or intel cpus, cpu_idle_hlt=2 is better because ACPI
2360 * is needed to reduce power consumption, but wakeup times are often
2361 * longer.
2363 if (cpu_vendor_id == CPU_VENDOR_INTEL &&
2364 CPUID_TO_MODEL(cpu_id) >= 0x3C) { /* Haswell or later */
2365 cpu_idle_hlt = 1;
2367 if (cpu_vendor_id == CPU_VENDOR_AMD &&
2368 CPUID_TO_FAMILY(cpu_id) >= 0x14) { /* Bobcat or later */
2369 cpu_idle_hlt = 3;
2372 TUNABLE_INT_FETCH("hw.apic_io_enable", &ioapic_enable); /* for compat */
2373 TUNABLE_INT_FETCH("hw.ioapic_enable", &ioapic_enable);
2374 TUNABLE_INT_FETCH("hw.lapic_enable", &lapic_enable);
2375 TUNABLE_INT_FETCH("machdep.cpu_idle_hlt", &cpu_idle_hlt);
2378 * Some of the virtual machines do not work w/ I/O APIC
2379 * enabled. If the user does not explicitly enable or
2380 * disable the I/O APIC (ioapic_enable < 0), then we
2381 * disable I/O APIC on all virtual machines.
2383 * NOTE:
2384 * This must be done after identify_cpu(), which sets
2385 * 'cpu_feature2'
2387 if (ioapic_enable < 0) {
2388 if (cpu_feature2 & CPUID2_VMM)
2389 ioapic_enable = 0;
2390 else
2391 ioapic_enable = 1;
2394 /* make an initial tss so cpu can get interrupt stack on syscall! */
2395 gd->gd_common_tss.tss_rsp0 =
2396 (register_t)(thread0.td_kstack +
2397 KSTACK_PAGES * PAGE_SIZE - sizeof(struct pcb));
2398 /* Ensure the stack is aligned to 16 bytes */
2399 gd->gd_common_tss.tss_rsp0 &= ~(register_t)0xF;
2401 /* double fault stack */
2402 gd->gd_common_tss.tss_ist1 =
2403 (long)&gd->mi.gd_prvspace->idlestack[
2404 sizeof(gd->mi.gd_prvspace->idlestack)];
2406 /* Set the IO permission bitmap (empty due to tss seg limit) */
2407 gd->gd_common_tss.tss_iobase = sizeof(struct x86_64tss);
2409 gsel_tss = GSEL(GPROC0_SEL, SEL_KPL);
2410 gd->gd_tss_gdt = &gdt[GPROC0_SEL];
2411 gd->gd_common_tssd = *gd->gd_tss_gdt;
2412 ltr(gsel_tss);
2414 /* Set up the fast syscall stuff */
2415 msr = rdmsr(MSR_EFER) | EFER_SCE;
2416 wrmsr(MSR_EFER, msr);
2417 wrmsr(MSR_LSTAR, (u_int64_t)IDTVEC(fast_syscall));
2418 wrmsr(MSR_CSTAR, (u_int64_t)IDTVEC(fast_syscall32));
2419 msr = ((u_int64_t)GSEL(GCODE_SEL, SEL_KPL) << 32) |
2420 ((u_int64_t)GSEL(GUCODE32_SEL, SEL_UPL) << 48);
2421 wrmsr(MSR_STAR, msr);
2422 wrmsr(MSR_SF_MASK, PSL_NT|PSL_T|PSL_I|PSL_C|PSL_D|PSL_IOPL);
2424 getmemsize(kmdp, physfree);
2425 init_param2(physmem);
2427 /* now running on new page tables, configured,and u/iom is accessible */
2429 /* Map the message buffer. */
2430 #if 0 /* JG */
2431 for (off = 0; off < round_page(MSGBUF_SIZE); off += PAGE_SIZE)
2432 pmap_kenter((vm_offset_t)msgbufp + off, avail_end + off);
2433 #endif
2435 msgbufinit(msgbufp, MSGBUF_SIZE);
2438 /* transfer to user mode */
2440 _ucodesel = GSEL(GUCODE_SEL, SEL_UPL);
2441 _udatasel = GSEL(GUDATA_SEL, SEL_UPL);
2442 _ucode32sel = GSEL(GUCODE32_SEL, SEL_UPL);
2444 load_ds(_udatasel);
2445 load_es(_udatasel);
2446 load_fs(_udatasel);
2448 /* setup proc 0's pcb */
2449 thread0.td_pcb->pcb_flags = 0;
2450 thread0.td_pcb->pcb_cr3 = KPML4phys;
2451 thread0.td_pcb->pcb_ext = NULL;
2452 lwp0.lwp_md.md_regs = &proc0_tf; /* XXX needed? */
2454 /* Location of kernel stack for locore */
2455 return ((u_int64_t)thread0.td_pcb);
2459 * Initialize machine-dependant portions of the global data structure.
2460 * Note that the global data area and cpu0's idlestack in the private
2461 * data space were allocated in locore.
2463 * Note: the idlethread's cpl is 0
2465 * WARNING! Called from early boot, 'mycpu' may not work yet.
2467 void
2468 cpu_gdinit(struct mdglobaldata *gd, int cpu)
2470 if (cpu)
2471 gd->mi.gd_curthread = &gd->mi.gd_idlethread;
2473 lwkt_init_thread(&gd->mi.gd_idlethread,
2474 gd->mi.gd_prvspace->idlestack,
2475 sizeof(gd->mi.gd_prvspace->idlestack),
2476 0, &gd->mi);
2477 lwkt_set_comm(&gd->mi.gd_idlethread, "idle_%d", cpu);
2478 gd->mi.gd_idlethread.td_switch = cpu_lwkt_switch;
2479 gd->mi.gd_idlethread.td_sp -= sizeof(void *);
2480 *(void **)gd->mi.gd_idlethread.td_sp = cpu_idle_restore;
2484 * We only have to check for DMAP bounds, the globaldata space is
2485 * actually part of the kernel_map so we don't have to waste time
2486 * checking CPU_prvspace[*].
2489 is_globaldata_space(vm_offset_t saddr, vm_offset_t eaddr)
2491 #if 0
2492 if (saddr >= (vm_offset_t)&CPU_prvspace[0] &&
2493 eaddr <= (vm_offset_t)&CPU_prvspace[MAXCPU]) {
2494 return (TRUE);
2496 #endif
2497 if (saddr >= DMAP_MIN_ADDRESS && eaddr <= DMAP_MAX_ADDRESS)
2498 return (TRUE);
2499 return (FALSE);
2502 struct globaldata *
2503 globaldata_find(int cpu)
2505 KKASSERT(cpu >= 0 && cpu < ncpus);
2506 return(&CPU_prvspace[cpu]->mdglobaldata.mi);
2510 * This path should be safe from the SYSRET issue because only stopped threads
2511 * can have their %rip adjusted this way (and all heavy weight thread switches
2512 * clear QUICKREF and thus do not use SYSRET). However, the code path is
2513 * convoluted so add a safety by forcing %rip to be cannonical.
2516 ptrace_set_pc(struct lwp *lp, unsigned long addr)
2518 if (addr & 0x0000800000000000LLU)
2519 lp->lwp_md.md_regs->tf_rip = addr | 0xFFFF000000000000LLU;
2520 else
2521 lp->lwp_md.md_regs->tf_rip = addr & 0x0000FFFFFFFFFFFFLLU;
2522 return (0);
2526 ptrace_single_step(struct lwp *lp)
2528 lp->lwp_md.md_regs->tf_rflags |= PSL_T;
2529 return (0);
2533 fill_regs(struct lwp *lp, struct reg *regs)
2535 struct trapframe *tp;
2537 if ((tp = lp->lwp_md.md_regs) == NULL)
2538 return EINVAL;
2539 bcopy(&tp->tf_rdi, &regs->r_rdi, sizeof(*regs));
2540 return (0);
2544 set_regs(struct lwp *lp, struct reg *regs)
2546 struct trapframe *tp;
2548 tp = lp->lwp_md.md_regs;
2549 if (!EFL_SECURE(regs->r_rflags, tp->tf_rflags) ||
2550 !CS_SECURE(regs->r_cs))
2551 return (EINVAL);
2552 bcopy(&regs->r_rdi, &tp->tf_rdi, sizeof(*regs));
2553 clear_quickret();
2554 return (0);
2557 static void
2558 fill_fpregs_xmm(struct savexmm *sv_xmm, struct save87 *sv_87)
2560 struct env87 *penv_87 = &sv_87->sv_env;
2561 struct envxmm *penv_xmm = &sv_xmm->sv_env;
2562 int i;
2564 /* FPU control/status */
2565 penv_87->en_cw = penv_xmm->en_cw;
2566 penv_87->en_sw = penv_xmm->en_sw;
2567 penv_87->en_tw = penv_xmm->en_tw;
2568 penv_87->en_fip = penv_xmm->en_fip;
2569 penv_87->en_fcs = penv_xmm->en_fcs;
2570 penv_87->en_opcode = penv_xmm->en_opcode;
2571 penv_87->en_foo = penv_xmm->en_foo;
2572 penv_87->en_fos = penv_xmm->en_fos;
2574 /* FPU registers */
2575 for (i = 0; i < 8; ++i)
2576 sv_87->sv_ac[i] = sv_xmm->sv_fp[i].fp_acc;
2579 static void
2580 set_fpregs_xmm(struct save87 *sv_87, struct savexmm *sv_xmm)
2582 struct env87 *penv_87 = &sv_87->sv_env;
2583 struct envxmm *penv_xmm = &sv_xmm->sv_env;
2584 int i;
2586 /* FPU control/status */
2587 penv_xmm->en_cw = penv_87->en_cw;
2588 penv_xmm->en_sw = penv_87->en_sw;
2589 penv_xmm->en_tw = penv_87->en_tw;
2590 penv_xmm->en_fip = penv_87->en_fip;
2591 penv_xmm->en_fcs = penv_87->en_fcs;
2592 penv_xmm->en_opcode = penv_87->en_opcode;
2593 penv_xmm->en_foo = penv_87->en_foo;
2594 penv_xmm->en_fos = penv_87->en_fos;
2596 /* FPU registers */
2597 for (i = 0; i < 8; ++i)
2598 sv_xmm->sv_fp[i].fp_acc = sv_87->sv_ac[i];
2602 fill_fpregs(struct lwp *lp, struct fpreg *fpregs)
2604 if (lp->lwp_thread == NULL || lp->lwp_thread->td_pcb == NULL)
2605 return EINVAL;
2606 if (cpu_fxsr) {
2607 fill_fpregs_xmm(&lp->lwp_thread->td_pcb->pcb_save.sv_xmm,
2608 (struct save87 *)fpregs);
2609 return (0);
2611 bcopy(&lp->lwp_thread->td_pcb->pcb_save.sv_87, fpregs, sizeof *fpregs);
2612 return (0);
2616 set_fpregs(struct lwp *lp, struct fpreg *fpregs)
2618 if (cpu_fxsr) {
2619 set_fpregs_xmm((struct save87 *)fpregs,
2620 &lp->lwp_thread->td_pcb->pcb_save.sv_xmm);
2621 return (0);
2623 bcopy(fpregs, &lp->lwp_thread->td_pcb->pcb_save.sv_87, sizeof *fpregs);
2624 return (0);
2628 fill_dbregs(struct lwp *lp, struct dbreg *dbregs)
2630 struct pcb *pcb;
2632 if (lp == NULL) {
2633 dbregs->dr[0] = rdr0();
2634 dbregs->dr[1] = rdr1();
2635 dbregs->dr[2] = rdr2();
2636 dbregs->dr[3] = rdr3();
2637 dbregs->dr[4] = rdr4();
2638 dbregs->dr[5] = rdr5();
2639 dbregs->dr[6] = rdr6();
2640 dbregs->dr[7] = rdr7();
2641 return (0);
2643 if (lp->lwp_thread == NULL || (pcb = lp->lwp_thread->td_pcb) == NULL)
2644 return EINVAL;
2645 dbregs->dr[0] = pcb->pcb_dr0;
2646 dbregs->dr[1] = pcb->pcb_dr1;
2647 dbregs->dr[2] = pcb->pcb_dr2;
2648 dbregs->dr[3] = pcb->pcb_dr3;
2649 dbregs->dr[4] = 0;
2650 dbregs->dr[5] = 0;
2651 dbregs->dr[6] = pcb->pcb_dr6;
2652 dbregs->dr[7] = pcb->pcb_dr7;
2653 return (0);
2657 set_dbregs(struct lwp *lp, struct dbreg *dbregs)
2659 if (lp == NULL) {
2660 load_dr0(dbregs->dr[0]);
2661 load_dr1(dbregs->dr[1]);
2662 load_dr2(dbregs->dr[2]);
2663 load_dr3(dbregs->dr[3]);
2664 load_dr4(dbregs->dr[4]);
2665 load_dr5(dbregs->dr[5]);
2666 load_dr6(dbregs->dr[6]);
2667 load_dr7(dbregs->dr[7]);
2668 } else {
2669 struct pcb *pcb;
2670 struct ucred *ucred;
2671 int i;
2672 uint64_t mask1, mask2;
2675 * Don't let an illegal value for dr7 get set. Specifically,
2676 * check for undefined settings. Setting these bit patterns
2677 * result in undefined behaviour and can lead to an unexpected
2678 * TRCTRAP.
2680 /* JG this loop looks unreadable */
2681 /* Check 4 2-bit fields for invalid patterns.
2682 * These fields are R/Wi, for i = 0..3
2684 /* Is 10 in LENi allowed when running in compatibility mode? */
2685 /* Pattern 10 in R/Wi might be used to indicate
2686 * breakpoint on I/O. Further analysis should be
2687 * carried to decide if it is safe and useful to
2688 * provide access to that capability
2690 for (i = 0, mask1 = 0x3<<16, mask2 = 0x2<<16; i < 4;
2691 i++, mask1 <<= 4, mask2 <<= 4)
2692 if ((dbregs->dr[7] & mask1) == mask2)
2693 return (EINVAL);
2695 pcb = lp->lwp_thread->td_pcb;
2696 ucred = lp->lwp_proc->p_ucred;
2699 * Don't let a process set a breakpoint that is not within the
2700 * process's address space. If a process could do this, it
2701 * could halt the system by setting a breakpoint in the kernel
2702 * (if ddb was enabled). Thus, we need to check to make sure
2703 * that no breakpoints are being enabled for addresses outside
2704 * process's address space, unless, perhaps, we were called by
2705 * uid 0.
2707 * XXX - what about when the watched area of the user's
2708 * address space is written into from within the kernel
2709 * ... wouldn't that still cause a breakpoint to be generated
2710 * from within kernel mode?
2713 if (priv_check_cred(ucred, PRIV_ROOT, 0) != 0) {
2714 if (dbregs->dr[7] & 0x3) {
2715 /* dr0 is enabled */
2716 if (dbregs->dr[0] >= VM_MAX_USER_ADDRESS)
2717 return (EINVAL);
2720 if (dbregs->dr[7] & (0x3<<2)) {
2721 /* dr1 is enabled */
2722 if (dbregs->dr[1] >= VM_MAX_USER_ADDRESS)
2723 return (EINVAL);
2726 if (dbregs->dr[7] & (0x3<<4)) {
2727 /* dr2 is enabled */
2728 if (dbregs->dr[2] >= VM_MAX_USER_ADDRESS)
2729 return (EINVAL);
2732 if (dbregs->dr[7] & (0x3<<6)) {
2733 /* dr3 is enabled */
2734 if (dbregs->dr[3] >= VM_MAX_USER_ADDRESS)
2735 return (EINVAL);
2739 pcb->pcb_dr0 = dbregs->dr[0];
2740 pcb->pcb_dr1 = dbregs->dr[1];
2741 pcb->pcb_dr2 = dbregs->dr[2];
2742 pcb->pcb_dr3 = dbregs->dr[3];
2743 pcb->pcb_dr6 = dbregs->dr[6];
2744 pcb->pcb_dr7 = dbregs->dr[7];
2746 pcb->pcb_flags |= PCB_DBREGS;
2749 return (0);
2753 * Return > 0 if a hardware breakpoint has been hit, and the
2754 * breakpoint was in user space. Return 0, otherwise.
2757 user_dbreg_trap(void)
2759 u_int64_t dr7, dr6; /* debug registers dr6 and dr7 */
2760 u_int64_t bp; /* breakpoint bits extracted from dr6 */
2761 int nbp; /* number of breakpoints that triggered */
2762 caddr_t addr[4]; /* breakpoint addresses */
2763 int i;
2765 dr7 = rdr7();
2766 if ((dr7 & 0xff) == 0) {
2768 * all GE and LE bits in the dr7 register are zero,
2769 * thus the trap couldn't have been caused by the
2770 * hardware debug registers
2772 return 0;
2775 nbp = 0;
2776 dr6 = rdr6();
2777 bp = dr6 & 0xf;
2779 if (bp == 0) {
2781 * None of the breakpoint bits are set meaning this
2782 * trap was not caused by any of the debug registers
2784 return 0;
2788 * at least one of the breakpoints were hit, check to see
2789 * which ones and if any of them are user space addresses
2792 if (bp & 0x01) {
2793 addr[nbp++] = (caddr_t)rdr0();
2795 if (bp & 0x02) {
2796 addr[nbp++] = (caddr_t)rdr1();
2798 if (bp & 0x04) {
2799 addr[nbp++] = (caddr_t)rdr2();
2801 if (bp & 0x08) {
2802 addr[nbp++] = (caddr_t)rdr3();
2805 for (i=0; i<nbp; i++) {
2806 if (addr[i] <
2807 (caddr_t)VM_MAX_USER_ADDRESS) {
2809 * addr[i] is in user space
2811 return nbp;
2816 * None of the breakpoints are in user space.
2818 return 0;
2822 #ifndef DDB
2823 void
2824 Debugger(const char *msg)
2826 kprintf("Debugger(\"%s\") called.\n", msg);
2828 #endif /* no DDB */
2830 #ifdef DDB
2833 * Provide inb() and outb() as functions. They are normally only
2834 * available as macros calling inlined functions, thus cannot be
2835 * called inside DDB.
2837 * The actual code is stolen from <machine/cpufunc.h>, and de-inlined.
2840 #undef inb
2841 #undef outb
2843 /* silence compiler warnings */
2844 u_char inb(u_int);
2845 void outb(u_int, u_char);
2847 u_char
2848 inb(u_int port)
2850 u_char data;
2852 * We use %%dx and not %1 here because i/o is done at %dx and not at
2853 * %edx, while gcc generates inferior code (movw instead of movl)
2854 * if we tell it to load (u_short) port.
2856 __asm __volatile("inb %%dx,%0" : "=a" (data) : "d" (port));
2857 return (data);
2860 void
2861 outb(u_int port, u_char data)
2863 u_char al;
2865 * Use an unnecessary assignment to help gcc's register allocator.
2866 * This make a large difference for gcc-1.40 and a tiny difference
2867 * for gcc-2.6.0. For gcc-1.40, al had to be ``asm("ax")'' for
2868 * best results. gcc-2.6.0 can't handle this.
2870 al = data;
2871 __asm __volatile("outb %0,%%dx" : : "a" (al), "d" (port));
2874 #endif /* DDB */
2879 * initialize all the SMP locks
2882 /* critical region when masking or unmasking interupts */
2883 struct spinlock_deprecated imen_spinlock;
2885 /* lock region used by kernel profiling */
2886 struct spinlock_deprecated mcount_spinlock;
2888 /* locks com (tty) data/hardware accesses: a FASTINTR() */
2889 struct spinlock_deprecated com_spinlock;
2891 /* lock regions around the clock hardware */
2892 struct spinlock_deprecated clock_spinlock;
2894 static void
2895 init_locks(void)
2898 * Get the initial mplock with a count of 1 for the BSP.
2899 * This uses a LOGICAL cpu ID, ie BSP == 0.
2901 cpu_get_initial_mplock();
2902 /* DEPRECATED */
2903 spin_init_deprecated(&mcount_spinlock);
2904 spin_init_deprecated(&imen_spinlock);
2905 spin_init_deprecated(&com_spinlock);
2906 spin_init_deprecated(&clock_spinlock);
2908 /* our token pool needs to work early */
2909 lwkt_token_pool_init();
2912 boolean_t
2913 cpu_mwait_hint_valid(uint32_t hint)
2915 int cx_idx, sub;
2917 cx_idx = MWAIT_EAX_TO_CX(hint);
2918 if (cx_idx >= CPU_MWAIT_CX_MAX)
2919 return FALSE;
2921 sub = MWAIT_EAX_TO_CX_SUB(hint);
2922 if (sub >= cpu_mwait_cx_info[cx_idx].subcnt)
2923 return FALSE;
2925 return TRUE;
2928 void
2929 cpu_mwait_cx_no_bmsts(void)
2931 atomic_clear_int(&cpu_mwait_c3_preamble, CPU_MWAIT_C3_PREAMBLE_BM_STS);
2934 void
2935 cpu_mwait_cx_no_bmarb(void)
2937 atomic_clear_int(&cpu_mwait_c3_preamble, CPU_MWAIT_C3_PREAMBLE_BM_ARB);
2940 static int
2941 cpu_mwait_cx_hint2name(int hint, char *name, int namelen, boolean_t allow_auto)
2943 int old_cx_idx, sub = 0;
2945 if (hint >= 0) {
2946 old_cx_idx = MWAIT_EAX_TO_CX(hint);
2947 sub = MWAIT_EAX_TO_CX_SUB(hint);
2948 } else if (hint == CPU_MWAIT_HINT_AUTO) {
2949 old_cx_idx = allow_auto ? CPU_MWAIT_C2 : CPU_MWAIT_CX_MAX;
2950 } else if (hint == CPU_MWAIT_HINT_AUTODEEP) {
2951 old_cx_idx = allow_auto ? CPU_MWAIT_C3 : CPU_MWAIT_CX_MAX;
2952 } else {
2953 old_cx_idx = CPU_MWAIT_CX_MAX;
2956 if (!CPU_MWAIT_HAS_CX)
2957 strlcpy(name, "NONE", namelen);
2958 else if (allow_auto && hint == CPU_MWAIT_HINT_AUTO)
2959 strlcpy(name, "AUTO", namelen);
2960 else if (allow_auto && hint == CPU_MWAIT_HINT_AUTODEEP)
2961 strlcpy(name, "AUTODEEP", namelen);
2962 else if (old_cx_idx >= CPU_MWAIT_CX_MAX ||
2963 sub >= cpu_mwait_cx_info[old_cx_idx].subcnt)
2964 strlcpy(name, "INVALID", namelen);
2965 else
2966 ksnprintf(name, namelen, "C%d/%d", old_cx_idx, sub);
2968 return old_cx_idx;
2971 static int
2972 cpu_mwait_cx_name2hint(char *name, int *hint0, boolean_t allow_auto)
2974 int cx_idx, sub, hint;
2975 char *ptr, *start;
2977 if (allow_auto && strcmp(name, "AUTO") == 0) {
2978 hint = CPU_MWAIT_HINT_AUTO;
2979 cx_idx = CPU_MWAIT_C2;
2980 goto done;
2982 if (allow_auto && strcmp(name, "AUTODEEP") == 0) {
2983 hint = CPU_MWAIT_HINT_AUTODEEP;
2984 cx_idx = CPU_MWAIT_C3;
2985 goto done;
2988 if (strlen(name) < 4 || toupper(name[0]) != 'C')
2989 return -1;
2990 start = &name[1];
2991 ptr = NULL;
2993 cx_idx = strtol(start, &ptr, 10);
2994 if (ptr == start || *ptr != '/')
2995 return -1;
2996 if (cx_idx < 0 || cx_idx >= CPU_MWAIT_CX_MAX)
2997 return -1;
2999 start = ptr + 1;
3000 ptr = NULL;
3002 sub = strtol(start, &ptr, 10);
3003 if (*ptr != '\0')
3004 return -1;
3005 if (sub < 0 || sub >= cpu_mwait_cx_info[cx_idx].subcnt)
3006 return -1;
3008 hint = MWAIT_EAX_HINT(cx_idx, sub);
3009 done:
3010 *hint0 = hint;
3011 return cx_idx;
3014 static int
3015 cpu_mwait_cx_transit(int old_cx_idx, int cx_idx)
3017 if (cx_idx >= CPU_MWAIT_C3 && cpu_mwait_c3_preamble)
3018 return EOPNOTSUPP;
3019 if (old_cx_idx < CPU_MWAIT_C3 && cx_idx >= CPU_MWAIT_C3) {
3020 int error;
3022 error = cputimer_intr_powersave_addreq();
3023 if (error)
3024 return error;
3025 } else if (old_cx_idx >= CPU_MWAIT_C3 && cx_idx < CPU_MWAIT_C3) {
3026 cputimer_intr_powersave_remreq();
3028 return 0;
3031 static int
3032 cpu_mwait_cx_select_sysctl(SYSCTL_HANDLER_ARGS, int *hint0,
3033 boolean_t allow_auto)
3035 int error, cx_idx, old_cx_idx, hint;
3036 char name[CPU_MWAIT_CX_NAMELEN];
3038 hint = *hint0;
3039 old_cx_idx = cpu_mwait_cx_hint2name(hint, name, sizeof(name),
3040 allow_auto);
3042 error = sysctl_handle_string(oidp, name, sizeof(name), req);
3043 if (error != 0 || req->newptr == NULL)
3044 return error;
3046 if (!CPU_MWAIT_HAS_CX)
3047 return EOPNOTSUPP;
3049 cx_idx = cpu_mwait_cx_name2hint(name, &hint, allow_auto);
3050 if (cx_idx < 0)
3051 return EINVAL;
3053 error = cpu_mwait_cx_transit(old_cx_idx, cx_idx);
3054 if (error)
3055 return error;
3057 *hint0 = hint;
3058 return 0;
3061 static int
3062 cpu_mwait_cx_setname(struct cpu_idle_stat *stat, const char *cx_name)
3064 int error, cx_idx, old_cx_idx, hint;
3065 char name[CPU_MWAIT_CX_NAMELEN];
3067 KASSERT(CPU_MWAIT_HAS_CX, ("cpu does not support mwait CX extension"));
3069 hint = stat->hint;
3070 old_cx_idx = cpu_mwait_cx_hint2name(hint, name, sizeof(name), TRUE);
3072 strlcpy(name, cx_name, sizeof(name));
3073 cx_idx = cpu_mwait_cx_name2hint(name, &hint, TRUE);
3074 if (cx_idx < 0)
3075 return EINVAL;
3077 error = cpu_mwait_cx_transit(old_cx_idx, cx_idx);
3078 if (error)
3079 return error;
3081 stat->hint = hint;
3082 return 0;
3085 static int
3086 cpu_mwait_cx_idle_sysctl(SYSCTL_HANDLER_ARGS)
3088 int hint = cpu_mwait_halt_global;
3089 int error, cx_idx, cpu;
3090 char name[CPU_MWAIT_CX_NAMELEN], cx_name[CPU_MWAIT_CX_NAMELEN];
3092 cpu_mwait_cx_hint2name(hint, name, sizeof(name), TRUE);
3094 error = sysctl_handle_string(oidp, name, sizeof(name), req);
3095 if (error != 0 || req->newptr == NULL)
3096 return error;
3098 if (!CPU_MWAIT_HAS_CX)
3099 return EOPNOTSUPP;
3101 /* Save name for later per-cpu CX configuration */
3102 strlcpy(cx_name, name, sizeof(cx_name));
3104 cx_idx = cpu_mwait_cx_name2hint(name, &hint, TRUE);
3105 if (cx_idx < 0)
3106 return EINVAL;
3108 /* Change per-cpu CX configuration */
3109 for (cpu = 0; cpu < ncpus; ++cpu) {
3110 error = cpu_mwait_cx_setname(&cpu_idle_stats[cpu], cx_name);
3111 if (error)
3112 return error;
3115 cpu_mwait_halt_global = hint;
3116 return 0;
3119 static int
3120 cpu_mwait_cx_pcpu_idle_sysctl(SYSCTL_HANDLER_ARGS)
3122 struct cpu_idle_stat *stat = arg1;
3123 int error;
3125 error = cpu_mwait_cx_select_sysctl(oidp, arg1, arg2, req,
3126 &stat->hint, TRUE);
3127 return error;
3130 static int
3131 cpu_mwait_cx_spin_sysctl(SYSCTL_HANDLER_ARGS)
3133 int error;
3135 error = cpu_mwait_cx_select_sysctl(oidp, arg1, arg2, req,
3136 &cpu_mwait_spin, FALSE);
3137 return error;
3141 * This manual debugging code is called unconditionally from Xtimer
3142 * (the per-cpu timer interrupt) whether the current thread is in a
3143 * critical section or not) and can be useful in tracking down lockups.
3145 * NOTE: MANUAL DEBUG CODE
3147 #if 0
3148 static int saveticks[SMP_MAXCPU];
3149 static int savecounts[SMP_MAXCPU];
3150 #endif
3152 void
3153 pcpu_timer_always(struct intrframe *frame)
3155 #if 0
3156 globaldata_t gd = mycpu;
3157 int cpu = gd->gd_cpuid;
3158 char buf[64];
3159 short *gptr;
3160 int i;
3162 if (cpu <= 20) {
3163 gptr = (short *)0xFFFFFFFF800b8000 + 80 * cpu;
3164 *gptr = ((*gptr + 1) & 0x00FF) | 0x0700;
3165 ++gptr;
3167 ksnprintf(buf, sizeof(buf), " %p %16s %d %16s ",
3168 (void *)frame->if_rip, gd->gd_curthread->td_comm, ticks,
3169 gd->gd_infomsg);
3170 for (i = 0; buf[i]; ++i) {
3171 gptr[i] = 0x0700 | (unsigned char)buf[i];
3174 #if 0
3175 if (saveticks[gd->gd_cpuid] != ticks) {
3176 saveticks[gd->gd_cpuid] = ticks;
3177 savecounts[gd->gd_cpuid] = 0;
3179 ++savecounts[gd->gd_cpuid];
3180 if (savecounts[gd->gd_cpuid] > 2000 && panicstr == NULL) {
3181 panic("cpud %d panicing on ticks failure",
3182 gd->gd_cpuid);
3184 for (i = 0; i < ncpus; ++i) {
3185 int delta;
3186 if (saveticks[i] && panicstr == NULL) {
3187 delta = saveticks[i] - ticks;
3188 if (delta < -10 || delta > 10) {
3189 panic("cpu %d panicing on cpu %d watchdog",
3190 gd->gd_cpuid, i);
3194 #endif
3195 #endif