kqueue: Knote should not be accessed once the KN_PROCESSING is cleared
[dragonfly.git] / sys / vm / swap_pager.c
blobbef716cf4c9fa740a091b18ec8d3409821edc936
1 /*
2 * (MPSAFE)
4 * Copyright (c) 1998-2010 The DragonFly Project. All rights reserved.
5 *
6 * This code is derived from software contributed to The DragonFly Project
7 * by Matthew Dillon <dillon@backplane.com>
8 *
9 * Redistribution and use in source and binary forms, with or without
10 * modification, are permitted provided that the following conditions
11 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 * notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in
17 * the documentation and/or other materials provided with the
18 * distribution.
19 * 3. Neither the name of The DragonFly Project nor the names of its
20 * contributors may be used to endorse or promote products derived
21 * from this software without specific, prior written permission.
23 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
24 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
25 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
26 * FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
27 * COPYRIGHT HOLDERS OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
28 * INCIDENTAL, SPECIAL, EXEMPLARY OR CONSEQUENTIAL DAMAGES (INCLUDING,
29 * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
30 * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
31 * AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
32 * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT
33 * OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
34 * SUCH DAMAGE.
36 * Copyright (c) 1994 John S. Dyson
37 * Copyright (c) 1990 University of Utah.
38 * Copyright (c) 1991, 1993
39 * The Regents of the University of California. All rights reserved.
41 * This code is derived from software contributed to Berkeley by
42 * the Systems Programming Group of the University of Utah Computer
43 * Science Department.
45 * Redistribution and use in source and binary forms, with or without
46 * modification, are permitted provided that the following conditions
47 * are met:
48 * 1. Redistributions of source code must retain the above copyright
49 * notice, this list of conditions and the following disclaimer.
50 * 2. Redistributions in binary form must reproduce the above copyright
51 * notice, this list of conditions and the following disclaimer in the
52 * documentation and/or other materials provided with the distribution.
53 * 3. Neither the name of the University nor the names of its contributors
54 * may be used to endorse or promote products derived from this software
55 * without specific prior written permission.
57 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
58 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
59 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
60 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
61 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
62 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
63 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
64 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
65 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
66 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
67 * SUCH DAMAGE.
69 * New Swap System
70 * Matthew Dillon
72 * Radix Bitmap 'blists'.
74 * - The new swapper uses the new radix bitmap code. This should scale
75 * to arbitrarily small or arbitrarily large swap spaces and an almost
76 * arbitrary degree of fragmentation.
78 * Features:
80 * - on the fly reallocation of swap during putpages. The new system
81 * does not try to keep previously allocated swap blocks for dirty
82 * pages.
84 * - on the fly deallocation of swap
86 * - No more garbage collection required. Unnecessarily allocated swap
87 * blocks only exist for dirty vm_page_t's now and these are already
88 * cycled (in a high-load system) by the pager. We also do on-the-fly
89 * removal of invalidated swap blocks when a page is destroyed
90 * or renamed.
92 * from: Utah $Hdr: swap_pager.c 1.4 91/04/30$
93 * @(#)swap_pager.c 8.9 (Berkeley) 3/21/94
94 * $FreeBSD: src/sys/vm/swap_pager.c,v 1.130.2.12 2002/08/31 21:15:55 dillon Exp $
97 #include <sys/param.h>
98 #include <sys/systm.h>
99 #include <sys/conf.h>
100 #include <sys/kernel.h>
101 #include <sys/proc.h>
102 #include <sys/buf.h>
103 #include <sys/vnode.h>
104 #include <sys/malloc.h>
105 #include <sys/vmmeter.h>
106 #include <sys/sysctl.h>
107 #include <sys/blist.h>
108 #include <sys/lock.h>
109 #include <sys/thread2.h>
111 #include "opt_swap.h"
112 #include <vm/vm.h>
113 #include <vm/vm_object.h>
114 #include <vm/vm_page.h>
115 #include <vm/vm_pager.h>
116 #include <vm/vm_pageout.h>
117 #include <vm/swap_pager.h>
118 #include <vm/vm_extern.h>
119 #include <vm/vm_zone.h>
120 #include <vm/vnode_pager.h>
122 #include <sys/buf2.h>
123 #include <vm/vm_page2.h>
125 #ifndef MAX_PAGEOUT_CLUSTER
126 #define MAX_PAGEOUT_CLUSTER SWB_NPAGES
127 #endif
129 #define SWM_FREE 0x02 /* free, period */
130 #define SWM_POP 0x04 /* pop out */
132 #define SWBIO_READ 0x01
133 #define SWBIO_WRITE 0x02
134 #define SWBIO_SYNC 0x04
136 struct swfreeinfo {
137 vm_object_t object;
138 vm_pindex_t basei;
139 vm_pindex_t begi;
140 vm_pindex_t endi; /* inclusive */
143 struct swswapoffinfo {
144 vm_object_t object;
145 int devidx;
146 int shared;
150 * vm_swap_size is in page-sized chunks now. It was DEV_BSIZE'd chunks
151 * in the old system.
154 int swap_pager_full; /* swap space exhaustion (task killing) */
155 int swap_fail_ticks; /* when we became exhausted */
156 int swap_pager_almost_full; /* swap space exhaustion (w/ hysteresis)*/
157 int vm_swap_cache_use;
158 int vm_swap_anon_use;
159 static int vm_report_swap_allocs;
161 static int nsw_rcount; /* free read buffers */
162 static int nsw_wcount_sync; /* limit write buffers / synchronous */
163 static int nsw_wcount_async; /* limit write buffers / asynchronous */
164 static int nsw_wcount_async_max;/* assigned maximum */
165 static int nsw_cluster_max; /* maximum VOP I/O allowed */
167 struct blist *swapblist;
168 static int swap_async_max = 4; /* maximum in-progress async I/O's */
169 static int swap_burst_read = 0; /* allow burst reading */
170 static swblk_t swapiterator; /* linearize allocations */
172 static struct spinlock swapbp_spin = SPINLOCK_INITIALIZER(&swapbp_spin, "swapbp_spin");
174 /* from vm_swap.c */
175 extern struct vnode *swapdev_vp;
176 extern struct swdevt *swdevt;
177 extern int nswdev;
179 #define BLK2DEVIDX(blk) (nswdev > 1 ? blk / dmmax % nswdev : 0)
181 SYSCTL_INT(_vm, OID_AUTO, swap_async_max,
182 CTLFLAG_RW, &swap_async_max, 0, "Maximum running async swap ops");
183 SYSCTL_INT(_vm, OID_AUTO, swap_burst_read,
184 CTLFLAG_RW, &swap_burst_read, 0, "Allow burst reads for pageins");
186 SYSCTL_INT(_vm, OID_AUTO, swap_cache_use,
187 CTLFLAG_RD, &vm_swap_cache_use, 0, "");
188 SYSCTL_INT(_vm, OID_AUTO, swap_anon_use,
189 CTLFLAG_RD, &vm_swap_anon_use, 0, "");
190 SYSCTL_INT(_vm, OID_AUTO, swap_size,
191 CTLFLAG_RD, &vm_swap_size, 0, "");
192 SYSCTL_INT(_vm, OID_AUTO, report_swap_allocs,
193 CTLFLAG_RW, &vm_report_swap_allocs, 0, "");
195 vm_zone_t swap_zone;
198 * Red-Black tree for swblock entries
200 * The caller must hold vm_token
202 RB_GENERATE2(swblock_rb_tree, swblock, swb_entry, rb_swblock_compare,
203 vm_pindex_t, swb_index);
206 rb_swblock_compare(struct swblock *swb1, struct swblock *swb2)
208 if (swb1->swb_index < swb2->swb_index)
209 return(-1);
210 if (swb1->swb_index > swb2->swb_index)
211 return(1);
212 return(0);
215 static
217 rb_swblock_scancmp(struct swblock *swb, void *data)
219 struct swfreeinfo *info = data;
221 if (swb->swb_index < info->basei)
222 return(-1);
223 if (swb->swb_index > info->endi)
224 return(1);
225 return(0);
228 static
230 rb_swblock_condcmp(struct swblock *swb, void *data)
232 struct swfreeinfo *info = data;
234 if (swb->swb_index < info->basei)
235 return(-1);
236 return(0);
240 * pagerops for OBJT_SWAP - "swap pager". Some ops are also global procedure
241 * calls hooked from other parts of the VM system and do not appear here.
242 * (see vm/swap_pager.h).
245 static void swap_pager_dealloc (vm_object_t object);
246 static int swap_pager_getpage (vm_object_t, vm_page_t *, int);
247 static void swap_chain_iodone(struct bio *biox);
249 struct pagerops swappagerops = {
250 swap_pager_dealloc, /* deallocate an OBJT_SWAP object */
251 swap_pager_getpage, /* pagein */
252 swap_pager_putpages, /* pageout */
253 swap_pager_haspage /* get backing store status for page */
257 * dmmax is in page-sized chunks with the new swap system. It was
258 * dev-bsized chunks in the old. dmmax is always a power of 2.
260 * swap_*() routines are externally accessible. swp_*() routines are
261 * internal.
264 int dmmax;
265 static int dmmax_mask;
266 int nswap_lowat = 128; /* in pages, swap_pager_almost_full warn */
267 int nswap_hiwat = 512; /* in pages, swap_pager_almost_full warn */
269 static __inline void swp_sizecheck (void);
270 static void swp_pager_async_iodone (struct bio *bio);
273 * Swap bitmap functions
276 static __inline void swp_pager_freeswapspace(vm_object_t object,
277 swblk_t blk, int npages);
278 static __inline swblk_t swp_pager_getswapspace(vm_object_t object, int npages);
281 * Metadata functions
284 static void swp_pager_meta_convert(vm_object_t);
285 static void swp_pager_meta_build(vm_object_t, vm_pindex_t, swblk_t);
286 static void swp_pager_meta_free(vm_object_t, vm_pindex_t, vm_pindex_t);
287 static void swp_pager_meta_free_all(vm_object_t);
288 static swblk_t swp_pager_meta_ctl(vm_object_t, vm_pindex_t, int);
291 * SWP_SIZECHECK() - update swap_pager_full indication
293 * update the swap_pager_almost_full indication and warn when we are
294 * about to run out of swap space, using lowat/hiwat hysteresis.
296 * Clear swap_pager_full ( task killing ) indication when lowat is met.
298 * No restrictions on call
299 * This routine may not block.
300 * SMP races are ok.
302 static __inline void
303 swp_sizecheck(void)
305 if (vm_swap_size < nswap_lowat) {
306 if (swap_pager_almost_full == 0) {
307 kprintf("swap_pager: out of swap space\n");
308 swap_pager_almost_full = 1;
309 swap_fail_ticks = ticks;
311 } else {
312 swap_pager_full = 0;
313 if (vm_swap_size > nswap_hiwat)
314 swap_pager_almost_full = 0;
319 * SWAP_PAGER_INIT() - initialize the swap pager!
321 * Expected to be started from system init. NOTE: This code is run
322 * before much else so be careful what you depend on. Most of the VM
323 * system has yet to be initialized at this point.
325 * Called from the low level boot code only.
327 static void
328 swap_pager_init(void *arg __unused)
331 * Device Stripe, in PAGE_SIZE'd blocks
333 dmmax = SWB_NPAGES * 2;
334 dmmax_mask = ~(dmmax - 1);
336 SYSINIT(vm_mem, SI_BOOT1_VM, SI_ORDER_THIRD, swap_pager_init, NULL);
339 * SWAP_PAGER_SWAP_INIT() - swap pager initialization from pageout process
341 * Expected to be started from pageout process once, prior to entering
342 * its main loop.
344 * Called from the low level boot code only.
346 void
347 swap_pager_swap_init(void)
349 int n, n2;
352 * Number of in-transit swap bp operations. Don't
353 * exhaust the pbufs completely. Make sure we
354 * initialize workable values (0 will work for hysteresis
355 * but it isn't very efficient).
357 * The nsw_cluster_max is constrained by the number of pages an XIO
358 * holds, i.e., (MAXPHYS/PAGE_SIZE) and our locally defined
359 * MAX_PAGEOUT_CLUSTER. Also be aware that swap ops are
360 * constrained by the swap device interleave stripe size.
362 * Currently we hardwire nsw_wcount_async to 4. This limit is
363 * designed to prevent other I/O from having high latencies due to
364 * our pageout I/O. The value 4 works well for one or two active swap
365 * devices but is probably a little low if you have more. Even so,
366 * a higher value would probably generate only a limited improvement
367 * with three or four active swap devices since the system does not
368 * typically have to pageout at extreme bandwidths. We will want
369 * at least 2 per swap devices, and 4 is a pretty good value if you
370 * have one NFS swap device due to the command/ack latency over NFS.
371 * So it all works out pretty well.
374 nsw_cluster_max = min((MAXPHYS/PAGE_SIZE), MAX_PAGEOUT_CLUSTER);
376 nsw_rcount = (nswbuf + 1) / 2;
377 nsw_wcount_sync = (nswbuf + 3) / 4;
378 nsw_wcount_async = 4;
379 nsw_wcount_async_max = nsw_wcount_async;
382 * The zone is dynamically allocated so generally size it to
383 * maxswzone (32MB to 512MB of KVM). Set a minimum size based
384 * on physical memory of around 8x (each swblock can hold 16 pages).
386 * With the advent of SSDs (vs HDs) the practical (swap:memory) ratio
387 * has increased dramatically.
389 n = vmstats.v_page_count / 2;
390 if (maxswzone && n < maxswzone / sizeof(struct swblock))
391 n = maxswzone / sizeof(struct swblock);
392 n2 = n;
394 do {
395 swap_zone = zinit(
396 "SWAPMETA",
397 sizeof(struct swblock),
399 ZONE_INTERRUPT,
401 if (swap_zone != NULL)
402 break;
404 * if the allocation failed, try a zone two thirds the
405 * size of the previous attempt.
407 n -= ((n + 2) / 3);
408 } while (n > 0);
410 if (swap_zone == NULL)
411 panic("swap_pager_swap_init: swap_zone == NULL");
412 if (n2 != n)
413 kprintf("Swap zone entries reduced from %d to %d.\n", n2, n);
417 * SWAP_PAGER_ALLOC() - allocate a new OBJT_SWAP VM object and instantiate
418 * its metadata structures.
420 * This routine is called from the mmap and fork code to create a new
421 * OBJT_SWAP object. We do this by creating an OBJT_DEFAULT object
422 * and then converting it with swp_pager_meta_convert().
424 * We only support unnamed objects.
426 * No restrictions.
428 vm_object_t
429 swap_pager_alloc(void *handle, off_t size, vm_prot_t prot, off_t offset)
431 vm_object_t object;
433 KKASSERT(handle == NULL);
434 object = vm_object_allocate_hold(OBJT_DEFAULT,
435 OFF_TO_IDX(offset + PAGE_MASK + size));
436 swp_pager_meta_convert(object);
437 vm_object_drop(object);
439 return (object);
443 * SWAP_PAGER_DEALLOC() - remove swap metadata from object
445 * The swap backing for the object is destroyed. The code is
446 * designed such that we can reinstantiate it later, but this
447 * routine is typically called only when the entire object is
448 * about to be destroyed.
450 * The object must be locked or unreferenceable.
451 * No other requirements.
453 static void
454 swap_pager_dealloc(vm_object_t object)
456 vm_object_hold(object);
457 vm_object_pip_wait(object, "swpdea");
460 * Free all remaining metadata. We only bother to free it from
461 * the swap meta data. We do not attempt to free swapblk's still
462 * associated with vm_page_t's for this object. We do not care
463 * if paging is still in progress on some objects.
465 swp_pager_meta_free_all(object);
466 vm_object_drop(object);
469 /************************************************************************
470 * SWAP PAGER BITMAP ROUTINES *
471 ************************************************************************/
474 * SWP_PAGER_GETSWAPSPACE() - allocate raw swap space
476 * Allocate swap for the requested number of pages. The starting
477 * swap block number (a page index) is returned or SWAPBLK_NONE
478 * if the allocation failed.
480 * Also has the side effect of advising that somebody made a mistake
481 * when they configured swap and didn't configure enough.
483 * The caller must hold the object.
484 * This routine may not block.
486 static __inline swblk_t
487 swp_pager_getswapspace(vm_object_t object, int npages)
489 swblk_t blk;
491 lwkt_gettoken(&vm_token);
492 blk = blist_allocat(swapblist, npages, swapiterator);
493 if (blk == SWAPBLK_NONE)
494 blk = blist_allocat(swapblist, npages, 0);
495 if (blk == SWAPBLK_NONE) {
496 if (swap_pager_full != 2) {
497 kprintf("swap_pager_getswapspace: failed alloc=%d\n",
498 npages);
499 swap_pager_full = 2;
500 if (swap_pager_almost_full == 0)
501 swap_fail_ticks = ticks;
502 swap_pager_almost_full = 1;
504 } else {
505 /* swapiterator = blk; disable for now, doesn't work well */
506 swapacctspace(blk, -npages);
507 if (object->type == OBJT_SWAP)
508 vm_swap_anon_use += npages;
509 else
510 vm_swap_cache_use += npages;
511 swp_sizecheck();
513 lwkt_reltoken(&vm_token);
514 return(blk);
518 * SWP_PAGER_FREESWAPSPACE() - free raw swap space
520 * This routine returns the specified swap blocks back to the bitmap.
522 * Note: This routine may not block (it could in the old swap code),
523 * and through the use of the new blist routines it does not block.
525 * We must be called at splvm() to avoid races with bitmap frees from
526 * vm_page_remove() aka swap_pager_page_removed().
528 * This routine may not block.
531 static __inline void
532 swp_pager_freeswapspace(vm_object_t object, swblk_t blk, int npages)
534 struct swdevt *sp = &swdevt[BLK2DEVIDX(blk)];
536 lwkt_gettoken(&vm_token);
537 sp->sw_nused -= npages;
538 if (object->type == OBJT_SWAP)
539 vm_swap_anon_use -= npages;
540 else
541 vm_swap_cache_use -= npages;
543 if (sp->sw_flags & SW_CLOSING) {
544 lwkt_reltoken(&vm_token);
545 return;
548 blist_free(swapblist, blk, npages);
549 vm_swap_size += npages;
550 swp_sizecheck();
551 lwkt_reltoken(&vm_token);
555 * SWAP_PAGER_FREESPACE() - frees swap blocks associated with a page
556 * range within an object.
558 * This is a globally accessible routine.
560 * This routine removes swapblk assignments from swap metadata.
562 * The external callers of this routine typically have already destroyed
563 * or renamed vm_page_t's associated with this range in the object so
564 * we should be ok.
566 * No requirements.
568 void
569 swap_pager_freespace(vm_object_t object, vm_pindex_t start, vm_pindex_t size)
571 vm_object_hold(object);
572 swp_pager_meta_free(object, start, size);
573 vm_object_drop(object);
577 * No requirements.
579 void
580 swap_pager_freespace_all(vm_object_t object)
582 vm_object_hold(object);
583 swp_pager_meta_free_all(object);
584 vm_object_drop(object);
588 * This function conditionally frees swap cache swap starting at
589 * (*basei) in the object. (count) swap blocks will be nominally freed.
590 * The actual number of blocks freed can be more or less than the
591 * requested number.
593 * This function nominally returns the number of blocks freed. However,
594 * the actual number of blocks freed may be less then the returned value.
595 * If the function is unable to exhaust the object or if it is able to
596 * free (approximately) the requested number of blocks it returns
597 * a value n > count.
599 * If we exhaust the object we will return a value n <= count.
601 * The caller must hold the object.
603 * WARNING! If count == 0 then -1 can be returned as a degenerate case,
604 * callers should always pass a count value > 0.
606 static int swap_pager_condfree_callback(struct swblock *swap, void *data);
609 swap_pager_condfree(vm_object_t object, vm_pindex_t *basei, int count)
611 struct swfreeinfo info;
612 int n;
613 int t;
615 ASSERT_LWKT_TOKEN_HELD(vm_object_token(object));
617 info.object = object;
618 info.basei = *basei; /* skip up to this page index */
619 info.begi = count; /* max swap pages to destroy */
620 info.endi = count * 8; /* max swblocks to scan */
622 swblock_rb_tree_RB_SCAN(&object->swblock_root, rb_swblock_condcmp,
623 swap_pager_condfree_callback, &info);
624 *basei = info.basei;
627 * Take the higher difference swblocks vs pages
629 n = count - (int)info.begi;
630 t = count * 8 - (int)info.endi;
631 if (n < t)
632 n = t;
633 if (n < 1)
634 n = 1;
635 return(n);
639 * The idea is to free whole meta-block to avoid fragmenting
640 * the swap space or disk I/O. We only do this if NO VM pages
641 * are present.
643 * We do not have to deal with clearing PG_SWAPPED in related VM
644 * pages because there are no related VM pages.
646 * The caller must hold the object.
648 static int
649 swap_pager_condfree_callback(struct swblock *swap, void *data)
651 struct swfreeinfo *info = data;
652 vm_object_t object = info->object;
653 int i;
655 for (i = 0; i < SWAP_META_PAGES; ++i) {
656 if (vm_page_lookup(object, swap->swb_index + i))
657 break;
659 info->basei = swap->swb_index + SWAP_META_PAGES;
660 if (i == SWAP_META_PAGES) {
661 info->begi -= swap->swb_count;
662 swap_pager_freespace(object, swap->swb_index, SWAP_META_PAGES);
664 --info->endi;
665 if ((int)info->begi < 0 || (int)info->endi < 0)
666 return(-1);
667 lwkt_yield();
668 return(0);
672 * Called by vm_page_alloc() when a new VM page is inserted
673 * into a VM object. Checks whether swap has been assigned to
674 * the page and sets PG_SWAPPED as necessary.
676 * No requirements.
678 void
679 swap_pager_page_inserted(vm_page_t m)
681 if (m->object->swblock_count) {
682 vm_object_hold(m->object);
683 if (swp_pager_meta_ctl(m->object, m->pindex, 0) != SWAPBLK_NONE)
684 vm_page_flag_set(m, PG_SWAPPED);
685 vm_object_drop(m->object);
690 * SWAP_PAGER_RESERVE() - reserve swap blocks in object
692 * Assigns swap blocks to the specified range within the object. The
693 * swap blocks are not zerod. Any previous swap assignment is destroyed.
695 * Returns 0 on success, -1 on failure.
697 * The caller is responsible for avoiding races in the specified range.
698 * No other requirements.
701 swap_pager_reserve(vm_object_t object, vm_pindex_t start, vm_size_t size)
703 int n = 0;
704 swblk_t blk = SWAPBLK_NONE;
705 vm_pindex_t beg = start; /* save start index */
707 vm_object_hold(object);
709 while (size) {
710 if (n == 0) {
711 n = BLIST_MAX_ALLOC;
712 while ((blk = swp_pager_getswapspace(object, n)) ==
713 SWAPBLK_NONE)
715 n >>= 1;
716 if (n == 0) {
717 swp_pager_meta_free(object, beg,
718 start - beg);
719 vm_object_drop(object);
720 return(-1);
724 swp_pager_meta_build(object, start, blk);
725 --size;
726 ++start;
727 ++blk;
728 --n;
730 swp_pager_meta_free(object, start, n);
731 vm_object_drop(object);
732 return(0);
736 * SWAP_PAGER_COPY() - copy blocks from source pager to destination pager
737 * and destroy the source.
739 * Copy any valid swapblks from the source to the destination. In
740 * cases where both the source and destination have a valid swapblk,
741 * we keep the destination's.
743 * This routine is allowed to block. It may block allocating metadata
744 * indirectly through swp_pager_meta_build() or if paging is still in
745 * progress on the source.
747 * XXX vm_page_collapse() kinda expects us not to block because we
748 * supposedly do not need to allocate memory, but for the moment we
749 * *may* have to get a little memory from the zone allocator, but
750 * it is taken from the interrupt memory. We should be ok.
752 * The source object contains no vm_page_t's (which is just as well)
753 * The source object is of type OBJT_SWAP.
755 * The source and destination objects must be held by the caller.
757 void
758 swap_pager_copy(vm_object_t srcobject, vm_object_t dstobject,
759 vm_pindex_t base_index, int destroysource)
761 vm_pindex_t i;
763 ASSERT_LWKT_TOKEN_HELD(vm_object_token(srcobject));
764 ASSERT_LWKT_TOKEN_HELD(vm_object_token(dstobject));
767 * transfer source to destination.
769 for (i = 0; i < dstobject->size; ++i) {
770 swblk_t dstaddr;
773 * Locate (without changing) the swapblk on the destination,
774 * unless it is invalid in which case free it silently, or
775 * if the destination is a resident page, in which case the
776 * source is thrown away.
778 dstaddr = swp_pager_meta_ctl(dstobject, i, 0);
780 if (dstaddr == SWAPBLK_NONE) {
782 * Destination has no swapblk and is not resident,
783 * copy source.
785 swblk_t srcaddr;
787 srcaddr = swp_pager_meta_ctl(srcobject,
788 base_index + i, SWM_POP);
790 if (srcaddr != SWAPBLK_NONE)
791 swp_pager_meta_build(dstobject, i, srcaddr);
792 } else {
794 * Destination has valid swapblk or it is represented
795 * by a resident page. We destroy the sourceblock.
797 swp_pager_meta_ctl(srcobject, base_index + i, SWM_FREE);
802 * Free left over swap blocks in source.
804 * We have to revert the type to OBJT_DEFAULT so we do not accidently
805 * double-remove the object from the swap queues.
807 if (destroysource) {
809 * Reverting the type is not necessary, the caller is going
810 * to destroy srcobject directly, but I'm doing it here
811 * for consistency since we've removed the object from its
812 * queues.
814 swp_pager_meta_free_all(srcobject);
815 if (srcobject->type == OBJT_SWAP)
816 srcobject->type = OBJT_DEFAULT;
821 * SWAP_PAGER_HASPAGE() - determine if we have good backing store for
822 * the requested page.
824 * We determine whether good backing store exists for the requested
825 * page and return TRUE if it does, FALSE if it doesn't.
827 * If TRUE, we also try to determine how much valid, contiguous backing
828 * store exists before and after the requested page within a reasonable
829 * distance. We do not try to restrict it to the swap device stripe
830 * (that is handled in getpages/putpages). It probably isn't worth
831 * doing here.
833 * No requirements.
835 boolean_t
836 swap_pager_haspage(vm_object_t object, vm_pindex_t pindex)
838 swblk_t blk0;
841 * do we have good backing store at the requested index ?
843 vm_object_hold(object);
844 blk0 = swp_pager_meta_ctl(object, pindex, 0);
846 if (blk0 == SWAPBLK_NONE) {
847 vm_object_drop(object);
848 return (FALSE);
850 vm_object_drop(object);
851 return (TRUE);
855 * SWAP_PAGER_PAGE_UNSWAPPED() - remove swap backing store related to page
857 * This removes any associated swap backing store, whether valid or
858 * not, from the page. This operates on any VM object, not just OBJT_SWAP
859 * objects.
861 * This routine is typically called when a page is made dirty, at
862 * which point any associated swap can be freed. MADV_FREE also
863 * calls us in a special-case situation
865 * NOTE!!! If the page is clean and the swap was valid, the caller
866 * should make the page dirty before calling this routine. This routine
867 * does NOT change the m->dirty status of the page. Also: MADV_FREE
868 * depends on it.
870 * The page must be busied or soft-busied.
871 * The caller can hold the object to avoid blocking, else we might block.
872 * No other requirements.
874 void
875 swap_pager_unswapped(vm_page_t m)
877 if (m->flags & PG_SWAPPED) {
878 vm_object_hold(m->object);
879 KKASSERT(m->flags & PG_SWAPPED);
880 swp_pager_meta_ctl(m->object, m->pindex, SWM_FREE);
881 vm_page_flag_clear(m, PG_SWAPPED);
882 vm_object_drop(m->object);
887 * SWAP_PAGER_STRATEGY() - read, write, free blocks
889 * This implements a VM OBJECT strategy function using swap backing store.
890 * This can operate on any VM OBJECT type, not necessarily just OBJT_SWAP
891 * types.
893 * This is intended to be a cacheless interface (i.e. caching occurs at
894 * higher levels), and is also used as a swap-based SSD cache for vnode
895 * and device objects.
897 * All I/O goes directly to and from the swap device.
899 * We currently attempt to run I/O synchronously or asynchronously as
900 * the caller requests. This isn't perfect because we loose error
901 * sequencing when we run multiple ops in parallel to satisfy a request.
902 * But this is swap, so we let it all hang out.
904 * No requirements.
906 void
907 swap_pager_strategy(vm_object_t object, struct bio *bio)
909 struct buf *bp = bio->bio_buf;
910 struct bio *nbio;
911 vm_pindex_t start;
912 vm_pindex_t biox_blkno = 0;
913 int count;
914 char *data;
915 struct bio *biox;
916 struct buf *bufx;
917 #if 0
918 struct bio_track *track;
919 #endif
921 #if 0
923 * tracking for swapdev vnode I/Os
925 if (bp->b_cmd == BUF_CMD_READ)
926 track = &swapdev_vp->v_track_read;
927 else
928 track = &swapdev_vp->v_track_write;
929 #endif
931 if (bp->b_bcount & PAGE_MASK) {
932 bp->b_error = EINVAL;
933 bp->b_flags |= B_ERROR | B_INVAL;
934 biodone(bio);
935 kprintf("swap_pager_strategy: bp %p offset %lld size %d, "
936 "not page bounded\n",
937 bp, (long long)bio->bio_offset, (int)bp->b_bcount);
938 return;
942 * Clear error indication, initialize page index, count, data pointer.
944 bp->b_error = 0;
945 bp->b_flags &= ~B_ERROR;
946 bp->b_resid = bp->b_bcount;
948 start = (vm_pindex_t)(bio->bio_offset >> PAGE_SHIFT);
949 count = howmany(bp->b_bcount, PAGE_SIZE);
950 data = bp->b_data;
953 * Deal with BUF_CMD_FREEBLKS
955 if (bp->b_cmd == BUF_CMD_FREEBLKS) {
957 * FREE PAGE(s) - destroy underlying swap that is no longer
958 * needed.
960 vm_object_hold(object);
961 swp_pager_meta_free(object, start, count);
962 vm_object_drop(object);
963 bp->b_resid = 0;
964 biodone(bio);
965 return;
969 * We need to be able to create a new cluster of I/O's. We cannot
970 * use the caller fields of the passed bio so push a new one.
972 * Because nbio is just a placeholder for the cluster links,
973 * we can biodone() the original bio instead of nbio to make
974 * things a bit more efficient.
976 nbio = push_bio(bio);
977 nbio->bio_offset = bio->bio_offset;
978 nbio->bio_caller_info1.cluster_head = NULL;
979 nbio->bio_caller_info2.cluster_tail = NULL;
981 biox = NULL;
982 bufx = NULL;
985 * Execute read or write
987 vm_object_hold(object);
989 while (count > 0) {
990 swblk_t blk;
993 * Obtain block. If block not found and writing, allocate a
994 * new block and build it into the object.
996 blk = swp_pager_meta_ctl(object, start, 0);
997 if ((blk == SWAPBLK_NONE) && bp->b_cmd != BUF_CMD_READ) {
998 blk = swp_pager_getswapspace(object, 1);
999 if (blk == SWAPBLK_NONE) {
1000 bp->b_error = ENOMEM;
1001 bp->b_flags |= B_ERROR;
1002 break;
1004 swp_pager_meta_build(object, start, blk);
1008 * Do we have to flush our current collection? Yes if:
1010 * - no swap block at this index
1011 * - swap block is not contiguous
1012 * - we cross a physical disk boundry in the
1013 * stripe.
1015 if (
1016 biox && (biox_blkno + btoc(bufx->b_bcount) != blk ||
1017 ((biox_blkno ^ blk) & dmmax_mask)
1020 if (bp->b_cmd == BUF_CMD_READ) {
1021 ++mycpu->gd_cnt.v_swapin;
1022 mycpu->gd_cnt.v_swappgsin += btoc(bufx->b_bcount);
1023 } else {
1024 ++mycpu->gd_cnt.v_swapout;
1025 mycpu->gd_cnt.v_swappgsout += btoc(bufx->b_bcount);
1026 bufx->b_dirtyend = bufx->b_bcount;
1030 * Finished with this buf.
1032 KKASSERT(bufx->b_bcount != 0);
1033 if (bufx->b_cmd != BUF_CMD_READ)
1034 bufx->b_dirtyend = bufx->b_bcount;
1035 biox = NULL;
1036 bufx = NULL;
1040 * Add new swapblk to biox, instantiating biox if necessary.
1041 * Zero-fill reads are able to take a shortcut.
1043 if (blk == SWAPBLK_NONE) {
1045 * We can only get here if we are reading. Since
1046 * we are at splvm() we can safely modify b_resid,
1047 * even if chain ops are in progress.
1049 bzero(data, PAGE_SIZE);
1050 bp->b_resid -= PAGE_SIZE;
1051 } else {
1052 if (biox == NULL) {
1053 /* XXX chain count > 4, wait to <= 4 */
1055 bufx = getpbuf(NULL);
1056 biox = &bufx->b_bio1;
1057 cluster_append(nbio, bufx);
1058 bufx->b_flags |= (bp->b_flags & B_ORDERED);
1059 bufx->b_cmd = bp->b_cmd;
1060 biox->bio_done = swap_chain_iodone;
1061 biox->bio_offset = (off_t)blk << PAGE_SHIFT;
1062 biox->bio_caller_info1.cluster_parent = nbio;
1063 biox_blkno = blk;
1064 bufx->b_bcount = 0;
1065 bufx->b_data = data;
1067 bufx->b_bcount += PAGE_SIZE;
1069 --count;
1070 ++start;
1071 data += PAGE_SIZE;
1074 vm_object_drop(object);
1077 * Flush out last buffer
1079 if (biox) {
1080 if (bufx->b_cmd == BUF_CMD_READ) {
1081 ++mycpu->gd_cnt.v_swapin;
1082 mycpu->gd_cnt.v_swappgsin += btoc(bufx->b_bcount);
1083 } else {
1084 ++mycpu->gd_cnt.v_swapout;
1085 mycpu->gd_cnt.v_swappgsout += btoc(bufx->b_bcount);
1086 bufx->b_dirtyend = bufx->b_bcount;
1088 KKASSERT(bufx->b_bcount);
1089 if (bufx->b_cmd != BUF_CMD_READ)
1090 bufx->b_dirtyend = bufx->b_bcount;
1091 /* biox, bufx = NULL */
1095 * Now initiate all the I/O. Be careful looping on our chain as
1096 * I/O's may complete while we are still initiating them.
1098 * If the request is a 100% sparse read no bios will be present
1099 * and we just biodone() the buffer.
1101 nbio->bio_caller_info2.cluster_tail = NULL;
1102 bufx = nbio->bio_caller_info1.cluster_head;
1104 if (bufx) {
1105 while (bufx) {
1106 biox = &bufx->b_bio1;
1107 BUF_KERNPROC(bufx);
1108 bufx = bufx->b_cluster_next;
1109 vn_strategy(swapdev_vp, biox);
1111 } else {
1112 biodone(bio);
1116 * Completion of the cluster will also call biodone_chain(nbio).
1117 * We never call biodone(nbio) so we don't have to worry about
1118 * setting up a bio_done callback. It's handled in the sub-IO.
1120 /**/
1124 * biodone callback
1126 * No requirements.
1128 static void
1129 swap_chain_iodone(struct bio *biox)
1131 struct buf **nextp;
1132 struct buf *bufx; /* chained sub-buffer */
1133 struct bio *nbio; /* parent nbio with chain glue */
1134 struct buf *bp; /* original bp associated with nbio */
1135 int chain_empty;
1137 bufx = biox->bio_buf;
1138 nbio = biox->bio_caller_info1.cluster_parent;
1139 bp = nbio->bio_buf;
1142 * Update the original buffer
1144 KKASSERT(bp != NULL);
1145 if (bufx->b_flags & B_ERROR) {
1146 atomic_set_int(&bufx->b_flags, B_ERROR);
1147 bp->b_error = bufx->b_error; /* race ok */
1148 } else if (bufx->b_resid != 0) {
1149 atomic_set_int(&bufx->b_flags, B_ERROR);
1150 bp->b_error = EINVAL; /* race ok */
1151 } else {
1152 atomic_subtract_int(&bp->b_resid, bufx->b_bcount);
1156 * Remove us from the chain.
1158 spin_lock(&swapbp_spin);
1159 nextp = &nbio->bio_caller_info1.cluster_head;
1160 while (*nextp != bufx) {
1161 KKASSERT(*nextp != NULL);
1162 nextp = &(*nextp)->b_cluster_next;
1164 *nextp = bufx->b_cluster_next;
1165 chain_empty = (nbio->bio_caller_info1.cluster_head == NULL);
1166 spin_unlock(&swapbp_spin);
1169 * Clean up bufx. If the chain is now empty we finish out
1170 * the parent. Note that we may be racing other completions
1171 * so we must use the chain_empty status from above.
1173 if (chain_empty) {
1174 if (bp->b_resid != 0 && !(bp->b_flags & B_ERROR)) {
1175 atomic_set_int(&bp->b_flags, B_ERROR);
1176 bp->b_error = EINVAL;
1178 biodone_chain(nbio);
1180 relpbuf(bufx, NULL);
1184 * SWAP_PAGER_GETPAGES() - bring page in from swap
1186 * The requested page may have to be brought in from swap. Calculate the
1187 * swap block and bring in additional pages if possible. All pages must
1188 * have contiguous swap block assignments and reside in the same object.
1190 * The caller has a single vm_object_pip_add() reference prior to
1191 * calling us and we should return with the same.
1193 * The caller has BUSY'd the page. We should return with (*mpp) left busy,
1194 * and any additinal pages unbusied.
1196 * If the caller encounters a PG_RAM page it will pass it to us even though
1197 * it may be valid and dirty. We cannot overwrite the page in this case!
1198 * The case is used to allow us to issue pure read-aheads.
1200 * NOTE! XXX This code does not entirely pipeline yet due to the fact that
1201 * the PG_RAM page is validated at the same time as mreq. What we
1202 * really need to do is issue a separate read-ahead pbuf.
1204 * No requirements.
1206 static int
1207 swap_pager_getpage(vm_object_t object, vm_page_t *mpp, int seqaccess)
1209 struct buf *bp;
1210 struct bio *bio;
1211 vm_page_t mreq;
1212 vm_page_t m;
1213 vm_offset_t kva;
1214 swblk_t blk;
1215 int i;
1216 int j;
1217 int raonly;
1218 int error;
1219 u_int32_t flags;
1220 vm_page_t marray[XIO_INTERNAL_PAGES];
1222 mreq = *mpp;
1224 vm_object_hold(object);
1225 if (mreq->object != object) {
1226 panic("swap_pager_getpages: object mismatch %p/%p",
1227 object,
1228 mreq->object
1233 * We don't want to overwrite a fully valid page as it might be
1234 * dirty. This case can occur when e.g. vm_fault hits a perfectly
1235 * valid page with PG_RAM set.
1237 * In this case we see if the next page is a suitable page-in
1238 * candidate and if it is we issue read-ahead. PG_RAM will be
1239 * set on the last page of the read-ahead to continue the pipeline.
1241 if (mreq->valid == VM_PAGE_BITS_ALL) {
1242 if (swap_burst_read == 0 || mreq->pindex + 1 >= object->size) {
1243 vm_object_drop(object);
1244 return(VM_PAGER_OK);
1246 blk = swp_pager_meta_ctl(object, mreq->pindex + 1, 0);
1247 if (blk == SWAPBLK_NONE) {
1248 vm_object_drop(object);
1249 return(VM_PAGER_OK);
1251 m = vm_page_lookup_busy_try(object, mreq->pindex + 1,
1252 TRUE, &error);
1253 if (error) {
1254 vm_object_drop(object);
1255 return(VM_PAGER_OK);
1256 } else if (m == NULL) {
1258 * Use VM_ALLOC_QUICK to avoid blocking on cache
1259 * page reuse.
1261 m = vm_page_alloc(object, mreq->pindex + 1,
1262 VM_ALLOC_QUICK);
1263 if (m == NULL) {
1264 vm_object_drop(object);
1265 return(VM_PAGER_OK);
1267 } else {
1268 if (m->valid) {
1269 vm_page_wakeup(m);
1270 vm_object_drop(object);
1271 return(VM_PAGER_OK);
1273 vm_page_unqueue_nowakeup(m);
1275 /* page is busy */
1276 mreq = m;
1277 raonly = 1;
1278 } else {
1279 raonly = 0;
1283 * Try to block-read contiguous pages from swap if sequential,
1284 * otherwise just read one page. Contiguous pages from swap must
1285 * reside within a single device stripe because the I/O cannot be
1286 * broken up across multiple stripes.
1288 * Note that blk and iblk can be SWAPBLK_NONE but the loop is
1289 * set up such that the case(s) are handled implicitly.
1291 blk = swp_pager_meta_ctl(mreq->object, mreq->pindex, 0);
1292 marray[0] = mreq;
1294 for (i = 1; swap_burst_read &&
1295 i < XIO_INTERNAL_PAGES &&
1296 mreq->pindex + i < object->size; ++i) {
1297 swblk_t iblk;
1299 iblk = swp_pager_meta_ctl(object, mreq->pindex + i, 0);
1300 if (iblk != blk + i)
1301 break;
1302 if ((blk ^ iblk) & dmmax_mask)
1303 break;
1304 m = vm_page_lookup_busy_try(object, mreq->pindex + i,
1305 TRUE, &error);
1306 if (error) {
1307 break;
1308 } else if (m == NULL) {
1310 * Use VM_ALLOC_QUICK to avoid blocking on cache
1311 * page reuse.
1313 m = vm_page_alloc(object, mreq->pindex + i,
1314 VM_ALLOC_QUICK);
1315 if (m == NULL)
1316 break;
1317 } else {
1318 if (m->valid) {
1319 vm_page_wakeup(m);
1320 break;
1322 vm_page_unqueue_nowakeup(m);
1324 /* page is busy */
1325 marray[i] = m;
1327 if (i > 1)
1328 vm_page_flag_set(marray[i - 1], PG_RAM);
1331 * If mreq is the requested page and we have nothing to do return
1332 * VM_PAGER_FAIL. If raonly is set mreq is just another read-ahead
1333 * page and must be cleaned up.
1335 if (blk == SWAPBLK_NONE) {
1336 KKASSERT(i == 1);
1337 if (raonly) {
1338 vnode_pager_freepage(mreq);
1339 vm_object_drop(object);
1340 return(VM_PAGER_OK);
1341 } else {
1342 vm_object_drop(object);
1343 return(VM_PAGER_FAIL);
1348 * map our page(s) into kva for input
1350 bp = getpbuf_kva(&nsw_rcount);
1351 bio = &bp->b_bio1;
1352 kva = (vm_offset_t) bp->b_kvabase;
1353 bcopy(marray, bp->b_xio.xio_pages, i * sizeof(vm_page_t));
1354 pmap_qenter(kva, bp->b_xio.xio_pages, i);
1356 bp->b_data = (caddr_t)kva;
1357 bp->b_bcount = PAGE_SIZE * i;
1358 bp->b_xio.xio_npages = i;
1359 bio->bio_done = swp_pager_async_iodone;
1360 bio->bio_offset = (off_t)blk << PAGE_SHIFT;
1361 bio->bio_caller_info1.index = SWBIO_READ;
1364 * Set index. If raonly set the index beyond the array so all
1365 * the pages are treated the same, otherwise the original mreq is
1366 * at index 0.
1368 if (raonly)
1369 bio->bio_driver_info = (void *)(intptr_t)i;
1370 else
1371 bio->bio_driver_info = (void *)(intptr_t)0;
1373 for (j = 0; j < i; ++j)
1374 vm_page_flag_set(bp->b_xio.xio_pages[j], PG_SWAPINPROG);
1376 mycpu->gd_cnt.v_swapin++;
1377 mycpu->gd_cnt.v_swappgsin += bp->b_xio.xio_npages;
1380 * We still hold the lock on mreq, and our automatic completion routine
1381 * does not remove it.
1383 vm_object_pip_add(object, bp->b_xio.xio_npages);
1386 * perform the I/O. NOTE!!! bp cannot be considered valid after
1387 * this point because we automatically release it on completion.
1388 * Instead, we look at the one page we are interested in which we
1389 * still hold a lock on even through the I/O completion.
1391 * The other pages in our m[] array are also released on completion,
1392 * so we cannot assume they are valid anymore either.
1394 bp->b_cmd = BUF_CMD_READ;
1395 BUF_KERNPROC(bp);
1396 vn_strategy(swapdev_vp, bio);
1399 * Wait for the page we want to complete. PG_SWAPINPROG is always
1400 * cleared on completion. If an I/O error occurs, SWAPBLK_NONE
1401 * is set in the meta-data.
1403 * If this is a read-ahead only we return immediately without
1404 * waiting for I/O.
1406 if (raonly) {
1407 vm_object_drop(object);
1408 return(VM_PAGER_OK);
1412 * Read-ahead includes originally requested page case.
1414 for (;;) {
1415 flags = mreq->flags;
1416 cpu_ccfence();
1417 if ((flags & PG_SWAPINPROG) == 0)
1418 break;
1419 tsleep_interlock(mreq, 0);
1420 if (!atomic_cmpset_int(&mreq->flags, flags,
1421 flags | PG_WANTED | PG_REFERENCED)) {
1422 continue;
1424 mycpu->gd_cnt.v_intrans++;
1425 if (tsleep(mreq, PINTERLOCKED, "swread", hz*20)) {
1426 kprintf(
1427 "swap_pager: indefinite wait buffer: "
1428 " offset: %lld, size: %ld\n",
1429 (long long)bio->bio_offset,
1430 (long)bp->b_bcount
1436 * mreq is left bussied after completion, but all the other pages
1437 * are freed. If we had an unrecoverable read error the page will
1438 * not be valid.
1440 vm_object_drop(object);
1441 if (mreq->valid != VM_PAGE_BITS_ALL)
1442 return(VM_PAGER_ERROR);
1443 else
1444 return(VM_PAGER_OK);
1447 * A final note: in a low swap situation, we cannot deallocate swap
1448 * and mark a page dirty here because the caller is likely to mark
1449 * the page clean when we return, causing the page to possibly revert
1450 * to all-zero's later.
1455 * swap_pager_putpages:
1457 * Assign swap (if necessary) and initiate I/O on the specified pages.
1459 * We support both OBJT_DEFAULT and OBJT_SWAP objects. DEFAULT objects
1460 * are automatically converted to SWAP objects.
1462 * In a low memory situation we may block in vn_strategy(), but the new
1463 * vm_page reservation system coupled with properly written VFS devices
1464 * should ensure that no low-memory deadlock occurs. This is an area
1465 * which needs work.
1467 * The parent has N vm_object_pip_add() references prior to
1468 * calling us and will remove references for rtvals[] that are
1469 * not set to VM_PAGER_PEND. We need to remove the rest on I/O
1470 * completion.
1472 * The parent has soft-busy'd the pages it passes us and will unbusy
1473 * those whos rtvals[] entry is not set to VM_PAGER_PEND on return.
1474 * We need to unbusy the rest on I/O completion.
1476 * No requirements.
1478 void
1479 swap_pager_putpages(vm_object_t object, vm_page_t *m, int count,
1480 int sync, int *rtvals)
1482 int i;
1483 int n = 0;
1485 vm_object_hold(object);
1487 if (count && m[0]->object != object) {
1488 panic("swap_pager_getpages: object mismatch %p/%p",
1489 object,
1490 m[0]->object
1495 * Step 1
1497 * Turn object into OBJT_SWAP
1498 * check for bogus sysops
1499 * force sync if not pageout process
1501 if (object->type == OBJT_DEFAULT) {
1502 if (object->type == OBJT_DEFAULT)
1503 swp_pager_meta_convert(object);
1506 if (curthread != pagethread)
1507 sync = TRUE;
1510 * Step 2
1512 * Update nsw parameters from swap_async_max sysctl values.
1513 * Do not let the sysop crash the machine with bogus numbers.
1515 if (swap_async_max != nsw_wcount_async_max) {
1516 int n;
1519 * limit range
1521 if ((n = swap_async_max) > nswbuf / 2)
1522 n = nswbuf / 2;
1523 if (n < 1)
1524 n = 1;
1525 swap_async_max = n;
1528 * Adjust difference ( if possible ). If the current async
1529 * count is too low, we may not be able to make the adjustment
1530 * at this time.
1532 * vm_token needed for nsw_wcount sleep interlock
1534 lwkt_gettoken(&vm_token);
1535 n -= nsw_wcount_async_max;
1536 if (nsw_wcount_async + n >= 0) {
1537 nsw_wcount_async_max += n;
1538 pbuf_adjcount(&nsw_wcount_async, n);
1540 lwkt_reltoken(&vm_token);
1544 * Step 3
1546 * Assign swap blocks and issue I/O. We reallocate swap on the fly.
1547 * The page is left dirty until the pageout operation completes
1548 * successfully.
1551 for (i = 0; i < count; i += n) {
1552 struct buf *bp;
1553 struct bio *bio;
1554 swblk_t blk;
1555 int j;
1558 * Maximum I/O size is limited by a number of factors.
1561 n = min(BLIST_MAX_ALLOC, count - i);
1562 n = min(n, nsw_cluster_max);
1564 lwkt_gettoken(&vm_token);
1567 * Get biggest block of swap we can. If we fail, fall
1568 * back and try to allocate a smaller block. Don't go
1569 * overboard trying to allocate space if it would overly
1570 * fragment swap.
1572 while (
1573 (blk = swp_pager_getswapspace(object, n)) == SWAPBLK_NONE &&
1574 n > 4
1576 n >>= 1;
1578 if (blk == SWAPBLK_NONE) {
1579 for (j = 0; j < n; ++j)
1580 rtvals[i+j] = VM_PAGER_FAIL;
1581 lwkt_reltoken(&vm_token);
1582 continue;
1584 if (vm_report_swap_allocs > 0) {
1585 kprintf("swap_alloc %08jx,%d\n", (intmax_t)blk, n);
1586 --vm_report_swap_allocs;
1590 * The I/O we are constructing cannot cross a physical
1591 * disk boundry in the swap stripe. Note: we are still
1592 * at splvm().
1594 if ((blk ^ (blk + n)) & dmmax_mask) {
1595 j = ((blk + dmmax) & dmmax_mask) - blk;
1596 swp_pager_freeswapspace(object, blk + j, n - j);
1597 n = j;
1601 * All I/O parameters have been satisfied, build the I/O
1602 * request and assign the swap space.
1604 if (sync == TRUE)
1605 bp = getpbuf_kva(&nsw_wcount_sync);
1606 else
1607 bp = getpbuf_kva(&nsw_wcount_async);
1608 bio = &bp->b_bio1;
1610 lwkt_reltoken(&vm_token);
1612 pmap_qenter((vm_offset_t)bp->b_data, &m[i], n);
1614 bp->b_bcount = PAGE_SIZE * n;
1615 bio->bio_offset = (off_t)blk << PAGE_SHIFT;
1617 for (j = 0; j < n; ++j) {
1618 vm_page_t mreq = m[i+j];
1620 swp_pager_meta_build(mreq->object, mreq->pindex,
1621 blk + j);
1622 if (object->type == OBJT_SWAP)
1623 vm_page_dirty(mreq);
1624 rtvals[i+j] = VM_PAGER_OK;
1626 vm_page_flag_set(mreq, PG_SWAPINPROG);
1627 bp->b_xio.xio_pages[j] = mreq;
1629 bp->b_xio.xio_npages = n;
1631 mycpu->gd_cnt.v_swapout++;
1632 mycpu->gd_cnt.v_swappgsout += bp->b_xio.xio_npages;
1634 bp->b_dirtyoff = 0; /* req'd for NFS */
1635 bp->b_dirtyend = bp->b_bcount; /* req'd for NFS */
1636 bp->b_cmd = BUF_CMD_WRITE;
1637 bio->bio_caller_info1.index = SWBIO_WRITE;
1640 * asynchronous
1642 if (sync == FALSE) {
1643 bio->bio_done = swp_pager_async_iodone;
1644 BUF_KERNPROC(bp);
1645 vn_strategy(swapdev_vp, bio);
1647 for (j = 0; j < n; ++j)
1648 rtvals[i+j] = VM_PAGER_PEND;
1649 continue;
1653 * Issue synchrnously.
1655 * Wait for the sync I/O to complete, then update rtvals.
1656 * We just set the rtvals[] to VM_PAGER_PEND so we can call
1657 * our async completion routine at the end, thus avoiding a
1658 * double-free.
1660 bio->bio_caller_info1.index |= SWBIO_SYNC;
1661 bio->bio_done = biodone_sync;
1662 bio->bio_flags |= BIO_SYNC;
1663 vn_strategy(swapdev_vp, bio);
1664 biowait(bio, "swwrt");
1666 for (j = 0; j < n; ++j)
1667 rtvals[i+j] = VM_PAGER_PEND;
1670 * Now that we are through with the bp, we can call the
1671 * normal async completion, which frees everything up.
1673 swp_pager_async_iodone(bio);
1675 vm_object_drop(object);
1679 * No requirements.
1681 * Recalculate the low and high-water marks.
1683 void
1684 swap_pager_newswap(void)
1686 if (vm_swap_max) {
1687 nswap_lowat = vm_swap_max * 4 / 100; /* 4% left */
1688 nswap_hiwat = vm_swap_max * 6 / 100; /* 6% left */
1689 kprintf("swap low/high-water marks set to %d/%d\n",
1690 nswap_lowat, nswap_hiwat);
1691 } else {
1692 nswap_lowat = 128;
1693 nswap_hiwat = 512;
1695 swp_sizecheck();
1699 * swp_pager_async_iodone:
1701 * Completion routine for asynchronous reads and writes from/to swap.
1702 * Also called manually by synchronous code to finish up a bp.
1704 * For READ operations, the pages are PG_BUSY'd. For WRITE operations,
1705 * the pages are vm_page_t->busy'd. For READ operations, we PG_BUSY
1706 * unbusy all pages except the 'main' request page. For WRITE
1707 * operations, we vm_page_t->busy'd unbusy all pages ( we can do this
1708 * because we marked them all VM_PAGER_PEND on return from putpages ).
1710 * This routine may not block.
1712 * No requirements.
1714 static void
1715 swp_pager_async_iodone(struct bio *bio)
1717 struct buf *bp = bio->bio_buf;
1718 vm_object_t object = NULL;
1719 int i;
1720 int *nswptr;
1723 * report error
1725 if (bp->b_flags & B_ERROR) {
1726 kprintf(
1727 "swap_pager: I/O error - %s failed; offset %lld,"
1728 "size %ld, error %d\n",
1729 ((bio->bio_caller_info1.index & SWBIO_READ) ?
1730 "pagein" : "pageout"),
1731 (long long)bio->bio_offset,
1732 (long)bp->b_bcount,
1733 bp->b_error
1738 * set object, raise to splvm().
1740 if (bp->b_xio.xio_npages)
1741 object = bp->b_xio.xio_pages[0]->object;
1744 * remove the mapping for kernel virtual
1746 pmap_qremove((vm_offset_t)bp->b_data, bp->b_xio.xio_npages);
1749 * cleanup pages. If an error occurs writing to swap, we are in
1750 * very serious trouble. If it happens to be a disk error, though,
1751 * we may be able to recover by reassigning the swap later on. So
1752 * in this case we remove the m->swapblk assignment for the page
1753 * but do not free it in the rlist. The errornous block(s) are thus
1754 * never reallocated as swap. Redirty the page and continue.
1756 for (i = 0; i < bp->b_xio.xio_npages; ++i) {
1757 vm_page_t m = bp->b_xio.xio_pages[i];
1759 if (bp->b_flags & B_ERROR) {
1761 * If an error occurs I'd love to throw the swapblk
1762 * away without freeing it back to swapspace, so it
1763 * can never be used again. But I can't from an
1764 * interrupt.
1767 if (bio->bio_caller_info1.index & SWBIO_READ) {
1769 * When reading, reqpage needs to stay
1770 * locked for the parent, but all other
1771 * pages can be freed. We still want to
1772 * wakeup the parent waiting on the page,
1773 * though. ( also: pg_reqpage can be -1 and
1774 * not match anything ).
1776 * We have to wake specifically requested pages
1777 * up too because we cleared PG_SWAPINPROG and
1778 * someone may be waiting for that.
1780 * NOTE: for reads, m->dirty will probably
1781 * be overridden by the original caller of
1782 * getpages so don't play cute tricks here.
1784 * NOTE: We can't actually free the page from
1785 * here, because this is an interrupt. It
1786 * is not legal to mess with object->memq
1787 * from an interrupt. Deactivate the page
1788 * instead.
1791 m->valid = 0;
1792 vm_page_flag_clear(m, PG_ZERO);
1793 vm_page_flag_clear(m, PG_SWAPINPROG);
1796 * bio_driver_info holds the requested page
1797 * index.
1799 if (i != (int)(intptr_t)bio->bio_driver_info) {
1800 vm_page_deactivate(m);
1801 vm_page_wakeup(m);
1802 } else {
1803 vm_page_flash(m);
1806 * If i == bp->b_pager.pg_reqpage, do not wake
1807 * the page up. The caller needs to.
1809 } else {
1811 * If a write error occurs remove the swap
1812 * assignment (note that PG_SWAPPED may or
1813 * may not be set depending on prior activity).
1815 * Re-dirty OBJT_SWAP pages as there is no
1816 * other backing store, we can't throw the
1817 * page away.
1819 * Non-OBJT_SWAP pages (aka swapcache) must
1820 * not be dirtied since they may not have
1821 * been dirty in the first place, and they
1822 * do have backing store (the vnode).
1824 vm_page_busy_wait(m, FALSE, "swadpg");
1825 swp_pager_meta_ctl(m->object, m->pindex,
1826 SWM_FREE);
1827 vm_page_flag_clear(m, PG_SWAPPED);
1828 if (m->object->type == OBJT_SWAP) {
1829 vm_page_dirty(m);
1830 vm_page_activate(m);
1832 vm_page_flag_clear(m, PG_SWAPINPROG);
1833 vm_page_io_finish(m);
1834 vm_page_wakeup(m);
1836 } else if (bio->bio_caller_info1.index & SWBIO_READ) {
1838 * NOTE: for reads, m->dirty will probably be
1839 * overridden by the original caller of getpages so
1840 * we cannot set them in order to free the underlying
1841 * swap in a low-swap situation. I don't think we'd
1842 * want to do that anyway, but it was an optimization
1843 * that existed in the old swapper for a time before
1844 * it got ripped out due to precisely this problem.
1846 * clear PG_ZERO in page.
1848 * If not the requested page then deactivate it.
1850 * Note that the requested page, reqpage, is left
1851 * busied, but we still have to wake it up. The
1852 * other pages are released (unbusied) by
1853 * vm_page_wakeup(). We do not set reqpage's
1854 * valid bits here, it is up to the caller.
1858 * NOTE: can't call pmap_clear_modify(m) from an
1859 * interrupt thread, the pmap code may have to map
1860 * non-kernel pmaps and currently asserts the case.
1862 /*pmap_clear_modify(m);*/
1863 m->valid = VM_PAGE_BITS_ALL;
1864 vm_page_undirty(m);
1865 vm_page_flag_clear(m, PG_ZERO | PG_SWAPINPROG);
1866 vm_page_flag_set(m, PG_SWAPPED);
1869 * We have to wake specifically requested pages
1870 * up too because we cleared PG_SWAPINPROG and
1871 * could be waiting for it in getpages. However,
1872 * be sure to not unbusy getpages specifically
1873 * requested page - getpages expects it to be
1874 * left busy.
1876 * bio_driver_info holds the requested page
1878 if (i != (int)(intptr_t)bio->bio_driver_info) {
1879 vm_page_deactivate(m);
1880 vm_page_wakeup(m);
1881 } else {
1882 vm_page_flash(m);
1884 } else {
1886 * Mark the page clean but do not mess with the
1887 * pmap-layer's modified state. That state should
1888 * also be clear since the caller protected the
1889 * page VM_PROT_READ, but allow the case.
1891 * We are in an interrupt, avoid pmap operations.
1893 * If we have a severe page deficit, deactivate the
1894 * page. Do not try to cache it (which would also
1895 * involve a pmap op), because the page might still
1896 * be read-heavy.
1898 * When using the swap to cache clean vnode pages
1899 * we do not mess with the page dirty bits.
1901 vm_page_busy_wait(m, FALSE, "swadpg");
1902 if (m->object->type == OBJT_SWAP)
1903 vm_page_undirty(m);
1904 vm_page_flag_clear(m, PG_SWAPINPROG);
1905 vm_page_flag_set(m, PG_SWAPPED);
1906 if (vm_page_count_severe())
1907 vm_page_deactivate(m);
1908 #if 0
1909 if (!vm_page_count_severe() || !vm_page_try_to_cache(m))
1910 vm_page_protect(m, VM_PROT_READ);
1911 #endif
1912 vm_page_io_finish(m);
1913 vm_page_wakeup(m);
1918 * adjust pip. NOTE: the original parent may still have its own
1919 * pip refs on the object.
1922 if (object)
1923 vm_object_pip_wakeup_n(object, bp->b_xio.xio_npages);
1926 * Release the physical I/O buffer.
1928 * NOTE: Due to synchronous operations in the write case b_cmd may
1929 * already be set to BUF_CMD_DONE and BIO_SYNC may have already
1930 * been cleared.
1932 * Use vm_token to interlock nsw_rcount/wcount wakeup?
1934 lwkt_gettoken(&vm_token);
1935 if (bio->bio_caller_info1.index & SWBIO_READ)
1936 nswptr = &nsw_rcount;
1937 else if (bio->bio_caller_info1.index & SWBIO_SYNC)
1938 nswptr = &nsw_wcount_sync;
1939 else
1940 nswptr = &nsw_wcount_async;
1941 bp->b_cmd = BUF_CMD_DONE;
1942 relpbuf(bp, nswptr);
1943 lwkt_reltoken(&vm_token);
1947 * Fault-in a potentially swapped page and remove the swap reference.
1948 * (used by swapoff code)
1950 * object must be held.
1952 static __inline void
1953 swp_pager_fault_page(vm_object_t object, int *sharedp, vm_pindex_t pindex)
1955 struct vnode *vp;
1956 vm_page_t m;
1957 int error;
1959 ASSERT_LWKT_TOKEN_HELD(vm_object_token(object));
1961 if (object->type == OBJT_VNODE) {
1963 * Any swap related to a vnode is due to swapcache. We must
1964 * vget() the vnode in case it is not active (otherwise
1965 * vref() will panic). Calling vm_object_page_remove() will
1966 * ensure that any swap ref is removed interlocked with the
1967 * page. clean_only is set to TRUE so we don't throw away
1968 * dirty pages.
1970 vp = object->handle;
1971 error = vget(vp, LK_SHARED | LK_RETRY | LK_CANRECURSE);
1972 if (error == 0) {
1973 vm_object_page_remove(object, pindex, pindex + 1, TRUE);
1974 vput(vp);
1976 } else {
1978 * Otherwise it is a normal OBJT_SWAP object and we can
1979 * fault the page in and remove the swap.
1981 m = vm_fault_object_page(object, IDX_TO_OFF(pindex),
1982 VM_PROT_NONE,
1983 VM_FAULT_DIRTY | VM_FAULT_UNSWAP,
1984 sharedp, &error);
1985 if (m)
1986 vm_page_unhold(m);
1991 * This removes all swap blocks related to a particular device. We have
1992 * to be careful of ripups during the scan.
1994 static int swp_pager_swapoff_callback(struct swblock *swap, void *data);
1997 swap_pager_swapoff(int devidx)
1999 struct swswapoffinfo info;
2000 struct vm_object marker;
2001 vm_object_t object;
2002 int n;
2004 bzero(&marker, sizeof(marker));
2005 marker.type = OBJT_MARKER;
2007 for (n = 0; n < VMOBJ_HSIZE; ++n) {
2008 lwkt_gettoken(&vmobj_tokens[n]);
2009 TAILQ_INSERT_HEAD(&vm_object_lists[n], &marker, object_list);
2011 while ((object = TAILQ_NEXT(&marker, object_list)) != NULL) {
2012 if (object->type == OBJT_MARKER)
2013 goto skip;
2014 if (object->type != OBJT_SWAP &&
2015 object->type != OBJT_VNODE)
2016 goto skip;
2017 vm_object_hold(object);
2018 if (object->type != OBJT_SWAP &&
2019 object->type != OBJT_VNODE) {
2020 vm_object_drop(object);
2021 goto skip;
2023 info.object = object;
2024 info.shared = 0;
2025 info.devidx = devidx;
2026 swblock_rb_tree_RB_SCAN(&object->swblock_root,
2027 NULL, swp_pager_swapoff_callback,
2028 &info);
2029 vm_object_drop(object);
2030 skip:
2031 if (object == TAILQ_NEXT(&marker, object_list)) {
2032 TAILQ_REMOVE(&vm_object_lists[n],
2033 &marker, object_list);
2034 TAILQ_INSERT_AFTER(&vm_object_lists[n], object,
2035 &marker, object_list);
2038 TAILQ_REMOVE(&vm_object_lists[n], &marker, object_list);
2039 lwkt_reltoken(&vmobj_tokens[n]);
2043 * If we fail to locate all swblocks we just fail gracefully and
2044 * do not bother to restore paging on the swap device. If the
2045 * user wants to retry the user can retry.
2047 if (swdevt[devidx].sw_nused)
2048 return (1);
2049 else
2050 return (0);
2053 static
2055 swp_pager_swapoff_callback(struct swblock *swap, void *data)
2057 struct swswapoffinfo *info = data;
2058 vm_object_t object = info->object;
2059 vm_pindex_t index;
2060 swblk_t v;
2061 int i;
2063 index = swap->swb_index;
2064 for (i = 0; i < SWAP_META_PAGES; ++i) {
2066 * Make sure we don't race a dying object. This will
2067 * kill the scan of the object's swap blocks entirely.
2069 if (object->flags & OBJ_DEAD)
2070 return(-1);
2073 * Fault the page, which can obviously block. If the swap
2074 * structure disappears break out.
2076 v = swap->swb_pages[i];
2077 if (v != SWAPBLK_NONE && BLK2DEVIDX(v) == info->devidx) {
2078 swp_pager_fault_page(object, &info->shared,
2079 swap->swb_index + i);
2080 /* swap ptr might go away */
2081 if (RB_LOOKUP(swblock_rb_tree,
2082 &object->swblock_root, index) != swap) {
2083 break;
2087 return(0);
2090 /************************************************************************
2091 * SWAP META DATA *
2092 ************************************************************************
2094 * These routines manipulate the swap metadata stored in the
2095 * OBJT_SWAP object. All swp_*() routines must be called at
2096 * splvm() because swap can be freed up by the low level vm_page
2097 * code which might be called from interrupts beyond what splbio() covers.
2099 * Swap metadata is implemented with a global hash and not directly
2100 * linked into the object. Instead the object simply contains
2101 * appropriate tracking counters.
2105 * Lookup the swblock containing the specified swap block index.
2107 * The caller must hold the object.
2109 static __inline
2110 struct swblock *
2111 swp_pager_lookup(vm_object_t object, vm_pindex_t index)
2113 ASSERT_LWKT_TOKEN_HELD(vm_object_token(object));
2114 index &= ~(vm_pindex_t)SWAP_META_MASK;
2115 return (RB_LOOKUP(swblock_rb_tree, &object->swblock_root, index));
2119 * Remove a swblock from the RB tree.
2121 * The caller must hold the object.
2123 static __inline
2124 void
2125 swp_pager_remove(vm_object_t object, struct swblock *swap)
2127 ASSERT_LWKT_TOKEN_HELD(vm_object_token(object));
2128 RB_REMOVE(swblock_rb_tree, &object->swblock_root, swap);
2132 * Convert default object to swap object if necessary
2134 * The caller must hold the object.
2136 static void
2137 swp_pager_meta_convert(vm_object_t object)
2139 if (object->type == OBJT_DEFAULT) {
2140 object->type = OBJT_SWAP;
2141 KKASSERT(object->swblock_count == 0);
2146 * SWP_PAGER_META_BUILD() - add swap block to swap meta data for object
2148 * We first convert the object to a swap object if it is a default
2149 * object. Vnode objects do not need to be converted.
2151 * The specified swapblk is added to the object's swap metadata. If
2152 * the swapblk is not valid, it is freed instead. Any previously
2153 * assigned swapblk is freed.
2155 * The caller must hold the object.
2157 static void
2158 swp_pager_meta_build(vm_object_t object, vm_pindex_t index, swblk_t swapblk)
2160 struct swblock *swap;
2161 struct swblock *oswap;
2162 vm_pindex_t v;
2164 KKASSERT(swapblk != SWAPBLK_NONE);
2165 ASSERT_LWKT_TOKEN_HELD(vm_object_token(object));
2168 * Convert object if necessary
2170 if (object->type == OBJT_DEFAULT)
2171 swp_pager_meta_convert(object);
2174 * Locate swblock. If not found create, but if we aren't adding
2175 * anything just return. If we run out of space in the map we wait
2176 * and, since the hash table may have changed, retry.
2178 retry:
2179 swap = swp_pager_lookup(object, index);
2181 if (swap == NULL) {
2182 int i;
2184 swap = zalloc(swap_zone);
2185 if (swap == NULL) {
2186 vm_wait(0);
2187 goto retry;
2189 swap->swb_index = index & ~(vm_pindex_t)SWAP_META_MASK;
2190 swap->swb_count = 0;
2192 ++object->swblock_count;
2194 for (i = 0; i < SWAP_META_PAGES; ++i)
2195 swap->swb_pages[i] = SWAPBLK_NONE;
2196 oswap = RB_INSERT(swblock_rb_tree, &object->swblock_root, swap);
2197 KKASSERT(oswap == NULL);
2201 * Delete prior contents of metadata.
2203 * NOTE: Decrement swb_count after the freeing operation (which
2204 * might block) to prevent racing destruction of the swblock.
2206 index &= SWAP_META_MASK;
2208 while ((v = swap->swb_pages[index]) != SWAPBLK_NONE) {
2209 swap->swb_pages[index] = SWAPBLK_NONE;
2210 /* can block */
2211 swp_pager_freeswapspace(object, v, 1);
2212 --swap->swb_count;
2213 --mycpu->gd_vmtotal.t_vm;
2217 * Enter block into metadata
2219 swap->swb_pages[index] = swapblk;
2220 if (swapblk != SWAPBLK_NONE) {
2221 ++swap->swb_count;
2222 ++mycpu->gd_vmtotal.t_vm;
2227 * SWP_PAGER_META_FREE() - free a range of blocks in the object's swap metadata
2229 * The requested range of blocks is freed, with any associated swap
2230 * returned to the swap bitmap.
2232 * This routine will free swap metadata structures as they are cleaned
2233 * out. This routine does *NOT* operate on swap metadata associated
2234 * with resident pages.
2236 * The caller must hold the object.
2238 static int swp_pager_meta_free_callback(struct swblock *swb, void *data);
2240 static void
2241 swp_pager_meta_free(vm_object_t object, vm_pindex_t index, vm_pindex_t count)
2243 struct swfreeinfo info;
2245 ASSERT_LWKT_TOKEN_HELD(vm_object_token(object));
2248 * Nothing to do
2250 if (object->swblock_count == 0) {
2251 KKASSERT(RB_EMPTY(&object->swblock_root));
2252 return;
2254 if (count == 0)
2255 return;
2258 * Setup for RB tree scan. Note that the pindex range can be huge
2259 * due to the 64 bit page index space so we cannot safely iterate.
2261 info.object = object;
2262 info.basei = index & ~(vm_pindex_t)SWAP_META_MASK;
2263 info.begi = index;
2264 info.endi = index + count - 1;
2265 swblock_rb_tree_RB_SCAN(&object->swblock_root, rb_swblock_scancmp,
2266 swp_pager_meta_free_callback, &info);
2270 * The caller must hold the object.
2272 static
2274 swp_pager_meta_free_callback(struct swblock *swap, void *data)
2276 struct swfreeinfo *info = data;
2277 vm_object_t object = info->object;
2278 int index;
2279 int eindex;
2282 * Figure out the range within the swblock. The wider scan may
2283 * return edge-case swap blocks when the start and/or end points
2284 * are in the middle of a block.
2286 if (swap->swb_index < info->begi)
2287 index = (int)info->begi & SWAP_META_MASK;
2288 else
2289 index = 0;
2291 if (swap->swb_index + SWAP_META_PAGES > info->endi)
2292 eindex = (int)info->endi & SWAP_META_MASK;
2293 else
2294 eindex = SWAP_META_MASK;
2297 * Scan and free the blocks. The loop terminates early
2298 * if (swap) runs out of blocks and could be freed.
2300 * NOTE: Decrement swb_count after swp_pager_freeswapspace()
2301 * to deal with a zfree race.
2303 while (index <= eindex) {
2304 swblk_t v = swap->swb_pages[index];
2306 if (v != SWAPBLK_NONE) {
2307 swap->swb_pages[index] = SWAPBLK_NONE;
2308 /* can block */
2309 swp_pager_freeswapspace(object, v, 1);
2310 --mycpu->gd_vmtotal.t_vm;
2311 if (--swap->swb_count == 0) {
2312 swp_pager_remove(object, swap);
2313 zfree(swap_zone, swap);
2314 --object->swblock_count;
2315 break;
2318 ++index;
2321 /* swap may be invalid here due to zfree above */
2322 lwkt_yield();
2324 return(0);
2328 * SWP_PAGER_META_FREE_ALL() - destroy all swap metadata associated with object
2330 * This routine locates and destroys all swap metadata associated with
2331 * an object.
2333 * NOTE: Decrement swb_count after the freeing operation (which
2334 * might block) to prevent racing destruction of the swblock.
2336 * The caller must hold the object.
2338 static void
2339 swp_pager_meta_free_all(vm_object_t object)
2341 struct swblock *swap;
2342 int i;
2344 ASSERT_LWKT_TOKEN_HELD(vm_object_token(object));
2346 while ((swap = RB_ROOT(&object->swblock_root)) != NULL) {
2347 swp_pager_remove(object, swap);
2348 for (i = 0; i < SWAP_META_PAGES; ++i) {
2349 swblk_t v = swap->swb_pages[i];
2350 if (v != SWAPBLK_NONE) {
2351 /* can block */
2352 swp_pager_freeswapspace(object, v, 1);
2353 --swap->swb_count;
2354 --mycpu->gd_vmtotal.t_vm;
2357 if (swap->swb_count != 0)
2358 panic("swap_pager_meta_free_all: swb_count != 0");
2359 zfree(swap_zone, swap);
2360 --object->swblock_count;
2361 lwkt_yield();
2363 KKASSERT(object->swblock_count == 0);
2367 * SWP_PAGER_METACTL() - misc control of swap and vm_page_t meta data.
2369 * This routine is capable of looking up, popping, or freeing
2370 * swapblk assignments in the swap meta data or in the vm_page_t.
2371 * The routine typically returns the swapblk being looked-up, or popped,
2372 * or SWAPBLK_NONE if the block was freed, or SWAPBLK_NONE if the block
2373 * was invalid. This routine will automatically free any invalid
2374 * meta-data swapblks.
2376 * It is not possible to store invalid swapblks in the swap meta data
2377 * (other then a literal 'SWAPBLK_NONE'), so we don't bother checking.
2379 * When acting on a busy resident page and paging is in progress, we
2380 * have to wait until paging is complete but otherwise can act on the
2381 * busy page.
2383 * SWM_FREE remove and free swap block from metadata
2384 * SWM_POP remove from meta data but do not free.. pop it out
2386 * The caller must hold the object.
2388 static swblk_t
2389 swp_pager_meta_ctl(vm_object_t object, vm_pindex_t index, int flags)
2391 struct swblock *swap;
2392 swblk_t r1;
2394 if (object->swblock_count == 0)
2395 return(SWAPBLK_NONE);
2397 r1 = SWAPBLK_NONE;
2398 swap = swp_pager_lookup(object, index);
2400 if (swap != NULL) {
2401 index &= SWAP_META_MASK;
2402 r1 = swap->swb_pages[index];
2404 if (r1 != SWAPBLK_NONE) {
2405 if (flags & (SWM_FREE|SWM_POP)) {
2406 swap->swb_pages[index] = SWAPBLK_NONE;
2407 --mycpu->gd_vmtotal.t_vm;
2408 if (--swap->swb_count == 0) {
2409 swp_pager_remove(object, swap);
2410 zfree(swap_zone, swap);
2411 --object->swblock_count;
2414 /* swap ptr may be invalid */
2415 if (flags & SWM_FREE) {
2416 swp_pager_freeswapspace(object, r1, 1);
2417 r1 = SWAPBLK_NONE;
2420 /* swap ptr may be invalid */
2422 return(r1);