kernel - TMPFS - Features, don't sync on umount, enforce snocache on root
[dragonfly.git] / sys / vm / vm_fault.c
blob02f3da04c64008ab538540ebfd5f2b4ba7f46e18
1 /*
2 * Copyright (c) 1991, 1993
3 * The Regents of the University of California. All rights reserved.
4 * Copyright (c) 1994 John S. Dyson
5 * All rights reserved.
6 * Copyright (c) 1994 David Greenman
7 * All rights reserved.
10 * This code is derived from software contributed to Berkeley by
11 * The Mach Operating System project at Carnegie-Mellon University.
13 * Redistribution and use in source and binary forms, with or without
14 * modification, are permitted provided that the following conditions
15 * are met:
16 * 1. Redistributions of source code must retain the above copyright
17 * notice, this list of conditions and the following disclaimer.
18 * 2. Redistributions in binary form must reproduce the above copyright
19 * notice, this list of conditions and the following disclaimer in the
20 * documentation and/or other materials provided with the distribution.
21 * 3. All advertising materials mentioning features or use of this software
22 * must display the following acknowledgement:
23 * This product includes software developed by the University of
24 * California, Berkeley and its contributors.
25 * 4. Neither the name of the University nor the names of its contributors
26 * may be used to endorse or promote products derived from this software
27 * without specific prior written permission.
29 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
30 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
31 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
32 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
33 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
34 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
35 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
36 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
37 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
38 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
39 * SUCH DAMAGE.
41 * from: @(#)vm_fault.c 8.4 (Berkeley) 1/12/94
44 * Copyright (c) 1987, 1990 Carnegie-Mellon University.
45 * All rights reserved.
47 * Authors: Avadis Tevanian, Jr., Michael Wayne Young
49 * Permission to use, copy, modify and distribute this software and
50 * its documentation is hereby granted, provided that both the copyright
51 * notice and this permission notice appear in all copies of the
52 * software, derivative works or modified versions, and any portions
53 * thereof, and that both notices appear in supporting documentation.
55 * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
56 * CONDITION. CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
57 * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
59 * Carnegie Mellon requests users of this software to return to
61 * Software Distribution Coordinator or Software.Distribution@CS.CMU.EDU
62 * School of Computer Science
63 * Carnegie Mellon University
64 * Pittsburgh PA 15213-3890
66 * any improvements or extensions that they make and grant Carnegie the
67 * rights to redistribute these changes.
69 * $FreeBSD: src/sys/vm/vm_fault.c,v 1.108.2.8 2002/02/26 05:49:27 silby Exp $
70 * $DragonFly: src/sys/vm/vm_fault.c,v 1.47 2008/07/01 02:02:56 dillon Exp $
74 * Page fault handling module.
77 #include <sys/param.h>
78 #include <sys/systm.h>
79 #include <sys/kernel.h>
80 #include <sys/proc.h>
81 #include <sys/vnode.h>
82 #include <sys/resourcevar.h>
83 #include <sys/vmmeter.h>
84 #include <sys/vkernel.h>
85 #include <sys/sfbuf.h>
86 #include <sys/lock.h>
87 #include <sys/sysctl.h>
89 #include <vm/vm.h>
90 #include <vm/vm_param.h>
91 #include <vm/pmap.h>
92 #include <vm/vm_map.h>
93 #include <vm/vm_object.h>
94 #include <vm/vm_page.h>
95 #include <vm/vm_pageout.h>
96 #include <vm/vm_kern.h>
97 #include <vm/vm_pager.h>
98 #include <vm/vnode_pager.h>
99 #include <vm/vm_extern.h>
101 #include <sys/thread2.h>
102 #include <vm/vm_page2.h>
104 struct faultstate {
105 vm_page_t m;
106 vm_object_t object;
107 vm_pindex_t pindex;
108 vm_prot_t prot;
109 vm_page_t first_m;
110 vm_object_t first_object;
111 vm_prot_t first_prot;
112 vm_map_t map;
113 vm_map_entry_t entry;
114 int lookup_still_valid;
115 int didlimit;
116 int hardfault;
117 int fault_flags;
118 int map_generation;
119 boolean_t wired;
120 struct vnode *vp;
123 static int vm_fast_fault = 1;
124 SYSCTL_INT(_vm, OID_AUTO, fast_fault, CTLFLAG_RW, &vm_fast_fault, 0, "");
125 static int debug_cluster = 0;
126 SYSCTL_INT(_vm, OID_AUTO, debug_cluster, CTLFLAG_RW, &debug_cluster, 0, "");
128 static int vm_fault_object(struct faultstate *, vm_pindex_t, vm_prot_t);
129 static int vm_fault_vpagetable(struct faultstate *, vm_pindex_t *, vpte_t, int);
130 #if 0
131 static int vm_fault_additional_pages (vm_page_t, int, int, vm_page_t *, int *);
132 #endif
133 static int vm_fault_ratelimit(struct vmspace *);
134 static void vm_prefault(pmap_t pmap, vm_offset_t addra, vm_map_entry_t entry,
135 int prot);
137 static __inline void
138 release_page(struct faultstate *fs)
140 vm_page_deactivate(fs->m);
141 vm_page_wakeup(fs->m);
142 fs->m = NULL;
145 static __inline void
146 unlock_map(struct faultstate *fs)
148 if (fs->lookup_still_valid && fs->map) {
149 vm_map_lookup_done(fs->map, fs->entry, 0);
150 fs->lookup_still_valid = FALSE;
155 * Clean up after a successful call to vm_fault_object() so another call
156 * to vm_fault_object() can be made.
158 static void
159 _cleanup_successful_fault(struct faultstate *fs, int relock)
161 if (fs->object != fs->first_object) {
162 vm_page_free(fs->first_m);
163 vm_object_pip_wakeup(fs->object);
164 fs->first_m = NULL;
166 fs->object = fs->first_object;
167 if (relock && fs->lookup_still_valid == FALSE) {
168 if (fs->map)
169 vm_map_lock_read(fs->map);
170 fs->lookup_still_valid = TRUE;
174 static void
175 _unlock_things(struct faultstate *fs, int dealloc)
177 vm_object_pip_wakeup(fs->first_object);
178 _cleanup_successful_fault(fs, 0);
179 if (dealloc) {
180 vm_object_deallocate(fs->first_object);
181 fs->first_object = NULL;
183 unlock_map(fs);
184 if (fs->vp != NULL) {
185 vput(fs->vp);
186 fs->vp = NULL;
190 #define unlock_things(fs) _unlock_things(fs, 0)
191 #define unlock_and_deallocate(fs) _unlock_things(fs, 1)
192 #define cleanup_successful_fault(fs) _cleanup_successful_fault(fs, 1)
195 * TRYPAGER
197 * Determine if the pager for the current object *might* contain the page.
199 * We only need to try the pager if this is not a default object (default
200 * objects are zero-fill and have no real pager), and if we are not taking
201 * a wiring fault or if the FS entry is wired.
203 #define TRYPAGER(fs) \
204 (fs->object->type != OBJT_DEFAULT && \
205 (((fs->fault_flags & VM_FAULT_WIRE_MASK) == 0) || fs->wired))
208 * vm_fault:
210 * Handle a page fault occuring at the given address, requiring the given
211 * permissions, in the map specified. If successful, the page is inserted
212 * into the associated physical map.
214 * NOTE: The given address should be truncated to the proper page address.
216 * KERN_SUCCESS is returned if the page fault is handled; otherwise,
217 * a standard error specifying why the fault is fatal is returned.
219 * The map in question must be referenced, and remains so.
220 * The caller may hold no locks.
223 vm_fault(vm_map_t map, vm_offset_t vaddr, vm_prot_t fault_type, int fault_flags)
225 int result;
226 vm_pindex_t first_pindex;
227 struct faultstate fs;
229 mycpu->gd_cnt.v_vm_faults++;
231 fs.didlimit = 0;
232 fs.hardfault = 0;
233 fs.fault_flags = fault_flags;
235 RetryFault:
237 * Find the vm_map_entry representing the backing store and resolve
238 * the top level object and page index. This may have the side
239 * effect of executing a copy-on-write on the map entry and/or
240 * creating a shadow object, but will not COW any actual VM pages.
242 * On success fs.map is left read-locked and various other fields
243 * are initialized but not otherwise referenced or locked.
245 * NOTE! vm_map_lookup will try to upgrade the fault_type to
246 * VM_FAULT_WRITE if the map entry is a virtual page table and also
247 * writable, so we can set the 'A'accessed bit in the virtual page
248 * table entry.
250 fs.map = map;
251 result = vm_map_lookup(&fs.map, vaddr, fault_type,
252 &fs.entry, &fs.first_object,
253 &first_pindex, &fs.first_prot, &fs.wired);
256 * If the lookup failed or the map protections are incompatible,
257 * the fault generally fails. However, if the caller is trying
258 * to do a user wiring we have more work to do.
260 if (result != KERN_SUCCESS) {
261 if (result != KERN_PROTECTION_FAILURE)
262 return result;
263 if ((fs.fault_flags & VM_FAULT_WIRE_MASK) != VM_FAULT_USER_WIRE)
264 return result;
267 * If we are user-wiring a r/w segment, and it is COW, then
268 * we need to do the COW operation. Note that we don't
269 * currently COW RO sections now, because it is NOT desirable
270 * to COW .text. We simply keep .text from ever being COW'ed
271 * and take the heat that one cannot debug wired .text sections.
273 result = vm_map_lookup(&fs.map, vaddr,
274 VM_PROT_READ|VM_PROT_WRITE|
275 VM_PROT_OVERRIDE_WRITE,
276 &fs.entry, &fs.first_object,
277 &first_pindex, &fs.first_prot,
278 &fs.wired);
279 if (result != KERN_SUCCESS)
280 return result;
283 * If we don't COW now, on a user wire, the user will never
284 * be able to write to the mapping. If we don't make this
285 * restriction, the bookkeeping would be nearly impossible.
287 if ((fs.entry->protection & VM_PROT_WRITE) == 0)
288 fs.entry->max_protection &= ~VM_PROT_WRITE;
292 * fs.map is read-locked
294 * Misc checks. Save the map generation number to detect races.
296 fs.map_generation = fs.map->timestamp;
298 if (fs.entry->eflags & MAP_ENTRY_NOFAULT) {
299 panic("vm_fault: fault on nofault entry, addr: %lx",
300 (u_long)vaddr);
304 * A system map entry may return a NULL object. No object means
305 * no pager means an unrecoverable kernel fault.
307 if (fs.first_object == NULL) {
308 panic("vm_fault: unrecoverable fault at %p in entry %p",
309 (void *)vaddr, fs.entry);
313 * Make a reference to this object to prevent its disposal while we
314 * are messing with it. Once we have the reference, the map is free
315 * to be diddled. Since objects reference their shadows (and copies),
316 * they will stay around as well.
318 * Bump the paging-in-progress count to prevent size changes (e.g.
319 * truncation operations) during I/O. This must be done after
320 * obtaining the vnode lock in order to avoid possible deadlocks.
322 vm_object_reference(fs.first_object);
323 fs.vp = vnode_pager_lock(fs.first_object);
324 vm_object_pip_add(fs.first_object, 1);
326 fs.lookup_still_valid = TRUE;
327 fs.first_m = NULL;
328 fs.object = fs.first_object; /* so unlock_and_deallocate works */
331 * If the entry is wired we cannot change the page protection.
333 if (fs.wired)
334 fault_type = fs.first_prot;
337 * The page we want is at (first_object, first_pindex), but if the
338 * vm_map_entry is VM_MAPTYPE_VPAGETABLE we have to traverse the
339 * page table to figure out the actual pindex.
341 * NOTE! DEVELOPMENT IN PROGRESS, THIS IS AN INITIAL IMPLEMENTATION
342 * ONLY
344 if (fs.entry->maptype == VM_MAPTYPE_VPAGETABLE) {
345 result = vm_fault_vpagetable(&fs, &first_pindex,
346 fs.entry->aux.master_pde,
347 fault_type);
348 if (result == KERN_TRY_AGAIN)
349 goto RetryFault;
350 if (result != KERN_SUCCESS)
351 return (result);
355 * Now we have the actual (object, pindex), fault in the page. If
356 * vm_fault_object() fails it will unlock and deallocate the FS
357 * data. If it succeeds everything remains locked and fs->object
358 * will have an additinal PIP count if it is not equal to
359 * fs->first_object
361 * vm_fault_object will set fs->prot for the pmap operation. It is
362 * allowed to set VM_PROT_WRITE if fault_type == VM_PROT_READ if the
363 * page can be safely written. However, it will force a read-only
364 * mapping for a read fault if the memory is managed by a virtual
365 * page table.
367 result = vm_fault_object(&fs, first_pindex, fault_type);
369 if (result == KERN_TRY_AGAIN)
370 goto RetryFault;
371 if (result != KERN_SUCCESS)
372 return (result);
375 * On success vm_fault_object() does not unlock or deallocate, and fs.m
376 * will contain a busied page.
378 * Enter the page into the pmap and do pmap-related adjustments.
380 pmap_enter(fs.map->pmap, vaddr, fs.m, fs.prot, fs.wired);
383 * Burst in a few more pages if possible. The fs.map should still
384 * be locked.
386 if (fault_flags & VM_FAULT_BURST) {
387 if ((fs.fault_flags & VM_FAULT_WIRE_MASK) == 0 &&
388 fs.wired == 0) {
389 vm_prefault(fs.map->pmap, vaddr, fs.entry, fs.prot);
392 unlock_things(&fs);
394 vm_page_flag_clear(fs.m, PG_ZERO);
395 vm_page_flag_set(fs.m, PG_REFERENCED);
398 * If the page is not wired down, then put it where the pageout daemon
399 * can find it.
401 if (fs.fault_flags & VM_FAULT_WIRE_MASK) {
402 if (fs.wired)
403 vm_page_wire(fs.m);
404 else
405 vm_page_unwire(fs.m, 1);
406 } else {
407 vm_page_activate(fs.m);
410 if (curthread->td_lwp) {
411 if (fs.hardfault) {
412 curthread->td_lwp->lwp_ru.ru_majflt++;
413 } else {
414 curthread->td_lwp->lwp_ru.ru_minflt++;
419 * Unlock everything, and return
421 vm_page_wakeup(fs.m);
422 vm_object_deallocate(fs.first_object);
424 return (KERN_SUCCESS);
428 * Fault in the specified virtual address in the current process map,
429 * returning a held VM page or NULL. See vm_fault_page() for more
430 * information.
432 vm_page_t
433 vm_fault_page_quick(vm_offset_t va, vm_prot_t fault_type, int *errorp)
435 struct lwp *lp = curthread->td_lwp;
436 vm_page_t m;
438 m = vm_fault_page(&lp->lwp_vmspace->vm_map, va,
439 fault_type, VM_FAULT_NORMAL, errorp);
440 return(m);
444 * Fault in the specified virtual address in the specified map, doing all
445 * necessary manipulation of the object store and all necessary I/O. Return
446 * a held VM page or NULL, and set *errorp. The related pmap is not
447 * updated.
449 * The returned page will be properly dirtied if VM_PROT_WRITE was specified,
450 * and marked PG_REFERENCED as well.
452 * If the page cannot be faulted writable and VM_PROT_WRITE was specified, an
453 * error will be returned.
455 vm_page_t
456 vm_fault_page(vm_map_t map, vm_offset_t vaddr, vm_prot_t fault_type,
457 int fault_flags, int *errorp)
459 vm_pindex_t first_pindex;
460 struct faultstate fs;
461 int result;
462 vm_prot_t orig_fault_type = fault_type;
464 mycpu->gd_cnt.v_vm_faults++;
466 fs.didlimit = 0;
467 fs.hardfault = 0;
468 fs.fault_flags = fault_flags;
469 KKASSERT((fault_flags & VM_FAULT_WIRE_MASK) == 0);
471 RetryFault:
473 * Find the vm_map_entry representing the backing store and resolve
474 * the top level object and page index. This may have the side
475 * effect of executing a copy-on-write on the map entry and/or
476 * creating a shadow object, but will not COW any actual VM pages.
478 * On success fs.map is left read-locked and various other fields
479 * are initialized but not otherwise referenced or locked.
481 * NOTE! vm_map_lookup will upgrade the fault_type to VM_FAULT_WRITE
482 * if the map entry is a virtual page table and also writable,
483 * so we can set the 'A'accessed bit in the virtual page table entry.
485 fs.map = map;
486 result = vm_map_lookup(&fs.map, vaddr, fault_type,
487 &fs.entry, &fs.first_object,
488 &first_pindex, &fs.first_prot, &fs.wired);
490 if (result != KERN_SUCCESS) {
491 *errorp = result;
492 return (NULL);
496 * fs.map is read-locked
498 * Misc checks. Save the map generation number to detect races.
500 fs.map_generation = fs.map->timestamp;
502 if (fs.entry->eflags & MAP_ENTRY_NOFAULT) {
503 panic("vm_fault: fault on nofault entry, addr: %lx",
504 (u_long)vaddr);
508 * A system map entry may return a NULL object. No object means
509 * no pager means an unrecoverable kernel fault.
511 if (fs.first_object == NULL) {
512 panic("vm_fault: unrecoverable fault at %p in entry %p",
513 (void *)vaddr, fs.entry);
517 * Make a reference to this object to prevent its disposal while we
518 * are messing with it. Once we have the reference, the map is free
519 * to be diddled. Since objects reference their shadows (and copies),
520 * they will stay around as well.
522 * Bump the paging-in-progress count to prevent size changes (e.g.
523 * truncation operations) during I/O. This must be done after
524 * obtaining the vnode lock in order to avoid possible deadlocks.
526 vm_object_reference(fs.first_object);
527 fs.vp = vnode_pager_lock(fs.first_object);
528 vm_object_pip_add(fs.first_object, 1);
530 fs.lookup_still_valid = TRUE;
531 fs.first_m = NULL;
532 fs.object = fs.first_object; /* so unlock_and_deallocate works */
535 * If the entry is wired we cannot change the page protection.
537 if (fs.wired)
538 fault_type = fs.first_prot;
541 * The page we want is at (first_object, first_pindex), but if the
542 * vm_map_entry is VM_MAPTYPE_VPAGETABLE we have to traverse the
543 * page table to figure out the actual pindex.
545 * NOTE! DEVELOPMENT IN PROGRESS, THIS IS AN INITIAL IMPLEMENTATION
546 * ONLY
548 if (fs.entry->maptype == VM_MAPTYPE_VPAGETABLE) {
549 result = vm_fault_vpagetable(&fs, &first_pindex,
550 fs.entry->aux.master_pde,
551 fault_type);
552 if (result == KERN_TRY_AGAIN)
553 goto RetryFault;
554 if (result != KERN_SUCCESS) {
555 *errorp = result;
556 return (NULL);
561 * Now we have the actual (object, pindex), fault in the page. If
562 * vm_fault_object() fails it will unlock and deallocate the FS
563 * data. If it succeeds everything remains locked and fs->object
564 * will have an additinal PIP count if it is not equal to
565 * fs->first_object
567 result = vm_fault_object(&fs, first_pindex, fault_type);
569 if (result == KERN_TRY_AGAIN)
570 goto RetryFault;
571 if (result != KERN_SUCCESS) {
572 *errorp = result;
573 return(NULL);
576 if ((orig_fault_type & VM_PROT_WRITE) &&
577 (fs.prot & VM_PROT_WRITE) == 0) {
578 *errorp = KERN_PROTECTION_FAILURE;
579 unlock_and_deallocate(&fs);
580 return(NULL);
584 * On success vm_fault_object() does not unlock or deallocate, and fs.m
585 * will contain a busied page.
587 unlock_things(&fs);
590 * Return a held page. We are not doing any pmap manipulation so do
591 * not set PG_MAPPED. However, adjust the page flags according to
592 * the fault type because the caller may not use a managed pmapping
593 * (so we don't want to lose the fact that the page will be dirtied
594 * if a write fault was specified).
596 vm_page_hold(fs.m);
597 vm_page_flag_clear(fs.m, PG_ZERO);
598 if (fault_type & VM_PROT_WRITE)
599 vm_page_dirty(fs.m);
602 * Update the pmap. We really only have to do this if a COW
603 * occured to replace the read-only page with the new page. For
604 * now just do it unconditionally. XXX
606 pmap_enter(fs.map->pmap, vaddr, fs.m, fs.prot, fs.wired);
607 vm_page_flag_set(fs.m, PG_REFERENCED);
610 * Unbusy the page by activating it. It remains held and will not
611 * be reclaimed.
613 vm_page_activate(fs.m);
615 if (curthread->td_lwp) {
616 if (fs.hardfault) {
617 curthread->td_lwp->lwp_ru.ru_majflt++;
618 } else {
619 curthread->td_lwp->lwp_ru.ru_minflt++;
624 * Unlock everything, and return the held page.
626 vm_page_wakeup(fs.m);
627 vm_object_deallocate(fs.first_object);
629 *errorp = 0;
630 return(fs.m);
634 * Fault in the specified (object,offset), dirty the returned page as
635 * needed. If the requested fault_type cannot be done NULL and an
636 * error is returned.
638 vm_page_t
639 vm_fault_object_page(vm_object_t object, vm_ooffset_t offset,
640 vm_prot_t fault_type, int fault_flags, int *errorp)
642 int result;
643 vm_pindex_t first_pindex;
644 struct faultstate fs;
645 struct vm_map_entry entry;
647 bzero(&entry, sizeof(entry));
648 entry.object.vm_object = object;
649 entry.maptype = VM_MAPTYPE_NORMAL;
650 entry.protection = entry.max_protection = fault_type;
652 fs.didlimit = 0;
653 fs.hardfault = 0;
654 fs.fault_flags = fault_flags;
655 fs.map = NULL;
656 KKASSERT((fault_flags & VM_FAULT_WIRE_MASK) == 0);
658 RetryFault:
660 fs.first_object = object;
661 first_pindex = OFF_TO_IDX(offset);
662 fs.entry = &entry;
663 fs.first_prot = fault_type;
664 fs.wired = 0;
665 /*fs.map_generation = 0; unused */
668 * Make a reference to this object to prevent its disposal while we
669 * are messing with it. Once we have the reference, the map is free
670 * to be diddled. Since objects reference their shadows (and copies),
671 * they will stay around as well.
673 * Bump the paging-in-progress count to prevent size changes (e.g.
674 * truncation operations) during I/O. This must be done after
675 * obtaining the vnode lock in order to avoid possible deadlocks.
677 vm_object_reference(fs.first_object);
678 fs.vp = vnode_pager_lock(fs.first_object);
679 vm_object_pip_add(fs.first_object, 1);
681 fs.lookup_still_valid = TRUE;
682 fs.first_m = NULL;
683 fs.object = fs.first_object; /* so unlock_and_deallocate works */
685 #if 0
686 /* XXX future - ability to operate on VM object using vpagetable */
687 if (fs.entry->maptype == VM_MAPTYPE_VPAGETABLE) {
688 result = vm_fault_vpagetable(&fs, &first_pindex,
689 fs.entry->aux.master_pde,
690 fault_type);
691 if (result == KERN_TRY_AGAIN)
692 goto RetryFault;
693 if (result != KERN_SUCCESS) {
694 *errorp = result;
695 return (NULL);
698 #endif
701 * Now we have the actual (object, pindex), fault in the page. If
702 * vm_fault_object() fails it will unlock and deallocate the FS
703 * data. If it succeeds everything remains locked and fs->object
704 * will have an additinal PIP count if it is not equal to
705 * fs->first_object
707 result = vm_fault_object(&fs, first_pindex, fault_type);
709 if (result == KERN_TRY_AGAIN)
710 goto RetryFault;
711 if (result != KERN_SUCCESS) {
712 *errorp = result;
713 return(NULL);
716 if ((fault_type & VM_PROT_WRITE) && (fs.prot & VM_PROT_WRITE) == 0) {
717 *errorp = KERN_PROTECTION_FAILURE;
718 unlock_and_deallocate(&fs);
719 return(NULL);
723 * On success vm_fault_object() does not unlock or deallocate, and fs.m
724 * will contain a busied page.
726 unlock_things(&fs);
729 * Return a held page. We are not doing any pmap manipulation so do
730 * not set PG_MAPPED. However, adjust the page flags according to
731 * the fault type because the caller may not use a managed pmapping
732 * (so we don't want to lose the fact that the page will be dirtied
733 * if a write fault was specified).
735 vm_page_hold(fs.m);
736 vm_page_flag_clear(fs.m, PG_ZERO);
737 if (fault_type & VM_PROT_WRITE)
738 vm_page_dirty(fs.m);
741 * Indicate that the page was accessed.
743 vm_page_flag_set(fs.m, PG_REFERENCED);
746 * Unbusy the page by activating it. It remains held and will not
747 * be reclaimed.
749 vm_page_activate(fs.m);
751 if (curthread->td_lwp) {
752 if (fs.hardfault) {
753 mycpu->gd_cnt.v_vm_faults++;
754 curthread->td_lwp->lwp_ru.ru_majflt++;
755 } else {
756 curthread->td_lwp->lwp_ru.ru_minflt++;
761 * Unlock everything, and return the held page.
763 vm_page_wakeup(fs.m);
764 vm_object_deallocate(fs.first_object);
766 *errorp = 0;
767 return(fs.m);
771 * Translate the virtual page number (first_pindex) that is relative
772 * to the address space into a logical page number that is relative to the
773 * backing object. Use the virtual page table pointed to by (vpte).
775 * This implements an N-level page table. Any level can terminate the
776 * scan by setting VPTE_PS. A linear mapping is accomplished by setting
777 * VPTE_PS in the master page directory entry set via mcontrol(MADV_SETMAP).
779 static
781 vm_fault_vpagetable(struct faultstate *fs, vm_pindex_t *pindex,
782 vpte_t vpte, int fault_type)
784 struct sf_buf *sf;
785 int vshift = 32 - PAGE_SHIFT; /* page index bits remaining */
786 int result = KERN_SUCCESS;
787 vpte_t *ptep;
789 for (;;) {
791 * We cannot proceed if the vpte is not valid, not readable
792 * for a read fault, or not writable for a write fault.
794 if ((vpte & VPTE_V) == 0) {
795 unlock_and_deallocate(fs);
796 return (KERN_FAILURE);
798 if ((fault_type & VM_PROT_READ) && (vpte & VPTE_R) == 0) {
799 unlock_and_deallocate(fs);
800 return (KERN_FAILURE);
802 if ((fault_type & VM_PROT_WRITE) && (vpte & VPTE_W) == 0) {
803 unlock_and_deallocate(fs);
804 return (KERN_FAILURE);
806 if ((vpte & VPTE_PS) || vshift == 0)
807 break;
808 KKASSERT(vshift >= VPTE_PAGE_BITS);
811 * Get the page table page. Nominally we only read the page
812 * table, but since we are actively setting VPTE_M and VPTE_A,
813 * tell vm_fault_object() that we are writing it.
815 * There is currently no real need to optimize this.
817 result = vm_fault_object(fs, vpte >> PAGE_SHIFT,
818 VM_PROT_READ|VM_PROT_WRITE);
819 if (result != KERN_SUCCESS)
820 return (result);
823 * Process the returned fs.m and look up the page table
824 * entry in the page table page.
826 vshift -= VPTE_PAGE_BITS;
827 sf = sf_buf_alloc(fs->m, SFB_CPUPRIVATE);
828 ptep = ((vpte_t *)sf_buf_kva(sf) +
829 ((*pindex >> vshift) & VPTE_PAGE_MASK));
830 vpte = *ptep;
833 * Page table write-back. If the vpte is valid for the
834 * requested operation, do a write-back to the page table.
836 * XXX VPTE_M is not set properly for page directory pages.
837 * It doesn't get set in the page directory if the page table
838 * is modified during a read access.
840 if ((fault_type & VM_PROT_WRITE) && (vpte & VPTE_V) &&
841 (vpte & VPTE_W)) {
842 if ((vpte & (VPTE_M|VPTE_A)) != (VPTE_M|VPTE_A)) {
843 atomic_set_int(ptep, VPTE_M|VPTE_A);
844 vm_page_dirty(fs->m);
847 if ((fault_type & VM_PROT_READ) && (vpte & VPTE_V) &&
848 (vpte & VPTE_R)) {
849 if ((vpte & VPTE_A) == 0) {
850 atomic_set_int(ptep, VPTE_A);
851 vm_page_dirty(fs->m);
854 sf_buf_free(sf);
855 vm_page_flag_set(fs->m, PG_REFERENCED);
856 vm_page_activate(fs->m);
857 vm_page_wakeup(fs->m);
858 cleanup_successful_fault(fs);
861 * Combine remaining address bits with the vpte.
863 *pindex = (vpte >> PAGE_SHIFT) +
864 (*pindex & ((1 << vshift) - 1));
865 return (KERN_SUCCESS);
870 * Do all operations required to fault-in (fs.first_object, pindex). Run
871 * through the shadow chain as necessary and do required COW or virtual
872 * copy operations. The caller has already fully resolved the vm_map_entry
873 * and, if appropriate, has created a copy-on-write layer. All we need to
874 * do is iterate the object chain.
876 * On failure (fs) is unlocked and deallocated and the caller may return or
877 * retry depending on the failure code. On success (fs) is NOT unlocked or
878 * deallocated, fs.m will contained a resolved, busied page, and fs.object
879 * will have an additional PIP count if it is not equal to fs.first_object.
881 static
883 vm_fault_object(struct faultstate *fs,
884 vm_pindex_t first_pindex, vm_prot_t fault_type)
886 vm_object_t next_object;
887 vm_pindex_t pindex;
889 fs->prot = fs->first_prot;
890 fs->object = fs->first_object;
891 pindex = first_pindex;
894 * If a read fault occurs we try to make the page writable if
895 * possible. There are three cases where we cannot make the
896 * page mapping writable:
898 * (1) The mapping is read-only or the VM object is read-only,
899 * fs->prot above will simply not have VM_PROT_WRITE set.
901 * (2) If the mapping is a virtual page table we need to be able
902 * to detect writes so we can set VPTE_M in the virtual page
903 * table.
905 * (3) If the VM page is read-only or copy-on-write, upgrading would
906 * just result in an unnecessary COW fault.
908 * VM_PROT_VPAGED is set if faulting via a virtual page table and
909 * causes adjustments to the 'M'odify bit to also turn off write
910 * access to force a re-fault.
912 if (fs->entry->maptype == VM_MAPTYPE_VPAGETABLE) {
913 if ((fault_type & VM_PROT_WRITE) == 0)
914 fs->prot &= ~VM_PROT_WRITE;
917 for (;;) {
919 * If the object is dead, we stop here
921 if (fs->object->flags & OBJ_DEAD) {
922 unlock_and_deallocate(fs);
923 return (KERN_PROTECTION_FAILURE);
927 * See if page is resident. spl protection is required
928 * to avoid an interrupt unbusy/free race against our
929 * lookup. We must hold the protection through a page
930 * allocation or busy.
932 crit_enter();
933 fs->m = vm_page_lookup(fs->object, pindex);
934 if (fs->m != NULL) {
935 int queue;
937 * Wait/Retry if the page is busy. We have to do this
938 * if the page is busy via either PG_BUSY or
939 * vm_page_t->busy because the vm_pager may be using
940 * vm_page_t->busy for pageouts ( and even pageins if
941 * it is the vnode pager ), and we could end up trying
942 * to pagein and pageout the same page simultaneously.
944 * We can theoretically allow the busy case on a read
945 * fault if the page is marked valid, but since such
946 * pages are typically already pmap'd, putting that
947 * special case in might be more effort then it is
948 * worth. We cannot under any circumstances mess
949 * around with a vm_page_t->busy page except, perhaps,
950 * to pmap it.
952 if ((fs->m->flags & PG_BUSY) || fs->m->busy) {
953 unlock_things(fs);
954 vm_page_sleep_busy(fs->m, TRUE, "vmpfw");
955 mycpu->gd_cnt.v_intrans++;
956 vm_object_deallocate(fs->first_object);
957 fs->first_object = NULL;
958 crit_exit();
959 return (KERN_TRY_AGAIN);
963 * If reactivating a page from PQ_CACHE we may have
964 * to rate-limit.
966 queue = fs->m->queue;
967 vm_page_unqueue_nowakeup(fs->m);
969 if ((queue - fs->m->pc) == PQ_CACHE &&
970 vm_page_count_severe()) {
971 vm_page_activate(fs->m);
972 unlock_and_deallocate(fs);
973 vm_waitpfault();
974 crit_exit();
975 return (KERN_TRY_AGAIN);
979 * Mark page busy for other processes, and the
980 * pagedaemon. If it still isn't completely valid
981 * (readable), or if a read-ahead-mark is set on
982 * the VM page, jump to readrest, else we found the
983 * page and can return.
985 * We can release the spl once we have marked the
986 * page busy.
988 vm_page_busy(fs->m);
989 crit_exit();
991 if (fs->m->object != &kernel_object) {
992 if ((fs->m->valid & VM_PAGE_BITS_ALL) !=
993 VM_PAGE_BITS_ALL) {
994 goto readrest;
996 if (fs->m->flags & PG_RAM) {
997 if (debug_cluster)
998 kprintf("R");
999 vm_page_flag_clear(fs->m, PG_RAM);
1000 goto readrest;
1003 break; /* break to PAGE HAS BEEN FOUND */
1007 * Page is not resident, If this is the search termination
1008 * or the pager might contain the page, allocate a new page.
1010 * NOTE: We are still in a critical section.
1012 if (TRYPAGER(fs) || fs->object == fs->first_object) {
1014 * If the page is beyond the object size we fail
1016 if (pindex >= fs->object->size) {
1017 crit_exit();
1018 unlock_and_deallocate(fs);
1019 return (KERN_PROTECTION_FAILURE);
1023 * Ratelimit.
1025 if (fs->didlimit == 0 && curproc != NULL) {
1026 int limticks;
1028 limticks = vm_fault_ratelimit(curproc->p_vmspace);
1029 if (limticks) {
1030 crit_exit();
1031 unlock_and_deallocate(fs);
1032 tsleep(curproc, 0, "vmrate", limticks);
1033 fs->didlimit = 1;
1034 return (KERN_TRY_AGAIN);
1039 * Allocate a new page for this object/offset pair.
1041 fs->m = NULL;
1042 if (!vm_page_count_severe()) {
1043 fs->m = vm_page_alloc(fs->object, pindex,
1044 (fs->vp || fs->object->backing_object) ? VM_ALLOC_NORMAL : VM_ALLOC_NORMAL | VM_ALLOC_ZERO);
1046 if (fs->m == NULL) {
1047 crit_exit();
1048 unlock_and_deallocate(fs);
1049 vm_waitpfault();
1050 return (KERN_TRY_AGAIN);
1053 crit_exit();
1055 readrest:
1057 * We have found an invalid or partially valid page, a
1058 * page with a read-ahead mark which might be partially or
1059 * fully valid (and maybe dirty too), or we have allocated
1060 * a new page.
1062 * Attempt to fault-in the page if there is a chance that the
1063 * pager has it, and potentially fault in additional pages
1064 * at the same time.
1066 * We are NOT in splvm here and if TRYPAGER is true then
1067 * fs.m will be non-NULL and will be PG_BUSY for us.
1069 if (TRYPAGER(fs)) {
1070 int rv;
1071 int seqaccess;
1072 u_char behavior = vm_map_entry_behavior(fs->entry);
1074 if (behavior == MAP_ENTRY_BEHAV_RANDOM)
1075 seqaccess = 0;
1076 else
1077 seqaccess = -1;
1080 * If sequential access is detected then attempt
1081 * to deactivate/cache pages behind the scan to
1082 * prevent resource hogging.
1084 * Use of PG_RAM to detect sequential access
1085 * also simulates multi-zone sequential access
1086 * detection for free.
1088 * NOTE: Partially valid dirty pages cannot be
1089 * deactivated without causing NFS picemeal
1090 * writes to barf.
1092 if ((fs->first_object->type != OBJT_DEVICE) &&
1093 (behavior == MAP_ENTRY_BEHAV_SEQUENTIAL ||
1094 (behavior != MAP_ENTRY_BEHAV_RANDOM &&
1095 (fs->m->flags & PG_RAM)))
1097 vm_pindex_t scan_pindex;
1098 int scan_count = 16;
1100 if (first_pindex < 16) {
1101 scan_pindex = 0;
1102 scan_count = 0;
1103 } else {
1104 scan_pindex = first_pindex - 16;
1105 if (scan_pindex < 16)
1106 scan_count = scan_pindex;
1107 else
1108 scan_count = 16;
1111 crit_enter();
1112 while (scan_count) {
1113 vm_page_t mt;
1115 mt = vm_page_lookup(fs->first_object,
1116 scan_pindex);
1117 if (mt == NULL ||
1118 (mt->valid != VM_PAGE_BITS_ALL)) {
1119 break;
1121 if (mt->busy ||
1122 (mt->flags & (PG_BUSY | PG_FICTITIOUS | PG_UNMANAGED)) ||
1123 mt->hold_count ||
1124 mt->wire_count) {
1125 goto skip;
1127 if (mt->dirty == 0)
1128 vm_page_test_dirty(mt);
1129 if (mt->dirty) {
1130 vm_page_busy(mt);
1131 vm_page_protect(mt,
1132 VM_PROT_NONE);
1133 vm_page_deactivate(mt);
1134 vm_page_wakeup(mt);
1135 } else {
1136 vm_page_cache(mt);
1138 skip:
1139 --scan_count;
1140 --scan_pindex;
1142 crit_exit();
1144 seqaccess = 1;
1148 * Avoid deadlocking against the map when doing I/O.
1149 * fs.object and the page is PG_BUSY'd.
1151 unlock_map(fs);
1154 * Acquire the page data. We still hold a ref on
1155 * fs.object and the page has been PG_BUSY's.
1157 * The pager may replace the page (for example, in
1158 * order to enter a fictitious page into the
1159 * object). If it does so it is responsible for
1160 * cleaning up the passed page and properly setting
1161 * the new page PG_BUSY.
1163 * If we got here through a PG_RAM read-ahead
1164 * mark the page may be partially dirty and thus
1165 * not freeable. Don't bother checking to see
1166 * if the pager has the page because we can't free
1167 * it anyway. We have to depend on the get_page
1168 * operation filling in any gaps whether there is
1169 * backing store or not.
1171 rv = vm_pager_get_page(fs->object, &fs->m, seqaccess);
1173 if (rv == VM_PAGER_OK) {
1175 * Relookup in case pager changed page. Pager
1176 * is responsible for disposition of old page
1177 * if moved.
1179 * XXX other code segments do relookups too.
1180 * It's a bad abstraction that needs to be
1181 * fixed/removed.
1183 fs->m = vm_page_lookup(fs->object, pindex);
1184 if (fs->m == NULL) {
1185 unlock_and_deallocate(fs);
1186 return (KERN_TRY_AGAIN);
1189 ++fs->hardfault;
1190 break; /* break to PAGE HAS BEEN FOUND */
1194 * Remove the bogus page (which does not exist at this
1195 * object/offset); before doing so, we must get back
1196 * our object lock to preserve our invariant.
1198 * Also wake up any other process that may want to bring
1199 * in this page.
1201 * If this is the top-level object, we must leave the
1202 * busy page to prevent another process from rushing
1203 * past us, and inserting the page in that object at
1204 * the same time that we are.
1206 if (rv == VM_PAGER_ERROR) {
1207 if (curproc)
1208 kprintf("vm_fault: pager read error, pid %d (%s)\n", curproc->p_pid, curproc->p_comm);
1209 else
1210 kprintf("vm_fault: pager read error, thread %p (%s)\n", curthread, curproc->p_comm);
1214 * Data outside the range of the pager or an I/O error
1216 * The page may have been wired during the pagein,
1217 * e.g. by the buffer cache, and cannot simply be
1218 * freed. Call vnode_pager_freepage() to deal with it.
1221 * XXX - the check for kernel_map is a kludge to work
1222 * around having the machine panic on a kernel space
1223 * fault w/ I/O error.
1225 if (((fs->map != &kernel_map) &&
1226 (rv == VM_PAGER_ERROR)) || (rv == VM_PAGER_BAD)) {
1227 vnode_pager_freepage(fs->m);
1228 fs->m = NULL;
1229 unlock_and_deallocate(fs);
1230 if (rv == VM_PAGER_ERROR)
1231 return (KERN_FAILURE);
1232 else
1233 return (KERN_PROTECTION_FAILURE);
1234 /* NOT REACHED */
1236 if (fs->object != fs->first_object) {
1237 vnode_pager_freepage(fs->m);
1238 fs->m = NULL;
1240 * XXX - we cannot just fall out at this
1241 * point, m has been freed and is invalid!
1247 * We get here if the object has a default pager (or unwiring)
1248 * or the pager doesn't have the page.
1250 if (fs->object == fs->first_object)
1251 fs->first_m = fs->m;
1254 * Move on to the next object. Lock the next object before
1255 * unlocking the current one.
1257 pindex += OFF_TO_IDX(fs->object->backing_object_offset);
1258 next_object = fs->object->backing_object;
1259 if (next_object == NULL) {
1261 * If there's no object left, fill the page in the top
1262 * object with zeros.
1264 if (fs->object != fs->first_object) {
1265 vm_object_pip_wakeup(fs->object);
1267 fs->object = fs->first_object;
1268 pindex = first_pindex;
1269 fs->m = fs->first_m;
1271 fs->first_m = NULL;
1274 * Zero the page if necessary and mark it valid.
1276 if ((fs->m->flags & PG_ZERO) == 0) {
1277 vm_page_zero_fill(fs->m);
1278 } else {
1279 mycpu->gd_cnt.v_ozfod++;
1281 mycpu->gd_cnt.v_zfod++;
1282 fs->m->valid = VM_PAGE_BITS_ALL;
1283 break; /* break to PAGE HAS BEEN FOUND */
1284 } else {
1285 if (fs->object != fs->first_object) {
1286 vm_object_pip_wakeup(fs->object);
1288 KASSERT(fs->object != next_object, ("object loop %p", next_object));
1289 fs->object = next_object;
1290 vm_object_pip_add(fs->object, 1);
1295 * PAGE HAS BEEN FOUND. [Loop invariant still holds -- the object lock
1296 * is held.]
1298 * If the page is being written, but isn't already owned by the
1299 * top-level object, we have to copy it into a new page owned by the
1300 * top-level object.
1302 KASSERT((fs->m->flags & PG_BUSY) != 0,
1303 ("vm_fault: not busy after main loop"));
1305 if (fs->object != fs->first_object) {
1307 * We only really need to copy if we want to write it.
1309 if (fault_type & VM_PROT_WRITE) {
1311 * This allows pages to be virtually copied from a
1312 * backing_object into the first_object, where the
1313 * backing object has no other refs to it, and cannot
1314 * gain any more refs. Instead of a bcopy, we just
1315 * move the page from the backing object to the
1316 * first object. Note that we must mark the page
1317 * dirty in the first object so that it will go out
1318 * to swap when needed.
1320 if (
1322 * Map, if present, has not changed
1324 (fs->map == NULL ||
1325 fs->map_generation == fs->map->timestamp) &&
1327 * Only one shadow object
1329 (fs->object->shadow_count == 1) &&
1331 * No COW refs, except us
1333 (fs->object->ref_count == 1) &&
1335 * No one else can look this object up
1337 (fs->object->handle == NULL) &&
1339 * No other ways to look the object up
1341 ((fs->object->type == OBJT_DEFAULT) ||
1342 (fs->object->type == OBJT_SWAP)) &&
1344 * We don't chase down the shadow chain
1346 (fs->object == fs->first_object->backing_object) &&
1349 * grab the lock if we need to
1351 (fs->lookup_still_valid ||
1352 fs->map == NULL ||
1353 lockmgr(&fs->map->lock, LK_EXCLUSIVE|LK_NOWAIT) == 0)
1356 fs->lookup_still_valid = 1;
1358 * get rid of the unnecessary page
1360 vm_page_protect(fs->first_m, VM_PROT_NONE);
1361 vm_page_free(fs->first_m);
1362 fs->first_m = NULL;
1365 * grab the page and put it into the
1366 * process'es object. The page is
1367 * automatically made dirty.
1369 vm_page_rename(fs->m, fs->first_object, first_pindex);
1370 fs->first_m = fs->m;
1371 vm_page_busy(fs->first_m);
1372 fs->m = NULL;
1373 mycpu->gd_cnt.v_cow_optim++;
1374 } else {
1376 * Oh, well, lets copy it.
1378 vm_page_copy(fs->m, fs->first_m);
1379 vm_page_event(fs->m, VMEVENT_COW);
1382 if (fs->m) {
1384 * We no longer need the old page or object.
1386 release_page(fs);
1390 * fs->object != fs->first_object due to above
1391 * conditional
1393 vm_object_pip_wakeup(fs->object);
1396 * Only use the new page below...
1399 mycpu->gd_cnt.v_cow_faults++;
1400 fs->m = fs->first_m;
1401 fs->object = fs->first_object;
1402 pindex = first_pindex;
1403 } else {
1405 * If it wasn't a write fault avoid having to copy
1406 * the page by mapping it read-only.
1408 fs->prot &= ~VM_PROT_WRITE;
1413 * We may have had to unlock a map to do I/O. If we did then
1414 * lookup_still_valid will be FALSE. If the map generation count
1415 * also changed then all sorts of things could have happened while
1416 * we were doing the I/O and we need to retry.
1419 if (!fs->lookup_still_valid &&
1420 fs->map != NULL &&
1421 (fs->map->timestamp != fs->map_generation)) {
1422 release_page(fs);
1423 unlock_and_deallocate(fs);
1424 return (KERN_TRY_AGAIN);
1428 * If the fault is a write, we know that this page is being
1429 * written NOW so dirty it explicitly to save on pmap_is_modified()
1430 * calls later.
1432 * If this is a NOSYNC mmap we do not want to set PG_NOSYNC
1433 * if the page is already dirty to prevent data written with
1434 * the expectation of being synced from not being synced.
1435 * Likewise if this entry does not request NOSYNC then make
1436 * sure the page isn't marked NOSYNC. Applications sharing
1437 * data should use the same flags to avoid ping ponging.
1439 * Also tell the backing pager, if any, that it should remove
1440 * any swap backing since the page is now dirty.
1442 if (fs->prot & VM_PROT_WRITE) {
1443 vm_object_set_writeable_dirty(fs->m->object);
1444 if (fs->entry->eflags & MAP_ENTRY_NOSYNC) {
1445 if (fs->m->dirty == 0)
1446 vm_page_flag_set(fs->m, PG_NOSYNC);
1447 } else {
1448 vm_page_flag_clear(fs->m, PG_NOSYNC);
1450 if (fs->fault_flags & VM_FAULT_DIRTY) {
1451 crit_enter();
1452 vm_page_dirty(fs->m);
1453 swap_pager_unswapped(fs->m);
1454 crit_exit();
1459 * Page had better still be busy. We are still locked up and
1460 * fs->object will have another PIP reference if it is not equal
1461 * to fs->first_object.
1463 KASSERT(fs->m->flags & PG_BUSY,
1464 ("vm_fault: page %p not busy!", fs->m));
1467 * Sanity check: page must be completely valid or it is not fit to
1468 * map into user space. vm_pager_get_pages() ensures this.
1470 if (fs->m->valid != VM_PAGE_BITS_ALL) {
1471 vm_page_zero_invalid(fs->m, TRUE);
1472 kprintf("Warning: page %p partially invalid on fault\n", fs->m);
1475 return (KERN_SUCCESS);
1479 * Wire down a range of virtual addresses in a map. The entry in question
1480 * should be marked in-transition and the map must be locked. We must
1481 * release the map temporarily while faulting-in the page to avoid a
1482 * deadlock. Note that the entry may be clipped while we are blocked but
1483 * will never be freed.
1486 vm_fault_wire(vm_map_t map, vm_map_entry_t entry, boolean_t user_wire)
1488 boolean_t fictitious;
1489 vm_offset_t start;
1490 vm_offset_t end;
1491 vm_offset_t va;
1492 vm_paddr_t pa;
1493 pmap_t pmap;
1494 int rv;
1496 pmap = vm_map_pmap(map);
1497 start = entry->start;
1498 end = entry->end;
1499 fictitious = entry->object.vm_object &&
1500 (entry->object.vm_object->type == OBJT_DEVICE);
1502 vm_map_unlock(map);
1503 map->timestamp++;
1506 * We simulate a fault to get the page and enter it in the physical
1507 * map.
1509 for (va = start; va < end; va += PAGE_SIZE) {
1510 if (user_wire) {
1511 rv = vm_fault(map, va, VM_PROT_READ,
1512 VM_FAULT_USER_WIRE);
1513 } else {
1514 rv = vm_fault(map, va, VM_PROT_READ|VM_PROT_WRITE,
1515 VM_FAULT_CHANGE_WIRING);
1517 if (rv) {
1518 while (va > start) {
1519 va -= PAGE_SIZE;
1520 if ((pa = pmap_extract(pmap, va)) == 0)
1521 continue;
1522 pmap_change_wiring(pmap, va, FALSE);
1523 if (!fictitious)
1524 vm_page_unwire(PHYS_TO_VM_PAGE(pa), 1);
1526 vm_map_lock(map);
1527 return (rv);
1530 vm_map_lock(map);
1531 return (KERN_SUCCESS);
1535 * Unwire a range of virtual addresses in a map. The map should be
1536 * locked.
1538 void
1539 vm_fault_unwire(vm_map_t map, vm_map_entry_t entry)
1541 boolean_t fictitious;
1542 vm_offset_t start;
1543 vm_offset_t end;
1544 vm_offset_t va;
1545 vm_paddr_t pa;
1546 pmap_t pmap;
1548 pmap = vm_map_pmap(map);
1549 start = entry->start;
1550 end = entry->end;
1551 fictitious = entry->object.vm_object &&
1552 (entry->object.vm_object->type == OBJT_DEVICE);
1555 * Since the pages are wired down, we must be able to get their
1556 * mappings from the physical map system.
1558 for (va = start; va < end; va += PAGE_SIZE) {
1559 pa = pmap_extract(pmap, va);
1560 if (pa != 0) {
1561 pmap_change_wiring(pmap, va, FALSE);
1562 if (!fictitious)
1563 vm_page_unwire(PHYS_TO_VM_PAGE(pa), 1);
1569 * Reduce the rate at which memory is allocated to a process based
1570 * on the perceived load on the VM system. As the load increases
1571 * the allocation burst rate goes down and the delay increases.
1573 * Rate limiting does not apply when faulting active or inactive
1574 * pages. When faulting 'cache' pages, rate limiting only applies
1575 * if the system currently has a severe page deficit.
1577 * XXX vm_pagesupply should be increased when a page is freed.
1579 * We sleep up to 1/10 of a second.
1581 static int
1582 vm_fault_ratelimit(struct vmspace *vmspace)
1584 if (vm_load_enable == 0)
1585 return(0);
1586 if (vmspace->vm_pagesupply > 0) {
1587 --vmspace->vm_pagesupply;
1588 return(0);
1590 #ifdef INVARIANTS
1591 if (vm_load_debug) {
1592 kprintf("load %-4d give %d pgs, wait %d, pid %-5d (%s)\n",
1593 vm_load,
1594 (1000 - vm_load ) / 10, vm_load * hz / 10000,
1595 curproc->p_pid, curproc->p_comm);
1597 #endif
1598 vmspace->vm_pagesupply = (1000 - vm_load) / 10;
1599 return(vm_load * hz / 10000);
1603 * Routine:
1604 * vm_fault_copy_entry
1605 * Function:
1606 * Copy all of the pages from a wired-down map entry to another.
1608 * In/out conditions:
1609 * The source and destination maps must be locked for write.
1610 * The source map entry must be wired down (or be a sharing map
1611 * entry corresponding to a main map entry that is wired down).
1614 void
1615 vm_fault_copy_entry(vm_map_t dst_map, vm_map_t src_map,
1616 vm_map_entry_t dst_entry, vm_map_entry_t src_entry)
1618 vm_object_t dst_object;
1619 vm_object_t src_object;
1620 vm_ooffset_t dst_offset;
1621 vm_ooffset_t src_offset;
1622 vm_prot_t prot;
1623 vm_offset_t vaddr;
1624 vm_page_t dst_m;
1625 vm_page_t src_m;
1627 #ifdef lint
1628 src_map++;
1629 #endif /* lint */
1631 src_object = src_entry->object.vm_object;
1632 src_offset = src_entry->offset;
1635 * Create the top-level object for the destination entry. (Doesn't
1636 * actually shadow anything - we copy the pages directly.)
1638 vm_map_entry_allocate_object(dst_entry);
1639 dst_object = dst_entry->object.vm_object;
1641 prot = dst_entry->max_protection;
1644 * Loop through all of the pages in the entry's range, copying each
1645 * one from the source object (it should be there) to the destination
1646 * object.
1648 for (vaddr = dst_entry->start, dst_offset = 0;
1649 vaddr < dst_entry->end;
1650 vaddr += PAGE_SIZE, dst_offset += PAGE_SIZE) {
1653 * Allocate a page in the destination object
1655 do {
1656 dst_m = vm_page_alloc(dst_object,
1657 OFF_TO_IDX(dst_offset), VM_ALLOC_NORMAL);
1658 if (dst_m == NULL) {
1659 vm_wait(0);
1661 } while (dst_m == NULL);
1664 * Find the page in the source object, and copy it in.
1665 * (Because the source is wired down, the page will be in
1666 * memory.)
1668 src_m = vm_page_lookup(src_object,
1669 OFF_TO_IDX(dst_offset + src_offset));
1670 if (src_m == NULL)
1671 panic("vm_fault_copy_wired: page missing");
1673 vm_page_copy(src_m, dst_m);
1674 vm_page_event(src_m, VMEVENT_COW);
1677 * Enter it in the pmap...
1680 vm_page_flag_clear(dst_m, PG_ZERO);
1681 pmap_enter(dst_map->pmap, vaddr, dst_m, prot, FALSE);
1684 * Mark it no longer busy, and put it on the active list.
1686 vm_page_activate(dst_m);
1687 vm_page_wakeup(dst_m);
1691 #if 0
1694 * This routine checks around the requested page for other pages that
1695 * might be able to be faulted in. This routine brackets the viable
1696 * pages for the pages to be paged in.
1698 * Inputs:
1699 * m, rbehind, rahead
1701 * Outputs:
1702 * marray (array of vm_page_t), reqpage (index of requested page)
1704 * Return value:
1705 * number of pages in marray
1707 static int
1708 vm_fault_additional_pages(vm_page_t m, int rbehind, int rahead,
1709 vm_page_t *marray, int *reqpage)
1711 int i,j;
1712 vm_object_t object;
1713 vm_pindex_t pindex, startpindex, endpindex, tpindex;
1714 vm_page_t rtm;
1715 int cbehind, cahead;
1717 object = m->object;
1718 pindex = m->pindex;
1721 * we don't fault-ahead for device pager
1723 if (object->type == OBJT_DEVICE) {
1724 *reqpage = 0;
1725 marray[0] = m;
1726 return 1;
1730 * if the requested page is not available, then give up now
1732 if (!vm_pager_has_page(object, pindex, &cbehind, &cahead)) {
1733 *reqpage = 0; /* not used by caller, fix compiler warn */
1734 return 0;
1737 if ((cbehind == 0) && (cahead == 0)) {
1738 *reqpage = 0;
1739 marray[0] = m;
1740 return 1;
1743 if (rahead > cahead) {
1744 rahead = cahead;
1747 if (rbehind > cbehind) {
1748 rbehind = cbehind;
1752 * Do not do any readahead if we have insufficient free memory.
1754 * XXX code was broken disabled before and has instability
1755 * with this conditonal fixed, so shortcut for now.
1757 if (burst_fault == 0 || vm_page_count_severe()) {
1758 marray[0] = m;
1759 *reqpage = 0;
1760 return 1;
1764 * scan backward for the read behind pages -- in memory
1766 * Assume that if the page is not found an interrupt will not
1767 * create it. Theoretically interrupts can only remove (busy)
1768 * pages, not create new associations.
1770 if (pindex > 0) {
1771 if (rbehind > pindex) {
1772 rbehind = pindex;
1773 startpindex = 0;
1774 } else {
1775 startpindex = pindex - rbehind;
1778 crit_enter();
1779 for (tpindex = pindex; tpindex > startpindex; --tpindex) {
1780 if (vm_page_lookup(object, tpindex - 1))
1781 break;
1784 i = 0;
1785 while (tpindex < pindex) {
1786 rtm = vm_page_alloc(object, tpindex, VM_ALLOC_SYSTEM);
1787 if (rtm == NULL) {
1788 crit_exit();
1789 for (j = 0; j < i; j++) {
1790 vm_page_free(marray[j]);
1792 marray[0] = m;
1793 *reqpage = 0;
1794 return 1;
1796 marray[i] = rtm;
1797 ++i;
1798 ++tpindex;
1800 crit_exit();
1801 } else {
1802 i = 0;
1806 * Assign requested page
1808 marray[i] = m;
1809 *reqpage = i;
1810 ++i;
1813 * Scan forwards for read-ahead pages
1815 tpindex = pindex + 1;
1816 endpindex = tpindex + rahead;
1817 if (endpindex > object->size)
1818 endpindex = object->size;
1820 crit_enter();
1821 while (tpindex < endpindex) {
1822 if (vm_page_lookup(object, tpindex))
1823 break;
1824 rtm = vm_page_alloc(object, tpindex, VM_ALLOC_SYSTEM);
1825 if (rtm == NULL)
1826 break;
1827 marray[i] = rtm;
1828 ++i;
1829 ++tpindex;
1831 crit_exit();
1833 return (i);
1836 #endif
1839 * vm_prefault() provides a quick way of clustering pagefaults into a
1840 * processes address space. It is a "cousin" of pmap_object_init_pt,
1841 * except it runs at page fault time instead of mmap time.
1843 * This code used to be per-platform pmap_prefault(). It is now
1844 * machine-independent and enhanced to also pre-fault zero-fill pages
1845 * (see vm.fast_fault) as well as make them writable, which greatly
1846 * reduces the number of page faults programs incur.
1848 * Application performance when pre-faulting zero-fill pages is heavily
1849 * dependent on the application. Very tiny applications like /bin/echo
1850 * lose a little performance while applications of any appreciable size
1851 * gain performance. Prefaulting multiple pages also reduces SMP
1852 * congestion and can improve SMP performance significantly.
1854 * NOTE! prot may allow writing but this only applies to the top level
1855 * object. If we wind up mapping a page extracted from a backing
1856 * object we have to make sure it is read-only.
1858 * NOTE! The caller has already handled any COW operations on the
1859 * vm_map_entry via the normal fault code. Do NOT call this
1860 * shortcut unless the normal fault code has run on this entry.
1862 #define PFBAK 4
1863 #define PFFOR 4
1864 #define PAGEORDER_SIZE (PFBAK+PFFOR)
1866 static int vm_prefault_pageorder[] = {
1867 -PAGE_SIZE, PAGE_SIZE,
1868 -2 * PAGE_SIZE, 2 * PAGE_SIZE,
1869 -3 * PAGE_SIZE, 3 * PAGE_SIZE,
1870 -4 * PAGE_SIZE, 4 * PAGE_SIZE
1873 static void
1874 vm_prefault(pmap_t pmap, vm_offset_t addra, vm_map_entry_t entry, int prot)
1876 struct lwp *lp;
1877 vm_page_t m;
1878 vm_offset_t starta;
1879 vm_offset_t addr;
1880 vm_pindex_t index;
1881 vm_pindex_t pindex;
1882 vm_object_t object;
1883 int pprot;
1884 int i;
1887 * We do not currently prefault mappings that use virtual page
1888 * tables. We do not prefault foreign pmaps.
1890 if (entry->maptype == VM_MAPTYPE_VPAGETABLE)
1891 return;
1892 lp = curthread->td_lwp;
1893 if (lp == NULL || (pmap != vmspace_pmap(lp->lwp_vmspace)))
1894 return;
1896 object = entry->object.vm_object;
1898 starta = addra - PFBAK * PAGE_SIZE;
1899 if (starta < entry->start)
1900 starta = entry->start;
1901 else if (starta > addra)
1902 starta = 0;
1905 * critical section protection is required to maintain the
1906 * page/object association, interrupts can free pages and remove
1907 * them from their objects.
1909 crit_enter();
1910 for (i = 0; i < PAGEORDER_SIZE; i++) {
1911 vm_object_t lobject;
1912 int allocated = 0;
1914 addr = addra + vm_prefault_pageorder[i];
1915 if (addr > addra + (PFFOR * PAGE_SIZE))
1916 addr = 0;
1918 if (addr < starta || addr >= entry->end)
1919 continue;
1921 if (pmap_prefault_ok(pmap, addr) == 0)
1922 continue;
1925 * Follow the VM object chain to obtain the page to be mapped
1926 * into the pmap.
1928 * If we reach the terminal object without finding a page
1929 * and we determine it would be advantageous, then allocate
1930 * a zero-fill page for the base object. The base object
1931 * is guaranteed to be OBJT_DEFAULT for this case.
1933 * In order to not have to check the pager via *haspage*()
1934 * we stop if any non-default object is encountered. e.g.
1935 * a vnode or swap object would stop the loop.
1937 index = ((addr - entry->start) + entry->offset) >> PAGE_SHIFT;
1938 lobject = object;
1939 pindex = index;
1940 pprot = prot;
1942 while ((m = vm_page_lookup(lobject, pindex)) == NULL) {
1943 if (lobject->type != OBJT_DEFAULT)
1944 break;
1945 if (lobject->backing_object == NULL) {
1946 if (vm_fast_fault == 0)
1947 break;
1948 if (vm_prefault_pageorder[i] < 0 ||
1949 (prot & VM_PROT_WRITE) == 0 ||
1950 vm_page_count_min(0)) {
1951 break;
1953 /* note: allocate from base object */
1954 m = vm_page_alloc(object, index,
1955 VM_ALLOC_NORMAL | VM_ALLOC_ZERO);
1957 if ((m->flags & PG_ZERO) == 0) {
1958 vm_page_zero_fill(m);
1959 } else {
1960 vm_page_flag_clear(m, PG_ZERO);
1961 mycpu->gd_cnt.v_ozfod++;
1963 mycpu->gd_cnt.v_zfod++;
1964 m->valid = VM_PAGE_BITS_ALL;
1965 allocated = 1;
1966 pprot = prot;
1967 /* lobject = object .. not needed */
1968 break;
1970 if (lobject->backing_object_offset & PAGE_MASK)
1971 break;
1972 pindex += lobject->backing_object_offset >> PAGE_SHIFT;
1973 lobject = lobject->backing_object;
1974 pprot &= ~VM_PROT_WRITE;
1977 * NOTE: lobject now invalid (if we did a zero-fill we didn't
1978 * bother assigning lobject = object).
1980 * Give-up if the page is not available.
1982 if (m == NULL)
1983 break;
1986 * Do not conditionalize on PG_RAM. If pages are present in
1987 * the VM system we assume optimal caching. If caching is
1988 * not optimal the I/O gravy train will be restarted when we
1989 * hit an unavailable page. We do not want to try to restart
1990 * the gravy train now because we really don't know how much
1991 * of the object has been cached. The cost for restarting
1992 * the gravy train should be low (since accesses will likely
1993 * be I/O bound anyway).
1995 * The object must be marked dirty if we are mapping a
1996 * writable page.
1998 if (pprot & VM_PROT_WRITE)
1999 vm_object_set_writeable_dirty(m->object);
2002 * Enter the page into the pmap if appropriate. If we had
2003 * allocated the page we have to place it on a queue. If not
2004 * we just have to make sure it isn't on the cache queue
2005 * (pages on the cache queue are not allowed to be mapped).
2007 if (allocated) {
2008 pmap_enter(pmap, addr, m, pprot, 0);
2009 vm_page_deactivate(m);
2010 vm_page_wakeup(m);
2011 } else if (((m->valid & VM_PAGE_BITS_ALL) == VM_PAGE_BITS_ALL) &&
2012 (m->busy == 0) &&
2013 (m->flags & (PG_BUSY | PG_FICTITIOUS)) == 0) {
2015 if ((m->queue - m->pc) == PQ_CACHE) {
2016 vm_page_deactivate(m);
2018 vm_page_busy(m);
2019 pmap_enter(pmap, addr, m, pprot, 0);
2020 vm_page_wakeup(m);
2023 crit_exit();