kernel - SWAP CACHE part 15/many - Correct bug in vm.swapcache.maxfilesize
[dragonfly.git] / sys / vm / vm_swapcache.c
blob045953c6c8bfdf07ddb14d807c33d93dd228f685
1 /*
2 * Copyright (c) 2010 The DragonFly Project. All rights reserved.
4 * This code is derived from software contributed to The DragonFly Project
5 * by Matthew Dillon <dillon@backplane.com>
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following conditions
9 * are met:
11 * 1. Redistributions of source code must retain the above copyright
12 * notice, this list of conditions and the following disclaimer.
13 * 2. Redistributions in binary form must reproduce the above copyright
14 * notice, this list of conditions and the following disclaimer in
15 * the documentation and/or other materials provided with the
16 * distribution.
17 * 3. Neither the name of The DragonFly Project nor the names of its
18 * contributors may be used to endorse or promote products derived
19 * from this software without specific, prior written permission.
21 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
22 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
23 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
24 * FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
25 * COPYRIGHT HOLDERS OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
26 * INCIDENTAL, SPECIAL, EXEMPLARY OR CONSEQUENTIAL DAMAGES (INCLUDING,
27 * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
28 * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
29 * AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
30 * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT
31 * OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
32 * SUCH DAMAGE.
36 * Implement the swapcache daemon. When enabled swap is assumed to be
37 * configured on a fast storage device such as a SSD. Swap is assigned
38 * to clean vnode-backed pages in the inactive queue, clustered by object
39 * if possible, and written out. The swap assignment sticks around even
40 * after the underlying pages have been recycled.
42 * The daemon manages write bandwidth based on sysctl settings to control
43 * wear on the SSD.
45 * The vnode strategy code will check for the swap assignments and divert
46 * reads to the swap device when the data is present in the swapcache.
48 * This operates on both regular files and the block device vnodes used by
49 * filesystems to manage meta-data.
52 #include "opt_vm.h"
53 #include <sys/param.h>
54 #include <sys/systm.h>
55 #include <sys/kernel.h>
56 #include <sys/proc.h>
57 #include <sys/kthread.h>
58 #include <sys/resourcevar.h>
59 #include <sys/signalvar.h>
60 #include <sys/vnode.h>
61 #include <sys/vmmeter.h>
62 #include <sys/sysctl.h>
64 #include <vm/vm.h>
65 #include <vm/vm_param.h>
66 #include <sys/lock.h>
67 #include <vm/vm_object.h>
68 #include <vm/vm_page.h>
69 #include <vm/vm_map.h>
70 #include <vm/vm_pageout.h>
71 #include <vm/vm_pager.h>
72 #include <vm/swap_pager.h>
73 #include <vm/vm_extern.h>
75 #include <sys/thread2.h>
76 #include <vm/vm_page2.h>
78 #define INACTIVE_LIST (&vm_page_queues[PQ_INACTIVE].pl)
80 /* the kernel process "vm_pageout"*/
81 static void vm_swapcached (void);
82 static int vm_swapcached_flush (vm_page_t m);
83 static int vm_swapcache_test(vm_page_t m);
84 static void vm_swapcache_writing(vm_page_t marker);
85 static void vm_swapcache_cleaning(vm_object_t marker);
86 struct thread *swapcached_thread;
88 static struct kproc_desc swpc_kp = {
89 "swapcached",
90 vm_swapcached,
91 &swapcached_thread
93 SYSINIT(swapcached, SI_SUB_KTHREAD_PAGE, SI_ORDER_SECOND, kproc_start, &swpc_kp)
95 SYSCTL_NODE(_vm, OID_AUTO, swapcache, CTLFLAG_RW, NULL, NULL);
97 int vm_swapcache_read_enable;
98 static int vm_swapcache_sleep;
99 static int vm_swapcache_maxlaunder = 256;
100 static int vm_swapcache_data_enable = 0;
101 static int vm_swapcache_meta_enable = 0;
102 static int64_t vm_swapcache_minburst = 10000000LL; /* 10MB */
103 static int64_t vm_swapcache_curburst = 4000000000LL; /* 4G after boot */
104 static int64_t vm_swapcache_maxburst = 2000000000LL; /* 2G nominal max */
105 static int64_t vm_swapcache_accrate = 100000LL; /* 100K/s */
106 static int64_t vm_swapcache_write_count;
107 static int64_t vm_swapcache_maxfilesize;
109 SYSCTL_INT(_vm_swapcache, OID_AUTO, maxlaunder,
110 CTLFLAG_RW, &vm_swapcache_maxlaunder, 0, "");
112 SYSCTL_INT(_vm_swapcache, OID_AUTO, data_enable,
113 CTLFLAG_RW, &vm_swapcache_data_enable, 0, "");
114 SYSCTL_INT(_vm_swapcache, OID_AUTO, meta_enable,
115 CTLFLAG_RW, &vm_swapcache_meta_enable, 0, "");
116 SYSCTL_INT(_vm_swapcache, OID_AUTO, read_enable,
117 CTLFLAG_RW, &vm_swapcache_read_enable, 0, "");
119 SYSCTL_QUAD(_vm_swapcache, OID_AUTO, minburst,
120 CTLFLAG_RW, &vm_swapcache_minburst, 0, "");
121 SYSCTL_QUAD(_vm_swapcache, OID_AUTO, curburst,
122 CTLFLAG_RW, &vm_swapcache_curburst, 0, "");
123 SYSCTL_QUAD(_vm_swapcache, OID_AUTO, maxburst,
124 CTLFLAG_RW, &vm_swapcache_maxburst, 0, "");
125 SYSCTL_QUAD(_vm_swapcache, OID_AUTO, maxfilesize,
126 CTLFLAG_RW, &vm_swapcache_maxfilesize, 0, "");
127 SYSCTL_QUAD(_vm_swapcache, OID_AUTO, accrate,
128 CTLFLAG_RW, &vm_swapcache_accrate, 0, "");
129 SYSCTL_QUAD(_vm_swapcache, OID_AUTO, write_count,
130 CTLFLAG_RW, &vm_swapcache_write_count, 0, "");
133 * vm_swapcached is the high level pageout daemon.
135 static void
136 vm_swapcached(void)
138 enum { SWAPC_WRITING, SWAPC_CLEANING } state = SWAPC_WRITING;
139 enum { SWAPB_BURSTING, SWAPB_RECOVERING } burst = SWAPB_BURSTING;
140 struct vm_page page_marker;
141 struct vm_object object_marker;
144 * Thread setup
146 curthread->td_flags |= TDF_SYSTHREAD;
147 crit_enter();
150 * Initialize our marker for the inactive scan (SWAPC_WRITING)
152 bzero(&page_marker, sizeof(page_marker));
153 page_marker.flags = PG_BUSY | PG_FICTITIOUS | PG_MARKER;
154 page_marker.queue = PQ_INACTIVE;
155 page_marker.wire_count = 1;
156 TAILQ_INSERT_HEAD(INACTIVE_LIST, &page_marker, pageq);
159 * Initialize our marker for the vm_object scan (SWAPC_CLEANING)
161 bzero(&object_marker, sizeof(object_marker));
162 object_marker.type = OBJT_MARKER;
163 TAILQ_INSERT_HEAD(&vm_object_list, &object_marker, object_list);
165 for (;;) {
167 * Loop once a second or so looking for work when enabled.
169 if (vm_swapcache_data_enable == 0 &&
170 vm_swapcache_meta_enable == 0) {
171 tsleep(&vm_swapcache_sleep, 0, "csleep", hz * 5);
172 continue;
176 * Polling rate when enabled is 10 hz.
178 tsleep(&vm_swapcache_sleep, 0, "csleep", hz / 10);
181 * State hysteresis. Generate write activity up to 75% of
182 * swap, then clean out swap assignments down to 70%, then
183 * repeat.
185 if (state == SWAPC_WRITING) {
186 if (vm_swap_cache_use > (int64_t)vm_swap_max * 75 / 100)
187 state = SWAPC_CLEANING;
188 } else {
189 if (vm_swap_cache_use < (int64_t)vm_swap_max * 70 / 100)
190 state = SWAPC_WRITING;
194 * We are allowed to continue accumulating burst value
195 * in either state. Allow the user to set curburst > maxburst
196 * for the initial load-in.
198 if (vm_swapcache_curburst < vm_swapcache_maxburst) {
199 vm_swapcache_curburst += vm_swapcache_accrate / 10;
200 if (vm_swapcache_curburst > vm_swapcache_maxburst)
201 vm_swapcache_curburst = vm_swapcache_maxburst;
205 * We don't want to nickle-and-dime the scan as that will
206 * create unnecessary fragmentation. The minimum burst
207 * is one-seconds worth of accumulation.
209 if (state == SWAPC_WRITING) {
210 if (vm_swapcache_curburst >= vm_swapcache_accrate) {
211 if (burst == SWAPB_BURSTING) {
212 vm_swapcache_writing(&page_marker);
213 if (vm_swapcache_curburst <= 0)
214 burst = SWAPB_RECOVERING;
215 } else if (vm_swapcache_curburst >
216 vm_swapcache_minburst) {
217 vm_swapcache_writing(&page_marker);
218 burst = SWAPB_BURSTING;
221 } else {
222 vm_swapcache_cleaning(&object_marker);
225 TAILQ_REMOVE(INACTIVE_LIST, &page_marker, pageq);
226 TAILQ_REMOVE(&vm_object_list, &object_marker, object_list);
227 crit_exit();
230 static void
231 vm_swapcache_writing(vm_page_t marker)
233 vm_object_t object;
234 struct vnode *vp;
235 vm_page_t m;
236 int count;
239 * Scan the inactive queue from our marker to locate
240 * suitable pages to push to the swap cache.
242 * We are looking for clean vnode-backed pages.
244 * NOTE: PG_SWAPPED pages in particular are not part of
245 * our count because once the cache stabilizes we
246 * can end up with a very high datarate of VM pages
247 * cycling from it.
249 m = marker;
250 count = vm_swapcache_maxlaunder;
252 while ((m = TAILQ_NEXT(m, pageq)) != NULL && count--) {
253 if (m->flags & (PG_MARKER | PG_SWAPPED)) {
254 ++count;
255 continue;
257 if (vm_swapcache_curburst < 0)
258 break;
259 if (vm_swapcache_test(m))
260 continue;
261 object = m->object;
262 vp = object->handle;
263 if (vp == NULL)
264 continue;
266 switch(vp->v_type) {
267 case VREG:
268 if (vm_swapcache_data_enable == 0)
269 continue;
270 if (vm_swapcache_maxfilesize &&
271 object->size >
272 (vm_swapcache_maxfilesize >> PAGE_SHIFT)) {
273 continue;
275 break;
276 case VCHR:
277 if (vm_swapcache_meta_enable == 0)
278 continue;
279 break;
280 default:
281 continue;
285 * Ok, move the marker and soft-busy the page.
287 TAILQ_REMOVE(INACTIVE_LIST, marker, pageq);
288 TAILQ_INSERT_AFTER(INACTIVE_LIST, m, marker, pageq);
291 * Assign swap and initiate I/O.
293 * (adjust for the --count which also occurs in the loop)
295 count -= vm_swapcached_flush(m) - 1;
298 * Setup for next loop using marker.
300 m = marker;
304 * Cleanup marker position. If we hit the end of the
305 * list the marker is placed at the tail. Newly deactivated
306 * pages will be placed after it.
308 * Earlier inactive pages that were dirty and become clean
309 * are typically moved to the end of PQ_INACTIVE by virtue
310 * of vfs_vmio_release() when they become unwired from the
311 * buffer cache.
313 TAILQ_REMOVE(INACTIVE_LIST, marker, pageq);
314 if (m)
315 TAILQ_INSERT_BEFORE(m, marker, pageq);
316 else
317 TAILQ_INSERT_TAIL(INACTIVE_LIST, marker, pageq);
321 * Flush the specified page using the swap_pager.
323 * Try to collect surrounding pages, including pages which may
324 * have already been assigned swap. Try to cluster within a
325 * contiguous aligned SMAP_META_PAGES (typ 16 x PAGE_SIZE) block
326 * to match what swap_pager_putpages() can do.
328 * We also want to try to match against the buffer cache blocksize
329 * but we don't really know what it is here. Since the buffer cache
330 * wires and unwires pages in groups the fact that we skip wired pages
331 * should be sufficient.
333 * Returns a count of pages we might have flushed (minimum 1)
335 static
337 vm_swapcached_flush(vm_page_t m)
339 vm_object_t object;
340 vm_page_t marray[SWAP_META_PAGES];
341 vm_pindex_t basei;
342 int rtvals[SWAP_META_PAGES];
343 int x;
344 int i;
345 int j;
346 int count;
348 vm_page_io_start(m);
349 vm_page_protect(m, VM_PROT_READ);
350 object = m->object;
353 * Try to cluster around (m), keeping in mind that the swap pager
354 * can only do SMAP_META_PAGES worth of continguous write.
356 x = (int)m->pindex & SWAP_META_MASK;
357 marray[x] = m;
358 basei = m->pindex;
360 for (i = x - 1; i >= 0; --i) {
361 m = vm_page_lookup(object, basei - x + i);
362 if (m == NULL)
363 break;
364 if (vm_swapcache_test(m))
365 break;
366 vm_page_io_start(m);
367 vm_page_protect(m, VM_PROT_READ);
368 if (m->queue - m->pc == PQ_CACHE) {
369 vm_page_unqueue_nowakeup(m);
370 vm_page_deactivate(m);
372 marray[i] = m;
374 ++i;
376 for (j = x + 1; j < SWAP_META_PAGES; ++j) {
377 m = vm_page_lookup(object, basei - x + j);
378 if (m == NULL)
379 break;
380 if (vm_swapcache_test(m))
381 break;
382 vm_page_io_start(m);
383 vm_page_protect(m, VM_PROT_READ);
384 if (m->queue - m->pc == PQ_CACHE) {
385 vm_page_unqueue_nowakeup(m);
386 vm_page_deactivate(m);
388 marray[j] = m;
391 count = j - i;
392 vm_object_pip_add(object, count);
393 swap_pager_putpages(object, marray + i, count, FALSE, rtvals + i);
394 vm_swapcache_write_count += count * PAGE_SIZE;
395 vm_swapcache_curburst -= count * PAGE_SIZE;
397 while (i < j) {
398 if (rtvals[i] != VM_PAGER_PEND) {
399 vm_page_io_finish(marray[i]);
400 vm_object_pip_wakeup(object);
402 ++i;
404 return(count);
408 * Test whether a VM page is suitable for writing to the swapcache.
409 * Does not test m->queue, PG_MARKER, or PG_SWAPPED.
411 * Returns 0 on success, 1 on failure
413 static int
414 vm_swapcache_test(vm_page_t m)
416 vm_object_t object;
418 if (m->flags & (PG_BUSY | PG_UNMANAGED))
419 return(1);
420 if (m->busy || m->hold_count || m->wire_count)
421 return(1);
422 if (m->valid != VM_PAGE_BITS_ALL)
423 return(1);
424 if (m->dirty & m->valid)
425 return(1);
426 if ((object = m->object) == NULL)
427 return(1);
428 if (object->type != OBJT_VNODE ||
429 (object->flags & OBJ_DEAD)) {
430 return(1);
432 vm_page_test_dirty(m);
433 if (m->dirty & m->valid)
434 return(1);
435 return(0);
439 * Cleaning pass
441 static
442 void
443 vm_swapcache_cleaning(vm_object_t marker)
445 vm_object_t object;
446 struct vnode *vp;
447 int count;
448 int n;
450 object = marker;
451 count = vm_swapcache_maxlaunder;
454 * Look for vnode objects
456 while ((object = TAILQ_NEXT(object, object_list)) != NULL && count--) {
457 if (object->type != OBJT_VNODE)
458 continue;
459 if ((object->flags & OBJ_DEAD) || object->swblock_count == 0)
460 continue;
461 if ((vp = object->handle) == NULL)
462 continue;
463 if (vp->v_type != VREG && vp->v_type != VCHR)
464 continue;
467 * Adjust iterator.
469 if (marker->backing_object != object)
470 marker->size = 0;
473 * Move the marker so we can work on the VM object
475 TAILQ_REMOVE(&vm_object_list, marker, object_list);
476 TAILQ_INSERT_AFTER(&vm_object_list, object,
477 marker, object_list);
480 * Look for swblocks starting at our iterator.
482 * The swap_pager_condfree() function attempts to free
483 * swap space starting at the specified index. The index
484 * will be updated on return. The function will return
485 * a scan factor (NOT the number of blocks freed).
487 * If it must cut its scan of the object short due to an
488 * excessive number of swblocks, or is able to free the
489 * requested number of blocks, it will return n >= count
490 * and we break and pick it back up on a future attempt.
492 n = swap_pager_condfree(object, &marker->size, count);
493 count -= n;
494 if (count < 0)
495 break;
498 * Setup for loop.
500 marker->size = 0;
501 object = marker;
505 * Adjust marker so we continue the scan from where we left off.
506 * When we reach the end we start back at the beginning.
508 TAILQ_REMOVE(&vm_object_list, marker, object_list);
509 if (object)
510 TAILQ_INSERT_BEFORE(object, marker, object_list);
511 else
512 TAILQ_INSERT_HEAD(&vm_object_list, marker, object_list);
513 marker->backing_object = object;