Kernel - Enable the TCP inflight limiter by default, but with generous values.
[dragonfly.git] / contrib / libevent / event.c
blob15bf14cf3b48f5c8fc8aea107a42259ff251b54f
1 /*
2 * Copyright (c) 2000-2004 Niels Provos <provos@citi.umich.edu>
3 * All rights reserved.
5 * Redistribution and use in source and binary forms, with or without
6 * modification, are permitted provided that the following conditions
7 * are met:
8 * 1. Redistributions of source code must retain the above copyright
9 * notice, this list of conditions and the following disclaimer.
10 * 2. Redistributions in binary form must reproduce the above copyright
11 * notice, this list of conditions and the following disclaimer in the
12 * documentation and/or other materials provided with the distribution.
13 * 3. The name of the author may not be used to endorse or promote products
14 * derived from this software without specific prior written permission.
16 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
17 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
18 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
19 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
20 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
21 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
22 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
23 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
24 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
25 * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
27 #ifdef HAVE_CONFIG_H
28 #include "config.h"
29 #endif
31 #ifdef WIN32
32 #define WIN32_LEAN_AND_MEAN
33 #include <windows.h>
34 #undef WIN32_LEAN_AND_MEAN
35 #include "misc.h"
36 #endif
37 #include <sys/types.h>
38 #include <sys/tree.h>
39 #ifdef HAVE_SYS_TIME_H
40 #include <sys/time.h>
41 #else
42 #include <sys/_time.h>
43 #endif
44 #include <sys/queue.h>
45 #include <stdio.h>
46 #include <stdlib.h>
47 #ifndef WIN32
48 #include <unistd.h>
49 #endif
50 #include <errno.h>
51 #include <signal.h>
52 #include <string.h>
53 #include <assert.h>
54 #include <time.h>
56 #include "event.h"
57 #include "event-internal.h"
58 #include "log.h"
60 #ifdef HAVE_EVENT_PORTS
61 extern const struct eventop evportops;
62 #endif
63 #ifdef HAVE_SELECT
64 extern const struct eventop selectops;
65 #endif
66 #ifdef HAVE_POLL
67 extern const struct eventop pollops;
68 #endif
69 #ifdef HAVE_RTSIG
70 extern const struct eventop rtsigops;
71 #endif
72 #ifdef HAVE_EPOLL
73 extern const struct eventop epollops;
74 #endif
75 #ifdef HAVE_WORKING_KQUEUE
76 extern const struct eventop kqops;
77 #endif
78 #ifdef HAVE_DEVPOLL
79 extern const struct eventop devpollops;
80 #endif
81 #ifdef WIN32
82 extern const struct eventop win32ops;
83 #endif
85 /* In order of preference */
86 const struct eventop *eventops[] = {
87 #ifdef HAVE_EVENT_PORTS
88 &evportops,
89 #endif
90 #ifdef HAVE_WORKING_KQUEUE
91 &kqops,
92 #endif
93 #ifdef HAVE_EPOLL
94 &epollops,
95 #endif
96 #ifdef HAVE_DEVPOLL
97 &devpollops,
98 #endif
99 #ifdef HAVE_RTSIG
100 &rtsigops,
101 #endif
102 #ifdef HAVE_POLL
103 &pollops,
104 #endif
105 #ifdef HAVE_SELECT
106 &selectops,
107 #endif
108 #ifdef WIN32
109 &win32ops,
110 #endif
111 NULL
114 /* Global state */
115 struct event_base *current_base = NULL;
116 extern struct event_base *evsignal_base;
117 static int use_monotonic;
119 /* Handle signals - This is a deprecated interface */
120 int (*event_sigcb)(void); /* Signal callback when gotsig is set */
121 volatile sig_atomic_t event_gotsig; /* Set in signal handler */
123 /* Prototypes */
124 static void event_queue_insert(struct event_base *, struct event *, int);
125 static void event_queue_remove(struct event_base *, struct event *, int);
126 static int event_haveevents(struct event_base *);
128 static void event_process_active(struct event_base *);
130 static int timeout_next(struct event_base *, struct timeval **);
131 static void timeout_process(struct event_base *);
132 static void timeout_correct(struct event_base *, struct timeval *);
134 static int
135 compare(struct event *a, struct event *b)
137 if (timercmp(&a->ev_timeout, &b->ev_timeout, <))
138 return (-1);
139 else if (timercmp(&a->ev_timeout, &b->ev_timeout, >))
140 return (1);
141 if (a < b)
142 return (-1);
143 else if (a > b)
144 return (1);
145 return (0);
148 static void
149 detect_monotonic(void)
151 #if defined(HAVE_CLOCK_GETTIME) && defined(CLOCK_MONOTONIC)
152 struct timespec ts;
154 if (clock_gettime(CLOCK_MONOTONIC, &ts) == 0)
155 use_monotonic = 1;
156 #endif
159 static int
160 gettime(struct timeval *tp)
162 #if defined(HAVE_CLOCK_GETTIME) && defined(CLOCK_MONOTONIC)
163 struct timespec ts;
165 if (use_monotonic) {
166 if (clock_gettime(CLOCK_MONOTONIC, &ts) == -1)
167 return (-1);
169 tp->tv_sec = ts.tv_sec;
170 tp->tv_usec = ts.tv_nsec / 1000;
171 return (0);
173 #endif
175 return (gettimeofday(tp, NULL));
178 RB_PROTOTYPE(event_tree, event, ev_timeout_node, compare);
180 RB_GENERATE(event_tree, event, ev_timeout_node, compare);
183 void *
184 event_init(void)
186 int i;
187 struct event_base *base;
189 if ((base = calloc(1, sizeof(struct event_base))) == NULL)
190 event_err(1, "%s: calloc");
192 event_sigcb = NULL;
193 event_gotsig = 0;
195 detect_monotonic();
196 gettime(&base->event_tv);
198 RB_INIT(&base->timetree);
199 TAILQ_INIT(&base->eventqueue);
200 TAILQ_INIT(&base->sig.signalqueue);
201 base->sig.ev_signal_pair[0] = -1;
202 base->sig.ev_signal_pair[1] = -1;
204 base->evbase = NULL;
205 for (i = 0; eventops[i] && !base->evbase; i++) {
206 base->evsel = eventops[i];
208 base->evbase = base->evsel->init(base);
211 if (base->evbase == NULL)
212 event_errx(1, "%s: no event mechanism available", __func__);
214 if (getenv("EVENT_SHOW_METHOD"))
215 event_msgx("libevent using: %s\n",
216 base->evsel->name);
218 /* allocate a single active event queue */
219 event_base_priority_init(base, 1);
221 current_base = base;
222 return (base);
225 void
226 event_base_free(struct event_base *base)
228 int i;
230 if (base == NULL && current_base)
231 base = current_base;
232 if (base == current_base)
233 current_base = NULL;
235 assert(base);
236 if (base->evsel->dealloc != NULL)
237 base->evsel->dealloc(base, base->evbase);
238 for (i=0; i < base->nactivequeues; ++i)
239 assert(TAILQ_EMPTY(base->activequeues[i]));
241 assert(RB_EMPTY(&base->timetree));
243 for (i = 0; i < base->nactivequeues; ++i)
244 free(base->activequeues[i]);
245 free(base->activequeues);
247 assert(TAILQ_EMPTY(&base->eventqueue));
249 free(base);
253 event_priority_init(int npriorities)
255 return event_base_priority_init(current_base, npriorities);
259 event_base_priority_init(struct event_base *base, int npriorities)
261 int i;
263 if (base->event_count_active)
264 return (-1);
266 if (base->nactivequeues && npriorities != base->nactivequeues) {
267 for (i = 0; i < base->nactivequeues; ++i) {
268 free(base->activequeues[i]);
270 free(base->activequeues);
273 /* Allocate our priority queues */
274 base->nactivequeues = npriorities;
275 base->activequeues = (struct event_list **)calloc(base->nactivequeues,
276 npriorities * sizeof(struct event_list *));
277 if (base->activequeues == NULL)
278 event_err(1, "%s: calloc", __func__);
280 for (i = 0; i < base->nactivequeues; ++i) {
281 base->activequeues[i] = malloc(sizeof(struct event_list));
282 if (base->activequeues[i] == NULL)
283 event_err(1, "%s: malloc", __func__);
284 TAILQ_INIT(base->activequeues[i]);
287 return (0);
291 event_haveevents(struct event_base *base)
293 return (base->event_count > 0);
297 * Active events are stored in priority queues. Lower priorities are always
298 * process before higher priorities. Low priority events can starve high
299 * priority ones.
302 static void
303 event_process_active(struct event_base *base)
305 struct event *ev;
306 struct event_list *activeq = NULL;
307 int i;
308 short ncalls;
310 if (!base->event_count_active)
311 return;
313 for (i = 0; i < base->nactivequeues; ++i) {
314 if (TAILQ_FIRST(base->activequeues[i]) != NULL) {
315 activeq = base->activequeues[i];
316 break;
320 assert(activeq != NULL);
322 for (ev = TAILQ_FIRST(activeq); ev; ev = TAILQ_FIRST(activeq)) {
323 event_queue_remove(base, ev, EVLIST_ACTIVE);
325 /* Allows deletes to work */
326 ncalls = ev->ev_ncalls;
327 ev->ev_pncalls = &ncalls;
328 while (ncalls) {
329 ncalls--;
330 ev->ev_ncalls = ncalls;
331 (*ev->ev_callback)((int)ev->ev_fd, ev->ev_res, ev->ev_arg);
332 if (event_gotsig)
333 return;
339 * Wait continously for events. We exit only if no events are left.
343 event_dispatch(void)
345 return (event_loop(0));
349 event_base_dispatch(struct event_base *event_base)
351 return (event_base_loop(event_base, 0));
354 static void
355 event_loopexit_cb(int fd, short what, void *arg)
357 struct event_base *base = arg;
358 base->event_gotterm = 1;
361 /* not thread safe */
363 event_loopexit(struct timeval *tv)
365 return (event_once(-1, EV_TIMEOUT, event_loopexit_cb,
366 current_base, tv));
370 event_base_loopexit(struct event_base *event_base, struct timeval *tv)
372 return (event_base_once(event_base, -1, EV_TIMEOUT, event_loopexit_cb,
373 event_base, tv));
376 /* not thread safe */
379 event_loop(int flags)
381 return event_base_loop(current_base, flags);
385 event_base_loop(struct event_base *base, int flags)
387 const struct eventop *evsel = base->evsel;
388 void *evbase = base->evbase;
389 struct timeval tv;
390 struct timeval *tv_p;
391 int res, done;
393 #ifndef WIN32
394 if(!TAILQ_EMPTY(&base->sig.signalqueue))
395 evsignal_base = base;
396 #endif
397 done = 0;
398 while (!done) {
399 /* Calculate the initial events that we are waiting for */
400 if (evsel->recalc(base, evbase, 0) == -1)
401 return (-1);
403 /* Terminate the loop if we have been asked to */
404 if (base->event_gotterm) {
405 base->event_gotterm = 0;
406 break;
409 /* You cannot use this interface for multi-threaded apps */
410 while (event_gotsig) {
411 event_gotsig = 0;
412 if (event_sigcb) {
413 res = (*event_sigcb)();
414 if (res == -1) {
415 errno = EINTR;
416 return (-1);
421 timeout_correct(base, &tv);
423 tv_p = &tv;
424 if (!base->event_count_active && !(flags & EVLOOP_NONBLOCK)) {
425 timeout_next(base, &tv_p);
426 } else {
428 * if we have active events, we just poll new events
429 * without waiting.
431 timerclear(&tv);
434 /* If we have no events, we just exit */
435 if (!event_haveevents(base)) {
436 event_debug(("%s: no events registered.", __func__));
437 return (1);
440 res = evsel->dispatch(base, evbase, tv_p);
443 if (res == -1)
444 return (-1);
446 timeout_process(base);
448 if (base->event_count_active) {
449 event_process_active(base);
450 if (!base->event_count_active && (flags & EVLOOP_ONCE))
451 done = 1;
452 } else if (flags & EVLOOP_NONBLOCK)
453 done = 1;
456 event_debug(("%s: asked to terminate loop.", __func__));
457 return (0);
460 /* Sets up an event for processing once */
462 struct event_once {
463 struct event ev;
465 void (*cb)(int, short, void *);
466 void *arg;
469 /* One-time callback, it deletes itself */
471 static void
472 event_once_cb(int fd, short events, void *arg)
474 struct event_once *eonce = arg;
476 (*eonce->cb)(fd, events, eonce->arg);
477 free(eonce);
480 /* not threadsafe, event scheduled once. */
482 event_once(int fd, short events,
483 void (*callback)(int, short, void *), void *arg, struct timeval *tv)
485 return event_base_once(current_base, fd, events, callback, arg, tv);
488 /* Schedules an event once */
490 event_base_once(struct event_base *base, int fd, short events,
491 void (*callback)(int, short, void *), void *arg, struct timeval *tv)
493 struct event_once *eonce;
494 struct timeval etv;
495 int res;
497 /* We cannot support signals that just fire once */
498 if (events & EV_SIGNAL)
499 return (-1);
501 if ((eonce = calloc(1, sizeof(struct event_once))) == NULL)
502 return (-1);
504 eonce->cb = callback;
505 eonce->arg = arg;
507 if (events == EV_TIMEOUT) {
508 if (tv == NULL) {
509 timerclear(&etv);
510 tv = &etv;
513 evtimer_set(&eonce->ev, event_once_cb, eonce);
514 } else if (events & (EV_READ|EV_WRITE)) {
515 events &= EV_READ|EV_WRITE;
517 event_set(&eonce->ev, fd, events, event_once_cb, eonce);
518 } else {
519 /* Bad event combination */
520 free(eonce);
521 return (-1);
524 res = event_base_set(base, &eonce->ev);
525 if (res == 0)
526 res = event_add(&eonce->ev, tv);
527 if (res != 0) {
528 free(eonce);
529 return (res);
532 return (0);
535 void
536 event_set(struct event *ev, int fd, short events,
537 void (*callback)(int, short, void *), void *arg)
539 /* Take the current base - caller needs to set the real base later */
540 ev->ev_base = current_base;
542 ev->ev_callback = callback;
543 ev->ev_arg = arg;
544 ev->ev_fd = fd;
545 ev->ev_events = events;
546 ev->ev_res = 0;
547 ev->ev_flags = EVLIST_INIT;
548 ev->ev_ncalls = 0;
549 ev->ev_pncalls = NULL;
551 /* by default, we put new events into the middle priority */
552 if(current_base)
553 ev->ev_pri = current_base->nactivequeues/2;
557 event_base_set(struct event_base *base, struct event *ev)
559 /* Only innocent events may be assigned to a different base */
560 if (ev->ev_flags != EVLIST_INIT)
561 return (-1);
563 ev->ev_base = base;
564 ev->ev_pri = base->nactivequeues/2;
566 return (0);
570 * Set's the priority of an event - if an event is already scheduled
571 * changing the priority is going to fail.
575 event_priority_set(struct event *ev, int pri)
577 if (ev->ev_flags & EVLIST_ACTIVE)
578 return (-1);
579 if (pri < 0 || pri >= ev->ev_base->nactivequeues)
580 return (-1);
582 ev->ev_pri = pri;
584 return (0);
588 * Checks if a specific event is pending or scheduled.
592 event_pending(struct event *ev, short event, struct timeval *tv)
594 struct timeval now, res;
595 int flags = 0;
597 if (ev->ev_flags & EVLIST_INSERTED)
598 flags |= (ev->ev_events & (EV_READ|EV_WRITE));
599 if (ev->ev_flags & EVLIST_ACTIVE)
600 flags |= ev->ev_res;
601 if (ev->ev_flags & EVLIST_TIMEOUT)
602 flags |= EV_TIMEOUT;
603 if (ev->ev_flags & EVLIST_SIGNAL)
604 flags |= EV_SIGNAL;
606 event &= (EV_TIMEOUT|EV_READ|EV_WRITE|EV_SIGNAL);
608 /* See if there is a timeout that we should report */
609 if (tv != NULL && (flags & event & EV_TIMEOUT)) {
610 gettime(&now);
611 timersub(&ev->ev_timeout, &now, &res);
612 /* correctly remap to real time */
613 gettimeofday(&now, NULL);
614 timeradd(&now, &res, tv);
617 return (flags & event);
621 event_add(struct event *ev, struct timeval *tv)
623 struct event_base *base = ev->ev_base;
624 const struct eventop *evsel = base->evsel;
625 void *evbase = base->evbase;
627 event_debug((
628 "event_add: event: %p, %s%s%scall %p",
630 ev->ev_events & EV_READ ? "EV_READ " : " ",
631 ev->ev_events & EV_WRITE ? "EV_WRITE " : " ",
632 tv ? "EV_TIMEOUT " : " ",
633 ev->ev_callback));
635 assert(!(ev->ev_flags & ~EVLIST_ALL));
637 if (tv != NULL) {
638 struct timeval now;
640 if (ev->ev_flags & EVLIST_TIMEOUT)
641 event_queue_remove(base, ev, EVLIST_TIMEOUT);
643 /* Check if it is active due to a timeout. Rescheduling
644 * this timeout before the callback can be executed
645 * removes it from the active list. */
646 if ((ev->ev_flags & EVLIST_ACTIVE) &&
647 (ev->ev_res & EV_TIMEOUT)) {
648 /* See if we are just active executing this
649 * event in a loop
651 if (ev->ev_ncalls && ev->ev_pncalls) {
652 /* Abort loop */
653 *ev->ev_pncalls = 0;
656 event_queue_remove(base, ev, EVLIST_ACTIVE);
659 gettime(&now);
660 timeradd(&now, tv, &ev->ev_timeout);
662 event_debug((
663 "event_add: timeout in %d seconds, call %p",
664 tv->tv_sec, ev->ev_callback));
666 event_queue_insert(base, ev, EVLIST_TIMEOUT);
669 if ((ev->ev_events & (EV_READ|EV_WRITE)) &&
670 !(ev->ev_flags & (EVLIST_INSERTED|EVLIST_ACTIVE))) {
671 event_queue_insert(base, ev, EVLIST_INSERTED);
673 return (evsel->add(evbase, ev));
674 } else if ((ev->ev_events & EV_SIGNAL) &&
675 !(ev->ev_flags & EVLIST_SIGNAL)) {
676 event_queue_insert(base, ev, EVLIST_SIGNAL);
678 return (evsel->add(evbase, ev));
681 return (0);
685 event_del(struct event *ev)
687 struct event_base *base;
688 const struct eventop *evsel;
689 void *evbase;
691 event_debug(("event_del: %p, callback %p",
692 ev, ev->ev_callback));
694 /* An event without a base has not been added */
695 if (ev->ev_base == NULL)
696 return (-1);
698 base = ev->ev_base;
699 evsel = base->evsel;
700 evbase = base->evbase;
702 assert(!(ev->ev_flags & ~EVLIST_ALL));
704 /* See if we are just active executing this event in a loop */
705 if (ev->ev_ncalls && ev->ev_pncalls) {
706 /* Abort loop */
707 *ev->ev_pncalls = 0;
710 if (ev->ev_flags & EVLIST_TIMEOUT)
711 event_queue_remove(base, ev, EVLIST_TIMEOUT);
713 if (ev->ev_flags & EVLIST_ACTIVE)
714 event_queue_remove(base, ev, EVLIST_ACTIVE);
716 if (ev->ev_flags & EVLIST_INSERTED) {
717 event_queue_remove(base, ev, EVLIST_INSERTED);
718 return (evsel->del(evbase, ev));
719 } else if (ev->ev_flags & EVLIST_SIGNAL) {
720 event_queue_remove(base, ev, EVLIST_SIGNAL);
721 return (evsel->del(evbase, ev));
724 return (0);
727 void
728 event_active(struct event *ev, int res, short ncalls)
730 /* We get different kinds of events, add them together */
731 if (ev->ev_flags & EVLIST_ACTIVE) {
732 ev->ev_res |= res;
733 return;
736 ev->ev_res = res;
737 ev->ev_ncalls = ncalls;
738 ev->ev_pncalls = NULL;
739 event_queue_insert(ev->ev_base, ev, EVLIST_ACTIVE);
742 static int
743 timeout_next(struct event_base *base, struct timeval **tv_p)
745 struct timeval now;
746 struct event *ev;
747 struct timeval *tv = *tv_p;
749 if ((ev = RB_MIN(event_tree, &base->timetree)) == NULL) {
750 /* if no time-based events are active wait for I/O */
751 *tv_p = NULL;
752 return (0);
755 if (gettime(&now) == -1)
756 return (-1);
758 if (timercmp(&ev->ev_timeout, &now, <=)) {
759 timerclear(tv);
760 return (0);
763 timersub(&ev->ev_timeout, &now, tv);
765 assert(tv->tv_sec >= 0);
766 assert(tv->tv_usec >= 0);
768 event_debug(("timeout_next: in %d seconds", tv->tv_sec));
769 return (0);
773 * Determines if the time is running backwards by comparing the current
774 * time against the last time we checked. Not needed when using clock
775 * monotonic.
778 static void
779 timeout_correct(struct event_base *base, struct timeval *tv)
781 struct event *ev;
782 struct timeval off;
784 if (use_monotonic)
785 return;
787 /* Check if time is running backwards */
788 gettime(tv);
789 if (timercmp(tv, &base->event_tv, >=)) {
790 base->event_tv = *tv;
791 return;
794 event_debug(("%s: time is running backwards, corrected",
795 __func__));
796 timersub(&base->event_tv, tv, &off);
799 * We can modify the key element of the node without destroying
800 * the key, beause we apply it to all in the right order.
802 RB_FOREACH(ev, event_tree, &base->timetree)
803 timersub(&ev->ev_timeout, &off, &ev->ev_timeout);
806 void
807 timeout_process(struct event_base *base)
809 struct timeval now;
810 struct event *ev, *next;
812 gettime(&now);
814 for (ev = RB_MIN(event_tree, &base->timetree); ev; ev = next) {
815 if (timercmp(&ev->ev_timeout, &now, >))
816 break;
817 next = RB_NEXT(event_tree, &base->timetree, ev);
819 event_queue_remove(base, ev, EVLIST_TIMEOUT);
821 /* delete this event from the I/O queues */
822 event_del(ev);
824 event_debug(("timeout_process: call %p",
825 ev->ev_callback));
826 event_active(ev, EV_TIMEOUT, 1);
830 void
831 event_queue_remove(struct event_base *base, struct event *ev, int queue)
833 int docount = 1;
835 if (!(ev->ev_flags & queue))
836 event_errx(1, "%s: %p(fd %d) not on queue %x", __func__,
837 ev, ev->ev_fd, queue);
839 if (ev->ev_flags & EVLIST_INTERNAL)
840 docount = 0;
842 if (docount)
843 base->event_count--;
845 ev->ev_flags &= ~queue;
846 switch (queue) {
847 case EVLIST_ACTIVE:
848 if (docount)
849 base->event_count_active--;
850 TAILQ_REMOVE(base->activequeues[ev->ev_pri],
851 ev, ev_active_next);
852 break;
853 case EVLIST_SIGNAL:
854 TAILQ_REMOVE(&base->sig.signalqueue, ev, ev_signal_next);
855 break;
856 case EVLIST_TIMEOUT:
857 RB_REMOVE(event_tree, &base->timetree, ev);
858 break;
859 case EVLIST_INSERTED:
860 TAILQ_REMOVE(&base->eventqueue, ev, ev_next);
861 break;
862 default:
863 event_errx(1, "%s: unknown queue %x", __func__, queue);
867 void
868 event_queue_insert(struct event_base *base, struct event *ev, int queue)
870 int docount = 1;
872 if (ev->ev_flags & queue) {
873 /* Double insertion is possible for active events */
874 if (queue & EVLIST_ACTIVE)
875 return;
877 event_errx(1, "%s: %p(fd %d) already on queue %x", __func__,
878 ev, ev->ev_fd, queue);
881 if (ev->ev_flags & EVLIST_INTERNAL)
882 docount = 0;
884 if (docount)
885 base->event_count++;
887 ev->ev_flags |= queue;
888 switch (queue) {
889 case EVLIST_ACTIVE:
890 if (docount)
891 base->event_count_active++;
892 TAILQ_INSERT_TAIL(base->activequeues[ev->ev_pri],
893 ev,ev_active_next);
894 break;
895 case EVLIST_SIGNAL:
896 TAILQ_INSERT_TAIL(&base->sig.signalqueue, ev, ev_signal_next);
897 break;
898 case EVLIST_TIMEOUT: {
899 struct event *tmp = RB_INSERT(event_tree, &base->timetree, ev);
900 assert(tmp == NULL);
901 break;
903 case EVLIST_INSERTED:
904 TAILQ_INSERT_TAIL(&base->eventqueue, ev, ev_next);
905 break;
906 default:
907 event_errx(1, "%s: unknown queue %x", __func__, queue);
911 /* Functions for debugging */
913 const char *
914 event_get_version(void)
916 return (VERSION);
920 * No thread-safe interface needed - the information should be the same
921 * for all threads.
924 const char *
925 event_get_method(void)
927 return (current_base->evsel->name);