sys/subr_rman: fix some issues
[dragonfly.git] / libexec / rtld-elf / rtld.c
blob772e0288c3e5d97f8aa42536883d4b69c50cad90
1 /*-
2 * Copyright 1996, 1997, 1998, 1999, 2000 John D. Polstra.
3 * Copyright 2003 Alexander Kabaev <kan@FreeBSD.ORG>.
4 * Copyright 2009-2012 Konstantin Belousov <kib@FreeBSD.ORG>.
5 * Copyright 2012 John Marino <draco@marino.st>.
6 * All rights reserved.
8 * Redistribution and use in source and binary forms, with or without
9 * modification, are permitted provided that the following conditions
10 * are met:
11 * 1. Redistributions of source code must retain the above copyright
12 * notice, this list of conditions and the following disclaimer.
13 * 2. Redistributions in binary form must reproduce the above copyright
14 * notice, this list of conditions and the following disclaimer in the
15 * documentation and/or other materials provided with the distribution.
17 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
18 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
19 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
20 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
21 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
22 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
23 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
24 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
25 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
26 * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
28 * $FreeBSD$
32 * Dynamic linker for ELF.
34 * John Polstra <jdp@polstra.com>.
37 #ifndef __GNUC__
38 #error "GCC is needed to compile this file"
39 #endif
41 #include <sys/param.h>
42 #include <sys/mount.h>
43 #include <sys/mman.h>
44 #include <sys/stat.h>
45 #include <sys/sysctl.h>
46 #include <sys/uio.h>
47 #include <sys/utsname.h>
48 #include <sys/ktrace.h>
49 #include <sys/resident.h>
50 #include <sys/tls.h>
52 #include <machine/tls.h>
54 #include <dlfcn.h>
55 #include <err.h>
56 #include <errno.h>
57 #include <fcntl.h>
58 #include <stdarg.h>
59 #include <stdio.h>
60 #include <stdlib.h>
61 #include <string.h>
62 #include <unistd.h>
64 #include "debug.h"
65 #include "rtld.h"
66 #include "libmap.h"
67 #include "rtld_printf.h"
68 #include "notes.h"
70 #define PATH_RTLD "/usr/libexec/ld-elf.so.2"
71 #define LD_ARY_CACHE 16
73 /* Types. */
74 typedef void (*func_ptr_type)();
75 typedef void * (*path_enum_proc) (const char *path, size_t len, void *arg);
78 * Function declarations.
80 static const char *_getenv_ld(const char *id);
81 static void die(void) __dead2;
82 static void digest_dynamic1(Obj_Entry *, int, const Elf_Dyn **,
83 const Elf_Dyn **, const Elf_Dyn **);
84 static void digest_dynamic2(Obj_Entry *, const Elf_Dyn *, const Elf_Dyn *,
85 const Elf_Dyn *);
86 static void digest_dynamic(Obj_Entry *, int);
87 static Obj_Entry *digest_phdr(const Elf_Phdr *, int, caddr_t, const char *);
88 static Obj_Entry *dlcheck(void *);
89 static Obj_Entry *dlopen_object(const char *name, int fd, Obj_Entry *refobj,
90 int lo_flags, int mode, RtldLockState *lockstate);
91 static Obj_Entry *do_load_object(int, const char *, char *, struct stat *, int);
92 static int do_search_info(const Obj_Entry *obj, int, struct dl_serinfo *);
93 static bool donelist_check(DoneList *, const Obj_Entry *);
94 static void errmsg_restore(char *);
95 static char *errmsg_save(void);
96 static void *fill_search_info(const char *, size_t, void *);
97 static char *find_library(const char *, const Obj_Entry *);
98 static const char *gethints(bool);
99 static void init_dag(Obj_Entry *);
100 static void init_rtld(caddr_t, Elf_Auxinfo **);
101 static void initlist_add_neededs(Needed_Entry *, Objlist *);
102 static void initlist_add_objects(Obj_Entry *, Obj_Entry **, Objlist *);
103 static void linkmap_add(Obj_Entry *);
104 static void linkmap_delete(Obj_Entry *);
105 static void load_filtees(Obj_Entry *, int flags, RtldLockState *);
106 static void unload_filtees(Obj_Entry *);
107 static int load_needed_objects(Obj_Entry *, int);
108 static int load_preload_objects(void);
109 static Obj_Entry *load_object(const char *, int fd, const Obj_Entry *, int);
110 static void map_stacks_exec(RtldLockState *);
111 static Obj_Entry *obj_from_addr(const void *);
112 static void objlist_call_fini(Objlist *, Obj_Entry *, RtldLockState *);
113 static void objlist_call_init(Objlist *, RtldLockState *);
114 static void objlist_clear(Objlist *);
115 static Objlist_Entry *objlist_find(Objlist *, const Obj_Entry *);
116 static void objlist_init(Objlist *);
117 static void objlist_push_head(Objlist *, Obj_Entry *);
118 static void objlist_push_tail(Objlist *, Obj_Entry *);
119 static void objlist_put_after(Objlist *, Obj_Entry *, Obj_Entry *);
120 static void objlist_remove(Objlist *, Obj_Entry *);
121 static void *path_enumerate(const char *, path_enum_proc, void *);
122 static int relocate_object_dag(Obj_Entry *root, bool bind_now,
123 Obj_Entry *rtldobj, int flags, RtldLockState *lockstate);
124 static int relocate_object(Obj_Entry *obj, bool bind_now, Obj_Entry *rtldobj,
125 int flags, RtldLockState *lockstate);
126 static int relocate_objects(Obj_Entry *, bool, Obj_Entry *, int,
127 RtldLockState *);
128 static int resolve_objects_ifunc(Obj_Entry *first, bool bind_now,
129 int flags, RtldLockState *lockstate);
130 static int rtld_dirname(const char *, char *);
131 static int rtld_dirname_abs(const char *, char *);
132 static void *rtld_dlopen(const char *name, int fd, int mode);
133 static void rtld_exit(void);
134 static char *search_library_path(const char *, const char *);
135 static const void **get_program_var_addr(const char *, RtldLockState *);
136 static void set_program_var(const char *, const void *);
137 static int symlook_default(SymLook *, const Obj_Entry *refobj);
138 static int symlook_global(SymLook *, DoneList *);
139 static void symlook_init_from_req(SymLook *, const SymLook *);
140 static int symlook_list(SymLook *, const Objlist *, DoneList *);
141 static int symlook_needed(SymLook *, const Needed_Entry *, DoneList *);
142 static int symlook_obj1_sysv(SymLook *, const Obj_Entry *);
143 static int symlook_obj1_gnu(SymLook *, const Obj_Entry *);
144 static void trace_loaded_objects(Obj_Entry *);
145 static void unlink_object(Obj_Entry *);
146 static void unload_object(Obj_Entry *);
147 static void unref_dag(Obj_Entry *);
148 static void ref_dag(Obj_Entry *);
149 static char *origin_subst_one(char *, const char *, const char *, bool);
150 static char *origin_subst(char *, const char *);
151 static void preinit_main(void);
152 static int rtld_verify_versions(const Objlist *);
153 static int rtld_verify_object_versions(Obj_Entry *);
154 static void object_add_name(Obj_Entry *, const char *);
155 static int object_match_name(const Obj_Entry *, const char *);
156 static void ld_utrace_log(int, void *, void *, size_t, int, const char *);
157 static void rtld_fill_dl_phdr_info(const Obj_Entry *obj,
158 struct dl_phdr_info *phdr_info);
159 static uint_fast32_t gnu_hash (const char *);
160 static bool matched_symbol(SymLook *, const Obj_Entry *, Sym_Match_Result *,
161 const unsigned long);
163 void r_debug_state(struct r_debug *, struct link_map *) __noinline;
166 * Data declarations.
168 static char *error_message; /* Message for dlerror(), or NULL */
169 struct r_debug r_debug; /* for GDB; */
170 static bool libmap_disable; /* Disable libmap */
171 static bool ld_loadfltr; /* Immediate filters processing */
172 static char *libmap_override; /* Maps to use in addition to libmap.conf */
173 static bool trust; /* False for setuid and setgid programs */
174 static bool dangerous_ld_env; /* True if environment variables have been
175 used to affect the libraries loaded */
176 static const char *ld_bind_now; /* Environment variable for immediate binding */
177 static const char *ld_debug; /* Environment variable for debugging */
178 static const char *ld_library_path; /* Environment variable for search path */
179 static char *ld_preload; /* Environment variable for libraries to
180 load first */
181 static const char *ld_elf_hints_path; /* Environment variable for alternative hints path */
182 static const char *ld_tracing; /* Called from ldd to print libs */
183 static const char *ld_utrace; /* Use utrace() to log events. */
184 static int (*rtld_functrace)( /* Optional function call tracing hook */
185 const char *caller_obj,
186 const char *callee_obj,
187 const char *callee_func,
188 void *stack);
189 static const Obj_Entry *rtld_functrace_obj; /* Object thereof */
190 static Obj_Entry *obj_list; /* Head of linked list of shared objects */
191 static Obj_Entry **obj_tail; /* Link field of last object in list */
192 static Obj_Entry **preload_tail;
193 static Obj_Entry *obj_main; /* The main program shared object */
194 static Obj_Entry obj_rtld; /* The dynamic linker shared object */
195 static unsigned int obj_count; /* Number of objects in obj_list */
196 static unsigned int obj_loads; /* Number of objects in obj_list */
198 static int ld_resident; /* Non-zero if resident */
199 static const char *ld_ary[LD_ARY_CACHE];
200 static int ld_index;
201 static Objlist initlist;
203 static Objlist list_global = /* Objects dlopened with RTLD_GLOBAL */
204 STAILQ_HEAD_INITIALIZER(list_global);
205 static Objlist list_main = /* Objects loaded at program startup */
206 STAILQ_HEAD_INITIALIZER(list_main);
207 static Objlist list_fini = /* Objects needing fini() calls */
208 STAILQ_HEAD_INITIALIZER(list_fini);
210 static Elf_Sym sym_zero; /* For resolving undefined weak refs. */
211 const char *__ld_sharedlib_base;
213 #define GDB_STATE(s,m) r_debug.r_state = s; r_debug_state(&r_debug,m);
215 extern Elf_Dyn _DYNAMIC;
216 #pragma weak _DYNAMIC
217 #ifndef RTLD_IS_DYNAMIC
218 #define RTLD_IS_DYNAMIC() (&_DYNAMIC != NULL)
219 #endif
221 #ifdef ENABLE_OSRELDATE
222 int osreldate;
223 #endif
225 static int stack_prot = PROT_READ | PROT_WRITE | RTLD_DEFAULT_STACK_EXEC;
226 #if 0
227 static int max_stack_flags;
228 #endif
231 * Global declarations normally provided by crt1. The dynamic linker is
232 * not built with crt1, so we have to provide them ourselves.
234 char *__progname;
235 char **environ;
238 * Used to pass argc, argv to init functions.
240 int main_argc;
241 char **main_argv;
244 * Globals to control TLS allocation.
246 size_t tls_last_offset; /* Static TLS offset of last module */
247 size_t tls_last_size; /* Static TLS size of last module */
248 size_t tls_static_space; /* Static TLS space allocated */
249 int tls_dtv_generation = 1; /* Used to detect when dtv size changes */
250 int tls_max_index = 1; /* Largest module index allocated */
253 * Fill in a DoneList with an allocation large enough to hold all of
254 * the currently-loaded objects. Keep this as a macro since it calls
255 * alloca and we want that to occur within the scope of the caller.
257 #define donelist_init(dlp) \
258 ((dlp)->objs = alloca(obj_count * sizeof (dlp)->objs[0]), \
259 assert((dlp)->objs != NULL), \
260 (dlp)->num_alloc = obj_count, \
261 (dlp)->num_used = 0)
263 #define UTRACE_DLOPEN_START 1
264 #define UTRACE_DLOPEN_STOP 2
265 #define UTRACE_DLCLOSE_START 3
266 #define UTRACE_DLCLOSE_STOP 4
267 #define UTRACE_LOAD_OBJECT 5
268 #define UTRACE_UNLOAD_OBJECT 6
269 #define UTRACE_ADD_RUNDEP 7
270 #define UTRACE_PRELOAD_FINISHED 8
271 #define UTRACE_INIT_CALL 9
272 #define UTRACE_FINI_CALL 10
274 struct utrace_rtld {
275 char sig[4]; /* 'RTLD' */
276 int event;
277 void *handle;
278 void *mapbase; /* Used for 'parent' and 'init/fini' */
279 size_t mapsize;
280 int refcnt; /* Used for 'mode' */
281 char name[MAXPATHLEN];
284 #define LD_UTRACE(e, h, mb, ms, r, n) do { \
285 if (ld_utrace != NULL) \
286 ld_utrace_log(e, h, mb, ms, r, n); \
287 } while (0)
289 static void
290 ld_utrace_log(int event, void *handle, void *mapbase, size_t mapsize,
291 int refcnt, const char *name)
293 struct utrace_rtld ut;
295 ut.sig[0] = 'R';
296 ut.sig[1] = 'T';
297 ut.sig[2] = 'L';
298 ut.sig[3] = 'D';
299 ut.event = event;
300 ut.handle = handle;
301 ut.mapbase = mapbase;
302 ut.mapsize = mapsize;
303 ut.refcnt = refcnt;
304 bzero(ut.name, sizeof(ut.name));
305 if (name)
306 strlcpy(ut.name, name, sizeof(ut.name));
307 utrace(&ut, sizeof(ut));
311 * Main entry point for dynamic linking. The first argument is the
312 * stack pointer. The stack is expected to be laid out as described
313 * in the SVR4 ABI specification, Intel 386 Processor Supplement.
314 * Specifically, the stack pointer points to a word containing
315 * ARGC. Following that in the stack is a null-terminated sequence
316 * of pointers to argument strings. Then comes a null-terminated
317 * sequence of pointers to environment strings. Finally, there is a
318 * sequence of "auxiliary vector" entries.
320 * The second argument points to a place to store the dynamic linker's
321 * exit procedure pointer and the third to a place to store the main
322 * program's object.
324 * The return value is the main program's entry point.
326 func_ptr_type
327 _rtld(Elf_Addr *sp, func_ptr_type *exit_proc, Obj_Entry **objp)
329 Obj_Entry *last_interposer;
330 Elf_Auxinfo *aux_info[AT_COUNT];
331 int i;
332 int argc;
333 char **argv;
334 char **env;
335 Elf_Auxinfo *aux;
336 Elf_Auxinfo *auxp;
337 const char *argv0;
338 Objlist_Entry *entry;
339 Obj_Entry *obj;
341 /* marino: DO NOT MOVE THESE VARIABLES TO _rtld
342 Obj_Entry **preload_tail;
343 Objlist initlist;
344 from global to here. It will break the DWARF2 unwind scheme.
345 The system compilers were unaffected, but not gcc 4.6
349 * On entry, the dynamic linker itself has not been relocated yet.
350 * Be very careful not to reference any global data until after
351 * init_rtld has returned. It is OK to reference file-scope statics
352 * and string constants, and to call static and global functions.
355 /* Find the auxiliary vector on the stack. */
356 argc = *sp++;
357 argv = (char **) sp;
358 sp += argc + 1; /* Skip over arguments and NULL terminator */
359 env = (char **) sp;
362 * If we aren't already resident we have to dig out some more info.
363 * Note that auxinfo does not exist when we are resident.
365 * I'm not sure about the ld_resident check. It seems to read zero
366 * prior to relocation, which is what we want. When running from a
367 * resident copy everything will be relocated so we are definitely
368 * good there.
370 if (ld_resident == 0) {
371 while (*sp++ != 0) /* Skip over environment, and NULL terminator */
373 aux = (Elf_Auxinfo *) sp;
375 /* Digest the auxiliary vector. */
376 for (i = 0; i < AT_COUNT; i++)
377 aux_info[i] = NULL;
378 for (auxp = aux; auxp->a_type != AT_NULL; auxp++) {
379 if (auxp->a_type < AT_COUNT)
380 aux_info[auxp->a_type] = auxp;
383 /* Initialize and relocate ourselves. */
384 assert(aux_info[AT_BASE] != NULL);
385 init_rtld((caddr_t) aux_info[AT_BASE]->a_un.a_ptr, aux_info);
388 ld_index = 0; /* don't use old env cache in case we are resident */
389 __progname = obj_rtld.path;
390 argv0 = argv[0] != NULL ? argv[0] : "(null)";
391 environ = env;
392 main_argc = argc;
393 main_argv = argv;
395 trust = !issetugid();
397 ld_bind_now = _getenv_ld("LD_BIND_NOW");
399 * If the process is tainted, then we un-set the dangerous environment
400 * variables. The process will be marked as tainted until setuid(2)
401 * is called. If any child process calls setuid(2) we do not want any
402 * future processes to honor the potentially un-safe variables.
404 if (!trust) {
405 if ( unsetenv("LD_DEBUG")
406 || unsetenv("LD_PRELOAD")
407 || unsetenv("LD_LIBRARY_PATH")
408 || unsetenv("LD_ELF_HINTS_PATH")
409 || unsetenv("LD_LIBMAP")
410 || unsetenv("LD_LIBMAP_DISABLE")
411 || unsetenv("LD_LOADFLTR")
412 || unsetenv("LD_SHAREDLIB_BASE")
414 _rtld_error("environment corrupt; aborting");
415 die();
418 __ld_sharedlib_base = _getenv_ld("LD_SHAREDLIB_BASE");
419 ld_debug = _getenv_ld("LD_DEBUG");
420 libmap_disable = _getenv_ld("LD_LIBMAP_DISABLE") != NULL;
421 libmap_override = (char *)_getenv_ld("LD_LIBMAP");
422 ld_library_path = _getenv_ld("LD_LIBRARY_PATH");
423 ld_preload = (char *)_getenv_ld("LD_PRELOAD");
424 ld_elf_hints_path = _getenv_ld("LD_ELF_HINTS_PATH");
425 ld_loadfltr = _getenv_ld("LD_LOADFLTR") != NULL;
426 dangerous_ld_env = (ld_library_path != NULL)
427 || (ld_preload != NULL)
428 || (ld_elf_hints_path != NULL)
429 || ld_loadfltr
430 || (libmap_override != NULL)
431 || libmap_disable
433 ld_tracing = _getenv_ld("LD_TRACE_LOADED_OBJECTS");
434 ld_utrace = _getenv_ld("LD_UTRACE");
436 if ((ld_elf_hints_path == NULL) || strlen(ld_elf_hints_path) == 0)
437 ld_elf_hints_path = _PATH_ELF_HINTS;
439 if (ld_debug != NULL && *ld_debug != '\0')
440 debug = 1;
441 dbg("%s is initialized, base address = %p", __progname,
442 (caddr_t) aux_info[AT_BASE]->a_un.a_ptr);
443 dbg("RTLD dynamic = %p", obj_rtld.dynamic);
444 dbg("RTLD pltgot = %p", obj_rtld.pltgot);
446 dbg("initializing thread locks");
447 lockdflt_init();
450 * If we are resident we can skip work that we have already done.
451 * Note that the stack is reset and there is no Elf_Auxinfo
452 * when running from a resident image, and the static globals setup
453 * between here and resident_skip will have already been setup.
455 if (ld_resident)
456 goto resident_skip1;
459 * Load the main program, or process its program header if it is
460 * already loaded.
462 if (aux_info[AT_EXECFD] != NULL) { /* Load the main program. */
463 int fd = aux_info[AT_EXECFD]->a_un.a_val;
464 dbg("loading main program");
465 obj_main = map_object(fd, argv0, NULL);
466 close(fd);
467 if (obj_main == NULL)
468 die();
469 #if 0
470 max_stack_flags = obj_main->stack_flags;
471 #endif
472 } else { /* Main program already loaded. */
473 const Elf_Phdr *phdr;
474 int phnum;
475 caddr_t entry;
477 dbg("processing main program's program header");
478 assert(aux_info[AT_PHDR] != NULL);
479 phdr = (const Elf_Phdr *) aux_info[AT_PHDR]->a_un.a_ptr;
480 assert(aux_info[AT_PHNUM] != NULL);
481 phnum = aux_info[AT_PHNUM]->a_un.a_val;
482 assert(aux_info[AT_PHENT] != NULL);
483 assert(aux_info[AT_PHENT]->a_un.a_val == sizeof(Elf_Phdr));
484 assert(aux_info[AT_ENTRY] != NULL);
485 entry = (caddr_t) aux_info[AT_ENTRY]->a_un.a_ptr;
486 if ((obj_main = digest_phdr(phdr, phnum, entry, argv0)) == NULL)
487 die();
490 char buf[MAXPATHLEN];
491 if (aux_info[AT_EXECPATH] != NULL) {
492 char *kexecpath;
494 kexecpath = aux_info[AT_EXECPATH]->a_un.a_ptr;
495 dbg("AT_EXECPATH %p %s", kexecpath, kexecpath);
496 if (kexecpath[0] == '/')
497 obj_main->path = kexecpath;
498 else if (getcwd(buf, sizeof(buf)) == NULL ||
499 strlcat(buf, "/", sizeof(buf)) >= sizeof(buf) ||
500 strlcat(buf, kexecpath, sizeof(buf)) >= sizeof(buf))
501 obj_main->path = xstrdup(argv0);
502 else
503 obj_main->path = xstrdup(buf);
504 } else {
505 char resolved[MAXPATHLEN];
506 dbg("No AT_EXECPATH");
507 if (argv0[0] == '/') {
508 if (realpath(argv0, resolved) != NULL)
509 obj_main->path = xstrdup(resolved);
510 else
511 obj_main->path = xstrdup(argv0);
512 } else {
513 if (getcwd(buf, sizeof(buf)) != NULL
514 && strlcat(buf, "/", sizeof(buf)) < sizeof(buf)
515 && strlcat(buf, argv0, sizeof (buf)) < sizeof(buf)
516 && access(buf, R_OK) == 0
517 && realpath(buf, resolved) != NULL)
518 obj_main->path = xstrdup(resolved);
519 else
520 obj_main->path = xstrdup(argv0);
523 dbg("obj_main path %s", obj_main->path);
524 obj_main->mainprog = true;
526 if (aux_info[AT_STACKPROT] != NULL &&
527 aux_info[AT_STACKPROT]->a_un.a_val != 0)
528 stack_prot = aux_info[AT_STACKPROT]->a_un.a_val;
531 * Get the actual dynamic linker pathname from the executable if
532 * possible. (It should always be possible.) That ensures that
533 * gdb will find the right dynamic linker even if a non-standard
534 * one is being used.
536 if (obj_main->interp != NULL &&
537 strcmp(obj_main->interp, obj_rtld.path) != 0) {
538 free(obj_rtld.path);
539 obj_rtld.path = xstrdup(obj_main->interp);
540 __progname = obj_rtld.path;
543 digest_dynamic(obj_main, 0);
544 dbg("%s valid_hash_sysv %d valid_hash_gnu %d dynsymcount %d",
545 obj_main->path, obj_main->valid_hash_sysv, obj_main->valid_hash_gnu,
546 obj_main->dynsymcount);
548 linkmap_add(obj_main);
549 linkmap_add(&obj_rtld);
551 /* Link the main program into the list of objects. */
552 *obj_tail = obj_main;
553 obj_tail = &obj_main->next;
554 obj_count++;
555 obj_loads++;
557 /* Initialize a fake symbol for resolving undefined weak references. */
558 sym_zero.st_info = ELF_ST_INFO(STB_GLOBAL, STT_NOTYPE);
559 sym_zero.st_shndx = SHN_UNDEF;
560 sym_zero.st_value = -(uintptr_t)obj_main->relocbase;
562 if (!libmap_disable)
563 libmap_disable = (bool)lm_init(libmap_override);
565 dbg("loading LD_PRELOAD libraries");
566 if (load_preload_objects() == -1)
567 die();
568 preload_tail = obj_tail;
570 dbg("loading needed objects");
571 if (load_needed_objects(obj_main, 0) == -1)
572 die();
574 /* Make a list of all objects loaded at startup. */
575 last_interposer = obj_main;
576 for (obj = obj_list; obj != NULL; obj = obj->next) {
577 if (obj->z_interpose && obj != obj_main) {
578 objlist_put_after(&list_main, last_interposer, obj);
579 last_interposer = obj;
580 } else {
581 objlist_push_tail(&list_main, obj);
583 obj->refcount++;
586 dbg("checking for required versions");
587 if (rtld_verify_versions(&list_main) == -1 && !ld_tracing)
588 die();
590 resident_skip1:
592 if (ld_tracing) { /* We're done */
593 trace_loaded_objects(obj_main);
594 exit(0);
597 if (ld_resident) /* XXX clean this up! */
598 goto resident_skip2;
600 if (_getenv_ld("LD_DUMP_REL_PRE") != NULL) {
601 dump_relocations(obj_main);
602 exit (0);
605 /* setup TLS for main thread */
606 dbg("initializing initial thread local storage");
607 STAILQ_FOREACH(entry, &list_main, link) {
609 * Allocate all the initial objects out of the static TLS
610 * block even if they didn't ask for it.
612 allocate_tls_offset(entry->obj);
615 tls_static_space = tls_last_offset + RTLD_STATIC_TLS_EXTRA;
618 * Do not try to allocate the TLS here, let libc do it itself.
619 * (crt1 for the program will call _init_tls())
622 if (relocate_objects(obj_main,
623 ld_bind_now != NULL && *ld_bind_now != '\0',
624 &obj_rtld, SYMLOOK_EARLY, NULL) == -1)
625 die();
627 dbg("doing copy relocations");
628 if (do_copy_relocations(obj_main) == -1)
629 die();
631 resident_skip2:
633 if (_getenv_ld("LD_RESIDENT_UNREGISTER_NOW")) {
634 if (exec_sys_unregister(-1) < 0) {
635 dbg("exec_sys_unregister failed %d\n", errno);
636 exit(errno);
638 dbg("exec_sys_unregister success\n");
639 exit(0);
642 if (_getenv_ld("LD_DUMP_REL_POST") != NULL) {
643 dump_relocations(obj_main);
644 exit (0);
647 dbg("initializing key program variables");
648 set_program_var("__progname", argv[0] != NULL ? basename(argv[0]) : "");
649 set_program_var("environ", env);
650 set_program_var("__elf_aux_vector", aux);
652 if (_getenv_ld("LD_RESIDENT_REGISTER_NOW")) {
653 extern void resident_start(void);
654 ld_resident = 1;
655 if (exec_sys_register(resident_start) < 0) {
656 dbg("exec_sys_register failed %d\n", errno);
657 exit(errno);
659 dbg("exec_sys_register success\n");
660 exit(0);
663 /* Make a list of init functions to call. */
664 objlist_init(&initlist);
665 initlist_add_objects(obj_list, preload_tail, &initlist);
667 r_debug_state(NULL, &obj_main->linkmap); /* say hello to gdb! */
669 map_stacks_exec(NULL);
671 dbg("resolving ifuncs");
672 if (resolve_objects_ifunc(obj_main,
673 ld_bind_now != NULL && *ld_bind_now != '\0', SYMLOOK_EARLY,
674 NULL) == -1)
675 die();
678 * Do NOT call the initlist here, give libc a chance to set up
679 * the initial TLS segment. crt1 will then call _rtld_call_init().
682 dbg("transferring control to program entry point = %p", obj_main->entry);
684 /* Return the exit procedure and the program entry point. */
685 *exit_proc = rtld_exit;
686 *objp = obj_main;
687 return (func_ptr_type) obj_main->entry;
691 * Call the initialization list for dynamically loaded libraries.
692 * (called from crt1.c).
694 void
695 _rtld_call_init(void)
697 RtldLockState lockstate;
698 Obj_Entry *obj;
700 if (!obj_main->note_present && obj_main->valid_hash_gnu) {
702 * The use of a linker script with a PHDRS directive that does not include
703 * PT_NOTE will block the crt_no_init note. In this case we'll look for the
704 * recently added GNU hash dynamic tag which gets built by default. It is
705 * extremely unlikely to find a pre-3.1 binary without a PT_NOTE header and
706 * a gnu hash tag. If gnu hash found, consider binary to use new crt code.
708 obj_main->crt_no_init = true;
709 dbg("Setting crt_no_init without presence of PT_NOTE header");
712 wlock_acquire(rtld_bind_lock, &lockstate);
713 if (obj_main->crt_no_init)
714 preinit_main();
715 else {
717 * Make sure we don't call the main program's init and fini functions
718 * for binaries linked with old crt1 which calls _init itself.
720 obj_main->init = obj_main->fini = (Elf_Addr)NULL;
721 obj_main->init_array = obj_main->fini_array = (Elf_Addr)NULL;
723 objlist_call_init(&initlist, &lockstate);
724 objlist_clear(&initlist);
725 dbg("loading filtees");
726 for (obj = obj_list->next; obj != NULL; obj = obj->next) {
727 if (ld_loadfltr || obj->z_loadfltr)
728 load_filtees(obj, 0, &lockstate);
730 lock_release(rtld_bind_lock, &lockstate);
733 void *
734 rtld_resolve_ifunc(const Obj_Entry *obj, const Elf_Sym *def)
736 void *ptr;
737 Elf_Addr target;
739 ptr = (void *)make_function_pointer(def, obj);
740 target = ((Elf_Addr (*)(void))ptr)();
741 return ((void *)target);
744 Elf_Addr
745 _rtld_bind(Obj_Entry *obj, Elf_Size reloff, void *stack)
747 const Elf_Rel *rel;
748 const Elf_Sym *def;
749 const Obj_Entry *defobj;
750 Elf_Addr *where;
751 Elf_Addr target;
752 RtldLockState lockstate;
754 rlock_acquire(rtld_bind_lock, &lockstate);
755 if (sigsetjmp(lockstate.env, 0) != 0)
756 lock_upgrade(rtld_bind_lock, &lockstate);
757 if (obj->pltrel)
758 rel = (const Elf_Rel *) ((caddr_t) obj->pltrel + reloff);
759 else
760 rel = (const Elf_Rel *) ((caddr_t) obj->pltrela + reloff);
762 where = (Elf_Addr *) (obj->relocbase + rel->r_offset);
763 def = find_symdef(ELF_R_SYM(rel->r_info), obj, &defobj, true, NULL,
764 &lockstate);
765 if (def == NULL)
766 die();
767 if (ELF_ST_TYPE(def->st_info) == STT_GNU_IFUNC)
768 target = (Elf_Addr)rtld_resolve_ifunc(defobj, def);
769 else
770 target = (Elf_Addr)(defobj->relocbase + def->st_value);
772 dbg("\"%s\" in \"%s\" ==> %p in \"%s\"",
773 defobj->strtab + def->st_name, basename(obj->path),
774 (void *)target, basename(defobj->path));
777 * If we have a function call tracing hook, and the
778 * hook would like to keep tracing this one function,
779 * prevent the relocation so we will wind up here
780 * the next time again.
782 * We don't want to functrace calls from the functracer
783 * to avoid recursive loops.
785 if (rtld_functrace != NULL && obj != rtld_functrace_obj) {
786 if (rtld_functrace(obj->path,
787 defobj->path,
788 defobj->strtab + def->st_name,
789 stack)) {
790 lock_release(rtld_bind_lock, &lockstate);
791 return target;
796 * Write the new contents for the jmpslot. Note that depending on
797 * architecture, the value which we need to return back to the
798 * lazy binding trampoline may or may not be the target
799 * address. The value returned from reloc_jmpslot() is the value
800 * that the trampoline needs.
802 target = reloc_jmpslot(where, target, defobj, obj, rel);
803 lock_release(rtld_bind_lock, &lockstate);
804 return target;
808 * Error reporting function. Use it like printf. If formats the message
809 * into a buffer, and sets things up so that the next call to dlerror()
810 * will return the message.
812 void
813 _rtld_error(const char *fmt, ...)
815 static char buf[512];
816 va_list ap;
818 va_start(ap, fmt);
819 rtld_vsnprintf(buf, sizeof buf, fmt, ap);
820 error_message = buf;
821 va_end(ap);
825 * Return a dynamically-allocated copy of the current error message, if any.
827 static char *
828 errmsg_save(void)
830 return error_message == NULL ? NULL : xstrdup(error_message);
834 * Restore the current error message from a copy which was previously saved
835 * by errmsg_save(). The copy is freed.
837 static void
838 errmsg_restore(char *saved_msg)
840 if (saved_msg == NULL)
841 error_message = NULL;
842 else {
843 _rtld_error("%s", saved_msg);
844 free(saved_msg);
848 const char *
849 basename(const char *name)
851 const char *p = strrchr(name, '/');
852 return p != NULL ? p + 1 : name;
855 static struct utsname uts;
857 static char *
858 origin_subst_one(char *real, const char *kw, const char *subst,
859 bool may_free)
861 char *p, *p1, *res, *resp;
862 int subst_len, kw_len, subst_count, old_len, new_len;
864 kw_len = strlen(kw);
867 * First, count the number of the keyword occurences, to
868 * preallocate the final string.
870 for (p = real, subst_count = 0;; p = p1 + kw_len, subst_count++) {
871 p1 = strstr(p, kw);
872 if (p1 == NULL)
873 break;
877 * If the keyword is not found, just return.
879 if (subst_count == 0)
880 return (may_free ? real : xstrdup(real));
883 * There is indeed something to substitute. Calculate the
884 * length of the resulting string, and allocate it.
886 subst_len = strlen(subst);
887 old_len = strlen(real);
888 new_len = old_len + (subst_len - kw_len) * subst_count;
889 res = xmalloc(new_len + 1);
892 * Now, execute the substitution loop.
894 for (p = real, resp = res, *resp = '\0';;) {
895 p1 = strstr(p, kw);
896 if (p1 != NULL) {
897 /* Copy the prefix before keyword. */
898 memcpy(resp, p, p1 - p);
899 resp += p1 - p;
900 /* Keyword replacement. */
901 memcpy(resp, subst, subst_len);
902 resp += subst_len;
903 *resp = '\0';
904 p = p1 + kw_len;
905 } else
906 break;
909 /* Copy to the end of string and finish. */
910 strcat(resp, p);
911 if (may_free)
912 free(real);
913 return (res);
916 static char *
917 origin_subst(char *real, const char *origin_path)
919 char *res1, *res2, *res3, *res4;
921 if (uts.sysname[0] == '\0') {
922 if (uname(&uts) != 0) {
923 _rtld_error("utsname failed: %d", errno);
924 return (NULL);
927 res1 = origin_subst_one(real, "$ORIGIN", origin_path, false);
928 res2 = origin_subst_one(res1, "$OSNAME", uts.sysname, true);
929 res3 = origin_subst_one(res2, "$OSREL", uts.release, true);
930 res4 = origin_subst_one(res3, "$PLATFORM", uts.machine, true);
931 return (res4);
934 static void
935 die(void)
937 const char *msg = dlerror();
939 if (msg == NULL)
940 msg = "Fatal error";
941 rtld_fdputstr(STDERR_FILENO, msg);
942 rtld_fdputchar(STDERR_FILENO, '\n');
943 _exit(1);
947 * Process a shared object's DYNAMIC section, and save the important
948 * information in its Obj_Entry structure.
950 static void
951 digest_dynamic1(Obj_Entry *obj, int early, const Elf_Dyn **dyn_rpath,
952 const Elf_Dyn **dyn_soname, const Elf_Dyn **dyn_runpath)
954 const Elf_Dyn *dynp;
955 Needed_Entry **needed_tail = &obj->needed;
956 Needed_Entry **needed_filtees_tail = &obj->needed_filtees;
957 Needed_Entry **needed_aux_filtees_tail = &obj->needed_aux_filtees;
958 const Elf_Hashelt *hashtab;
959 const Elf32_Word *hashval;
960 Elf32_Word bkt, nmaskwords;
961 int bloom_size32;
962 bool nmw_power2;
963 int plttype = DT_REL;
965 *dyn_rpath = NULL;
966 *dyn_soname = NULL;
967 *dyn_runpath = NULL;
969 obj->bind_now = false;
970 for (dynp = obj->dynamic; dynp->d_tag != DT_NULL; dynp++) {
971 switch (dynp->d_tag) {
973 case DT_REL:
974 obj->rel = (const Elf_Rel *) (obj->relocbase + dynp->d_un.d_ptr);
975 break;
977 case DT_RELSZ:
978 obj->relsize = dynp->d_un.d_val;
979 break;
981 case DT_RELENT:
982 assert(dynp->d_un.d_val == sizeof(Elf_Rel));
983 break;
985 case DT_JMPREL:
986 obj->pltrel = (const Elf_Rel *)
987 (obj->relocbase + dynp->d_un.d_ptr);
988 break;
990 case DT_PLTRELSZ:
991 obj->pltrelsize = dynp->d_un.d_val;
992 break;
994 case DT_RELA:
995 obj->rela = (const Elf_Rela *) (obj->relocbase + dynp->d_un.d_ptr);
996 break;
998 case DT_RELASZ:
999 obj->relasize = dynp->d_un.d_val;
1000 break;
1002 case DT_RELAENT:
1003 assert(dynp->d_un.d_val == sizeof(Elf_Rela));
1004 break;
1006 case DT_PLTREL:
1007 plttype = dynp->d_un.d_val;
1008 assert(dynp->d_un.d_val == DT_REL || plttype == DT_RELA);
1009 break;
1011 case DT_SYMTAB:
1012 obj->symtab = (const Elf_Sym *)
1013 (obj->relocbase + dynp->d_un.d_ptr);
1014 break;
1016 case DT_SYMENT:
1017 assert(dynp->d_un.d_val == sizeof(Elf_Sym));
1018 break;
1020 case DT_STRTAB:
1021 obj->strtab = (const char *) (obj->relocbase + dynp->d_un.d_ptr);
1022 break;
1024 case DT_STRSZ:
1025 obj->strsize = dynp->d_un.d_val;
1026 break;
1028 case DT_VERNEED:
1029 obj->verneed = (const Elf_Verneed *) (obj->relocbase +
1030 dynp->d_un.d_val);
1031 break;
1033 case DT_VERNEEDNUM:
1034 obj->verneednum = dynp->d_un.d_val;
1035 break;
1037 case DT_VERDEF:
1038 obj->verdef = (const Elf_Verdef *) (obj->relocbase +
1039 dynp->d_un.d_val);
1040 break;
1042 case DT_VERDEFNUM:
1043 obj->verdefnum = dynp->d_un.d_val;
1044 break;
1046 case DT_VERSYM:
1047 obj->versyms = (const Elf_Versym *)(obj->relocbase +
1048 dynp->d_un.d_val);
1049 break;
1051 case DT_HASH:
1053 hashtab = (const Elf_Hashelt *)(obj->relocbase +
1054 dynp->d_un.d_ptr);
1055 obj->nbuckets = hashtab[0];
1056 obj->nchains = hashtab[1];
1057 obj->buckets = hashtab + 2;
1058 obj->chains = obj->buckets + obj->nbuckets;
1059 obj->valid_hash_sysv = obj->nbuckets > 0 && obj->nchains > 0 &&
1060 obj->buckets != NULL;
1062 break;
1064 case DT_GNU_HASH:
1066 hashtab = (const Elf_Hashelt *)(obj->relocbase +
1067 dynp->d_un.d_ptr);
1068 obj->nbuckets_gnu = hashtab[0];
1069 obj->symndx_gnu = hashtab[1];
1070 nmaskwords = hashtab[2];
1071 bloom_size32 = (__ELF_WORD_SIZE / 32) * nmaskwords;
1072 /* Number of bitmask words is required to be power of 2 */
1073 nmw_power2 = ((nmaskwords & (nmaskwords - 1)) == 0);
1074 obj->maskwords_bm_gnu = nmaskwords - 1;
1075 obj->shift2_gnu = hashtab[3];
1076 obj->bloom_gnu = (Elf_Addr *) (hashtab + 4);
1077 obj->buckets_gnu = hashtab + 4 + bloom_size32;
1078 obj->chain_zero_gnu = obj->buckets_gnu + obj->nbuckets_gnu -
1079 obj->symndx_gnu;
1080 obj->valid_hash_gnu = nmw_power2 && obj->nbuckets_gnu > 0 &&
1081 obj->buckets_gnu != NULL;
1083 break;
1085 case DT_NEEDED:
1086 if (!obj->rtld) {
1087 Needed_Entry *nep = NEW(Needed_Entry);
1088 nep->name = dynp->d_un.d_val;
1089 nep->obj = NULL;
1090 nep->next = NULL;
1092 *needed_tail = nep;
1093 needed_tail = &nep->next;
1095 break;
1097 case DT_FILTER:
1098 if (!obj->rtld) {
1099 Needed_Entry *nep = NEW(Needed_Entry);
1100 nep->name = dynp->d_un.d_val;
1101 nep->obj = NULL;
1102 nep->next = NULL;
1104 *needed_filtees_tail = nep;
1105 needed_filtees_tail = &nep->next;
1107 break;
1109 case DT_AUXILIARY:
1110 if (!obj->rtld) {
1111 Needed_Entry *nep = NEW(Needed_Entry);
1112 nep->name = dynp->d_un.d_val;
1113 nep->obj = NULL;
1114 nep->next = NULL;
1116 *needed_aux_filtees_tail = nep;
1117 needed_aux_filtees_tail = &nep->next;
1119 break;
1121 case DT_PLTGOT:
1122 obj->pltgot = (Elf_Addr *) (obj->relocbase + dynp->d_un.d_ptr);
1123 break;
1125 case DT_TEXTREL:
1126 obj->textrel = true;
1127 break;
1129 case DT_SYMBOLIC:
1130 obj->symbolic = true;
1131 break;
1133 case DT_RPATH:
1135 * We have to wait until later to process this, because we
1136 * might not have gotten the address of the string table yet.
1138 *dyn_rpath = dynp;
1139 break;
1141 case DT_SONAME:
1142 *dyn_soname = dynp;
1143 break;
1145 case DT_RUNPATH:
1146 *dyn_runpath = dynp;
1147 break;
1149 case DT_INIT:
1150 obj->init = (Elf_Addr) (obj->relocbase + dynp->d_un.d_ptr);
1151 break;
1153 case DT_FINI:
1154 obj->fini = (Elf_Addr)(obj->relocbase + dynp->d_un.d_ptr);
1155 break;
1157 case DT_PREINIT_ARRAY:
1158 obj->preinit_array = (Elf_Addr)(obj->relocbase + dynp->d_un.d_ptr);
1159 break;
1161 case DT_INIT_ARRAY:
1162 obj->init_array = (Elf_Addr)(obj->relocbase + dynp->d_un.d_ptr);
1163 break;
1165 case DT_FINI_ARRAY:
1166 obj->fini_array = (Elf_Addr)(obj->relocbase + dynp->d_un.d_ptr);
1167 break;
1169 case DT_PREINIT_ARRAYSZ:
1170 obj->preinit_array_num = dynp->d_un.d_val / sizeof(Elf_Addr);
1171 break;
1173 case DT_INIT_ARRAYSZ:
1174 obj->init_array_num = dynp->d_un.d_val / sizeof(Elf_Addr);
1175 break;
1177 case DT_FINI_ARRAYSZ:
1178 obj->fini_array_num = dynp->d_un.d_val / sizeof(Elf_Addr);
1179 break;
1181 case DT_DEBUG:
1182 /* XXX - not implemented yet */
1183 if (!early)
1184 dbg("Filling in DT_DEBUG entry");
1185 ((Elf_Dyn*)dynp)->d_un.d_ptr = (Elf_Addr) &r_debug;
1186 break;
1188 case DT_FLAGS:
1189 if ((dynp->d_un.d_val & DF_ORIGIN) && trust)
1190 obj->z_origin = true;
1191 if (dynp->d_un.d_val & DF_SYMBOLIC)
1192 obj->symbolic = true;
1193 if (dynp->d_un.d_val & DF_TEXTREL)
1194 obj->textrel = true;
1195 if (dynp->d_un.d_val & DF_BIND_NOW)
1196 obj->bind_now = true;
1197 /*if (dynp->d_un.d_val & DF_STATIC_TLS)
1199 break;
1201 case DT_FLAGS_1:
1202 if (dynp->d_un.d_val & DF_1_NOOPEN)
1203 obj->z_noopen = true;
1204 if ((dynp->d_un.d_val & DF_1_ORIGIN) && trust)
1205 obj->z_origin = true;
1206 /*if (dynp->d_un.d_val & DF_1_GLOBAL)
1207 XXX ;*/
1208 if (dynp->d_un.d_val & DF_1_BIND_NOW)
1209 obj->bind_now = true;
1210 if (dynp->d_un.d_val & DF_1_NODELETE)
1211 obj->z_nodelete = true;
1212 if (dynp->d_un.d_val & DF_1_LOADFLTR)
1213 obj->z_loadfltr = true;
1214 if (dynp->d_un.d_val & DF_1_INTERPOSE)
1215 obj->z_interpose = true;
1216 if (dynp->d_un.d_val & DF_1_NODEFLIB)
1217 obj->z_nodeflib = true;
1218 break;
1220 default:
1221 if (!early) {
1222 dbg("Ignoring d_tag %ld = %#lx", (long)dynp->d_tag,
1223 (long)dynp->d_tag);
1225 break;
1229 obj->traced = false;
1231 if (plttype == DT_RELA) {
1232 obj->pltrela = (const Elf_Rela *) obj->pltrel;
1233 obj->pltrel = NULL;
1234 obj->pltrelasize = obj->pltrelsize;
1235 obj->pltrelsize = 0;
1238 /* Determine size of dynsym table (equal to nchains of sysv hash) */
1239 if (obj->valid_hash_sysv)
1240 obj->dynsymcount = obj->nchains;
1241 else if (obj->valid_hash_gnu) {
1242 obj->dynsymcount = 0;
1243 for (bkt = 0; bkt < obj->nbuckets_gnu; bkt++) {
1244 if (obj->buckets_gnu[bkt] == 0)
1245 continue;
1246 hashval = &obj->chain_zero_gnu[obj->buckets_gnu[bkt]];
1248 obj->dynsymcount++;
1249 while ((*hashval++ & 1u) == 0);
1251 obj->dynsymcount += obj->symndx_gnu;
1255 static void
1256 digest_dynamic2(Obj_Entry *obj, const Elf_Dyn *dyn_rpath,
1257 const Elf_Dyn *dyn_soname, const Elf_Dyn *dyn_runpath)
1260 if (obj->z_origin && obj->origin_path == NULL) {
1261 obj->origin_path = xmalloc(PATH_MAX);
1262 if (rtld_dirname_abs(obj->path, obj->origin_path) == -1)
1263 die();
1266 if (dyn_runpath != NULL) {
1267 obj->runpath = (char *)obj->strtab + dyn_runpath->d_un.d_val;
1268 if (obj->z_origin)
1269 obj->runpath = origin_subst(obj->runpath, obj->origin_path);
1271 else if (dyn_rpath != NULL) {
1272 obj->rpath = (char *)obj->strtab + dyn_rpath->d_un.d_val;
1273 if (obj->z_origin)
1274 obj->rpath = origin_subst(obj->rpath, obj->origin_path);
1277 if (dyn_soname != NULL)
1278 object_add_name(obj, obj->strtab + dyn_soname->d_un.d_val);
1281 static void
1282 digest_dynamic(Obj_Entry *obj, int early)
1284 const Elf_Dyn *dyn_rpath;
1285 const Elf_Dyn *dyn_soname;
1286 const Elf_Dyn *dyn_runpath;
1288 digest_dynamic1(obj, early, &dyn_rpath, &dyn_soname, &dyn_runpath);
1289 digest_dynamic2(obj, dyn_rpath, dyn_soname, dyn_runpath);
1293 * Process a shared object's program header. This is used only for the
1294 * main program, when the kernel has already loaded the main program
1295 * into memory before calling the dynamic linker. It creates and
1296 * returns an Obj_Entry structure.
1298 static Obj_Entry *
1299 digest_phdr(const Elf_Phdr *phdr, int phnum, caddr_t entry, const char *path)
1301 Obj_Entry *obj;
1302 const Elf_Phdr *phlimit = phdr + phnum;
1303 const Elf_Phdr *ph;
1304 Elf_Addr note_start, note_end;
1305 int nsegs = 0;
1307 obj = obj_new();
1308 for (ph = phdr; ph < phlimit; ph++) {
1309 if (ph->p_type != PT_PHDR)
1310 continue;
1312 obj->phdr = phdr;
1313 obj->phsize = ph->p_memsz;
1314 obj->relocbase = (caddr_t)phdr - ph->p_vaddr;
1315 break;
1318 obj->stack_flags = PF_X | PF_R | PF_W;
1320 for (ph = phdr; ph < phlimit; ph++) {
1321 switch (ph->p_type) {
1323 case PT_INTERP:
1324 obj->interp = (const char *)(ph->p_vaddr + obj->relocbase);
1325 break;
1327 case PT_LOAD:
1328 if (nsegs == 0) { /* First load segment */
1329 obj->vaddrbase = trunc_page(ph->p_vaddr);
1330 obj->mapbase = obj->vaddrbase + obj->relocbase;
1331 obj->textsize = round_page(ph->p_vaddr + ph->p_memsz) -
1332 obj->vaddrbase;
1333 } else { /* Last load segment */
1334 obj->mapsize = round_page(ph->p_vaddr + ph->p_memsz) -
1335 obj->vaddrbase;
1337 nsegs++;
1338 break;
1340 case PT_DYNAMIC:
1341 obj->dynamic = (const Elf_Dyn *)(ph->p_vaddr + obj->relocbase);
1342 break;
1344 case PT_TLS:
1345 obj->tlsindex = 1;
1346 obj->tlssize = ph->p_memsz;
1347 obj->tlsalign = ph->p_align;
1348 obj->tlsinitsize = ph->p_filesz;
1349 obj->tlsinit = (void*)(ph->p_vaddr + obj->relocbase);
1350 break;
1352 case PT_GNU_STACK:
1353 obj->stack_flags = ph->p_flags;
1354 break;
1356 case PT_GNU_RELRO:
1357 obj->relro_page = obj->relocbase + trunc_page(ph->p_vaddr);
1358 obj->relro_size = round_page(ph->p_memsz);
1359 break;
1361 case PT_NOTE:
1362 obj->note_present = true;
1363 note_start = (Elf_Addr)obj->relocbase + ph->p_vaddr;
1364 note_end = note_start + ph->p_filesz;
1365 digest_notes(obj, note_start, note_end);
1366 break;
1369 if (nsegs < 1) {
1370 _rtld_error("%s: too few PT_LOAD segments", path);
1371 return NULL;
1374 obj->entry = entry;
1375 return obj;
1378 void
1379 digest_notes(Obj_Entry *obj, Elf_Addr note_start, Elf_Addr note_end)
1381 const Elf_Note *note;
1382 const char *note_name;
1383 uintptr_t p;
1385 for (note = (const Elf_Note *)note_start; (Elf_Addr)note < note_end;
1386 note = (const Elf_Note *)((const char *)(note + 1) +
1387 roundup2(note->n_namesz, sizeof(Elf32_Addr)) +
1388 roundup2(note->n_descsz, sizeof(Elf32_Addr)))) {
1389 if (note->n_namesz != sizeof(NOTE_VENDOR) ||
1390 note->n_descsz != sizeof(int32_t))
1391 continue;
1392 if (note->n_type != ABI_NOTETYPE &&
1393 note->n_type != CRT_NOINIT_NOTETYPE)
1394 continue;
1395 note_name = (const char *)(note + 1);
1396 if (strncmp(NOTE_VENDOR, note_name, sizeof(NOTE_VENDOR)) != 0)
1397 continue;
1398 switch (note->n_type) {
1399 case ABI_NOTETYPE:
1400 /* DragonFly osrel note */
1401 p = (uintptr_t)(note + 1);
1402 p += roundup2(note->n_namesz, sizeof(Elf32_Addr));
1403 obj->osrel = *(const int32_t *)(p);
1404 dbg("note osrel %d", obj->osrel);
1405 break;
1406 case CRT_NOINIT_NOTETYPE:
1407 /* DragonFly 'crt does not call init' note */
1408 obj->crt_no_init = true;
1409 dbg("note crt_no_init");
1410 break;
1415 static Obj_Entry *
1416 dlcheck(void *handle)
1418 Obj_Entry *obj;
1420 for (obj = obj_list; obj != NULL; obj = obj->next)
1421 if (obj == (Obj_Entry *) handle)
1422 break;
1424 if (obj == NULL || obj->refcount == 0 || obj->dl_refcount == 0) {
1425 _rtld_error("Invalid shared object handle %p", handle);
1426 return NULL;
1428 return obj;
1432 * If the given object is already in the donelist, return true. Otherwise
1433 * add the object to the list and return false.
1435 static bool
1436 donelist_check(DoneList *dlp, const Obj_Entry *obj)
1438 unsigned int i;
1440 for (i = 0; i < dlp->num_used; i++)
1441 if (dlp->objs[i] == obj)
1442 return true;
1444 * Our donelist allocation should always be sufficient. But if
1445 * our threads locking isn't working properly, more shared objects
1446 * could have been loaded since we allocated the list. That should
1447 * never happen, but we'll handle it properly just in case it does.
1449 if (dlp->num_used < dlp->num_alloc)
1450 dlp->objs[dlp->num_used++] = obj;
1451 return false;
1455 * Hash function for symbol table lookup. Don't even think about changing
1456 * this. It is specified by the System V ABI.
1458 unsigned long
1459 elf_hash(const char *name)
1461 const unsigned char *p = (const unsigned char *) name;
1462 unsigned long h = 0;
1463 unsigned long g;
1465 while (*p != '\0') {
1466 h = (h << 4) + *p++;
1467 if ((g = h & 0xf0000000) != 0)
1468 h ^= g >> 24;
1469 h &= ~g;
1471 return h;
1475 * The GNU hash function is the Daniel J. Bernstein hash clipped to 32 bits
1476 * unsigned in case it's implemented with a wider type.
1478 static uint_fast32_t
1479 gnu_hash(const char *s)
1481 uint_fast32_t h;
1482 unsigned char c;
1484 h = 5381;
1485 for (c = *s; c != '\0'; c = *++s)
1486 h = h * 33 + c;
1487 return (h & 0xffffffff);
1491 * Find the library with the given name, and return its full pathname.
1492 * The returned string is dynamically allocated. Generates an error
1493 * message and returns NULL if the library cannot be found.
1495 * If the second argument is non-NULL, then it refers to an already-
1496 * loaded shared object, whose library search path will be searched.
1498 * The search order is:
1499 * DT_RPATH in the referencing file _unless_ DT_RUNPATH is present (1)
1500 * DT_RPATH of the main object if DSO without defined DT_RUNPATH (1)
1501 * LD_LIBRARY_PATH
1502 * DT_RUNPATH in the referencing file
1503 * ldconfig hints (if -z nodefaultlib, filter out /usr/lib from list)
1504 * /usr/lib _unless_ the referencing file is linked with -z nodefaultlib
1506 * (1) Handled in digest_dynamic2 - rpath left NULL if runpath defined.
1508 static char *
1509 find_library(const char *xname, const Obj_Entry *refobj)
1511 char *pathname;
1512 char *name;
1513 bool nodeflib, objgiven;
1515 objgiven = refobj != NULL;
1516 if (strchr(xname, '/') != NULL) { /* Hard coded pathname */
1517 if (xname[0] != '/' && !trust) {
1518 _rtld_error("Absolute pathname required for shared object \"%s\"",
1519 xname);
1520 return NULL;
1522 if (objgiven && refobj->z_origin) {
1523 return (origin_subst(__DECONST(char *, xname),
1524 refobj->origin_path));
1525 } else {
1526 return (xstrdup(xname));
1530 if (libmap_disable || !objgiven ||
1531 (name = lm_find(refobj->path, xname)) == NULL)
1532 name = (char *)xname;
1534 dbg(" Searching for \"%s\"", name);
1536 nodeflib = objgiven ? refobj->z_nodeflib : false;
1537 if ((objgiven &&
1538 (pathname = search_library_path(name, refobj->rpath)) != NULL) ||
1539 (objgiven && refobj->runpath == NULL && refobj != obj_main &&
1540 (pathname = search_library_path(name, obj_main->rpath)) != NULL) ||
1541 (pathname = search_library_path(name, ld_library_path)) != NULL ||
1542 (objgiven &&
1543 (pathname = search_library_path(name, refobj->runpath)) != NULL) ||
1544 (pathname = search_library_path(name, gethints(nodeflib))) != NULL ||
1545 (objgiven && !nodeflib &&
1546 (pathname = search_library_path(name, STANDARD_LIBRARY_PATH)) != NULL))
1547 return (pathname);
1549 if (objgiven && refobj->path != NULL) {
1550 _rtld_error("Shared object \"%s\" not found, required by \"%s\"",
1551 name, basename(refobj->path));
1552 } else {
1553 _rtld_error("Shared object \"%s\" not found", name);
1555 return NULL;
1559 * Given a symbol number in a referencing object, find the corresponding
1560 * definition of the symbol. Returns a pointer to the symbol, or NULL if
1561 * no definition was found. Returns a pointer to the Obj_Entry of the
1562 * defining object via the reference parameter DEFOBJ_OUT.
1564 const Elf_Sym *
1565 find_symdef(unsigned long symnum, const Obj_Entry *refobj,
1566 const Obj_Entry **defobj_out, int flags, SymCache *cache,
1567 RtldLockState *lockstate)
1569 const Elf_Sym *ref;
1570 const Elf_Sym *def;
1571 const Obj_Entry *defobj;
1572 SymLook req;
1573 const char *name;
1574 int res;
1577 * If we have already found this symbol, get the information from
1578 * the cache.
1580 if (symnum >= refobj->dynsymcount)
1581 return NULL; /* Bad object */
1582 if (cache != NULL && cache[symnum].sym != NULL) {
1583 *defobj_out = cache[symnum].obj;
1584 return cache[symnum].sym;
1587 ref = refobj->symtab + symnum;
1588 name = refobj->strtab + ref->st_name;
1589 def = NULL;
1590 defobj = NULL;
1593 * We don't have to do a full scale lookup if the symbol is local.
1594 * We know it will bind to the instance in this load module; to
1595 * which we already have a pointer (ie ref). By not doing a lookup,
1596 * we not only improve performance, but it also avoids unresolvable
1597 * symbols when local symbols are not in the hash table.
1599 * This might occur for TLS module relocations, which simply use
1600 * symbol 0.
1602 if (ELF_ST_BIND(ref->st_info) != STB_LOCAL) {
1603 if (ELF_ST_TYPE(ref->st_info) == STT_SECTION) {
1604 _rtld_error("%s: Bogus symbol table entry %lu", refobj->path,
1605 symnum);
1607 symlook_init(&req, name);
1608 req.flags = flags;
1609 req.ventry = fetch_ventry(refobj, symnum);
1610 req.lockstate = lockstate;
1611 res = symlook_default(&req, refobj);
1612 if (res == 0) {
1613 def = req.sym_out;
1614 defobj = req.defobj_out;
1616 } else {
1617 def = ref;
1618 defobj = refobj;
1622 * If we found no definition and the reference is weak, treat the
1623 * symbol as having the value zero.
1625 if (def == NULL && ELF_ST_BIND(ref->st_info) == STB_WEAK) {
1626 def = &sym_zero;
1627 defobj = obj_main;
1630 if (def != NULL) {
1631 *defobj_out = defobj;
1632 /* Record the information in the cache to avoid subsequent lookups. */
1633 if (cache != NULL) {
1634 cache[symnum].sym = def;
1635 cache[symnum].obj = defobj;
1637 } else {
1638 if (refobj != &obj_rtld)
1639 _rtld_error("%s: Undefined symbol \"%s\"", refobj->path, name);
1641 return def;
1645 * Return the search path from the ldconfig hints file, reading it if
1646 * necessary. If nostdlib is true, then the default search paths are
1647 * not added to result.
1649 * Returns NULL if there are problems with the hints file,
1650 * or if the search path there is empty.
1652 static const char *
1653 gethints(bool nostdlib)
1655 static char *hints, *filtered_path;
1656 struct elfhints_hdr hdr;
1657 struct fill_search_info_args sargs, hargs;
1658 struct dl_serinfo smeta, hmeta, *SLPinfo, *hintinfo;
1659 struct dl_serpath *SLPpath, *hintpath;
1660 char *p;
1661 unsigned int SLPndx, hintndx, fndx, fcount;
1662 int fd;
1663 size_t flen;
1664 bool skip;
1666 /* First call, read the hints file */
1667 if (hints == NULL) {
1668 /* Keep from trying again in case the hints file is bad. */
1669 hints = "";
1671 if ((fd = open(ld_elf_hints_path, O_RDONLY | O_CLOEXEC)) == -1)
1672 return (NULL);
1673 if (read(fd, &hdr, sizeof hdr) != sizeof hdr ||
1674 hdr.magic != ELFHINTS_MAGIC ||
1675 hdr.version != 1) {
1676 close(fd);
1677 return (NULL);
1679 p = xmalloc(hdr.dirlistlen + 1);
1680 if (lseek(fd, hdr.strtab + hdr.dirlist, SEEK_SET) == -1 ||
1681 read(fd, p, hdr.dirlistlen + 1) !=
1682 (ssize_t)hdr.dirlistlen + 1) {
1683 free(p);
1684 close(fd);
1685 return (NULL);
1687 hints = p;
1688 close(fd);
1692 * If caller agreed to receive list which includes the default
1693 * paths, we are done. Otherwise, if we still have not
1694 * calculated filtered result, do it now.
1696 if (!nostdlib)
1697 return (hints[0] != '\0' ? hints : NULL);
1698 if (filtered_path != NULL)
1699 goto filt_ret;
1702 * Obtain the list of all configured search paths, and the
1703 * list of the default paths.
1705 * First estimate the size of the results.
1707 smeta.dls_size = __offsetof(struct dl_serinfo, dls_serpath);
1708 smeta.dls_cnt = 0;
1709 hmeta.dls_size = __offsetof(struct dl_serinfo, dls_serpath);
1710 hmeta.dls_cnt = 0;
1712 sargs.request = RTLD_DI_SERINFOSIZE;
1713 sargs.serinfo = &smeta;
1714 hargs.request = RTLD_DI_SERINFOSIZE;
1715 hargs.serinfo = &hmeta;
1717 path_enumerate(STANDARD_LIBRARY_PATH, fill_search_info, &sargs);
1718 path_enumerate(p, fill_search_info, &hargs);
1720 SLPinfo = xmalloc(smeta.dls_size);
1721 hintinfo = xmalloc(hmeta.dls_size);
1724 * Next fetch both sets of paths.
1726 sargs.request = RTLD_DI_SERINFO;
1727 sargs.serinfo = SLPinfo;
1728 sargs.serpath = &SLPinfo->dls_serpath[0];
1729 sargs.strspace = (char *)&SLPinfo->dls_serpath[smeta.dls_cnt];
1731 hargs.request = RTLD_DI_SERINFO;
1732 hargs.serinfo = hintinfo;
1733 hargs.serpath = &hintinfo->dls_serpath[0];
1734 hargs.strspace = (char *)&hintinfo->dls_serpath[hmeta.dls_cnt];
1736 path_enumerate(STANDARD_LIBRARY_PATH, fill_search_info, &sargs);
1737 path_enumerate(p, fill_search_info, &hargs);
1740 * Now calculate the difference between two sets, by excluding
1741 * standard paths from the full set.
1743 fndx = 0;
1744 fcount = 0;
1745 filtered_path = xmalloc(hdr.dirlistlen + 1);
1746 hintpath = &hintinfo->dls_serpath[0];
1747 for (hintndx = 0; hintndx < hmeta.dls_cnt; hintndx++, hintpath++) {
1748 skip = false;
1749 SLPpath = &SLPinfo->dls_serpath[0];
1751 * Check each standard path against current.
1753 for (SLPndx = 0; SLPndx < smeta.dls_cnt; SLPndx++, SLPpath++) {
1754 /* matched, skip the path */
1755 if (!strcmp(hintpath->dls_name, SLPpath->dls_name)) {
1756 skip = true;
1757 break;
1760 if (skip)
1761 continue;
1763 * Not matched against any standard path, add the path
1764 * to result. Separate consecutive paths with ':'.
1766 if (fcount > 0) {
1767 filtered_path[fndx] = ':';
1768 fndx++;
1770 fcount++;
1771 flen = strlen(hintpath->dls_name);
1772 strncpy((filtered_path + fndx), hintpath->dls_name, flen);
1773 fndx += flen;
1775 filtered_path[fndx] = '\0';
1777 free(SLPinfo);
1778 free(hintinfo);
1780 filt_ret:
1781 return (filtered_path[0] != '\0' ? filtered_path : NULL);
1784 static void
1785 init_dag(Obj_Entry *root)
1787 const Needed_Entry *needed;
1788 const Objlist_Entry *elm;
1789 DoneList donelist;
1791 if (root->dag_inited)
1792 return;
1793 donelist_init(&donelist);
1795 /* Root object belongs to own DAG. */
1796 objlist_push_tail(&root->dldags, root);
1797 objlist_push_tail(&root->dagmembers, root);
1798 donelist_check(&donelist, root);
1801 * Add dependencies of root object to DAG in breadth order
1802 * by exploiting the fact that each new object get added
1803 * to the tail of the dagmembers list.
1805 STAILQ_FOREACH(elm, &root->dagmembers, link) {
1806 for (needed = elm->obj->needed; needed != NULL; needed = needed->next) {
1807 if (needed->obj == NULL || donelist_check(&donelist, needed->obj))
1808 continue;
1809 objlist_push_tail(&needed->obj->dldags, root);
1810 objlist_push_tail(&root->dagmembers, needed->obj);
1813 root->dag_inited = true;
1816 static void
1817 process_nodelete(Obj_Entry *root)
1819 const Objlist_Entry *elm;
1822 * Walk over object DAG and process every dependent object that
1823 * is marked as DF_1_NODELETE. They need to grow their own DAG,
1824 * which then should have its reference upped separately.
1826 STAILQ_FOREACH(elm, &root->dagmembers, link) {
1827 if (elm->obj != NULL && elm->obj->z_nodelete &&
1828 !elm->obj->ref_nodel) {
1829 dbg("obj %s nodelete", elm->obj->path);
1830 init_dag(elm->obj);
1831 ref_dag(elm->obj);
1832 elm->obj->ref_nodel = true;
1838 * Initialize the dynamic linker. The argument is the address at which
1839 * the dynamic linker has been mapped into memory. The primary task of
1840 * this function is to relocate the dynamic linker.
1842 static void
1843 init_rtld(caddr_t mapbase, Elf_Auxinfo **aux_info)
1845 Obj_Entry objtmp; /* Temporary rtld object */
1846 const Elf_Dyn *dyn_rpath;
1847 const Elf_Dyn *dyn_soname;
1848 const Elf_Dyn *dyn_runpath;
1851 * Conjure up an Obj_Entry structure for the dynamic linker.
1853 * The "path" member can't be initialized yet because string constants
1854 * cannot yet be accessed. Below we will set it correctly.
1856 memset(&objtmp, 0, sizeof(objtmp));
1857 objtmp.path = NULL;
1858 objtmp.rtld = true;
1859 objtmp.mapbase = mapbase;
1860 #ifdef PIC
1861 objtmp.relocbase = mapbase;
1862 #endif
1863 if (RTLD_IS_DYNAMIC()) {
1864 objtmp.dynamic = rtld_dynamic(&objtmp);
1865 digest_dynamic1(&objtmp, 1, &dyn_rpath, &dyn_soname, &dyn_runpath);
1866 assert(objtmp.needed == NULL);
1867 assert(!objtmp.textrel);
1870 * Temporarily put the dynamic linker entry into the object list, so
1871 * that symbols can be found.
1874 relocate_objects(&objtmp, true, &objtmp, 0, NULL);
1877 /* Initialize the object list. */
1878 obj_tail = &obj_list;
1880 /* Now that non-local variables can be accesses, copy out obj_rtld. */
1881 memcpy(&obj_rtld, &objtmp, sizeof(obj_rtld));
1883 #ifdef ENABLE_OSRELDATE
1884 if (aux_info[AT_OSRELDATE] != NULL)
1885 osreldate = aux_info[AT_OSRELDATE]->a_un.a_val;
1886 #endif
1888 digest_dynamic2(&obj_rtld, dyn_rpath, dyn_soname, dyn_runpath);
1890 /* Replace the path with a dynamically allocated copy. */
1891 obj_rtld.path = xstrdup(PATH_RTLD);
1893 r_debug.r_brk = r_debug_state;
1894 r_debug.r_state = RT_CONSISTENT;
1898 * Add the init functions from a needed object list (and its recursive
1899 * needed objects) to "list". This is not used directly; it is a helper
1900 * function for initlist_add_objects(). The write lock must be held
1901 * when this function is called.
1903 static void
1904 initlist_add_neededs(Needed_Entry *needed, Objlist *list)
1906 /* Recursively process the successor needed objects. */
1907 if (needed->next != NULL)
1908 initlist_add_neededs(needed->next, list);
1910 /* Process the current needed object. */
1911 if (needed->obj != NULL)
1912 initlist_add_objects(needed->obj, &needed->obj->next, list);
1916 * Scan all of the DAGs rooted in the range of objects from "obj" to
1917 * "tail" and add their init functions to "list". This recurses over
1918 * the DAGs and ensure the proper init ordering such that each object's
1919 * needed libraries are initialized before the object itself. At the
1920 * same time, this function adds the objects to the global finalization
1921 * list "list_fini" in the opposite order. The write lock must be
1922 * held when this function is called.
1924 static void
1925 initlist_add_objects(Obj_Entry *obj, Obj_Entry **tail, Objlist *list)
1928 if (obj->init_scanned || obj->init_done)
1929 return;
1930 obj->init_scanned = true;
1932 /* Recursively process the successor objects. */
1933 if (&obj->next != tail)
1934 initlist_add_objects(obj->next, tail, list);
1936 /* Recursively process the needed objects. */
1937 if (obj->needed != NULL)
1938 initlist_add_neededs(obj->needed, list);
1939 if (obj->needed_filtees != NULL)
1940 initlist_add_neededs(obj->needed_filtees, list);
1941 if (obj->needed_aux_filtees != NULL)
1942 initlist_add_neededs(obj->needed_aux_filtees, list);
1944 /* Add the object to the init list. */
1945 if (obj->preinit_array != (Elf_Addr)NULL || obj->init != (Elf_Addr)NULL ||
1946 obj->init_array != (Elf_Addr)NULL)
1947 objlist_push_tail(list, obj);
1949 /* Add the object to the global fini list in the reverse order. */
1950 if ((obj->fini != (Elf_Addr)NULL || obj->fini_array != (Elf_Addr)NULL)
1951 && !obj->on_fini_list) {
1952 objlist_push_head(&list_fini, obj);
1953 obj->on_fini_list = true;
1957 #ifndef FPTR_TARGET
1958 #define FPTR_TARGET(f) ((Elf_Addr) (f))
1959 #endif
1961 static void
1962 free_needed_filtees(Needed_Entry *n)
1964 Needed_Entry *needed, *needed1;
1966 for (needed = n; needed != NULL; needed = needed->next) {
1967 if (needed->obj != NULL) {
1968 dlclose(needed->obj);
1969 needed->obj = NULL;
1972 for (needed = n; needed != NULL; needed = needed1) {
1973 needed1 = needed->next;
1974 free(needed);
1978 static void
1979 unload_filtees(Obj_Entry *obj)
1982 free_needed_filtees(obj->needed_filtees);
1983 obj->needed_filtees = NULL;
1984 free_needed_filtees(obj->needed_aux_filtees);
1985 obj->needed_aux_filtees = NULL;
1986 obj->filtees_loaded = false;
1989 static void
1990 load_filtee1(Obj_Entry *obj, Needed_Entry *needed, int flags,
1991 RtldLockState *lockstate)
1994 for (; needed != NULL; needed = needed->next) {
1995 needed->obj = dlopen_object(obj->strtab + needed->name, -1, obj,
1996 flags, ((ld_loadfltr || obj->z_loadfltr) ? RTLD_NOW : RTLD_LAZY) |
1997 RTLD_LOCAL, lockstate);
2001 static void
2002 load_filtees(Obj_Entry *obj, int flags, RtldLockState *lockstate)
2005 lock_restart_for_upgrade(lockstate);
2006 if (!obj->filtees_loaded) {
2007 load_filtee1(obj, obj->needed_filtees, flags, lockstate);
2008 load_filtee1(obj, obj->needed_aux_filtees, flags, lockstate);
2009 obj->filtees_loaded = true;
2013 static int
2014 process_needed(Obj_Entry *obj, Needed_Entry *needed, int flags)
2016 Obj_Entry *obj1;
2018 for (; needed != NULL; needed = needed->next) {
2019 obj1 = needed->obj = load_object(obj->strtab + needed->name, -1, obj,
2020 flags & ~RTLD_LO_NOLOAD);
2021 if (obj1 == NULL && !ld_tracing && (flags & RTLD_LO_FILTEES) == 0)
2022 return (-1);
2024 return (0);
2028 * Given a shared object, traverse its list of needed objects, and load
2029 * each of them. Returns 0 on success. Generates an error message and
2030 * returns -1 on failure.
2032 static int
2033 load_needed_objects(Obj_Entry *first, int flags)
2035 Obj_Entry *obj;
2037 for (obj = first; obj != NULL; obj = obj->next) {
2038 if (process_needed(obj, obj->needed, flags) == -1)
2039 return (-1);
2041 return (0);
2044 static int
2045 load_preload_objects(void)
2047 char *p = ld_preload;
2048 Obj_Entry *obj;
2049 static const char delim[] = " \t:;";
2051 if (p == NULL)
2052 return 0;
2054 p += strspn(p, delim);
2055 while (*p != '\0') {
2056 size_t len = strcspn(p, delim);
2057 char savech;
2058 SymLook req;
2059 int res;
2061 savech = p[len];
2062 p[len] = '\0';
2063 obj = load_object(p, -1, NULL, 0);
2064 if (obj == NULL)
2065 return -1; /* XXX - cleanup */
2066 obj->z_interpose = true;
2067 p[len] = savech;
2068 p += len;
2069 p += strspn(p, delim);
2071 /* Check for the magic tracing function */
2072 symlook_init(&req, RTLD_FUNCTRACE);
2073 res = symlook_obj(&req, obj);
2074 if (res == 0) {
2075 rtld_functrace = (void *)(req.defobj_out->relocbase +
2076 req.sym_out->st_value);
2077 rtld_functrace_obj = req.defobj_out;
2080 LD_UTRACE(UTRACE_PRELOAD_FINISHED, NULL, NULL, 0, 0, NULL);
2081 return 0;
2084 static const char *
2085 printable_path(const char *path)
2088 return (path == NULL ? "<unknown>" : path);
2092 * Load a shared object into memory, if it is not already loaded. The
2093 * object may be specified by name or by user-supplied file descriptor
2094 * fd_u. In the later case, the fd_u descriptor is not closed, but its
2095 * duplicate is.
2097 * Returns a pointer to the Obj_Entry for the object. Returns NULL
2098 * on failure.
2100 static Obj_Entry *
2101 load_object(const char *name, int fd_u, const Obj_Entry *refobj, int flags)
2103 Obj_Entry *obj;
2104 int fd;
2105 struct stat sb;
2106 char *path;
2108 if (name != NULL) {
2109 for (obj = obj_list->next; obj != NULL; obj = obj->next) {
2110 if (object_match_name(obj, name))
2111 return (obj);
2114 path = find_library(name, refobj);
2115 if (path == NULL)
2116 return (NULL);
2117 } else
2118 path = NULL;
2121 * If we didn't find a match by pathname, or the name is not
2122 * supplied, open the file and check again by device and inode.
2123 * This avoids false mismatches caused by multiple links or ".."
2124 * in pathnames.
2126 * To avoid a race, we open the file and use fstat() rather than
2127 * using stat().
2129 fd = -1;
2130 if (fd_u == -1) {
2131 if ((fd = open(path, O_RDONLY | O_CLOEXEC)) == -1) {
2132 _rtld_error("Cannot open \"%s\"", path);
2133 free(path);
2134 return (NULL);
2136 } else {
2137 fd = fcntl(fd_u, F_DUPFD_CLOEXEC, 0);
2138 if (fd == -1) {
2140 * Temporary, remove at 3.6 branch
2141 * User might not have latest kernel installed
2142 * so fall back to old command for a while
2144 fd = dup(fd_u);
2145 if (fd == -1 || (fcntl(fd, F_SETFD, FD_CLOEXEC) == -1)) {
2146 _rtld_error("Cannot dup fd");
2147 free(path);
2148 return (NULL);
2152 if (fstat(fd, &sb) == -1) {
2153 _rtld_error("Cannot fstat \"%s\"", printable_path(path));
2154 close(fd);
2155 free(path);
2156 return NULL;
2158 for (obj = obj_list->next; obj != NULL; obj = obj->next)
2159 if (obj->ino == sb.st_ino && obj->dev == sb.st_dev)
2160 break;
2161 if (obj != NULL && name != NULL) {
2162 object_add_name(obj, name);
2163 free(path);
2164 close(fd);
2165 return obj;
2167 if (flags & RTLD_LO_NOLOAD) {
2168 free(path);
2169 close(fd);
2170 return (NULL);
2173 /* First use of this object, so we must map it in */
2174 obj = do_load_object(fd, name, path, &sb, flags);
2175 if (obj == NULL)
2176 free(path);
2177 close(fd);
2179 return obj;
2182 static Obj_Entry *
2183 do_load_object(int fd, const char *name, char *path, struct stat *sbp,
2184 int flags)
2186 Obj_Entry *obj;
2187 struct statfs fs;
2190 * but first, make sure that environment variables haven't been
2191 * used to circumvent the noexec flag on a filesystem.
2193 if (dangerous_ld_env) {
2194 if (fstatfs(fd, &fs) != 0) {
2195 _rtld_error("Cannot fstatfs \"%s\"", printable_path(path));
2196 return NULL;
2198 if (fs.f_flags & MNT_NOEXEC) {
2199 _rtld_error("Cannot execute objects on %s\n", fs.f_mntonname);
2200 return NULL;
2203 dbg("loading \"%s\"", printable_path(path));
2204 obj = map_object(fd, printable_path(path), sbp);
2205 if (obj == NULL)
2206 return NULL;
2209 * If DT_SONAME is present in the object, digest_dynamic2 already
2210 * added it to the object names.
2212 if (name != NULL)
2213 object_add_name(obj, name);
2214 obj->path = path;
2215 digest_dynamic(obj, 0);
2216 dbg("%s valid_hash_sysv %d valid_hash_gnu %d dynsymcount %d", obj->path,
2217 obj->valid_hash_sysv, obj->valid_hash_gnu, obj->dynsymcount);
2218 if (obj->z_noopen && (flags & (RTLD_LO_DLOPEN | RTLD_LO_TRACE)) ==
2219 RTLD_LO_DLOPEN) {
2220 dbg("refusing to load non-loadable \"%s\"", obj->path);
2221 _rtld_error("Cannot dlopen non-loadable %s", obj->path);
2222 munmap(obj->mapbase, obj->mapsize);
2223 obj_free(obj);
2224 return (NULL);
2227 *obj_tail = obj;
2228 obj_tail = &obj->next;
2229 obj_count++;
2230 obj_loads++;
2231 linkmap_add(obj); /* for GDB & dlinfo() */
2232 #if 0
2233 max_stack_flags |= obj->stack_flags;
2234 #endif
2236 dbg(" %p .. %p: %s", obj->mapbase,
2237 obj->mapbase + obj->mapsize - 1, obj->path);
2238 if (obj->textrel)
2239 dbg(" WARNING: %s has impure text", obj->path);
2240 LD_UTRACE(UTRACE_LOAD_OBJECT, obj, obj->mapbase, obj->mapsize, 0,
2241 obj->path);
2243 return obj;
2246 static Obj_Entry *
2247 obj_from_addr(const void *addr)
2249 Obj_Entry *obj;
2251 for (obj = obj_list; obj != NULL; obj = obj->next) {
2252 if (addr < (void *) obj->mapbase)
2253 continue;
2254 if (addr < (void *) (obj->mapbase + obj->mapsize))
2255 return obj;
2257 return NULL;
2261 * If the main program is defined with a .preinit_array section, call
2262 * each function in order. This must occur before the initialization
2263 * of any shared object or the main program.
2265 static void
2266 preinit_main(void)
2268 Elf_Addr *preinit_addr;
2269 int index;
2271 preinit_addr = (Elf_Addr *)obj_main->preinit_array;
2272 if (preinit_addr == NULL)
2273 return;
2275 for (index = 0; index < obj_main->preinit_array_num; index++) {
2276 if (preinit_addr[index] != 0 && preinit_addr[index] != 1) {
2277 dbg("calling preinit function for %s at %p", obj_main->path,
2278 (void *)preinit_addr[index]);
2279 LD_UTRACE(UTRACE_INIT_CALL, obj_main, (void *)preinit_addr[index],
2280 0, 0, obj_main->path);
2281 call_init_pointer(obj_main, preinit_addr[index]);
2287 * Call the finalization functions for each of the objects in "list"
2288 * belonging to the DAG of "root" and referenced once. If NULL "root"
2289 * is specified, every finalization function will be called regardless
2290 * of the reference count and the list elements won't be freed. All of
2291 * the objects are expected to have non-NULL fini functions.
2293 static void
2294 objlist_call_fini(Objlist *list, Obj_Entry *root, RtldLockState *lockstate)
2296 Objlist_Entry *elm;
2297 char *saved_msg;
2298 Elf_Addr *fini_addr;
2299 int index;
2301 assert(root == NULL || root->refcount == 1);
2304 * Preserve the current error message since a fini function might
2305 * call into the dynamic linker and overwrite it.
2307 saved_msg = errmsg_save();
2308 do {
2309 STAILQ_FOREACH(elm, list, link) {
2310 if (root != NULL && (elm->obj->refcount != 1 ||
2311 objlist_find(&root->dagmembers, elm->obj) == NULL))
2312 continue;
2314 /* Remove object from fini list to prevent recursive invocation. */
2315 STAILQ_REMOVE(list, elm, Struct_Objlist_Entry, link);
2317 * XXX: If a dlopen() call references an object while the
2318 * fini function is in progress, we might end up trying to
2319 * unload the referenced object in dlclose() or the object
2320 * won't be unloaded although its fini function has been
2321 * called.
2323 lock_release(rtld_bind_lock, lockstate);
2326 * It is legal to have both DT_FINI and DT_FINI_ARRAY defined. When this
2327 * happens, DT_FINI_ARRAY is processed first, and it is also processed
2328 * backwards. It is possible to encounter DT_FINI_ARRAY elements with
2329 * values of 0 or 1, but they need to be ignored.
2331 fini_addr = (Elf_Addr *)elm->obj->fini_array;
2332 if (fini_addr != NULL && elm->obj->fini_array_num > 0) {
2333 for (index = elm->obj->fini_array_num - 1; index >= 0; index--) {
2334 if (fini_addr[index] != 0 && fini_addr[index] != 1) {
2335 dbg("calling fini array function for %s at %p",
2336 elm->obj->path, (void *)fini_addr[index]);
2337 LD_UTRACE(UTRACE_FINI_CALL, elm->obj,
2338 (void *)fini_addr[index], 0, 0, elm->obj->path);
2339 call_initfini_pointer(elm->obj, fini_addr[index]);
2343 if (elm->obj->fini != (Elf_Addr)NULL) {
2344 dbg("calling fini function for %s at %p", elm->obj->path,
2345 (void *)elm->obj->fini);
2346 LD_UTRACE(UTRACE_FINI_CALL, elm->obj, (void *)elm->obj->fini,
2347 0, 0, elm->obj->path);
2348 call_initfini_pointer(elm->obj, elm->obj->fini);
2350 wlock_acquire(rtld_bind_lock, lockstate);
2351 /* No need to free anything if process is going down. */
2352 if (root != NULL)
2353 free(elm);
2355 * We must restart the list traversal after every fini call
2356 * because a dlclose() call from the fini function or from
2357 * another thread might have modified the reference counts.
2359 break;
2361 } while (elm != NULL);
2362 errmsg_restore(saved_msg);
2366 * Call the initialization functions for each of the objects in
2367 * "list". All of the objects are expected to have non-NULL init
2368 * functions.
2370 static void
2371 objlist_call_init(Objlist *list, RtldLockState *lockstate)
2373 Objlist_Entry *elm;
2374 Obj_Entry *obj;
2375 char *saved_msg;
2376 Elf_Addr *init_addr;
2377 int index;
2380 * Clean init_scanned flag so that objects can be rechecked and
2381 * possibly initialized earlier if any of vectors called below
2382 * cause the change by using dlopen.
2384 for (obj = obj_list; obj != NULL; obj = obj->next)
2385 obj->init_scanned = false;
2388 * Preserve the current error message since an init function might
2389 * call into the dynamic linker and overwrite it.
2391 saved_msg = errmsg_save();
2392 STAILQ_FOREACH(elm, list, link) {
2393 if (elm->obj->init_done) /* Initialized early. */
2394 continue;
2397 * Race: other thread might try to use this object before current
2398 * one completes the initilization. Not much can be done here
2399 * without better locking.
2401 elm->obj->init_done = true;
2402 lock_release(rtld_bind_lock, lockstate);
2405 * It is legal to have both DT_INIT and DT_INIT_ARRAY defined. When
2406 * this happens, DT_INIT is processed first. It is possible to
2407 * encounter DT_INIT_ARRAY elements with values of 0 or 1, but they
2408 * need to be ignored.
2410 if (elm->obj->init != (Elf_Addr)NULL) {
2411 dbg("calling init function for %s at %p", elm->obj->path,
2412 (void *)elm->obj->init);
2413 LD_UTRACE(UTRACE_INIT_CALL, elm->obj, (void *)elm->obj->init,
2414 0, 0, elm->obj->path);
2415 call_initfini_pointer(elm->obj, elm->obj->init);
2417 init_addr = (Elf_Addr *)elm->obj->init_array;
2418 if (init_addr != NULL) {
2419 for (index = 0; index < elm->obj->init_array_num; index++) {
2420 if (init_addr[index] != 0 && init_addr[index] != 1) {
2421 dbg("calling init array function for %s at %p", elm->obj->path,
2422 (void *)init_addr[index]);
2423 LD_UTRACE(UTRACE_INIT_CALL, elm->obj,
2424 (void *)init_addr[index], 0, 0, elm->obj->path);
2425 call_init_pointer(elm->obj, init_addr[index]);
2429 wlock_acquire(rtld_bind_lock, lockstate);
2431 errmsg_restore(saved_msg);
2434 static void
2435 objlist_clear(Objlist *list)
2437 Objlist_Entry *elm;
2439 while (!STAILQ_EMPTY(list)) {
2440 elm = STAILQ_FIRST(list);
2441 STAILQ_REMOVE_HEAD(list, link);
2442 free(elm);
2446 static Objlist_Entry *
2447 objlist_find(Objlist *list, const Obj_Entry *obj)
2449 Objlist_Entry *elm;
2451 STAILQ_FOREACH(elm, list, link)
2452 if (elm->obj == obj)
2453 return elm;
2454 return NULL;
2457 static void
2458 objlist_init(Objlist *list)
2460 STAILQ_INIT(list);
2463 static void
2464 objlist_push_head(Objlist *list, Obj_Entry *obj)
2466 Objlist_Entry *elm;
2468 elm = NEW(Objlist_Entry);
2469 elm->obj = obj;
2470 STAILQ_INSERT_HEAD(list, elm, link);
2473 static void
2474 objlist_push_tail(Objlist *list, Obj_Entry *obj)
2476 Objlist_Entry *elm;
2478 elm = NEW(Objlist_Entry);
2479 elm->obj = obj;
2480 STAILQ_INSERT_TAIL(list, elm, link);
2483 static void
2484 objlist_put_after(Objlist *list, Obj_Entry *listobj, Obj_Entry *obj)
2486 Objlist_Entry *elm, *listelm;
2488 STAILQ_FOREACH(listelm, list, link) {
2489 if (listelm->obj == listobj)
2490 break;
2492 elm = NEW(Objlist_Entry);
2493 elm->obj = obj;
2494 if (listelm != NULL)
2495 STAILQ_INSERT_AFTER(list, listelm, elm, link);
2496 else
2497 STAILQ_INSERT_TAIL(list, elm, link);
2500 static void
2501 objlist_remove(Objlist *list, Obj_Entry *obj)
2503 Objlist_Entry *elm;
2505 if ((elm = objlist_find(list, obj)) != NULL) {
2506 STAILQ_REMOVE(list, elm, Struct_Objlist_Entry, link);
2507 free(elm);
2512 * Relocate dag rooted in the specified object.
2513 * Returns 0 on success, or -1 on failure.
2516 static int
2517 relocate_object_dag(Obj_Entry *root, bool bind_now, Obj_Entry *rtldobj,
2518 int flags, RtldLockState *lockstate)
2520 Objlist_Entry *elm;
2521 int error;
2523 error = 0;
2524 STAILQ_FOREACH(elm, &root->dagmembers, link) {
2525 error = relocate_object(elm->obj, bind_now, rtldobj, flags,
2526 lockstate);
2527 if (error == -1)
2528 break;
2530 return (error);
2534 * Relocate single object.
2535 * Returns 0 on success, or -1 on failure.
2537 static int
2538 relocate_object(Obj_Entry *obj, bool bind_now, Obj_Entry *rtldobj,
2539 int flags, RtldLockState *lockstate)
2542 if (obj->relocated)
2543 return (0);
2544 obj->relocated = true;
2545 if (obj != rtldobj)
2546 dbg("relocating \"%s\"", obj->path);
2548 if (obj->symtab == NULL || obj->strtab == NULL ||
2549 !(obj->valid_hash_sysv || obj->valid_hash_gnu)) {
2550 _rtld_error("%s: Shared object has no run-time symbol table",
2551 obj->path);
2552 return (-1);
2555 if (obj->textrel) {
2556 /* There are relocations to the write-protected text segment. */
2557 if (mprotect(obj->mapbase, obj->textsize,
2558 PROT_READ|PROT_WRITE|PROT_EXEC) == -1) {
2559 _rtld_error("%s: Cannot write-enable text segment: %s",
2560 obj->path, rtld_strerror(errno));
2561 return (-1);
2565 /* Process the non-PLT relocations. */
2566 if (reloc_non_plt(obj, rtldobj, flags, lockstate))
2567 return (-1);
2570 * Reprotect the text segment. Make sure it is included in the
2571 * core dump since we modified it. This unfortunately causes the
2572 * entire text segment to core-out but we don't have much of a
2573 * choice. We could try to only reenable core dumps on pages
2574 * in which relocations occured but that is likely most of the text
2575 * pages anyway, and even that would not work because the rest of
2576 * the text pages would wind up as a read-only OBJT_DEFAULT object
2577 * (created due to our modifications) backed by the original OBJT_VNODE
2578 * object, and the ELF coredump code is currently only able to dump
2579 * vnode records for pure vnode-backed mappings, not vnode backings
2580 * to memory objects.
2582 if (obj->textrel) {
2583 madvise(obj->mapbase, obj->textsize, MADV_CORE);
2584 if (mprotect(obj->mapbase, obj->textsize,
2585 PROT_READ|PROT_EXEC) == -1) {
2586 _rtld_error("%s: Cannot write-protect text segment: %s",
2587 obj->path, rtld_strerror(errno));
2588 return (-1);
2593 /* Set the special PLT or GOT entries. */
2594 init_pltgot(obj);
2596 /* Process the PLT relocations. */
2597 if (reloc_plt(obj) == -1)
2598 return (-1);
2599 /* Relocate the jump slots if we are doing immediate binding. */
2600 if (obj->bind_now || bind_now)
2601 if (reloc_jmpslots(obj, flags, lockstate) == -1)
2602 return (-1);
2605 * Set up the magic number and version in the Obj_Entry. These
2606 * were checked in the crt1.o from the original ElfKit, so we
2607 * set them for backward compatibility.
2609 obj->magic = RTLD_MAGIC;
2610 obj->version = RTLD_VERSION;
2613 * Set relocated data to read-only status if protection specified
2616 if (obj->relro_size) {
2617 if (mprotect(obj->relro_page, obj->relro_size, PROT_READ) == -1) {
2618 _rtld_error("%s: Cannot enforce relro relocation: %s",
2619 obj->path, rtld_strerror(errno));
2620 return (-1);
2623 return (0);
2627 * Relocate newly-loaded shared objects. The argument is a pointer to
2628 * the Obj_Entry for the first such object. All objects from the first
2629 * to the end of the list of objects are relocated. Returns 0 on success,
2630 * or -1 on failure.
2632 static int
2633 relocate_objects(Obj_Entry *first, bool bind_now, Obj_Entry *rtldobj,
2634 int flags, RtldLockState *lockstate)
2636 Obj_Entry *obj;
2637 int error;
2639 for (error = 0, obj = first; obj != NULL; obj = obj->next) {
2640 error = relocate_object(obj, bind_now, rtldobj, flags,
2641 lockstate);
2642 if (error == -1)
2643 break;
2645 return (error);
2649 * The handling of R_MACHINE_IRELATIVE relocations and jumpslots
2650 * referencing STT_GNU_IFUNC symbols is postponed till the other
2651 * relocations are done. The indirect functions specified as
2652 * ifunc are allowed to call other symbols, so we need to have
2653 * objects relocated before asking for resolution from indirects.
2655 * The R_MACHINE_IRELATIVE slots are resolved in greedy fashion,
2656 * instead of the usual lazy handling of PLT slots. It is
2657 * consistent with how GNU does it.
2659 static int
2660 resolve_object_ifunc(Obj_Entry *obj, bool bind_now, int flags,
2661 RtldLockState *lockstate)
2663 if (obj->irelative && reloc_iresolve(obj, lockstate) == -1)
2664 return (-1);
2665 if ((obj->bind_now || bind_now) && obj->gnu_ifunc &&
2666 reloc_gnu_ifunc(obj, flags, lockstate) == -1)
2667 return (-1);
2668 return (0);
2671 static int
2672 resolve_objects_ifunc(Obj_Entry *first, bool bind_now, int flags,
2673 RtldLockState *lockstate)
2675 Obj_Entry *obj;
2677 for (obj = first; obj != NULL; obj = obj->next) {
2678 if (resolve_object_ifunc(obj, bind_now, flags, lockstate) == -1)
2679 return (-1);
2681 return (0);
2684 static int
2685 initlist_objects_ifunc(Objlist *list, bool bind_now, int flags,
2686 RtldLockState *lockstate)
2688 Objlist_Entry *elm;
2690 STAILQ_FOREACH(elm, list, link) {
2691 if (resolve_object_ifunc(elm->obj, bind_now, flags,
2692 lockstate) == -1)
2693 return (-1);
2695 return (0);
2699 * Cleanup procedure. It will be called (by the atexit mechanism) just
2700 * before the process exits.
2702 static void
2703 rtld_exit(void)
2705 RtldLockState lockstate;
2707 wlock_acquire(rtld_bind_lock, &lockstate);
2708 dbg("rtld_exit()");
2709 objlist_call_fini(&list_fini, NULL, &lockstate);
2710 /* No need to remove the items from the list, since we are exiting. */
2711 if (!libmap_disable)
2712 lm_fini();
2713 lock_release(rtld_bind_lock, &lockstate);
2717 * Iterate over a search path, translate each element, and invoke the
2718 * callback on the result.
2720 static void *
2721 path_enumerate(const char *path, path_enum_proc callback, void *arg)
2723 const char *trans;
2724 if (path == NULL)
2725 return (NULL);
2727 path += strspn(path, ":;");
2728 while (*path != '\0') {
2729 size_t len;
2730 char *res;
2732 len = strcspn(path, ":;");
2733 trans = lm_findn(NULL, path, len);
2734 if (trans)
2735 res = callback(trans, strlen(trans), arg);
2736 else
2737 res = callback(path, len, arg);
2739 if (res != NULL)
2740 return (res);
2742 path += len;
2743 path += strspn(path, ":;");
2746 return (NULL);
2749 struct try_library_args {
2750 const char *name;
2751 size_t namelen;
2752 char *buffer;
2753 size_t buflen;
2756 static void *
2757 try_library_path(const char *dir, size_t dirlen, void *param)
2759 struct try_library_args *arg;
2761 arg = param;
2762 if (*dir == '/' || trust) {
2763 char *pathname;
2765 if (dirlen + 1 + arg->namelen + 1 > arg->buflen)
2766 return (NULL);
2768 pathname = arg->buffer;
2769 strncpy(pathname, dir, dirlen);
2770 pathname[dirlen] = '/';
2771 strcpy(pathname + dirlen + 1, arg->name);
2773 dbg(" Trying \"%s\"", pathname);
2774 if (access(pathname, F_OK) == 0) { /* We found it */
2775 pathname = xmalloc(dirlen + 1 + arg->namelen + 1);
2776 strcpy(pathname, arg->buffer);
2777 return (pathname);
2780 return (NULL);
2783 static char *
2784 search_library_path(const char *name, const char *path)
2786 char *p;
2787 struct try_library_args arg;
2789 if (path == NULL)
2790 return NULL;
2792 arg.name = name;
2793 arg.namelen = strlen(name);
2794 arg.buffer = xmalloc(PATH_MAX);
2795 arg.buflen = PATH_MAX;
2797 p = path_enumerate(path, try_library_path, &arg);
2799 free(arg.buffer);
2801 return (p);
2805 dlclose(void *handle)
2807 Obj_Entry *root;
2808 RtldLockState lockstate;
2810 wlock_acquire(rtld_bind_lock, &lockstate);
2811 root = dlcheck(handle);
2812 if (root == NULL) {
2813 lock_release(rtld_bind_lock, &lockstate);
2814 return -1;
2816 LD_UTRACE(UTRACE_DLCLOSE_START, handle, NULL, 0, root->dl_refcount,
2817 root->path);
2819 /* Unreference the object and its dependencies. */
2820 root->dl_refcount--;
2822 if (root->refcount == 1) {
2824 * The object will be no longer referenced, so we must unload it.
2825 * First, call the fini functions.
2827 objlist_call_fini(&list_fini, root, &lockstate);
2829 unref_dag(root);
2831 /* Finish cleaning up the newly-unreferenced objects. */
2832 GDB_STATE(RT_DELETE,&root->linkmap);
2833 unload_object(root);
2834 GDB_STATE(RT_CONSISTENT,NULL);
2835 } else
2836 unref_dag(root);
2838 LD_UTRACE(UTRACE_DLCLOSE_STOP, handle, NULL, 0, 0, NULL);
2839 lock_release(rtld_bind_lock, &lockstate);
2840 return 0;
2843 char *
2844 dlerror(void)
2846 char *msg = error_message;
2847 error_message = NULL;
2848 return msg;
2851 void *
2852 dlopen(const char *name, int mode)
2855 return (rtld_dlopen(name, -1, mode));
2858 void *
2859 fdlopen(int fd, int mode)
2862 return (rtld_dlopen(NULL, fd, mode));
2865 static void *
2866 rtld_dlopen(const char *name, int fd, int mode)
2868 RtldLockState lockstate;
2869 int lo_flags;
2871 LD_UTRACE(UTRACE_DLOPEN_START, NULL, NULL, 0, mode, name);
2872 ld_tracing = (mode & RTLD_TRACE) == 0 ? NULL : "1";
2873 if (ld_tracing != NULL) {
2874 rlock_acquire(rtld_bind_lock, &lockstate);
2875 if (sigsetjmp(lockstate.env, 0) != 0)
2876 lock_upgrade(rtld_bind_lock, &lockstate);
2877 environ = (char **)*get_program_var_addr("environ", &lockstate);
2878 lock_release(rtld_bind_lock, &lockstate);
2880 lo_flags = RTLD_LO_DLOPEN;
2881 if (mode & RTLD_NODELETE)
2882 lo_flags |= RTLD_LO_NODELETE;
2883 if (mode & RTLD_NOLOAD)
2884 lo_flags |= RTLD_LO_NOLOAD;
2885 if (ld_tracing != NULL)
2886 lo_flags |= RTLD_LO_TRACE;
2888 return (dlopen_object(name, fd, obj_main, lo_flags,
2889 mode & (RTLD_MODEMASK | RTLD_GLOBAL), NULL));
2892 static void
2893 dlopen_cleanup(Obj_Entry *obj)
2896 obj->dl_refcount--;
2897 unref_dag(obj);
2898 if (obj->refcount == 0)
2899 unload_object(obj);
2902 static Obj_Entry *
2903 dlopen_object(const char *name, int fd, Obj_Entry *refobj, int lo_flags,
2904 int mode, RtldLockState *lockstate)
2906 Obj_Entry **old_obj_tail;
2907 Obj_Entry *obj;
2908 Objlist initlist;
2909 RtldLockState mlockstate;
2910 int result;
2912 objlist_init(&initlist);
2914 if (lockstate == NULL && !(lo_flags & RTLD_LO_EARLY)) {
2915 wlock_acquire(rtld_bind_lock, &mlockstate);
2916 lockstate = &mlockstate;
2918 GDB_STATE(RT_ADD,NULL);
2920 old_obj_tail = obj_tail;
2921 obj = NULL;
2922 if (name == NULL && fd == -1) {
2923 obj = obj_main;
2924 obj->refcount++;
2925 } else {
2926 obj = load_object(name, fd, refobj, lo_flags);
2929 if (obj) {
2930 obj->dl_refcount++;
2931 if (mode & RTLD_GLOBAL && objlist_find(&list_global, obj) == NULL)
2932 objlist_push_tail(&list_global, obj);
2933 if (*old_obj_tail != NULL) { /* We loaded something new. */
2934 assert(*old_obj_tail == obj);
2935 result = load_needed_objects(obj,
2936 lo_flags & (RTLD_LO_DLOPEN | RTLD_LO_EARLY));
2937 init_dag(obj);
2938 ref_dag(obj);
2939 if (result != -1)
2940 result = rtld_verify_versions(&obj->dagmembers);
2941 if (result != -1 && ld_tracing)
2942 goto trace;
2943 if (result == -1 || relocate_object_dag(obj,
2944 (mode & RTLD_MODEMASK) == RTLD_NOW, &obj_rtld,
2945 (lo_flags & RTLD_LO_EARLY) ? SYMLOOK_EARLY : 0,
2946 lockstate) == -1) {
2947 dlopen_cleanup(obj);
2948 obj = NULL;
2949 } else if (lo_flags & RTLD_LO_EARLY) {
2951 * Do not call the init functions for early loaded
2952 * filtees. The image is still not initialized enough
2953 * for them to work.
2955 * Our object is found by the global object list and
2956 * will be ordered among all init calls done right
2957 * before transferring control to main.
2959 } else {
2960 /* Make list of init functions to call. */
2961 initlist_add_objects(obj, &obj->next, &initlist);
2964 * Process all no_delete objects here, given them own
2965 * DAGs to prevent their dependencies from being unloaded.
2966 * This has to be done after we have loaded all of the
2967 * dependencies, so that we do not miss any.
2969 if (obj != NULL)
2970 process_nodelete(obj);
2971 } else {
2973 * Bump the reference counts for objects on this DAG. If
2974 * this is the first dlopen() call for the object that was
2975 * already loaded as a dependency, initialize the dag
2976 * starting at it.
2978 init_dag(obj);
2979 ref_dag(obj);
2981 if ((lo_flags & RTLD_LO_TRACE) != 0)
2982 goto trace;
2984 if (obj != NULL && ((lo_flags & RTLD_LO_NODELETE) != 0 ||
2985 obj->z_nodelete) && !obj->ref_nodel) {
2986 dbg("obj %s nodelete", obj->path);
2987 ref_dag(obj);
2988 obj->z_nodelete = obj->ref_nodel = true;
2992 LD_UTRACE(UTRACE_DLOPEN_STOP, obj, NULL, 0, obj ? obj->dl_refcount : 0,
2993 name);
2994 GDB_STATE(RT_CONSISTENT,obj ? &obj->linkmap : NULL);
2996 if (!(lo_flags & RTLD_LO_EARLY)) {
2997 map_stacks_exec(lockstate);
3000 if (initlist_objects_ifunc(&initlist, (mode & RTLD_MODEMASK) == RTLD_NOW,
3001 (lo_flags & RTLD_LO_EARLY) ? SYMLOOK_EARLY : 0,
3002 lockstate) == -1) {
3003 objlist_clear(&initlist);
3004 dlopen_cleanup(obj);
3005 if (lockstate == &mlockstate)
3006 lock_release(rtld_bind_lock, lockstate);
3007 return (NULL);
3010 if (!(lo_flags & RTLD_LO_EARLY)) {
3011 /* Call the init functions. */
3012 objlist_call_init(&initlist, lockstate);
3014 objlist_clear(&initlist);
3015 if (lockstate == &mlockstate)
3016 lock_release(rtld_bind_lock, lockstate);
3017 return obj;
3018 trace:
3019 trace_loaded_objects(obj);
3020 if (lockstate == &mlockstate)
3021 lock_release(rtld_bind_lock, lockstate);
3022 exit(0);
3025 static void *
3026 do_dlsym(void *handle, const char *name, void *retaddr, const Ver_Entry *ve,
3027 int flags)
3029 DoneList donelist;
3030 const Obj_Entry *obj, *defobj;
3031 const Elf_Sym *def;
3032 SymLook req;
3033 RtldLockState lockstate;
3034 tls_index ti;
3035 int res;
3037 def = NULL;
3038 defobj = NULL;
3039 symlook_init(&req, name);
3040 req.ventry = ve;
3041 req.flags = flags | SYMLOOK_IN_PLT;
3042 req.lockstate = &lockstate;
3044 rlock_acquire(rtld_bind_lock, &lockstate);
3045 if (sigsetjmp(lockstate.env, 0) != 0)
3046 lock_upgrade(rtld_bind_lock, &lockstate);
3047 if (handle == NULL || handle == RTLD_NEXT ||
3048 handle == RTLD_DEFAULT || handle == RTLD_SELF) {
3050 if ((obj = obj_from_addr(retaddr)) == NULL) {
3051 _rtld_error("Cannot determine caller's shared object");
3052 lock_release(rtld_bind_lock, &lockstate);
3053 return NULL;
3055 if (handle == NULL) { /* Just the caller's shared object. */
3056 res = symlook_obj(&req, obj);
3057 if (res == 0) {
3058 def = req.sym_out;
3059 defobj = req.defobj_out;
3061 } else if (handle == RTLD_NEXT || /* Objects after caller's */
3062 handle == RTLD_SELF) { /* ... caller included */
3063 if (handle == RTLD_NEXT)
3064 obj = obj->next;
3065 for (; obj != NULL; obj = obj->next) {
3066 res = symlook_obj(&req, obj);
3067 if (res == 0) {
3068 if (def == NULL ||
3069 ELF_ST_BIND(req.sym_out->st_info) != STB_WEAK) {
3070 def = req.sym_out;
3071 defobj = req.defobj_out;
3072 if (ELF_ST_BIND(def->st_info) != STB_WEAK)
3073 break;
3078 * Search the dynamic linker itself, and possibly resolve the
3079 * symbol from there. This is how the application links to
3080 * dynamic linker services such as dlopen.
3082 if (def == NULL || ELF_ST_BIND(def->st_info) == STB_WEAK) {
3083 res = symlook_obj(&req, &obj_rtld);
3084 if (res == 0) {
3085 def = req.sym_out;
3086 defobj = req.defobj_out;
3089 } else {
3090 assert(handle == RTLD_DEFAULT);
3091 res = symlook_default(&req, obj);
3092 if (res == 0) {
3093 defobj = req.defobj_out;
3094 def = req.sym_out;
3097 } else {
3098 if ((obj = dlcheck(handle)) == NULL) {
3099 lock_release(rtld_bind_lock, &lockstate);
3100 return NULL;
3103 donelist_init(&donelist);
3104 if (obj->mainprog) {
3105 /* Handle obtained by dlopen(NULL, ...) implies global scope. */
3106 res = symlook_global(&req, &donelist);
3107 if (res == 0) {
3108 def = req.sym_out;
3109 defobj = req.defobj_out;
3112 * Search the dynamic linker itself, and possibly resolve the
3113 * symbol from there. This is how the application links to
3114 * dynamic linker services such as dlopen.
3116 if (def == NULL || ELF_ST_BIND(def->st_info) == STB_WEAK) {
3117 res = symlook_obj(&req, &obj_rtld);
3118 if (res == 0) {
3119 def = req.sym_out;
3120 defobj = req.defobj_out;
3124 else {
3125 /* Search the whole DAG rooted at the given object. */
3126 res = symlook_list(&req, &obj->dagmembers, &donelist);
3127 if (res == 0) {
3128 def = req.sym_out;
3129 defobj = req.defobj_out;
3134 if (def != NULL) {
3135 lock_release(rtld_bind_lock, &lockstate);
3138 * The value required by the caller is derived from the value
3139 * of the symbol. For the ia64 architecture, we need to
3140 * construct a function descriptor which the caller can use to
3141 * call the function with the right 'gp' value. For other
3142 * architectures and for non-functions, the value is simply
3143 * the relocated value of the symbol.
3145 if (ELF_ST_TYPE(def->st_info) == STT_FUNC)
3146 return (make_function_pointer(def, defobj));
3147 else if (ELF_ST_TYPE(def->st_info) == STT_GNU_IFUNC)
3148 return (rtld_resolve_ifunc(defobj, def));
3149 else if (ELF_ST_TYPE(def->st_info) == STT_TLS) {
3150 ti.ti_module = defobj->tlsindex;
3151 ti.ti_offset = def->st_value;
3152 return (__tls_get_addr(&ti));
3153 } else
3154 return (defobj->relocbase + def->st_value);
3157 _rtld_error("Undefined symbol \"%s\"", name);
3158 lock_release(rtld_bind_lock, &lockstate);
3159 return NULL;
3162 void *
3163 dlsym(void *handle, const char *name)
3165 return do_dlsym(handle, name, __builtin_return_address(0), NULL,
3166 SYMLOOK_DLSYM);
3169 dlfunc_t
3170 dlfunc(void *handle, const char *name)
3172 union {
3173 void *d;
3174 dlfunc_t f;
3175 } rv;
3177 rv.d = do_dlsym(handle, name, __builtin_return_address(0), NULL,
3178 SYMLOOK_DLSYM);
3179 return (rv.f);
3182 void *
3183 dlvsym(void *handle, const char *name, const char *version)
3185 Ver_Entry ventry;
3187 ventry.name = version;
3188 ventry.file = NULL;
3189 ventry.hash = elf_hash(version);
3190 ventry.flags= 0;
3191 return do_dlsym(handle, name, __builtin_return_address(0), &ventry,
3192 SYMLOOK_DLSYM);
3196 _rtld_addr_phdr(const void *addr, struct dl_phdr_info *phdr_info)
3198 const Obj_Entry *obj;
3199 RtldLockState lockstate;
3201 rlock_acquire(rtld_bind_lock, &lockstate);
3202 obj = obj_from_addr(addr);
3203 if (obj == NULL) {
3204 _rtld_error("No shared object contains address");
3205 lock_release(rtld_bind_lock, &lockstate);
3206 return (0);
3208 rtld_fill_dl_phdr_info(obj, phdr_info);
3209 lock_release(rtld_bind_lock, &lockstate);
3210 return (1);
3214 dladdr(const void *addr, Dl_info *info)
3216 const Obj_Entry *obj;
3217 const Elf_Sym *def;
3218 void *symbol_addr;
3219 unsigned long symoffset;
3220 RtldLockState lockstate;
3222 rlock_acquire(rtld_bind_lock, &lockstate);
3223 obj = obj_from_addr(addr);
3224 if (obj == NULL) {
3225 _rtld_error("No shared object contains address");
3226 lock_release(rtld_bind_lock, &lockstate);
3227 return 0;
3229 info->dli_fname = obj->path;
3230 info->dli_fbase = obj->mapbase;
3231 info->dli_saddr = NULL;
3232 info->dli_sname = NULL;
3235 * Walk the symbol list looking for the symbol whose address is
3236 * closest to the address sent in.
3238 for (symoffset = 0; symoffset < obj->dynsymcount; symoffset++) {
3239 def = obj->symtab + symoffset;
3242 * For skip the symbol if st_shndx is either SHN_UNDEF or
3243 * SHN_COMMON.
3245 if (def->st_shndx == SHN_UNDEF || def->st_shndx == SHN_COMMON)
3246 continue;
3249 * If the symbol is greater than the specified address, or if it
3250 * is further away from addr than the current nearest symbol,
3251 * then reject it.
3253 symbol_addr = obj->relocbase + def->st_value;
3254 if (symbol_addr > addr || symbol_addr < info->dli_saddr)
3255 continue;
3257 /* Update our idea of the nearest symbol. */
3258 info->dli_sname = obj->strtab + def->st_name;
3259 info->dli_saddr = symbol_addr;
3261 /* Exact match? */
3262 if (info->dli_saddr == addr)
3263 break;
3265 lock_release(rtld_bind_lock, &lockstate);
3266 return 1;
3270 dlinfo(void *handle, int request, void *p)
3272 const Obj_Entry *obj;
3273 RtldLockState lockstate;
3274 int error;
3276 rlock_acquire(rtld_bind_lock, &lockstate);
3278 if (handle == NULL || handle == RTLD_SELF) {
3279 void *retaddr;
3281 retaddr = __builtin_return_address(0); /* __GNUC__ only */
3282 if ((obj = obj_from_addr(retaddr)) == NULL)
3283 _rtld_error("Cannot determine caller's shared object");
3284 } else
3285 obj = dlcheck(handle);
3287 if (obj == NULL) {
3288 lock_release(rtld_bind_lock, &lockstate);
3289 return (-1);
3292 error = 0;
3293 switch (request) {
3294 case RTLD_DI_LINKMAP:
3295 *((struct link_map const **)p) = &obj->linkmap;
3296 break;
3297 case RTLD_DI_ORIGIN:
3298 error = rtld_dirname(obj->path, p);
3299 break;
3301 case RTLD_DI_SERINFOSIZE:
3302 case RTLD_DI_SERINFO:
3303 error = do_search_info(obj, request, (struct dl_serinfo *)p);
3304 break;
3306 default:
3307 _rtld_error("Invalid request %d passed to dlinfo()", request);
3308 error = -1;
3311 lock_release(rtld_bind_lock, &lockstate);
3313 return (error);
3316 static void
3317 rtld_fill_dl_phdr_info(const Obj_Entry *obj, struct dl_phdr_info *phdr_info)
3320 phdr_info->dlpi_addr = (Elf_Addr)obj->relocbase;
3321 phdr_info->dlpi_name = STAILQ_FIRST(&obj->names) ?
3322 STAILQ_FIRST(&obj->names)->name : obj->path;
3323 phdr_info->dlpi_phdr = obj->phdr;
3324 phdr_info->dlpi_phnum = obj->phsize / sizeof(obj->phdr[0]);
3325 phdr_info->dlpi_tls_modid = obj->tlsindex;
3326 phdr_info->dlpi_tls_data = obj->tlsinit;
3327 phdr_info->dlpi_adds = obj_loads;
3328 phdr_info->dlpi_subs = obj_loads - obj_count;
3332 dl_iterate_phdr(__dl_iterate_hdr_callback callback, void *param)
3334 struct dl_phdr_info phdr_info;
3335 const Obj_Entry *obj;
3336 RtldLockState bind_lockstate, phdr_lockstate;
3337 int error;
3339 wlock_acquire(rtld_phdr_lock, &phdr_lockstate);
3340 rlock_acquire(rtld_bind_lock, &bind_lockstate);
3342 error = 0;
3344 for (obj = obj_list; obj != NULL; obj = obj->next) {
3345 rtld_fill_dl_phdr_info(obj, &phdr_info);
3346 if ((error = callback(&phdr_info, sizeof phdr_info, param)) != 0)
3347 break;
3350 if (error == 0) {
3351 rtld_fill_dl_phdr_info(&obj_rtld, &phdr_info);
3352 error = callback(&phdr_info, sizeof(phdr_info), param);
3355 lock_release(rtld_bind_lock, &bind_lockstate);
3356 lock_release(rtld_phdr_lock, &phdr_lockstate);
3358 return (error);
3361 static void *
3362 fill_search_info(const char *dir, size_t dirlen, void *param)
3364 struct fill_search_info_args *arg;
3366 arg = param;
3368 if (arg->request == RTLD_DI_SERINFOSIZE) {
3369 arg->serinfo->dls_cnt ++;
3370 arg->serinfo->dls_size += sizeof(struct dl_serpath) + dirlen + 1;
3371 } else {
3372 struct dl_serpath *s_entry;
3374 s_entry = arg->serpath;
3375 s_entry->dls_name = arg->strspace;
3376 s_entry->dls_flags = arg->flags;
3378 strncpy(arg->strspace, dir, dirlen);
3379 arg->strspace[dirlen] = '\0';
3381 arg->strspace += dirlen + 1;
3382 arg->serpath++;
3385 return (NULL);
3388 static int
3389 do_search_info(const Obj_Entry *obj, int request, struct dl_serinfo *info)
3391 struct dl_serinfo _info;
3392 struct fill_search_info_args args;
3394 args.request = RTLD_DI_SERINFOSIZE;
3395 args.serinfo = &_info;
3397 _info.dls_size = __offsetof(struct dl_serinfo, dls_serpath);
3398 _info.dls_cnt = 0;
3400 path_enumerate(obj->rpath, fill_search_info, &args);
3401 path_enumerate(ld_library_path, fill_search_info, &args);
3402 path_enumerate(obj->runpath, fill_search_info, &args);
3403 path_enumerate(gethints(obj->z_nodeflib), fill_search_info, &args);
3404 if (!obj->z_nodeflib)
3405 path_enumerate(STANDARD_LIBRARY_PATH, fill_search_info, &args);
3408 if (request == RTLD_DI_SERINFOSIZE) {
3409 info->dls_size = _info.dls_size;
3410 info->dls_cnt = _info.dls_cnt;
3411 return (0);
3414 if (info->dls_cnt != _info.dls_cnt || info->dls_size != _info.dls_size) {
3415 _rtld_error("Uninitialized Dl_serinfo struct passed to dlinfo()");
3416 return (-1);
3419 args.request = RTLD_DI_SERINFO;
3420 args.serinfo = info;
3421 args.serpath = &info->dls_serpath[0];
3422 args.strspace = (char *)&info->dls_serpath[_info.dls_cnt];
3424 args.flags = LA_SER_RUNPATH;
3425 if (path_enumerate(obj->rpath, fill_search_info, &args) != NULL)
3426 return (-1);
3428 args.flags = LA_SER_LIBPATH;
3429 if (path_enumerate(ld_library_path, fill_search_info, &args) != NULL)
3430 return (-1);
3432 args.flags = LA_SER_RUNPATH;
3433 if (path_enumerate(obj->runpath, fill_search_info, &args) != NULL)
3434 return (-1);
3436 args.flags = LA_SER_CONFIG;
3437 if (path_enumerate(gethints(obj->z_nodeflib), fill_search_info, &args)
3438 != NULL)
3439 return (-1);
3441 args.flags = LA_SER_DEFAULT;
3442 if (!obj->z_nodeflib &&
3443 path_enumerate(STANDARD_LIBRARY_PATH, fill_search_info, &args) != NULL)
3444 return (-1);
3445 return (0);
3448 static int
3449 rtld_dirname(const char *path, char *bname)
3451 const char *endp;
3453 /* Empty or NULL string gets treated as "." */
3454 if (path == NULL || *path == '\0') {
3455 bname[0] = '.';
3456 bname[1] = '\0';
3457 return (0);
3460 /* Strip trailing slashes */
3461 endp = path + strlen(path) - 1;
3462 while (endp > path && *endp == '/')
3463 endp--;
3465 /* Find the start of the dir */
3466 while (endp > path && *endp != '/')
3467 endp--;
3469 /* Either the dir is "/" or there are no slashes */
3470 if (endp == path) {
3471 bname[0] = *endp == '/' ? '/' : '.';
3472 bname[1] = '\0';
3473 return (0);
3474 } else {
3475 do {
3476 endp--;
3477 } while (endp > path && *endp == '/');
3480 if (endp - path + 2 > PATH_MAX)
3482 _rtld_error("Filename is too long: %s", path);
3483 return(-1);
3486 strncpy(bname, path, endp - path + 1);
3487 bname[endp - path + 1] = '\0';
3488 return (0);
3491 static int
3492 rtld_dirname_abs(const char *path, char *base)
3494 char base_rel[PATH_MAX];
3496 if (rtld_dirname(path, base) == -1)
3497 return (-1);
3498 if (base[0] == '/')
3499 return (0);
3500 if (getcwd(base_rel, sizeof(base_rel)) == NULL ||
3501 strlcat(base_rel, "/", sizeof(base_rel)) >= sizeof(base_rel) ||
3502 strlcat(base_rel, base, sizeof(base_rel)) >= sizeof(base_rel))
3503 return (-1);
3504 strcpy(base, base_rel);
3505 return (0);
3508 static void
3509 linkmap_add(Obj_Entry *obj)
3511 struct link_map *l = &obj->linkmap;
3512 struct link_map *prev;
3514 obj->linkmap.l_name = obj->path;
3515 obj->linkmap.l_addr = obj->mapbase;
3516 obj->linkmap.l_ld = obj->dynamic;
3517 #ifdef __mips__
3518 /* GDB needs load offset on MIPS to use the symbols */
3519 obj->linkmap.l_offs = obj->relocbase;
3520 #endif
3522 if (r_debug.r_map == NULL) {
3523 r_debug.r_map = l;
3524 return;
3528 * Scan to the end of the list, but not past the entry for the
3529 * dynamic linker, which we want to keep at the very end.
3531 for (prev = r_debug.r_map;
3532 prev->l_next != NULL && prev->l_next != &obj_rtld.linkmap;
3533 prev = prev->l_next)
3536 /* Link in the new entry. */
3537 l->l_prev = prev;
3538 l->l_next = prev->l_next;
3539 if (l->l_next != NULL)
3540 l->l_next->l_prev = l;
3541 prev->l_next = l;
3544 static void
3545 linkmap_delete(Obj_Entry *obj)
3547 struct link_map *l = &obj->linkmap;
3549 if (l->l_prev == NULL) {
3550 if ((r_debug.r_map = l->l_next) != NULL)
3551 l->l_next->l_prev = NULL;
3552 return;
3555 if ((l->l_prev->l_next = l->l_next) != NULL)
3556 l->l_next->l_prev = l->l_prev;
3560 * Function for the debugger to set a breakpoint on to gain control.
3562 * The two parameters allow the debugger to easily find and determine
3563 * what the runtime loader is doing and to whom it is doing it.
3565 * When the loadhook trap is hit (r_debug_state, set at program
3566 * initialization), the arguments can be found on the stack:
3568 * +8 struct link_map *m
3569 * +4 struct r_debug *rd
3570 * +0 RetAddr
3572 void
3573 r_debug_state(struct r_debug* rd, struct link_map *m)
3576 * The following is a hack to force the compiler to emit calls to
3577 * this function, even when optimizing. If the function is empty,
3578 * the compiler is not obliged to emit any code for calls to it,
3579 * even when marked __noinline. However, gdb depends on those
3580 * calls being made.
3582 __asm __volatile("" : : : "memory");
3586 * Get address of the pointer variable in the main program.
3587 * Prefer non-weak symbol over the weak one.
3589 static const void **
3590 get_program_var_addr(const char *name, RtldLockState *lockstate)
3592 SymLook req;
3593 DoneList donelist;
3595 symlook_init(&req, name);
3596 req.lockstate = lockstate;
3597 donelist_init(&donelist);
3598 if (symlook_global(&req, &donelist) != 0)
3599 return (NULL);
3600 if (ELF_ST_TYPE(req.sym_out->st_info) == STT_FUNC)
3601 return ((const void **)make_function_pointer(req.sym_out,
3602 req.defobj_out));
3603 else if (ELF_ST_TYPE(req.sym_out->st_info) == STT_GNU_IFUNC)
3604 return ((const void **)rtld_resolve_ifunc(req.defobj_out, req.sym_out));
3605 else
3606 return ((const void **)(req.defobj_out->relocbase +
3607 req.sym_out->st_value));
3611 * Set a pointer variable in the main program to the given value. This
3612 * is used to set key variables such as "environ" before any of the
3613 * init functions are called.
3615 static void
3616 set_program_var(const char *name, const void *value)
3618 const void **addr;
3620 if ((addr = get_program_var_addr(name, NULL)) != NULL) {
3621 dbg("\"%s\": *%p <-- %p", name, addr, value);
3622 *addr = value;
3627 * Search the global objects, including dependencies and main object,
3628 * for the given symbol.
3630 static int
3631 symlook_global(SymLook *req, DoneList *donelist)
3633 SymLook req1;
3634 const Objlist_Entry *elm;
3635 int res;
3637 symlook_init_from_req(&req1, req);
3639 /* Search all objects loaded at program start up. */
3640 if (req->defobj_out == NULL ||
3641 ELF_ST_BIND(req->sym_out->st_info) == STB_WEAK) {
3642 res = symlook_list(&req1, &list_main, donelist);
3643 if (res == 0 && (req->defobj_out == NULL ||
3644 ELF_ST_BIND(req1.sym_out->st_info) != STB_WEAK)) {
3645 req->sym_out = req1.sym_out;
3646 req->defobj_out = req1.defobj_out;
3647 assert(req->defobj_out != NULL);
3651 /* Search all DAGs whose roots are RTLD_GLOBAL objects. */
3652 STAILQ_FOREACH(elm, &list_global, link) {
3653 if (req->defobj_out != NULL &&
3654 ELF_ST_BIND(req->sym_out->st_info) != STB_WEAK)
3655 break;
3656 res = symlook_list(&req1, &elm->obj->dagmembers, donelist);
3657 if (res == 0 && (req->defobj_out == NULL ||
3658 ELF_ST_BIND(req1.sym_out->st_info) != STB_WEAK)) {
3659 req->sym_out = req1.sym_out;
3660 req->defobj_out = req1.defobj_out;
3661 assert(req->defobj_out != NULL);
3665 return (req->sym_out != NULL ? 0 : ESRCH);
3669 * This is a special version of getenv which is far more efficient
3670 * at finding LD_ environment vars.
3672 static
3673 const char *
3674 _getenv_ld(const char *id)
3676 const char *envp;
3677 int i, j;
3678 int idlen = strlen(id);
3680 if (ld_index == LD_ARY_CACHE)
3681 return(getenv(id));
3682 if (ld_index == 0) {
3683 for (i = j = 0; (envp = environ[i]) != NULL && j < LD_ARY_CACHE; ++i) {
3684 if (envp[0] == 'L' && envp[1] == 'D' && envp[2] == '_')
3685 ld_ary[j++] = envp;
3687 if (j == 0)
3688 ld_ary[j++] = "";
3689 ld_index = j;
3691 for (i = ld_index - 1; i >= 0; --i) {
3692 if (strncmp(ld_ary[i], id, idlen) == 0 && ld_ary[i][idlen] == '=')
3693 return(ld_ary[i] + idlen + 1);
3695 return(NULL);
3699 * Given a symbol name in a referencing object, find the corresponding
3700 * definition of the symbol. Returns a pointer to the symbol, or NULL if
3701 * no definition was found. Returns a pointer to the Obj_Entry of the
3702 * defining object via the reference parameter DEFOBJ_OUT.
3704 static int
3705 symlook_default(SymLook *req, const Obj_Entry *refobj)
3707 DoneList donelist;
3708 const Objlist_Entry *elm;
3709 SymLook req1;
3710 int res;
3712 donelist_init(&donelist);
3713 symlook_init_from_req(&req1, req);
3715 /* Look first in the referencing object if linked symbolically. */
3716 if (refobj->symbolic && !donelist_check(&donelist, refobj)) {
3717 res = symlook_obj(&req1, refobj);
3718 if (res == 0) {
3719 req->sym_out = req1.sym_out;
3720 req->defobj_out = req1.defobj_out;
3721 assert(req->defobj_out != NULL);
3725 symlook_global(req, &donelist);
3727 /* Search all dlopened DAGs containing the referencing object. */
3728 STAILQ_FOREACH(elm, &refobj->dldags, link) {
3729 if (req->sym_out != NULL &&
3730 ELF_ST_BIND(req->sym_out->st_info) != STB_WEAK)
3731 break;
3732 res = symlook_list(&req1, &elm->obj->dagmembers, &donelist);
3733 if (res == 0 && (req->sym_out == NULL ||
3734 ELF_ST_BIND(req1.sym_out->st_info) != STB_WEAK)) {
3735 req->sym_out = req1.sym_out;
3736 req->defobj_out = req1.defobj_out;
3737 assert(req->defobj_out != NULL);
3742 * Search the dynamic linker itself, and possibly resolve the
3743 * symbol from there. This is how the application links to
3744 * dynamic linker services such as dlopen.
3746 if (req->sym_out == NULL ||
3747 ELF_ST_BIND(req->sym_out->st_info) == STB_WEAK) {
3748 res = symlook_obj(&req1, &obj_rtld);
3749 if (res == 0) {
3750 req->sym_out = req1.sym_out;
3751 req->defobj_out = req1.defobj_out;
3752 assert(req->defobj_out != NULL);
3756 return (req->sym_out != NULL ? 0 : ESRCH);
3759 static int
3760 symlook_list(SymLook *req, const Objlist *objlist, DoneList *dlp)
3762 const Elf_Sym *def;
3763 const Obj_Entry *defobj;
3764 const Objlist_Entry *elm;
3765 SymLook req1;
3766 int res;
3768 def = NULL;
3769 defobj = NULL;
3770 STAILQ_FOREACH(elm, objlist, link) {
3771 if (donelist_check(dlp, elm->obj))
3772 continue;
3773 symlook_init_from_req(&req1, req);
3774 if ((res = symlook_obj(&req1, elm->obj)) == 0) {
3775 if (def == NULL || ELF_ST_BIND(req1.sym_out->st_info) != STB_WEAK) {
3776 def = req1.sym_out;
3777 defobj = req1.defobj_out;
3778 if (ELF_ST_BIND(def->st_info) != STB_WEAK)
3779 break;
3783 if (def != NULL) {
3784 req->sym_out = def;
3785 req->defobj_out = defobj;
3786 return (0);
3788 return (ESRCH);
3792 * Search the chain of DAGS cointed to by the given Needed_Entry
3793 * for a symbol of the given name. Each DAG is scanned completely
3794 * before advancing to the next one. Returns a pointer to the symbol,
3795 * or NULL if no definition was found.
3797 static int
3798 symlook_needed(SymLook *req, const Needed_Entry *needed, DoneList *dlp)
3800 const Elf_Sym *def;
3801 const Needed_Entry *n;
3802 const Obj_Entry *defobj;
3803 SymLook req1;
3804 int res;
3806 def = NULL;
3807 defobj = NULL;
3808 symlook_init_from_req(&req1, req);
3809 for (n = needed; n != NULL; n = n->next) {
3810 if (n->obj == NULL ||
3811 (res = symlook_list(&req1, &n->obj->dagmembers, dlp)) != 0)
3812 continue;
3813 if (def == NULL || ELF_ST_BIND(req1.sym_out->st_info) != STB_WEAK) {
3814 def = req1.sym_out;
3815 defobj = req1.defobj_out;
3816 if (ELF_ST_BIND(def->st_info) != STB_WEAK)
3817 break;
3820 if (def != NULL) {
3821 req->sym_out = def;
3822 req->defobj_out = defobj;
3823 return (0);
3825 return (ESRCH);
3829 * Search the symbol table of a single shared object for a symbol of
3830 * the given name and version, if requested. Returns a pointer to the
3831 * symbol, or NULL if no definition was found. If the object is
3832 * filter, return filtered symbol from filtee.
3834 * The symbol's hash value is passed in for efficiency reasons; that
3835 * eliminates many recomputations of the hash value.
3838 symlook_obj(SymLook *req, const Obj_Entry *obj)
3840 DoneList donelist;
3841 SymLook req1;
3842 int flags, res, mres;
3845 * If there is at least one valid hash at this point, we prefer to
3846 * use the faster GNU version if available.
3848 if (obj->valid_hash_gnu)
3849 mres = symlook_obj1_gnu(req, obj);
3850 else if (obj->valid_hash_sysv)
3851 mres = symlook_obj1_sysv(req, obj);
3852 else
3853 return (EINVAL);
3855 if (mres == 0) {
3856 if (obj->needed_filtees != NULL) {
3857 flags = (req->flags & SYMLOOK_EARLY) ? RTLD_LO_EARLY : 0;
3858 load_filtees(__DECONST(Obj_Entry *, obj), flags, req->lockstate);
3859 donelist_init(&donelist);
3860 symlook_init_from_req(&req1, req);
3861 res = symlook_needed(&req1, obj->needed_filtees, &donelist);
3862 if (res == 0) {
3863 req->sym_out = req1.sym_out;
3864 req->defobj_out = req1.defobj_out;
3866 return (res);
3868 if (obj->needed_aux_filtees != NULL) {
3869 flags = (req->flags & SYMLOOK_EARLY) ? RTLD_LO_EARLY : 0;
3870 load_filtees(__DECONST(Obj_Entry *, obj), flags, req->lockstate);
3871 donelist_init(&donelist);
3872 symlook_init_from_req(&req1, req);
3873 res = symlook_needed(&req1, obj->needed_aux_filtees, &donelist);
3874 if (res == 0) {
3875 req->sym_out = req1.sym_out;
3876 req->defobj_out = req1.defobj_out;
3877 return (res);
3881 return (mres);
3884 /* Symbol match routine common to both hash functions */
3885 static bool
3886 matched_symbol(SymLook *req, const Obj_Entry *obj, Sym_Match_Result *result,
3887 const unsigned long symnum)
3889 Elf_Versym verndx;
3890 const Elf_Sym *symp;
3891 const char *strp;
3893 symp = obj->symtab + symnum;
3894 strp = obj->strtab + symp->st_name;
3896 switch (ELF_ST_TYPE(symp->st_info)) {
3897 case STT_FUNC:
3898 case STT_NOTYPE:
3899 case STT_OBJECT:
3900 case STT_COMMON:
3901 case STT_GNU_IFUNC:
3902 if (symp->st_value == 0)
3903 return (false);
3904 /* fallthrough */
3905 case STT_TLS:
3906 if (symp->st_shndx != SHN_UNDEF)
3907 break;
3908 else if (((req->flags & SYMLOOK_IN_PLT) == 0) &&
3909 (ELF_ST_TYPE(symp->st_info) == STT_FUNC))
3910 break;
3911 /* fallthrough */
3912 default:
3913 return (false);
3915 if (strcmp(req->name, strp) != 0)
3916 return (false);
3918 if (req->ventry == NULL) {
3919 if (obj->versyms != NULL) {
3920 verndx = VER_NDX(obj->versyms[symnum]);
3921 if (verndx > obj->vernum) {
3922 _rtld_error(
3923 "%s: symbol %s references wrong version %d",
3924 obj->path, obj->strtab + symnum, verndx);
3925 return (false);
3928 * If we are not called from dlsym (i.e. this
3929 * is a normal relocation from unversioned
3930 * binary), accept the symbol immediately if
3931 * it happens to have first version after this
3932 * shared object became versioned. Otherwise,
3933 * if symbol is versioned and not hidden,
3934 * remember it. If it is the only symbol with
3935 * this name exported by the shared object, it
3936 * will be returned as a match by the calling
3937 * function. If symbol is global (verndx < 2)
3938 * accept it unconditionally.
3940 if ((req->flags & SYMLOOK_DLSYM) == 0 &&
3941 verndx == VER_NDX_GIVEN) {
3942 result->sym_out = symp;
3943 return (true);
3945 else if (verndx >= VER_NDX_GIVEN) {
3946 if ((obj->versyms[symnum] & VER_NDX_HIDDEN)
3947 == 0) {
3948 if (result->vsymp == NULL)
3949 result->vsymp = symp;
3950 result->vcount++;
3952 return (false);
3955 result->sym_out = symp;
3956 return (true);
3958 if (obj->versyms == NULL) {
3959 if (object_match_name(obj, req->ventry->name)) {
3960 _rtld_error("%s: object %s should provide version %s "
3961 "for symbol %s", obj_rtld.path, obj->path,
3962 req->ventry->name, obj->strtab + symnum);
3963 return (false);
3965 } else {
3966 verndx = VER_NDX(obj->versyms[symnum]);
3967 if (verndx > obj->vernum) {
3968 _rtld_error("%s: symbol %s references wrong version %d",
3969 obj->path, obj->strtab + symnum, verndx);
3970 return (false);
3972 if (obj->vertab[verndx].hash != req->ventry->hash ||
3973 strcmp(obj->vertab[verndx].name, req->ventry->name)) {
3975 * Version does not match. Look if this is a
3976 * global symbol and if it is not hidden. If
3977 * global symbol (verndx < 2) is available,
3978 * use it. Do not return symbol if we are
3979 * called by dlvsym, because dlvsym looks for
3980 * a specific version and default one is not
3981 * what dlvsym wants.
3983 if ((req->flags & SYMLOOK_DLSYM) ||
3984 (verndx >= VER_NDX_GIVEN) ||
3985 (obj->versyms[symnum] & VER_NDX_HIDDEN))
3986 return (false);
3989 result->sym_out = symp;
3990 return (true);
3994 * Search for symbol using SysV hash function.
3995 * obj->buckets is known not to be NULL at this point; the test for this was
3996 * performed with the obj->valid_hash_sysv assignment.
3998 static int
3999 symlook_obj1_sysv(SymLook *req, const Obj_Entry *obj)
4001 unsigned long symnum;
4002 Sym_Match_Result matchres;
4004 matchres.sym_out = NULL;
4005 matchres.vsymp = NULL;
4006 matchres.vcount = 0;
4008 for (symnum = obj->buckets[req->hash % obj->nbuckets];
4009 symnum != STN_UNDEF; symnum = obj->chains[symnum]) {
4010 if (symnum >= obj->nchains)
4011 return (ESRCH); /* Bad object */
4013 if (matched_symbol(req, obj, &matchres, symnum)) {
4014 req->sym_out = matchres.sym_out;
4015 req->defobj_out = obj;
4016 return (0);
4019 if (matchres.vcount == 1) {
4020 req->sym_out = matchres.vsymp;
4021 req->defobj_out = obj;
4022 return (0);
4024 return (ESRCH);
4027 /* Search for symbol using GNU hash function */
4028 static int
4029 symlook_obj1_gnu(SymLook *req, const Obj_Entry *obj)
4031 Elf_Addr bloom_word;
4032 const Elf32_Word *hashval;
4033 Elf32_Word bucket;
4034 Sym_Match_Result matchres;
4035 unsigned int h1, h2;
4036 unsigned long symnum;
4038 matchres.sym_out = NULL;
4039 matchres.vsymp = NULL;
4040 matchres.vcount = 0;
4042 /* Pick right bitmask word from Bloom filter array */
4043 bloom_word = obj->bloom_gnu[(req->hash_gnu / __ELF_WORD_SIZE) &
4044 obj->maskwords_bm_gnu];
4046 /* Calculate modulus word size of gnu hash and its derivative */
4047 h1 = req->hash_gnu & (__ELF_WORD_SIZE - 1);
4048 h2 = ((req->hash_gnu >> obj->shift2_gnu) & (__ELF_WORD_SIZE - 1));
4050 /* Filter out the "definitely not in set" queries */
4051 if (((bloom_word >> h1) & (bloom_word >> h2) & 1) == 0)
4052 return (ESRCH);
4054 /* Locate hash chain and corresponding value element*/
4055 bucket = obj->buckets_gnu[req->hash_gnu % obj->nbuckets_gnu];
4056 if (bucket == 0)
4057 return (ESRCH);
4058 hashval = &obj->chain_zero_gnu[bucket];
4059 do {
4060 if (((*hashval ^ req->hash_gnu) >> 1) == 0) {
4061 symnum = hashval - obj->chain_zero_gnu;
4062 if (matched_symbol(req, obj, &matchres, symnum)) {
4063 req->sym_out = matchres.sym_out;
4064 req->defobj_out = obj;
4065 return (0);
4068 } while ((*hashval++ & 1) == 0);
4069 if (matchres.vcount == 1) {
4070 req->sym_out = matchres.vsymp;
4071 req->defobj_out = obj;
4072 return (0);
4074 return (ESRCH);
4077 static void
4078 trace_loaded_objects(Obj_Entry *obj)
4080 const char *fmt1, *fmt2, *fmt, *main_local, *list_containers;
4081 int c;
4083 if ((main_local = _getenv_ld("LD_TRACE_LOADED_OBJECTS_PROGNAME")) == NULL)
4084 main_local = "";
4086 if ((fmt1 = _getenv_ld("LD_TRACE_LOADED_OBJECTS_FMT1")) == NULL)
4087 fmt1 = "\t%o => %p (%x)\n";
4089 if ((fmt2 = _getenv_ld("LD_TRACE_LOADED_OBJECTS_FMT2")) == NULL)
4090 fmt2 = "\t%o (%x)\n";
4092 list_containers = _getenv_ld("LD_TRACE_LOADED_OBJECTS_ALL");
4094 for (; obj; obj = obj->next) {
4095 Needed_Entry *needed;
4096 char *name, *path;
4097 bool is_lib;
4099 if (list_containers && obj->needed != NULL)
4100 rtld_printf("%s:\n", obj->path);
4101 for (needed = obj->needed; needed; needed = needed->next) {
4102 if (needed->obj != NULL) {
4103 if (needed->obj->traced && !list_containers)
4104 continue;
4105 needed->obj->traced = true;
4106 path = needed->obj->path;
4107 } else
4108 path = "not found";
4110 name = (char *)obj->strtab + needed->name;
4111 is_lib = strncmp(name, "lib", 3) == 0; /* XXX - bogus */
4113 fmt = is_lib ? fmt1 : fmt2;
4114 while ((c = *fmt++) != '\0') {
4115 switch (c) {
4116 default:
4117 rtld_putchar(c);
4118 continue;
4119 case '\\':
4120 switch (c = *fmt) {
4121 case '\0':
4122 continue;
4123 case 'n':
4124 rtld_putchar('\n');
4125 break;
4126 case 't':
4127 rtld_putchar('\t');
4128 break;
4130 break;
4131 case '%':
4132 switch (c = *fmt) {
4133 case '\0':
4134 continue;
4135 case '%':
4136 default:
4137 rtld_putchar(c);
4138 break;
4139 case 'A':
4140 rtld_putstr(main_local);
4141 break;
4142 case 'a':
4143 rtld_putstr(obj_main->path);
4144 break;
4145 case 'o':
4146 rtld_putstr(name);
4147 break;
4148 case 'p':
4149 rtld_putstr(path);
4150 break;
4151 case 'x':
4152 rtld_printf("%p", needed->obj ? needed->obj->mapbase :
4154 break;
4156 break;
4158 ++fmt;
4165 * Unload a dlopened object and its dependencies from memory and from
4166 * our data structures. It is assumed that the DAG rooted in the
4167 * object has already been unreferenced, and that the object has a
4168 * reference count of 0.
4170 static void
4171 unload_object(Obj_Entry *root)
4173 Obj_Entry *obj;
4174 Obj_Entry **linkp;
4176 assert(root->refcount == 0);
4179 * Pass over the DAG removing unreferenced objects from
4180 * appropriate lists.
4182 unlink_object(root);
4184 /* Unmap all objects that are no longer referenced. */
4185 linkp = &obj_list->next;
4186 while ((obj = *linkp) != NULL) {
4187 if (obj->refcount == 0) {
4188 LD_UTRACE(UTRACE_UNLOAD_OBJECT, obj, obj->mapbase, obj->mapsize, 0,
4189 obj->path);
4190 dbg("unloading \"%s\"", obj->path);
4191 unload_filtees(root);
4192 munmap(obj->mapbase, obj->mapsize);
4193 linkmap_delete(obj);
4194 *linkp = obj->next;
4195 obj_count--;
4196 obj_free(obj);
4197 } else
4198 linkp = &obj->next;
4200 obj_tail = linkp;
4203 static void
4204 unlink_object(Obj_Entry *root)
4206 Objlist_Entry *elm;
4208 if (root->refcount == 0) {
4209 /* Remove the object from the RTLD_GLOBAL list. */
4210 objlist_remove(&list_global, root);
4212 /* Remove the object from all objects' DAG lists. */
4213 STAILQ_FOREACH(elm, &root->dagmembers, link) {
4214 objlist_remove(&elm->obj->dldags, root);
4215 if (elm->obj != root)
4216 unlink_object(elm->obj);
4221 static void
4222 ref_dag(Obj_Entry *root)
4224 Objlist_Entry *elm;
4226 assert(root->dag_inited);
4227 STAILQ_FOREACH(elm, &root->dagmembers, link)
4228 elm->obj->refcount++;
4231 static void
4232 unref_dag(Obj_Entry *root)
4234 Objlist_Entry *elm;
4236 assert(root->dag_inited);
4237 STAILQ_FOREACH(elm, &root->dagmembers, link)
4238 elm->obj->refcount--;
4242 * Common code for MD __tls_get_addr().
4244 void *
4245 tls_get_addr_common(Elf_Addr** dtvp, int index, size_t offset)
4247 Elf_Addr* dtv = *dtvp;
4248 RtldLockState lockstate;
4250 /* Check dtv generation in case new modules have arrived */
4251 if (dtv[0] != tls_dtv_generation) {
4252 Elf_Addr* newdtv;
4253 int to_copy;
4255 wlock_acquire(rtld_bind_lock, &lockstate);
4256 newdtv = xcalloc(tls_max_index + 2, sizeof(Elf_Addr));
4257 to_copy = dtv[1];
4258 if (to_copy > tls_max_index)
4259 to_copy = tls_max_index;
4260 memcpy(&newdtv[2], &dtv[2], to_copy * sizeof(Elf_Addr));
4261 newdtv[0] = tls_dtv_generation;
4262 newdtv[1] = tls_max_index;
4263 free(dtv);
4264 lock_release(rtld_bind_lock, &lockstate);
4265 dtv = *dtvp = newdtv;
4268 /* Dynamically allocate module TLS if necessary */
4269 if (!dtv[index + 1]) {
4270 /* Signal safe, wlock will block out signals. */
4271 wlock_acquire(rtld_bind_lock, &lockstate);
4272 if (!dtv[index + 1])
4273 dtv[index + 1] = (Elf_Addr)allocate_module_tls(index);
4274 lock_release(rtld_bind_lock, &lockstate);
4276 return (void*) (dtv[index + 1] + offset);
4279 #if defined(RTLD_STATIC_TLS_VARIANT_II)
4282 * Allocate the static TLS area. Return a pointer to the TCB. The
4283 * static area is based on negative offsets relative to the tcb.
4285 * The TCB contains an errno pointer for the system call layer, but because
4286 * we are the RTLD we really have no idea how the caller was compiled so
4287 * the information has to be passed in. errno can either be:
4289 * type 0 errno is a simple non-TLS global pointer.
4290 * (special case for e.g. libc_rtld)
4291 * type 1 errno accessed by GOT entry (dynamically linked programs)
4292 * type 2 errno accessed by %gs:OFFSET (statically linked programs)
4294 struct tls_tcb *
4295 allocate_tls(Obj_Entry *objs)
4297 Obj_Entry *obj;
4298 size_t data_size;
4299 size_t dtv_size;
4300 struct tls_tcb *tcb;
4301 Elf_Addr *dtv;
4302 Elf_Addr addr;
4305 * Allocate the new TCB. static TLS storage is placed just before the
4306 * TCB to support the %gs:OFFSET (negative offset) model.
4308 data_size = (tls_static_space + RTLD_STATIC_TLS_ALIGN_MASK) &
4309 ~RTLD_STATIC_TLS_ALIGN_MASK;
4310 tcb = malloc(data_size + sizeof(*tcb));
4311 tcb = (void *)((char *)tcb + data_size); /* actual tcb location */
4313 dtv_size = (tls_max_index + 2) * sizeof(Elf_Addr);
4314 dtv = malloc(dtv_size);
4315 bzero(dtv, dtv_size);
4317 #ifdef RTLD_TCB_HAS_SELF_POINTER
4318 tcb->tcb_self = tcb;
4319 #endif
4320 tcb->tcb_dtv = dtv;
4321 tcb->tcb_pthread = NULL;
4323 dtv[0] = tls_dtv_generation;
4324 dtv[1] = tls_max_index;
4326 for (obj = objs; obj; obj = obj->next) {
4327 if (obj->tlsoffset) {
4328 addr = (Elf_Addr)tcb - obj->tlsoffset;
4329 memset((void *)(addr + obj->tlsinitsize),
4330 0, obj->tlssize - obj->tlsinitsize);
4331 if (obj->tlsinit)
4332 memcpy((void*) addr, obj->tlsinit, obj->tlsinitsize);
4333 dtv[obj->tlsindex + 1] = addr;
4336 return(tcb);
4339 void
4340 free_tls(struct tls_tcb *tcb)
4342 Elf_Addr *dtv;
4343 int dtv_size, i;
4344 Elf_Addr tls_start, tls_end;
4345 size_t data_size;
4347 data_size = (tls_static_space + RTLD_STATIC_TLS_ALIGN_MASK) &
4348 ~RTLD_STATIC_TLS_ALIGN_MASK;
4350 dtv = tcb->tcb_dtv;
4351 dtv_size = dtv[1];
4352 tls_end = (Elf_Addr)tcb;
4353 tls_start = (Elf_Addr)tcb - data_size;
4354 for (i = 0; i < dtv_size; i++) {
4355 if (dtv[i+2] != 0 && (dtv[i+2] < tls_start || dtv[i+2] > tls_end)) {
4356 free((void *)dtv[i+2]);
4360 free((void*) tls_start);
4363 #else
4364 #error "Unsupported TLS layout"
4365 #endif
4368 * Allocate TLS block for module with given index.
4370 void *
4371 allocate_module_tls(int index)
4373 Obj_Entry* obj;
4374 char* p;
4376 for (obj = obj_list; obj; obj = obj->next) {
4377 if (obj->tlsindex == index)
4378 break;
4380 if (!obj) {
4381 _rtld_error("Can't find module with TLS index %d", index);
4382 die();
4385 p = malloc(obj->tlssize);
4386 if (p == NULL) {
4387 _rtld_error("Cannot allocate TLS block for index %d", index);
4388 die();
4390 memcpy(p, obj->tlsinit, obj->tlsinitsize);
4391 memset(p + obj->tlsinitsize, 0, obj->tlssize - obj->tlsinitsize);
4393 return p;
4396 bool
4397 allocate_tls_offset(Obj_Entry *obj)
4399 size_t off;
4401 if (obj->tls_done)
4402 return true;
4404 if (obj->tlssize == 0) {
4405 obj->tls_done = true;
4406 return true;
4409 if (obj->tlsindex == 1)
4410 off = calculate_first_tls_offset(obj->tlssize, obj->tlsalign);
4411 else
4412 off = calculate_tls_offset(tls_last_offset, tls_last_size,
4413 obj->tlssize, obj->tlsalign);
4416 * If we have already fixed the size of the static TLS block, we
4417 * must stay within that size. When allocating the static TLS, we
4418 * leave a small amount of space spare to be used for dynamically
4419 * loading modules which use static TLS.
4421 if (tls_static_space) {
4422 if (calculate_tls_end(off, obj->tlssize) > tls_static_space)
4423 return false;
4426 tls_last_offset = obj->tlsoffset = off;
4427 tls_last_size = obj->tlssize;
4428 obj->tls_done = true;
4430 return true;
4433 void
4434 free_tls_offset(Obj_Entry *obj)
4436 #ifdef RTLD_STATIC_TLS_VARIANT_II
4438 * If we were the last thing to allocate out of the static TLS
4439 * block, we give our space back to the 'allocator'. This is a
4440 * simplistic workaround to allow libGL.so.1 to be loaded and
4441 * unloaded multiple times. We only handle the Variant II
4442 * mechanism for now - this really needs a proper allocator.
4444 if (calculate_tls_end(obj->tlsoffset, obj->tlssize)
4445 == calculate_tls_end(tls_last_offset, tls_last_size)) {
4446 tls_last_offset -= obj->tlssize;
4447 tls_last_size = 0;
4449 #endif
4452 struct tls_tcb *
4453 _rtld_allocate_tls(void)
4455 struct tls_tcb *new_tcb;
4456 RtldLockState lockstate;
4458 wlock_acquire(rtld_bind_lock, &lockstate);
4459 new_tcb = allocate_tls(obj_list);
4460 lock_release(rtld_bind_lock, &lockstate);
4461 return (new_tcb);
4464 void
4465 _rtld_free_tls(struct tls_tcb *tcb)
4467 RtldLockState lockstate;
4469 wlock_acquire(rtld_bind_lock, &lockstate);
4470 free_tls(tcb);
4471 lock_release(rtld_bind_lock, &lockstate);
4474 static void
4475 object_add_name(Obj_Entry *obj, const char *name)
4477 Name_Entry *entry;
4478 size_t len;
4480 len = strlen(name);
4481 entry = malloc(sizeof(Name_Entry) + len);
4483 if (entry != NULL) {
4484 strcpy(entry->name, name);
4485 STAILQ_INSERT_TAIL(&obj->names, entry, link);
4489 static int
4490 object_match_name(const Obj_Entry *obj, const char *name)
4492 Name_Entry *entry;
4494 STAILQ_FOREACH(entry, &obj->names, link) {
4495 if (strcmp(name, entry->name) == 0)
4496 return (1);
4498 return (0);
4501 static Obj_Entry *
4502 locate_dependency(const Obj_Entry *obj, const char *name)
4504 const Objlist_Entry *entry;
4505 const Needed_Entry *needed;
4507 STAILQ_FOREACH(entry, &list_main, link) {
4508 if (object_match_name(entry->obj, name))
4509 return entry->obj;
4512 for (needed = obj->needed; needed != NULL; needed = needed->next) {
4513 if (strcmp(obj->strtab + needed->name, name) == 0 ||
4514 (needed->obj != NULL && object_match_name(needed->obj, name))) {
4516 * If there is DT_NEEDED for the name we are looking for,
4517 * we are all set. Note that object might not be found if
4518 * dependency was not loaded yet, so the function can
4519 * return NULL here. This is expected and handled
4520 * properly by the caller.
4522 return (needed->obj);
4525 _rtld_error("%s: Unexpected inconsistency: dependency %s not found",
4526 obj->path, name);
4527 die();
4530 static int
4531 check_object_provided_version(Obj_Entry *refobj, const Obj_Entry *depobj,
4532 const Elf_Vernaux *vna)
4534 const Elf_Verdef *vd;
4535 const char *vername;
4537 vername = refobj->strtab + vna->vna_name;
4538 vd = depobj->verdef;
4539 if (vd == NULL) {
4540 _rtld_error("%s: version %s required by %s not defined",
4541 depobj->path, vername, refobj->path);
4542 return (-1);
4544 for (;;) {
4545 if (vd->vd_version != VER_DEF_CURRENT) {
4546 _rtld_error("%s: Unsupported version %d of Elf_Verdef entry",
4547 depobj->path, vd->vd_version);
4548 return (-1);
4550 if (vna->vna_hash == vd->vd_hash) {
4551 const Elf_Verdaux *aux = (const Elf_Verdaux *)
4552 ((char *)vd + vd->vd_aux);
4553 if (strcmp(vername, depobj->strtab + aux->vda_name) == 0)
4554 return (0);
4556 if (vd->vd_next == 0)
4557 break;
4558 vd = (const Elf_Verdef *) ((char *)vd + vd->vd_next);
4560 if (vna->vna_flags & VER_FLG_WEAK)
4561 return (0);
4562 _rtld_error("%s: version %s required by %s not found",
4563 depobj->path, vername, refobj->path);
4564 return (-1);
4567 static int
4568 rtld_verify_object_versions(Obj_Entry *obj)
4570 const Elf_Verneed *vn;
4571 const Elf_Verdef *vd;
4572 const Elf_Verdaux *vda;
4573 const Elf_Vernaux *vna;
4574 const Obj_Entry *depobj;
4575 int maxvernum, vernum;
4577 if (obj->ver_checked)
4578 return (0);
4579 obj->ver_checked = true;
4581 maxvernum = 0;
4583 * Walk over defined and required version records and figure out
4584 * max index used by any of them. Do very basic sanity checking
4585 * while there.
4587 vn = obj->verneed;
4588 while (vn != NULL) {
4589 if (vn->vn_version != VER_NEED_CURRENT) {
4590 _rtld_error("%s: Unsupported version %d of Elf_Verneed entry",
4591 obj->path, vn->vn_version);
4592 return (-1);
4594 vna = (const Elf_Vernaux *) ((char *)vn + vn->vn_aux);
4595 for (;;) {
4596 vernum = VER_NEED_IDX(vna->vna_other);
4597 if (vernum > maxvernum)
4598 maxvernum = vernum;
4599 if (vna->vna_next == 0)
4600 break;
4601 vna = (const Elf_Vernaux *) ((char *)vna + vna->vna_next);
4603 if (vn->vn_next == 0)
4604 break;
4605 vn = (const Elf_Verneed *) ((char *)vn + vn->vn_next);
4608 vd = obj->verdef;
4609 while (vd != NULL) {
4610 if (vd->vd_version != VER_DEF_CURRENT) {
4611 _rtld_error("%s: Unsupported version %d of Elf_Verdef entry",
4612 obj->path, vd->vd_version);
4613 return (-1);
4615 vernum = VER_DEF_IDX(vd->vd_ndx);
4616 if (vernum > maxvernum)
4617 maxvernum = vernum;
4618 if (vd->vd_next == 0)
4619 break;
4620 vd = (const Elf_Verdef *) ((char *)vd + vd->vd_next);
4623 if (maxvernum == 0)
4624 return (0);
4627 * Store version information in array indexable by version index.
4628 * Verify that object version requirements are satisfied along the
4629 * way.
4631 obj->vernum = maxvernum + 1;
4632 obj->vertab = xcalloc(obj->vernum, sizeof(Ver_Entry));
4634 vd = obj->verdef;
4635 while (vd != NULL) {
4636 if ((vd->vd_flags & VER_FLG_BASE) == 0) {
4637 vernum = VER_DEF_IDX(vd->vd_ndx);
4638 assert(vernum <= maxvernum);
4639 vda = (const Elf_Verdaux *)((char *)vd + vd->vd_aux);
4640 obj->vertab[vernum].hash = vd->vd_hash;
4641 obj->vertab[vernum].name = obj->strtab + vda->vda_name;
4642 obj->vertab[vernum].file = NULL;
4643 obj->vertab[vernum].flags = 0;
4645 if (vd->vd_next == 0)
4646 break;
4647 vd = (const Elf_Verdef *) ((char *)vd + vd->vd_next);
4650 vn = obj->verneed;
4651 while (vn != NULL) {
4652 depobj = locate_dependency(obj, obj->strtab + vn->vn_file);
4653 if (depobj == NULL)
4654 return (-1);
4655 vna = (const Elf_Vernaux *) ((char *)vn + vn->vn_aux);
4656 for (;;) {
4657 if (check_object_provided_version(obj, depobj, vna))
4658 return (-1);
4659 vernum = VER_NEED_IDX(vna->vna_other);
4660 assert(vernum <= maxvernum);
4661 obj->vertab[vernum].hash = vna->vna_hash;
4662 obj->vertab[vernum].name = obj->strtab + vna->vna_name;
4663 obj->vertab[vernum].file = obj->strtab + vn->vn_file;
4664 obj->vertab[vernum].flags = (vna->vna_other & VER_NEED_HIDDEN) ?
4665 VER_INFO_HIDDEN : 0;
4666 if (vna->vna_next == 0)
4667 break;
4668 vna = (const Elf_Vernaux *) ((char *)vna + vna->vna_next);
4670 if (vn->vn_next == 0)
4671 break;
4672 vn = (const Elf_Verneed *) ((char *)vn + vn->vn_next);
4674 return 0;
4677 static int
4678 rtld_verify_versions(const Objlist *objlist)
4680 Objlist_Entry *entry;
4681 int rc;
4683 rc = 0;
4684 STAILQ_FOREACH(entry, objlist, link) {
4686 * Skip dummy objects or objects that have their version requirements
4687 * already checked.
4689 if (entry->obj->strtab == NULL || entry->obj->vertab != NULL)
4690 continue;
4691 if (rtld_verify_object_versions(entry->obj) == -1) {
4692 rc = -1;
4693 if (ld_tracing == NULL)
4694 break;
4697 if (rc == 0 || ld_tracing != NULL)
4698 rc = rtld_verify_object_versions(&obj_rtld);
4699 return rc;
4702 const Ver_Entry *
4703 fetch_ventry(const Obj_Entry *obj, unsigned long symnum)
4705 Elf_Versym vernum;
4707 if (obj->vertab) {
4708 vernum = VER_NDX(obj->versyms[symnum]);
4709 if (vernum >= obj->vernum) {
4710 _rtld_error("%s: symbol %s has wrong verneed value %d",
4711 obj->path, obj->strtab + symnum, vernum);
4712 } else if (obj->vertab[vernum].hash != 0) {
4713 return &obj->vertab[vernum];
4716 return NULL;
4720 _rtld_get_stack_prot(void)
4723 return (stack_prot);
4726 static void
4727 map_stacks_exec(RtldLockState *lockstate)
4729 return;
4731 * Stack protection must be implemented in the kernel before the dynamic
4732 * linker can handle PT_GNU_STACK sections.
4733 * The following is the FreeBSD implementation of map_stacks_exec()
4734 * void (*thr_map_stacks_exec)(void);
4736 * if ((max_stack_flags & PF_X) == 0 || (stack_prot & PROT_EXEC) != 0)
4737 * return;
4738 * thr_map_stacks_exec = (void (*)(void))(uintptr_t)
4739 * get_program_var_addr("__pthread_map_stacks_exec", lockstate);
4740 * if (thr_map_stacks_exec != NULL) {
4741 * stack_prot |= PROT_EXEC;
4742 * thr_map_stacks_exec();
4747 void
4748 symlook_init(SymLook *dst, const char *name)
4751 bzero(dst, sizeof(*dst));
4752 dst->name = name;
4753 dst->hash = elf_hash(name);
4754 dst->hash_gnu = gnu_hash(name);
4757 static void
4758 symlook_init_from_req(SymLook *dst, const SymLook *src)
4761 dst->name = src->name;
4762 dst->hash = src->hash;
4763 dst->hash_gnu = src->hash_gnu;
4764 dst->ventry = src->ventry;
4765 dst->flags = src->flags;
4766 dst->defobj_out = NULL;
4767 dst->sym_out = NULL;
4768 dst->lockstate = src->lockstate;
4771 #ifdef ENABLE_OSRELDATE
4773 * Overrides for libc_pic-provided functions.
4777 __getosreldate(void)
4779 size_t len;
4780 int oid[2];
4781 int error, osrel;
4783 if (osreldate != 0)
4784 return (osreldate);
4786 oid[0] = CTL_KERN;
4787 oid[1] = KERN_OSRELDATE;
4788 osrel = 0;
4789 len = sizeof(osrel);
4790 error = sysctl(oid, 2, &osrel, &len, NULL, 0);
4791 if (error == 0 && osrel > 0 && len == sizeof(osrel))
4792 osreldate = osrel;
4793 return (osreldate);
4795 #endif
4798 * No unresolved symbols for rtld.
4800 void
4801 __pthread_cxa_finalize(struct dl_phdr_info *a)
4805 const char *
4806 rtld_strerror(int errnum)
4809 if (errnum < 0 || errnum >= sys_nerr)
4810 return ("Unknown error");
4811 return (sys_errlist[errnum]);