kernel - Fix callout_stop/callout_reset rearm race
[dragonfly.git] / sys / net / if.c
blobbf4908c38f85f653bf3583b046c2d67e8ea78bae
1 /*
2 * Copyright (c) 1980, 1986, 1993
3 * The Regents of the University of California. All rights reserved.
5 * Redistribution and use in source and binary forms, with or without
6 * modification, are permitted provided that the following conditions
7 * are met:
8 * 1. Redistributions of source code must retain the above copyright
9 * notice, this list of conditions and the following disclaimer.
10 * 2. Redistributions in binary form must reproduce the above copyright
11 * notice, this list of conditions and the following disclaimer in the
12 * documentation and/or other materials provided with the distribution.
13 * 3. Neither the name of the University nor the names of its contributors
14 * may be used to endorse or promote products derived from this software
15 * without specific prior written permission.
17 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
18 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
19 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
20 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
21 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
22 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
23 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
24 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
25 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
26 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
27 * SUCH DAMAGE.
29 * @(#)if.c 8.3 (Berkeley) 1/4/94
30 * $FreeBSD: src/sys/net/if.c,v 1.185 2004/03/13 02:35:03 brooks Exp $
33 #include "opt_inet6.h"
34 #include "opt_inet.h"
35 #include "opt_ifpoll.h"
37 #include <sys/param.h>
38 #include <sys/malloc.h>
39 #include <sys/mbuf.h>
40 #include <sys/systm.h>
41 #include <sys/proc.h>
42 #include <sys/priv.h>
43 #include <sys/protosw.h>
44 #include <sys/socket.h>
45 #include <sys/socketvar.h>
46 #include <sys/socketops.h>
47 #include <sys/kernel.h>
48 #include <sys/ktr.h>
49 #include <sys/mutex.h>
50 #include <sys/sockio.h>
51 #include <sys/syslog.h>
52 #include <sys/sysctl.h>
53 #include <sys/domain.h>
54 #include <sys/thread.h>
55 #include <sys/serialize.h>
56 #include <sys/bus.h>
58 #include <sys/thread2.h>
59 #include <sys/msgport2.h>
60 #include <sys/mutex2.h>
62 #include <net/if.h>
63 #include <net/if_arp.h>
64 #include <net/if_dl.h>
65 #include <net/if_types.h>
66 #include <net/if_var.h>
67 #include <net/if_ringmap.h>
68 #include <net/ifq_var.h>
69 #include <net/radix.h>
70 #include <net/route.h>
71 #include <net/if_clone.h>
72 #include <net/netisr2.h>
73 #include <net/netmsg2.h>
75 #include <machine/atomic.h>
76 #include <machine/stdarg.h>
77 #include <machine/smp.h>
79 #if defined(INET) || defined(INET6)
80 /*XXX*/
81 #include <netinet/in.h>
82 #include <netinet/in_var.h>
83 #include <netinet/if_ether.h>
84 #ifdef INET6
85 #include <netinet6/in6_var.h>
86 #include <netinet6/in6_ifattach.h>
87 #endif
88 #endif
90 struct netmsg_ifaddr {
91 struct netmsg_base base;
92 struct ifaddr *ifa;
93 struct ifnet *ifp;
94 int tail;
97 struct ifsubq_stage_head {
98 TAILQ_HEAD(, ifsubq_stage) stg_head;
99 } __cachealign;
101 struct if_ringmap {
102 int rm_cnt;
103 int rm_grid;
104 int rm_cpumap[];
107 #define RINGMAP_FLAG_NONE 0x0
108 #define RINGMAP_FLAG_POWEROF2 0x1
111 * System initialization
113 static void if_attachdomain(void *);
114 static void if_attachdomain1(struct ifnet *);
115 static int ifconf(u_long, caddr_t, struct ucred *);
116 static void ifinit(void *);
117 static void ifnetinit(void *);
118 static void if_slowtimo(void *);
119 static void link_rtrequest(int, struct rtentry *);
120 static int if_rtdel(struct radix_node *, void *);
121 static void if_slowtimo_dispatch(netmsg_t);
123 /* Helper functions */
124 static void ifsq_watchdog_reset(struct ifsubq_watchdog *);
125 static int if_delmulti_serialized(struct ifnet *, struct sockaddr *);
126 static struct ifnet_array *ifnet_array_alloc(int);
127 static void ifnet_array_free(struct ifnet_array *);
128 static struct ifnet_array *ifnet_array_add(struct ifnet *,
129 const struct ifnet_array *);
130 static struct ifnet_array *ifnet_array_del(struct ifnet *,
131 const struct ifnet_array *);
133 #ifdef INET6
135 * XXX: declare here to avoid to include many inet6 related files..
136 * should be more generalized?
138 extern void nd6_setmtu(struct ifnet *);
139 #endif
141 SYSCTL_NODE(_net, PF_LINK, link, CTLFLAG_RW, 0, "Link layers");
142 SYSCTL_NODE(_net_link, 0, generic, CTLFLAG_RW, 0, "Generic link-management");
143 SYSCTL_NODE(_net_link, OID_AUTO, ringmap, CTLFLAG_RW, 0, "link ringmap");
145 static int ifsq_stage_cntmax = 4;
146 TUNABLE_INT("net.link.stage_cntmax", &ifsq_stage_cntmax);
147 SYSCTL_INT(_net_link, OID_AUTO, stage_cntmax, CTLFLAG_RW,
148 &ifsq_stage_cntmax, 0, "ifq staging packet count max");
150 static int if_stats_compat = 0;
151 SYSCTL_INT(_net_link, OID_AUTO, stats_compat, CTLFLAG_RW,
152 &if_stats_compat, 0, "Compat the old ifnet stats");
154 static int if_ringmap_dumprdr = 0;
155 SYSCTL_INT(_net_link_ringmap, OID_AUTO, dump_rdr, CTLFLAG_RW,
156 &if_ringmap_dumprdr, 0, "dump redirect table");
158 SYSINIT(interfaces, SI_SUB_PROTO_IF, SI_ORDER_FIRST, ifinit, NULL);
159 SYSINIT(ifnet, SI_SUB_PRE_DRIVERS, SI_ORDER_ANY, ifnetinit, NULL);
161 static if_com_alloc_t *if_com_alloc[256];
162 static if_com_free_t *if_com_free[256];
164 MALLOC_DEFINE(M_IFADDR, "ifaddr", "interface address");
165 MALLOC_DEFINE(M_IFMADDR, "ether_multi", "link-level multicast address");
166 MALLOC_DEFINE(M_IFNET, "ifnet", "interface structure");
168 int ifqmaxlen = IFQ_MAXLEN;
169 struct ifnethead ifnet = TAILQ_HEAD_INITIALIZER(ifnet);
171 static struct ifnet_array ifnet_array0;
172 static struct ifnet_array *ifnet_array = &ifnet_array0;
174 static struct callout if_slowtimo_timer;
175 static struct netmsg_base if_slowtimo_netmsg;
177 int if_index = 0;
178 struct ifnet **ifindex2ifnet = NULL;
179 static struct mtx ifnet_mtx = MTX_INITIALIZER("ifnet");
181 static struct ifsubq_stage_head ifsubq_stage_heads[MAXCPU];
183 #ifdef notyet
184 #define IFQ_KTR_STRING "ifq=%p"
185 #define IFQ_KTR_ARGS struct ifaltq *ifq
186 #ifndef KTR_IFQ
187 #define KTR_IFQ KTR_ALL
188 #endif
189 KTR_INFO_MASTER(ifq);
190 KTR_INFO(KTR_IFQ, ifq, enqueue, 0, IFQ_KTR_STRING, IFQ_KTR_ARGS);
191 KTR_INFO(KTR_IFQ, ifq, dequeue, 1, IFQ_KTR_STRING, IFQ_KTR_ARGS);
192 #define logifq(name, arg) KTR_LOG(ifq_ ## name, arg)
194 #define IF_START_KTR_STRING "ifp=%p"
195 #define IF_START_KTR_ARGS struct ifnet *ifp
196 #ifndef KTR_IF_START
197 #define KTR_IF_START KTR_ALL
198 #endif
199 KTR_INFO_MASTER(if_start);
200 KTR_INFO(KTR_IF_START, if_start, run, 0,
201 IF_START_KTR_STRING, IF_START_KTR_ARGS);
202 KTR_INFO(KTR_IF_START, if_start, sched, 1,
203 IF_START_KTR_STRING, IF_START_KTR_ARGS);
204 KTR_INFO(KTR_IF_START, if_start, avoid, 2,
205 IF_START_KTR_STRING, IF_START_KTR_ARGS);
206 KTR_INFO(KTR_IF_START, if_start, contend_sched, 3,
207 IF_START_KTR_STRING, IF_START_KTR_ARGS);
208 KTR_INFO(KTR_IF_START, if_start, chase_sched, 4,
209 IF_START_KTR_STRING, IF_START_KTR_ARGS);
210 #define logifstart(name, arg) KTR_LOG(if_start_ ## name, arg)
211 #endif
213 TAILQ_HEAD(, ifg_group) ifg_head = TAILQ_HEAD_INITIALIZER(ifg_head);
216 * Network interface utility routines.
218 * Routines with ifa_ifwith* names take sockaddr *'s as
219 * parameters.
221 /* ARGSUSED*/
222 static void
223 ifinit(void *dummy)
225 struct ifnet *ifp;
227 callout_init_mp(&if_slowtimo_timer);
228 netmsg_init(&if_slowtimo_netmsg, NULL, &netisr_adone_rport,
229 MSGF_PRIORITY, if_slowtimo_dispatch);
231 /* XXX is this necessary? */
232 ifnet_lock();
233 TAILQ_FOREACH(ifp, &ifnetlist, if_link) {
234 if (ifp->if_snd.altq_maxlen == 0) {
235 if_printf(ifp, "XXX: driver didn't set altq_maxlen\n");
236 ifq_set_maxlen(&ifp->if_snd, ifqmaxlen);
239 ifnet_unlock();
241 /* Start if_slowtimo */
242 lwkt_sendmsg(netisr_cpuport(0), &if_slowtimo_netmsg.lmsg);
245 static void
246 ifsq_ifstart_ipifunc(void *arg)
248 struct ifaltq_subque *ifsq = arg;
249 struct lwkt_msg *lmsg = ifsq_get_ifstart_lmsg(ifsq, mycpuid);
251 crit_enter();
252 if (lmsg->ms_flags & MSGF_DONE)
253 lwkt_sendmsg_oncpu(netisr_cpuport(mycpuid), lmsg);
254 crit_exit();
257 static __inline void
258 ifsq_stage_remove(struct ifsubq_stage_head *head, struct ifsubq_stage *stage)
260 KKASSERT(stage->stg_flags & IFSQ_STAGE_FLAG_QUED);
261 TAILQ_REMOVE(&head->stg_head, stage, stg_link);
262 stage->stg_flags &= ~(IFSQ_STAGE_FLAG_QUED | IFSQ_STAGE_FLAG_SCHED);
263 stage->stg_cnt = 0;
264 stage->stg_len = 0;
267 static __inline void
268 ifsq_stage_insert(struct ifsubq_stage_head *head, struct ifsubq_stage *stage)
270 KKASSERT((stage->stg_flags &
271 (IFSQ_STAGE_FLAG_QUED | IFSQ_STAGE_FLAG_SCHED)) == 0);
272 stage->stg_flags |= IFSQ_STAGE_FLAG_QUED;
273 TAILQ_INSERT_TAIL(&head->stg_head, stage, stg_link);
277 * Schedule ifnet.if_start on the subqueue owner CPU
279 static void
280 ifsq_ifstart_schedule(struct ifaltq_subque *ifsq, int force)
282 int cpu;
284 if (!force && curthread->td_type == TD_TYPE_NETISR &&
285 ifsq_stage_cntmax > 0) {
286 struct ifsubq_stage *stage = ifsq_get_stage(ifsq, mycpuid);
288 stage->stg_cnt = 0;
289 stage->stg_len = 0;
290 if ((stage->stg_flags & IFSQ_STAGE_FLAG_QUED) == 0)
291 ifsq_stage_insert(&ifsubq_stage_heads[mycpuid], stage);
292 stage->stg_flags |= IFSQ_STAGE_FLAG_SCHED;
293 return;
296 cpu = ifsq_get_cpuid(ifsq);
297 if (cpu != mycpuid)
298 lwkt_send_ipiq(globaldata_find(cpu), ifsq_ifstart_ipifunc, ifsq);
299 else
300 ifsq_ifstart_ipifunc(ifsq);
304 * NOTE:
305 * This function will release ifnet.if_start subqueue interlock,
306 * if ifnet.if_start for the subqueue does not need to be scheduled
308 static __inline int
309 ifsq_ifstart_need_schedule(struct ifaltq_subque *ifsq, int running)
311 if (!running || ifsq_is_empty(ifsq)
312 #ifdef ALTQ
313 || ifsq->ifsq_altq->altq_tbr != NULL
314 #endif
316 ALTQ_SQ_LOCK(ifsq);
318 * ifnet.if_start subqueue interlock is released, if:
319 * 1) Hardware can not take any packets, due to
320 * o interface is marked down
321 * o hardware queue is full (ifsq_is_oactive)
322 * Under the second situation, hardware interrupt
323 * or polling(4) will call/schedule ifnet.if_start
324 * on the subqueue when hardware queue is ready
325 * 2) There is no packet in the subqueue.
326 * Further ifq_dispatch or ifq_handoff will call/
327 * schedule ifnet.if_start on the subqueue.
328 * 3) TBR is used and it does not allow further
329 * dequeueing.
330 * TBR callout will call ifnet.if_start on the
331 * subqueue.
333 if (!running || !ifsq_data_ready(ifsq)) {
334 ifsq_clr_started(ifsq);
335 ALTQ_SQ_UNLOCK(ifsq);
336 return 0;
338 ALTQ_SQ_UNLOCK(ifsq);
340 return 1;
343 static void
344 ifsq_ifstart_dispatch(netmsg_t msg)
346 struct lwkt_msg *lmsg = &msg->base.lmsg;
347 struct ifaltq_subque *ifsq = lmsg->u.ms_resultp;
348 struct ifnet *ifp = ifsq_get_ifp(ifsq);
349 struct globaldata *gd = mycpu;
350 int running = 0, need_sched;
352 crit_enter_gd(gd);
354 lwkt_replymsg(lmsg, 0); /* reply ASAP */
356 if (gd->gd_cpuid != ifsq_get_cpuid(ifsq)) {
358 * We need to chase the subqueue owner CPU change.
360 ifsq_ifstart_schedule(ifsq, 1);
361 crit_exit_gd(gd);
362 return;
365 ifsq_serialize_hw(ifsq);
366 if ((ifp->if_flags & IFF_RUNNING) && !ifsq_is_oactive(ifsq)) {
367 ifp->if_start(ifp, ifsq);
368 if ((ifp->if_flags & IFF_RUNNING) && !ifsq_is_oactive(ifsq))
369 running = 1;
371 need_sched = ifsq_ifstart_need_schedule(ifsq, running);
372 ifsq_deserialize_hw(ifsq);
374 if (need_sched) {
376 * More data need to be transmitted, ifnet.if_start is
377 * scheduled on the subqueue owner CPU, and we keep going.
378 * NOTE: ifnet.if_start subqueue interlock is not released.
380 ifsq_ifstart_schedule(ifsq, 0);
383 crit_exit_gd(gd);
386 /* Device driver ifnet.if_start helper function */
387 void
388 ifsq_devstart(struct ifaltq_subque *ifsq)
390 struct ifnet *ifp = ifsq_get_ifp(ifsq);
391 int running = 0;
393 ASSERT_ALTQ_SQ_SERIALIZED_HW(ifsq);
395 ALTQ_SQ_LOCK(ifsq);
396 if (ifsq_is_started(ifsq) || !ifsq_data_ready(ifsq)) {
397 ALTQ_SQ_UNLOCK(ifsq);
398 return;
400 ifsq_set_started(ifsq);
401 ALTQ_SQ_UNLOCK(ifsq);
403 ifp->if_start(ifp, ifsq);
405 if ((ifp->if_flags & IFF_RUNNING) && !ifsq_is_oactive(ifsq))
406 running = 1;
408 if (ifsq_ifstart_need_schedule(ifsq, running)) {
410 * More data need to be transmitted, ifnet.if_start is
411 * scheduled on ifnet's CPU, and we keep going.
412 * NOTE: ifnet.if_start interlock is not released.
414 ifsq_ifstart_schedule(ifsq, 0);
418 void
419 if_devstart(struct ifnet *ifp)
421 ifsq_devstart(ifq_get_subq_default(&ifp->if_snd));
424 /* Device driver ifnet.if_start schedule helper function */
425 void
426 ifsq_devstart_sched(struct ifaltq_subque *ifsq)
428 ifsq_ifstart_schedule(ifsq, 1);
431 void
432 if_devstart_sched(struct ifnet *ifp)
434 ifsq_devstart_sched(ifq_get_subq_default(&ifp->if_snd));
437 static void
438 if_default_serialize(struct ifnet *ifp, enum ifnet_serialize slz __unused)
440 lwkt_serialize_enter(ifp->if_serializer);
443 static void
444 if_default_deserialize(struct ifnet *ifp, enum ifnet_serialize slz __unused)
446 lwkt_serialize_exit(ifp->if_serializer);
449 static int
450 if_default_tryserialize(struct ifnet *ifp, enum ifnet_serialize slz __unused)
452 return lwkt_serialize_try(ifp->if_serializer);
455 #ifdef INVARIANTS
456 static void
457 if_default_serialize_assert(struct ifnet *ifp,
458 enum ifnet_serialize slz __unused,
459 boolean_t serialized)
461 if (serialized)
462 ASSERT_SERIALIZED(ifp->if_serializer);
463 else
464 ASSERT_NOT_SERIALIZED(ifp->if_serializer);
466 #endif
469 * Attach an interface to the list of "active" interfaces.
471 * The serializer is optional.
473 void
474 if_attach(struct ifnet *ifp, lwkt_serialize_t serializer)
476 unsigned socksize;
477 int namelen, masklen;
478 struct sockaddr_dl *sdl, *sdl_addr;
479 struct ifaddr *ifa;
480 struct ifaltq *ifq;
481 struct ifnet **old_ifindex2ifnet = NULL;
482 struct ifnet_array *old_ifnet_array;
483 int i, q;
485 static int if_indexlim = 8;
487 if (ifp->if_serialize != NULL) {
488 KASSERT(ifp->if_deserialize != NULL &&
489 ifp->if_tryserialize != NULL &&
490 ifp->if_serialize_assert != NULL,
491 ("serialize functions are partially setup"));
494 * If the device supplies serialize functions,
495 * then clear if_serializer to catch any invalid
496 * usage of this field.
498 KASSERT(serializer == NULL,
499 ("both serialize functions and default serializer "
500 "are supplied"));
501 ifp->if_serializer = NULL;
502 } else {
503 KASSERT(ifp->if_deserialize == NULL &&
504 ifp->if_tryserialize == NULL &&
505 ifp->if_serialize_assert == NULL,
506 ("serialize functions are partially setup"));
507 ifp->if_serialize = if_default_serialize;
508 ifp->if_deserialize = if_default_deserialize;
509 ifp->if_tryserialize = if_default_tryserialize;
510 #ifdef INVARIANTS
511 ifp->if_serialize_assert = if_default_serialize_assert;
512 #endif
515 * The serializer can be passed in from the device,
516 * allowing the same serializer to be used for both
517 * the interrupt interlock and the device queue.
518 * If not specified, the netif structure will use an
519 * embedded serializer.
521 if (serializer == NULL) {
522 serializer = &ifp->if_default_serializer;
523 lwkt_serialize_init(serializer);
525 ifp->if_serializer = serializer;
529 * Make if_addrhead available on all CPUs, since they
530 * could be accessed by any threads.
532 ifp->if_addrheads = kmalloc(ncpus * sizeof(struct ifaddrhead),
533 M_IFADDR, M_WAITOK | M_ZERO);
534 for (i = 0; i < ncpus; ++i)
535 TAILQ_INIT(&ifp->if_addrheads[i]);
537 TAILQ_INIT(&ifp->if_multiaddrs);
538 TAILQ_INIT(&ifp->if_groups);
539 getmicrotime(&ifp->if_lastchange);
542 * create a Link Level name for this device
544 namelen = strlen(ifp->if_xname);
545 masklen = offsetof(struct sockaddr_dl, sdl_data[0]) + namelen;
546 socksize = masklen + ifp->if_addrlen;
547 if (socksize < sizeof(*sdl))
548 socksize = sizeof(*sdl);
549 socksize = RT_ROUNDUP(socksize);
550 ifa = ifa_create(sizeof(struct ifaddr) + 2 * socksize);
551 sdl = sdl_addr = (struct sockaddr_dl *)(ifa + 1);
552 sdl->sdl_len = socksize;
553 sdl->sdl_family = AF_LINK;
554 bcopy(ifp->if_xname, sdl->sdl_data, namelen);
555 sdl->sdl_nlen = namelen;
556 sdl->sdl_type = ifp->if_type;
557 ifp->if_lladdr = ifa;
558 ifa->ifa_ifp = ifp;
559 ifa->ifa_rtrequest = link_rtrequest;
560 ifa->ifa_addr = (struct sockaddr *)sdl;
561 sdl = (struct sockaddr_dl *)(socksize + (caddr_t)sdl);
562 ifa->ifa_netmask = (struct sockaddr *)sdl;
563 sdl->sdl_len = masklen;
564 while (namelen != 0)
565 sdl->sdl_data[--namelen] = 0xff;
566 ifa_iflink(ifa, ifp, 0 /* Insert head */);
569 * Make if_data available on all CPUs, since they could
570 * be updated by hardware interrupt routing, which could
571 * be bound to any CPU.
573 ifp->if_data_pcpu = kmalloc_cachealign(
574 ncpus * sizeof(struct ifdata_pcpu), M_DEVBUF, M_WAITOK | M_ZERO);
576 if (ifp->if_mapsubq == NULL)
577 ifp->if_mapsubq = ifq_mapsubq_default;
579 ifq = &ifp->if_snd;
580 ifq->altq_type = 0;
581 ifq->altq_disc = NULL;
582 ifq->altq_flags &= ALTQF_CANTCHANGE;
583 ifq->altq_tbr = NULL;
584 ifq->altq_ifp = ifp;
586 if (ifq->altq_subq_cnt <= 0)
587 ifq->altq_subq_cnt = 1;
588 ifq->altq_subq = kmalloc_cachealign(
589 ifq->altq_subq_cnt * sizeof(struct ifaltq_subque),
590 M_DEVBUF, M_WAITOK | M_ZERO);
592 if (ifq->altq_maxlen == 0) {
593 if_printf(ifp, "driver didn't set altq_maxlen\n");
594 ifq_set_maxlen(ifq, ifqmaxlen);
597 for (q = 0; q < ifq->altq_subq_cnt; ++q) {
598 struct ifaltq_subque *ifsq = &ifq->altq_subq[q];
600 ALTQ_SQ_LOCK_INIT(ifsq);
601 ifsq->ifsq_index = q;
603 ifsq->ifsq_altq = ifq;
604 ifsq->ifsq_ifp = ifp;
606 ifsq->ifsq_maxlen = ifq->altq_maxlen;
607 ifsq->ifsq_maxbcnt = ifsq->ifsq_maxlen * MCLBYTES;
608 ifsq->ifsq_prepended = NULL;
609 ifsq->ifsq_started = 0;
610 ifsq->ifsq_hw_oactive = 0;
611 ifsq_set_cpuid(ifsq, 0);
612 if (ifp->if_serializer != NULL)
613 ifsq_set_hw_serialize(ifsq, ifp->if_serializer);
615 /* XXX: netisr_ncpus */
616 ifsq->ifsq_stage =
617 kmalloc_cachealign(ncpus * sizeof(struct ifsubq_stage),
618 M_DEVBUF, M_WAITOK | M_ZERO);
619 for (i = 0; i < ncpus; ++i)
620 ifsq->ifsq_stage[i].stg_subq = ifsq;
623 * Allocate one if_start message for each CPU, since
624 * the hardware TX ring could be assigned to any CPU.
626 * NOTE:
627 * If the hardware TX ring polling CPU and the hardware
628 * TX ring interrupt CPU are same, one if_start message
629 * should be enough.
631 ifsq->ifsq_ifstart_nmsg =
632 kmalloc(ncpus * sizeof(struct netmsg_base),
633 M_LWKTMSG, M_WAITOK);
634 for (i = 0; i < ncpus; ++i) {
635 netmsg_init(&ifsq->ifsq_ifstart_nmsg[i], NULL,
636 &netisr_adone_rport, 0, ifsq_ifstart_dispatch);
637 ifsq->ifsq_ifstart_nmsg[i].lmsg.u.ms_resultp = ifsq;
640 ifq_set_classic(ifq);
643 * Increase mbuf cluster/jcluster limits for the mbufs that
644 * could sit on the device queues for quite some time.
646 if (ifp->if_nmbclusters > 0)
647 mcl_inclimit(ifp->if_nmbclusters);
648 if (ifp->if_nmbjclusters > 0)
649 mjcl_inclimit(ifp->if_nmbjclusters);
652 * Install this ifp into ifindex2inet, ifnet queue and ifnet
653 * array after it is setup.
655 * Protect ifindex2ifnet, ifnet queue and ifnet array changes
656 * by ifnet lock, so that non-netisr threads could get a
657 * consistent view.
659 ifnet_lock();
661 /* Don't update if_index until ifindex2ifnet is setup */
662 ifp->if_index = if_index + 1;
663 sdl_addr->sdl_index = ifp->if_index;
666 * Install this ifp into ifindex2ifnet
668 if (ifindex2ifnet == NULL || ifp->if_index >= if_indexlim) {
669 unsigned int n;
670 struct ifnet **q;
673 * Grow ifindex2ifnet
675 if_indexlim <<= 1;
676 n = if_indexlim * sizeof(*q);
677 q = kmalloc(n, M_IFADDR, M_WAITOK | M_ZERO);
678 if (ifindex2ifnet != NULL) {
679 bcopy(ifindex2ifnet, q, n/2);
680 /* Free old ifindex2ifnet after sync all netisrs */
681 old_ifindex2ifnet = ifindex2ifnet;
683 ifindex2ifnet = q;
685 ifindex2ifnet[ifp->if_index] = ifp;
687 * Update if_index after this ifp is installed into ifindex2ifnet,
688 * so that netisrs could get a consistent view of ifindex2ifnet.
690 cpu_sfence();
691 if_index = ifp->if_index;
694 * Install this ifp into ifnet array.
696 /* Free old ifnet array after sync all netisrs */
697 old_ifnet_array = ifnet_array;
698 ifnet_array = ifnet_array_add(ifp, old_ifnet_array);
701 * Install this ifp into ifnet queue.
703 TAILQ_INSERT_TAIL(&ifnetlist, ifp, if_link);
705 ifnet_unlock();
708 * Sync all netisrs so that the old ifindex2ifnet and ifnet array
709 * are no longer accessed and we can free them safely later on.
711 netmsg_service_sync();
712 if (old_ifindex2ifnet != NULL)
713 kfree(old_ifindex2ifnet, M_IFADDR);
714 ifnet_array_free(old_ifnet_array);
716 if (!SLIST_EMPTY(&domains))
717 if_attachdomain1(ifp);
719 /* Announce the interface. */
720 EVENTHANDLER_INVOKE(ifnet_attach_event, ifp);
721 devctl_notify("IFNET", ifp->if_xname, "ATTACH", NULL);
722 rt_ifannouncemsg(ifp, IFAN_ARRIVAL);
725 static void
726 if_attachdomain(void *dummy)
728 struct ifnet *ifp;
730 ifnet_lock();
731 TAILQ_FOREACH(ifp, &ifnetlist, if_list)
732 if_attachdomain1(ifp);
733 ifnet_unlock();
735 SYSINIT(domainifattach, SI_SUB_PROTO_IFATTACHDOMAIN, SI_ORDER_FIRST,
736 if_attachdomain, NULL);
738 static void
739 if_attachdomain1(struct ifnet *ifp)
741 struct domain *dp;
743 crit_enter();
745 /* address family dependent data region */
746 bzero(ifp->if_afdata, sizeof(ifp->if_afdata));
747 SLIST_FOREACH(dp, &domains, dom_next)
748 if (dp->dom_ifattach)
749 ifp->if_afdata[dp->dom_family] =
750 (*dp->dom_ifattach)(ifp);
751 crit_exit();
755 * Purge all addresses whose type is _not_ AF_LINK
757 static void
758 if_purgeaddrs_nolink_dispatch(netmsg_t nmsg)
760 struct ifnet *ifp = nmsg->lmsg.u.ms_resultp;
761 struct ifaddr_container *ifac, *next;
763 ASSERT_NETISR0;
766 * The ifaddr processing in the following loop will block,
767 * however, this function is called in netisr0, in which
768 * ifaddr list changes happen, so we don't care about the
769 * blockness of the ifaddr processing here.
771 TAILQ_FOREACH_MUTABLE(ifac, &ifp->if_addrheads[mycpuid],
772 ifa_link, next) {
773 struct ifaddr *ifa = ifac->ifa;
775 /* Ignore marker */
776 if (ifa->ifa_addr->sa_family == AF_UNSPEC)
777 continue;
779 /* Leave link ifaddr as it is */
780 if (ifa->ifa_addr->sa_family == AF_LINK)
781 continue;
782 #ifdef INET
783 /* XXX: Ugly!! ad hoc just for INET */
784 if (ifa->ifa_addr->sa_family == AF_INET) {
785 struct ifaliasreq ifr;
786 struct sockaddr_in saved_addr, saved_dst;
787 #ifdef IFADDR_DEBUG_VERBOSE
788 int i;
790 kprintf("purge in4 addr %p: ", ifa);
791 for (i = 0; i < ncpus; ++i) {
792 kprintf("%d ",
793 ifa->ifa_containers[i].ifa_refcnt);
795 kprintf("\n");
796 #endif
798 /* Save information for panic. */
799 memcpy(&saved_addr, ifa->ifa_addr, sizeof(saved_addr));
800 if (ifa->ifa_dstaddr != NULL) {
801 memcpy(&saved_dst, ifa->ifa_dstaddr,
802 sizeof(saved_dst));
803 } else {
804 memset(&saved_dst, 0, sizeof(saved_dst));
807 bzero(&ifr, sizeof ifr);
808 ifr.ifra_addr = *ifa->ifa_addr;
809 if (ifa->ifa_dstaddr)
810 ifr.ifra_broadaddr = *ifa->ifa_dstaddr;
811 if (in_control(SIOCDIFADDR, (caddr_t)&ifr, ifp,
812 NULL) == 0)
813 continue;
815 /* MUST NOT HAPPEN */
816 panic("%s: in_control failed %x, dst %x", ifp->if_xname,
817 ntohl(saved_addr.sin_addr.s_addr),
818 ntohl(saved_dst.sin_addr.s_addr));
820 #endif /* INET */
821 #ifdef INET6
822 if (ifa->ifa_addr->sa_family == AF_INET6) {
823 #ifdef IFADDR_DEBUG_VERBOSE
824 int i;
826 kprintf("purge in6 addr %p: ", ifa);
827 for (i = 0; i < ncpus; ++i) {
828 kprintf("%d ",
829 ifa->ifa_containers[i].ifa_refcnt);
831 kprintf("\n");
832 #endif
834 in6_purgeaddr(ifa);
835 /* ifp_addrhead is already updated */
836 continue;
838 #endif /* INET6 */
839 if_printf(ifp, "destroy ifaddr family %d\n",
840 ifa->ifa_addr->sa_family);
841 ifa_ifunlink(ifa, ifp);
842 ifa_destroy(ifa);
845 netisr_replymsg(&nmsg->base, 0);
848 void
849 if_purgeaddrs_nolink(struct ifnet *ifp)
851 struct netmsg_base nmsg;
853 netmsg_init(&nmsg, NULL, &curthread->td_msgport, 0,
854 if_purgeaddrs_nolink_dispatch);
855 nmsg.lmsg.u.ms_resultp = ifp;
856 netisr_domsg(&nmsg, 0);
859 static void
860 ifq_stage_detach_handler(netmsg_t nmsg)
862 struct ifaltq *ifq = nmsg->lmsg.u.ms_resultp;
863 int q;
865 for (q = 0; q < ifq->altq_subq_cnt; ++q) {
866 struct ifaltq_subque *ifsq = &ifq->altq_subq[q];
867 struct ifsubq_stage *stage = ifsq_get_stage(ifsq, mycpuid);
869 if (stage->stg_flags & IFSQ_STAGE_FLAG_QUED)
870 ifsq_stage_remove(&ifsubq_stage_heads[mycpuid], stage);
872 lwkt_replymsg(&nmsg->lmsg, 0);
875 static void
876 ifq_stage_detach(struct ifaltq *ifq)
878 struct netmsg_base base;
879 int cpu;
881 netmsg_init(&base, NULL, &curthread->td_msgport, 0,
882 ifq_stage_detach_handler);
883 base.lmsg.u.ms_resultp = ifq;
885 /* XXX netisr_ncpus */
886 for (cpu = 0; cpu < ncpus; ++cpu)
887 lwkt_domsg(netisr_cpuport(cpu), &base.lmsg, 0);
890 struct netmsg_if_rtdel {
891 struct netmsg_base base;
892 struct ifnet *ifp;
895 static void
896 if_rtdel_dispatch(netmsg_t msg)
898 struct netmsg_if_rtdel *rmsg = (void *)msg;
899 int i, cpu;
901 cpu = mycpuid;
902 ASSERT_NETISR_NCPUS(cpu);
904 for (i = 1; i <= AF_MAX; i++) {
905 struct radix_node_head *rnh;
907 if ((rnh = rt_tables[cpu][i]) == NULL)
908 continue;
909 rnh->rnh_walktree(rnh, if_rtdel, rmsg->ifp);
911 netisr_forwardmsg(&msg->base, cpu + 1);
915 * Detach an interface, removing it from the
916 * list of "active" interfaces.
918 void
919 if_detach(struct ifnet *ifp)
921 struct ifnet_array *old_ifnet_array;
922 struct netmsg_if_rtdel msg;
923 struct domain *dp;
924 int q;
926 /* Announce that the interface is gone. */
927 EVENTHANDLER_INVOKE(ifnet_detach_event, ifp);
928 rt_ifannouncemsg(ifp, IFAN_DEPARTURE);
929 devctl_notify("IFNET", ifp->if_xname, "DETACH", NULL);
932 * Remove this ifp from ifindex2inet, ifnet queue and ifnet
933 * array before it is whacked.
935 * Protect ifindex2ifnet, ifnet queue and ifnet array changes
936 * by ifnet lock, so that non-netisr threads could get a
937 * consistent view.
939 ifnet_lock();
942 * Remove this ifp from ifindex2ifnet and maybe decrement if_index.
944 ifindex2ifnet[ifp->if_index] = NULL;
945 while (if_index > 0 && ifindex2ifnet[if_index] == NULL)
946 if_index--;
949 * Remove this ifp from ifnet queue.
951 TAILQ_REMOVE(&ifnetlist, ifp, if_link);
954 * Remove this ifp from ifnet array.
956 /* Free old ifnet array after sync all netisrs */
957 old_ifnet_array = ifnet_array;
958 ifnet_array = ifnet_array_del(ifp, old_ifnet_array);
960 ifnet_unlock();
963 * Sync all netisrs so that the old ifnet array is no longer
964 * accessed and we can free it safely later on.
966 netmsg_service_sync();
967 ifnet_array_free(old_ifnet_array);
970 * Remove routes and flush queues.
972 crit_enter();
973 #ifdef IFPOLL_ENABLE
974 if (ifp->if_flags & IFF_NPOLLING)
975 ifpoll_deregister(ifp);
976 #endif
977 if_down(ifp);
979 /* Decrease the mbuf clusters/jclusters limits increased by us */
980 if (ifp->if_nmbclusters > 0)
981 mcl_inclimit(-ifp->if_nmbclusters);
982 if (ifp->if_nmbjclusters > 0)
983 mjcl_inclimit(-ifp->if_nmbjclusters);
985 #ifdef ALTQ
986 if (ifq_is_enabled(&ifp->if_snd))
987 altq_disable(&ifp->if_snd);
988 if (ifq_is_attached(&ifp->if_snd))
989 altq_detach(&ifp->if_snd);
990 #endif
993 * Clean up all addresses.
995 ifp->if_lladdr = NULL;
997 if_purgeaddrs_nolink(ifp);
998 if (!TAILQ_EMPTY(&ifp->if_addrheads[mycpuid])) {
999 struct ifaddr *ifa;
1001 ifa = TAILQ_FIRST(&ifp->if_addrheads[mycpuid])->ifa;
1002 KASSERT(ifa->ifa_addr->sa_family == AF_LINK,
1003 ("non-link ifaddr is left on if_addrheads"));
1005 ifa_ifunlink(ifa, ifp);
1006 ifa_destroy(ifa);
1007 KASSERT(TAILQ_EMPTY(&ifp->if_addrheads[mycpuid]),
1008 ("there are still ifaddrs left on if_addrheads"));
1011 #ifdef INET
1013 * Remove all IPv4 kernel structures related to ifp.
1015 in_ifdetach(ifp);
1016 #endif
1018 #ifdef INET6
1020 * Remove all IPv6 kernel structs related to ifp. This should be done
1021 * before removing routing entries below, since IPv6 interface direct
1022 * routes are expected to be removed by the IPv6-specific kernel API.
1023 * Otherwise, the kernel will detect some inconsistency and bark it.
1025 in6_ifdetach(ifp);
1026 #endif
1029 * Delete all remaining routes using this interface
1031 netmsg_init(&msg.base, NULL, &curthread->td_msgport, MSGF_PRIORITY,
1032 if_rtdel_dispatch);
1033 msg.ifp = ifp;
1034 netisr_domsg_global(&msg.base);
1036 SLIST_FOREACH(dp, &domains, dom_next)
1037 if (dp->dom_ifdetach && ifp->if_afdata[dp->dom_family])
1038 (*dp->dom_ifdetach)(ifp,
1039 ifp->if_afdata[dp->dom_family]);
1041 kfree(ifp->if_addrheads, M_IFADDR);
1043 lwkt_synchronize_ipiqs("if_detach");
1044 ifq_stage_detach(&ifp->if_snd);
1046 for (q = 0; q < ifp->if_snd.altq_subq_cnt; ++q) {
1047 struct ifaltq_subque *ifsq = &ifp->if_snd.altq_subq[q];
1049 kfree(ifsq->ifsq_ifstart_nmsg, M_LWKTMSG);
1050 kfree(ifsq->ifsq_stage, M_DEVBUF);
1052 kfree(ifp->if_snd.altq_subq, M_DEVBUF);
1054 kfree(ifp->if_data_pcpu, M_DEVBUF);
1056 crit_exit();
1060 * Create interface group without members
1062 struct ifg_group *
1063 if_creategroup(const char *groupname)
1065 struct ifg_group *ifg = NULL;
1067 if ((ifg = (struct ifg_group *)kmalloc(sizeof(struct ifg_group),
1068 M_TEMP, M_NOWAIT)) == NULL)
1069 return (NULL);
1071 strlcpy(ifg->ifg_group, groupname, sizeof(ifg->ifg_group));
1072 ifg->ifg_refcnt = 0;
1073 ifg->ifg_carp_demoted = 0;
1074 TAILQ_INIT(&ifg->ifg_members);
1075 #if NPF > 0
1076 pfi_attach_ifgroup(ifg);
1077 #endif
1078 TAILQ_INSERT_TAIL(&ifg_head, ifg, ifg_next);
1080 return (ifg);
1084 * Add a group to an interface
1087 if_addgroup(struct ifnet *ifp, const char *groupname)
1089 struct ifg_list *ifgl;
1090 struct ifg_group *ifg = NULL;
1091 struct ifg_member *ifgm;
1093 if (groupname[0] && groupname[strlen(groupname) - 1] >= '0' &&
1094 groupname[strlen(groupname) - 1] <= '9')
1095 return (EINVAL);
1097 TAILQ_FOREACH(ifgl, &ifp->if_groups, ifgl_next)
1098 if (!strcmp(ifgl->ifgl_group->ifg_group, groupname))
1099 return (EEXIST);
1101 if ((ifgl = kmalloc(sizeof(*ifgl), M_TEMP, M_NOWAIT)) == NULL)
1102 return (ENOMEM);
1104 if ((ifgm = kmalloc(sizeof(*ifgm), M_TEMP, M_NOWAIT)) == NULL) {
1105 kfree(ifgl, M_TEMP);
1106 return (ENOMEM);
1109 TAILQ_FOREACH(ifg, &ifg_head, ifg_next)
1110 if (!strcmp(ifg->ifg_group, groupname))
1111 break;
1113 if (ifg == NULL && (ifg = if_creategroup(groupname)) == NULL) {
1114 kfree(ifgl, M_TEMP);
1115 kfree(ifgm, M_TEMP);
1116 return (ENOMEM);
1119 ifg->ifg_refcnt++;
1120 ifgl->ifgl_group = ifg;
1121 ifgm->ifgm_ifp = ifp;
1123 TAILQ_INSERT_TAIL(&ifg->ifg_members, ifgm, ifgm_next);
1124 TAILQ_INSERT_TAIL(&ifp->if_groups, ifgl, ifgl_next);
1126 #if NPF > 0
1127 pfi_group_change(groupname);
1128 #endif
1130 return (0);
1134 * Remove a group from an interface
1137 if_delgroup(struct ifnet *ifp, const char *groupname)
1139 struct ifg_list *ifgl;
1140 struct ifg_member *ifgm;
1142 TAILQ_FOREACH(ifgl, &ifp->if_groups, ifgl_next)
1143 if (!strcmp(ifgl->ifgl_group->ifg_group, groupname))
1144 break;
1145 if (ifgl == NULL)
1146 return (ENOENT);
1148 TAILQ_REMOVE(&ifp->if_groups, ifgl, ifgl_next);
1150 TAILQ_FOREACH(ifgm, &ifgl->ifgl_group->ifg_members, ifgm_next)
1151 if (ifgm->ifgm_ifp == ifp)
1152 break;
1154 if (ifgm != NULL) {
1155 TAILQ_REMOVE(&ifgl->ifgl_group->ifg_members, ifgm, ifgm_next);
1156 kfree(ifgm, M_TEMP);
1159 if (--ifgl->ifgl_group->ifg_refcnt == 0) {
1160 TAILQ_REMOVE(&ifg_head, ifgl->ifgl_group, ifg_next);
1161 #if NPF > 0
1162 pfi_detach_ifgroup(ifgl->ifgl_group);
1163 #endif
1164 kfree(ifgl->ifgl_group, M_TEMP);
1167 kfree(ifgl, M_TEMP);
1169 #if NPF > 0
1170 pfi_group_change(groupname);
1171 #endif
1173 return (0);
1177 * Stores all groups from an interface in memory pointed
1178 * to by data
1181 if_getgroup(caddr_t data, struct ifnet *ifp)
1183 int len, error;
1184 struct ifg_list *ifgl;
1185 struct ifg_req ifgrq, *ifgp;
1186 struct ifgroupreq *ifgr = (struct ifgroupreq *)data;
1188 if (ifgr->ifgr_len == 0) {
1189 TAILQ_FOREACH(ifgl, &ifp->if_groups, ifgl_next)
1190 ifgr->ifgr_len += sizeof(struct ifg_req);
1191 return (0);
1194 len = ifgr->ifgr_len;
1195 ifgp = ifgr->ifgr_groups;
1196 TAILQ_FOREACH(ifgl, &ifp->if_groups, ifgl_next) {
1197 if (len < sizeof(ifgrq))
1198 return (EINVAL);
1199 bzero(&ifgrq, sizeof ifgrq);
1200 strlcpy(ifgrq.ifgrq_group, ifgl->ifgl_group->ifg_group,
1201 sizeof(ifgrq.ifgrq_group));
1202 if ((error = copyout((caddr_t)&ifgrq, (caddr_t)ifgp,
1203 sizeof(struct ifg_req))))
1204 return (error);
1205 len -= sizeof(ifgrq);
1206 ifgp++;
1209 return (0);
1213 * Stores all members of a group in memory pointed to by data
1216 if_getgroupmembers(caddr_t data)
1218 struct ifgroupreq *ifgr = (struct ifgroupreq *)data;
1219 struct ifg_group *ifg;
1220 struct ifg_member *ifgm;
1221 struct ifg_req ifgrq, *ifgp;
1222 int len, error;
1224 TAILQ_FOREACH(ifg, &ifg_head, ifg_next)
1225 if (!strcmp(ifg->ifg_group, ifgr->ifgr_name))
1226 break;
1227 if (ifg == NULL)
1228 return (ENOENT);
1230 if (ifgr->ifgr_len == 0) {
1231 TAILQ_FOREACH(ifgm, &ifg->ifg_members, ifgm_next)
1232 ifgr->ifgr_len += sizeof(ifgrq);
1233 return (0);
1236 len = ifgr->ifgr_len;
1237 ifgp = ifgr->ifgr_groups;
1238 TAILQ_FOREACH(ifgm, &ifg->ifg_members, ifgm_next) {
1239 if (len < sizeof(ifgrq))
1240 return (EINVAL);
1241 bzero(&ifgrq, sizeof ifgrq);
1242 strlcpy(ifgrq.ifgrq_member, ifgm->ifgm_ifp->if_xname,
1243 sizeof(ifgrq.ifgrq_member));
1244 if ((error = copyout((caddr_t)&ifgrq, (caddr_t)ifgp,
1245 sizeof(struct ifg_req))))
1246 return (error);
1247 len -= sizeof(ifgrq);
1248 ifgp++;
1251 return (0);
1255 * Delete Routes for a Network Interface
1257 * Called for each routing entry via the rnh->rnh_walktree() call above
1258 * to delete all route entries referencing a detaching network interface.
1260 * Arguments:
1261 * rn pointer to node in the routing table
1262 * arg argument passed to rnh->rnh_walktree() - detaching interface
1264 * Returns:
1265 * 0 successful
1266 * errno failed - reason indicated
1269 static int
1270 if_rtdel(struct radix_node *rn, void *arg)
1272 struct rtentry *rt = (struct rtentry *)rn;
1273 struct ifnet *ifp = arg;
1274 int err;
1276 if (rt->rt_ifp == ifp) {
1279 * Protect (sorta) against walktree recursion problems
1280 * with cloned routes
1282 if (!(rt->rt_flags & RTF_UP))
1283 return (0);
1285 err = rtrequest(RTM_DELETE, rt_key(rt), rt->rt_gateway,
1286 rt_mask(rt), rt->rt_flags,
1287 NULL);
1288 if (err) {
1289 log(LOG_WARNING, "if_rtdel: error %d\n", err);
1293 return (0);
1296 static __inline boolean_t
1297 ifa_prefer(const struct ifaddr *cur_ifa, const struct ifaddr *old_ifa)
1299 if (old_ifa == NULL)
1300 return TRUE;
1302 if ((old_ifa->ifa_ifp->if_flags & IFF_UP) == 0 &&
1303 (cur_ifa->ifa_ifp->if_flags & IFF_UP))
1304 return TRUE;
1305 if ((old_ifa->ifa_flags & IFA_ROUTE) == 0 &&
1306 (cur_ifa->ifa_flags & IFA_ROUTE))
1307 return TRUE;
1308 return FALSE;
1312 * Locate an interface based on a complete address.
1314 struct ifaddr *
1315 ifa_ifwithaddr(struct sockaddr *addr)
1317 const struct ifnet_array *arr;
1318 int i;
1320 arr = ifnet_array_get();
1321 for (i = 0; i < arr->ifnet_count; ++i) {
1322 struct ifnet *ifp = arr->ifnet_arr[i];
1323 struct ifaddr_container *ifac;
1325 TAILQ_FOREACH(ifac, &ifp->if_addrheads[mycpuid], ifa_link) {
1326 struct ifaddr *ifa = ifac->ifa;
1328 if (ifa->ifa_addr->sa_family != addr->sa_family)
1329 continue;
1330 if (sa_equal(addr, ifa->ifa_addr))
1331 return (ifa);
1332 if ((ifp->if_flags & IFF_BROADCAST) &&
1333 ifa->ifa_broadaddr &&
1334 /* IPv6 doesn't have broadcast */
1335 ifa->ifa_broadaddr->sa_len != 0 &&
1336 sa_equal(ifa->ifa_broadaddr, addr))
1337 return (ifa);
1340 return (NULL);
1344 * Locate the point to point interface with a given destination address.
1346 struct ifaddr *
1347 ifa_ifwithdstaddr(struct sockaddr *addr)
1349 const struct ifnet_array *arr;
1350 int i;
1352 arr = ifnet_array_get();
1353 for (i = 0; i < arr->ifnet_count; ++i) {
1354 struct ifnet *ifp = arr->ifnet_arr[i];
1355 struct ifaddr_container *ifac;
1357 if (!(ifp->if_flags & IFF_POINTOPOINT))
1358 continue;
1360 TAILQ_FOREACH(ifac, &ifp->if_addrheads[mycpuid], ifa_link) {
1361 struct ifaddr *ifa = ifac->ifa;
1363 if (ifa->ifa_addr->sa_family != addr->sa_family)
1364 continue;
1365 if (ifa->ifa_dstaddr &&
1366 sa_equal(addr, ifa->ifa_dstaddr))
1367 return (ifa);
1370 return (NULL);
1374 * Find an interface on a specific network. If many, choice
1375 * is most specific found.
1377 struct ifaddr *
1378 ifa_ifwithnet(struct sockaddr *addr)
1380 struct ifaddr *ifa_maybe = NULL;
1381 u_int af = addr->sa_family;
1382 char *addr_data = addr->sa_data, *cplim;
1383 const struct ifnet_array *arr;
1384 int i;
1387 * AF_LINK addresses can be looked up directly by their index number,
1388 * so do that if we can.
1390 if (af == AF_LINK) {
1391 struct sockaddr_dl *sdl = (struct sockaddr_dl *)addr;
1393 if (sdl->sdl_index && sdl->sdl_index <= if_index)
1394 return (ifindex2ifnet[sdl->sdl_index]->if_lladdr);
1398 * Scan though each interface, looking for ones that have
1399 * addresses in this address family.
1401 arr = ifnet_array_get();
1402 for (i = 0; i < arr->ifnet_count; ++i) {
1403 struct ifnet *ifp = arr->ifnet_arr[i];
1404 struct ifaddr_container *ifac;
1406 TAILQ_FOREACH(ifac, &ifp->if_addrheads[mycpuid], ifa_link) {
1407 struct ifaddr *ifa = ifac->ifa;
1408 char *cp, *cp2, *cp3;
1410 if (ifa->ifa_addr->sa_family != af)
1411 next: continue;
1412 if (af == AF_INET && ifp->if_flags & IFF_POINTOPOINT) {
1414 * This is a bit broken as it doesn't
1415 * take into account that the remote end may
1416 * be a single node in the network we are
1417 * looking for.
1418 * The trouble is that we don't know the
1419 * netmask for the remote end.
1421 if (ifa->ifa_dstaddr != NULL &&
1422 sa_equal(addr, ifa->ifa_dstaddr))
1423 return (ifa);
1424 } else {
1426 * if we have a special address handler,
1427 * then use it instead of the generic one.
1429 if (ifa->ifa_claim_addr) {
1430 if ((*ifa->ifa_claim_addr)(ifa, addr)) {
1431 return (ifa);
1432 } else {
1433 continue;
1438 * Scan all the bits in the ifa's address.
1439 * If a bit dissagrees with what we are
1440 * looking for, mask it with the netmask
1441 * to see if it really matters.
1442 * (A byte at a time)
1444 if (ifa->ifa_netmask == 0)
1445 continue;
1446 cp = addr_data;
1447 cp2 = ifa->ifa_addr->sa_data;
1448 cp3 = ifa->ifa_netmask->sa_data;
1449 cplim = ifa->ifa_netmask->sa_len +
1450 (char *)ifa->ifa_netmask;
1451 while (cp3 < cplim)
1452 if ((*cp++ ^ *cp2++) & *cp3++)
1453 goto next; /* next address! */
1455 * If the netmask of what we just found
1456 * is more specific than what we had before
1457 * (if we had one) then remember the new one
1458 * before continuing to search for an even
1459 * better one. If the netmasks are equal,
1460 * we prefer the this ifa based on the result
1461 * of ifa_prefer().
1463 if (ifa_maybe == NULL ||
1464 rn_refines((char *)ifa->ifa_netmask,
1465 (char *)ifa_maybe->ifa_netmask) ||
1466 (sa_equal(ifa_maybe->ifa_netmask,
1467 ifa->ifa_netmask) &&
1468 ifa_prefer(ifa, ifa_maybe)))
1469 ifa_maybe = ifa;
1473 return (ifa_maybe);
1477 * Find an interface address specific to an interface best matching
1478 * a given address.
1480 struct ifaddr *
1481 ifaof_ifpforaddr(struct sockaddr *addr, struct ifnet *ifp)
1483 struct ifaddr_container *ifac;
1484 char *cp, *cp2, *cp3;
1485 char *cplim;
1486 struct ifaddr *ifa_maybe = NULL;
1487 u_int af = addr->sa_family;
1489 if (af >= AF_MAX)
1490 return (0);
1491 TAILQ_FOREACH(ifac, &ifp->if_addrheads[mycpuid], ifa_link) {
1492 struct ifaddr *ifa = ifac->ifa;
1494 if (ifa->ifa_addr->sa_family != af)
1495 continue;
1496 if (ifa_maybe == NULL)
1497 ifa_maybe = ifa;
1498 if (ifa->ifa_netmask == NULL) {
1499 if (sa_equal(addr, ifa->ifa_addr) ||
1500 (ifa->ifa_dstaddr != NULL &&
1501 sa_equal(addr, ifa->ifa_dstaddr)))
1502 return (ifa);
1503 continue;
1505 if (ifp->if_flags & IFF_POINTOPOINT) {
1506 if (sa_equal(addr, ifa->ifa_dstaddr))
1507 return (ifa);
1508 } else {
1509 cp = addr->sa_data;
1510 cp2 = ifa->ifa_addr->sa_data;
1511 cp3 = ifa->ifa_netmask->sa_data;
1512 cplim = ifa->ifa_netmask->sa_len + (char *)ifa->ifa_netmask;
1513 for (; cp3 < cplim; cp3++)
1514 if ((*cp++ ^ *cp2++) & *cp3)
1515 break;
1516 if (cp3 == cplim)
1517 return (ifa);
1520 return (ifa_maybe);
1524 * Default action when installing a route with a Link Level gateway.
1525 * Lookup an appropriate real ifa to point to.
1526 * This should be moved to /sys/net/link.c eventually.
1528 static void
1529 link_rtrequest(int cmd, struct rtentry *rt)
1531 struct ifaddr *ifa;
1532 struct sockaddr *dst;
1533 struct ifnet *ifp;
1535 if (cmd != RTM_ADD || (ifa = rt->rt_ifa) == NULL ||
1536 (ifp = ifa->ifa_ifp) == NULL || (dst = rt_key(rt)) == NULL)
1537 return;
1538 ifa = ifaof_ifpforaddr(dst, ifp);
1539 if (ifa != NULL) {
1540 IFAFREE(rt->rt_ifa);
1541 IFAREF(ifa);
1542 rt->rt_ifa = ifa;
1543 if (ifa->ifa_rtrequest && ifa->ifa_rtrequest != link_rtrequest)
1544 ifa->ifa_rtrequest(cmd, rt);
1548 struct netmsg_ifroute {
1549 struct netmsg_base base;
1550 struct ifnet *ifp;
1551 int flag;
1552 int fam;
1556 * Mark an interface down and notify protocols of the transition.
1558 static void
1559 if_unroute_dispatch(netmsg_t nmsg)
1561 struct netmsg_ifroute *msg = (struct netmsg_ifroute *)nmsg;
1562 struct ifnet *ifp = msg->ifp;
1563 int flag = msg->flag, fam = msg->fam;
1564 struct ifaddr_container *ifac;
1566 ASSERT_NETISR0;
1568 ifp->if_flags &= ~flag;
1569 getmicrotime(&ifp->if_lastchange);
1571 * The ifaddr processing in the following loop will block,
1572 * however, this function is called in netisr0, in which
1573 * ifaddr list changes happen, so we don't care about the
1574 * blockness of the ifaddr processing here.
1576 TAILQ_FOREACH(ifac, &ifp->if_addrheads[mycpuid], ifa_link) {
1577 struct ifaddr *ifa = ifac->ifa;
1579 /* Ignore marker */
1580 if (ifa->ifa_addr->sa_family == AF_UNSPEC)
1581 continue;
1583 if (fam == PF_UNSPEC || (fam == ifa->ifa_addr->sa_family))
1584 kpfctlinput(PRC_IFDOWN, ifa->ifa_addr);
1586 ifq_purge_all(&ifp->if_snd);
1587 rt_ifmsg(ifp);
1589 netisr_replymsg(&nmsg->base, 0);
1592 void
1593 if_unroute(struct ifnet *ifp, int flag, int fam)
1595 struct netmsg_ifroute msg;
1597 netmsg_init(&msg.base, NULL, &curthread->td_msgport, 0,
1598 if_unroute_dispatch);
1599 msg.ifp = ifp;
1600 msg.flag = flag;
1601 msg.fam = fam;
1602 netisr_domsg(&msg.base, 0);
1606 * Mark an interface up and notify protocols of the transition.
1608 static void
1609 if_route_dispatch(netmsg_t nmsg)
1611 struct netmsg_ifroute *msg = (struct netmsg_ifroute *)nmsg;
1612 struct ifnet *ifp = msg->ifp;
1613 int flag = msg->flag, fam = msg->fam;
1614 struct ifaddr_container *ifac;
1616 ASSERT_NETISR0;
1618 ifq_purge_all(&ifp->if_snd);
1619 ifp->if_flags |= flag;
1620 getmicrotime(&ifp->if_lastchange);
1622 * The ifaddr processing in the following loop will block,
1623 * however, this function is called in netisr0, in which
1624 * ifaddr list changes happen, so we don't care about the
1625 * blockness of the ifaddr processing here.
1627 TAILQ_FOREACH(ifac, &ifp->if_addrheads[mycpuid], ifa_link) {
1628 struct ifaddr *ifa = ifac->ifa;
1630 /* Ignore marker */
1631 if (ifa->ifa_addr->sa_family == AF_UNSPEC)
1632 continue;
1634 if (fam == PF_UNSPEC || (fam == ifa->ifa_addr->sa_family))
1635 kpfctlinput(PRC_IFUP, ifa->ifa_addr);
1637 rt_ifmsg(ifp);
1638 #ifdef INET6
1639 in6_if_up(ifp);
1640 #endif
1642 netisr_replymsg(&nmsg->base, 0);
1645 void
1646 if_route(struct ifnet *ifp, int flag, int fam)
1648 struct netmsg_ifroute msg;
1650 netmsg_init(&msg.base, NULL, &curthread->td_msgport, 0,
1651 if_route_dispatch);
1652 msg.ifp = ifp;
1653 msg.flag = flag;
1654 msg.fam = fam;
1655 netisr_domsg(&msg.base, 0);
1659 * Mark an interface down and notify protocols of the transition. An
1660 * interface going down is also considered to be a synchronizing event.
1661 * We must ensure that all packet processing related to the interface
1662 * has completed before we return so e.g. the caller can free the ifnet
1663 * structure that the mbufs may be referencing.
1665 * NOTE: must be called at splnet or eqivalent.
1667 void
1668 if_down(struct ifnet *ifp)
1670 if_unroute(ifp, IFF_UP, AF_UNSPEC);
1671 netmsg_service_sync();
1675 * Mark an interface up and notify protocols of
1676 * the transition.
1677 * NOTE: must be called at splnet or eqivalent.
1679 void
1680 if_up(struct ifnet *ifp)
1682 if_route(ifp, IFF_UP, AF_UNSPEC);
1686 * Process a link state change.
1687 * NOTE: must be called at splsoftnet or equivalent.
1689 void
1690 if_link_state_change(struct ifnet *ifp)
1692 int link_state = ifp->if_link_state;
1694 rt_ifmsg(ifp);
1695 devctl_notify("IFNET", ifp->if_xname,
1696 (link_state == LINK_STATE_UP) ? "LINK_UP" : "LINK_DOWN", NULL);
1700 * Handle interface watchdog timer routines. Called
1701 * from softclock, we decrement timers (if set) and
1702 * call the appropriate interface routine on expiration.
1704 static void
1705 if_slowtimo_dispatch(netmsg_t nmsg)
1707 struct globaldata *gd = mycpu;
1708 const struct ifnet_array *arr;
1709 int i;
1711 ASSERT_NETISR0;
1713 crit_enter_gd(gd);
1714 lwkt_replymsg(&nmsg->lmsg, 0); /* reply ASAP */
1715 crit_exit_gd(gd);
1717 arr = ifnet_array_get();
1718 for (i = 0; i < arr->ifnet_count; ++i) {
1719 struct ifnet *ifp = arr->ifnet_arr[i];
1721 crit_enter_gd(gd);
1723 if (if_stats_compat) {
1724 IFNET_STAT_GET(ifp, ipackets, ifp->if_ipackets);
1725 IFNET_STAT_GET(ifp, ierrors, ifp->if_ierrors);
1726 IFNET_STAT_GET(ifp, opackets, ifp->if_opackets);
1727 IFNET_STAT_GET(ifp, oerrors, ifp->if_oerrors);
1728 IFNET_STAT_GET(ifp, collisions, ifp->if_collisions);
1729 IFNET_STAT_GET(ifp, ibytes, ifp->if_ibytes);
1730 IFNET_STAT_GET(ifp, obytes, ifp->if_obytes);
1731 IFNET_STAT_GET(ifp, imcasts, ifp->if_imcasts);
1732 IFNET_STAT_GET(ifp, omcasts, ifp->if_omcasts);
1733 IFNET_STAT_GET(ifp, iqdrops, ifp->if_iqdrops);
1734 IFNET_STAT_GET(ifp, noproto, ifp->if_noproto);
1735 IFNET_STAT_GET(ifp, oqdrops, ifp->if_oqdrops);
1738 if (ifp->if_timer == 0 || --ifp->if_timer) {
1739 crit_exit_gd(gd);
1740 continue;
1742 if (ifp->if_watchdog) {
1743 if (ifnet_tryserialize_all(ifp)) {
1744 (*ifp->if_watchdog)(ifp);
1745 ifnet_deserialize_all(ifp);
1746 } else {
1747 /* try again next timeout */
1748 ++ifp->if_timer;
1752 crit_exit_gd(gd);
1755 callout_reset(&if_slowtimo_timer, hz / IFNET_SLOWHZ, if_slowtimo, NULL);
1758 static void
1759 if_slowtimo(void *arg __unused)
1761 struct lwkt_msg *lmsg = &if_slowtimo_netmsg.lmsg;
1763 KASSERT(mycpuid == 0, ("not on cpu0"));
1764 crit_enter();
1765 if (lmsg->ms_flags & MSGF_DONE)
1766 lwkt_sendmsg_oncpu(netisr_cpuport(0), lmsg);
1767 crit_exit();
1771 * Map interface name to
1772 * interface structure pointer.
1774 struct ifnet *
1775 ifunit(const char *name)
1777 struct ifnet *ifp;
1780 * Search all the interfaces for this name/number
1782 KASSERT(mtx_owned(&ifnet_mtx), ("ifnet is not locked"));
1784 TAILQ_FOREACH(ifp, &ifnetlist, if_link) {
1785 if (strncmp(ifp->if_xname, name, IFNAMSIZ) == 0)
1786 break;
1788 return (ifp);
1791 struct ifnet *
1792 ifunit_netisr(const char *name)
1794 const struct ifnet_array *arr;
1795 int i;
1798 * Search all the interfaces for this name/number
1801 arr = ifnet_array_get();
1802 for (i = 0; i < arr->ifnet_count; ++i) {
1803 struct ifnet *ifp = arr->ifnet_arr[i];
1805 if (strncmp(ifp->if_xname, name, IFNAMSIZ) == 0)
1806 return ifp;
1808 return NULL;
1812 * Interface ioctls.
1815 ifioctl(struct socket *so, u_long cmd, caddr_t data, struct ucred *cred)
1817 struct ifnet *ifp;
1818 struct ifreq *ifr;
1819 struct ifstat *ifs;
1820 int error, do_ifup = 0;
1821 short oif_flags;
1822 int new_flags;
1823 size_t namelen, onamelen;
1824 char new_name[IFNAMSIZ];
1825 struct ifaddr *ifa;
1826 struct sockaddr_dl *sdl;
1828 switch (cmd) {
1829 case SIOCGIFCONF:
1830 case OSIOCGIFCONF:
1831 return (ifconf(cmd, data, cred));
1832 default:
1833 break;
1836 ifr = (struct ifreq *)data;
1838 switch (cmd) {
1839 case SIOCIFCREATE:
1840 case SIOCIFCREATE2:
1841 if ((error = priv_check_cred(cred, PRIV_ROOT, 0)) != 0)
1842 return (error);
1843 return (if_clone_create(ifr->ifr_name, sizeof(ifr->ifr_name),
1844 cmd == SIOCIFCREATE2 ? ifr->ifr_data : NULL));
1845 case SIOCIFDESTROY:
1846 if ((error = priv_check_cred(cred, PRIV_ROOT, 0)) != 0)
1847 return (error);
1848 return (if_clone_destroy(ifr->ifr_name));
1849 case SIOCIFGCLONERS:
1850 return (if_clone_list((struct if_clonereq *)data));
1851 default:
1852 break;
1856 * Nominal ioctl through interface, lookup the ifp and obtain a
1857 * lock to serialize the ifconfig ioctl operation.
1859 ifnet_lock();
1861 ifp = ifunit(ifr->ifr_name);
1862 if (ifp == NULL) {
1863 ifnet_unlock();
1864 return (ENXIO);
1866 error = 0;
1868 switch (cmd) {
1869 case SIOCGIFINDEX:
1870 ifr->ifr_index = ifp->if_index;
1871 break;
1873 case SIOCGIFFLAGS:
1874 ifr->ifr_flags = ifp->if_flags;
1875 ifr->ifr_flagshigh = ifp->if_flags >> 16;
1876 break;
1878 case SIOCGIFCAP:
1879 ifr->ifr_reqcap = ifp->if_capabilities;
1880 ifr->ifr_curcap = ifp->if_capenable;
1881 break;
1883 case SIOCGIFMETRIC:
1884 ifr->ifr_metric = ifp->if_metric;
1885 break;
1887 case SIOCGIFMTU:
1888 ifr->ifr_mtu = ifp->if_mtu;
1889 break;
1891 case SIOCGIFTSOLEN:
1892 ifr->ifr_tsolen = ifp->if_tsolen;
1893 break;
1895 case SIOCGIFDATA:
1896 error = copyout((caddr_t)&ifp->if_data, ifr->ifr_data,
1897 sizeof(ifp->if_data));
1898 break;
1900 case SIOCGIFPHYS:
1901 ifr->ifr_phys = ifp->if_physical;
1902 break;
1904 case SIOCGIFPOLLCPU:
1905 ifr->ifr_pollcpu = -1;
1906 break;
1908 case SIOCSIFPOLLCPU:
1909 break;
1911 case SIOCSIFFLAGS:
1912 error = priv_check_cred(cred, PRIV_ROOT, 0);
1913 if (error)
1914 break;
1915 new_flags = (ifr->ifr_flags & 0xffff) |
1916 (ifr->ifr_flagshigh << 16);
1917 if (ifp->if_flags & IFF_SMART) {
1918 /* Smart drivers twiddle their own routes */
1919 } else if (ifp->if_flags & IFF_UP &&
1920 (new_flags & IFF_UP) == 0) {
1921 if_down(ifp);
1922 } else if (new_flags & IFF_UP &&
1923 (ifp->if_flags & IFF_UP) == 0) {
1924 do_ifup = 1;
1927 #ifdef IFPOLL_ENABLE
1928 if ((new_flags ^ ifp->if_flags) & IFF_NPOLLING) {
1929 if (new_flags & IFF_NPOLLING)
1930 ifpoll_register(ifp);
1931 else
1932 ifpoll_deregister(ifp);
1934 #endif
1936 ifp->if_flags = (ifp->if_flags & IFF_CANTCHANGE) |
1937 (new_flags &~ IFF_CANTCHANGE);
1938 if (new_flags & IFF_PPROMISC) {
1939 /* Permanently promiscuous mode requested */
1940 ifp->if_flags |= IFF_PROMISC;
1941 } else if (ifp->if_pcount == 0) {
1942 ifp->if_flags &= ~IFF_PROMISC;
1944 if (ifp->if_ioctl) {
1945 ifnet_serialize_all(ifp);
1946 ifp->if_ioctl(ifp, cmd, data, cred);
1947 ifnet_deserialize_all(ifp);
1949 if (do_ifup)
1950 if_up(ifp);
1951 getmicrotime(&ifp->if_lastchange);
1952 break;
1954 case SIOCSIFCAP:
1955 error = priv_check_cred(cred, PRIV_ROOT, 0);
1956 if (error)
1957 break;
1958 if (ifr->ifr_reqcap & ~ifp->if_capabilities) {
1959 error = EINVAL;
1960 break;
1962 ifnet_serialize_all(ifp);
1963 ifp->if_ioctl(ifp, cmd, data, cred);
1964 ifnet_deserialize_all(ifp);
1965 break;
1967 case SIOCSIFNAME:
1968 error = priv_check_cred(cred, PRIV_ROOT, 0);
1969 if (error)
1970 break;
1971 error = copyinstr(ifr->ifr_data, new_name, IFNAMSIZ, NULL);
1972 if (error)
1973 break;
1974 if (new_name[0] == '\0') {
1975 error = EINVAL;
1976 break;
1978 if (ifunit(new_name) != NULL) {
1979 error = EEXIST;
1980 break;
1983 EVENTHANDLER_INVOKE(ifnet_detach_event, ifp);
1985 /* Announce the departure of the interface. */
1986 rt_ifannouncemsg(ifp, IFAN_DEPARTURE);
1988 strlcpy(ifp->if_xname, new_name, sizeof(ifp->if_xname));
1989 ifa = TAILQ_FIRST(&ifp->if_addrheads[mycpuid])->ifa;
1990 sdl = (struct sockaddr_dl *)ifa->ifa_addr;
1991 namelen = strlen(new_name);
1992 onamelen = sdl->sdl_nlen;
1994 * Move the address if needed. This is safe because we
1995 * allocate space for a name of length IFNAMSIZ when we
1996 * create this in if_attach().
1998 if (namelen != onamelen) {
1999 bcopy(sdl->sdl_data + onamelen,
2000 sdl->sdl_data + namelen, sdl->sdl_alen);
2002 bcopy(new_name, sdl->sdl_data, namelen);
2003 sdl->sdl_nlen = namelen;
2004 sdl = (struct sockaddr_dl *)ifa->ifa_netmask;
2005 bzero(sdl->sdl_data, onamelen);
2006 while (namelen != 0)
2007 sdl->sdl_data[--namelen] = 0xff;
2009 EVENTHANDLER_INVOKE(ifnet_attach_event, ifp);
2011 /* Announce the return of the interface. */
2012 rt_ifannouncemsg(ifp, IFAN_ARRIVAL);
2013 break;
2015 case SIOCSIFMETRIC:
2016 error = priv_check_cred(cred, PRIV_ROOT, 0);
2017 if (error)
2018 break;
2019 ifp->if_metric = ifr->ifr_metric;
2020 getmicrotime(&ifp->if_lastchange);
2021 break;
2023 case SIOCSIFPHYS:
2024 error = priv_check_cred(cred, PRIV_ROOT, 0);
2025 if (error)
2026 break;
2027 if (ifp->if_ioctl == NULL) {
2028 error = EOPNOTSUPP;
2029 break;
2031 ifnet_serialize_all(ifp);
2032 error = ifp->if_ioctl(ifp, cmd, data, cred);
2033 ifnet_deserialize_all(ifp);
2034 if (error == 0)
2035 getmicrotime(&ifp->if_lastchange);
2036 break;
2038 case SIOCSIFMTU:
2040 u_long oldmtu = ifp->if_mtu;
2042 error = priv_check_cred(cred, PRIV_ROOT, 0);
2043 if (error)
2044 break;
2045 if (ifp->if_ioctl == NULL) {
2046 error = EOPNOTSUPP;
2047 break;
2049 if (ifr->ifr_mtu < IF_MINMTU || ifr->ifr_mtu > IF_MAXMTU) {
2050 error = EINVAL;
2051 break;
2053 ifnet_serialize_all(ifp);
2054 error = ifp->if_ioctl(ifp, cmd, data, cred);
2055 ifnet_deserialize_all(ifp);
2056 if (error == 0) {
2057 getmicrotime(&ifp->if_lastchange);
2058 rt_ifmsg(ifp);
2061 * If the link MTU changed, do network layer specific procedure.
2063 if (ifp->if_mtu != oldmtu) {
2064 #ifdef INET6
2065 nd6_setmtu(ifp);
2066 #endif
2068 break;
2071 case SIOCSIFTSOLEN:
2072 error = priv_check_cred(cred, PRIV_ROOT, 0);
2073 if (error)
2074 break;
2076 /* XXX need driver supplied upper limit */
2077 if (ifr->ifr_tsolen <= 0) {
2078 error = EINVAL;
2079 break;
2081 ifp->if_tsolen = ifr->ifr_tsolen;
2082 break;
2084 case SIOCADDMULTI:
2085 case SIOCDELMULTI:
2086 error = priv_check_cred(cred, PRIV_ROOT, 0);
2087 if (error)
2088 break;
2090 /* Don't allow group membership on non-multicast interfaces. */
2091 if ((ifp->if_flags & IFF_MULTICAST) == 0) {
2092 error = EOPNOTSUPP;
2093 break;
2096 /* Don't let users screw up protocols' entries. */
2097 if (ifr->ifr_addr.sa_family != AF_LINK) {
2098 error = EINVAL;
2099 break;
2102 if (cmd == SIOCADDMULTI) {
2103 struct ifmultiaddr *ifma;
2104 error = if_addmulti(ifp, &ifr->ifr_addr, &ifma);
2105 } else {
2106 error = if_delmulti(ifp, &ifr->ifr_addr);
2108 if (error == 0)
2109 getmicrotime(&ifp->if_lastchange);
2110 break;
2112 case SIOCSIFPHYADDR:
2113 case SIOCDIFPHYADDR:
2114 #ifdef INET6
2115 case SIOCSIFPHYADDR_IN6:
2116 #endif
2117 case SIOCSLIFPHYADDR:
2118 case SIOCSIFMEDIA:
2119 case SIOCSIFGENERIC:
2120 error = priv_check_cred(cred, PRIV_ROOT, 0);
2121 if (error)
2122 break;
2123 if (ifp->if_ioctl == 0) {
2124 error = EOPNOTSUPP;
2125 break;
2127 ifnet_serialize_all(ifp);
2128 error = ifp->if_ioctl(ifp, cmd, data, cred);
2129 ifnet_deserialize_all(ifp);
2130 if (error == 0)
2131 getmicrotime(&ifp->if_lastchange);
2132 break;
2134 case SIOCGIFSTATUS:
2135 ifs = (struct ifstat *)data;
2136 ifs->ascii[0] = '\0';
2137 /* fall through */
2138 case SIOCGIFPSRCADDR:
2139 case SIOCGIFPDSTADDR:
2140 case SIOCGLIFPHYADDR:
2141 case SIOCGIFMEDIA:
2142 case SIOCGIFGENERIC:
2143 if (ifp->if_ioctl == NULL) {
2144 error = EOPNOTSUPP;
2145 break;
2147 ifnet_serialize_all(ifp);
2148 error = ifp->if_ioctl(ifp, cmd, data, cred);
2149 ifnet_deserialize_all(ifp);
2150 break;
2152 case SIOCSIFLLADDR:
2153 error = priv_check_cred(cred, PRIV_ROOT, 0);
2154 if (error)
2155 break;
2156 error = if_setlladdr(ifp, ifr->ifr_addr.sa_data,
2157 ifr->ifr_addr.sa_len);
2158 EVENTHANDLER_INVOKE(iflladdr_event, ifp);
2159 break;
2161 default:
2162 oif_flags = ifp->if_flags;
2163 if (so->so_proto == 0) {
2164 error = EOPNOTSUPP;
2165 break;
2167 error = so_pru_control_direct(so, cmd, data, ifp);
2169 if ((oif_flags ^ ifp->if_flags) & IFF_UP) {
2170 #ifdef INET6
2171 DELAY(100);/* XXX: temporary workaround for fxp issue*/
2172 if (ifp->if_flags & IFF_UP) {
2173 crit_enter();
2174 in6_if_up(ifp);
2175 crit_exit();
2177 #endif
2179 break;
2182 ifnet_unlock();
2183 return (error);
2187 * Set/clear promiscuous mode on interface ifp based on the truth value
2188 * of pswitch. The calls are reference counted so that only the first
2189 * "on" request actually has an effect, as does the final "off" request.
2190 * Results are undefined if the "off" and "on" requests are not matched.
2193 ifpromisc(struct ifnet *ifp, int pswitch)
2195 struct ifreq ifr;
2196 int error;
2197 int oldflags;
2199 oldflags = ifp->if_flags;
2200 if (ifp->if_flags & IFF_PPROMISC) {
2201 /* Do nothing if device is in permanently promiscuous mode */
2202 ifp->if_pcount += pswitch ? 1 : -1;
2203 return (0);
2205 if (pswitch) {
2207 * If the device is not configured up, we cannot put it in
2208 * promiscuous mode.
2210 if ((ifp->if_flags & IFF_UP) == 0)
2211 return (ENETDOWN);
2212 if (ifp->if_pcount++ != 0)
2213 return (0);
2214 ifp->if_flags |= IFF_PROMISC;
2215 log(LOG_INFO, "%s: promiscuous mode enabled\n",
2216 ifp->if_xname);
2217 } else {
2218 if (--ifp->if_pcount > 0)
2219 return (0);
2220 ifp->if_flags &= ~IFF_PROMISC;
2221 log(LOG_INFO, "%s: promiscuous mode disabled\n",
2222 ifp->if_xname);
2224 ifr.ifr_flags = ifp->if_flags;
2225 ifr.ifr_flagshigh = ifp->if_flags >> 16;
2226 ifnet_serialize_all(ifp);
2227 error = ifp->if_ioctl(ifp, SIOCSIFFLAGS, (caddr_t)&ifr, NULL);
2228 ifnet_deserialize_all(ifp);
2229 if (error == 0)
2230 rt_ifmsg(ifp);
2231 else
2232 ifp->if_flags = oldflags;
2233 return error;
2237 * Return interface configuration
2238 * of system. List may be used
2239 * in later ioctl's (above) to get
2240 * other information.
2242 static int
2243 ifconf(u_long cmd, caddr_t data, struct ucred *cred)
2245 struct ifconf *ifc = (struct ifconf *)data;
2246 struct ifnet *ifp;
2247 struct sockaddr *sa;
2248 struct ifreq ifr, *ifrp;
2249 int space = ifc->ifc_len, error = 0;
2251 ifrp = ifc->ifc_req;
2253 ifnet_lock();
2254 TAILQ_FOREACH(ifp, &ifnetlist, if_link) {
2255 struct ifaddr_container *ifac, *ifac_mark;
2256 struct ifaddr_marker mark;
2257 struct ifaddrhead *head;
2258 int addrs;
2260 if (space <= sizeof ifr)
2261 break;
2264 * Zero the stack declared structure first to prevent
2265 * memory disclosure.
2267 bzero(&ifr, sizeof(ifr));
2268 if (strlcpy(ifr.ifr_name, ifp->if_xname, sizeof(ifr.ifr_name))
2269 >= sizeof(ifr.ifr_name)) {
2270 error = ENAMETOOLONG;
2271 break;
2275 * Add a marker, since copyout() could block and during that
2276 * period the list could be changed. Inserting the marker to
2277 * the header of the list will not cause trouble for the code
2278 * assuming that the first element of the list is AF_LINK; the
2279 * marker will be moved to the next position w/o blocking.
2281 ifa_marker_init(&mark, ifp);
2282 ifac_mark = &mark.ifac;
2283 head = &ifp->if_addrheads[mycpuid];
2285 addrs = 0;
2286 TAILQ_INSERT_HEAD(head, ifac_mark, ifa_link);
2287 while ((ifac = TAILQ_NEXT(ifac_mark, ifa_link)) != NULL) {
2288 struct ifaddr *ifa = ifac->ifa;
2290 TAILQ_REMOVE(head, ifac_mark, ifa_link);
2291 TAILQ_INSERT_AFTER(head, ifac, ifac_mark, ifa_link);
2293 /* Ignore marker */
2294 if (ifa->ifa_addr->sa_family == AF_UNSPEC)
2295 continue;
2297 if (space <= sizeof ifr)
2298 break;
2299 sa = ifa->ifa_addr;
2300 if (cred->cr_prison &&
2301 prison_if(cred, sa))
2302 continue;
2303 addrs++;
2305 * Keep a reference on this ifaddr, so that it will
2306 * not be destroyed when its address is copied to
2307 * the userland, which could block.
2309 IFAREF(ifa);
2310 if (sa->sa_len <= sizeof(*sa)) {
2311 ifr.ifr_addr = *sa;
2312 error = copyout(&ifr, ifrp, sizeof ifr);
2313 ifrp++;
2314 } else {
2315 if (space < (sizeof ifr) + sa->sa_len -
2316 sizeof(*sa)) {
2317 IFAFREE(ifa);
2318 break;
2320 space -= sa->sa_len - sizeof(*sa);
2321 error = copyout(&ifr, ifrp,
2322 sizeof ifr.ifr_name);
2323 if (error == 0)
2324 error = copyout(sa, &ifrp->ifr_addr,
2325 sa->sa_len);
2326 ifrp = (struct ifreq *)
2327 (sa->sa_len + (caddr_t)&ifrp->ifr_addr);
2329 IFAFREE(ifa);
2330 if (error)
2331 break;
2332 space -= sizeof ifr;
2334 TAILQ_REMOVE(head, ifac_mark, ifa_link);
2335 if (error)
2336 break;
2337 if (!addrs) {
2338 bzero(&ifr.ifr_addr, sizeof ifr.ifr_addr);
2339 error = copyout(&ifr, ifrp, sizeof ifr);
2340 if (error)
2341 break;
2342 space -= sizeof ifr;
2343 ifrp++;
2346 ifnet_unlock();
2348 ifc->ifc_len -= space;
2349 return (error);
2353 * Just like if_promisc(), but for all-multicast-reception mode.
2356 if_allmulti(struct ifnet *ifp, int onswitch)
2358 int error = 0;
2359 struct ifreq ifr;
2361 crit_enter();
2363 if (onswitch) {
2364 if (ifp->if_amcount++ == 0) {
2365 ifp->if_flags |= IFF_ALLMULTI;
2366 ifr.ifr_flags = ifp->if_flags;
2367 ifr.ifr_flagshigh = ifp->if_flags >> 16;
2368 ifnet_serialize_all(ifp);
2369 error = ifp->if_ioctl(ifp, SIOCSIFFLAGS, (caddr_t)&ifr,
2370 NULL);
2371 ifnet_deserialize_all(ifp);
2373 } else {
2374 if (ifp->if_amcount > 1) {
2375 ifp->if_amcount--;
2376 } else {
2377 ifp->if_amcount = 0;
2378 ifp->if_flags &= ~IFF_ALLMULTI;
2379 ifr.ifr_flags = ifp->if_flags;
2380 ifr.ifr_flagshigh = ifp->if_flags >> 16;
2381 ifnet_serialize_all(ifp);
2382 error = ifp->if_ioctl(ifp, SIOCSIFFLAGS, (caddr_t)&ifr,
2383 NULL);
2384 ifnet_deserialize_all(ifp);
2388 crit_exit();
2390 if (error == 0)
2391 rt_ifmsg(ifp);
2392 return error;
2396 * Add a multicast listenership to the interface in question.
2397 * The link layer provides a routine which converts
2400 if_addmulti_serialized(struct ifnet *ifp, struct sockaddr *sa,
2401 struct ifmultiaddr **retifma)
2403 struct sockaddr *llsa, *dupsa;
2404 int error;
2405 struct ifmultiaddr *ifma;
2407 ASSERT_IFNET_SERIALIZED_ALL(ifp);
2410 * If the matching multicast address already exists
2411 * then don't add a new one, just add a reference
2413 TAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) {
2414 if (sa_equal(sa, ifma->ifma_addr)) {
2415 ifma->ifma_refcount++;
2416 if (retifma)
2417 *retifma = ifma;
2418 return 0;
2423 * Give the link layer a chance to accept/reject it, and also
2424 * find out which AF_LINK address this maps to, if it isn't one
2425 * already.
2427 if (ifp->if_resolvemulti) {
2428 error = ifp->if_resolvemulti(ifp, &llsa, sa);
2429 if (error)
2430 return error;
2431 } else {
2432 llsa = NULL;
2435 ifma = kmalloc(sizeof *ifma, M_IFMADDR, M_INTWAIT);
2436 dupsa = kmalloc(sa->sa_len, M_IFMADDR, M_INTWAIT);
2437 bcopy(sa, dupsa, sa->sa_len);
2439 ifma->ifma_addr = dupsa;
2440 ifma->ifma_lladdr = llsa;
2441 ifma->ifma_ifp = ifp;
2442 ifma->ifma_refcount = 1;
2443 ifma->ifma_protospec = NULL;
2444 rt_newmaddrmsg(RTM_NEWMADDR, ifma);
2446 TAILQ_INSERT_HEAD(&ifp->if_multiaddrs, ifma, ifma_link);
2447 if (retifma)
2448 *retifma = ifma;
2450 if (llsa != NULL) {
2451 TAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) {
2452 if (sa_equal(ifma->ifma_addr, llsa))
2453 break;
2455 if (ifma) {
2456 ifma->ifma_refcount++;
2457 } else {
2458 ifma = kmalloc(sizeof *ifma, M_IFMADDR, M_INTWAIT);
2459 dupsa = kmalloc(llsa->sa_len, M_IFMADDR, M_INTWAIT);
2460 bcopy(llsa, dupsa, llsa->sa_len);
2461 ifma->ifma_addr = dupsa;
2462 ifma->ifma_ifp = ifp;
2463 ifma->ifma_refcount = 1;
2464 TAILQ_INSERT_HEAD(&ifp->if_multiaddrs, ifma, ifma_link);
2468 * We are certain we have added something, so call down to the
2469 * interface to let them know about it.
2471 if (ifp->if_ioctl)
2472 ifp->if_ioctl(ifp, SIOCADDMULTI, 0, NULL);
2474 return 0;
2478 if_addmulti(struct ifnet *ifp, struct sockaddr *sa,
2479 struct ifmultiaddr **retifma)
2481 int error;
2483 ifnet_serialize_all(ifp);
2484 error = if_addmulti_serialized(ifp, sa, retifma);
2485 ifnet_deserialize_all(ifp);
2487 return error;
2491 * Remove a reference to a multicast address on this interface. Yell
2492 * if the request does not match an existing membership.
2494 static int
2495 if_delmulti_serialized(struct ifnet *ifp, struct sockaddr *sa)
2497 struct ifmultiaddr *ifma;
2499 ASSERT_IFNET_SERIALIZED_ALL(ifp);
2501 TAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link)
2502 if (sa_equal(sa, ifma->ifma_addr))
2503 break;
2504 if (ifma == NULL)
2505 return ENOENT;
2507 if (ifma->ifma_refcount > 1) {
2508 ifma->ifma_refcount--;
2509 return 0;
2512 rt_newmaddrmsg(RTM_DELMADDR, ifma);
2513 sa = ifma->ifma_lladdr;
2514 TAILQ_REMOVE(&ifp->if_multiaddrs, ifma, ifma_link);
2516 * Make sure the interface driver is notified
2517 * in the case of a link layer mcast group being left.
2519 if (ifma->ifma_addr->sa_family == AF_LINK && sa == NULL)
2520 ifp->if_ioctl(ifp, SIOCDELMULTI, 0, NULL);
2521 kfree(ifma->ifma_addr, M_IFMADDR);
2522 kfree(ifma, M_IFMADDR);
2523 if (sa == NULL)
2524 return 0;
2527 * Now look for the link-layer address which corresponds to
2528 * this network address. It had been squirreled away in
2529 * ifma->ifma_lladdr for this purpose (so we don't have
2530 * to call ifp->if_resolvemulti() again), and we saved that
2531 * value in sa above. If some nasty deleted the
2532 * link-layer address out from underneath us, we can deal because
2533 * the address we stored was is not the same as the one which was
2534 * in the record for the link-layer address. (So we don't complain
2535 * in that case.)
2537 TAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link)
2538 if (sa_equal(sa, ifma->ifma_addr))
2539 break;
2540 if (ifma == NULL)
2541 return 0;
2543 if (ifma->ifma_refcount > 1) {
2544 ifma->ifma_refcount--;
2545 return 0;
2548 TAILQ_REMOVE(&ifp->if_multiaddrs, ifma, ifma_link);
2549 ifp->if_ioctl(ifp, SIOCDELMULTI, 0, NULL);
2550 kfree(ifma->ifma_addr, M_IFMADDR);
2551 kfree(sa, M_IFMADDR);
2552 kfree(ifma, M_IFMADDR);
2554 return 0;
2558 if_delmulti(struct ifnet *ifp, struct sockaddr *sa)
2560 int error;
2562 ifnet_serialize_all(ifp);
2563 error = if_delmulti_serialized(ifp, sa);
2564 ifnet_deserialize_all(ifp);
2566 return error;
2570 * Delete all multicast group membership for an interface.
2571 * Should be used to quickly flush all multicast filters.
2573 void
2574 if_delallmulti_serialized(struct ifnet *ifp)
2576 struct ifmultiaddr *ifma, mark;
2577 struct sockaddr sa;
2579 ASSERT_IFNET_SERIALIZED_ALL(ifp);
2581 bzero(&sa, sizeof(sa));
2582 sa.sa_family = AF_UNSPEC;
2583 sa.sa_len = sizeof(sa);
2585 bzero(&mark, sizeof(mark));
2586 mark.ifma_addr = &sa;
2588 TAILQ_INSERT_HEAD(&ifp->if_multiaddrs, &mark, ifma_link);
2589 while ((ifma = TAILQ_NEXT(&mark, ifma_link)) != NULL) {
2590 TAILQ_REMOVE(&ifp->if_multiaddrs, &mark, ifma_link);
2591 TAILQ_INSERT_AFTER(&ifp->if_multiaddrs, ifma, &mark,
2592 ifma_link);
2594 if (ifma->ifma_addr->sa_family == AF_UNSPEC)
2595 continue;
2597 if_delmulti_serialized(ifp, ifma->ifma_addr);
2599 TAILQ_REMOVE(&ifp->if_multiaddrs, &mark, ifma_link);
2604 * Set the link layer address on an interface.
2606 * At this time we only support certain types of interfaces,
2607 * and we don't allow the length of the address to change.
2610 if_setlladdr(struct ifnet *ifp, const u_char *lladdr, int len)
2612 struct sockaddr_dl *sdl;
2613 struct ifreq ifr;
2615 sdl = IF_LLSOCKADDR(ifp);
2616 if (sdl == NULL)
2617 return (EINVAL);
2618 if (len != sdl->sdl_alen) /* don't allow length to change */
2619 return (EINVAL);
2620 switch (ifp->if_type) {
2621 case IFT_ETHER: /* these types use struct arpcom */
2622 case IFT_XETHER:
2623 case IFT_L2VLAN:
2624 case IFT_IEEE8023ADLAG:
2625 bcopy(lladdr, ((struct arpcom *)ifp->if_softc)->ac_enaddr, len);
2626 bcopy(lladdr, LLADDR(sdl), len);
2627 break;
2628 default:
2629 return (ENODEV);
2632 * If the interface is already up, we need
2633 * to re-init it in order to reprogram its
2634 * address filter.
2636 ifnet_serialize_all(ifp);
2637 if ((ifp->if_flags & IFF_UP) != 0) {
2638 #ifdef INET
2639 struct ifaddr_container *ifac;
2640 #endif
2642 ifp->if_flags &= ~IFF_UP;
2643 ifr.ifr_flags = ifp->if_flags;
2644 ifr.ifr_flagshigh = ifp->if_flags >> 16;
2645 ifp->if_ioctl(ifp, SIOCSIFFLAGS, (caddr_t)&ifr,
2646 NULL);
2647 ifp->if_flags |= IFF_UP;
2648 ifr.ifr_flags = ifp->if_flags;
2649 ifr.ifr_flagshigh = ifp->if_flags >> 16;
2650 ifp->if_ioctl(ifp, SIOCSIFFLAGS, (caddr_t)&ifr,
2651 NULL);
2652 #ifdef INET
2654 * Also send gratuitous ARPs to notify other nodes about
2655 * the address change.
2657 TAILQ_FOREACH(ifac, &ifp->if_addrheads[mycpuid], ifa_link) {
2658 struct ifaddr *ifa = ifac->ifa;
2660 if (ifa->ifa_addr != NULL &&
2661 ifa->ifa_addr->sa_family == AF_INET)
2662 arp_gratuitous(ifp, ifa);
2664 #endif
2666 ifnet_deserialize_all(ifp);
2667 return (0);
2670 struct ifmultiaddr *
2671 ifmaof_ifpforaddr(struct sockaddr *sa, struct ifnet *ifp)
2673 struct ifmultiaddr *ifma;
2675 /* TODO: need ifnet_serialize_main */
2676 ifnet_serialize_all(ifp);
2677 TAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link)
2678 if (sa_equal(ifma->ifma_addr, sa))
2679 break;
2680 ifnet_deserialize_all(ifp);
2682 return ifma;
2686 * This function locates the first real ethernet MAC from a network
2687 * card and loads it into node, returning 0 on success or ENOENT if
2688 * no suitable interfaces were found. It is used by the uuid code to
2689 * generate a unique 6-byte number.
2692 if_getanyethermac(uint16_t *node, int minlen)
2694 struct ifnet *ifp;
2695 struct sockaddr_dl *sdl;
2697 ifnet_lock();
2698 TAILQ_FOREACH(ifp, &ifnetlist, if_link) {
2699 if (ifp->if_type != IFT_ETHER)
2700 continue;
2701 sdl = IF_LLSOCKADDR(ifp);
2702 if (sdl->sdl_alen < minlen)
2703 continue;
2704 bcopy(((struct arpcom *)ifp->if_softc)->ac_enaddr, node,
2705 minlen);
2706 ifnet_unlock();
2707 return(0);
2709 ifnet_unlock();
2710 return (ENOENT);
2714 * The name argument must be a pointer to storage which will last as
2715 * long as the interface does. For physical devices, the result of
2716 * device_get_name(dev) is a good choice and for pseudo-devices a
2717 * static string works well.
2719 void
2720 if_initname(struct ifnet *ifp, const char *name, int unit)
2722 ifp->if_dname = name;
2723 ifp->if_dunit = unit;
2724 if (unit != IF_DUNIT_NONE)
2725 ksnprintf(ifp->if_xname, IFNAMSIZ, "%s%d", name, unit);
2726 else
2727 strlcpy(ifp->if_xname, name, IFNAMSIZ);
2731 if_printf(struct ifnet *ifp, const char *fmt, ...)
2733 __va_list ap;
2734 int retval;
2736 retval = kprintf("%s: ", ifp->if_xname);
2737 __va_start(ap, fmt);
2738 retval += kvprintf(fmt, ap);
2739 __va_end(ap);
2740 return (retval);
2743 struct ifnet *
2744 if_alloc(uint8_t type)
2746 struct ifnet *ifp;
2747 size_t size;
2750 * XXX temporary hack until arpcom is setup in if_l2com
2752 if (type == IFT_ETHER)
2753 size = sizeof(struct arpcom);
2754 else
2755 size = sizeof(struct ifnet);
2757 ifp = kmalloc(size, M_IFNET, M_WAITOK|M_ZERO);
2759 ifp->if_type = type;
2761 if (if_com_alloc[type] != NULL) {
2762 ifp->if_l2com = if_com_alloc[type](type, ifp);
2763 if (ifp->if_l2com == NULL) {
2764 kfree(ifp, M_IFNET);
2765 return (NULL);
2768 return (ifp);
2771 void
2772 if_free(struct ifnet *ifp)
2774 kfree(ifp, M_IFNET);
2777 void
2778 ifq_set_classic(struct ifaltq *ifq)
2780 ifq_set_methods(ifq, ifq->altq_ifp->if_mapsubq,
2781 ifsq_classic_enqueue, ifsq_classic_dequeue, ifsq_classic_request);
2784 void
2785 ifq_set_methods(struct ifaltq *ifq, altq_mapsubq_t mapsubq,
2786 ifsq_enqueue_t enqueue, ifsq_dequeue_t dequeue, ifsq_request_t request)
2788 int q;
2790 KASSERT(mapsubq != NULL, ("mapsubq is not specified"));
2791 KASSERT(enqueue != NULL, ("enqueue is not specified"));
2792 KASSERT(dequeue != NULL, ("dequeue is not specified"));
2793 KASSERT(request != NULL, ("request is not specified"));
2795 ifq->altq_mapsubq = mapsubq;
2796 for (q = 0; q < ifq->altq_subq_cnt; ++q) {
2797 struct ifaltq_subque *ifsq = &ifq->altq_subq[q];
2799 ifsq->ifsq_enqueue = enqueue;
2800 ifsq->ifsq_dequeue = dequeue;
2801 ifsq->ifsq_request = request;
2805 static void
2806 ifsq_norm_enqueue(struct ifaltq_subque *ifsq, struct mbuf *m)
2809 classq_add(&ifsq->ifsq_norm, m);
2810 ALTQ_SQ_CNTR_INC(ifsq, m->m_pkthdr.len);
2813 static void
2814 ifsq_prio_enqueue(struct ifaltq_subque *ifsq, struct mbuf *m)
2817 classq_add(&ifsq->ifsq_prio, m);
2818 ALTQ_SQ_CNTR_INC(ifsq, m->m_pkthdr.len);
2819 ALTQ_SQ_PRIO_CNTR_INC(ifsq, m->m_pkthdr.len);
2822 static struct mbuf *
2823 ifsq_norm_dequeue(struct ifaltq_subque *ifsq)
2825 struct mbuf *m;
2827 m = classq_get(&ifsq->ifsq_norm);
2828 if (m != NULL)
2829 ALTQ_SQ_CNTR_DEC(ifsq, m->m_pkthdr.len);
2830 return (m);
2833 static struct mbuf *
2834 ifsq_prio_dequeue(struct ifaltq_subque *ifsq)
2836 struct mbuf *m;
2838 m = classq_get(&ifsq->ifsq_prio);
2839 if (m != NULL) {
2840 ALTQ_SQ_CNTR_DEC(ifsq, m->m_pkthdr.len);
2841 ALTQ_SQ_PRIO_CNTR_DEC(ifsq, m->m_pkthdr.len);
2843 return (m);
2847 ifsq_classic_enqueue(struct ifaltq_subque *ifsq, struct mbuf *m,
2848 struct altq_pktattr *pa __unused)
2851 M_ASSERTPKTHDR(m);
2852 again:
2853 if (ifsq->ifsq_len >= ifsq->ifsq_maxlen ||
2854 ifsq->ifsq_bcnt >= ifsq->ifsq_maxbcnt) {
2855 struct mbuf *m_drop;
2857 if (m->m_flags & M_PRIO) {
2858 m_drop = NULL;
2859 if (ifsq->ifsq_prio_len < (ifsq->ifsq_maxlen >> 1) &&
2860 ifsq->ifsq_prio_bcnt < (ifsq->ifsq_maxbcnt >> 1)) {
2861 /* Try dropping some from normal queue. */
2862 m_drop = ifsq_norm_dequeue(ifsq);
2864 if (m_drop == NULL)
2865 m_drop = ifsq_prio_dequeue(ifsq);
2866 } else {
2867 m_drop = ifsq_norm_dequeue(ifsq);
2869 if (m_drop != NULL) {
2870 IFNET_STAT_INC(ifsq->ifsq_ifp, oqdrops, 1);
2871 m_freem(m_drop);
2872 goto again;
2875 * No old packets could be dropped!
2876 * NOTE: Caller increases oqdrops.
2878 m_freem(m);
2879 return (ENOBUFS);
2880 } else {
2881 if (m->m_flags & M_PRIO)
2882 ifsq_prio_enqueue(ifsq, m);
2883 else
2884 ifsq_norm_enqueue(ifsq, m);
2885 return (0);
2889 struct mbuf *
2890 ifsq_classic_dequeue(struct ifaltq_subque *ifsq, int op)
2892 struct mbuf *m;
2894 switch (op) {
2895 case ALTDQ_POLL:
2896 m = classq_head(&ifsq->ifsq_prio);
2897 if (m == NULL)
2898 m = classq_head(&ifsq->ifsq_norm);
2899 break;
2901 case ALTDQ_REMOVE:
2902 m = ifsq_prio_dequeue(ifsq);
2903 if (m == NULL)
2904 m = ifsq_norm_dequeue(ifsq);
2905 break;
2907 default:
2908 panic("unsupported ALTQ dequeue op: %d", op);
2910 return m;
2914 ifsq_classic_request(struct ifaltq_subque *ifsq, int req, void *arg)
2916 switch (req) {
2917 case ALTRQ_PURGE:
2918 for (;;) {
2919 struct mbuf *m;
2921 m = ifsq_classic_dequeue(ifsq, ALTDQ_REMOVE);
2922 if (m == NULL)
2923 break;
2924 m_freem(m);
2926 break;
2928 default:
2929 panic("unsupported ALTQ request: %d", req);
2931 return 0;
2934 static void
2935 ifsq_ifstart_try(struct ifaltq_subque *ifsq, int force_sched)
2937 struct ifnet *ifp = ifsq_get_ifp(ifsq);
2938 int running = 0, need_sched;
2941 * Try to do direct ifnet.if_start on the subqueue first, if there is
2942 * contention on the subqueue hardware serializer, ifnet.if_start on
2943 * the subqueue will be scheduled on the subqueue owner CPU.
2945 if (!ifsq_tryserialize_hw(ifsq)) {
2947 * Subqueue hardware serializer contention happened,
2948 * ifnet.if_start on the subqueue is scheduled on
2949 * the subqueue owner CPU, and we keep going.
2951 ifsq_ifstart_schedule(ifsq, 1);
2952 return;
2955 if ((ifp->if_flags & IFF_RUNNING) && !ifsq_is_oactive(ifsq)) {
2956 ifp->if_start(ifp, ifsq);
2957 if ((ifp->if_flags & IFF_RUNNING) && !ifsq_is_oactive(ifsq))
2958 running = 1;
2960 need_sched = ifsq_ifstart_need_schedule(ifsq, running);
2962 ifsq_deserialize_hw(ifsq);
2964 if (need_sched) {
2966 * More data need to be transmitted, ifnet.if_start on the
2967 * subqueue is scheduled on the subqueue owner CPU, and we
2968 * keep going.
2969 * NOTE: ifnet.if_start subqueue interlock is not released.
2971 ifsq_ifstart_schedule(ifsq, force_sched);
2976 * Subqeue packets staging mechanism:
2978 * The packets enqueued into the subqueue are staged to a certain amount
2979 * before the ifnet.if_start on the subqueue is called. In this way, the
2980 * driver could avoid writing to hardware registers upon every packet,
2981 * instead, hardware registers could be written when certain amount of
2982 * packets are put onto hardware TX ring. The measurement on several modern
2983 * NICs (emx(4), igb(4), bnx(4), bge(4), jme(4)) shows that the hardware
2984 * registers writing aggregation could save ~20% CPU time when 18bytes UDP
2985 * datagrams are transmitted at 1.48Mpps. The performance improvement by
2986 * hardware registers writing aggeregation is also mentioned by Luigi Rizzo's
2987 * netmap paper (http://info.iet.unipi.it/~luigi/netmap/).
2989 * Subqueue packets staging is performed for two entry points into drivers'
2990 * transmission function:
2991 * - Direct ifnet.if_start calling on the subqueue, i.e. ifsq_ifstart_try()
2992 * - ifnet.if_start scheduling on the subqueue, i.e. ifsq_ifstart_schedule()
2994 * Subqueue packets staging will be stopped upon any of the following
2995 * conditions:
2996 * - If the count of packets enqueued on the current CPU is great than or
2997 * equal to ifsq_stage_cntmax. (XXX this should be per-interface)
2998 * - If the total length of packets enqueued on the current CPU is great
2999 * than or equal to the hardware's MTU - max_protohdr. max_protohdr is
3000 * cut from the hardware's MTU mainly bacause a full TCP segment's size
3001 * is usually less than hardware's MTU.
3002 * - ifsq_ifstart_schedule() is not pending on the current CPU and
3003 * ifnet.if_start subqueue interlock (ifaltq_subq.ifsq_started) is not
3004 * released.
3005 * - The if_start_rollup(), which is registered as low priority netisr
3006 * rollup function, is called; probably because no more work is pending
3007 * for netisr.
3009 * NOTE:
3010 * Currently subqueue packet staging is only performed in netisr threads.
3013 ifq_dispatch(struct ifnet *ifp, struct mbuf *m, struct altq_pktattr *pa)
3015 struct ifaltq *ifq = &ifp->if_snd;
3016 struct ifaltq_subque *ifsq;
3017 int error, start = 0, len, mcast = 0, avoid_start = 0;
3018 struct ifsubq_stage_head *head = NULL;
3019 struct ifsubq_stage *stage = NULL;
3020 struct globaldata *gd = mycpu;
3021 struct thread *td = gd->gd_curthread;
3023 crit_enter_quick(td);
3025 ifsq = ifq_map_subq(ifq, gd->gd_cpuid);
3026 ASSERT_ALTQ_SQ_NOT_SERIALIZED_HW(ifsq);
3028 len = m->m_pkthdr.len;
3029 if (m->m_flags & M_MCAST)
3030 mcast = 1;
3032 if (td->td_type == TD_TYPE_NETISR) {
3033 head = &ifsubq_stage_heads[mycpuid];
3034 stage = ifsq_get_stage(ifsq, mycpuid);
3036 stage->stg_cnt++;
3037 stage->stg_len += len;
3038 if (stage->stg_cnt < ifsq_stage_cntmax &&
3039 stage->stg_len < (ifp->if_mtu - max_protohdr))
3040 avoid_start = 1;
3043 ALTQ_SQ_LOCK(ifsq);
3044 error = ifsq_enqueue_locked(ifsq, m, pa);
3045 if (error) {
3046 IFNET_STAT_INC(ifp, oqdrops, 1);
3047 if (!ifsq_data_ready(ifsq)) {
3048 ALTQ_SQ_UNLOCK(ifsq);
3049 crit_exit_quick(td);
3050 return error;
3052 avoid_start = 0;
3054 if (!ifsq_is_started(ifsq)) {
3055 if (avoid_start) {
3056 ALTQ_SQ_UNLOCK(ifsq);
3058 KKASSERT(!error);
3059 if ((stage->stg_flags & IFSQ_STAGE_FLAG_QUED) == 0)
3060 ifsq_stage_insert(head, stage);
3062 IFNET_STAT_INC(ifp, obytes, len);
3063 if (mcast)
3064 IFNET_STAT_INC(ifp, omcasts, 1);
3065 crit_exit_quick(td);
3066 return error;
3070 * Hold the subqueue interlock of ifnet.if_start
3072 ifsq_set_started(ifsq);
3073 start = 1;
3075 ALTQ_SQ_UNLOCK(ifsq);
3077 if (!error) {
3078 IFNET_STAT_INC(ifp, obytes, len);
3079 if (mcast)
3080 IFNET_STAT_INC(ifp, omcasts, 1);
3083 if (stage != NULL) {
3084 if (!start && (stage->stg_flags & IFSQ_STAGE_FLAG_SCHED)) {
3085 KKASSERT(stage->stg_flags & IFSQ_STAGE_FLAG_QUED);
3086 if (!avoid_start) {
3087 ifsq_stage_remove(head, stage);
3088 ifsq_ifstart_schedule(ifsq, 1);
3090 crit_exit_quick(td);
3091 return error;
3094 if (stage->stg_flags & IFSQ_STAGE_FLAG_QUED) {
3095 ifsq_stage_remove(head, stage);
3096 } else {
3097 stage->stg_cnt = 0;
3098 stage->stg_len = 0;
3102 if (!start) {
3103 crit_exit_quick(td);
3104 return error;
3107 ifsq_ifstart_try(ifsq, 0);
3109 crit_exit_quick(td);
3110 return error;
3113 void *
3114 ifa_create(int size)
3116 struct ifaddr *ifa;
3117 int i;
3119 KASSERT(size >= sizeof(*ifa), ("ifaddr size too small"));
3121 ifa = kmalloc(size, M_IFADDR, M_INTWAIT | M_ZERO);
3124 * Make ifa_container availabel on all CPUs, since they
3125 * could be accessed by any threads.
3127 ifa->ifa_containers =
3128 kmalloc_cachealign(ncpus * sizeof(struct ifaddr_container),
3129 M_IFADDR, M_INTWAIT | M_ZERO);
3131 ifa->ifa_ncnt = ncpus;
3132 for (i = 0; i < ncpus; ++i) {
3133 struct ifaddr_container *ifac = &ifa->ifa_containers[i];
3135 ifac->ifa_magic = IFA_CONTAINER_MAGIC;
3136 ifac->ifa = ifa;
3137 ifac->ifa_refcnt = 1;
3139 #ifdef IFADDR_DEBUG
3140 kprintf("alloc ifa %p %d\n", ifa, size);
3141 #endif
3142 return ifa;
3145 void
3146 ifac_free(struct ifaddr_container *ifac, int cpu_id)
3148 struct ifaddr *ifa = ifac->ifa;
3150 KKASSERT(ifac->ifa_magic == IFA_CONTAINER_MAGIC);
3151 KKASSERT(ifac->ifa_refcnt == 0);
3152 KASSERT(ifac->ifa_listmask == 0,
3153 ("ifa is still on %#x lists", ifac->ifa_listmask));
3155 ifac->ifa_magic = IFA_CONTAINER_DEAD;
3157 #ifdef IFADDR_DEBUG_VERBOSE
3158 kprintf("try free ifa %p cpu_id %d\n", ifac->ifa, cpu_id);
3159 #endif
3161 KASSERT(ifa->ifa_ncnt > 0 && ifa->ifa_ncnt <= ncpus,
3162 ("invalid # of ifac, %d", ifa->ifa_ncnt));
3163 if (atomic_fetchadd_int(&ifa->ifa_ncnt, -1) == 1) {
3164 #ifdef IFADDR_DEBUG
3165 kprintf("free ifa %p\n", ifa);
3166 #endif
3167 kfree(ifa->ifa_containers, M_IFADDR);
3168 kfree(ifa, M_IFADDR);
3172 static void
3173 ifa_iflink_dispatch(netmsg_t nmsg)
3175 struct netmsg_ifaddr *msg = (struct netmsg_ifaddr *)nmsg;
3176 struct ifaddr *ifa = msg->ifa;
3177 struct ifnet *ifp = msg->ifp;
3178 int cpu = mycpuid;
3179 struct ifaddr_container *ifac;
3181 crit_enter();
3183 ifac = &ifa->ifa_containers[cpu];
3184 ASSERT_IFAC_VALID(ifac);
3185 KASSERT((ifac->ifa_listmask & IFA_LIST_IFADDRHEAD) == 0,
3186 ("ifaddr is on if_addrheads"));
3188 ifac->ifa_listmask |= IFA_LIST_IFADDRHEAD;
3189 if (msg->tail)
3190 TAILQ_INSERT_TAIL(&ifp->if_addrheads[cpu], ifac, ifa_link);
3191 else
3192 TAILQ_INSERT_HEAD(&ifp->if_addrheads[cpu], ifac, ifa_link);
3194 crit_exit();
3196 netisr_forwardmsg_all(&nmsg->base, cpu + 1);
3199 void
3200 ifa_iflink(struct ifaddr *ifa, struct ifnet *ifp, int tail)
3202 struct netmsg_ifaddr msg;
3204 netmsg_init(&msg.base, NULL, &curthread->td_msgport,
3205 0, ifa_iflink_dispatch);
3206 msg.ifa = ifa;
3207 msg.ifp = ifp;
3208 msg.tail = tail;
3210 netisr_domsg(&msg.base, 0);
3213 static void
3214 ifa_ifunlink_dispatch(netmsg_t nmsg)
3216 struct netmsg_ifaddr *msg = (struct netmsg_ifaddr *)nmsg;
3217 struct ifaddr *ifa = msg->ifa;
3218 struct ifnet *ifp = msg->ifp;
3219 int cpu = mycpuid;
3220 struct ifaddr_container *ifac;
3222 crit_enter();
3224 ifac = &ifa->ifa_containers[cpu];
3225 ASSERT_IFAC_VALID(ifac);
3226 KASSERT(ifac->ifa_listmask & IFA_LIST_IFADDRHEAD,
3227 ("ifaddr is not on if_addrhead"));
3229 TAILQ_REMOVE(&ifp->if_addrheads[cpu], ifac, ifa_link);
3230 ifac->ifa_listmask &= ~IFA_LIST_IFADDRHEAD;
3232 crit_exit();
3234 netisr_forwardmsg_all(&nmsg->base, cpu + 1);
3237 void
3238 ifa_ifunlink(struct ifaddr *ifa, struct ifnet *ifp)
3240 struct netmsg_ifaddr msg;
3242 netmsg_init(&msg.base, NULL, &curthread->td_msgport,
3243 0, ifa_ifunlink_dispatch);
3244 msg.ifa = ifa;
3245 msg.ifp = ifp;
3247 netisr_domsg(&msg.base, 0);
3250 static void
3251 ifa_destroy_dispatch(netmsg_t nmsg)
3253 struct netmsg_ifaddr *msg = (struct netmsg_ifaddr *)nmsg;
3255 IFAFREE(msg->ifa);
3256 netisr_forwardmsg_all(&nmsg->base, mycpuid + 1);
3259 void
3260 ifa_destroy(struct ifaddr *ifa)
3262 struct netmsg_ifaddr msg;
3264 netmsg_init(&msg.base, NULL, &curthread->td_msgport,
3265 0, ifa_destroy_dispatch);
3266 msg.ifa = ifa;
3268 netisr_domsg(&msg.base, 0);
3271 static void
3272 if_start_rollup(void)
3274 struct ifsubq_stage_head *head = &ifsubq_stage_heads[mycpuid];
3275 struct ifsubq_stage *stage;
3277 crit_enter();
3279 while ((stage = TAILQ_FIRST(&head->stg_head)) != NULL) {
3280 struct ifaltq_subque *ifsq = stage->stg_subq;
3281 int is_sched = 0;
3283 if (stage->stg_flags & IFSQ_STAGE_FLAG_SCHED)
3284 is_sched = 1;
3285 ifsq_stage_remove(head, stage);
3287 if (is_sched) {
3288 ifsq_ifstart_schedule(ifsq, 1);
3289 } else {
3290 int start = 0;
3292 ALTQ_SQ_LOCK(ifsq);
3293 if (!ifsq_is_started(ifsq)) {
3295 * Hold the subqueue interlock of
3296 * ifnet.if_start
3298 ifsq_set_started(ifsq);
3299 start = 1;
3301 ALTQ_SQ_UNLOCK(ifsq);
3303 if (start)
3304 ifsq_ifstart_try(ifsq, 1);
3306 KKASSERT((stage->stg_flags &
3307 (IFSQ_STAGE_FLAG_QUED | IFSQ_STAGE_FLAG_SCHED)) == 0);
3310 crit_exit();
3313 static void
3314 ifnetinit(void *dummy __unused)
3316 int i;
3318 /* XXX netisr_ncpus */
3319 for (i = 0; i < ncpus; ++i)
3320 TAILQ_INIT(&ifsubq_stage_heads[i].stg_head);
3321 netisr_register_rollup(if_start_rollup, NETISR_ROLLUP_PRIO_IFSTART);
3324 void
3325 if_register_com_alloc(u_char type,
3326 if_com_alloc_t *a, if_com_free_t *f)
3329 KASSERT(if_com_alloc[type] == NULL,
3330 ("if_register_com_alloc: %d already registered", type));
3331 KASSERT(if_com_free[type] == NULL,
3332 ("if_register_com_alloc: %d free already registered", type));
3334 if_com_alloc[type] = a;
3335 if_com_free[type] = f;
3338 void
3339 if_deregister_com_alloc(u_char type)
3342 KASSERT(if_com_alloc[type] != NULL,
3343 ("if_deregister_com_alloc: %d not registered", type));
3344 KASSERT(if_com_free[type] != NULL,
3345 ("if_deregister_com_alloc: %d free not registered", type));
3346 if_com_alloc[type] = NULL;
3347 if_com_free[type] = NULL;
3350 void
3351 ifq_set_maxlen(struct ifaltq *ifq, int len)
3353 ifq->altq_maxlen = len + (ncpus * ifsq_stage_cntmax);
3357 ifq_mapsubq_default(struct ifaltq *ifq __unused, int cpuid __unused)
3359 return ALTQ_SUBQ_INDEX_DEFAULT;
3363 ifq_mapsubq_modulo(struct ifaltq *ifq, int cpuid)
3366 return (cpuid % ifq->altq_subq_mappriv);
3369 static void
3370 ifsq_watchdog(void *arg)
3372 struct ifsubq_watchdog *wd = arg;
3373 struct ifnet *ifp;
3375 if (__predict_true(wd->wd_timer == 0 || --wd->wd_timer))
3376 goto done;
3378 ifp = ifsq_get_ifp(wd->wd_subq);
3379 if (ifnet_tryserialize_all(ifp)) {
3380 wd->wd_watchdog(wd->wd_subq);
3381 ifnet_deserialize_all(ifp);
3382 } else {
3383 /* try again next timeout */
3384 wd->wd_timer = 1;
3386 done:
3387 ifsq_watchdog_reset(wd);
3390 static void
3391 ifsq_watchdog_reset(struct ifsubq_watchdog *wd)
3393 callout_reset_bycpu(&wd->wd_callout, hz, ifsq_watchdog, wd,
3394 ifsq_get_cpuid(wd->wd_subq));
3397 void
3398 ifsq_watchdog_init(struct ifsubq_watchdog *wd, struct ifaltq_subque *ifsq,
3399 ifsq_watchdog_t watchdog)
3401 callout_init_mp(&wd->wd_callout);
3402 wd->wd_timer = 0;
3403 wd->wd_subq = ifsq;
3404 wd->wd_watchdog = watchdog;
3407 void
3408 ifsq_watchdog_start(struct ifsubq_watchdog *wd)
3410 wd->wd_timer = 0;
3411 ifsq_watchdog_reset(wd);
3414 void
3415 ifsq_watchdog_stop(struct ifsubq_watchdog *wd)
3417 wd->wd_timer = 0;
3418 callout_stop(&wd->wd_callout);
3421 void
3422 ifnet_lock(void)
3424 KASSERT(curthread->td_type != TD_TYPE_NETISR,
3425 ("try holding ifnet lock in netisr"));
3426 mtx_lock(&ifnet_mtx);
3429 void
3430 ifnet_unlock(void)
3432 KASSERT(curthread->td_type != TD_TYPE_NETISR,
3433 ("try holding ifnet lock in netisr"));
3434 mtx_unlock(&ifnet_mtx);
3437 static struct ifnet_array *
3438 ifnet_array_alloc(int count)
3440 struct ifnet_array *arr;
3442 arr = kmalloc(__offsetof(struct ifnet_array, ifnet_arr[count]),
3443 M_IFNET, M_WAITOK);
3444 arr->ifnet_count = count;
3446 return arr;
3449 static void
3450 ifnet_array_free(struct ifnet_array *arr)
3452 if (arr == &ifnet_array0)
3453 return;
3454 kfree(arr, M_IFNET);
3457 static struct ifnet_array *
3458 ifnet_array_add(struct ifnet *ifp, const struct ifnet_array *old_arr)
3460 struct ifnet_array *arr;
3461 int count, i;
3463 KASSERT(old_arr->ifnet_count >= 0,
3464 ("invalid ifnet array count %d", old_arr->ifnet_count));
3465 count = old_arr->ifnet_count + 1;
3466 arr = ifnet_array_alloc(count);
3469 * Save the old ifnet array and append this ifp to the end of
3470 * the new ifnet array.
3472 for (i = 0; i < old_arr->ifnet_count; ++i) {
3473 KASSERT(old_arr->ifnet_arr[i] != ifp,
3474 ("%s is already in ifnet array", ifp->if_xname));
3475 arr->ifnet_arr[i] = old_arr->ifnet_arr[i];
3477 KASSERT(i == count - 1,
3478 ("add %s, ifnet array index mismatch, should be %d, but got %d",
3479 ifp->if_xname, count - 1, i));
3480 arr->ifnet_arr[i] = ifp;
3482 return arr;
3485 static struct ifnet_array *
3486 ifnet_array_del(struct ifnet *ifp, const struct ifnet_array *old_arr)
3488 struct ifnet_array *arr;
3489 int count, i, idx, found = 0;
3491 KASSERT(old_arr->ifnet_count > 0,
3492 ("invalid ifnet array count %d", old_arr->ifnet_count));
3493 count = old_arr->ifnet_count - 1;
3494 arr = ifnet_array_alloc(count);
3497 * Save the old ifnet array, but skip this ifp.
3499 idx = 0;
3500 for (i = 0; i < old_arr->ifnet_count; ++i) {
3501 if (old_arr->ifnet_arr[i] == ifp) {
3502 KASSERT(!found,
3503 ("dup %s is in ifnet array", ifp->if_xname));
3504 found = 1;
3505 continue;
3507 KASSERT(idx < count,
3508 ("invalid ifnet array index %d, count %d", idx, count));
3509 arr->ifnet_arr[idx] = old_arr->ifnet_arr[i];
3510 ++idx;
3512 KASSERT(found, ("%s is not in ifnet array", ifp->if_xname));
3513 KASSERT(idx == count,
3514 ("del %s, ifnet array count mismatch, should be %d, but got %d ",
3515 ifp->if_xname, count, idx));
3517 return arr;
3520 const struct ifnet_array *
3521 ifnet_array_get(void)
3523 const struct ifnet_array *ret;
3525 KASSERT(curthread->td_type == TD_TYPE_NETISR, ("not in netisr"));
3526 ret = ifnet_array;
3527 /* Make sure 'ret' is really used. */
3528 cpu_ccfence();
3529 return (ret);
3533 ifnet_array_isempty(void)
3535 KASSERT(curthread->td_type == TD_TYPE_NETISR, ("not in netisr"));
3536 if (ifnet_array->ifnet_count == 0)
3537 return 1;
3538 else
3539 return 0;
3542 void
3543 ifa_marker_init(struct ifaddr_marker *mark, struct ifnet *ifp)
3545 struct ifaddr *ifa;
3547 memset(mark, 0, sizeof(*mark));
3548 ifa = &mark->ifa;
3550 mark->ifac.ifa = ifa;
3552 ifa->ifa_addr = &mark->addr;
3553 ifa->ifa_dstaddr = &mark->dstaddr;
3554 ifa->ifa_netmask = &mark->netmask;
3555 ifa->ifa_ifp = ifp;
3558 static int
3559 if_ringcnt_fixup(int ring_cnt, int ring_cntmax)
3562 KASSERT(ring_cntmax > 0, ("invalid ring count max %d", ring_cntmax));
3564 if (ring_cnt <= 0 || ring_cnt > ring_cntmax)
3565 ring_cnt = ring_cntmax;
3566 if (ring_cnt > netisr_ncpus)
3567 ring_cnt = netisr_ncpus;
3568 return (ring_cnt);
3571 static void
3572 if_ringmap_set_grid(device_t dev, struct if_ringmap *rm, int grid)
3574 int i, offset;
3576 KASSERT(grid > 0, ("invalid if_ringmap grid %d", grid));
3577 KASSERT(grid >= rm->rm_cnt, ("invalid if_ringmap grid %d, count %d",
3578 grid, rm->rm_cnt));
3579 rm->rm_grid = grid;
3581 offset = (rm->rm_grid * device_get_unit(dev)) % netisr_ncpus;
3582 for (i = 0; i < rm->rm_cnt; ++i) {
3583 rm->rm_cpumap[i] = offset + i;
3584 KASSERT(rm->rm_cpumap[i] < netisr_ncpus,
3585 ("invalid cpumap[%d] = %d, offset %d", i,
3586 rm->rm_cpumap[i], offset));
3590 static struct if_ringmap *
3591 if_ringmap_alloc_flags(device_t dev, int ring_cnt, int ring_cntmax,
3592 uint32_t flags)
3594 struct if_ringmap *rm;
3595 int i, grid = 0, prev_grid;
3597 ring_cnt = if_ringcnt_fixup(ring_cnt, ring_cntmax);
3598 rm = kmalloc(__offsetof(struct if_ringmap, rm_cpumap[ring_cnt]),
3599 M_DEVBUF, M_WAITOK | M_ZERO);
3601 rm->rm_cnt = ring_cnt;
3602 if (flags & RINGMAP_FLAG_POWEROF2)
3603 rm->rm_cnt = 1 << (fls(rm->rm_cnt) - 1);
3605 prev_grid = netisr_ncpus;
3606 for (i = 0; i < netisr_ncpus; ++i) {
3607 if (netisr_ncpus % (i + 1) != 0)
3608 continue;
3610 grid = netisr_ncpus / (i + 1);
3611 if (rm->rm_cnt > grid) {
3612 grid = prev_grid;
3613 break;
3616 if (rm->rm_cnt > netisr_ncpus / (i + 2))
3617 break;
3618 prev_grid = grid;
3620 if_ringmap_set_grid(dev, rm, grid);
3622 return (rm);
3625 struct if_ringmap *
3626 if_ringmap_alloc(device_t dev, int ring_cnt, int ring_cntmax)
3629 return (if_ringmap_alloc_flags(dev, ring_cnt, ring_cntmax,
3630 RINGMAP_FLAG_NONE));
3633 struct if_ringmap *
3634 if_ringmap_alloc2(device_t dev, int ring_cnt, int ring_cntmax)
3637 return (if_ringmap_alloc_flags(dev, ring_cnt, ring_cntmax,
3638 RINGMAP_FLAG_POWEROF2));
3641 void
3642 if_ringmap_free(struct if_ringmap *rm)
3645 kfree(rm, M_DEVBUF);
3649 * Align the two ringmaps.
3651 * e.g. 8 netisrs, rm0 contains 4 rings, rm1 contains 2 rings.
3653 * Before:
3655 * CPU 0 1 2 3 4 5 6 7
3656 * NIC_RX n0 n1 n2 n3
3657 * NIC_TX N0 N1
3659 * After:
3661 * CPU 0 1 2 3 4 5 6 7
3662 * NIC_RX n0 n1 n2 n3
3663 * NIC_TX N0 N1
3665 void
3666 if_ringmap_align(device_t dev, struct if_ringmap *rm0, struct if_ringmap *rm1)
3669 if (rm0->rm_grid > rm1->rm_grid)
3670 if_ringmap_set_grid(dev, rm1, rm0->rm_grid);
3671 else if (rm0->rm_grid < rm1->rm_grid)
3672 if_ringmap_set_grid(dev, rm0, rm1->rm_grid);
3675 void
3676 if_ringmap_match(device_t dev, struct if_ringmap *rm0, struct if_ringmap *rm1)
3678 int subset_grid, cnt, divisor, mod, offset, i;
3679 struct if_ringmap *subset_rm, *rm;
3680 int old_rm0_grid, old_rm1_grid;
3682 if (rm0->rm_grid == rm1->rm_grid)
3683 return;
3685 /* Save grid for later use */
3686 old_rm0_grid = rm0->rm_grid;
3687 old_rm1_grid = rm1->rm_grid;
3689 if_ringmap_align(dev, rm0, rm1);
3692 * Re-shuffle rings to get more even distribution.
3694 * e.g. 12 netisrs, rm0 contains 4 rings, rm1 contains 2 rings.
3696 * CPU 0 1 2 3 4 5 6 7 8 9 10 11
3698 * NIC_RX a0 a1 a2 a3 b0 b1 b2 b3 c0 c1 c2 c3
3699 * NIC_TX A0 A1 B0 B1 C0 C1
3701 * NIC_RX d0 d1 d2 d3 e0 e1 e2 e3 f0 f1 f2 f3
3702 * NIC_TX D0 D1 E0 E1 F0 F1
3705 if (rm0->rm_cnt >= (2 * old_rm1_grid)) {
3706 cnt = rm0->rm_cnt;
3707 subset_grid = old_rm1_grid;
3708 subset_rm = rm1;
3709 rm = rm0;
3710 } else if (rm1->rm_cnt > (2 * old_rm0_grid)) {
3711 cnt = rm1->rm_cnt;
3712 subset_grid = old_rm0_grid;
3713 subset_rm = rm0;
3714 rm = rm1;
3715 } else {
3716 /* No space to shuffle. */
3717 return;
3720 mod = cnt / subset_grid;
3721 KKASSERT(mod >= 2);
3722 divisor = netisr_ncpus / rm->rm_grid;
3723 offset = ((device_get_unit(dev) / divisor) % mod) * subset_grid;
3725 for (i = 0; i < subset_rm->rm_cnt; ++i) {
3726 subset_rm->rm_cpumap[i] += offset;
3727 KASSERT(subset_rm->rm_cpumap[i] < netisr_ncpus,
3728 ("match: invalid cpumap[%d] = %d, offset %d",
3729 i, subset_rm->rm_cpumap[i], offset));
3731 #ifdef INVARIANTS
3732 for (i = 0; i < subset_rm->rm_cnt; ++i) {
3733 int j;
3735 for (j = 0; j < rm->rm_cnt; ++j) {
3736 if (rm->rm_cpumap[j] == subset_rm->rm_cpumap[i])
3737 break;
3739 KASSERT(j < rm->rm_cnt,
3740 ("subset cpumap[%d] = %d not found in superset",
3741 i, subset_rm->rm_cpumap[i]));
3743 #endif
3747 if_ringmap_count(const struct if_ringmap *rm)
3750 return (rm->rm_cnt);
3754 if_ringmap_cpumap(const struct if_ringmap *rm, int ring)
3757 KASSERT(ring >= 0 && ring < rm->rm_cnt, ("invalid ring %d", ring));
3758 return (rm->rm_cpumap[ring]);
3761 void
3762 if_ringmap_rdrtable(const struct if_ringmap *rm, int table[], int table_nent)
3764 int i, grid_idx, grid_cnt, patch_off, patch_cnt, ncopy;
3766 KASSERT(table_nent > 0 && (table_nent & NETISR_CPUMASK) == 0,
3767 ("invalid redirect table entries %d", table_nent));
3769 grid_idx = 0;
3770 for (i = 0; i < NETISR_CPUMAX; ++i) {
3771 table[i] = grid_idx++ % rm->rm_cnt;
3773 if (grid_idx == rm->rm_grid)
3774 grid_idx = 0;
3778 * Make the ring distributed more evenly for the remainder
3779 * of each grid.
3781 * e.g. 12 netisrs, rm contains 8 rings.
3783 * Redirect table before:
3785 * 0 1 2 3 4 5 6 7 0 1 2 3 0 1 2 3
3786 * 4 5 6 7 0 1 2 3 0 1 2 3 4 5 6 7
3787 * 0 1 2 3 0 1 2 3 4 5 6 7 0 1 2 3
3788 * ....
3790 * Redirect table after being patched (pX, patched entries):
3792 * 0 1 2 3 4 5 6 7 p0 p1 p2 p3 0 1 2 3
3793 * 4 5 6 7 p4 p5 p6 p7 0 1 2 3 4 5 6 7
3794 * p0 p1 p2 p3 0 1 2 3 4 5 6 7 p4 p5 p6 p7
3795 * ....
3797 patch_cnt = rm->rm_grid % rm->rm_cnt;
3798 if (patch_cnt == 0)
3799 goto done;
3800 patch_off = rm->rm_grid - (rm->rm_grid % rm->rm_cnt);
3802 grid_cnt = roundup(NETISR_CPUMAX, rm->rm_grid) / rm->rm_grid;
3803 grid_idx = 0;
3804 for (i = 0; i < grid_cnt; ++i) {
3805 int j;
3807 for (j = 0; j < patch_cnt; ++j) {
3808 int fix_idx;
3810 fix_idx = (i * rm->rm_grid) + patch_off + j;
3811 if (fix_idx >= NETISR_CPUMAX)
3812 goto done;
3813 table[fix_idx] = grid_idx++ % rm->rm_cnt;
3816 done:
3818 * If the device supports larger redirect table, duplicate
3819 * the first NETISR_CPUMAX entries to the rest of the table,
3820 * so that it matches upper layer's expectation:
3821 * (hash & NETISR_CPUMASK) % netisr_ncpus
3823 ncopy = table_nent / NETISR_CPUMAX;
3824 for (i = 1; i < ncopy; ++i) {
3825 memcpy(&table[i * NETISR_CPUMAX], table,
3826 NETISR_CPUMAX * sizeof(table[0]));
3828 if (if_ringmap_dumprdr) {
3829 for (i = 0; i < table_nent; ++i) {
3830 if (i != 0 && i % 16 == 0)
3831 kprintf("\n");
3832 kprintf("%03d ", table[i]);
3834 kprintf("\n");
3839 if_ringmap_cpumap_sysctl(SYSCTL_HANDLER_ARGS)
3841 struct if_ringmap *rm = arg1;
3842 int i, error = 0;
3844 for (i = 0; i < rm->rm_cnt; ++i) {
3845 int cpu = rm->rm_cpumap[i];
3847 error = SYSCTL_OUT(req, &cpu, sizeof(cpu));
3848 if (error)
3849 break;
3851 return (error);