kernel - Fix callout_stop/callout_reset rearm race
[dragonfly.git] / sys / net / if_ethersubr.c
blob5e153168d8731c5385c20bf6c8d03ba6d953166c
1 /*
2 * Copyright (c) 1982, 1989, 1993
3 * The Regents of the University of California. All rights reserved.
5 * Redistribution and use in source and binary forms, with or without
6 * modification, are permitted provided that the following conditions
7 * are met:
8 * 1. Redistributions of source code must retain the above copyright
9 * notice, this list of conditions and the following disclaimer.
10 * 2. Redistributions in binary form must reproduce the above copyright
11 * notice, this list of conditions and the following disclaimer in the
12 * documentation and/or other materials provided with the distribution.
13 * 3. Neither the name of the University nor the names of its contributors
14 * may be used to endorse or promote products derived from this software
15 * without specific prior written permission.
17 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
18 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
19 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
20 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
21 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
22 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
23 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
24 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
25 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
26 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
27 * SUCH DAMAGE.
29 * @(#)if_ethersubr.c 8.1 (Berkeley) 6/10/93
30 * $FreeBSD: src/sys/net/if_ethersubr.c,v 1.70.2.33 2003/04/28 15:45:53 archie Exp $
33 #include "opt_inet.h"
34 #include "opt_inet6.h"
35 #include "opt_mpls.h"
36 #include "opt_netgraph.h"
37 #include "opt_carp.h"
38 #include "opt_rss.h"
40 #include <sys/param.h>
41 #include <sys/systm.h>
42 #include <sys/globaldata.h>
43 #include <sys/kernel.h>
44 #include <sys/ktr.h>
45 #include <sys/lock.h>
46 #include <sys/malloc.h>
47 #include <sys/mbuf.h>
48 #include <sys/msgport.h>
49 #include <sys/socket.h>
50 #include <sys/sockio.h>
51 #include <sys/sysctl.h>
52 #include <sys/thread.h>
54 #include <sys/thread2.h>
55 #include <sys/mplock2.h>
57 #include <net/if.h>
58 #include <net/netisr.h>
59 #include <net/route.h>
60 #include <net/if_llc.h>
61 #include <net/if_dl.h>
62 #include <net/if_types.h>
63 #include <net/ifq_var.h>
64 #include <net/bpf.h>
65 #include <net/ethernet.h>
66 #include <net/vlan/if_vlan_ether.h>
67 #include <net/vlan/if_vlan_var.h>
68 #include <net/netmsg2.h>
69 #include <net/netisr2.h>
71 #if defined(INET) || defined(INET6)
72 #include <netinet/in.h>
73 #include <netinet/ip_var.h>
74 #include <netinet/tcp_var.h>
75 #include <netinet/if_ether.h>
76 #include <netinet/ip_flow.h>
77 #include <net/ipfw/ip_fw.h>
78 #include <net/ipfw3/ip_fw.h>
79 #include <net/dummynet/ip_dummynet.h>
80 #endif
81 #ifdef INET6
82 #include <netinet6/nd6.h>
83 #endif
85 #ifdef CARP
86 #include <netinet/ip_carp.h>
87 #endif
89 #ifdef MPLS
90 #include <netproto/mpls/mpls.h>
91 #endif
93 /* netgraph node hooks for ng_ether(4) */
94 void (*ng_ether_input_p)(struct ifnet *ifp, struct mbuf **mp);
95 void (*ng_ether_input_orphan_p)(struct ifnet *ifp, struct mbuf *m);
96 int (*ng_ether_output_p)(struct ifnet *ifp, struct mbuf **mp);
97 void (*ng_ether_attach_p)(struct ifnet *ifp);
98 void (*ng_ether_detach_p)(struct ifnet *ifp);
100 void (*vlan_input_p)(struct mbuf *);
102 static int ether_output(struct ifnet *, struct mbuf *, struct sockaddr *,
103 struct rtentry *);
104 static void ether_restore_header(struct mbuf **, const struct ether_header *,
105 const struct ether_header *);
106 static int ether_characterize(struct mbuf **);
107 static void ether_dispatch(int, struct mbuf *, int);
110 * if_bridge support
112 struct mbuf *(*bridge_input_p)(struct ifnet *, struct mbuf *);
113 int (*bridge_output_p)(struct ifnet *, struct mbuf *);
114 void (*bridge_dn_p)(struct mbuf *, struct ifnet *);
115 struct ifnet *(*bridge_interface_p)(void *if_bridge);
117 static int ether_resolvemulti(struct ifnet *, struct sockaddr **,
118 struct sockaddr *);
121 * if_lagg(4) support
123 void (*lagg_input_p)(struct ifnet *, struct mbuf *);
124 int (*lagg_output_p)(struct ifnet *, struct mbuf *);
126 const uint8_t etherbroadcastaddr[ETHER_ADDR_LEN] = {
127 0xff, 0xff, 0xff, 0xff, 0xff, 0xff
130 #define gotoerr(e) do { error = (e); goto bad; } while (0)
131 #define IFP2AC(ifp) ((struct arpcom *)(ifp))
133 static boolean_t ether_ipfw_chk(struct mbuf **m0, struct ifnet *dst,
134 struct ip_fw **rule,
135 const struct ether_header *eh);
137 static int ether_ipfw;
138 static u_long ether_restore_hdr;
139 static u_long ether_prepend_hdr;
140 static u_long ether_input_wronghash;
141 static int ether_debug;
143 #ifdef RSS_DEBUG
144 static u_long ether_pktinfo_try;
145 static u_long ether_pktinfo_hit;
146 static u_long ether_rss_nopi;
147 static u_long ether_rss_nohash;
148 static u_long ether_input_requeue;
149 #endif
150 static u_long ether_input_wronghwhash;
151 static int ether_input_ckhash;
153 #define ETHER_TSOLEN_DEFAULT (4 * ETHERMTU)
155 #define ETHER_NMBCLUSTERS_DEFMIN 32
156 #define ETHER_NMBCLUSTERS_DEFAULT 256
158 static int ether_tsolen_default = ETHER_TSOLEN_DEFAULT;
159 TUNABLE_INT("net.link.ether.tsolen", &ether_tsolen_default);
161 static int ether_nmbclusters_default = ETHER_NMBCLUSTERS_DEFAULT;
162 TUNABLE_INT("net.link.ether.nmbclusters", &ether_nmbclusters_default);
164 SYSCTL_DECL(_net_link);
165 SYSCTL_NODE(_net_link, IFT_ETHER, ether, CTLFLAG_RW, 0, "Ethernet");
166 SYSCTL_INT(_net_link_ether, OID_AUTO, debug, CTLFLAG_RW,
167 &ether_debug, 0, "Ether debug");
168 SYSCTL_INT(_net_link_ether, OID_AUTO, ipfw, CTLFLAG_RW,
169 &ether_ipfw, 0, "Pass ether pkts through firewall");
170 SYSCTL_ULONG(_net_link_ether, OID_AUTO, restore_hdr, CTLFLAG_RW,
171 &ether_restore_hdr, 0, "# of ether header restoration");
172 SYSCTL_ULONG(_net_link_ether, OID_AUTO, prepend_hdr, CTLFLAG_RW,
173 &ether_prepend_hdr, 0,
174 "# of ether header restoration which prepends mbuf");
175 SYSCTL_ULONG(_net_link_ether, OID_AUTO, input_wronghash, CTLFLAG_RW,
176 &ether_input_wronghash, 0, "# of input packets with wrong hash");
177 SYSCTL_INT(_net_link_ether, OID_AUTO, tsolen, CTLFLAG_RW,
178 &ether_tsolen_default, 0, "Default max TSO length");
180 #ifdef RSS_DEBUG
181 SYSCTL_ULONG(_net_link_ether, OID_AUTO, rss_nopi, CTLFLAG_RW,
182 &ether_rss_nopi, 0, "# of packets do not have pktinfo");
183 SYSCTL_ULONG(_net_link_ether, OID_AUTO, rss_nohash, CTLFLAG_RW,
184 &ether_rss_nohash, 0, "# of packets do not have hash");
185 SYSCTL_ULONG(_net_link_ether, OID_AUTO, pktinfo_try, CTLFLAG_RW,
186 &ether_pktinfo_try, 0,
187 "# of tries to find packets' msgport using pktinfo");
188 SYSCTL_ULONG(_net_link_ether, OID_AUTO, pktinfo_hit, CTLFLAG_RW,
189 &ether_pktinfo_hit, 0,
190 "# of packets whose msgport are found using pktinfo");
191 SYSCTL_ULONG(_net_link_ether, OID_AUTO, input_requeue, CTLFLAG_RW,
192 &ether_input_requeue, 0, "# of input packets gets requeued");
193 #endif
194 SYSCTL_ULONG(_net_link_ether, OID_AUTO, input_wronghwhash, CTLFLAG_RW,
195 &ether_input_wronghwhash, 0, "# of input packets with wrong hw hash");
196 SYSCTL_INT(_net_link_ether, OID_AUTO, always_ckhash, CTLFLAG_RW,
197 &ether_input_ckhash, 0, "always check hash");
199 #define ETHER_KTR_STR "ifp=%p"
200 #define ETHER_KTR_ARGS struct ifnet *ifp
201 #ifndef KTR_ETHERNET
202 #define KTR_ETHERNET KTR_ALL
203 #endif
204 KTR_INFO_MASTER(ether);
205 KTR_INFO(KTR_ETHERNET, ether, pkt_beg, 0, ETHER_KTR_STR, ETHER_KTR_ARGS);
206 KTR_INFO(KTR_ETHERNET, ether, pkt_end, 1, ETHER_KTR_STR, ETHER_KTR_ARGS);
207 KTR_INFO(KTR_ETHERNET, ether, disp_beg, 2, ETHER_KTR_STR, ETHER_KTR_ARGS);
208 KTR_INFO(KTR_ETHERNET, ether, disp_end, 3, ETHER_KTR_STR, ETHER_KTR_ARGS);
209 #define logether(name, arg) KTR_LOG(ether_ ## name, arg)
212 * Ethernet output routine.
213 * Encapsulate a packet of type family for the local net.
214 * Use trailer local net encapsulation if enough data in first
215 * packet leaves a multiple of 512 bytes of data in remainder.
216 * Assumes that ifp is actually pointer to arpcom structure.
218 static int
219 ether_output(struct ifnet *ifp, struct mbuf *m, struct sockaddr *dst,
220 struct rtentry *rt)
222 struct ether_header *eh, *deh;
223 u_char *edst;
224 int loop_copy = 0;
225 int hlen = ETHER_HDR_LEN; /* link layer header length */
226 struct arpcom *ac = IFP2AC(ifp);
227 int error;
229 ASSERT_NETISR_NCPUS(mycpuid);
230 ASSERT_IFNET_NOT_SERIALIZED_ALL(ifp);
232 if (ifp->if_flags & IFF_MONITOR)
233 gotoerr(ENETDOWN);
234 if ((ifp->if_flags & (IFF_UP | IFF_RUNNING)) != (IFF_UP | IFF_RUNNING))
235 gotoerr(ENETDOWN);
237 M_PREPEND(m, sizeof(struct ether_header), M_NOWAIT);
238 if (m == NULL)
239 return (ENOBUFS);
240 m->m_pkthdr.csum_lhlen = sizeof(struct ether_header);
241 eh = mtod(m, struct ether_header *);
242 edst = eh->ether_dhost;
245 * Fill in the destination ethernet address and frame type.
247 switch (dst->sa_family) {
248 #ifdef INET
249 case AF_INET:
250 if (!arpresolve(ifp, rt, m, dst, edst))
251 return (0); /* if not yet resolved */
252 #ifdef MPLS
253 if (m->m_flags & M_MPLSLABELED)
254 eh->ether_type = htons(ETHERTYPE_MPLS);
255 else
256 #endif
257 eh->ether_type = htons(ETHERTYPE_IP);
258 break;
259 #endif
260 #ifdef INET6
261 case AF_INET6:
262 if (!nd6_storelladdr(&ac->ac_if, rt, m, dst, edst))
263 return (0); /* Something bad happenned. */
264 eh->ether_type = htons(ETHERTYPE_IPV6);
265 break;
266 #endif
267 case pseudo_AF_HDRCMPLT:
268 case AF_UNSPEC:
269 loop_copy = -1; /* if this is for us, don't do it */
270 deh = (struct ether_header *)dst->sa_data;
271 memcpy(edst, deh->ether_dhost, ETHER_ADDR_LEN);
272 eh->ether_type = deh->ether_type;
273 break;
275 default:
276 if_printf(ifp, "can't handle af%d\n", dst->sa_family);
277 gotoerr(EAFNOSUPPORT);
280 if (dst->sa_family == pseudo_AF_HDRCMPLT) /* unlikely */
281 memcpy(eh->ether_shost,
282 ((struct ether_header *)dst->sa_data)->ether_shost,
283 ETHER_ADDR_LEN);
284 else
285 memcpy(eh->ether_shost, ac->ac_enaddr, ETHER_ADDR_LEN);
288 * Bridges require special output handling.
290 if (ifp->if_bridge) {
291 KASSERT(bridge_output_p != NULL,
292 ("%s: if_bridge not loaded!", __func__));
293 return bridge_output_p(ifp, m);
295 #if 0 /* XXX */
296 if (ifp->if_lagg) {
297 KASSERT(lagg_output_p != NULL,
298 ("%s: if_lagg not loaded!", __func__));
299 return lagg_output_p(ifp, m);
301 #endif
304 * If a simplex interface, and the packet is being sent to our
305 * Ethernet address or a broadcast address, loopback a copy.
306 * XXX To make a simplex device behave exactly like a duplex
307 * device, we should copy in the case of sending to our own
308 * ethernet address (thus letting the original actually appear
309 * on the wire). However, we don't do that here for security
310 * reasons and compatibility with the original behavior.
312 if ((ifp->if_flags & IFF_SIMPLEX) && (loop_copy != -1)) {
313 int csum_flags = 0;
315 if (m->m_pkthdr.csum_flags & CSUM_IP)
316 csum_flags |= (CSUM_IP_CHECKED | CSUM_IP_VALID);
317 if (m->m_pkthdr.csum_flags & CSUM_DELAY_DATA)
318 csum_flags |= (CSUM_DATA_VALID | CSUM_PSEUDO_HDR);
319 if ((m->m_flags & M_BCAST) || (loop_copy > 0)) {
320 struct mbuf *n;
322 if ((n = m_copypacket(m, M_NOWAIT)) != NULL) {
323 n->m_pkthdr.csum_flags |= csum_flags;
324 if (csum_flags & CSUM_DATA_VALID)
325 n->m_pkthdr.csum_data = 0xffff;
326 if_simloop(ifp, n, dst->sa_family, hlen);
327 } else
328 IFNET_STAT_INC(ifp, iqdrops, 1);
329 } else if (bcmp(eh->ether_dhost, eh->ether_shost,
330 ETHER_ADDR_LEN) == 0) {
331 m->m_pkthdr.csum_flags |= csum_flags;
332 if (csum_flags & CSUM_DATA_VALID)
333 m->m_pkthdr.csum_data = 0xffff;
334 if_simloop(ifp, m, dst->sa_family, hlen);
335 return (0); /* XXX */
339 #ifdef CARP
340 if (ifp->if_type == IFT_CARP) {
341 ifp = carp_parent(ifp);
342 if (ifp == NULL)
343 gotoerr(ENETUNREACH);
345 ac = IFP2AC(ifp);
348 * Check precondition again
350 ASSERT_IFNET_NOT_SERIALIZED_ALL(ifp);
352 if (ifp->if_flags & IFF_MONITOR)
353 gotoerr(ENETDOWN);
354 if ((ifp->if_flags & (IFF_UP | IFF_RUNNING)) !=
355 (IFF_UP | IFF_RUNNING))
356 gotoerr(ENETDOWN);
358 #endif
360 /* Handle ng_ether(4) processing, if any */
361 if (ng_ether_output_p != NULL) {
363 * Hold BGL and recheck ng_ether_output_p
365 get_mplock();
366 if (ng_ether_output_p != NULL) {
367 if ((error = ng_ether_output_p(ifp, &m)) != 0) {
368 rel_mplock();
369 goto bad;
371 if (m == NULL) {
372 rel_mplock();
373 return (0);
376 rel_mplock();
379 /* Continue with link-layer output */
380 return ether_output_frame(ifp, m);
382 bad:
383 m_freem(m);
384 return (error);
388 * Returns the bridge interface an ifp is associated
389 * with.
391 * Only call if ifp->if_bridge != NULL.
393 struct ifnet *
394 ether_bridge_interface(struct ifnet *ifp)
396 if (bridge_interface_p)
397 return(bridge_interface_p(ifp->if_bridge));
398 return (ifp);
402 * Ethernet link layer output routine to send a raw frame to the device.
404 * This assumes that the 14 byte Ethernet header is present and contiguous
405 * in the first mbuf.
408 ether_output_frame(struct ifnet *ifp, struct mbuf *m)
410 struct ip_fw *rule = NULL;
411 int error = 0;
412 struct altq_pktattr pktattr;
414 ASSERT_IFNET_NOT_SERIALIZED_ALL(ifp);
416 if (m->m_pkthdr.fw_flags & DUMMYNET_MBUF_TAGGED) {
417 struct m_tag *mtag;
419 /* Extract info from dummynet tag */
420 mtag = m_tag_find(m, PACKET_TAG_DUMMYNET, NULL);
421 KKASSERT(mtag != NULL);
422 rule = ((struct dn_pkt *)m_tag_data(mtag))->dn_priv;
423 KKASSERT(rule != NULL);
425 m_tag_delete(m, mtag);
426 m->m_pkthdr.fw_flags &= ~DUMMYNET_MBUF_TAGGED;
429 if (ifq_is_enabled(&ifp->if_snd))
430 altq_etherclassify(&ifp->if_snd, m, &pktattr);
431 crit_enter();
432 if ((IPFW_LOADED || IPFW3_LOADED) && ether_ipfw != 0) {
433 struct ether_header save_eh, *eh;
435 eh = mtod(m, struct ether_header *);
436 save_eh = *eh;
437 m_adj(m, ETHER_HDR_LEN);
438 if (!ether_ipfw_chk(&m, ifp, &rule, eh)) {
439 crit_exit();
440 if (m != NULL) {
441 m_freem(m);
442 return ENOBUFS; /* pkt dropped */
443 } else
444 return 0; /* consumed e.g. in a pipe */
447 /* packet was ok, restore the ethernet header */
448 ether_restore_header(&m, eh, &save_eh);
449 if (m == NULL) {
450 crit_exit();
451 return ENOBUFS;
454 crit_exit();
457 * Queue message on interface, update output statistics if
458 * successful, and start output if interface not yet active.
460 error = ifq_dispatch(ifp, m, &pktattr);
461 return (error);
465 * ipfw processing for ethernet packets (in and out).
466 * The second parameter is NULL from ether_demux(), and ifp from
467 * ether_output_frame().
469 static boolean_t
470 ether_ipfw_chk(struct mbuf **m0, struct ifnet *dst, struct ip_fw **rule,
471 const struct ether_header *eh)
473 struct ether_header save_eh = *eh; /* might be a ptr in *m0 */
474 struct ip_fw_args args;
475 struct m_tag *mtag;
476 struct mbuf *m;
477 int i;
479 if (*rule != NULL && fw_one_pass)
480 return TRUE; /* dummynet packet, already partially processed */
483 * I need some amount of data to be contiguous.
485 i = min((*m0)->m_pkthdr.len, max_protohdr);
486 if ((*m0)->m_len < i) {
487 *m0 = m_pullup(*m0, i);
488 if (*m0 == NULL)
489 return FALSE;
493 * Clean up tags
495 if ((mtag = m_tag_find(*m0, PACKET_TAG_IPFW_DIVERT, NULL)) != NULL)
496 m_tag_delete(*m0, mtag);
497 if ((*m0)->m_pkthdr.fw_flags & IPFORWARD_MBUF_TAGGED) {
498 mtag = m_tag_find(*m0, PACKET_TAG_IPFORWARD, NULL);
499 KKASSERT(mtag != NULL);
500 m_tag_delete(*m0, mtag);
501 (*m0)->m_pkthdr.fw_flags &= ~IPFORWARD_MBUF_TAGGED;
504 args.m = *m0; /* the packet we are looking at */
505 args.oif = dst; /* destination, if any */
506 args.rule = *rule; /* matching rule to restart */
507 args.eh = &save_eh; /* MAC header for bridged/MAC packets */
508 i = ip_fw_chk_ptr(&args);
509 *m0 = args.m;
510 *rule = args.rule;
512 if (*m0 == NULL)
513 return FALSE;
515 switch (i) {
516 case IP_FW_PASS:
517 return TRUE;
519 case IP_FW_DIVERT:
520 case IP_FW_TEE:
521 case IP_FW_DENY:
523 * XXX at some point add support for divert/forward actions.
524 * If none of the above matches, we have to drop the pkt.
526 return FALSE;
528 case IP_FW_DUMMYNET:
530 * Pass the pkt to dummynet, which consumes it.
532 m = *m0; /* pass the original to dummynet */
533 *m0 = NULL; /* and nothing back to the caller */
535 ether_restore_header(&m, eh, &save_eh);
536 if (m == NULL)
537 return FALSE;
539 ip_fw_dn_io_ptr(m, args.cookie,
540 dst ? DN_TO_ETH_OUT: DN_TO_ETH_DEMUX, &args);
541 ip_dn_queue(m);
542 return FALSE;
544 default:
545 panic("unknown ipfw return value: %d", i);
550 * Perform common duties while attaching to interface list
552 void
553 ether_ifattach(struct ifnet *ifp, const uint8_t *lla,
554 lwkt_serialize_t serializer)
556 ether_ifattach_bpf(ifp, lla, DLT_EN10MB, sizeof(struct ether_header),
557 serializer);
560 void
561 ether_ifattach_bpf(struct ifnet *ifp, const uint8_t *lla,
562 u_int dlt, u_int hdrlen, lwkt_serialize_t serializer)
564 struct sockaddr_dl *sdl;
565 char ethstr[ETHER_ADDRSTRLEN + 1];
566 struct ifaltq *ifq;
567 int i;
570 * If driver does not configure # of mbuf clusters/jclusters
571 * that could sit on the device queues for quite some time,
572 * we then assume:
573 * - The device queues only consume mbuf clusters.
574 * - No more than ether_nmbclusters_default (by default 256)
575 * mbuf clusters will sit on the device queues for quite
576 * some time.
578 if (ifp->if_nmbclusters <= 0 && ifp->if_nmbjclusters <= 0) {
579 if (ether_nmbclusters_default < ETHER_NMBCLUSTERS_DEFMIN) {
580 kprintf("ether nmbclusters %d -> %d\n",
581 ether_nmbclusters_default,
582 ETHER_NMBCLUSTERS_DEFAULT);
583 ether_nmbclusters_default = ETHER_NMBCLUSTERS_DEFAULT;
585 ifp->if_nmbclusters = ether_nmbclusters_default;
588 ifp->if_type = IFT_ETHER;
589 ifp->if_addrlen = ETHER_ADDR_LEN;
590 ifp->if_hdrlen = ETHER_HDR_LEN;
591 if_attach(ifp, serializer);
592 ifq = &ifp->if_snd;
593 for (i = 0; i < ifq->altq_subq_cnt; ++i) {
594 struct ifaltq_subque *ifsq = ifq_get_subq(ifq, i);
596 ifsq->ifsq_maxbcnt = ifsq->ifsq_maxlen *
597 (ETHER_MAX_LEN - ETHER_CRC_LEN);
599 ifp->if_mtu = ETHERMTU;
600 if (ifp->if_tsolen <= 0) {
601 if ((ether_tsolen_default / ETHERMTU) < 2) {
602 kprintf("ether TSO maxlen %d -> %d\n",
603 ether_tsolen_default, ETHER_TSOLEN_DEFAULT);
604 ether_tsolen_default = ETHER_TSOLEN_DEFAULT;
606 ifp->if_tsolen = ether_tsolen_default;
608 if (ifp->if_baudrate == 0)
609 ifp->if_baudrate = 10000000;
610 ifp->if_output = ether_output;
611 ifp->if_input = ether_input;
612 ifp->if_resolvemulti = ether_resolvemulti;
613 ifp->if_broadcastaddr = etherbroadcastaddr;
614 sdl = IF_LLSOCKADDR(ifp);
615 sdl->sdl_type = IFT_ETHER;
616 sdl->sdl_alen = ifp->if_addrlen;
617 bcopy(lla, LLADDR(sdl), ifp->if_addrlen);
619 * XXX Keep the current drivers happy.
620 * XXX Remove once all drivers have been cleaned up
622 if (lla != IFP2AC(ifp)->ac_enaddr)
623 bcopy(lla, IFP2AC(ifp)->ac_enaddr, ifp->if_addrlen);
624 bpfattach(ifp, dlt, hdrlen);
625 if (ng_ether_attach_p != NULL)
626 (*ng_ether_attach_p)(ifp);
628 if_printf(ifp, "MAC address: %s\n", kether_ntoa(lla, ethstr));
632 * Perform common duties while detaching an Ethernet interface
634 void
635 ether_ifdetach(struct ifnet *ifp)
637 if_down(ifp);
639 if (ng_ether_detach_p != NULL)
640 (*ng_ether_detach_p)(ifp);
641 bpfdetach(ifp);
642 if_detach(ifp);
646 ether_ioctl(struct ifnet *ifp, u_long command, caddr_t data)
648 struct ifaddr *ifa = (struct ifaddr *) data;
649 struct ifreq *ifr = (struct ifreq *) data;
650 int error = 0;
652 #define IF_INIT(ifp) \
653 do { \
654 if (((ifp)->if_flags & IFF_UP) == 0) { \
655 (ifp)->if_flags |= IFF_UP; \
656 (ifp)->if_init((ifp)->if_softc); \
658 } while (0)
660 ASSERT_IFNET_SERIALIZED_ALL(ifp);
662 switch (command) {
663 case SIOCSIFADDR:
664 switch (ifa->ifa_addr->sa_family) {
665 #ifdef INET
666 case AF_INET:
667 IF_INIT(ifp); /* before arpwhohas */
668 arp_ifinit(ifp, ifa);
669 break;
670 #endif
671 default:
672 IF_INIT(ifp);
673 break;
675 break;
677 case SIOCGIFADDR:
678 bcopy(IFP2AC(ifp)->ac_enaddr,
679 ((struct sockaddr *)ifr->ifr_data)->sa_data,
680 ETHER_ADDR_LEN);
681 break;
683 case SIOCSIFMTU:
685 * Set the interface MTU.
687 if (ifr->ifr_mtu > ETHERMTU) {
688 error = EINVAL;
689 } else {
690 ifp->if_mtu = ifr->ifr_mtu;
692 break;
693 default:
694 error = EINVAL;
695 break;
697 return (error);
699 #undef IF_INIT
702 static int
703 ether_resolvemulti(
704 struct ifnet *ifp,
705 struct sockaddr **llsa,
706 struct sockaddr *sa)
708 struct sockaddr_dl *sdl;
709 #ifdef INET
710 struct sockaddr_in *sin;
711 #endif
712 #ifdef INET6
713 struct sockaddr_in6 *sin6;
714 #endif
715 u_char *e_addr;
717 switch(sa->sa_family) {
718 case AF_LINK:
720 * No mapping needed. Just check that it's a valid MC address.
722 sdl = (struct sockaddr_dl *)sa;
723 e_addr = LLADDR(sdl);
724 if ((e_addr[0] & 1) != 1)
725 return EADDRNOTAVAIL;
726 *llsa = NULL;
727 return 0;
729 #ifdef INET
730 case AF_INET:
731 sin = (struct sockaddr_in *)sa;
732 if (!IN_MULTICAST(ntohl(sin->sin_addr.s_addr)))
733 return EADDRNOTAVAIL;
734 sdl = kmalloc(sizeof *sdl, M_IFMADDR, M_WAITOK | M_ZERO);
735 sdl->sdl_len = sizeof *sdl;
736 sdl->sdl_family = AF_LINK;
737 sdl->sdl_index = ifp->if_index;
738 sdl->sdl_type = IFT_ETHER;
739 sdl->sdl_alen = ETHER_ADDR_LEN;
740 e_addr = LLADDR(sdl);
741 ETHER_MAP_IP_MULTICAST(&sin->sin_addr, e_addr);
742 *llsa = (struct sockaddr *)sdl;
743 return 0;
744 #endif
745 #ifdef INET6
746 case AF_INET6:
747 sin6 = (struct sockaddr_in6 *)sa;
748 if (IN6_IS_ADDR_UNSPECIFIED(&sin6->sin6_addr)) {
750 * An IP6 address of 0 means listen to all
751 * of the Ethernet multicast address used for IP6.
752 * (This is used for multicast routers.)
754 ifp->if_flags |= IFF_ALLMULTI;
755 *llsa = NULL;
756 return 0;
758 if (!IN6_IS_ADDR_MULTICAST(&sin6->sin6_addr))
759 return EADDRNOTAVAIL;
760 sdl = kmalloc(sizeof *sdl, M_IFMADDR, M_WAITOK | M_ZERO);
761 sdl->sdl_len = sizeof *sdl;
762 sdl->sdl_family = AF_LINK;
763 sdl->sdl_index = ifp->if_index;
764 sdl->sdl_type = IFT_ETHER;
765 sdl->sdl_alen = ETHER_ADDR_LEN;
766 e_addr = LLADDR(sdl);
767 ETHER_MAP_IPV6_MULTICAST(&sin6->sin6_addr, e_addr);
768 *llsa = (struct sockaddr *)sdl;
769 return 0;
770 #endif
772 default:
774 * Well, the text isn't quite right, but it's the name
775 * that counts...
777 return EAFNOSUPPORT;
781 #if 0
783 * This is for reference. We have a table-driven version
784 * of the little-endian crc32 generator, which is faster
785 * than the double-loop.
787 uint32_t
788 ether_crc32_le(const uint8_t *buf, size_t len)
790 uint32_t c, crc, carry;
791 size_t i, j;
793 crc = 0xffffffffU; /* initial value */
795 for (i = 0; i < len; i++) {
796 c = buf[i];
797 for (j = 0; j < 8; j++) {
798 carry = ((crc & 0x01) ? 1 : 0) ^ (c & 0x01);
799 crc >>= 1;
800 c >>= 1;
801 if (carry)
802 crc = (crc ^ ETHER_CRC_POLY_LE);
806 return (crc);
808 #else
809 uint32_t
810 ether_crc32_le(const uint8_t *buf, size_t len)
812 static const uint32_t crctab[] = {
813 0x00000000, 0x1db71064, 0x3b6e20c8, 0x26d930ac,
814 0x76dc4190, 0x6b6b51f4, 0x4db26158, 0x5005713c,
815 0xedb88320, 0xf00f9344, 0xd6d6a3e8, 0xcb61b38c,
816 0x9b64c2b0, 0x86d3d2d4, 0xa00ae278, 0xbdbdf21c
818 uint32_t crc;
819 size_t i;
821 crc = 0xffffffffU; /* initial value */
823 for (i = 0; i < len; i++) {
824 crc ^= buf[i];
825 crc = (crc >> 4) ^ crctab[crc & 0xf];
826 crc = (crc >> 4) ^ crctab[crc & 0xf];
829 return (crc);
831 #endif
833 uint32_t
834 ether_crc32_be(const uint8_t *buf, size_t len)
836 uint32_t c, crc, carry;
837 size_t i, j;
839 crc = 0xffffffffU; /* initial value */
841 for (i = 0; i < len; i++) {
842 c = buf[i];
843 for (j = 0; j < 8; j++) {
844 carry = ((crc & 0x80000000U) ? 1 : 0) ^ (c & 0x01);
845 crc <<= 1;
846 c >>= 1;
847 if (carry)
848 crc = (crc ^ ETHER_CRC_POLY_BE) | carry;
852 return (crc);
856 * find the size of ethernet header, and call classifier
858 void
859 altq_etherclassify(struct ifaltq *ifq, struct mbuf *m,
860 struct altq_pktattr *pktattr)
862 struct ether_header *eh;
863 uint16_t ether_type;
864 int hlen, af, hdrsize;
866 hlen = sizeof(struct ether_header);
867 eh = mtod(m, struct ether_header *);
869 ether_type = ntohs(eh->ether_type);
870 if (ether_type < ETHERMTU) {
871 /* ick! LLC/SNAP */
872 struct llc *llc = (struct llc *)(eh + 1);
873 hlen += 8;
875 if (m->m_len < hlen ||
876 llc->llc_dsap != LLC_SNAP_LSAP ||
877 llc->llc_ssap != LLC_SNAP_LSAP ||
878 llc->llc_control != LLC_UI)
879 goto bad; /* not snap! */
881 ether_type = ntohs(llc->llc_un.type_snap.ether_type);
884 if (ether_type == ETHERTYPE_IP) {
885 af = AF_INET;
886 hdrsize = 20; /* sizeof(struct ip) */
887 #ifdef INET6
888 } else if (ether_type == ETHERTYPE_IPV6) {
889 af = AF_INET6;
890 hdrsize = 40; /* sizeof(struct ip6_hdr) */
891 #endif
892 } else
893 goto bad;
895 while (m->m_len <= hlen) {
896 hlen -= m->m_len;
897 m = m->m_next;
899 if (m->m_len < hlen + hdrsize) {
901 * ip header is not in a single mbuf. this should not
902 * happen in the current code.
903 * (todo: use m_pulldown in the future)
905 goto bad;
907 m->m_data += hlen;
908 m->m_len -= hlen;
909 ifq_classify(ifq, m, af, pktattr);
910 m->m_data -= hlen;
911 m->m_len += hlen;
913 return;
915 bad:
916 pktattr->pattr_class = NULL;
917 pktattr->pattr_hdr = NULL;
918 pktattr->pattr_af = AF_UNSPEC;
921 static void
922 ether_restore_header(struct mbuf **m0, const struct ether_header *eh,
923 const struct ether_header *save_eh)
925 struct mbuf *m = *m0;
927 ether_restore_hdr++;
930 * Prepend the header, optimize for the common case of
931 * eh pointing into the mbuf.
933 if ((const void *)(eh + 1) == (void *)m->m_data) {
934 m->m_data -= ETHER_HDR_LEN;
935 m->m_len += ETHER_HDR_LEN;
936 m->m_pkthdr.len += ETHER_HDR_LEN;
937 } else {
938 ether_prepend_hdr++;
940 M_PREPEND(m, ETHER_HDR_LEN, M_NOWAIT);
941 if (m != NULL) {
942 bcopy(save_eh, mtod(m, struct ether_header *),
943 ETHER_HDR_LEN);
946 *m0 = m;
950 * Upper layer processing for a received Ethernet packet.
952 void
953 ether_demux_oncpu(struct ifnet *ifp, struct mbuf *m)
955 struct ether_header *eh;
956 int isr, discard = 0;
957 u_short ether_type;
958 struct ip_fw *rule = NULL;
960 M_ASSERTPKTHDR(m);
961 KASSERT(m->m_len >= ETHER_HDR_LEN,
962 ("ether header is not contiguous!"));
964 eh = mtod(m, struct ether_header *);
966 if (m->m_pkthdr.fw_flags & DUMMYNET_MBUF_TAGGED) {
967 struct m_tag *mtag;
969 /* Extract info from dummynet tag */
970 mtag = m_tag_find(m, PACKET_TAG_DUMMYNET, NULL);
971 KKASSERT(mtag != NULL);
972 rule = ((struct dn_pkt *)m_tag_data(mtag))->dn_priv;
973 KKASSERT(rule != NULL);
975 m_tag_delete(m, mtag);
976 m->m_pkthdr.fw_flags &= ~DUMMYNET_MBUF_TAGGED;
978 /* packet is passing the second time */
979 goto post_stats;
983 * We got a packet which was unicast to a different Ethernet
984 * address. If the driver is working properly, then this
985 * situation can only happen when the interface is in
986 * promiscuous mode. We defer the packet discarding until the
987 * vlan processing is done, so that vlan/bridge or vlan/netgraph
988 * could work.
990 if (((ifp->if_flags & (IFF_PROMISC | IFF_PPROMISC)) == IFF_PROMISC) &&
991 !ETHER_IS_MULTICAST(eh->ether_dhost) &&
992 bcmp(eh->ether_dhost, IFP2AC(ifp)->ac_enaddr, ETHER_ADDR_LEN)) {
993 if (ether_debug & 1) {
994 kprintf("%02x:%02x:%02x:%02x:%02x:%02x "
995 "%02x:%02x:%02x:%02x:%02x:%02x "
996 "%04x vs %02x:%02x:%02x:%02x:%02x:%02x\n",
997 eh->ether_dhost[0],
998 eh->ether_dhost[1],
999 eh->ether_dhost[2],
1000 eh->ether_dhost[3],
1001 eh->ether_dhost[4],
1002 eh->ether_dhost[5],
1003 eh->ether_shost[0],
1004 eh->ether_shost[1],
1005 eh->ether_shost[2],
1006 eh->ether_shost[3],
1007 eh->ether_shost[4],
1008 eh->ether_shost[5],
1009 eh->ether_type,
1010 ((u_char *)IFP2AC(ifp)->ac_enaddr)[0],
1011 ((u_char *)IFP2AC(ifp)->ac_enaddr)[1],
1012 ((u_char *)IFP2AC(ifp)->ac_enaddr)[2],
1013 ((u_char *)IFP2AC(ifp)->ac_enaddr)[3],
1014 ((u_char *)IFP2AC(ifp)->ac_enaddr)[4],
1015 ((u_char *)IFP2AC(ifp)->ac_enaddr)[5]
1018 if ((ether_debug & 2) == 0)
1019 discard = 1;
1022 post_stats:
1023 if ((IPFW_LOADED || IPFW3_LOADED) && ether_ipfw != 0 && !discard) {
1024 struct ether_header save_eh = *eh;
1026 /* XXX old crufty stuff, needs to be removed */
1027 m_adj(m, sizeof(struct ether_header));
1029 if (!ether_ipfw_chk(&m, NULL, &rule, eh)) {
1030 m_freem(m);
1031 return;
1034 ether_restore_header(&m, eh, &save_eh);
1035 if (m == NULL)
1036 return;
1037 eh = mtod(m, struct ether_header *);
1040 ether_type = ntohs(eh->ether_type);
1041 KKASSERT(ether_type != ETHERTYPE_VLAN);
1043 /* Handle input from a lagg(4) port */
1044 if (ifp->if_type == IFT_IEEE8023ADLAG) {
1045 KASSERT(lagg_input_p != NULL,
1046 ("%s: if_lagg not loaded!", __func__));
1047 (*lagg_input_p)(ifp, m);
1048 return;
1051 if (m->m_flags & M_VLANTAG) {
1052 void (*vlan_input_func)(struct mbuf *);
1054 vlan_input_func = vlan_input_p;
1055 /* Make sure 'vlan_input_func' is really used. */
1056 cpu_ccfence();
1057 if (vlan_input_func != NULL) {
1058 vlan_input_func(m);
1059 } else {
1060 IFNET_STAT_INC(m->m_pkthdr.rcvif, noproto, 1);
1061 m_freem(m);
1063 return;
1067 * If we have been asked to discard this packet
1068 * (e.g. not for us), drop it before entering
1069 * the upper layer.
1071 if (discard) {
1072 m_freem(m);
1073 return;
1077 * Clear protocol specific flags,
1078 * before entering the upper layer.
1080 m->m_flags &= ~M_ETHER_FLAGS;
1082 /* Strip ethernet header. */
1083 m_adj(m, sizeof(struct ether_header));
1085 switch (ether_type) {
1086 #ifdef INET
1087 case ETHERTYPE_IP:
1088 if ((m->m_flags & M_LENCHECKED) == 0) {
1089 if (!ip_lengthcheck(&m, 0))
1090 return;
1092 if (ipflow_fastforward(m))
1093 return;
1094 isr = NETISR_IP;
1095 break;
1097 case ETHERTYPE_ARP:
1098 if (ifp->if_flags & IFF_NOARP) {
1099 /* Discard packet if ARP is disabled on interface */
1100 m_freem(m);
1101 return;
1103 isr = NETISR_ARP;
1104 break;
1105 #endif
1107 #ifdef INET6
1108 case ETHERTYPE_IPV6:
1109 isr = NETISR_IPV6;
1110 break;
1111 #endif
1113 #ifdef MPLS
1114 case ETHERTYPE_MPLS:
1115 case ETHERTYPE_MPLS_MCAST:
1116 /* Should have been set by ether_input(). */
1117 KKASSERT(m->m_flags & M_MPLSLABELED);
1118 isr = NETISR_MPLS;
1119 break;
1120 #endif
1122 default:
1124 * The accurate msgport is not determined before
1125 * we reach here, so recharacterize packet.
1127 m->m_flags &= ~M_HASH;
1128 if (ng_ether_input_orphan_p != NULL) {
1130 * Put back the ethernet header so netgraph has a
1131 * consistent view of inbound packets.
1133 M_PREPEND(m, ETHER_HDR_LEN, M_NOWAIT);
1134 if (m == NULL) {
1136 * M_PREPEND frees the mbuf in case of failure.
1138 return;
1141 * Hold BGL and recheck ng_ether_input_orphan_p
1143 get_mplock();
1144 if (ng_ether_input_orphan_p != NULL) {
1145 ng_ether_input_orphan_p(ifp, m);
1146 rel_mplock();
1147 return;
1149 rel_mplock();
1151 m_freem(m);
1152 return;
1155 if (m->m_flags & M_HASH) {
1156 if (&curthread->td_msgport ==
1157 netisr_hashport(m->m_pkthdr.hash)) {
1158 netisr_handle(isr, m);
1159 return;
1160 } else {
1162 * XXX Something is wrong,
1163 * we probably should panic here!
1165 m->m_flags &= ~M_HASH;
1166 atomic_add_long(&ether_input_wronghash, 1);
1169 #ifdef RSS_DEBUG
1170 atomic_add_long(&ether_input_requeue, 1);
1171 #endif
1172 netisr_queue(isr, m);
1176 * First we perform any link layer operations, then continue to the
1177 * upper layers with ether_demux_oncpu().
1179 static void
1180 ether_input_oncpu(struct ifnet *ifp, struct mbuf *m)
1182 #ifdef CARP
1183 void *carp;
1184 #endif
1186 if ((ifp->if_flags & (IFF_UP | IFF_MONITOR)) != IFF_UP) {
1188 * Receiving interface's flags are changed, when this
1189 * packet is waiting for processing; discard it.
1191 m_freem(m);
1192 return;
1196 * Tap the packet off here for a bridge. bridge_input()
1197 * will return NULL if it has consumed the packet, otherwise
1198 * it gets processed as normal. Note that bridge_input()
1199 * will always return the original packet if we need to
1200 * process it locally.
1202 if (ifp->if_bridge) {
1203 KASSERT(bridge_input_p != NULL,
1204 ("%s: if_bridge not loaded!", __func__));
1206 if(m->m_flags & M_ETHER_BRIDGED) {
1207 m->m_flags &= ~M_ETHER_BRIDGED;
1208 } else {
1209 m = bridge_input_p(ifp, m);
1210 if (m == NULL)
1211 return;
1213 KASSERT(ifp == m->m_pkthdr.rcvif,
1214 ("bridge_input_p changed rcvif"));
1218 #ifdef CARP
1219 carp = ifp->if_carp;
1220 if (carp) {
1221 m = carp_input(carp, m);
1222 if (m == NULL)
1223 return;
1224 KASSERT(ifp == m->m_pkthdr.rcvif,
1225 ("carp_input changed rcvif"));
1227 #endif
1229 /* Handle ng_ether(4) processing, if any */
1230 if (ng_ether_input_p != NULL) {
1232 * Hold BGL and recheck ng_ether_input_p
1234 get_mplock();
1235 if (ng_ether_input_p != NULL)
1236 ng_ether_input_p(ifp, &m);
1237 rel_mplock();
1239 if (m == NULL)
1240 return;
1243 /* Continue with upper layer processing */
1244 ether_demux_oncpu(ifp, m);
1248 * Perform certain functions of ether_input():
1249 * - Test IFF_UP
1250 * - Update statistics
1251 * - Run bpf(4) tap if requested
1252 * Then pass the packet to ether_input_oncpu().
1254 * This function should be used by pseudo interface (e.g. vlan(4)),
1255 * when it tries to claim that the packet is received by it.
1257 * REINPUT_KEEPRCVIF
1258 * REINPUT_RUNBPF
1260 void
1261 ether_reinput_oncpu(struct ifnet *ifp, struct mbuf *m, int reinput_flags)
1263 /* Discard packet if interface is not up */
1264 if (!(ifp->if_flags & IFF_UP)) {
1265 m_freem(m);
1266 return;
1270 * Change receiving interface. The bridge will often pass a flag to
1271 * ask that this not be done so ARPs get applied to the correct
1272 * side.
1274 if ((reinput_flags & REINPUT_KEEPRCVIF) == 0 ||
1275 m->m_pkthdr.rcvif == NULL) {
1276 m->m_pkthdr.rcvif = ifp;
1279 /* Update statistics */
1280 IFNET_STAT_INC(ifp, ipackets, 1);
1281 IFNET_STAT_INC(ifp, ibytes, m->m_pkthdr.len);
1282 if (m->m_flags & (M_MCAST | M_BCAST))
1283 IFNET_STAT_INC(ifp, imcasts, 1);
1285 if (reinput_flags & REINPUT_RUNBPF)
1286 BPF_MTAP(ifp, m);
1288 ether_input_oncpu(ifp, m);
1291 static __inline boolean_t
1292 ether_vlancheck(struct mbuf **m0)
1294 struct mbuf *m = *m0;
1295 struct ether_header *eh;
1296 uint16_t ether_type;
1298 eh = mtod(m, struct ether_header *);
1299 ether_type = ntohs(eh->ether_type);
1301 if (ether_type == ETHERTYPE_VLAN && (m->m_flags & M_VLANTAG) == 0) {
1303 * Extract vlan tag if hardware does not do it for us
1305 vlan_ether_decap(&m);
1306 if (m == NULL)
1307 goto failed;
1309 eh = mtod(m, struct ether_header *);
1310 ether_type = ntohs(eh->ether_type);
1313 if (ether_type == ETHERTYPE_VLAN && (m->m_flags & M_VLANTAG)) {
1315 * To prevent possible dangerous recursion,
1316 * we don't do vlan-in-vlan
1318 IFNET_STAT_INC(m->m_pkthdr.rcvif, noproto, 1);
1319 goto failed;
1321 KKASSERT(ether_type != ETHERTYPE_VLAN);
1323 m->m_flags |= M_ETHER_VLANCHECKED;
1324 *m0 = m;
1325 return TRUE;
1326 failed:
1327 if (m != NULL)
1328 m_freem(m);
1329 *m0 = NULL;
1330 return FALSE;
1333 static void
1334 ether_input_handler(netmsg_t nmsg)
1336 struct netmsg_packet *nmp = &nmsg->packet; /* actual size */
1337 struct ether_header *eh;
1338 struct ifnet *ifp;
1339 struct mbuf *m;
1341 m = nmp->nm_packet;
1342 M_ASSERTPKTHDR(m);
1344 if ((m->m_flags & M_ETHER_VLANCHECKED) == 0) {
1345 if (!ether_vlancheck(&m)) {
1346 KKASSERT(m == NULL);
1347 return;
1350 if ((m->m_flags & (M_HASH | M_CKHASH)) == (M_HASH | M_CKHASH) ||
1351 __predict_false(ether_input_ckhash)) {
1352 int isr;
1355 * Need to verify the hash supplied by the hardware
1356 * which could be wrong.
1358 m->m_flags &= ~(M_HASH | M_CKHASH);
1359 isr = ether_characterize(&m);
1360 if (m == NULL)
1361 return;
1362 KKASSERT(m->m_flags & M_HASH);
1364 if (netisr_hashcpu(m->m_pkthdr.hash) != mycpuid) {
1366 * Wrong hardware supplied hash; redispatch
1368 ether_dispatch(isr, m, -1);
1369 if (__predict_false(ether_input_ckhash))
1370 atomic_add_long(&ether_input_wronghwhash, 1);
1371 return;
1374 ifp = m->m_pkthdr.rcvif;
1376 eh = mtod(m, struct ether_header *);
1377 if (ETHER_IS_MULTICAST(eh->ether_dhost)) {
1378 if (bcmp(ifp->if_broadcastaddr, eh->ether_dhost,
1379 ifp->if_addrlen) == 0)
1380 m->m_flags |= M_BCAST;
1381 else
1382 m->m_flags |= M_MCAST;
1383 IFNET_STAT_INC(ifp, imcasts, 1);
1386 ether_input_oncpu(ifp, m);
1390 * Send the packet to the target netisr msgport
1392 * At this point the packet must be characterized (M_HASH set),
1393 * so we know which netisr to send it to.
1395 static void
1396 ether_dispatch(int isr, struct mbuf *m, int cpuid)
1398 struct netmsg_packet *pmsg;
1399 int target_cpuid;
1401 KKASSERT(m->m_flags & M_HASH);
1402 target_cpuid = netisr_hashcpu(m->m_pkthdr.hash);
1404 pmsg = &m->m_hdr.mh_netmsg;
1405 netmsg_init(&pmsg->base, NULL, &netisr_apanic_rport,
1406 0, ether_input_handler);
1407 pmsg->nm_packet = m;
1408 pmsg->base.lmsg.u.ms_result = isr;
1410 logether(disp_beg, NULL);
1411 if (target_cpuid == cpuid) {
1412 lwkt_sendmsg_oncpu(netisr_cpuport(target_cpuid),
1413 &pmsg->base.lmsg);
1414 } else {
1415 lwkt_sendmsg(netisr_cpuport(target_cpuid),
1416 &pmsg->base.lmsg);
1418 logether(disp_end, NULL);
1422 * Process a received Ethernet packet.
1424 * The ethernet header is assumed to be in the mbuf so the caller
1425 * MUST MAKE SURE that there are at least sizeof(struct ether_header)
1426 * bytes in the first mbuf.
1428 * If the caller knows that the current thread is stick to the current
1429 * cpu, e.g. the interrupt thread or the netisr thread, the current cpuid
1430 * (mycpuid) should be passed through 'cpuid' argument. Else -1 should
1431 * be passed as 'cpuid' argument.
1433 void
1434 ether_input(struct ifnet *ifp, struct mbuf *m, const struct pktinfo *pi,
1435 int cpuid)
1437 int isr;
1439 M_ASSERTPKTHDR(m);
1441 /* Discard packet if interface is not up */
1442 if (!(ifp->if_flags & IFF_UP)) {
1443 m_freem(m);
1444 return;
1447 if (m->m_len < sizeof(struct ether_header)) {
1448 /* XXX error in the caller. */
1449 m_freem(m);
1450 return;
1453 m->m_pkthdr.rcvif = ifp;
1455 logether(pkt_beg, ifp);
1457 ETHER_BPF_MTAP(ifp, m);
1459 IFNET_STAT_INC(ifp, ibytes, m->m_pkthdr.len);
1461 if (ifp->if_flags & IFF_MONITOR) {
1462 struct ether_header *eh;
1464 eh = mtod(m, struct ether_header *);
1465 if (ETHER_IS_MULTICAST(eh->ether_dhost))
1466 IFNET_STAT_INC(ifp, imcasts, 1);
1469 * Interface marked for monitoring; discard packet.
1471 m_freem(m);
1473 logether(pkt_end, ifp);
1474 return;
1478 * If the packet has been characterized (pi->pi_netisr / M_HASH)
1479 * we can dispatch it immediately with trivial checks.
1481 if (pi != NULL && (m->m_flags & M_HASH)) {
1482 #ifdef RSS_DEBUG
1483 atomic_add_long(&ether_pktinfo_try, 1);
1484 #endif
1485 netisr_hashcheck(pi->pi_netisr, m, pi);
1486 if (m->m_flags & M_HASH) {
1487 ether_dispatch(pi->pi_netisr, m, cpuid);
1488 #ifdef RSS_DEBUG
1489 atomic_add_long(&ether_pktinfo_hit, 1);
1490 #endif
1491 logether(pkt_end, ifp);
1492 return;
1495 #ifdef RSS_DEBUG
1496 else if (ifp->if_capenable & IFCAP_RSS) {
1497 if (pi == NULL)
1498 atomic_add_long(&ether_rss_nopi, 1);
1499 else
1500 atomic_add_long(&ether_rss_nohash, 1);
1502 #endif
1505 * Packet hash will be recalculated by software, so clear
1506 * the M_HASH and M_CKHASH flag set by the driver; the hash
1507 * value calculated by the hardware may not be exactly what
1508 * we want.
1510 m->m_flags &= ~(M_HASH | M_CKHASH);
1512 if (!ether_vlancheck(&m)) {
1513 KKASSERT(m == NULL);
1514 logether(pkt_end, ifp);
1515 return;
1518 isr = ether_characterize(&m);
1519 if (m == NULL) {
1520 logether(pkt_end, ifp);
1521 return;
1525 * Finally dispatch it
1527 ether_dispatch(isr, m, cpuid);
1529 logether(pkt_end, ifp);
1532 static int
1533 ether_characterize(struct mbuf **m0)
1535 struct mbuf *m = *m0;
1536 struct ether_header *eh;
1537 uint16_t ether_type;
1538 int isr;
1540 eh = mtod(m, struct ether_header *);
1541 ether_type = ntohs(eh->ether_type);
1544 * Map ether type to netisr id.
1546 switch (ether_type) {
1547 #ifdef INET
1548 case ETHERTYPE_IP:
1549 isr = NETISR_IP;
1550 break;
1552 case ETHERTYPE_ARP:
1553 isr = NETISR_ARP;
1554 break;
1555 #endif
1557 #ifdef INET6
1558 case ETHERTYPE_IPV6:
1559 isr = NETISR_IPV6;
1560 break;
1561 #endif
1563 #ifdef MPLS
1564 case ETHERTYPE_MPLS:
1565 case ETHERTYPE_MPLS_MCAST:
1566 m->m_flags |= M_MPLSLABELED;
1567 isr = NETISR_MPLS;
1568 break;
1569 #endif
1571 default:
1573 * NETISR_MAX is an invalid value; it is chosen to let
1574 * netisr_characterize() know that we have no clear
1575 * idea where this packet should go.
1577 isr = NETISR_MAX;
1578 break;
1582 * Ask the isr to characterize the packet since we couldn't.
1583 * This is an attempt to optimally get us onto the correct protocol
1584 * thread.
1586 netisr_characterize(isr, &m, sizeof(struct ether_header));
1588 *m0 = m;
1589 return isr;
1592 static void
1593 ether_demux_handler(netmsg_t nmsg)
1595 struct netmsg_packet *nmp = &nmsg->packet; /* actual size */
1596 struct ifnet *ifp;
1597 struct mbuf *m;
1599 m = nmp->nm_packet;
1600 M_ASSERTPKTHDR(m);
1601 ifp = m->m_pkthdr.rcvif;
1603 ether_demux_oncpu(ifp, m);
1606 void
1607 ether_demux(struct mbuf *m)
1609 struct netmsg_packet *pmsg;
1610 int isr;
1612 isr = ether_characterize(&m);
1613 if (m == NULL)
1614 return;
1616 KKASSERT(m->m_flags & M_HASH);
1617 pmsg = &m->m_hdr.mh_netmsg;
1618 netmsg_init(&pmsg->base, NULL, &netisr_apanic_rport,
1619 0, ether_demux_handler);
1620 pmsg->nm_packet = m;
1621 pmsg->base.lmsg.u.ms_result = isr;
1623 lwkt_sendmsg(netisr_hashport(m->m_pkthdr.hash), &pmsg->base.lmsg);
1626 u_char *
1627 kether_aton(const char *macstr, u_char *addr)
1629 unsigned int o0, o1, o2, o3, o4, o5;
1630 int n;
1632 if (macstr == NULL || addr == NULL)
1633 return NULL;
1635 n = ksscanf(macstr, "%x:%x:%x:%x:%x:%x", &o0, &o1, &o2,
1636 &o3, &o4, &o5);
1637 if (n != 6)
1638 return NULL;
1640 addr[0] = o0;
1641 addr[1] = o1;
1642 addr[2] = o2;
1643 addr[3] = o3;
1644 addr[4] = o4;
1645 addr[5] = o5;
1647 return addr;
1650 char *
1651 kether_ntoa(const u_char *addr, char *buf)
1653 int len = ETHER_ADDRSTRLEN + 1;
1654 int n;
1656 n = ksnprintf(buf, len, "%02x:%02x:%02x:%02x:%02x:%02x", addr[0],
1657 addr[1], addr[2], addr[3], addr[4], addr[5]);
1659 if (n < 17)
1660 return NULL;
1662 return buf;
1665 MODULE_VERSION(ether, 1);