kqueue: Knote should not be accessed once the KN_PROCESSING is cleared
[dragonfly.git] / sys / vm / vm_map.c
blob09fc2994d76753f62090b1a92e13a09d4f69c243
1 /*
2 * (MPSAFE)
4 * Copyright (c) 1991, 1993
5 * The Regents of the University of California. All rights reserved.
7 * This code is derived from software contributed to Berkeley by
8 * The Mach Operating System project at Carnegie-Mellon University.
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 * notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in the
17 * documentation and/or other materials provided with the distribution.
18 * 3. Neither the name of the University nor the names of its contributors
19 * may be used to endorse or promote products derived from this software
20 * without specific prior written permission.
22 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
23 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
24 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
25 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
26 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
27 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
28 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
29 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
30 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
31 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
32 * SUCH DAMAGE.
34 * from: @(#)vm_map.c 8.3 (Berkeley) 1/12/94
37 * Copyright (c) 1987, 1990 Carnegie-Mellon University.
38 * All rights reserved.
40 * Authors: Avadis Tevanian, Jr., Michael Wayne Young
42 * Permission to use, copy, modify and distribute this software and
43 * its documentation is hereby granted, provided that both the copyright
44 * notice and this permission notice appear in all copies of the
45 * software, derivative works or modified versions, and any portions
46 * thereof, and that both notices appear in supporting documentation.
48 * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
49 * CONDITION. CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
50 * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
52 * Carnegie Mellon requests users of this software to return to
54 * Software Distribution Coordinator or Software.Distribution@CS.CMU.EDU
55 * School of Computer Science
56 * Carnegie Mellon University
57 * Pittsburgh PA 15213-3890
59 * any improvements or extensions that they make and grant Carnegie the
60 * rights to redistribute these changes.
62 * $FreeBSD: src/sys/vm/vm_map.c,v 1.187.2.19 2003/05/27 00:47:02 alc Exp $
66 * Virtual memory mapping module.
69 #include <sys/param.h>
70 #include <sys/systm.h>
71 #include <sys/kernel.h>
72 #include <sys/proc.h>
73 #include <sys/serialize.h>
74 #include <sys/lock.h>
75 #include <sys/vmmeter.h>
76 #include <sys/mman.h>
77 #include <sys/vnode.h>
78 #include <sys/resourcevar.h>
79 #include <sys/shm.h>
80 #include <sys/tree.h>
81 #include <sys/malloc.h>
82 #include <sys/objcache.h>
84 #include <vm/vm.h>
85 #include <vm/vm_param.h>
86 #include <vm/pmap.h>
87 #include <vm/vm_map.h>
88 #include <vm/vm_page.h>
89 #include <vm/vm_object.h>
90 #include <vm/vm_pager.h>
91 #include <vm/vm_kern.h>
92 #include <vm/vm_extern.h>
93 #include <vm/swap_pager.h>
94 #include <vm/vm_zone.h>
96 #include <sys/thread2.h>
97 #include <sys/random.h>
98 #include <sys/sysctl.h>
101 * Virtual memory maps provide for the mapping, protection, and sharing
102 * of virtual memory objects. In addition, this module provides for an
103 * efficient virtual copy of memory from one map to another.
105 * Synchronization is required prior to most operations.
107 * Maps consist of an ordered doubly-linked list of simple entries.
108 * A hint and a RB tree is used to speed-up lookups.
110 * Callers looking to modify maps specify start/end addresses which cause
111 * the related map entry to be clipped if necessary, and then later
112 * recombined if the pieces remained compatible.
114 * Virtual copy operations are performed by copying VM object references
115 * from one map to another, and then marking both regions as copy-on-write.
117 static boolean_t vmspace_ctor(void *obj, void *privdata, int ocflags);
118 static void vmspace_dtor(void *obj, void *privdata);
119 static void vmspace_terminate(struct vmspace *vm, int final);
121 MALLOC_DEFINE(M_VMSPACE, "vmspace", "vmspace objcache backingstore");
122 static struct objcache *vmspace_cache;
125 * per-cpu page table cross mappings are initialized in early boot
126 * and might require a considerable number of vm_map_entry structures.
128 #define MAPENTRYBSP_CACHE (MAXCPU+1)
129 #define MAPENTRYAP_CACHE 8
131 static struct vm_zone mapentzone_store, mapzone_store;
132 static vm_zone_t mapentzone, mapzone;
133 static struct vm_object mapentobj, mapobj;
135 static struct vm_map_entry map_entry_init[MAX_MAPENT];
136 static struct vm_map_entry cpu_map_entry_init_bsp[MAPENTRYBSP_CACHE];
137 static struct vm_map_entry cpu_map_entry_init_ap[MAXCPU][MAPENTRYAP_CACHE];
138 static struct vm_map map_init[MAX_KMAP];
140 static int randomize_mmap;
141 SYSCTL_INT(_vm, OID_AUTO, randomize_mmap, CTLFLAG_RW, &randomize_mmap, 0,
142 "Randomize mmap offsets");
143 static int vm_map_relock_enable = 1;
144 SYSCTL_INT(_vm, OID_AUTO, map_relock_enable, CTLFLAG_RW,
145 &vm_map_relock_enable, 0, "Randomize mmap offsets");
147 static void vm_map_entry_shadow(vm_map_entry_t entry, int addref);
148 static vm_map_entry_t vm_map_entry_create(vm_map_t map, int *);
149 static void vm_map_entry_dispose (vm_map_t map, vm_map_entry_t entry, int *);
150 static void _vm_map_clip_end (vm_map_t, vm_map_entry_t, vm_offset_t, int *);
151 static void _vm_map_clip_start (vm_map_t, vm_map_entry_t, vm_offset_t, int *);
152 static void vm_map_entry_delete (vm_map_t, vm_map_entry_t, int *);
153 static void vm_map_entry_unwire (vm_map_t, vm_map_entry_t);
154 static void vm_map_copy_entry (vm_map_t, vm_map_t, vm_map_entry_t,
155 vm_map_entry_t);
156 static void vm_map_unclip_range (vm_map_t map, vm_map_entry_t start_entry, vm_offset_t start, vm_offset_t end, int *count, int flags);
159 * Initialize the vm_map module. Must be called before any other vm_map
160 * routines.
162 * Map and entry structures are allocated from the general purpose
163 * memory pool with some exceptions:
165 * - The kernel map is allocated statically.
166 * - Initial kernel map entries are allocated out of a static pool.
167 * - We must set ZONE_SPECIAL here or the early boot code can get
168 * stuck if there are >63 cores.
170 * These restrictions are necessary since malloc() uses the
171 * maps and requires map entries.
173 * Called from the low level boot code only.
175 void
176 vm_map_startup(void)
178 mapzone = &mapzone_store;
179 zbootinit(mapzone, "MAP", sizeof (struct vm_map),
180 map_init, MAX_KMAP);
181 mapentzone = &mapentzone_store;
182 zbootinit(mapentzone, "MAP ENTRY", sizeof (struct vm_map_entry),
183 map_entry_init, MAX_MAPENT);
184 mapentzone_store.zflags |= ZONE_SPECIAL;
188 * Called prior to any vmspace allocations.
190 * Called from the low level boot code only.
192 void
193 vm_init2(void)
195 vmspace_cache = objcache_create_mbacked(M_VMSPACE,
196 sizeof(struct vmspace),
197 0, ncpus * 4,
198 vmspace_ctor, vmspace_dtor,
199 NULL);
200 zinitna(mapentzone, &mapentobj, NULL, 0, 0,
201 ZONE_USE_RESERVE | ZONE_SPECIAL, 1);
202 zinitna(mapzone, &mapobj, NULL, 0, 0, 0, 1);
203 pmap_init2();
204 vm_object_init2();
208 * objcache support. We leave the pmap root cached as long as possible
209 * for performance reasons.
211 static
212 boolean_t
213 vmspace_ctor(void *obj, void *privdata, int ocflags)
215 struct vmspace *vm = obj;
217 bzero(vm, sizeof(*vm));
218 vm->vm_refcnt = (u_int)-1;
220 return 1;
223 static
224 void
225 vmspace_dtor(void *obj, void *privdata)
227 struct vmspace *vm = obj;
229 KKASSERT(vm->vm_refcnt == (u_int)-1);
230 pmap_puninit(vmspace_pmap(vm));
234 * Red black tree functions
236 * The caller must hold the related map lock.
238 static int rb_vm_map_compare(vm_map_entry_t a, vm_map_entry_t b);
239 RB_GENERATE(vm_map_rb_tree, vm_map_entry, rb_entry, rb_vm_map_compare);
241 /* a->start is address, and the only field has to be initialized */
242 static int
243 rb_vm_map_compare(vm_map_entry_t a, vm_map_entry_t b)
245 if (a->start < b->start)
246 return(-1);
247 else if (a->start > b->start)
248 return(1);
249 return(0);
253 * Initialize vmspace ref/hold counts vmspace0. There is a holdcnt for
254 * every refcnt.
256 void
257 vmspace_initrefs(struct vmspace *vm)
259 vm->vm_refcnt = 1;
260 vm->vm_holdcnt = 1;
264 * Allocate a vmspace structure, including a vm_map and pmap.
265 * Initialize numerous fields. While the initial allocation is zerod,
266 * subsequence reuse from the objcache leaves elements of the structure
267 * intact (particularly the pmap), so portions must be zerod.
269 * Returns a referenced vmspace.
271 * No requirements.
273 struct vmspace *
274 vmspace_alloc(vm_offset_t min, vm_offset_t max)
276 struct vmspace *vm;
278 vm = objcache_get(vmspace_cache, M_WAITOK);
280 bzero(&vm->vm_startcopy,
281 (char *)&vm->vm_endcopy - (char *)&vm->vm_startcopy);
282 vm_map_init(&vm->vm_map, min, max, NULL); /* initializes token */
285 * NOTE: hold to acquires token for safety.
287 * On return vmspace is referenced (refs=1, hold=1). That is,
288 * each refcnt also has a holdcnt. There can be additional holds
289 * (holdcnt) above and beyond the refcnt. Finalization is handled in
290 * two stages, one on refs 1->0, and the the second on hold 1->0.
292 KKASSERT(vm->vm_holdcnt == 0);
293 KKASSERT(vm->vm_refcnt == (u_int)-1);
294 vmspace_initrefs(vm);
295 vmspace_hold(vm);
296 pmap_pinit(vmspace_pmap(vm)); /* (some fields reused) */
297 vm->vm_map.pmap = vmspace_pmap(vm); /* XXX */
298 vm->vm_shm = NULL;
299 vm->vm_flags = 0;
300 cpu_vmspace_alloc(vm);
301 vmspace_drop(vm);
303 return (vm);
307 * NOTE: Can return -1 if the vmspace is exiting.
310 vmspace_getrefs(struct vmspace *vm)
312 return ((int)vm->vm_refcnt);
316 * A vmspace object must already have a non-zero hold to be able to gain
317 * further holds on it.
319 static void
320 vmspace_hold_notoken(struct vmspace *vm)
322 KKASSERT(vm->vm_holdcnt != 0);
323 refcount_acquire(&vm->vm_holdcnt);
326 static void
327 vmspace_drop_notoken(struct vmspace *vm)
329 if (refcount_release(&vm->vm_holdcnt)) {
330 if (vm->vm_refcnt == (u_int)-1) {
331 vmspace_terminate(vm, 1);
336 void
337 vmspace_hold(struct vmspace *vm)
339 vmspace_hold_notoken(vm);
340 lwkt_gettoken(&vm->vm_map.token);
343 void
344 vmspace_drop(struct vmspace *vm)
346 lwkt_reltoken(&vm->vm_map.token);
347 vmspace_drop_notoken(vm);
351 * A vmspace object must not be in a terminated state to be able to obtain
352 * additional refs on it.
354 * Ref'ing a vmspace object also increments its hold count.
356 void
357 vmspace_ref(struct vmspace *vm)
359 KKASSERT((int)vm->vm_refcnt >= 0);
360 vmspace_hold_notoken(vm);
361 refcount_acquire(&vm->vm_refcnt);
365 * Release a ref on the vmspace. On the 1->0 transition we do stage-1
366 * termination of the vmspace. Then, on the final drop of the hold we
367 * will do stage-2 final termination.
369 void
370 vmspace_rel(struct vmspace *vm)
372 if (refcount_release(&vm->vm_refcnt)) {
373 vm->vm_refcnt = (u_int)-1; /* no other refs possible */
374 vmspace_terminate(vm, 0);
376 vmspace_drop_notoken(vm);
380 * This is called during exit indicating that the vmspace is no
381 * longer in used by an exiting process, but the process has not yet
382 * been reaped.
384 * We release the refcnt but not the associated holdcnt.
386 * No requirements.
388 void
389 vmspace_relexit(struct vmspace *vm)
391 if (refcount_release(&vm->vm_refcnt)) {
392 vm->vm_refcnt = (u_int)-1; /* no other refs possible */
393 vmspace_terminate(vm, 0);
398 * Called during reap to disconnect the remainder of the vmspace from
399 * the process. On the hold drop the vmspace termination is finalized.
401 * No requirements.
403 void
404 vmspace_exitfree(struct proc *p)
406 struct vmspace *vm;
408 vm = p->p_vmspace;
409 p->p_vmspace = NULL;
410 vmspace_drop_notoken(vm);
414 * Called in two cases:
416 * (1) When the last refcnt is dropped and the vmspace becomes inactive,
417 * called with final == 0. refcnt will be (u_int)-1 at this point,
418 * and holdcnt will still be non-zero.
420 * (2) When holdcnt becomes 0, called with final == 1. There should no
421 * longer be anyone with access to the vmspace.
423 * VMSPACE_EXIT1 flags the primary deactivation
424 * VMSPACE_EXIT2 flags the last reap
426 static void
427 vmspace_terminate(struct vmspace *vm, int final)
429 int count;
431 lwkt_gettoken(&vm->vm_map.token);
432 if (final == 0) {
433 KKASSERT((vm->vm_flags & VMSPACE_EXIT1) == 0);
436 * Get rid of most of the resources. Leave the kernel pmap
437 * intact.
439 * If the pmap does not contain wired pages we can bulk-delete
440 * the pmap as a performance optimization before removing the related mappings.
442 * If the pmap contains wired pages we cannot do this pre-optimization
443 * because currently vm_fault_unwire() expects the pmap pages to exist
444 * and will not decrement p->wire_count if they do not.
446 vm->vm_flags |= VMSPACE_EXIT1;
447 shmexit(vm);
448 if (vmspace_pmap(vm)->pm_stats.wired_count) {
449 vm_map_remove(&vm->vm_map, VM_MIN_USER_ADDRESS,
450 VM_MAX_USER_ADDRESS);
451 pmap_remove_pages(vmspace_pmap(vm), VM_MIN_USER_ADDRESS,
452 VM_MAX_USER_ADDRESS);
453 } else {
454 pmap_remove_pages(vmspace_pmap(vm), VM_MIN_USER_ADDRESS,
455 VM_MAX_USER_ADDRESS);
456 vm_map_remove(&vm->vm_map, VM_MIN_USER_ADDRESS,
457 VM_MAX_USER_ADDRESS);
459 lwkt_reltoken(&vm->vm_map.token);
460 } else {
461 KKASSERT((vm->vm_flags & VMSPACE_EXIT1) != 0);
462 KKASSERT((vm->vm_flags & VMSPACE_EXIT2) == 0);
465 * Get rid of remaining basic resources.
467 vm->vm_flags |= VMSPACE_EXIT2;
468 cpu_vmspace_free(vm);
469 shmexit(vm);
472 * Lock the map, to wait out all other references to it.
473 * Delete all of the mappings and pages they hold, then call
474 * the pmap module to reclaim anything left.
476 count = vm_map_entry_reserve(MAP_RESERVE_COUNT);
477 vm_map_lock(&vm->vm_map);
478 vm_map_delete(&vm->vm_map, vm->vm_map.min_offset,
479 vm->vm_map.max_offset, &count);
480 vm_map_unlock(&vm->vm_map);
481 vm_map_entry_release(count);
483 lwkt_gettoken(&vmspace_pmap(vm)->pm_token);
484 pmap_release(vmspace_pmap(vm));
485 lwkt_reltoken(&vmspace_pmap(vm)->pm_token);
486 lwkt_reltoken(&vm->vm_map.token);
487 objcache_put(vmspace_cache, vm);
492 * Swap useage is determined by taking the proportional swap used by
493 * VM objects backing the VM map. To make up for fractional losses,
494 * if the VM object has any swap use at all the associated map entries
495 * count for at least 1 swap page.
497 * No requirements.
500 vmspace_swap_count(struct vmspace *vm)
502 vm_map_t map = &vm->vm_map;
503 vm_map_entry_t cur;
504 vm_object_t object;
505 int count = 0;
506 int n;
508 vmspace_hold(vm);
509 for (cur = map->header.next; cur != &map->header; cur = cur->next) {
510 switch(cur->maptype) {
511 case VM_MAPTYPE_NORMAL:
512 case VM_MAPTYPE_VPAGETABLE:
513 if ((object = cur->object.vm_object) == NULL)
514 break;
515 if (object->swblock_count) {
516 n = (cur->end - cur->start) / PAGE_SIZE;
517 count += object->swblock_count *
518 SWAP_META_PAGES * n / object->size + 1;
520 break;
521 default:
522 break;
525 vmspace_drop(vm);
527 return(count);
531 * Calculate the approximate number of anonymous pages in use by
532 * this vmspace. To make up for fractional losses, we count each
533 * VM object as having at least 1 anonymous page.
535 * No requirements.
538 vmspace_anonymous_count(struct vmspace *vm)
540 vm_map_t map = &vm->vm_map;
541 vm_map_entry_t cur;
542 vm_object_t object;
543 int count = 0;
545 vmspace_hold(vm);
546 for (cur = map->header.next; cur != &map->header; cur = cur->next) {
547 switch(cur->maptype) {
548 case VM_MAPTYPE_NORMAL:
549 case VM_MAPTYPE_VPAGETABLE:
550 if ((object = cur->object.vm_object) == NULL)
551 break;
552 if (object->type != OBJT_DEFAULT &&
553 object->type != OBJT_SWAP) {
554 break;
556 count += object->resident_page_count;
557 break;
558 default:
559 break;
562 vmspace_drop(vm);
564 return(count);
568 * Creates and returns a new empty VM map with the given physical map
569 * structure, and having the given lower and upper address bounds.
571 * No requirements.
573 vm_map_t
574 vm_map_create(vm_map_t result, pmap_t pmap, vm_offset_t min, vm_offset_t max)
576 if (result == NULL)
577 result = zalloc(mapzone);
578 vm_map_init(result, min, max, pmap);
579 return (result);
583 * Initialize an existing vm_map structure such as that in the vmspace
584 * structure. The pmap is initialized elsewhere.
586 * No requirements.
588 void
589 vm_map_init(struct vm_map *map, vm_offset_t min, vm_offset_t max, pmap_t pmap)
591 map->header.next = map->header.prev = &map->header;
592 RB_INIT(&map->rb_root);
593 map->nentries = 0;
594 map->size = 0;
595 map->system_map = 0;
596 map->min_offset = min;
597 map->max_offset = max;
598 map->pmap = pmap;
599 map->first_free = &map->header;
600 map->hint = &map->header;
601 map->timestamp = 0;
602 map->flags = 0;
603 lwkt_token_init(&map->token, "vm_map");
604 lockinit(&map->lock, "vm_maplk", (hz + 9) / 10, 0);
608 * Shadow the vm_map_entry's object. This typically needs to be done when
609 * a write fault is taken on an entry which had previously been cloned by
610 * fork(). The shared object (which might be NULL) must become private so
611 * we add a shadow layer above it.
613 * Object allocation for anonymous mappings is defered as long as possible.
614 * When creating a shadow, however, the underlying object must be instantiated
615 * so it can be shared.
617 * If the map segment is governed by a virtual page table then it is
618 * possible to address offsets beyond the mapped area. Just allocate
619 * a maximally sized object for this case.
621 * If addref is non-zero an additional reference is added to the returned
622 * entry. This mechanic exists because the additional reference might have
623 * to be added atomically and not after return to prevent a premature
624 * collapse.
626 * The vm_map must be exclusively locked.
627 * No other requirements.
629 static
630 void
631 vm_map_entry_shadow(vm_map_entry_t entry, int addref)
633 if (entry->maptype == VM_MAPTYPE_VPAGETABLE) {
634 vm_object_shadow(&entry->object.vm_object, &entry->offset,
635 0x7FFFFFFF, addref); /* XXX */
636 } else {
637 vm_object_shadow(&entry->object.vm_object, &entry->offset,
638 atop(entry->end - entry->start), addref);
640 entry->eflags &= ~MAP_ENTRY_NEEDS_COPY;
644 * Allocate an object for a vm_map_entry.
646 * Object allocation for anonymous mappings is defered as long as possible.
647 * This function is called when we can defer no longer, generally when a map
648 * entry might be split or forked or takes a page fault.
650 * If the map segment is governed by a virtual page table then it is
651 * possible to address offsets beyond the mapped area. Just allocate
652 * a maximally sized object for this case.
654 * The vm_map must be exclusively locked.
655 * No other requirements.
657 void
658 vm_map_entry_allocate_object(vm_map_entry_t entry)
660 vm_object_t obj;
662 if (entry->maptype == VM_MAPTYPE_VPAGETABLE) {
663 obj = vm_object_allocate(OBJT_DEFAULT, 0x7FFFFFFF); /* XXX */
664 } else {
665 obj = vm_object_allocate(OBJT_DEFAULT,
666 atop(entry->end - entry->start));
668 entry->object.vm_object = obj;
669 entry->offset = 0;
673 * Set an initial negative count so the first attempt to reserve
674 * space preloads a bunch of vm_map_entry's for this cpu. Also
675 * pre-allocate 2 vm_map_entries which will be needed by zalloc() to
676 * map a new page for vm_map_entry structures. SMP systems are
677 * particularly sensitive.
679 * This routine is called in early boot so we cannot just call
680 * vm_map_entry_reserve().
682 * Called from the low level boot code only (for each cpu)
684 * WARNING! Take care not to have too-big a static/BSS structure here
685 * as MAXCPU can be 256+, otherwise the loader's 64MB heap
686 * can get blown out by the kernel plus the initrd image.
688 void
689 vm_map_entry_reserve_cpu_init(globaldata_t gd)
691 vm_map_entry_t entry;
692 int count;
693 int i;
695 gd->gd_vme_avail -= MAP_RESERVE_COUNT * 2;
696 if (gd->gd_cpuid == 0) {
697 entry = &cpu_map_entry_init_bsp[0];
698 count = MAPENTRYBSP_CACHE;
699 } else {
700 entry = &cpu_map_entry_init_ap[gd->gd_cpuid][0];
701 count = MAPENTRYAP_CACHE;
703 for (i = 0; i < count; ++i, ++entry) {
704 entry->next = gd->gd_vme_base;
705 gd->gd_vme_base = entry;
710 * Reserves vm_map_entry structures so code later on can manipulate
711 * map_entry structures within a locked map without blocking trying
712 * to allocate a new vm_map_entry.
714 * No requirements.
717 vm_map_entry_reserve(int count)
719 struct globaldata *gd = mycpu;
720 vm_map_entry_t entry;
723 * Make sure we have enough structures in gd_vme_base to handle
724 * the reservation request.
726 * The critical section protects access to the per-cpu gd.
728 crit_enter();
729 while (gd->gd_vme_avail < count) {
730 entry = zalloc(mapentzone);
731 entry->next = gd->gd_vme_base;
732 gd->gd_vme_base = entry;
733 ++gd->gd_vme_avail;
735 gd->gd_vme_avail -= count;
736 crit_exit();
738 return(count);
742 * Releases previously reserved vm_map_entry structures that were not
743 * used. If we have too much junk in our per-cpu cache clean some of
744 * it out.
746 * No requirements.
748 void
749 vm_map_entry_release(int count)
751 struct globaldata *gd = mycpu;
752 vm_map_entry_t entry;
754 crit_enter();
755 gd->gd_vme_avail += count;
756 while (gd->gd_vme_avail > MAP_RESERVE_SLOP) {
757 entry = gd->gd_vme_base;
758 KKASSERT(entry != NULL);
759 gd->gd_vme_base = entry->next;
760 --gd->gd_vme_avail;
761 crit_exit();
762 zfree(mapentzone, entry);
763 crit_enter();
765 crit_exit();
769 * Reserve map entry structures for use in kernel_map itself. These
770 * entries have *ALREADY* been reserved on a per-cpu basis when the map
771 * was inited. This function is used by zalloc() to avoid a recursion
772 * when zalloc() itself needs to allocate additional kernel memory.
774 * This function works like the normal reserve but does not load the
775 * vm_map_entry cache (because that would result in an infinite
776 * recursion). Note that gd_vme_avail may go negative. This is expected.
778 * Any caller of this function must be sure to renormalize after
779 * potentially eating entries to ensure that the reserve supply
780 * remains intact.
782 * No requirements.
785 vm_map_entry_kreserve(int count)
787 struct globaldata *gd = mycpu;
789 crit_enter();
790 gd->gd_vme_avail -= count;
791 crit_exit();
792 KASSERT(gd->gd_vme_base != NULL,
793 ("no reserved entries left, gd_vme_avail = %d",
794 gd->gd_vme_avail));
795 return(count);
799 * Release previously reserved map entries for kernel_map. We do not
800 * attempt to clean up like the normal release function as this would
801 * cause an unnecessary (but probably not fatal) deep procedure call.
803 * No requirements.
805 void
806 vm_map_entry_krelease(int count)
808 struct globaldata *gd = mycpu;
810 crit_enter();
811 gd->gd_vme_avail += count;
812 crit_exit();
816 * Allocates a VM map entry for insertion. No entry fields are filled in.
818 * The entries should have previously been reserved. The reservation count
819 * is tracked in (*countp).
821 * No requirements.
823 static vm_map_entry_t
824 vm_map_entry_create(vm_map_t map, int *countp)
826 struct globaldata *gd = mycpu;
827 vm_map_entry_t entry;
829 KKASSERT(*countp > 0);
830 --*countp;
831 crit_enter();
832 entry = gd->gd_vme_base;
833 KASSERT(entry != NULL, ("gd_vme_base NULL! count %d", *countp));
834 gd->gd_vme_base = entry->next;
835 crit_exit();
837 return(entry);
841 * Dispose of a vm_map_entry that is no longer being referenced.
843 * No requirements.
845 static void
846 vm_map_entry_dispose(vm_map_t map, vm_map_entry_t entry, int *countp)
848 struct globaldata *gd = mycpu;
850 KKASSERT(map->hint != entry);
851 KKASSERT(map->first_free != entry);
853 ++*countp;
854 crit_enter();
855 entry->next = gd->gd_vme_base;
856 gd->gd_vme_base = entry;
857 crit_exit();
862 * Insert/remove entries from maps.
864 * The related map must be exclusively locked.
865 * The caller must hold map->token
866 * No other requirements.
868 static __inline void
869 vm_map_entry_link(vm_map_t map,
870 vm_map_entry_t after_where,
871 vm_map_entry_t entry)
873 ASSERT_VM_MAP_LOCKED(map);
875 map->nentries++;
876 entry->prev = after_where;
877 entry->next = after_where->next;
878 entry->next->prev = entry;
879 after_where->next = entry;
880 if (vm_map_rb_tree_RB_INSERT(&map->rb_root, entry))
881 panic("vm_map_entry_link: dup addr map %p ent %p", map, entry);
884 static __inline void
885 vm_map_entry_unlink(vm_map_t map,
886 vm_map_entry_t entry)
888 vm_map_entry_t prev;
889 vm_map_entry_t next;
891 ASSERT_VM_MAP_LOCKED(map);
893 if (entry->eflags & MAP_ENTRY_IN_TRANSITION) {
894 panic("vm_map_entry_unlink: attempt to mess with "
895 "locked entry! %p", entry);
897 prev = entry->prev;
898 next = entry->next;
899 next->prev = prev;
900 prev->next = next;
901 vm_map_rb_tree_RB_REMOVE(&map->rb_root, entry);
902 map->nentries--;
906 * Finds the map entry containing (or immediately preceding) the specified
907 * address in the given map. The entry is returned in (*entry).
909 * The boolean result indicates whether the address is actually contained
910 * in the map.
912 * The related map must be locked.
913 * No other requirements.
915 boolean_t
916 vm_map_lookup_entry(vm_map_t map, vm_offset_t address, vm_map_entry_t *entry)
918 vm_map_entry_t tmp;
919 vm_map_entry_t last;
921 ASSERT_VM_MAP_LOCKED(map);
922 #if 0
924 * XXX TEMPORARILY DISABLED. For some reason our attempt to revive
925 * the hint code with the red-black lookup meets with system crashes
926 * and lockups. We do not yet know why.
928 * It is possible that the problem is related to the setting
929 * of the hint during map_entry deletion, in the code specified
930 * at the GGG comment later on in this file.
932 * YYY More likely it's because this function can be called with
933 * a shared lock on the map, resulting in map->hint updates possibly
934 * racing. Fixed now but untested.
937 * Quickly check the cached hint, there's a good chance of a match.
939 tmp = map->hint;
940 cpu_ccfence();
941 if (tmp != &map->header) {
942 if (address >= tmp->start && address < tmp->end) {
943 *entry = tmp;
944 return(TRUE);
947 #endif
950 * Locate the record from the top of the tree. 'last' tracks the
951 * closest prior record and is returned if no match is found, which
952 * in binary tree terms means tracking the most recent right-branch
953 * taken. If there is no prior record, &map->header is returned.
955 last = &map->header;
956 tmp = RB_ROOT(&map->rb_root);
958 while (tmp) {
959 if (address >= tmp->start) {
960 if (address < tmp->end) {
961 *entry = tmp;
962 map->hint = tmp;
963 return(TRUE);
965 last = tmp;
966 tmp = RB_RIGHT(tmp, rb_entry);
967 } else {
968 tmp = RB_LEFT(tmp, rb_entry);
971 *entry = last;
972 return (FALSE);
976 * Inserts the given whole VM object into the target map at the specified
977 * address range. The object's size should match that of the address range.
979 * The map must be exclusively locked.
980 * The object must be held.
981 * The caller must have reserved sufficient vm_map_entry structures.
983 * If object is non-NULL, ref count must be bumped by caller prior to
984 * making call to account for the new entry.
987 vm_map_insert(vm_map_t map, int *countp, void *map_object, void *map_aux,
988 vm_ooffset_t offset, vm_offset_t start, vm_offset_t end,
989 vm_maptype_t maptype,
990 vm_prot_t prot, vm_prot_t max, int cow)
992 vm_map_entry_t new_entry;
993 vm_map_entry_t prev_entry;
994 vm_map_entry_t temp_entry;
995 vm_eflags_t protoeflags;
996 int must_drop = 0;
997 vm_object_t object;
999 if (maptype == VM_MAPTYPE_UKSMAP)
1000 object = NULL;
1001 else
1002 object = map_object;
1004 ASSERT_VM_MAP_LOCKED(map);
1005 if (object)
1006 ASSERT_LWKT_TOKEN_HELD(vm_object_token(object));
1009 * Check that the start and end points are not bogus.
1011 if ((start < map->min_offset) || (end > map->max_offset) ||
1012 (start >= end))
1013 return (KERN_INVALID_ADDRESS);
1016 * Find the entry prior to the proposed starting address; if it's part
1017 * of an existing entry, this range is bogus.
1019 if (vm_map_lookup_entry(map, start, &temp_entry))
1020 return (KERN_NO_SPACE);
1022 prev_entry = temp_entry;
1025 * Assert that the next entry doesn't overlap the end point.
1028 if ((prev_entry->next != &map->header) &&
1029 (prev_entry->next->start < end))
1030 return (KERN_NO_SPACE);
1032 protoeflags = 0;
1034 if (cow & MAP_COPY_ON_WRITE)
1035 protoeflags |= MAP_ENTRY_COW|MAP_ENTRY_NEEDS_COPY;
1037 if (cow & MAP_NOFAULT) {
1038 protoeflags |= MAP_ENTRY_NOFAULT;
1040 KASSERT(object == NULL,
1041 ("vm_map_insert: paradoxical MAP_NOFAULT request"));
1043 if (cow & MAP_DISABLE_SYNCER)
1044 protoeflags |= MAP_ENTRY_NOSYNC;
1045 if (cow & MAP_DISABLE_COREDUMP)
1046 protoeflags |= MAP_ENTRY_NOCOREDUMP;
1047 if (cow & MAP_IS_STACK)
1048 protoeflags |= MAP_ENTRY_STACK;
1049 if (cow & MAP_IS_KSTACK)
1050 protoeflags |= MAP_ENTRY_KSTACK;
1052 lwkt_gettoken(&map->token);
1054 if (object) {
1056 * When object is non-NULL, it could be shared with another
1057 * process. We have to set or clear OBJ_ONEMAPPING
1058 * appropriately.
1060 * NOTE: This flag is only applicable to DEFAULT and SWAP
1061 * objects and will already be clear in other types
1062 * of objects, so a shared object lock is ok for
1063 * VNODE objects.
1065 if ((object->ref_count > 1) || (object->shadow_count != 0)) {
1066 vm_object_clear_flag(object, OBJ_ONEMAPPING);
1069 else if ((prev_entry != &map->header) &&
1070 (prev_entry->eflags == protoeflags) &&
1071 (prev_entry->end == start) &&
1072 (prev_entry->wired_count == 0) &&
1073 prev_entry->maptype == maptype &&
1074 maptype == VM_MAPTYPE_NORMAL &&
1075 ((prev_entry->object.vm_object == NULL) ||
1076 vm_object_coalesce(prev_entry->object.vm_object,
1077 OFF_TO_IDX(prev_entry->offset),
1078 (vm_size_t)(prev_entry->end - prev_entry->start),
1079 (vm_size_t)(end - prev_entry->end)))) {
1081 * We were able to extend the object. Determine if we
1082 * can extend the previous map entry to include the
1083 * new range as well.
1085 if ((prev_entry->inheritance == VM_INHERIT_DEFAULT) &&
1086 (prev_entry->protection == prot) &&
1087 (prev_entry->max_protection == max)) {
1088 map->size += (end - prev_entry->end);
1089 prev_entry->end = end;
1090 vm_map_simplify_entry(map, prev_entry, countp);
1091 lwkt_reltoken(&map->token);
1092 return (KERN_SUCCESS);
1096 * If we can extend the object but cannot extend the
1097 * map entry, we have to create a new map entry. We
1098 * must bump the ref count on the extended object to
1099 * account for it. object may be NULL.
1101 * XXX if object is NULL should we set offset to 0 here ?
1103 object = prev_entry->object.vm_object;
1104 offset = prev_entry->offset +
1105 (prev_entry->end - prev_entry->start);
1106 if (object) {
1107 vm_object_hold(object);
1108 vm_object_chain_wait(object, 0);
1109 vm_object_reference_locked(object);
1110 must_drop = 1;
1111 map_object = object;
1116 * NOTE: if conditionals fail, object can be NULL here. This occurs
1117 * in things like the buffer map where we manage kva but do not manage
1118 * backing objects.
1122 * Create a new entry
1125 new_entry = vm_map_entry_create(map, countp);
1126 new_entry->start = start;
1127 new_entry->end = end;
1129 new_entry->maptype = maptype;
1130 new_entry->eflags = protoeflags;
1131 new_entry->object.map_object = map_object;
1132 new_entry->aux.master_pde = 0; /* in case size is different */
1133 new_entry->aux.map_aux = map_aux;
1134 new_entry->offset = offset;
1136 new_entry->inheritance = VM_INHERIT_DEFAULT;
1137 new_entry->protection = prot;
1138 new_entry->max_protection = max;
1139 new_entry->wired_count = 0;
1142 * Insert the new entry into the list
1145 vm_map_entry_link(map, prev_entry, new_entry);
1146 map->size += new_entry->end - new_entry->start;
1149 * Update the free space hint. Entries cannot overlap.
1150 * An exact comparison is needed to avoid matching
1151 * against the map->header.
1153 if ((map->first_free == prev_entry) &&
1154 (prev_entry->end == new_entry->start)) {
1155 map->first_free = new_entry;
1158 #if 0
1160 * Temporarily removed to avoid MAP_STACK panic, due to
1161 * MAP_STACK being a huge hack. Will be added back in
1162 * when MAP_STACK (and the user stack mapping) is fixed.
1165 * It may be possible to simplify the entry
1167 vm_map_simplify_entry(map, new_entry, countp);
1168 #endif
1171 * Try to pre-populate the page table. Mappings governed by virtual
1172 * page tables cannot be prepopulated without a lot of work, so
1173 * don't try.
1175 if ((cow & (MAP_PREFAULT|MAP_PREFAULT_PARTIAL)) &&
1176 maptype != VM_MAPTYPE_VPAGETABLE &&
1177 maptype != VM_MAPTYPE_UKSMAP) {
1178 int dorelock = 0;
1179 if (vm_map_relock_enable && (cow & MAP_PREFAULT_RELOCK)) {
1180 dorelock = 1;
1181 vm_object_lock_swap();
1182 vm_object_drop(object);
1184 pmap_object_init_pt(map->pmap, start, prot,
1185 object, OFF_TO_IDX(offset), end - start,
1186 cow & MAP_PREFAULT_PARTIAL);
1187 if (dorelock) {
1188 vm_object_hold(object);
1189 vm_object_lock_swap();
1192 if (must_drop)
1193 vm_object_drop(object);
1195 lwkt_reltoken(&map->token);
1196 return (KERN_SUCCESS);
1200 * Find sufficient space for `length' bytes in the given map, starting at
1201 * `start'. Returns 0 on success, 1 on no space.
1203 * This function will returned an arbitrarily aligned pointer. If no
1204 * particular alignment is required you should pass align as 1. Note that
1205 * the map may return PAGE_SIZE aligned pointers if all the lengths used in
1206 * the map are a multiple of PAGE_SIZE, even if you pass a smaller align
1207 * argument.
1209 * 'align' should be a power of 2 but is not required to be.
1211 * The map must be exclusively locked.
1212 * No other requirements.
1215 vm_map_findspace(vm_map_t map, vm_offset_t start, vm_size_t length,
1216 vm_size_t align, int flags, vm_offset_t *addr)
1218 vm_map_entry_t entry, next;
1219 vm_offset_t end;
1220 vm_offset_t align_mask;
1222 if (start < map->min_offset)
1223 start = map->min_offset;
1224 if (start > map->max_offset)
1225 return (1);
1228 * If the alignment is not a power of 2 we will have to use
1229 * a mod/division, set align_mask to a special value.
1231 if ((align | (align - 1)) + 1 != (align << 1))
1232 align_mask = (vm_offset_t)-1;
1233 else
1234 align_mask = align - 1;
1237 * Look for the first possible address; if there's already something
1238 * at this address, we have to start after it.
1240 if (start == map->min_offset) {
1241 if ((entry = map->first_free) != &map->header)
1242 start = entry->end;
1243 } else {
1244 vm_map_entry_t tmp;
1246 if (vm_map_lookup_entry(map, start, &tmp))
1247 start = tmp->end;
1248 entry = tmp;
1252 * Look through the rest of the map, trying to fit a new region in the
1253 * gap between existing regions, or after the very last region.
1255 for (;; start = (entry = next)->end) {
1257 * Adjust the proposed start by the requested alignment,
1258 * be sure that we didn't wrap the address.
1260 if (align_mask == (vm_offset_t)-1)
1261 end = roundup(start, align);
1262 else
1263 end = (start + align_mask) & ~align_mask;
1264 if (end < start)
1265 return (1);
1266 start = end;
1268 * Find the end of the proposed new region. Be sure we didn't
1269 * go beyond the end of the map, or wrap around the address.
1270 * Then check to see if this is the last entry or if the
1271 * proposed end fits in the gap between this and the next
1272 * entry.
1274 end = start + length;
1275 if (end > map->max_offset || end < start)
1276 return (1);
1277 next = entry->next;
1280 * If the next entry's start address is beyond the desired
1281 * end address we may have found a good entry.
1283 * If the next entry is a stack mapping we do not map into
1284 * the stack's reserved space.
1286 * XXX continue to allow mapping into the stack's reserved
1287 * space if doing a MAP_STACK mapping inside a MAP_STACK
1288 * mapping, for backwards compatibility. But the caller
1289 * really should use MAP_STACK | MAP_TRYFIXED if they
1290 * want to do that.
1292 if (next == &map->header)
1293 break;
1294 if (next->start >= end) {
1295 if ((next->eflags & MAP_ENTRY_STACK) == 0)
1296 break;
1297 if (flags & MAP_STACK)
1298 break;
1299 if (next->start - next->aux.avail_ssize >= end)
1300 break;
1303 map->hint = entry;
1306 * Grow the kernel_map if necessary. pmap_growkernel() will panic
1307 * if it fails. The kernel_map is locked and nothing can steal
1308 * our address space if pmap_growkernel() blocks.
1310 * NOTE: This may be unconditionally called for kldload areas on
1311 * x86_64 because these do not bump kernel_vm_end (which would
1312 * fill 128G worth of page tables!). Therefore we must not
1313 * retry.
1315 if (map == &kernel_map) {
1316 vm_offset_t kstop;
1318 kstop = round_page(start + length);
1319 if (kstop > kernel_vm_end)
1320 pmap_growkernel(start, kstop);
1322 *addr = start;
1323 return (0);
1327 * vm_map_find finds an unallocated region in the target address map with
1328 * the given length and allocates it. The search is defined to be first-fit
1329 * from the specified address; the region found is returned in the same
1330 * parameter.
1332 * If object is non-NULL, ref count must be bumped by caller
1333 * prior to making call to account for the new entry.
1335 * No requirements. This function will lock the map temporarily.
1338 vm_map_find(vm_map_t map, void *map_object, void *map_aux,
1339 vm_ooffset_t offset, vm_offset_t *addr,
1340 vm_size_t length, vm_size_t align,
1341 boolean_t fitit,
1342 vm_maptype_t maptype,
1343 vm_prot_t prot, vm_prot_t max,
1344 int cow)
1346 vm_offset_t start;
1347 vm_object_t object;
1348 int result;
1349 int count;
1351 if (maptype == VM_MAPTYPE_UKSMAP)
1352 object = NULL;
1353 else
1354 object = map_object;
1356 start = *addr;
1358 count = vm_map_entry_reserve(MAP_RESERVE_COUNT);
1359 vm_map_lock(map);
1360 if (object)
1361 vm_object_hold_shared(object);
1362 if (fitit) {
1363 if (vm_map_findspace(map, start, length, align, 0, addr)) {
1364 if (object)
1365 vm_object_drop(object);
1366 vm_map_unlock(map);
1367 vm_map_entry_release(count);
1368 return (KERN_NO_SPACE);
1370 start = *addr;
1372 result = vm_map_insert(map, &count, map_object, map_aux,
1373 offset, start, start + length,
1374 maptype, prot, max, cow);
1375 if (object)
1376 vm_object_drop(object);
1377 vm_map_unlock(map);
1378 vm_map_entry_release(count);
1380 return (result);
1384 * Simplify the given map entry by merging with either neighbor. This
1385 * routine also has the ability to merge with both neighbors.
1387 * This routine guarentees that the passed entry remains valid (though
1388 * possibly extended). When merging, this routine may delete one or
1389 * both neighbors. No action is taken on entries which have their
1390 * in-transition flag set.
1392 * The map must be exclusively locked.
1394 void
1395 vm_map_simplify_entry(vm_map_t map, vm_map_entry_t entry, int *countp)
1397 vm_map_entry_t next, prev;
1398 vm_size_t prevsize, esize;
1400 if (entry->eflags & MAP_ENTRY_IN_TRANSITION) {
1401 ++mycpu->gd_cnt.v_intrans_coll;
1402 return;
1405 if (entry->maptype == VM_MAPTYPE_SUBMAP)
1406 return;
1407 if (entry->maptype == VM_MAPTYPE_UKSMAP)
1408 return;
1410 prev = entry->prev;
1411 if (prev != &map->header) {
1412 prevsize = prev->end - prev->start;
1413 if ( (prev->end == entry->start) &&
1414 (prev->maptype == entry->maptype) &&
1415 (prev->object.vm_object == entry->object.vm_object) &&
1416 (!prev->object.vm_object ||
1417 (prev->offset + prevsize == entry->offset)) &&
1418 (prev->eflags == entry->eflags) &&
1419 (prev->protection == entry->protection) &&
1420 (prev->max_protection == entry->max_protection) &&
1421 (prev->inheritance == entry->inheritance) &&
1422 (prev->wired_count == entry->wired_count)) {
1423 if (map->first_free == prev)
1424 map->first_free = entry;
1425 if (map->hint == prev)
1426 map->hint = entry;
1427 vm_map_entry_unlink(map, prev);
1428 entry->start = prev->start;
1429 entry->offset = prev->offset;
1430 if (prev->object.vm_object)
1431 vm_object_deallocate(prev->object.vm_object);
1432 vm_map_entry_dispose(map, prev, countp);
1436 next = entry->next;
1437 if (next != &map->header) {
1438 esize = entry->end - entry->start;
1439 if ((entry->end == next->start) &&
1440 (next->maptype == entry->maptype) &&
1441 (next->object.vm_object == entry->object.vm_object) &&
1442 (!entry->object.vm_object ||
1443 (entry->offset + esize == next->offset)) &&
1444 (next->eflags == entry->eflags) &&
1445 (next->protection == entry->protection) &&
1446 (next->max_protection == entry->max_protection) &&
1447 (next->inheritance == entry->inheritance) &&
1448 (next->wired_count == entry->wired_count)) {
1449 if (map->first_free == next)
1450 map->first_free = entry;
1451 if (map->hint == next)
1452 map->hint = entry;
1453 vm_map_entry_unlink(map, next);
1454 entry->end = next->end;
1455 if (next->object.vm_object)
1456 vm_object_deallocate(next->object.vm_object);
1457 vm_map_entry_dispose(map, next, countp);
1463 * Asserts that the given entry begins at or after the specified address.
1464 * If necessary, it splits the entry into two.
1466 #define vm_map_clip_start(map, entry, startaddr, countp) \
1468 if (startaddr > entry->start) \
1469 _vm_map_clip_start(map, entry, startaddr, countp); \
1473 * This routine is called only when it is known that the entry must be split.
1475 * The map must be exclusively locked.
1477 static void
1478 _vm_map_clip_start(vm_map_t map, vm_map_entry_t entry, vm_offset_t start,
1479 int *countp)
1481 vm_map_entry_t new_entry;
1484 * Split off the front portion -- note that we must insert the new
1485 * entry BEFORE this one, so that this entry has the specified
1486 * starting address.
1489 vm_map_simplify_entry(map, entry, countp);
1492 * If there is no object backing this entry, we might as well create
1493 * one now. If we defer it, an object can get created after the map
1494 * is clipped, and individual objects will be created for the split-up
1495 * map. This is a bit of a hack, but is also about the best place to
1496 * put this improvement.
1498 if (entry->object.vm_object == NULL && !map->system_map) {
1499 vm_map_entry_allocate_object(entry);
1502 new_entry = vm_map_entry_create(map, countp);
1503 *new_entry = *entry;
1505 new_entry->end = start;
1506 entry->offset += (start - entry->start);
1507 entry->start = start;
1509 vm_map_entry_link(map, entry->prev, new_entry);
1511 switch(entry->maptype) {
1512 case VM_MAPTYPE_NORMAL:
1513 case VM_MAPTYPE_VPAGETABLE:
1514 if (new_entry->object.vm_object) {
1515 vm_object_hold(new_entry->object.vm_object);
1516 vm_object_chain_wait(new_entry->object.vm_object, 0);
1517 vm_object_reference_locked(new_entry->object.vm_object);
1518 vm_object_drop(new_entry->object.vm_object);
1520 break;
1521 default:
1522 break;
1527 * Asserts that the given entry ends at or before the specified address.
1528 * If necessary, it splits the entry into two.
1530 * The map must be exclusively locked.
1532 #define vm_map_clip_end(map, entry, endaddr, countp) \
1534 if (endaddr < entry->end) \
1535 _vm_map_clip_end(map, entry, endaddr, countp); \
1539 * This routine is called only when it is known that the entry must be split.
1541 * The map must be exclusively locked.
1543 static void
1544 _vm_map_clip_end(vm_map_t map, vm_map_entry_t entry, vm_offset_t end,
1545 int *countp)
1547 vm_map_entry_t new_entry;
1550 * If there is no object backing this entry, we might as well create
1551 * one now. If we defer it, an object can get created after the map
1552 * is clipped, and individual objects will be created for the split-up
1553 * map. This is a bit of a hack, but is also about the best place to
1554 * put this improvement.
1557 if (entry->object.vm_object == NULL && !map->system_map) {
1558 vm_map_entry_allocate_object(entry);
1562 * Create a new entry and insert it AFTER the specified entry
1565 new_entry = vm_map_entry_create(map, countp);
1566 *new_entry = *entry;
1568 new_entry->start = entry->end = end;
1569 new_entry->offset += (end - entry->start);
1571 vm_map_entry_link(map, entry, new_entry);
1573 switch(entry->maptype) {
1574 case VM_MAPTYPE_NORMAL:
1575 case VM_MAPTYPE_VPAGETABLE:
1576 if (new_entry->object.vm_object) {
1577 vm_object_hold(new_entry->object.vm_object);
1578 vm_object_chain_wait(new_entry->object.vm_object, 0);
1579 vm_object_reference_locked(new_entry->object.vm_object);
1580 vm_object_drop(new_entry->object.vm_object);
1582 break;
1583 default:
1584 break;
1589 * Asserts that the starting and ending region addresses fall within the
1590 * valid range for the map.
1592 #define VM_MAP_RANGE_CHECK(map, start, end) \
1594 if (start < vm_map_min(map)) \
1595 start = vm_map_min(map); \
1596 if (end > vm_map_max(map)) \
1597 end = vm_map_max(map); \
1598 if (start > end) \
1599 start = end; \
1603 * Used to block when an in-transition collison occurs. The map
1604 * is unlocked for the sleep and relocked before the return.
1606 void
1607 vm_map_transition_wait(vm_map_t map)
1609 tsleep_interlock(map, 0);
1610 vm_map_unlock(map);
1611 tsleep(map, PINTERLOCKED, "vment", 0);
1612 vm_map_lock(map);
1616 * When we do blocking operations with the map lock held it is
1617 * possible that a clip might have occured on our in-transit entry,
1618 * requiring an adjustment to the entry in our loop. These macros
1619 * help the pageable and clip_range code deal with the case. The
1620 * conditional costs virtually nothing if no clipping has occured.
1623 #define CLIP_CHECK_BACK(entry, save_start) \
1624 do { \
1625 while (entry->start != save_start) { \
1626 entry = entry->prev; \
1627 KASSERT(entry != &map->header, ("bad entry clip")); \
1629 } while(0)
1631 #define CLIP_CHECK_FWD(entry, save_end) \
1632 do { \
1633 while (entry->end != save_end) { \
1634 entry = entry->next; \
1635 KASSERT(entry != &map->header, ("bad entry clip")); \
1637 } while(0)
1641 * Clip the specified range and return the base entry. The
1642 * range may cover several entries starting at the returned base
1643 * and the first and last entry in the covering sequence will be
1644 * properly clipped to the requested start and end address.
1646 * If no holes are allowed you should pass the MAP_CLIP_NO_HOLES
1647 * flag.
1649 * The MAP_ENTRY_IN_TRANSITION flag will be set for the entries
1650 * covered by the requested range.
1652 * The map must be exclusively locked on entry and will remain locked
1653 * on return. If no range exists or the range contains holes and you
1654 * specified that no holes were allowed, NULL will be returned. This
1655 * routine may temporarily unlock the map in order avoid a deadlock when
1656 * sleeping.
1658 static
1659 vm_map_entry_t
1660 vm_map_clip_range(vm_map_t map, vm_offset_t start, vm_offset_t end,
1661 int *countp, int flags)
1663 vm_map_entry_t start_entry;
1664 vm_map_entry_t entry;
1667 * Locate the entry and effect initial clipping. The in-transition
1668 * case does not occur very often so do not try to optimize it.
1670 again:
1671 if (vm_map_lookup_entry(map, start, &start_entry) == FALSE)
1672 return (NULL);
1673 entry = start_entry;
1674 if (entry->eflags & MAP_ENTRY_IN_TRANSITION) {
1675 entry->eflags |= MAP_ENTRY_NEEDS_WAKEUP;
1676 ++mycpu->gd_cnt.v_intrans_coll;
1677 ++mycpu->gd_cnt.v_intrans_wait;
1678 vm_map_transition_wait(map);
1680 * entry and/or start_entry may have been clipped while
1681 * we slept, or may have gone away entirely. We have
1682 * to restart from the lookup.
1684 goto again;
1688 * Since we hold an exclusive map lock we do not have to restart
1689 * after clipping, even though clipping may block in zalloc.
1691 vm_map_clip_start(map, entry, start, countp);
1692 vm_map_clip_end(map, entry, end, countp);
1693 entry->eflags |= MAP_ENTRY_IN_TRANSITION;
1696 * Scan entries covered by the range. When working on the next
1697 * entry a restart need only re-loop on the current entry which
1698 * we have already locked, since 'next' may have changed. Also,
1699 * even though entry is safe, it may have been clipped so we
1700 * have to iterate forwards through the clip after sleeping.
1702 while (entry->next != &map->header && entry->next->start < end) {
1703 vm_map_entry_t next = entry->next;
1705 if (flags & MAP_CLIP_NO_HOLES) {
1706 if (next->start > entry->end) {
1707 vm_map_unclip_range(map, start_entry,
1708 start, entry->end, countp, flags);
1709 return(NULL);
1713 if (next->eflags & MAP_ENTRY_IN_TRANSITION) {
1714 vm_offset_t save_end = entry->end;
1715 next->eflags |= MAP_ENTRY_NEEDS_WAKEUP;
1716 ++mycpu->gd_cnt.v_intrans_coll;
1717 ++mycpu->gd_cnt.v_intrans_wait;
1718 vm_map_transition_wait(map);
1721 * clips might have occured while we blocked.
1723 CLIP_CHECK_FWD(entry, save_end);
1724 CLIP_CHECK_BACK(start_entry, start);
1725 continue;
1728 * No restart necessary even though clip_end may block, we
1729 * are holding the map lock.
1731 vm_map_clip_end(map, next, end, countp);
1732 next->eflags |= MAP_ENTRY_IN_TRANSITION;
1733 entry = next;
1735 if (flags & MAP_CLIP_NO_HOLES) {
1736 if (entry->end != end) {
1737 vm_map_unclip_range(map, start_entry,
1738 start, entry->end, countp, flags);
1739 return(NULL);
1742 return(start_entry);
1746 * Undo the effect of vm_map_clip_range(). You should pass the same
1747 * flags and the same range that you passed to vm_map_clip_range().
1748 * This code will clear the in-transition flag on the entries and
1749 * wake up anyone waiting. This code will also simplify the sequence
1750 * and attempt to merge it with entries before and after the sequence.
1752 * The map must be locked on entry and will remain locked on return.
1754 * Note that you should also pass the start_entry returned by
1755 * vm_map_clip_range(). However, if you block between the two calls
1756 * with the map unlocked please be aware that the start_entry may
1757 * have been clipped and you may need to scan it backwards to find
1758 * the entry corresponding with the original start address. You are
1759 * responsible for this, vm_map_unclip_range() expects the correct
1760 * start_entry to be passed to it and will KASSERT otherwise.
1762 static
1763 void
1764 vm_map_unclip_range(vm_map_t map, vm_map_entry_t start_entry,
1765 vm_offset_t start, vm_offset_t end,
1766 int *countp, int flags)
1768 vm_map_entry_t entry;
1770 entry = start_entry;
1772 KASSERT(entry->start == start, ("unclip_range: illegal base entry"));
1773 while (entry != &map->header && entry->start < end) {
1774 KASSERT(entry->eflags & MAP_ENTRY_IN_TRANSITION,
1775 ("in-transition flag not set during unclip on: %p",
1776 entry));
1777 KASSERT(entry->end <= end,
1778 ("unclip_range: tail wasn't clipped"));
1779 entry->eflags &= ~MAP_ENTRY_IN_TRANSITION;
1780 if (entry->eflags & MAP_ENTRY_NEEDS_WAKEUP) {
1781 entry->eflags &= ~MAP_ENTRY_NEEDS_WAKEUP;
1782 wakeup(map);
1784 entry = entry->next;
1788 * Simplification does not block so there is no restart case.
1790 entry = start_entry;
1791 while (entry != &map->header && entry->start < end) {
1792 vm_map_simplify_entry(map, entry, countp);
1793 entry = entry->next;
1798 * Mark the given range as handled by a subordinate map.
1800 * This range must have been created with vm_map_find(), and no other
1801 * operations may have been performed on this range prior to calling
1802 * vm_map_submap().
1804 * Submappings cannot be removed.
1806 * No requirements.
1809 vm_map_submap(vm_map_t map, vm_offset_t start, vm_offset_t end, vm_map_t submap)
1811 vm_map_entry_t entry;
1812 int result = KERN_INVALID_ARGUMENT;
1813 int count;
1815 count = vm_map_entry_reserve(MAP_RESERVE_COUNT);
1816 vm_map_lock(map);
1818 VM_MAP_RANGE_CHECK(map, start, end);
1820 if (vm_map_lookup_entry(map, start, &entry)) {
1821 vm_map_clip_start(map, entry, start, &count);
1822 } else {
1823 entry = entry->next;
1826 vm_map_clip_end(map, entry, end, &count);
1828 if ((entry->start == start) && (entry->end == end) &&
1829 ((entry->eflags & MAP_ENTRY_COW) == 0) &&
1830 (entry->object.vm_object == NULL)) {
1831 entry->object.sub_map = submap;
1832 entry->maptype = VM_MAPTYPE_SUBMAP;
1833 result = KERN_SUCCESS;
1835 vm_map_unlock(map);
1836 vm_map_entry_release(count);
1838 return (result);
1842 * Sets the protection of the specified address region in the target map.
1843 * If "set_max" is specified, the maximum protection is to be set;
1844 * otherwise, only the current protection is affected.
1846 * The protection is not applicable to submaps, but is applicable to normal
1847 * maps and maps governed by virtual page tables. For example, when operating
1848 * on a virtual page table our protection basically controls how COW occurs
1849 * on the backing object, whereas the virtual page table abstraction itself
1850 * is an abstraction for userland.
1852 * No requirements.
1855 vm_map_protect(vm_map_t map, vm_offset_t start, vm_offset_t end,
1856 vm_prot_t new_prot, boolean_t set_max)
1858 vm_map_entry_t current;
1859 vm_map_entry_t entry;
1860 int count;
1862 count = vm_map_entry_reserve(MAP_RESERVE_COUNT);
1863 vm_map_lock(map);
1865 VM_MAP_RANGE_CHECK(map, start, end);
1867 if (vm_map_lookup_entry(map, start, &entry)) {
1868 vm_map_clip_start(map, entry, start, &count);
1869 } else {
1870 entry = entry->next;
1874 * Make a first pass to check for protection violations.
1876 current = entry;
1877 while ((current != &map->header) && (current->start < end)) {
1878 if (current->maptype == VM_MAPTYPE_SUBMAP) {
1879 vm_map_unlock(map);
1880 vm_map_entry_release(count);
1881 return (KERN_INVALID_ARGUMENT);
1883 if ((new_prot & current->max_protection) != new_prot) {
1884 vm_map_unlock(map);
1885 vm_map_entry_release(count);
1886 return (KERN_PROTECTION_FAILURE);
1888 current = current->next;
1892 * Go back and fix up protections. [Note that clipping is not
1893 * necessary the second time.]
1895 current = entry;
1897 while ((current != &map->header) && (current->start < end)) {
1898 vm_prot_t old_prot;
1900 vm_map_clip_end(map, current, end, &count);
1902 old_prot = current->protection;
1903 if (set_max) {
1904 current->protection =
1905 (current->max_protection = new_prot) &
1906 old_prot;
1907 } else {
1908 current->protection = new_prot;
1912 * Update physical map if necessary. Worry about copy-on-write
1913 * here -- CHECK THIS XXX
1916 if (current->protection != old_prot) {
1917 #define MASK(entry) (((entry)->eflags & MAP_ENTRY_COW) ? ~VM_PROT_WRITE : \
1918 VM_PROT_ALL)
1920 pmap_protect(map->pmap, current->start,
1921 current->end,
1922 current->protection & MASK(current));
1923 #undef MASK
1926 vm_map_simplify_entry(map, current, &count);
1928 current = current->next;
1931 vm_map_unlock(map);
1932 vm_map_entry_release(count);
1933 return (KERN_SUCCESS);
1937 * This routine traverses a processes map handling the madvise
1938 * system call. Advisories are classified as either those effecting
1939 * the vm_map_entry structure, or those effecting the underlying
1940 * objects.
1942 * The <value> argument is used for extended madvise calls.
1944 * No requirements.
1947 vm_map_madvise(vm_map_t map, vm_offset_t start, vm_offset_t end,
1948 int behav, off_t value)
1950 vm_map_entry_t current, entry;
1951 int modify_map = 0;
1952 int error = 0;
1953 int count;
1956 * Some madvise calls directly modify the vm_map_entry, in which case
1957 * we need to use an exclusive lock on the map and we need to perform
1958 * various clipping operations. Otherwise we only need a read-lock
1959 * on the map.
1962 count = vm_map_entry_reserve(MAP_RESERVE_COUNT);
1964 switch(behav) {
1965 case MADV_NORMAL:
1966 case MADV_SEQUENTIAL:
1967 case MADV_RANDOM:
1968 case MADV_NOSYNC:
1969 case MADV_AUTOSYNC:
1970 case MADV_NOCORE:
1971 case MADV_CORE:
1972 case MADV_SETMAP:
1973 case MADV_INVAL:
1974 modify_map = 1;
1975 vm_map_lock(map);
1976 break;
1977 case MADV_WILLNEED:
1978 case MADV_DONTNEED:
1979 case MADV_FREE:
1980 vm_map_lock_read(map);
1981 break;
1982 default:
1983 vm_map_entry_release(count);
1984 return (EINVAL);
1988 * Locate starting entry and clip if necessary.
1991 VM_MAP_RANGE_CHECK(map, start, end);
1993 if (vm_map_lookup_entry(map, start, &entry)) {
1994 if (modify_map)
1995 vm_map_clip_start(map, entry, start, &count);
1996 } else {
1997 entry = entry->next;
2000 if (modify_map) {
2002 * madvise behaviors that are implemented in the vm_map_entry.
2004 * We clip the vm_map_entry so that behavioral changes are
2005 * limited to the specified address range.
2007 for (current = entry;
2008 (current != &map->header) && (current->start < end);
2009 current = current->next
2011 if (current->maptype == VM_MAPTYPE_SUBMAP)
2012 continue;
2014 vm_map_clip_end(map, current, end, &count);
2016 switch (behav) {
2017 case MADV_NORMAL:
2018 vm_map_entry_set_behavior(current, MAP_ENTRY_BEHAV_NORMAL);
2019 break;
2020 case MADV_SEQUENTIAL:
2021 vm_map_entry_set_behavior(current, MAP_ENTRY_BEHAV_SEQUENTIAL);
2022 break;
2023 case MADV_RANDOM:
2024 vm_map_entry_set_behavior(current, MAP_ENTRY_BEHAV_RANDOM);
2025 break;
2026 case MADV_NOSYNC:
2027 current->eflags |= MAP_ENTRY_NOSYNC;
2028 break;
2029 case MADV_AUTOSYNC:
2030 current->eflags &= ~MAP_ENTRY_NOSYNC;
2031 break;
2032 case MADV_NOCORE:
2033 current->eflags |= MAP_ENTRY_NOCOREDUMP;
2034 break;
2035 case MADV_CORE:
2036 current->eflags &= ~MAP_ENTRY_NOCOREDUMP;
2037 break;
2038 case MADV_INVAL:
2040 * Invalidate the related pmap entries, used
2041 * to flush portions of the real kernel's
2042 * pmap when the caller has removed or
2043 * modified existing mappings in a virtual
2044 * page table.
2046 pmap_remove(map->pmap,
2047 current->start, current->end);
2048 break;
2049 case MADV_SETMAP:
2051 * Set the page directory page for a map
2052 * governed by a virtual page table. Mark
2053 * the entry as being governed by a virtual
2054 * page table if it is not.
2056 * XXX the page directory page is stored
2057 * in the avail_ssize field if the map_entry.
2059 * XXX the map simplification code does not
2060 * compare this field so weird things may
2061 * happen if you do not apply this function
2062 * to the entire mapping governed by the
2063 * virtual page table.
2065 if (current->maptype != VM_MAPTYPE_VPAGETABLE) {
2066 error = EINVAL;
2067 break;
2069 current->aux.master_pde = value;
2070 pmap_remove(map->pmap,
2071 current->start, current->end);
2072 break;
2073 default:
2074 error = EINVAL;
2075 break;
2077 vm_map_simplify_entry(map, current, &count);
2079 vm_map_unlock(map);
2080 } else {
2081 vm_pindex_t pindex;
2082 int count;
2085 * madvise behaviors that are implemented in the underlying
2086 * vm_object.
2088 * Since we don't clip the vm_map_entry, we have to clip
2089 * the vm_object pindex and count.
2091 * NOTE! We currently do not support these functions on
2092 * virtual page tables.
2094 for (current = entry;
2095 (current != &map->header) && (current->start < end);
2096 current = current->next
2098 vm_offset_t useStart;
2100 if (current->maptype != VM_MAPTYPE_NORMAL)
2101 continue;
2103 pindex = OFF_TO_IDX(current->offset);
2104 count = atop(current->end - current->start);
2105 useStart = current->start;
2107 if (current->start < start) {
2108 pindex += atop(start - current->start);
2109 count -= atop(start - current->start);
2110 useStart = start;
2112 if (current->end > end)
2113 count -= atop(current->end - end);
2115 if (count <= 0)
2116 continue;
2118 vm_object_madvise(current->object.vm_object,
2119 pindex, count, behav);
2122 * Try to populate the page table. Mappings governed
2123 * by virtual page tables cannot be pre-populated
2124 * without a lot of work so don't try.
2126 if (behav == MADV_WILLNEED &&
2127 current->maptype != VM_MAPTYPE_VPAGETABLE) {
2128 pmap_object_init_pt(
2129 map->pmap,
2130 useStart,
2131 current->protection,
2132 current->object.vm_object,
2133 pindex,
2134 (count << PAGE_SHIFT),
2135 MAP_PREFAULT_MADVISE
2139 vm_map_unlock_read(map);
2141 vm_map_entry_release(count);
2142 return(error);
2147 * Sets the inheritance of the specified address range in the target map.
2148 * Inheritance affects how the map will be shared with child maps at the
2149 * time of vm_map_fork.
2152 vm_map_inherit(vm_map_t map, vm_offset_t start, vm_offset_t end,
2153 vm_inherit_t new_inheritance)
2155 vm_map_entry_t entry;
2156 vm_map_entry_t temp_entry;
2157 int count;
2159 switch (new_inheritance) {
2160 case VM_INHERIT_NONE:
2161 case VM_INHERIT_COPY:
2162 case VM_INHERIT_SHARE:
2163 break;
2164 default:
2165 return (KERN_INVALID_ARGUMENT);
2168 count = vm_map_entry_reserve(MAP_RESERVE_COUNT);
2169 vm_map_lock(map);
2171 VM_MAP_RANGE_CHECK(map, start, end);
2173 if (vm_map_lookup_entry(map, start, &temp_entry)) {
2174 entry = temp_entry;
2175 vm_map_clip_start(map, entry, start, &count);
2176 } else
2177 entry = temp_entry->next;
2179 while ((entry != &map->header) && (entry->start < end)) {
2180 vm_map_clip_end(map, entry, end, &count);
2182 entry->inheritance = new_inheritance;
2184 vm_map_simplify_entry(map, entry, &count);
2186 entry = entry->next;
2188 vm_map_unlock(map);
2189 vm_map_entry_release(count);
2190 return (KERN_SUCCESS);
2194 * Implement the semantics of mlock
2197 vm_map_unwire(vm_map_t map, vm_offset_t start, vm_offset_t real_end,
2198 boolean_t new_pageable)
2200 vm_map_entry_t entry;
2201 vm_map_entry_t start_entry;
2202 vm_offset_t end;
2203 int rv = KERN_SUCCESS;
2204 int count;
2206 count = vm_map_entry_reserve(MAP_RESERVE_COUNT);
2207 vm_map_lock(map);
2208 VM_MAP_RANGE_CHECK(map, start, real_end);
2209 end = real_end;
2211 start_entry = vm_map_clip_range(map, start, end, &count,
2212 MAP_CLIP_NO_HOLES);
2213 if (start_entry == NULL) {
2214 vm_map_unlock(map);
2215 vm_map_entry_release(count);
2216 return (KERN_INVALID_ADDRESS);
2219 if (new_pageable == 0) {
2220 entry = start_entry;
2221 while ((entry != &map->header) && (entry->start < end)) {
2222 vm_offset_t save_start;
2223 vm_offset_t save_end;
2226 * Already user wired or hard wired (trivial cases)
2228 if (entry->eflags & MAP_ENTRY_USER_WIRED) {
2229 entry = entry->next;
2230 continue;
2232 if (entry->wired_count != 0) {
2233 entry->wired_count++;
2234 entry->eflags |= MAP_ENTRY_USER_WIRED;
2235 entry = entry->next;
2236 continue;
2240 * A new wiring requires instantiation of appropriate
2241 * management structures and the faulting in of the
2242 * page.
2244 if (entry->maptype == VM_MAPTYPE_NORMAL ||
2245 entry->maptype == VM_MAPTYPE_VPAGETABLE) {
2246 int copyflag = entry->eflags &
2247 MAP_ENTRY_NEEDS_COPY;
2248 if (copyflag && ((entry->protection &
2249 VM_PROT_WRITE) != 0)) {
2250 vm_map_entry_shadow(entry, 0);
2251 } else if (entry->object.vm_object == NULL &&
2252 !map->system_map) {
2253 vm_map_entry_allocate_object(entry);
2256 entry->wired_count++;
2257 entry->eflags |= MAP_ENTRY_USER_WIRED;
2260 * Now fault in the area. Note that vm_fault_wire()
2261 * may release the map lock temporarily, it will be
2262 * relocked on return. The in-transition
2263 * flag protects the entries.
2265 save_start = entry->start;
2266 save_end = entry->end;
2267 rv = vm_fault_wire(map, entry, TRUE, 0);
2268 if (rv) {
2269 CLIP_CHECK_BACK(entry, save_start);
2270 for (;;) {
2271 KASSERT(entry->wired_count == 1, ("bad wired_count on entry"));
2272 entry->eflags &= ~MAP_ENTRY_USER_WIRED;
2273 entry->wired_count = 0;
2274 if (entry->end == save_end)
2275 break;
2276 entry = entry->next;
2277 KASSERT(entry != &map->header, ("bad entry clip during backout"));
2279 end = save_start; /* unwire the rest */
2280 break;
2283 * note that even though the entry might have been
2284 * clipped, the USER_WIRED flag we set prevents
2285 * duplication so we do not have to do a
2286 * clip check.
2288 entry = entry->next;
2292 * If we failed fall through to the unwiring section to
2293 * unwire what we had wired so far. 'end' has already
2294 * been adjusted.
2296 if (rv)
2297 new_pageable = 1;
2300 * start_entry might have been clipped if we unlocked the
2301 * map and blocked. No matter how clipped it has gotten
2302 * there should be a fragment that is on our start boundary.
2304 CLIP_CHECK_BACK(start_entry, start);
2308 * Deal with the unwiring case.
2310 if (new_pageable) {
2312 * This is the unwiring case. We must first ensure that the
2313 * range to be unwired is really wired down. We know there
2314 * are no holes.
2316 entry = start_entry;
2317 while ((entry != &map->header) && (entry->start < end)) {
2318 if ((entry->eflags & MAP_ENTRY_USER_WIRED) == 0) {
2319 rv = KERN_INVALID_ARGUMENT;
2320 goto done;
2322 KASSERT(entry->wired_count != 0, ("wired count was 0 with USER_WIRED set! %p", entry));
2323 entry = entry->next;
2327 * Now decrement the wiring count for each region. If a region
2328 * becomes completely unwired, unwire its physical pages and
2329 * mappings.
2332 * The map entries are processed in a loop, checking to
2333 * make sure the entry is wired and asserting it has a wired
2334 * count. However, another loop was inserted more-or-less in
2335 * the middle of the unwiring path. This loop picks up the
2336 * "entry" loop variable from the first loop without first
2337 * setting it to start_entry. Naturally, the secound loop
2338 * is never entered and the pages backing the entries are
2339 * never unwired. This can lead to a leak of wired pages.
2341 entry = start_entry;
2342 while ((entry != &map->header) && (entry->start < end)) {
2343 KASSERT(entry->eflags & MAP_ENTRY_USER_WIRED,
2344 ("expected USER_WIRED on entry %p", entry));
2345 entry->eflags &= ~MAP_ENTRY_USER_WIRED;
2346 entry->wired_count--;
2347 if (entry->wired_count == 0)
2348 vm_fault_unwire(map, entry);
2349 entry = entry->next;
2352 done:
2353 vm_map_unclip_range(map, start_entry, start, real_end, &count,
2354 MAP_CLIP_NO_HOLES);
2355 map->timestamp++;
2356 vm_map_unlock(map);
2357 vm_map_entry_release(count);
2358 return (rv);
2362 * Sets the pageability of the specified address range in the target map.
2363 * Regions specified as not pageable require locked-down physical
2364 * memory and physical page maps.
2366 * The map must not be locked, but a reference must remain to the map
2367 * throughout the call.
2369 * This function may be called via the zalloc path and must properly
2370 * reserve map entries for kernel_map.
2372 * No requirements.
2375 vm_map_wire(vm_map_t map, vm_offset_t start, vm_offset_t real_end, int kmflags)
2377 vm_map_entry_t entry;
2378 vm_map_entry_t start_entry;
2379 vm_offset_t end;
2380 int rv = KERN_SUCCESS;
2381 int count;
2383 if (kmflags & KM_KRESERVE)
2384 count = vm_map_entry_kreserve(MAP_RESERVE_COUNT);
2385 else
2386 count = vm_map_entry_reserve(MAP_RESERVE_COUNT);
2387 vm_map_lock(map);
2388 VM_MAP_RANGE_CHECK(map, start, real_end);
2389 end = real_end;
2391 start_entry = vm_map_clip_range(map, start, end, &count,
2392 MAP_CLIP_NO_HOLES);
2393 if (start_entry == NULL) {
2394 vm_map_unlock(map);
2395 rv = KERN_INVALID_ADDRESS;
2396 goto failure;
2398 if ((kmflags & KM_PAGEABLE) == 0) {
2400 * Wiring.
2402 * 1. Holding the write lock, we create any shadow or zero-fill
2403 * objects that need to be created. Then we clip each map
2404 * entry to the region to be wired and increment its wiring
2405 * count. We create objects before clipping the map entries
2406 * to avoid object proliferation.
2408 * 2. We downgrade to a read lock, and call vm_fault_wire to
2409 * fault in the pages for any newly wired area (wired_count is
2410 * 1).
2412 * Downgrading to a read lock for vm_fault_wire avoids a
2413 * possible deadlock with another process that may have faulted
2414 * on one of the pages to be wired (it would mark the page busy,
2415 * blocking us, then in turn block on the map lock that we
2416 * hold). Because of problems in the recursive lock package,
2417 * we cannot upgrade to a write lock in vm_map_lookup. Thus,
2418 * any actions that require the write lock must be done
2419 * beforehand. Because we keep the read lock on the map, the
2420 * copy-on-write status of the entries we modify here cannot
2421 * change.
2423 entry = start_entry;
2424 while ((entry != &map->header) && (entry->start < end)) {
2426 * Trivial case if the entry is already wired
2428 if (entry->wired_count) {
2429 entry->wired_count++;
2430 entry = entry->next;
2431 continue;
2435 * The entry is being newly wired, we have to setup
2436 * appropriate management structures. A shadow
2437 * object is required for a copy-on-write region,
2438 * or a normal object for a zero-fill region. We
2439 * do not have to do this for entries that point to sub
2440 * maps because we won't hold the lock on the sub map.
2442 if (entry->maptype == VM_MAPTYPE_NORMAL ||
2443 entry->maptype == VM_MAPTYPE_VPAGETABLE) {
2444 int copyflag = entry->eflags &
2445 MAP_ENTRY_NEEDS_COPY;
2446 if (copyflag && ((entry->protection &
2447 VM_PROT_WRITE) != 0)) {
2448 vm_map_entry_shadow(entry, 0);
2449 } else if (entry->object.vm_object == NULL &&
2450 !map->system_map) {
2451 vm_map_entry_allocate_object(entry);
2455 entry->wired_count++;
2456 entry = entry->next;
2460 * Pass 2.
2464 * HACK HACK HACK HACK
2466 * vm_fault_wire() temporarily unlocks the map to avoid
2467 * deadlocks. The in-transition flag from vm_map_clip_range
2468 * call should protect us from changes while the map is
2469 * unlocked. T
2471 * NOTE: Previously this comment stated that clipping might
2472 * still occur while the entry is unlocked, but from
2473 * what I can tell it actually cannot.
2475 * It is unclear whether the CLIP_CHECK_*() calls
2476 * are still needed but we keep them in anyway.
2478 * HACK HACK HACK HACK
2481 entry = start_entry;
2482 while (entry != &map->header && entry->start < end) {
2484 * If vm_fault_wire fails for any page we need to undo
2485 * what has been done. We decrement the wiring count
2486 * for those pages which have not yet been wired (now)
2487 * and unwire those that have (later).
2489 vm_offset_t save_start = entry->start;
2490 vm_offset_t save_end = entry->end;
2492 if (entry->wired_count == 1)
2493 rv = vm_fault_wire(map, entry, FALSE, kmflags);
2494 if (rv) {
2495 CLIP_CHECK_BACK(entry, save_start);
2496 for (;;) {
2497 KASSERT(entry->wired_count == 1, ("wired_count changed unexpectedly"));
2498 entry->wired_count = 0;
2499 if (entry->end == save_end)
2500 break;
2501 entry = entry->next;
2502 KASSERT(entry != &map->header, ("bad entry clip during backout"));
2504 end = save_start;
2505 break;
2507 CLIP_CHECK_FWD(entry, save_end);
2508 entry = entry->next;
2512 * If a failure occured undo everything by falling through
2513 * to the unwiring code. 'end' has already been adjusted
2514 * appropriately.
2516 if (rv)
2517 kmflags |= KM_PAGEABLE;
2520 * start_entry is still IN_TRANSITION but may have been
2521 * clipped since vm_fault_wire() unlocks and relocks the
2522 * map. No matter how clipped it has gotten there should
2523 * be a fragment that is on our start boundary.
2525 CLIP_CHECK_BACK(start_entry, start);
2528 if (kmflags & KM_PAGEABLE) {
2530 * This is the unwiring case. We must first ensure that the
2531 * range to be unwired is really wired down. We know there
2532 * are no holes.
2534 entry = start_entry;
2535 while ((entry != &map->header) && (entry->start < end)) {
2536 if (entry->wired_count == 0) {
2537 rv = KERN_INVALID_ARGUMENT;
2538 goto done;
2540 entry = entry->next;
2544 * Now decrement the wiring count for each region. If a region
2545 * becomes completely unwired, unwire its physical pages and
2546 * mappings.
2548 entry = start_entry;
2549 while ((entry != &map->header) && (entry->start < end)) {
2550 entry->wired_count--;
2551 if (entry->wired_count == 0)
2552 vm_fault_unwire(map, entry);
2553 entry = entry->next;
2556 done:
2557 vm_map_unclip_range(map, start_entry, start, real_end,
2558 &count, MAP_CLIP_NO_HOLES);
2559 map->timestamp++;
2560 vm_map_unlock(map);
2561 failure:
2562 if (kmflags & KM_KRESERVE)
2563 vm_map_entry_krelease(count);
2564 else
2565 vm_map_entry_release(count);
2566 return (rv);
2570 * Mark a newly allocated address range as wired but do not fault in
2571 * the pages. The caller is expected to load the pages into the object.
2573 * The map must be locked on entry and will remain locked on return.
2574 * No other requirements.
2576 void
2577 vm_map_set_wired_quick(vm_map_t map, vm_offset_t addr, vm_size_t size,
2578 int *countp)
2580 vm_map_entry_t scan;
2581 vm_map_entry_t entry;
2583 entry = vm_map_clip_range(map, addr, addr + size,
2584 countp, MAP_CLIP_NO_HOLES);
2585 for (scan = entry;
2586 scan != &map->header && scan->start < addr + size;
2587 scan = scan->next) {
2588 KKASSERT(scan->wired_count == 0);
2589 scan->wired_count = 1;
2591 vm_map_unclip_range(map, entry, addr, addr + size,
2592 countp, MAP_CLIP_NO_HOLES);
2596 * Push any dirty cached pages in the address range to their pager.
2597 * If syncio is TRUE, dirty pages are written synchronously.
2598 * If invalidate is TRUE, any cached pages are freed as well.
2600 * This routine is called by sys_msync()
2602 * Returns an error if any part of the specified range is not mapped.
2604 * No requirements.
2607 vm_map_clean(vm_map_t map, vm_offset_t start, vm_offset_t end,
2608 boolean_t syncio, boolean_t invalidate)
2610 vm_map_entry_t current;
2611 vm_map_entry_t entry;
2612 vm_size_t size;
2613 vm_object_t object;
2614 vm_object_t tobj;
2615 vm_ooffset_t offset;
2617 vm_map_lock_read(map);
2618 VM_MAP_RANGE_CHECK(map, start, end);
2619 if (!vm_map_lookup_entry(map, start, &entry)) {
2620 vm_map_unlock_read(map);
2621 return (KERN_INVALID_ADDRESS);
2623 lwkt_gettoken(&map->token);
2626 * Make a first pass to check for holes.
2628 for (current = entry; current->start < end; current = current->next) {
2629 if (current->maptype == VM_MAPTYPE_SUBMAP) {
2630 lwkt_reltoken(&map->token);
2631 vm_map_unlock_read(map);
2632 return (KERN_INVALID_ARGUMENT);
2634 if (end > current->end &&
2635 (current->next == &map->header ||
2636 current->end != current->next->start)) {
2637 lwkt_reltoken(&map->token);
2638 vm_map_unlock_read(map);
2639 return (KERN_INVALID_ADDRESS);
2643 if (invalidate)
2644 pmap_remove(vm_map_pmap(map), start, end);
2647 * Make a second pass, cleaning/uncaching pages from the indicated
2648 * objects as we go.
2650 for (current = entry; current->start < end; current = current->next) {
2651 offset = current->offset + (start - current->start);
2652 size = (end <= current->end ? end : current->end) - start;
2654 switch(current->maptype) {
2655 case VM_MAPTYPE_SUBMAP:
2657 vm_map_t smap;
2658 vm_map_entry_t tentry;
2659 vm_size_t tsize;
2661 smap = current->object.sub_map;
2662 vm_map_lock_read(smap);
2663 vm_map_lookup_entry(smap, offset, &tentry);
2664 tsize = tentry->end - offset;
2665 if (tsize < size)
2666 size = tsize;
2667 object = tentry->object.vm_object;
2668 offset = tentry->offset + (offset - tentry->start);
2669 vm_map_unlock_read(smap);
2670 break;
2672 case VM_MAPTYPE_NORMAL:
2673 case VM_MAPTYPE_VPAGETABLE:
2674 object = current->object.vm_object;
2675 break;
2676 default:
2677 object = NULL;
2678 break;
2681 if (object)
2682 vm_object_hold(object);
2685 * Note that there is absolutely no sense in writing out
2686 * anonymous objects, so we track down the vnode object
2687 * to write out.
2688 * We invalidate (remove) all pages from the address space
2689 * anyway, for semantic correctness.
2691 * note: certain anonymous maps, such as MAP_NOSYNC maps,
2692 * may start out with a NULL object.
2694 while (object && (tobj = object->backing_object) != NULL) {
2695 vm_object_hold(tobj);
2696 if (tobj == object->backing_object) {
2697 vm_object_lock_swap();
2698 offset += object->backing_object_offset;
2699 vm_object_drop(object);
2700 object = tobj;
2701 if (object->size < OFF_TO_IDX(offset + size))
2702 size = IDX_TO_OFF(object->size) -
2703 offset;
2704 break;
2706 vm_object_drop(tobj);
2708 if (object && (object->type == OBJT_VNODE) &&
2709 (current->protection & VM_PROT_WRITE) &&
2710 (object->flags & OBJ_NOMSYNC) == 0) {
2712 * Flush pages if writing is allowed, invalidate them
2713 * if invalidation requested. Pages undergoing I/O
2714 * will be ignored by vm_object_page_remove().
2716 * We cannot lock the vnode and then wait for paging
2717 * to complete without deadlocking against vm_fault.
2718 * Instead we simply call vm_object_page_remove() and
2719 * allow it to block internally on a page-by-page
2720 * basis when it encounters pages undergoing async
2721 * I/O.
2723 int flags;
2725 /* no chain wait needed for vnode objects */
2726 vm_object_reference_locked(object);
2727 vn_lock(object->handle, LK_EXCLUSIVE | LK_RETRY);
2728 flags = (syncio || invalidate) ? OBJPC_SYNC : 0;
2729 flags |= invalidate ? OBJPC_INVAL : 0;
2732 * When operating on a virtual page table just
2733 * flush the whole object. XXX we probably ought
2734 * to
2736 switch(current->maptype) {
2737 case VM_MAPTYPE_NORMAL:
2738 vm_object_page_clean(object,
2739 OFF_TO_IDX(offset),
2740 OFF_TO_IDX(offset + size + PAGE_MASK),
2741 flags);
2742 break;
2743 case VM_MAPTYPE_VPAGETABLE:
2744 vm_object_page_clean(object, 0, 0, flags);
2745 break;
2747 vn_unlock(((struct vnode *)object->handle));
2748 vm_object_deallocate_locked(object);
2750 if (object && invalidate &&
2751 ((object->type == OBJT_VNODE) ||
2752 (object->type == OBJT_DEVICE) ||
2753 (object->type == OBJT_MGTDEVICE))) {
2754 int clean_only =
2755 ((object->type == OBJT_DEVICE) ||
2756 (object->type == OBJT_MGTDEVICE)) ? FALSE : TRUE;
2757 /* no chain wait needed for vnode/device objects */
2758 vm_object_reference_locked(object);
2759 switch(current->maptype) {
2760 case VM_MAPTYPE_NORMAL:
2761 vm_object_page_remove(object,
2762 OFF_TO_IDX(offset),
2763 OFF_TO_IDX(offset + size + PAGE_MASK),
2764 clean_only);
2765 break;
2766 case VM_MAPTYPE_VPAGETABLE:
2767 vm_object_page_remove(object, 0, 0, clean_only);
2768 break;
2770 vm_object_deallocate_locked(object);
2772 start += size;
2773 if (object)
2774 vm_object_drop(object);
2777 lwkt_reltoken(&map->token);
2778 vm_map_unlock_read(map);
2780 return (KERN_SUCCESS);
2784 * Make the region specified by this entry pageable.
2786 * The vm_map must be exclusively locked.
2788 static void
2789 vm_map_entry_unwire(vm_map_t map, vm_map_entry_t entry)
2791 entry->eflags &= ~MAP_ENTRY_USER_WIRED;
2792 entry->wired_count = 0;
2793 vm_fault_unwire(map, entry);
2797 * Deallocate the given entry from the target map.
2799 * The vm_map must be exclusively locked.
2801 static void
2802 vm_map_entry_delete(vm_map_t map, vm_map_entry_t entry, int *countp)
2804 vm_map_entry_unlink(map, entry);
2805 map->size -= entry->end - entry->start;
2807 switch(entry->maptype) {
2808 case VM_MAPTYPE_NORMAL:
2809 case VM_MAPTYPE_VPAGETABLE:
2810 case VM_MAPTYPE_SUBMAP:
2811 vm_object_deallocate(entry->object.vm_object);
2812 break;
2813 case VM_MAPTYPE_UKSMAP:
2814 /* XXX TODO */
2815 break;
2816 default:
2817 break;
2820 vm_map_entry_dispose(map, entry, countp);
2824 * Deallocates the given address range from the target map.
2826 * The vm_map must be exclusively locked.
2829 vm_map_delete(vm_map_t map, vm_offset_t start, vm_offset_t end, int *countp)
2831 vm_object_t object;
2832 vm_map_entry_t entry;
2833 vm_map_entry_t first_entry;
2835 ASSERT_VM_MAP_LOCKED(map);
2836 lwkt_gettoken(&map->token);
2837 again:
2839 * Find the start of the region, and clip it. Set entry to point
2840 * at the first record containing the requested address or, if no
2841 * such record exists, the next record with a greater address. The
2842 * loop will run from this point until a record beyond the termination
2843 * address is encountered.
2845 * map->hint must be adjusted to not point to anything we delete,
2846 * so set it to the entry prior to the one being deleted.
2848 * GGG see other GGG comment.
2850 if (vm_map_lookup_entry(map, start, &first_entry)) {
2851 entry = first_entry;
2852 vm_map_clip_start(map, entry, start, countp);
2853 map->hint = entry->prev; /* possible problem XXX */
2854 } else {
2855 map->hint = first_entry; /* possible problem XXX */
2856 entry = first_entry->next;
2860 * If a hole opens up prior to the current first_free then
2861 * adjust first_free. As with map->hint, map->first_free
2862 * cannot be left set to anything we might delete.
2864 if (entry == &map->header) {
2865 map->first_free = &map->header;
2866 } else if (map->first_free->start >= start) {
2867 map->first_free = entry->prev;
2871 * Step through all entries in this region
2873 while ((entry != &map->header) && (entry->start < end)) {
2874 vm_map_entry_t next;
2875 vm_offset_t s, e;
2876 vm_pindex_t offidxstart, offidxend, count;
2879 * If we hit an in-transition entry we have to sleep and
2880 * retry. It's easier (and not really slower) to just retry
2881 * since this case occurs so rarely and the hint is already
2882 * pointing at the right place. We have to reset the
2883 * start offset so as not to accidently delete an entry
2884 * another process just created in vacated space.
2886 if (entry->eflags & MAP_ENTRY_IN_TRANSITION) {
2887 entry->eflags |= MAP_ENTRY_NEEDS_WAKEUP;
2888 start = entry->start;
2889 ++mycpu->gd_cnt.v_intrans_coll;
2890 ++mycpu->gd_cnt.v_intrans_wait;
2891 vm_map_transition_wait(map);
2892 goto again;
2894 vm_map_clip_end(map, entry, end, countp);
2896 s = entry->start;
2897 e = entry->end;
2898 next = entry->next;
2900 offidxstart = OFF_TO_IDX(entry->offset);
2901 count = OFF_TO_IDX(e - s);
2903 switch(entry->maptype) {
2904 case VM_MAPTYPE_NORMAL:
2905 case VM_MAPTYPE_VPAGETABLE:
2906 case VM_MAPTYPE_SUBMAP:
2907 object = entry->object.vm_object;
2908 break;
2909 default:
2910 object = NULL;
2911 break;
2915 * Unwire before removing addresses from the pmap; otherwise,
2916 * unwiring will put the entries back in the pmap.
2918 if (entry->wired_count != 0)
2919 vm_map_entry_unwire(map, entry);
2921 offidxend = offidxstart + count;
2923 if (object == &kernel_object) {
2924 vm_object_hold(object);
2925 vm_object_page_remove(object, offidxstart,
2926 offidxend, FALSE);
2927 vm_object_drop(object);
2928 } else if (object && object->type != OBJT_DEFAULT &&
2929 object->type != OBJT_SWAP) {
2931 * vnode object routines cannot be chain-locked,
2932 * but since we aren't removing pages from the
2933 * object here we can use a shared hold.
2935 vm_object_hold_shared(object);
2936 pmap_remove(map->pmap, s, e);
2937 vm_object_drop(object);
2938 } else if (object) {
2939 vm_object_hold(object);
2940 vm_object_chain_acquire(object, 0);
2941 pmap_remove(map->pmap, s, e);
2943 if (object != NULL &&
2944 object->ref_count != 1 &&
2945 (object->flags & (OBJ_NOSPLIT|OBJ_ONEMAPPING)) ==
2946 OBJ_ONEMAPPING &&
2947 (object->type == OBJT_DEFAULT ||
2948 object->type == OBJT_SWAP)) {
2949 vm_object_collapse(object, NULL);
2950 vm_object_page_remove(object, offidxstart,
2951 offidxend, FALSE);
2952 if (object->type == OBJT_SWAP) {
2953 swap_pager_freespace(object,
2954 offidxstart,
2955 count);
2957 if (offidxend >= object->size &&
2958 offidxstart < object->size) {
2959 object->size = offidxstart;
2962 vm_object_chain_release(object);
2963 vm_object_drop(object);
2964 } else if (entry->maptype == VM_MAPTYPE_UKSMAP) {
2965 pmap_remove(map->pmap, s, e);
2969 * Delete the entry (which may delete the object) only after
2970 * removing all pmap entries pointing to its pages.
2971 * (Otherwise, its page frames may be reallocated, and any
2972 * modify bits will be set in the wrong object!)
2974 vm_map_entry_delete(map, entry, countp);
2975 entry = next;
2977 lwkt_reltoken(&map->token);
2978 return (KERN_SUCCESS);
2982 * Remove the given address range from the target map.
2983 * This is the exported form of vm_map_delete.
2985 * No requirements.
2988 vm_map_remove(vm_map_t map, vm_offset_t start, vm_offset_t end)
2990 int result;
2991 int count;
2993 count = vm_map_entry_reserve(MAP_RESERVE_COUNT);
2994 vm_map_lock(map);
2995 VM_MAP_RANGE_CHECK(map, start, end);
2996 result = vm_map_delete(map, start, end, &count);
2997 vm_map_unlock(map);
2998 vm_map_entry_release(count);
3000 return (result);
3004 * Assert that the target map allows the specified privilege on the
3005 * entire address region given. The entire region must be allocated.
3007 * The caller must specify whether the vm_map is already locked or not.
3009 boolean_t
3010 vm_map_check_protection(vm_map_t map, vm_offset_t start, vm_offset_t end,
3011 vm_prot_t protection, boolean_t have_lock)
3013 vm_map_entry_t entry;
3014 vm_map_entry_t tmp_entry;
3015 boolean_t result;
3017 if (have_lock == FALSE)
3018 vm_map_lock_read(map);
3020 if (!vm_map_lookup_entry(map, start, &tmp_entry)) {
3021 if (have_lock == FALSE)
3022 vm_map_unlock_read(map);
3023 return (FALSE);
3025 entry = tmp_entry;
3027 result = TRUE;
3028 while (start < end) {
3029 if (entry == &map->header) {
3030 result = FALSE;
3031 break;
3034 * No holes allowed!
3037 if (start < entry->start) {
3038 result = FALSE;
3039 break;
3042 * Check protection associated with entry.
3045 if ((entry->protection & protection) != protection) {
3046 result = FALSE;
3047 break;
3049 /* go to next entry */
3051 start = entry->end;
3052 entry = entry->next;
3054 if (have_lock == FALSE)
3055 vm_map_unlock_read(map);
3056 return (result);
3060 * If appropriate this function shadows the original object with a new object
3061 * and moves the VM pages from the original object to the new object.
3062 * The original object will also be collapsed, if possible.
3064 * We can only do this for normal memory objects with a single mapping, and
3065 * it only makes sense to do it if there are 2 or more refs on the original
3066 * object. i.e. typically a memory object that has been extended into
3067 * multiple vm_map_entry's with non-overlapping ranges.
3069 * This makes it easier to remove unused pages and keeps object inheritance
3070 * from being a negative impact on memory usage.
3072 * On return the (possibly new) entry->object.vm_object will have an
3073 * additional ref on it for the caller to dispose of (usually by cloning
3074 * the vm_map_entry). The additional ref had to be done in this routine
3075 * to avoid racing a collapse. The object's ONEMAPPING flag will also be
3076 * cleared.
3078 * The vm_map must be locked and its token held.
3080 static void
3081 vm_map_split(vm_map_entry_t entry)
3083 /* OPTIMIZED */
3084 vm_object_t oobject, nobject, bobject;
3085 vm_offset_t s, e;
3086 vm_page_t m;
3087 vm_pindex_t offidxstart, offidxend, idx;
3088 vm_size_t size;
3089 vm_ooffset_t offset;
3090 int useshadowlist;
3093 * Optimize away object locks for vnode objects. Important exit/exec
3094 * critical path.
3096 * OBJ_ONEMAPPING doesn't apply to vnode objects but clear the flag
3097 * anyway.
3099 oobject = entry->object.vm_object;
3100 if (oobject->type != OBJT_DEFAULT && oobject->type != OBJT_SWAP) {
3101 vm_object_reference_quick(oobject);
3102 vm_object_clear_flag(oobject, OBJ_ONEMAPPING);
3103 return;
3107 * Setup. Chain lock the original object throughout the entire
3108 * routine to prevent new page faults from occuring.
3110 * XXX can madvise WILLNEED interfere with us too?
3112 vm_object_hold(oobject);
3113 vm_object_chain_acquire(oobject, 0);
3116 * Original object cannot be split? Might have also changed state.
3118 if (oobject->handle == NULL || (oobject->type != OBJT_DEFAULT &&
3119 oobject->type != OBJT_SWAP)) {
3120 vm_object_chain_release(oobject);
3121 vm_object_reference_locked(oobject);
3122 vm_object_clear_flag(oobject, OBJ_ONEMAPPING);
3123 vm_object_drop(oobject);
3124 return;
3128 * Collapse original object with its backing store as an
3129 * optimization to reduce chain lengths when possible.
3131 * If ref_count <= 1 there aren't other non-overlapping vm_map_entry's
3132 * for oobject, so there's no point collapsing it.
3134 * Then re-check whether the object can be split.
3136 vm_object_collapse(oobject, NULL);
3138 if (oobject->ref_count <= 1 ||
3139 (oobject->type != OBJT_DEFAULT && oobject->type != OBJT_SWAP) ||
3140 (oobject->flags & (OBJ_NOSPLIT|OBJ_ONEMAPPING)) != OBJ_ONEMAPPING) {
3141 vm_object_chain_release(oobject);
3142 vm_object_reference_locked(oobject);
3143 vm_object_clear_flag(oobject, OBJ_ONEMAPPING);
3144 vm_object_drop(oobject);
3145 return;
3149 * Acquire the chain lock on the backing object.
3151 * Give bobject an additional ref count for when it will be shadowed
3152 * by nobject.
3154 useshadowlist = 0;
3155 if ((bobject = oobject->backing_object) != NULL) {
3156 if (bobject->type != OBJT_VNODE) {
3157 useshadowlist = 1;
3158 vm_object_hold(bobject);
3159 vm_object_chain_wait(bobject, 0);
3160 /* ref for shadowing below */
3161 vm_object_reference_locked(bobject);
3162 vm_object_chain_acquire(bobject, 0);
3163 KKASSERT(bobject->backing_object == bobject);
3164 KKASSERT((bobject->flags & OBJ_DEAD) == 0);
3165 } else {
3167 * vnodes are not placed on the shadow list but
3168 * they still get another ref for the backing_object
3169 * reference.
3171 vm_object_reference_quick(bobject);
3176 * Calculate the object page range and allocate the new object.
3178 offset = entry->offset;
3179 s = entry->start;
3180 e = entry->end;
3182 offidxstart = OFF_TO_IDX(offset);
3183 offidxend = offidxstart + OFF_TO_IDX(e - s);
3184 size = offidxend - offidxstart;
3186 switch(oobject->type) {
3187 case OBJT_DEFAULT:
3188 nobject = default_pager_alloc(NULL, IDX_TO_OFF(size),
3189 VM_PROT_ALL, 0);
3190 break;
3191 case OBJT_SWAP:
3192 nobject = swap_pager_alloc(NULL, IDX_TO_OFF(size),
3193 VM_PROT_ALL, 0);
3194 break;
3195 default:
3196 /* not reached */
3197 nobject = NULL;
3198 KKASSERT(0);
3201 if (nobject == NULL) {
3202 if (bobject) {
3203 if (useshadowlist) {
3204 vm_object_chain_release(bobject);
3205 vm_object_deallocate(bobject);
3206 vm_object_drop(bobject);
3207 } else {
3208 vm_object_deallocate(bobject);
3211 vm_object_chain_release(oobject);
3212 vm_object_reference_locked(oobject);
3213 vm_object_clear_flag(oobject, OBJ_ONEMAPPING);
3214 vm_object_drop(oobject);
3215 return;
3219 * The new object will replace entry->object.vm_object so it needs
3220 * a second reference (the caller expects an additional ref).
3222 vm_object_hold(nobject);
3223 vm_object_reference_locked(nobject);
3224 vm_object_chain_acquire(nobject, 0);
3227 * nobject shadows bobject (oobject already shadows bobject).
3229 * Adding an object to bobject's shadow list requires refing bobject
3230 * which we did above in the useshadowlist case.
3232 if (bobject) {
3233 nobject->backing_object_offset =
3234 oobject->backing_object_offset + IDX_TO_OFF(offidxstart);
3235 nobject->backing_object = bobject;
3236 if (useshadowlist) {
3237 bobject->shadow_count++;
3238 bobject->generation++;
3239 LIST_INSERT_HEAD(&bobject->shadow_head,
3240 nobject, shadow_list);
3241 vm_object_clear_flag(bobject, OBJ_ONEMAPPING); /*XXX*/
3242 vm_object_chain_release(bobject);
3243 vm_object_drop(bobject);
3244 vm_object_set_flag(nobject, OBJ_ONSHADOW);
3249 * Move the VM pages from oobject to nobject
3251 for (idx = 0; idx < size; idx++) {
3252 vm_page_t m;
3254 m = vm_page_lookup_busy_wait(oobject, offidxstart + idx,
3255 TRUE, "vmpg");
3256 if (m == NULL)
3257 continue;
3260 * We must wait for pending I/O to complete before we can
3261 * rename the page.
3263 * We do not have to VM_PROT_NONE the page as mappings should
3264 * not be changed by this operation.
3266 * NOTE: The act of renaming a page updates chaingen for both
3267 * objects.
3269 vm_page_rename(m, nobject, idx);
3270 /* page automatically made dirty by rename and cache handled */
3271 /* page remains busy */
3274 if (oobject->type == OBJT_SWAP) {
3275 vm_object_pip_add(oobject, 1);
3277 * copy oobject pages into nobject and destroy unneeded
3278 * pages in shadow object.
3280 swap_pager_copy(oobject, nobject, offidxstart, 0);
3281 vm_object_pip_wakeup(oobject);
3285 * Wakeup the pages we played with. No spl protection is needed
3286 * for a simple wakeup.
3288 for (idx = 0; idx < size; idx++) {
3289 m = vm_page_lookup(nobject, idx);
3290 if (m) {
3291 KKASSERT(m->flags & PG_BUSY);
3292 vm_page_wakeup(m);
3295 entry->object.vm_object = nobject;
3296 entry->offset = 0LL;
3299 * Cleanup
3301 * NOTE: There is no need to remove OBJ_ONEMAPPING from oobject, the
3302 * related pages were moved and are no longer applicable to the
3303 * original object.
3305 * NOTE: Deallocate oobject (due to its entry->object.vm_object being
3306 * replaced by nobject).
3308 vm_object_chain_release(nobject);
3309 vm_object_drop(nobject);
3310 if (bobject && useshadowlist) {
3311 vm_object_chain_release(bobject);
3312 vm_object_drop(bobject);
3314 vm_object_chain_release(oobject);
3315 /*vm_object_clear_flag(oobject, OBJ_ONEMAPPING);*/
3316 vm_object_deallocate_locked(oobject);
3317 vm_object_drop(oobject);
3321 * Copies the contents of the source entry to the destination
3322 * entry. The entries *must* be aligned properly.
3324 * The vm_maps must be exclusively locked.
3325 * The vm_map's token must be held.
3327 * Because the maps are locked no faults can be in progress during the
3328 * operation.
3330 static void
3331 vm_map_copy_entry(vm_map_t src_map, vm_map_t dst_map,
3332 vm_map_entry_t src_entry, vm_map_entry_t dst_entry)
3334 vm_object_t src_object;
3336 if (dst_entry->maptype == VM_MAPTYPE_SUBMAP ||
3337 dst_entry->maptype == VM_MAPTYPE_UKSMAP)
3338 return;
3339 if (src_entry->maptype == VM_MAPTYPE_SUBMAP ||
3340 src_entry->maptype == VM_MAPTYPE_UKSMAP)
3341 return;
3343 if (src_entry->wired_count == 0) {
3345 * If the source entry is marked needs_copy, it is already
3346 * write-protected.
3348 if ((src_entry->eflags & MAP_ENTRY_NEEDS_COPY) == 0) {
3349 pmap_protect(src_map->pmap,
3350 src_entry->start,
3351 src_entry->end,
3352 src_entry->protection & ~VM_PROT_WRITE);
3356 * Make a copy of the object.
3358 * The object must be locked prior to checking the object type
3359 * and for the call to vm_object_collapse() and vm_map_split().
3360 * We cannot use *_hold() here because the split code will
3361 * probably try to destroy the object. The lock is a pool
3362 * token and doesn't care.
3364 * We must bump src_map->timestamp when setting
3365 * MAP_ENTRY_NEEDS_COPY to force any concurrent fault
3366 * to retry, otherwise the concurrent fault might improperly
3367 * install a RW pte when its supposed to be a RO(COW) pte.
3368 * This race can occur because a vnode-backed fault may have
3369 * to temporarily release the map lock.
3371 if (src_entry->object.vm_object != NULL) {
3372 vm_map_split(src_entry);
3373 src_object = src_entry->object.vm_object;
3374 dst_entry->object.vm_object = src_object;
3375 src_entry->eflags |= (MAP_ENTRY_COW |
3376 MAP_ENTRY_NEEDS_COPY);
3377 dst_entry->eflags |= (MAP_ENTRY_COW |
3378 MAP_ENTRY_NEEDS_COPY);
3379 dst_entry->offset = src_entry->offset;
3380 ++src_map->timestamp;
3381 } else {
3382 dst_entry->object.vm_object = NULL;
3383 dst_entry->offset = 0;
3386 pmap_copy(dst_map->pmap, src_map->pmap, dst_entry->start,
3387 dst_entry->end - dst_entry->start, src_entry->start);
3388 } else {
3390 * Of course, wired down pages can't be set copy-on-write.
3391 * Cause wired pages to be copied into the new map by
3392 * simulating faults (the new pages are pageable)
3394 vm_fault_copy_entry(dst_map, src_map, dst_entry, src_entry);
3399 * vmspace_fork:
3400 * Create a new process vmspace structure and vm_map
3401 * based on those of an existing process. The new map
3402 * is based on the old map, according to the inheritance
3403 * values on the regions in that map.
3405 * The source map must not be locked.
3406 * No requirements.
3408 static void vmspace_fork_normal_entry(vm_map_t old_map, vm_map_t new_map,
3409 vm_map_entry_t old_entry, int *countp);
3410 static void vmspace_fork_uksmap_entry(vm_map_t old_map, vm_map_t new_map,
3411 vm_map_entry_t old_entry, int *countp);
3413 struct vmspace *
3414 vmspace_fork(struct vmspace *vm1)
3416 struct vmspace *vm2;
3417 vm_map_t old_map = &vm1->vm_map;
3418 vm_map_t new_map;
3419 vm_map_entry_t old_entry;
3420 int count;
3422 lwkt_gettoken(&vm1->vm_map.token);
3423 vm_map_lock(old_map);
3425 vm2 = vmspace_alloc(old_map->min_offset, old_map->max_offset);
3426 lwkt_gettoken(&vm2->vm_map.token);
3427 bcopy(&vm1->vm_startcopy, &vm2->vm_startcopy,
3428 (caddr_t)&vm1->vm_endcopy - (caddr_t)&vm1->vm_startcopy);
3429 new_map = &vm2->vm_map; /* XXX */
3430 new_map->timestamp = 1;
3432 vm_map_lock(new_map);
3434 count = 0;
3435 old_entry = old_map->header.next;
3436 while (old_entry != &old_map->header) {
3437 ++count;
3438 old_entry = old_entry->next;
3441 count = vm_map_entry_reserve(count + MAP_RESERVE_COUNT);
3443 old_entry = old_map->header.next;
3444 while (old_entry != &old_map->header) {
3445 switch(old_entry->maptype) {
3446 case VM_MAPTYPE_SUBMAP:
3447 panic("vm_map_fork: encountered a submap");
3448 break;
3449 case VM_MAPTYPE_UKSMAP:
3450 vmspace_fork_uksmap_entry(old_map, new_map,
3451 old_entry, &count);
3452 break;
3453 case VM_MAPTYPE_NORMAL:
3454 case VM_MAPTYPE_VPAGETABLE:
3455 vmspace_fork_normal_entry(old_map, new_map,
3456 old_entry, &count);
3457 break;
3459 old_entry = old_entry->next;
3462 new_map->size = old_map->size;
3463 vm_map_unlock(old_map);
3464 vm_map_unlock(new_map);
3465 vm_map_entry_release(count);
3467 lwkt_reltoken(&vm2->vm_map.token);
3468 lwkt_reltoken(&vm1->vm_map.token);
3470 return (vm2);
3473 static
3474 void
3475 vmspace_fork_normal_entry(vm_map_t old_map, vm_map_t new_map,
3476 vm_map_entry_t old_entry, int *countp)
3478 vm_map_entry_t new_entry;
3479 vm_object_t object;
3481 switch (old_entry->inheritance) {
3482 case VM_INHERIT_NONE:
3483 break;
3484 case VM_INHERIT_SHARE:
3486 * Clone the entry, creating the shared object if
3487 * necessary.
3489 if (old_entry->object.vm_object == NULL)
3490 vm_map_entry_allocate_object(old_entry);
3492 if (old_entry->eflags & MAP_ENTRY_NEEDS_COPY) {
3494 * Shadow a map_entry which needs a copy,
3495 * replacing its object with a new object
3496 * that points to the old one. Ask the
3497 * shadow code to automatically add an
3498 * additional ref. We can't do it afterwords
3499 * because we might race a collapse. The call
3500 * to vm_map_entry_shadow() will also clear
3501 * OBJ_ONEMAPPING.
3503 vm_map_entry_shadow(old_entry, 1);
3504 } else if (old_entry->object.vm_object) {
3506 * We will make a shared copy of the object,
3507 * and must clear OBJ_ONEMAPPING.
3509 * Optimize vnode objects. OBJ_ONEMAPPING
3510 * is non-applicable but clear it anyway,
3511 * and its terminal so we don'th ave to deal
3512 * with chains. Reduces SMP conflicts.
3514 * XXX assert that object.vm_object != NULL
3515 * since we allocate it above.
3517 object = old_entry->object.vm_object;
3518 if (object->type == OBJT_VNODE) {
3519 vm_object_reference_quick(object);
3520 vm_object_clear_flag(object,
3521 OBJ_ONEMAPPING);
3522 } else {
3523 vm_object_hold(object);
3524 vm_object_chain_wait(object, 0);
3525 vm_object_reference_locked(object);
3526 vm_object_clear_flag(object,
3527 OBJ_ONEMAPPING);
3528 vm_object_drop(object);
3533 * Clone the entry. We've already bumped the ref on
3534 * any vm_object.
3536 new_entry = vm_map_entry_create(new_map, countp);
3537 *new_entry = *old_entry;
3538 new_entry->eflags &= ~MAP_ENTRY_USER_WIRED;
3539 new_entry->wired_count = 0;
3542 * Insert the entry into the new map -- we know we're
3543 * inserting at the end of the new map.
3546 vm_map_entry_link(new_map, new_map->header.prev,
3547 new_entry);
3550 * Update the physical map
3552 pmap_copy(new_map->pmap, old_map->pmap,
3553 new_entry->start,
3554 (old_entry->end - old_entry->start),
3555 old_entry->start);
3556 break;
3557 case VM_INHERIT_COPY:
3559 * Clone the entry and link into the map.
3561 new_entry = vm_map_entry_create(new_map, countp);
3562 *new_entry = *old_entry;
3563 new_entry->eflags &= ~MAP_ENTRY_USER_WIRED;
3564 new_entry->wired_count = 0;
3565 new_entry->object.vm_object = NULL;
3566 vm_map_entry_link(new_map, new_map->header.prev,
3567 new_entry);
3568 vm_map_copy_entry(old_map, new_map, old_entry,
3569 new_entry);
3570 break;
3575 * When forking user-kernel shared maps, the map might change in the
3576 * child so do not try to copy the underlying pmap entries.
3578 static
3579 void
3580 vmspace_fork_uksmap_entry(vm_map_t old_map, vm_map_t new_map,
3581 vm_map_entry_t old_entry, int *countp)
3583 vm_map_entry_t new_entry;
3585 new_entry = vm_map_entry_create(new_map, countp);
3586 *new_entry = *old_entry;
3587 new_entry->eflags &= ~MAP_ENTRY_USER_WIRED;
3588 new_entry->wired_count = 0;
3589 vm_map_entry_link(new_map, new_map->header.prev,
3590 new_entry);
3594 * Create an auto-grow stack entry
3596 * No requirements.
3599 vm_map_stack (vm_map_t map, vm_offset_t addrbos, vm_size_t max_ssize,
3600 int flags, vm_prot_t prot, vm_prot_t max, int cow)
3602 vm_map_entry_t prev_entry;
3603 vm_map_entry_t new_stack_entry;
3604 vm_size_t init_ssize;
3605 int rv;
3606 int count;
3607 vm_offset_t tmpaddr;
3609 cow |= MAP_IS_STACK;
3611 if (max_ssize < sgrowsiz)
3612 init_ssize = max_ssize;
3613 else
3614 init_ssize = sgrowsiz;
3616 count = vm_map_entry_reserve(MAP_RESERVE_COUNT);
3617 vm_map_lock(map);
3620 * Find space for the mapping
3622 if ((flags & (MAP_FIXED | MAP_TRYFIXED)) == 0) {
3623 if (vm_map_findspace(map, addrbos, max_ssize, 1,
3624 flags, &tmpaddr)) {
3625 vm_map_unlock(map);
3626 vm_map_entry_release(count);
3627 return (KERN_NO_SPACE);
3629 addrbos = tmpaddr;
3632 /* If addr is already mapped, no go */
3633 if (vm_map_lookup_entry(map, addrbos, &prev_entry)) {
3634 vm_map_unlock(map);
3635 vm_map_entry_release(count);
3636 return (KERN_NO_SPACE);
3639 #if 0
3640 /* XXX already handled by kern_mmap() */
3641 /* If we would blow our VMEM resource limit, no go */
3642 if (map->size + init_ssize >
3643 curproc->p_rlimit[RLIMIT_VMEM].rlim_cur) {
3644 vm_map_unlock(map);
3645 vm_map_entry_release(count);
3646 return (KERN_NO_SPACE);
3648 #endif
3651 * If we can't accomodate max_ssize in the current mapping,
3652 * no go. However, we need to be aware that subsequent user
3653 * mappings might map into the space we have reserved for
3654 * stack, and currently this space is not protected.
3656 * Hopefully we will at least detect this condition
3657 * when we try to grow the stack.
3659 if ((prev_entry->next != &map->header) &&
3660 (prev_entry->next->start < addrbos + max_ssize)) {
3661 vm_map_unlock(map);
3662 vm_map_entry_release(count);
3663 return (KERN_NO_SPACE);
3667 * We initially map a stack of only init_ssize. We will
3668 * grow as needed later. Since this is to be a grow
3669 * down stack, we map at the top of the range.
3671 * Note: we would normally expect prot and max to be
3672 * VM_PROT_ALL, and cow to be 0. Possibly we should
3673 * eliminate these as input parameters, and just
3674 * pass these values here in the insert call.
3676 rv = vm_map_insert(map, &count, NULL, NULL,
3677 0, addrbos + max_ssize - init_ssize,
3678 addrbos + max_ssize,
3679 VM_MAPTYPE_NORMAL,
3680 prot, max, cow);
3682 /* Now set the avail_ssize amount */
3683 if (rv == KERN_SUCCESS) {
3684 if (prev_entry != &map->header)
3685 vm_map_clip_end(map, prev_entry, addrbos + max_ssize - init_ssize, &count);
3686 new_stack_entry = prev_entry->next;
3687 if (new_stack_entry->end != addrbos + max_ssize ||
3688 new_stack_entry->start != addrbos + max_ssize - init_ssize)
3689 panic ("Bad entry start/end for new stack entry");
3690 else
3691 new_stack_entry->aux.avail_ssize = max_ssize - init_ssize;
3694 vm_map_unlock(map);
3695 vm_map_entry_release(count);
3696 return (rv);
3700 * Attempts to grow a vm stack entry. Returns KERN_SUCCESS if the
3701 * desired address is already mapped, or if we successfully grow
3702 * the stack. Also returns KERN_SUCCESS if addr is outside the
3703 * stack range (this is strange, but preserves compatibility with
3704 * the grow function in vm_machdep.c).
3706 * No requirements.
3709 vm_map_growstack (struct proc *p, vm_offset_t addr)
3711 vm_map_entry_t prev_entry;
3712 vm_map_entry_t stack_entry;
3713 vm_map_entry_t new_stack_entry;
3714 struct vmspace *vm = p->p_vmspace;
3715 vm_map_t map = &vm->vm_map;
3716 vm_offset_t end;
3717 int grow_amount;
3718 int rv = KERN_SUCCESS;
3719 int is_procstack;
3720 int use_read_lock = 1;
3721 int count;
3723 count = vm_map_entry_reserve(MAP_RESERVE_COUNT);
3724 Retry:
3725 if (use_read_lock)
3726 vm_map_lock_read(map);
3727 else
3728 vm_map_lock(map);
3730 /* If addr is already in the entry range, no need to grow.*/
3731 if (vm_map_lookup_entry(map, addr, &prev_entry))
3732 goto done;
3734 if ((stack_entry = prev_entry->next) == &map->header)
3735 goto done;
3736 if (prev_entry == &map->header)
3737 end = stack_entry->start - stack_entry->aux.avail_ssize;
3738 else
3739 end = prev_entry->end;
3742 * This next test mimics the old grow function in vm_machdep.c.
3743 * It really doesn't quite make sense, but we do it anyway
3744 * for compatibility.
3746 * If not growable stack, return success. This signals the
3747 * caller to proceed as he would normally with normal vm.
3749 if (stack_entry->aux.avail_ssize < 1 ||
3750 addr >= stack_entry->start ||
3751 addr < stack_entry->start - stack_entry->aux.avail_ssize) {
3752 goto done;
3755 /* Find the minimum grow amount */
3756 grow_amount = roundup (stack_entry->start - addr, PAGE_SIZE);
3757 if (grow_amount > stack_entry->aux.avail_ssize) {
3758 rv = KERN_NO_SPACE;
3759 goto done;
3763 * If there is no longer enough space between the entries
3764 * nogo, and adjust the available space. Note: this
3765 * should only happen if the user has mapped into the
3766 * stack area after the stack was created, and is
3767 * probably an error.
3769 * This also effectively destroys any guard page the user
3770 * might have intended by limiting the stack size.
3772 if (grow_amount > stack_entry->start - end) {
3773 if (use_read_lock && vm_map_lock_upgrade(map)) {
3774 /* lost lock */
3775 use_read_lock = 0;
3776 goto Retry;
3778 use_read_lock = 0;
3779 stack_entry->aux.avail_ssize = stack_entry->start - end;
3780 rv = KERN_NO_SPACE;
3781 goto done;
3784 is_procstack = addr >= (vm_offset_t)vm->vm_maxsaddr;
3786 /* If this is the main process stack, see if we're over the
3787 * stack limit.
3789 if (is_procstack && (ctob(vm->vm_ssize) + grow_amount >
3790 p->p_rlimit[RLIMIT_STACK].rlim_cur)) {
3791 rv = KERN_NO_SPACE;
3792 goto done;
3795 /* Round up the grow amount modulo SGROWSIZ */
3796 grow_amount = roundup (grow_amount, sgrowsiz);
3797 if (grow_amount > stack_entry->aux.avail_ssize) {
3798 grow_amount = stack_entry->aux.avail_ssize;
3800 if (is_procstack && (ctob(vm->vm_ssize) + grow_amount >
3801 p->p_rlimit[RLIMIT_STACK].rlim_cur)) {
3802 grow_amount = p->p_rlimit[RLIMIT_STACK].rlim_cur -
3803 ctob(vm->vm_ssize);
3806 /* If we would blow our VMEM resource limit, no go */
3807 if (map->size + grow_amount > p->p_rlimit[RLIMIT_VMEM].rlim_cur) {
3808 rv = KERN_NO_SPACE;
3809 goto done;
3812 if (use_read_lock && vm_map_lock_upgrade(map)) {
3813 /* lost lock */
3814 use_read_lock = 0;
3815 goto Retry;
3817 use_read_lock = 0;
3819 /* Get the preliminary new entry start value */
3820 addr = stack_entry->start - grow_amount;
3822 /* If this puts us into the previous entry, cut back our growth
3823 * to the available space. Also, see the note above.
3825 if (addr < end) {
3826 stack_entry->aux.avail_ssize = stack_entry->start - end;
3827 addr = end;
3830 rv = vm_map_insert(map, &count, NULL, NULL,
3831 0, addr, stack_entry->start,
3832 VM_MAPTYPE_NORMAL,
3833 VM_PROT_ALL, VM_PROT_ALL, 0);
3835 /* Adjust the available stack space by the amount we grew. */
3836 if (rv == KERN_SUCCESS) {
3837 if (prev_entry != &map->header)
3838 vm_map_clip_end(map, prev_entry, addr, &count);
3839 new_stack_entry = prev_entry->next;
3840 if (new_stack_entry->end != stack_entry->start ||
3841 new_stack_entry->start != addr)
3842 panic ("Bad stack grow start/end in new stack entry");
3843 else {
3844 new_stack_entry->aux.avail_ssize =
3845 stack_entry->aux.avail_ssize -
3846 (new_stack_entry->end - new_stack_entry->start);
3847 if (is_procstack)
3848 vm->vm_ssize += btoc(new_stack_entry->end -
3849 new_stack_entry->start);
3852 if (map->flags & MAP_WIREFUTURE)
3853 vm_map_unwire(map, new_stack_entry->start,
3854 new_stack_entry->end, FALSE);
3857 done:
3858 if (use_read_lock)
3859 vm_map_unlock_read(map);
3860 else
3861 vm_map_unlock(map);
3862 vm_map_entry_release(count);
3863 return (rv);
3867 * Unshare the specified VM space for exec. If other processes are
3868 * mapped to it, then create a new one. The new vmspace is null.
3870 * No requirements.
3872 void
3873 vmspace_exec(struct proc *p, struct vmspace *vmcopy)
3875 struct vmspace *oldvmspace = p->p_vmspace;
3876 struct vmspace *newvmspace;
3877 vm_map_t map = &p->p_vmspace->vm_map;
3880 * If we are execing a resident vmspace we fork it, otherwise
3881 * we create a new vmspace. Note that exitingcnt is not
3882 * copied to the new vmspace.
3884 lwkt_gettoken(&oldvmspace->vm_map.token);
3885 if (vmcopy) {
3886 newvmspace = vmspace_fork(vmcopy);
3887 lwkt_gettoken(&newvmspace->vm_map.token);
3888 } else {
3889 newvmspace = vmspace_alloc(map->min_offset, map->max_offset);
3890 lwkt_gettoken(&newvmspace->vm_map.token);
3891 bcopy(&oldvmspace->vm_startcopy, &newvmspace->vm_startcopy,
3892 (caddr_t)&oldvmspace->vm_endcopy -
3893 (caddr_t)&oldvmspace->vm_startcopy);
3897 * Finish initializing the vmspace before assigning it
3898 * to the process. The vmspace will become the current vmspace
3899 * if p == curproc.
3901 pmap_pinit2(vmspace_pmap(newvmspace));
3902 pmap_replacevm(p, newvmspace, 0);
3903 lwkt_reltoken(&newvmspace->vm_map.token);
3904 lwkt_reltoken(&oldvmspace->vm_map.token);
3905 vmspace_rel(oldvmspace);
3909 * Unshare the specified VM space for forcing COW. This
3910 * is called by rfork, for the (RFMEM|RFPROC) == 0 case.
3912 void
3913 vmspace_unshare(struct proc *p)
3915 struct vmspace *oldvmspace = p->p_vmspace;
3916 struct vmspace *newvmspace;
3918 lwkt_gettoken(&oldvmspace->vm_map.token);
3919 if (vmspace_getrefs(oldvmspace) == 1) {
3920 lwkt_reltoken(&oldvmspace->vm_map.token);
3921 return;
3923 newvmspace = vmspace_fork(oldvmspace);
3924 lwkt_gettoken(&newvmspace->vm_map.token);
3925 pmap_pinit2(vmspace_pmap(newvmspace));
3926 pmap_replacevm(p, newvmspace, 0);
3927 lwkt_reltoken(&newvmspace->vm_map.token);
3928 lwkt_reltoken(&oldvmspace->vm_map.token);
3929 vmspace_rel(oldvmspace);
3933 * vm_map_hint: return the beginning of the best area suitable for
3934 * creating a new mapping with "prot" protection.
3936 * No requirements.
3938 vm_offset_t
3939 vm_map_hint(struct proc *p, vm_offset_t addr, vm_prot_t prot)
3941 struct vmspace *vms = p->p_vmspace;
3943 if (!randomize_mmap || addr != 0) {
3945 * Set a reasonable start point for the hint if it was
3946 * not specified or if it falls within the heap space.
3947 * Hinted mmap()s do not allocate out of the heap space.
3949 if (addr == 0 ||
3950 (addr >= round_page((vm_offset_t)vms->vm_taddr) &&
3951 addr < round_page((vm_offset_t)vms->vm_daddr + maxdsiz))) {
3952 addr = round_page((vm_offset_t)vms->vm_daddr + maxdsiz);
3955 return addr;
3957 addr = (vm_offset_t)vms->vm_daddr + MAXDSIZ;
3958 addr += karc4random() & (MIN((256 * 1024 * 1024), MAXDSIZ) - 1);
3960 return (round_page(addr));
3964 * Finds the VM object, offset, and protection for a given virtual address
3965 * in the specified map, assuming a page fault of the type specified.
3967 * Leaves the map in question locked for read; return values are guaranteed
3968 * until a vm_map_lookup_done call is performed. Note that the map argument
3969 * is in/out; the returned map must be used in the call to vm_map_lookup_done.
3971 * A handle (out_entry) is returned for use in vm_map_lookup_done, to make
3972 * that fast.
3974 * If a lookup is requested with "write protection" specified, the map may
3975 * be changed to perform virtual copying operations, although the data
3976 * referenced will remain the same.
3978 * No requirements.
3981 vm_map_lookup(vm_map_t *var_map, /* IN/OUT */
3982 vm_offset_t vaddr,
3983 vm_prot_t fault_typea,
3984 vm_map_entry_t *out_entry, /* OUT */
3985 vm_object_t *object, /* OUT */
3986 vm_pindex_t *pindex, /* OUT */
3987 vm_prot_t *out_prot, /* OUT */
3988 boolean_t *wired) /* OUT */
3990 vm_map_entry_t entry;
3991 vm_map_t map = *var_map;
3992 vm_prot_t prot;
3993 vm_prot_t fault_type = fault_typea;
3994 int use_read_lock = 1;
3995 int rv = KERN_SUCCESS;
3997 RetryLookup:
3998 if (use_read_lock)
3999 vm_map_lock_read(map);
4000 else
4001 vm_map_lock(map);
4004 * If the map has an interesting hint, try it before calling full
4005 * blown lookup routine.
4007 entry = map->hint;
4008 cpu_ccfence();
4009 *out_entry = entry;
4010 *object = NULL;
4012 if ((entry == &map->header) ||
4013 (vaddr < entry->start) || (vaddr >= entry->end)) {
4014 vm_map_entry_t tmp_entry;
4017 * Entry was either not a valid hint, or the vaddr was not
4018 * contained in the entry, so do a full lookup.
4020 if (!vm_map_lookup_entry(map, vaddr, &tmp_entry)) {
4021 rv = KERN_INVALID_ADDRESS;
4022 goto done;
4025 entry = tmp_entry;
4026 *out_entry = entry;
4030 * Handle submaps.
4032 if (entry->maptype == VM_MAPTYPE_SUBMAP) {
4033 vm_map_t old_map = map;
4035 *var_map = map = entry->object.sub_map;
4036 if (use_read_lock)
4037 vm_map_unlock_read(old_map);
4038 else
4039 vm_map_unlock(old_map);
4040 use_read_lock = 1;
4041 goto RetryLookup;
4045 * Check whether this task is allowed to have this page.
4046 * Note the special case for MAP_ENTRY_COW
4047 * pages with an override. This is to implement a forced
4048 * COW for debuggers.
4051 if (fault_type & VM_PROT_OVERRIDE_WRITE)
4052 prot = entry->max_protection;
4053 else
4054 prot = entry->protection;
4056 fault_type &= (VM_PROT_READ|VM_PROT_WRITE|VM_PROT_EXECUTE);
4057 if ((fault_type & prot) != fault_type) {
4058 rv = KERN_PROTECTION_FAILURE;
4059 goto done;
4062 if ((entry->eflags & MAP_ENTRY_USER_WIRED) &&
4063 (entry->eflags & MAP_ENTRY_COW) &&
4064 (fault_type & VM_PROT_WRITE) &&
4065 (fault_typea & VM_PROT_OVERRIDE_WRITE) == 0) {
4066 rv = KERN_PROTECTION_FAILURE;
4067 goto done;
4071 * If this page is not pageable, we have to get it for all possible
4072 * accesses.
4074 *wired = (entry->wired_count != 0);
4075 if (*wired)
4076 prot = fault_type = entry->protection;
4079 * Virtual page tables may need to update the accessed (A) bit
4080 * in a page table entry. Upgrade the fault to a write fault for
4081 * that case if the map will support it. If the map does not support
4082 * it the page table entry simply will not be updated.
4084 if (entry->maptype == VM_MAPTYPE_VPAGETABLE) {
4085 if (prot & VM_PROT_WRITE)
4086 fault_type |= VM_PROT_WRITE;
4089 if (curthread->td_lwp && curthread->td_lwp->lwp_vmspace &&
4090 pmap_emulate_ad_bits(&curthread->td_lwp->lwp_vmspace->vm_pmap)) {
4091 if ((prot & VM_PROT_WRITE) == 0)
4092 fault_type |= VM_PROT_WRITE;
4096 * Only NORMAL and VPAGETABLE maps are object-based. UKSMAPs are not.
4098 if (entry->maptype != VM_MAPTYPE_NORMAL &&
4099 entry->maptype != VM_MAPTYPE_VPAGETABLE) {
4100 *object = NULL;
4101 goto skip;
4105 * If the entry was copy-on-write, we either ...
4107 if (entry->eflags & MAP_ENTRY_NEEDS_COPY) {
4109 * If we want to write the page, we may as well handle that
4110 * now since we've got the map locked.
4112 * If we don't need to write the page, we just demote the
4113 * permissions allowed.
4116 if (fault_type & VM_PROT_WRITE) {
4118 * Not allowed if TDF_NOFAULT is set as the shadowing
4119 * operation can deadlock against the faulting
4120 * function due to the copy-on-write.
4122 if (curthread->td_flags & TDF_NOFAULT) {
4123 rv = KERN_FAILURE_NOFAULT;
4124 goto done;
4128 * Make a new object, and place it in the object
4129 * chain. Note that no new references have appeared
4130 * -- one just moved from the map to the new
4131 * object.
4134 if (use_read_lock && vm_map_lock_upgrade(map)) {
4135 /* lost lock */
4136 use_read_lock = 0;
4137 goto RetryLookup;
4139 use_read_lock = 0;
4141 vm_map_entry_shadow(entry, 0);
4142 } else {
4144 * We're attempting to read a copy-on-write page --
4145 * don't allow writes.
4148 prot &= ~VM_PROT_WRITE;
4153 * Create an object if necessary.
4155 if (entry->object.vm_object == NULL && !map->system_map) {
4156 if (use_read_lock && vm_map_lock_upgrade(map)) {
4157 /* lost lock */
4158 use_read_lock = 0;
4159 goto RetryLookup;
4161 use_read_lock = 0;
4162 vm_map_entry_allocate_object(entry);
4166 * Return the object/offset from this entry. If the entry was
4167 * copy-on-write or empty, it has been fixed up.
4169 *object = entry->object.vm_object;
4171 skip:
4172 *pindex = OFF_TO_IDX((vaddr - entry->start) + entry->offset);
4175 * Return whether this is the only map sharing this data. On
4176 * success we return with a read lock held on the map. On failure
4177 * we return with the map unlocked.
4179 *out_prot = prot;
4180 done:
4181 if (rv == KERN_SUCCESS) {
4182 if (use_read_lock == 0)
4183 vm_map_lock_downgrade(map);
4184 } else if (use_read_lock) {
4185 vm_map_unlock_read(map);
4186 } else {
4187 vm_map_unlock(map);
4189 return (rv);
4193 * Releases locks acquired by a vm_map_lookup()
4194 * (according to the handle returned by that lookup).
4196 * No other requirements.
4198 void
4199 vm_map_lookup_done(vm_map_t map, vm_map_entry_t entry, int count)
4202 * Unlock the main-level map
4204 vm_map_unlock_read(map);
4205 if (count)
4206 vm_map_entry_release(count);
4209 #include "opt_ddb.h"
4210 #ifdef DDB
4211 #include <sys/kernel.h>
4213 #include <ddb/ddb.h>
4216 * Debugging only
4218 DB_SHOW_COMMAND(map, vm_map_print)
4220 static int nlines;
4221 /* XXX convert args. */
4222 vm_map_t map = (vm_map_t)addr;
4223 boolean_t full = have_addr;
4225 vm_map_entry_t entry;
4227 db_iprintf("Task map %p: pmap=%p, nentries=%d, version=%u\n",
4228 (void *)map,
4229 (void *)map->pmap, map->nentries, map->timestamp);
4230 nlines++;
4232 if (!full && db_indent)
4233 return;
4235 db_indent += 2;
4236 for (entry = map->header.next; entry != &map->header;
4237 entry = entry->next) {
4238 db_iprintf("map entry %p: start=%p, end=%p\n",
4239 (void *)entry, (void *)entry->start, (void *)entry->end);
4240 nlines++;
4242 static char *inheritance_name[4] =
4243 {"share", "copy", "none", "donate_copy"};
4245 db_iprintf(" prot=%x/%x/%s",
4246 entry->protection,
4247 entry->max_protection,
4248 inheritance_name[(int)(unsigned char)entry->inheritance]);
4249 if (entry->wired_count != 0)
4250 db_printf(", wired");
4252 switch(entry->maptype) {
4253 case VM_MAPTYPE_SUBMAP:
4254 /* XXX no %qd in kernel. Truncate entry->offset. */
4255 db_printf(", share=%p, offset=0x%lx\n",
4256 (void *)entry->object.sub_map,
4257 (long)entry->offset);
4258 nlines++;
4259 if ((entry->prev == &map->header) ||
4260 (entry->prev->object.sub_map !=
4261 entry->object.sub_map)) {
4262 db_indent += 2;
4263 vm_map_print((db_expr_t)(intptr_t)
4264 entry->object.sub_map,
4265 full, 0, NULL);
4266 db_indent -= 2;
4268 break;
4269 case VM_MAPTYPE_NORMAL:
4270 case VM_MAPTYPE_VPAGETABLE:
4271 /* XXX no %qd in kernel. Truncate entry->offset. */
4272 db_printf(", object=%p, offset=0x%lx",
4273 (void *)entry->object.vm_object,
4274 (long)entry->offset);
4275 if (entry->eflags & MAP_ENTRY_COW)
4276 db_printf(", copy (%s)",
4277 (entry->eflags & MAP_ENTRY_NEEDS_COPY) ? "needed" : "done");
4278 db_printf("\n");
4279 nlines++;
4281 if ((entry->prev == &map->header) ||
4282 (entry->prev->object.vm_object !=
4283 entry->object.vm_object)) {
4284 db_indent += 2;
4285 vm_object_print((db_expr_t)(intptr_t)
4286 entry->object.vm_object,
4287 full, 0, NULL);
4288 nlines += 4;
4289 db_indent -= 2;
4291 break;
4292 case VM_MAPTYPE_UKSMAP:
4293 db_printf(", uksmap=%p, offset=0x%lx",
4294 (void *)entry->object.uksmap,
4295 (long)entry->offset);
4296 if (entry->eflags & MAP_ENTRY_COW)
4297 db_printf(", copy (%s)",
4298 (entry->eflags & MAP_ENTRY_NEEDS_COPY) ? "needed" : "done");
4299 db_printf("\n");
4300 nlines++;
4301 break;
4302 default:
4303 break;
4306 db_indent -= 2;
4307 if (db_indent == 0)
4308 nlines = 0;
4312 * Debugging only
4314 DB_SHOW_COMMAND(procvm, procvm)
4316 struct proc *p;
4318 if (have_addr) {
4319 p = (struct proc *) addr;
4320 } else {
4321 p = curproc;
4324 db_printf("p = %p, vmspace = %p, map = %p, pmap = %p\n",
4325 (void *)p, (void *)p->p_vmspace, (void *)&p->p_vmspace->vm_map,
4326 (void *)vmspace_pmap(p->p_vmspace));
4328 vm_map_print((db_expr_t)(intptr_t)&p->p_vmspace->vm_map, 1, 0, NULL);
4331 #endif /* DDB */