kernel - TMPFS - Features, don't sync on umount, enforce snocache on root
[dragonfly.git] / sys / kern / kern_clock.c
blob83818c227693c7b13d6e7af5ee49dd42da100f2e
1 /*
2 * Copyright (c) 2003,2004 The DragonFly Project. All rights reserved.
3 *
4 * This code is derived from software contributed to The DragonFly Project
5 * by Matthew Dillon <dillon@backplane.com>
6 *
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following conditions
9 * are met:
11 * 1. Redistributions of source code must retain the above copyright
12 * notice, this list of conditions and the following disclaimer.
13 * 2. Redistributions in binary form must reproduce the above copyright
14 * notice, this list of conditions and the following disclaimer in
15 * the documentation and/or other materials provided with the
16 * distribution.
17 * 3. Neither the name of The DragonFly Project nor the names of its
18 * contributors may be used to endorse or promote products derived
19 * from this software without specific, prior written permission.
21 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
22 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
23 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
24 * FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
25 * COPYRIGHT HOLDERS OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
26 * INCIDENTAL, SPECIAL, EXEMPLARY OR CONSEQUENTIAL DAMAGES (INCLUDING,
27 * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
28 * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
29 * AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
30 * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT
31 * OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
32 * SUCH DAMAGE.
34 * Copyright (c) 1997, 1998 Poul-Henning Kamp <phk@FreeBSD.org>
35 * Copyright (c) 1982, 1986, 1991, 1993
36 * The Regents of the University of California. All rights reserved.
37 * (c) UNIX System Laboratories, Inc.
38 * All or some portions of this file are derived from material licensed
39 * to the University of California by American Telephone and Telegraph
40 * Co. or Unix System Laboratories, Inc. and are reproduced herein with
41 * the permission of UNIX System Laboratories, Inc.
43 * Redistribution and use in source and binary forms, with or without
44 * modification, are permitted provided that the following conditions
45 * are met:
46 * 1. Redistributions of source code must retain the above copyright
47 * notice, this list of conditions and the following disclaimer.
48 * 2. Redistributions in binary form must reproduce the above copyright
49 * notice, this list of conditions and the following disclaimer in the
50 * documentation and/or other materials provided with the distribution.
51 * 3. All advertising materials mentioning features or use of this software
52 * must display the following acknowledgement:
53 * This product includes software developed by the University of
54 * California, Berkeley and its contributors.
55 * 4. Neither the name of the University nor the names of its contributors
56 * may be used to endorse or promote products derived from this software
57 * without specific prior written permission.
59 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
60 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
61 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
62 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
63 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
64 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
65 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
66 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
67 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
68 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
69 * SUCH DAMAGE.
71 * @(#)kern_clock.c 8.5 (Berkeley) 1/21/94
72 * $FreeBSD: src/sys/kern/kern_clock.c,v 1.105.2.10 2002/10/17 13:19:40 maxim Exp $
73 * $DragonFly: src/sys/kern/kern_clock.c,v 1.62 2008/09/09 04:06:13 dillon Exp $
76 #include "opt_ntp.h"
77 #include "opt_polling.h"
78 #include "opt_ifpoll.h"
79 #include "opt_pctrack.h"
81 #include <sys/param.h>
82 #include <sys/systm.h>
83 #include <sys/callout.h>
84 #include <sys/kernel.h>
85 #include <sys/kinfo.h>
86 #include <sys/proc.h>
87 #include <sys/malloc.h>
88 #include <sys/resourcevar.h>
89 #include <sys/signalvar.h>
90 #include <sys/timex.h>
91 #include <sys/timepps.h>
92 #include <vm/vm.h>
93 #include <sys/lock.h>
94 #include <vm/pmap.h>
95 #include <vm/vm_map.h>
96 #include <vm/vm_extern.h>
97 #include <sys/sysctl.h>
99 #include <sys/thread2.h>
100 #include <sys/mplock2.h>
102 #include <machine/cpu.h>
103 #include <machine/limits.h>
104 #include <machine/smp.h>
105 #include <machine/cpufunc.h>
106 #include <machine/specialreg.h>
107 #include <machine/clock.h>
109 #ifdef GPROF
110 #include <sys/gmon.h>
111 #endif
113 #ifdef DEVICE_POLLING
114 extern void init_device_poll_pcpu(int);
115 #endif
117 #ifdef IFPOLL_ENABLE
118 extern void ifpoll_init_pcpu(int);
119 #endif
121 #ifdef DEBUG_PCTRACK
122 static void do_pctrack(struct intrframe *frame, int which);
123 #endif
125 static void initclocks (void *dummy);
126 SYSINIT(clocks, SI_BOOT2_CLOCKS, SI_ORDER_FIRST, initclocks, NULL)
129 * Some of these don't belong here, but it's easiest to concentrate them.
130 * Note that cpu_time counts in microseconds, but most userland programs
131 * just compare relative times against the total by delta.
133 struct kinfo_cputime cputime_percpu[MAXCPU];
134 #ifdef DEBUG_PCTRACK
135 struct kinfo_pcheader cputime_pcheader = { PCTRACK_SIZE, PCTRACK_ARYSIZE };
136 struct kinfo_pctrack cputime_pctrack[MAXCPU][PCTRACK_SIZE];
137 #endif
139 #ifdef SMP
140 static int
141 sysctl_cputime(SYSCTL_HANDLER_ARGS)
143 int cpu, error = 0;
144 size_t size = sizeof(struct kinfo_cputime);
146 for (cpu = 0; cpu < ncpus; ++cpu) {
147 if ((error = SYSCTL_OUT(req, &cputime_percpu[cpu], size)))
148 break;
151 return (error);
153 SYSCTL_PROC(_kern, OID_AUTO, cputime, (CTLTYPE_OPAQUE|CTLFLAG_RD), 0, 0,
154 sysctl_cputime, "S,kinfo_cputime", "CPU time statistics");
155 #else
156 SYSCTL_STRUCT(_kern, OID_AUTO, cputime, CTLFLAG_RD, &cpu_time, kinfo_cputime,
157 "CPU time statistics");
158 #endif
161 * boottime is used to calculate the 'real' uptime. Do not confuse this with
162 * microuptime(). microtime() is not drift compensated. The real uptime
163 * with compensation is nanotime() - bootime. boottime is recalculated
164 * whenever the real time is set based on the compensated elapsed time
165 * in seconds (gd->gd_time_seconds).
167 * The gd_time_seconds and gd_cpuclock_base fields remain fairly monotonic.
168 * Slight adjustments to gd_cpuclock_base are made to phase-lock it to
169 * the real time.
171 struct timespec boottime; /* boot time (realtime) for reference only */
172 time_t time_second; /* read-only 'passive' uptime in seconds */
175 * basetime is used to calculate the compensated real time of day. The
176 * basetime can be modified on a per-tick basis by the adjtime(),
177 * ntp_adjtime(), and sysctl-based time correction APIs.
179 * Note that frequency corrections can also be made by adjusting
180 * gd_cpuclock_base.
182 * basetime is a tail-chasing FIFO, updated only by cpu #0. The FIFO is
183 * used on both SMP and UP systems to avoid MP races between cpu's and
184 * interrupt races on UP systems.
186 #define BASETIME_ARYSIZE 16
187 #define BASETIME_ARYMASK (BASETIME_ARYSIZE - 1)
188 static struct timespec basetime[BASETIME_ARYSIZE];
189 static volatile int basetime_index;
191 static int
192 sysctl_get_basetime(SYSCTL_HANDLER_ARGS)
194 struct timespec *bt;
195 int error;
196 int index;
199 * Because basetime data and index may be updated by another cpu,
200 * a load fence is required to ensure that the data we read has
201 * not been speculatively read relative to a possibly updated index.
203 index = basetime_index;
204 cpu_lfence();
205 bt = &basetime[index];
206 error = SYSCTL_OUT(req, bt, sizeof(*bt));
207 return (error);
210 SYSCTL_STRUCT(_kern, KERN_BOOTTIME, boottime, CTLFLAG_RD,
211 &boottime, timespec, "System boottime");
212 SYSCTL_PROC(_kern, OID_AUTO, basetime, CTLTYPE_STRUCT|CTLFLAG_RD, 0, 0,
213 sysctl_get_basetime, "S,timespec", "System basetime");
215 static void hardclock(systimer_t info, struct intrframe *frame);
216 static void statclock(systimer_t info, struct intrframe *frame);
217 static void schedclock(systimer_t info, struct intrframe *frame);
218 static void getnanotime_nbt(struct timespec *nbt, struct timespec *tsp);
220 int ticks; /* system master ticks at hz */
221 int clocks_running; /* tsleep/timeout clocks operational */
222 int64_t nsec_adj; /* ntpd per-tick adjustment in nsec << 32 */
223 int64_t nsec_acc; /* accumulator */
225 /* NTPD time correction fields */
226 int64_t ntp_tick_permanent; /* per-tick adjustment in nsec << 32 */
227 int64_t ntp_tick_acc; /* accumulator for per-tick adjustment */
228 int64_t ntp_delta; /* one-time correction in nsec */
229 int64_t ntp_big_delta = 1000000000;
230 int32_t ntp_tick_delta; /* current adjustment rate */
231 int32_t ntp_default_tick_delta; /* adjustment rate for ntp_delta */
232 time_t ntp_leap_second; /* time of next leap second */
233 int ntp_leap_insert; /* whether to insert or remove a second */
236 * Finish initializing clock frequencies and start all clocks running.
238 /* ARGSUSED*/
239 static void
240 initclocks(void *dummy)
242 /*psratio = profhz / stathz;*/
243 initclocks_pcpu();
244 clocks_running = 1;
248 * Called on a per-cpu basis
250 void
251 initclocks_pcpu(void)
253 struct globaldata *gd = mycpu;
255 crit_enter();
256 if (gd->gd_cpuid == 0) {
257 gd->gd_time_seconds = 1;
258 gd->gd_cpuclock_base = sys_cputimer->count();
259 } else {
260 /* XXX */
261 gd->gd_time_seconds = globaldata_find(0)->gd_time_seconds;
262 gd->gd_cpuclock_base = globaldata_find(0)->gd_cpuclock_base;
265 systimer_intr_enable();
267 #ifdef DEVICE_POLLING
268 init_device_poll_pcpu(gd->gd_cpuid);
269 #endif
271 #ifdef IFPOLL_ENABLE
272 ifpoll_init_pcpu(gd->gd_cpuid);
273 #endif
276 * Use a non-queued periodic systimer to prevent multiple ticks from
277 * building up if the sysclock jumps forward (8254 gets reset). The
278 * sysclock will never jump backwards. Our time sync is based on
279 * the actual sysclock, not the ticks count.
281 systimer_init_periodic_nq(&gd->gd_hardclock, hardclock, NULL, hz);
282 systimer_init_periodic_nq(&gd->gd_statclock, statclock, NULL, stathz);
283 /* XXX correct the frequency for scheduler / estcpu tests */
284 systimer_init_periodic_nq(&gd->gd_schedclock, schedclock,
285 NULL, ESTCPUFREQ);
286 crit_exit();
290 * This sets the current real time of day. Timespecs are in seconds and
291 * nanoseconds. We do not mess with gd_time_seconds and gd_cpuclock_base,
292 * instead we adjust basetime so basetime + gd_* results in the current
293 * time of day. This way the gd_* fields are guarenteed to represent
294 * a monotonically increasing 'uptime' value.
296 * When set_timeofday() is called from userland, the system call forces it
297 * onto cpu #0 since only cpu #0 can update basetime_index.
299 void
300 set_timeofday(struct timespec *ts)
302 struct timespec *nbt;
303 int ni;
306 * XXX SMP / non-atomic basetime updates
308 crit_enter();
309 ni = (basetime_index + 1) & BASETIME_ARYMASK;
310 nbt = &basetime[ni];
311 nanouptime(nbt);
312 nbt->tv_sec = ts->tv_sec - nbt->tv_sec;
313 nbt->tv_nsec = ts->tv_nsec - nbt->tv_nsec;
314 if (nbt->tv_nsec < 0) {
315 nbt->tv_nsec += 1000000000;
316 --nbt->tv_sec;
320 * Note that basetime diverges from boottime as the clock drift is
321 * compensated for, so we cannot do away with boottime. When setting
322 * the absolute time of day the drift is 0 (for an instant) and we
323 * can simply assign boottime to basetime.
325 * Note that nanouptime() is based on gd_time_seconds which is drift
326 * compensated up to a point (it is guarenteed to remain monotonically
327 * increasing). gd_time_seconds is thus our best uptime guess and
328 * suitable for use in the boottime calculation. It is already taken
329 * into account in the basetime calculation above.
331 boottime.tv_sec = nbt->tv_sec;
332 ntp_delta = 0;
335 * We now have a new basetime, make sure all other cpus have it,
336 * then update the index.
338 cpu_sfence();
339 basetime_index = ni;
341 crit_exit();
345 * Each cpu has its own hardclock, but we only increments ticks and softticks
346 * on cpu #0.
348 * NOTE! systimer! the MP lock might not be held here. We can only safely
349 * manipulate objects owned by the current cpu.
351 static void
352 hardclock(systimer_t info, struct intrframe *frame)
354 sysclock_t cputicks;
355 struct proc *p;
356 struct globaldata *gd = mycpu;
359 * Realtime updates are per-cpu. Note that timer corrections as
360 * returned by microtime() and friends make an additional adjustment
361 * using a system-wise 'basetime', but the running time is always
362 * taken from the per-cpu globaldata area. Since the same clock
363 * is distributing (XXX SMP) to all cpus, the per-cpu timebases
364 * stay in synch.
366 * Note that we never allow info->time (aka gd->gd_hardclock.time)
367 * to reverse index gd_cpuclock_base, but that it is possible for
368 * it to temporarily get behind in the seconds if something in the
369 * system locks interrupts for a long period of time. Since periodic
370 * timers count events, though everything should resynch again
371 * immediately.
373 cputicks = info->time - gd->gd_cpuclock_base;
374 if (cputicks >= sys_cputimer->freq) {
375 ++gd->gd_time_seconds;
376 gd->gd_cpuclock_base += sys_cputimer->freq;
380 * The system-wide ticks counter and NTP related timedelta/tickdelta
381 * adjustments only occur on cpu #0. NTP adjustments are accomplished
382 * by updating basetime.
384 if (gd->gd_cpuid == 0) {
385 struct timespec *nbt;
386 struct timespec nts;
387 int leap;
388 int ni;
390 ++ticks;
392 #if 0
393 if (tco->tc_poll_pps)
394 tco->tc_poll_pps(tco);
395 #endif
398 * Calculate the new basetime index. We are in a critical section
399 * on cpu #0 and can safely play with basetime_index. Start
400 * with the current basetime and then make adjustments.
402 ni = (basetime_index + 1) & BASETIME_ARYMASK;
403 nbt = &basetime[ni];
404 *nbt = basetime[basetime_index];
407 * Apply adjtime corrections. (adjtime() API)
409 * adjtime() only runs on cpu #0 so our critical section is
410 * sufficient to access these variables.
412 if (ntp_delta != 0) {
413 nbt->tv_nsec += ntp_tick_delta;
414 ntp_delta -= ntp_tick_delta;
415 if ((ntp_delta > 0 && ntp_delta < ntp_tick_delta) ||
416 (ntp_delta < 0 && ntp_delta > ntp_tick_delta)) {
417 ntp_tick_delta = ntp_delta;
422 * Apply permanent frequency corrections. (sysctl API)
424 if (ntp_tick_permanent != 0) {
425 ntp_tick_acc += ntp_tick_permanent;
426 if (ntp_tick_acc >= (1LL << 32)) {
427 nbt->tv_nsec += ntp_tick_acc >> 32;
428 ntp_tick_acc -= (ntp_tick_acc >> 32) << 32;
429 } else if (ntp_tick_acc <= -(1LL << 32)) {
430 /* Negate ntp_tick_acc to avoid shifting the sign bit. */
431 nbt->tv_nsec -= (-ntp_tick_acc) >> 32;
432 ntp_tick_acc += ((-ntp_tick_acc) >> 32) << 32;
436 if (nbt->tv_nsec >= 1000000000) {
437 nbt->tv_sec++;
438 nbt->tv_nsec -= 1000000000;
439 } else if (nbt->tv_nsec < 0) {
440 nbt->tv_sec--;
441 nbt->tv_nsec += 1000000000;
445 * Another per-tick compensation. (for ntp_adjtime() API)
447 if (nsec_adj != 0) {
448 nsec_acc += nsec_adj;
449 if (nsec_acc >= 0x100000000LL) {
450 nbt->tv_nsec += nsec_acc >> 32;
451 nsec_acc = (nsec_acc & 0xFFFFFFFFLL);
452 } else if (nsec_acc <= -0x100000000LL) {
453 nbt->tv_nsec -= -nsec_acc >> 32;
454 nsec_acc = -(-nsec_acc & 0xFFFFFFFFLL);
456 if (nbt->tv_nsec >= 1000000000) {
457 nbt->tv_nsec -= 1000000000;
458 ++nbt->tv_sec;
459 } else if (nbt->tv_nsec < 0) {
460 nbt->tv_nsec += 1000000000;
461 --nbt->tv_sec;
465 /************************************************************
466 * LEAP SECOND CORRECTION *
467 ************************************************************
469 * Taking into account all the corrections made above, figure
470 * out the new real time. If the seconds field has changed
471 * then apply any pending leap-second corrections.
473 getnanotime_nbt(nbt, &nts);
475 if (time_second != nts.tv_sec) {
477 * Apply leap second (sysctl API). Adjust nts for changes
478 * so we do not have to call getnanotime_nbt again.
480 if (ntp_leap_second) {
481 if (ntp_leap_second == nts.tv_sec) {
482 if (ntp_leap_insert) {
483 nbt->tv_sec++;
484 nts.tv_sec++;
485 } else {
486 nbt->tv_sec--;
487 nts.tv_sec--;
489 ntp_leap_second--;
494 * Apply leap second (ntp_adjtime() API), calculate a new
495 * nsec_adj field. ntp_update_second() returns nsec_adj
496 * as a per-second value but we need it as a per-tick value.
498 leap = ntp_update_second(time_second, &nsec_adj);
499 nsec_adj /= hz;
500 nbt->tv_sec += leap;
501 nts.tv_sec += leap;
504 * Update the time_second 'approximate time' global.
506 time_second = nts.tv_sec;
510 * Finally, our new basetime is ready to go live!
512 cpu_sfence();
513 basetime_index = ni;
516 * Figure out how badly the system is starved for memory
518 vm_fault_ratecheck();
522 * softticks are handled for all cpus
524 hardclock_softtick(gd);
527 * The LWKT scheduler will generally allow the current process to
528 * return to user mode even if there are other runnable LWKT threads
529 * running in kernel mode on behalf of a user process. This will
530 * ensure that those other threads have an opportunity to run in
531 * fairly short order (but not instantly).
533 need_lwkt_resched();
536 * ITimer handling is per-tick, per-cpu. I don't think ksignal()
537 * is mpsafe on curproc, so XXX get the mplock.
539 if ((p = curproc) != NULL && try_mplock()) {
540 if (frame && CLKF_USERMODE(frame) &&
541 timevalisset(&p->p_timer[ITIMER_VIRTUAL].it_value) &&
542 itimerdecr(&p->p_timer[ITIMER_VIRTUAL], ustick) == 0)
543 ksignal(p, SIGVTALRM);
544 if (timevalisset(&p->p_timer[ITIMER_PROF].it_value) &&
545 itimerdecr(&p->p_timer[ITIMER_PROF], ustick) == 0)
546 ksignal(p, SIGPROF);
547 rel_mplock();
549 setdelayed();
553 * The statistics clock typically runs at a 125Hz rate, and is intended
554 * to be frequency offset from the hardclock (typ 100Hz). It is per-cpu.
556 * NOTE! systimer! the MP lock might not be held here. We can only safely
557 * manipulate objects owned by the current cpu.
559 * The stats clock is responsible for grabbing a profiling sample.
560 * Most of the statistics are only used by user-level statistics programs.
561 * The main exceptions are p->p_uticks, p->p_sticks, p->p_iticks, and
562 * p->p_estcpu.
564 * Like the other clocks, the stat clock is called from what is effectively
565 * a fast interrupt, so the context should be the thread/process that got
566 * interrupted.
568 static void
569 statclock(systimer_t info, struct intrframe *frame)
571 #ifdef GPROF
572 struct gmonparam *g;
573 int i;
574 #endif
575 thread_t td;
576 struct proc *p;
577 int bump;
578 struct timeval tv;
579 struct timeval *stv;
582 * How big was our timeslice relative to the last time?
584 microuptime(&tv); /* mpsafe */
585 stv = &mycpu->gd_stattv;
586 if (stv->tv_sec == 0) {
587 bump = 1;
588 } else {
589 bump = tv.tv_usec - stv->tv_usec +
590 (tv.tv_sec - stv->tv_sec) * 1000000;
591 if (bump < 0)
592 bump = 0;
593 if (bump > 1000000)
594 bump = 1000000;
596 *stv = tv;
598 td = curthread;
599 p = td->td_proc;
601 if (frame && CLKF_USERMODE(frame)) {
603 * Came from userland, handle user time and deal with
604 * possible process.
606 if (p && (p->p_flag & P_PROFIL))
607 addupc_intr(p, CLKF_PC(frame), 1);
608 td->td_uticks += bump;
611 * Charge the time as appropriate
613 if (p && p->p_nice > NZERO)
614 cpu_time.cp_nice += bump;
615 else
616 cpu_time.cp_user += bump;
617 } else {
618 #ifdef GPROF
620 * Kernel statistics are just like addupc_intr, only easier.
622 g = &_gmonparam;
623 if (g->state == GMON_PROF_ON && frame) {
624 i = CLKF_PC(frame) - g->lowpc;
625 if (i < g->textsize) {
626 i /= HISTFRACTION * sizeof(*g->kcount);
627 g->kcount[i]++;
630 #endif
632 * Came from kernel mode, so we were:
633 * - handling an interrupt,
634 * - doing syscall or trap work on behalf of the current
635 * user process, or
636 * - spinning in the idle loop.
637 * Whichever it is, charge the time as appropriate.
638 * Note that we charge interrupts to the current process,
639 * regardless of whether they are ``for'' that process,
640 * so that we know how much of its real time was spent
641 * in ``non-process'' (i.e., interrupt) work.
643 * XXX assume system if frame is NULL. A NULL frame
644 * can occur if ipi processing is done from a crit_exit().
646 if (frame && CLKF_INTR(frame))
647 td->td_iticks += bump;
648 else
649 td->td_sticks += bump;
651 if (frame && CLKF_INTR(frame)) {
652 #ifdef DEBUG_PCTRACK
653 do_pctrack(frame, PCTRACK_INT);
654 #endif
655 cpu_time.cp_intr += bump;
656 } else {
657 if (td == &mycpu->gd_idlethread) {
658 cpu_time.cp_idle += bump;
659 } else {
660 #ifdef DEBUG_PCTRACK
661 if (frame)
662 do_pctrack(frame, PCTRACK_SYS);
663 #endif
664 cpu_time.cp_sys += bump;
670 #ifdef DEBUG_PCTRACK
672 * Sample the PC when in the kernel or in an interrupt. User code can
673 * retrieve the information and generate a histogram or other output.
676 static void
677 do_pctrack(struct intrframe *frame, int which)
679 struct kinfo_pctrack *pctrack;
681 pctrack = &cputime_pctrack[mycpu->gd_cpuid][which];
682 pctrack->pc_array[pctrack->pc_index & PCTRACK_ARYMASK] =
683 (void *)CLKF_PC(frame);
684 ++pctrack->pc_index;
687 static int
688 sysctl_pctrack(SYSCTL_HANDLER_ARGS)
690 struct kinfo_pcheader head;
691 int error;
692 int cpu;
693 int ntrack;
695 head.pc_ntrack = PCTRACK_SIZE;
696 head.pc_arysize = PCTRACK_ARYSIZE;
698 if ((error = SYSCTL_OUT(req, &head, sizeof(head))) != 0)
699 return (error);
701 for (cpu = 0; cpu < ncpus; ++cpu) {
702 for (ntrack = 0; ntrack < PCTRACK_SIZE; ++ntrack) {
703 error = SYSCTL_OUT(req, &cputime_pctrack[cpu][ntrack],
704 sizeof(struct kinfo_pctrack));
705 if (error)
706 break;
708 if (error)
709 break;
711 return (error);
713 SYSCTL_PROC(_kern, OID_AUTO, pctrack, (CTLTYPE_OPAQUE|CTLFLAG_RD), 0, 0,
714 sysctl_pctrack, "S,kinfo_pcheader", "CPU PC tracking");
716 #endif
719 * The scheduler clock typically runs at a 50Hz rate. NOTE! systimer,
720 * the MP lock might not be held. We can safely manipulate parts of curproc
721 * but that's about it.
723 * Each cpu has its own scheduler clock.
725 static void
726 schedclock(systimer_t info, struct intrframe *frame)
728 struct lwp *lp;
729 struct rusage *ru;
730 struct vmspace *vm;
731 long rss;
733 if ((lp = lwkt_preempted_proc()) != NULL) {
735 * Account for cpu time used and hit the scheduler. Note
736 * that this call MUST BE MP SAFE, and the BGL IS NOT HELD
737 * HERE.
739 ++lp->lwp_cpticks;
740 lp->lwp_proc->p_usched->schedulerclock(lp, info->periodic,
741 info->time);
743 if ((lp = curthread->td_lwp) != NULL) {
745 * Update resource usage integrals and maximums.
747 if ((ru = &lp->lwp_proc->p_ru) &&
748 (vm = lp->lwp_proc->p_vmspace) != NULL) {
749 ru->ru_ixrss += pgtok(vm->vm_tsize);
750 ru->ru_idrss += pgtok(vm->vm_dsize);
751 ru->ru_isrss += pgtok(vm->vm_ssize);
752 rss = pgtok(vmspace_resident_count(vm));
753 if (ru->ru_maxrss < rss)
754 ru->ru_maxrss = rss;
760 * Compute number of ticks for the specified amount of time. The
761 * return value is intended to be used in a clock interrupt timed
762 * operation and guarenteed to meet or exceed the requested time.
763 * If the representation overflows, return INT_MAX. The minimum return
764 * value is 1 ticks and the function will average the calculation up.
765 * If any value greater then 0 microseconds is supplied, a value
766 * of at least 2 will be returned to ensure that a near-term clock
767 * interrupt does not cause the timeout to occur (degenerately) early.
769 * Note that limit checks must take into account microseconds, which is
770 * done simply by using the smaller signed long maximum instead of
771 * the unsigned long maximum.
773 * If ints have 32 bits, then the maximum value for any timeout in
774 * 10ms ticks is 248 days.
777 tvtohz_high(struct timeval *tv)
779 int ticks;
780 long sec, usec;
782 sec = tv->tv_sec;
783 usec = tv->tv_usec;
784 if (usec < 0) {
785 sec--;
786 usec += 1000000;
788 if (sec < 0) {
789 #ifdef DIAGNOSTIC
790 if (usec > 0) {
791 sec++;
792 usec -= 1000000;
794 kprintf("tvtohz_high: negative time difference "
795 "%ld sec %ld usec\n",
796 sec, usec);
797 #endif
798 ticks = 1;
799 } else if (sec <= INT_MAX / hz) {
800 ticks = (int)(sec * hz +
801 ((u_long)usec + (ustick - 1)) / ustick) + 1;
802 } else {
803 ticks = INT_MAX;
805 return (ticks);
809 tstohz_high(struct timespec *ts)
811 int ticks;
812 long sec, nsec;
814 sec = ts->tv_sec;
815 nsec = ts->tv_nsec;
816 if (nsec < 0) {
817 sec--;
818 nsec += 1000000000;
820 if (sec < 0) {
821 #ifdef DIAGNOSTIC
822 if (nsec > 0) {
823 sec++;
824 nsec -= 1000000000;
826 kprintf("tstohz_high: negative time difference "
827 "%ld sec %ld nsec\n",
828 sec, nsec);
829 #endif
830 ticks = 1;
831 } else if (sec <= INT_MAX / hz) {
832 ticks = (int)(sec * hz +
833 ((u_long)nsec + (nstick - 1)) / nstick) + 1;
834 } else {
835 ticks = INT_MAX;
837 return (ticks);
842 * Compute number of ticks for the specified amount of time, erroring on
843 * the side of it being too low to ensure that sleeping the returned number
844 * of ticks will not result in a late return.
846 * The supplied timeval may not be negative and should be normalized. A
847 * return value of 0 is possible if the timeval converts to less then
848 * 1 tick.
850 * If ints have 32 bits, then the maximum value for any timeout in
851 * 10ms ticks is 248 days.
854 tvtohz_low(struct timeval *tv)
856 int ticks;
857 long sec;
859 sec = tv->tv_sec;
860 if (sec <= INT_MAX / hz)
861 ticks = (int)(sec * hz + (u_long)tv->tv_usec / ustick);
862 else
863 ticks = INT_MAX;
864 return (ticks);
868 tstohz_low(struct timespec *ts)
870 int ticks;
871 long sec;
873 sec = ts->tv_sec;
874 if (sec <= INT_MAX / hz)
875 ticks = (int)(sec * hz + (u_long)ts->tv_nsec / nstick);
876 else
877 ticks = INT_MAX;
878 return (ticks);
882 * Start profiling on a process.
884 * Kernel profiling passes proc0 which never exits and hence
885 * keeps the profile clock running constantly.
887 void
888 startprofclock(struct proc *p)
890 if ((p->p_flag & P_PROFIL) == 0) {
891 p->p_flag |= P_PROFIL;
892 #if 0 /* XXX */
893 if (++profprocs == 1 && stathz != 0) {
894 crit_enter();
895 psdiv = psratio;
896 setstatclockrate(profhz);
897 crit_exit();
899 #endif
904 * Stop profiling on a process.
906 void
907 stopprofclock(struct proc *p)
909 if (p->p_flag & P_PROFIL) {
910 p->p_flag &= ~P_PROFIL;
911 #if 0 /* XXX */
912 if (--profprocs == 0 && stathz != 0) {
913 crit_enter();
914 psdiv = 1;
915 setstatclockrate(stathz);
916 crit_exit();
918 #endif
923 * Return information about system clocks.
925 static int
926 sysctl_kern_clockrate(SYSCTL_HANDLER_ARGS)
928 struct kinfo_clockinfo clkinfo;
930 * Construct clockinfo structure.
932 clkinfo.ci_hz = hz;
933 clkinfo.ci_tick = ustick;
934 clkinfo.ci_tickadj = ntp_default_tick_delta / 1000;
935 clkinfo.ci_profhz = profhz;
936 clkinfo.ci_stathz = stathz ? stathz : hz;
937 return (sysctl_handle_opaque(oidp, &clkinfo, sizeof clkinfo, req));
940 SYSCTL_PROC(_kern, KERN_CLOCKRATE, clockrate, CTLTYPE_STRUCT|CTLFLAG_RD,
941 0, 0, sysctl_kern_clockrate, "S,clockinfo","");
944 * We have eight functions for looking at the clock, four for
945 * microseconds and four for nanoseconds. For each there is fast
946 * but less precise version "get{nano|micro}[up]time" which will
947 * return a time which is up to 1/HZ previous to the call, whereas
948 * the raw version "{nano|micro}[up]time" will return a timestamp
949 * which is as precise as possible. The "up" variants return the
950 * time relative to system boot, these are well suited for time
951 * interval measurements.
953 * Each cpu independantly maintains the current time of day, so all
954 * we need to do to protect ourselves from changes is to do a loop
955 * check on the seconds field changing out from under us.
957 * The system timer maintains a 32 bit count and due to various issues
958 * it is possible for the calculated delta to occassionally exceed
959 * sys_cputimer->freq. If this occurs the sys_cputimer->freq64_nsec
960 * multiplication can easily overflow, so we deal with the case. For
961 * uniformity we deal with the case in the usec case too.
963 * All the [get][micro,nano][time,uptime]() routines are MPSAFE.
965 void
966 getmicrouptime(struct timeval *tvp)
968 struct globaldata *gd = mycpu;
969 sysclock_t delta;
971 do {
972 tvp->tv_sec = gd->gd_time_seconds;
973 delta = gd->gd_hardclock.time - gd->gd_cpuclock_base;
974 } while (tvp->tv_sec != gd->gd_time_seconds);
976 if (delta >= sys_cputimer->freq) {
977 tvp->tv_sec += delta / sys_cputimer->freq;
978 delta %= sys_cputimer->freq;
980 tvp->tv_usec = (sys_cputimer->freq64_usec * delta) >> 32;
981 if (tvp->tv_usec >= 1000000) {
982 tvp->tv_usec -= 1000000;
983 ++tvp->tv_sec;
987 void
988 getnanouptime(struct timespec *tsp)
990 struct globaldata *gd = mycpu;
991 sysclock_t delta;
993 do {
994 tsp->tv_sec = gd->gd_time_seconds;
995 delta = gd->gd_hardclock.time - gd->gd_cpuclock_base;
996 } while (tsp->tv_sec != gd->gd_time_seconds);
998 if (delta >= sys_cputimer->freq) {
999 tsp->tv_sec += delta / sys_cputimer->freq;
1000 delta %= sys_cputimer->freq;
1002 tsp->tv_nsec = (sys_cputimer->freq64_nsec * delta) >> 32;
1005 void
1006 microuptime(struct timeval *tvp)
1008 struct globaldata *gd = mycpu;
1009 sysclock_t delta;
1011 do {
1012 tvp->tv_sec = gd->gd_time_seconds;
1013 delta = sys_cputimer->count() - gd->gd_cpuclock_base;
1014 } while (tvp->tv_sec != gd->gd_time_seconds);
1016 if (delta >= sys_cputimer->freq) {
1017 tvp->tv_sec += delta / sys_cputimer->freq;
1018 delta %= sys_cputimer->freq;
1020 tvp->tv_usec = (sys_cputimer->freq64_usec * delta) >> 32;
1023 void
1024 nanouptime(struct timespec *tsp)
1026 struct globaldata *gd = mycpu;
1027 sysclock_t delta;
1029 do {
1030 tsp->tv_sec = gd->gd_time_seconds;
1031 delta = sys_cputimer->count() - gd->gd_cpuclock_base;
1032 } while (tsp->tv_sec != gd->gd_time_seconds);
1034 if (delta >= sys_cputimer->freq) {
1035 tsp->tv_sec += delta / sys_cputimer->freq;
1036 delta %= sys_cputimer->freq;
1038 tsp->tv_nsec = (sys_cputimer->freq64_nsec * delta) >> 32;
1042 * realtime routines
1044 void
1045 getmicrotime(struct timeval *tvp)
1047 struct globaldata *gd = mycpu;
1048 struct timespec *bt;
1049 sysclock_t delta;
1051 do {
1052 tvp->tv_sec = gd->gd_time_seconds;
1053 delta = gd->gd_hardclock.time - gd->gd_cpuclock_base;
1054 } while (tvp->tv_sec != gd->gd_time_seconds);
1056 if (delta >= sys_cputimer->freq) {
1057 tvp->tv_sec += delta / sys_cputimer->freq;
1058 delta %= sys_cputimer->freq;
1060 tvp->tv_usec = (sys_cputimer->freq64_usec * delta) >> 32;
1062 bt = &basetime[basetime_index];
1063 tvp->tv_sec += bt->tv_sec;
1064 tvp->tv_usec += bt->tv_nsec / 1000;
1065 while (tvp->tv_usec >= 1000000) {
1066 tvp->tv_usec -= 1000000;
1067 ++tvp->tv_sec;
1071 void
1072 getnanotime(struct timespec *tsp)
1074 struct globaldata *gd = mycpu;
1075 struct timespec *bt;
1076 sysclock_t delta;
1078 do {
1079 tsp->tv_sec = gd->gd_time_seconds;
1080 delta = gd->gd_hardclock.time - gd->gd_cpuclock_base;
1081 } while (tsp->tv_sec != gd->gd_time_seconds);
1083 if (delta >= sys_cputimer->freq) {
1084 tsp->tv_sec += delta / sys_cputimer->freq;
1085 delta %= sys_cputimer->freq;
1087 tsp->tv_nsec = (sys_cputimer->freq64_nsec * delta) >> 32;
1089 bt = &basetime[basetime_index];
1090 tsp->tv_sec += bt->tv_sec;
1091 tsp->tv_nsec += bt->tv_nsec;
1092 while (tsp->tv_nsec >= 1000000000) {
1093 tsp->tv_nsec -= 1000000000;
1094 ++tsp->tv_sec;
1098 static void
1099 getnanotime_nbt(struct timespec *nbt, struct timespec *tsp)
1101 struct globaldata *gd = mycpu;
1102 sysclock_t delta;
1104 do {
1105 tsp->tv_sec = gd->gd_time_seconds;
1106 delta = gd->gd_hardclock.time - gd->gd_cpuclock_base;
1107 } while (tsp->tv_sec != gd->gd_time_seconds);
1109 if (delta >= sys_cputimer->freq) {
1110 tsp->tv_sec += delta / sys_cputimer->freq;
1111 delta %= sys_cputimer->freq;
1113 tsp->tv_nsec = (sys_cputimer->freq64_nsec * delta) >> 32;
1115 tsp->tv_sec += nbt->tv_sec;
1116 tsp->tv_nsec += nbt->tv_nsec;
1117 while (tsp->tv_nsec >= 1000000000) {
1118 tsp->tv_nsec -= 1000000000;
1119 ++tsp->tv_sec;
1124 void
1125 microtime(struct timeval *tvp)
1127 struct globaldata *gd = mycpu;
1128 struct timespec *bt;
1129 sysclock_t delta;
1131 do {
1132 tvp->tv_sec = gd->gd_time_seconds;
1133 delta = sys_cputimer->count() - gd->gd_cpuclock_base;
1134 } while (tvp->tv_sec != gd->gd_time_seconds);
1136 if (delta >= sys_cputimer->freq) {
1137 tvp->tv_sec += delta / sys_cputimer->freq;
1138 delta %= sys_cputimer->freq;
1140 tvp->tv_usec = (sys_cputimer->freq64_usec * delta) >> 32;
1142 bt = &basetime[basetime_index];
1143 tvp->tv_sec += bt->tv_sec;
1144 tvp->tv_usec += bt->tv_nsec / 1000;
1145 while (tvp->tv_usec >= 1000000) {
1146 tvp->tv_usec -= 1000000;
1147 ++tvp->tv_sec;
1151 void
1152 nanotime(struct timespec *tsp)
1154 struct globaldata *gd = mycpu;
1155 struct timespec *bt;
1156 sysclock_t delta;
1158 do {
1159 tsp->tv_sec = gd->gd_time_seconds;
1160 delta = sys_cputimer->count() - gd->gd_cpuclock_base;
1161 } while (tsp->tv_sec != gd->gd_time_seconds);
1163 if (delta >= sys_cputimer->freq) {
1164 tsp->tv_sec += delta / sys_cputimer->freq;
1165 delta %= sys_cputimer->freq;
1167 tsp->tv_nsec = (sys_cputimer->freq64_nsec * delta) >> 32;
1169 bt = &basetime[basetime_index];
1170 tsp->tv_sec += bt->tv_sec;
1171 tsp->tv_nsec += bt->tv_nsec;
1172 while (tsp->tv_nsec >= 1000000000) {
1173 tsp->tv_nsec -= 1000000000;
1174 ++tsp->tv_sec;
1179 * note: this is not exactly synchronized with real time. To do that we
1180 * would have to do what microtime does and check for a nanoseconds overflow.
1182 time_t
1183 get_approximate_time_t(void)
1185 struct globaldata *gd = mycpu;
1186 struct timespec *bt;
1188 bt = &basetime[basetime_index];
1189 return(gd->gd_time_seconds + bt->tv_sec);
1193 pps_ioctl(u_long cmd, caddr_t data, struct pps_state *pps)
1195 pps_params_t *app;
1196 struct pps_fetch_args *fapi;
1197 #ifdef PPS_SYNC
1198 struct pps_kcbind_args *kapi;
1199 #endif
1201 switch (cmd) {
1202 case PPS_IOC_CREATE:
1203 return (0);
1204 case PPS_IOC_DESTROY:
1205 return (0);
1206 case PPS_IOC_SETPARAMS:
1207 app = (pps_params_t *)data;
1208 if (app->mode & ~pps->ppscap)
1209 return (EINVAL);
1210 pps->ppsparam = *app;
1211 return (0);
1212 case PPS_IOC_GETPARAMS:
1213 app = (pps_params_t *)data;
1214 *app = pps->ppsparam;
1215 app->api_version = PPS_API_VERS_1;
1216 return (0);
1217 case PPS_IOC_GETCAP:
1218 *(int*)data = pps->ppscap;
1219 return (0);
1220 case PPS_IOC_FETCH:
1221 fapi = (struct pps_fetch_args *)data;
1222 if (fapi->tsformat && fapi->tsformat != PPS_TSFMT_TSPEC)
1223 return (EINVAL);
1224 if (fapi->timeout.tv_sec || fapi->timeout.tv_nsec)
1225 return (EOPNOTSUPP);
1226 pps->ppsinfo.current_mode = pps->ppsparam.mode;
1227 fapi->pps_info_buf = pps->ppsinfo;
1228 return (0);
1229 case PPS_IOC_KCBIND:
1230 #ifdef PPS_SYNC
1231 kapi = (struct pps_kcbind_args *)data;
1232 /* XXX Only root should be able to do this */
1233 if (kapi->tsformat && kapi->tsformat != PPS_TSFMT_TSPEC)
1234 return (EINVAL);
1235 if (kapi->kernel_consumer != PPS_KC_HARDPPS)
1236 return (EINVAL);
1237 if (kapi->edge & ~pps->ppscap)
1238 return (EINVAL);
1239 pps->kcmode = kapi->edge;
1240 return (0);
1241 #else
1242 return (EOPNOTSUPP);
1243 #endif
1244 default:
1245 return (ENOTTY);
1249 void
1250 pps_init(struct pps_state *pps)
1252 pps->ppscap |= PPS_TSFMT_TSPEC;
1253 if (pps->ppscap & PPS_CAPTUREASSERT)
1254 pps->ppscap |= PPS_OFFSETASSERT;
1255 if (pps->ppscap & PPS_CAPTURECLEAR)
1256 pps->ppscap |= PPS_OFFSETCLEAR;
1259 void
1260 pps_event(struct pps_state *pps, sysclock_t count, int event)
1262 struct globaldata *gd;
1263 struct timespec *tsp;
1264 struct timespec *osp;
1265 struct timespec *bt;
1266 struct timespec ts;
1267 sysclock_t *pcount;
1268 #ifdef PPS_SYNC
1269 sysclock_t tcount;
1270 #endif
1271 sysclock_t delta;
1272 pps_seq_t *pseq;
1273 int foff;
1274 int fhard;
1276 gd = mycpu;
1278 /* Things would be easier with arrays... */
1279 if (event == PPS_CAPTUREASSERT) {
1280 tsp = &pps->ppsinfo.assert_timestamp;
1281 osp = &pps->ppsparam.assert_offset;
1282 foff = pps->ppsparam.mode & PPS_OFFSETASSERT;
1283 fhard = pps->kcmode & PPS_CAPTUREASSERT;
1284 pcount = &pps->ppscount[0];
1285 pseq = &pps->ppsinfo.assert_sequence;
1286 } else {
1287 tsp = &pps->ppsinfo.clear_timestamp;
1288 osp = &pps->ppsparam.clear_offset;
1289 foff = pps->ppsparam.mode & PPS_OFFSETCLEAR;
1290 fhard = pps->kcmode & PPS_CAPTURECLEAR;
1291 pcount = &pps->ppscount[1];
1292 pseq = &pps->ppsinfo.clear_sequence;
1295 /* Nothing really happened */
1296 if (*pcount == count)
1297 return;
1299 *pcount = count;
1301 do {
1302 ts.tv_sec = gd->gd_time_seconds;
1303 delta = count - gd->gd_cpuclock_base;
1304 } while (ts.tv_sec != gd->gd_time_seconds);
1306 if (delta >= sys_cputimer->freq) {
1307 ts.tv_sec += delta / sys_cputimer->freq;
1308 delta %= sys_cputimer->freq;
1310 ts.tv_nsec = (sys_cputimer->freq64_nsec * delta) >> 32;
1311 bt = &basetime[basetime_index];
1312 ts.tv_sec += bt->tv_sec;
1313 ts.tv_nsec += bt->tv_nsec;
1314 while (ts.tv_nsec >= 1000000000) {
1315 ts.tv_nsec -= 1000000000;
1316 ++ts.tv_sec;
1319 (*pseq)++;
1320 *tsp = ts;
1322 if (foff) {
1323 timespecadd(tsp, osp);
1324 if (tsp->tv_nsec < 0) {
1325 tsp->tv_nsec += 1000000000;
1326 tsp->tv_sec -= 1;
1329 #ifdef PPS_SYNC
1330 if (fhard) {
1331 /* magic, at its best... */
1332 tcount = count - pps->ppscount[2];
1333 pps->ppscount[2] = count;
1334 if (tcount >= sys_cputimer->freq) {
1335 delta = (1000000000 * (tcount / sys_cputimer->freq) +
1336 sys_cputimer->freq64_nsec *
1337 (tcount % sys_cputimer->freq)) >> 32;
1338 } else {
1339 delta = (sys_cputimer->freq64_nsec * tcount) >> 32;
1341 hardpps(tsp, delta);
1343 #endif
1347 * Return the tsc target value for a delay of (ns).
1349 * Returns -1 if the TSC is not supported.
1351 int64_t
1352 tsc_get_target(int ns)
1354 #if defined(_RDTSC_SUPPORTED_)
1355 if (cpu_feature & CPUID_TSC) {
1356 return (rdtsc() + tsc_frequency * ns / (int64_t)1000000000);
1358 #endif
1359 return(-1);
1363 * Compare the tsc against the passed target
1365 * Returns +1 if the target has been reached
1366 * Returns 0 if the target has not yet been reached
1367 * Returns -1 if the TSC is not supported.
1369 * Typical use: while (tsc_test_target(target) == 0) { ...poll... }
1372 tsc_test_target(int64_t target)
1374 #if defined(_RDTSC_SUPPORTED_)
1375 if (cpu_feature & CPUID_TSC) {
1376 if ((int64_t)(target - rdtsc()) <= 0)
1377 return(1);
1378 return(0);
1380 #endif
1381 return(-1);