hammer2 - Misc cluster protocol work
[dragonfly.git] / sys / vfs / hammer2 / hammer2_vfsops.c
blob7b2cbb3f7c99573500c91a38d1b697ed996c2b19
1 /*
2 * Copyright (c) 2011-2015 The DragonFly Project. All rights reserved.
4 * This code is derived from software contributed to The DragonFly Project
5 * by Matthew Dillon <dillon@backplane.com>
6 * by Daniel Flores (GSOC 2013 - mentored by Matthew Dillon, compression)
8 * Redistribution and use in source and binary forms, with or without
9 * modification, are permitted provided that the following conditions
10 * are met:
12 * 1. Redistributions of source code must retain the above copyright
13 * notice, this list of conditions and the following disclaimer.
14 * 2. Redistributions in binary form must reproduce the above copyright
15 * notice, this list of conditions and the following disclaimer in
16 * the documentation and/or other materials provided with the
17 * distribution.
18 * 3. Neither the name of The DragonFly Project nor the names of its
19 * contributors may be used to endorse or promote products derived
20 * from this software without specific, prior written permission.
22 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
23 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
24 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
25 * FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
26 * COPYRIGHT HOLDERS OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
27 * INCIDENTAL, SPECIAL, EXEMPLARY OR CONSEQUENTIAL DAMAGES (INCLUDING,
28 * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
29 * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
30 * AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
31 * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT
32 * OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
33 * SUCH DAMAGE.
35 #include <sys/param.h>
36 #include <sys/systm.h>
37 #include <sys/kernel.h>
38 #include <sys/nlookup.h>
39 #include <sys/vnode.h>
40 #include <sys/mount.h>
41 #include <sys/fcntl.h>
42 #include <sys/buf.h>
43 #include <sys/uuid.h>
44 #include <sys/vfsops.h>
45 #include <sys/sysctl.h>
46 #include <sys/socket.h>
47 #include <sys/objcache.h>
49 #include <sys/proc.h>
50 #include <sys/namei.h>
51 #include <sys/mountctl.h>
52 #include <sys/dirent.h>
53 #include <sys/uio.h>
55 #include <sys/mutex.h>
56 #include <sys/mutex2.h>
58 #include "hammer2.h"
59 #include "hammer2_disk.h"
60 #include "hammer2_mount.h"
61 #include "hammer2_lz4.h"
63 #include "zlib/hammer2_zlib.h"
65 #define REPORT_REFS_ERRORS 1 /* XXX remove me */
67 MALLOC_DEFINE(M_OBJCACHE, "objcache", "Object Cache");
69 struct hammer2_sync_info {
70 hammer2_trans_t trans;
71 int error;
72 int waitfor;
75 TAILQ_HEAD(hammer2_mntlist, hammer2_mount);
76 TAILQ_HEAD(hammer2_pfslist, hammer2_pfsmount);
77 static struct hammer2_mntlist hammer2_mntlist;
78 static struct hammer2_pfslist hammer2_pfslist;
79 static struct lock hammer2_mntlk;
81 int hammer2_debug;
82 int hammer2_cluster_enable = 1;
83 int hammer2_hardlink_enable = 1;
84 int hammer2_flush_pipe = 100;
85 int hammer2_synchronous_flush = 1;
86 int hammer2_dio_count;
87 long hammer2_limit_dirty_chains;
88 long hammer2_iod_file_read;
89 long hammer2_iod_meta_read;
90 long hammer2_iod_indr_read;
91 long hammer2_iod_fmap_read;
92 long hammer2_iod_volu_read;
93 long hammer2_iod_file_write;
94 long hammer2_iod_meta_write;
95 long hammer2_iod_indr_write;
96 long hammer2_iod_fmap_write;
97 long hammer2_iod_volu_write;
98 long hammer2_ioa_file_read;
99 long hammer2_ioa_meta_read;
100 long hammer2_ioa_indr_read;
101 long hammer2_ioa_fmap_read;
102 long hammer2_ioa_volu_read;
103 long hammer2_ioa_fmap_write;
104 long hammer2_ioa_file_write;
105 long hammer2_ioa_meta_write;
106 long hammer2_ioa_indr_write;
107 long hammer2_ioa_volu_write;
109 MALLOC_DECLARE(C_BUFFER);
110 MALLOC_DEFINE(C_BUFFER, "compbuffer", "Buffer used for compression.");
112 MALLOC_DECLARE(D_BUFFER);
113 MALLOC_DEFINE(D_BUFFER, "decompbuffer", "Buffer used for decompression.");
115 SYSCTL_NODE(_vfs, OID_AUTO, hammer2, CTLFLAG_RW, 0, "HAMMER2 filesystem");
117 SYSCTL_INT(_vfs_hammer2, OID_AUTO, debug, CTLFLAG_RW,
118 &hammer2_debug, 0, "");
119 SYSCTL_INT(_vfs_hammer2, OID_AUTO, cluster_enable, CTLFLAG_RW,
120 &hammer2_cluster_enable, 0, "");
121 SYSCTL_INT(_vfs_hammer2, OID_AUTO, hardlink_enable, CTLFLAG_RW,
122 &hammer2_hardlink_enable, 0, "");
123 SYSCTL_INT(_vfs_hammer2, OID_AUTO, flush_pipe, CTLFLAG_RW,
124 &hammer2_flush_pipe, 0, "");
125 SYSCTL_INT(_vfs_hammer2, OID_AUTO, synchronous_flush, CTLFLAG_RW,
126 &hammer2_synchronous_flush, 0, "");
127 SYSCTL_LONG(_vfs_hammer2, OID_AUTO, limit_dirty_chains, CTLFLAG_RW,
128 &hammer2_limit_dirty_chains, 0, "");
129 SYSCTL_INT(_vfs_hammer2, OID_AUTO, dio_count, CTLFLAG_RD,
130 &hammer2_dio_count, 0, "");
132 SYSCTL_LONG(_vfs_hammer2, OID_AUTO, iod_file_read, CTLFLAG_RW,
133 &hammer2_iod_file_read, 0, "");
134 SYSCTL_LONG(_vfs_hammer2, OID_AUTO, iod_meta_read, CTLFLAG_RW,
135 &hammer2_iod_meta_read, 0, "");
136 SYSCTL_LONG(_vfs_hammer2, OID_AUTO, iod_indr_read, CTLFLAG_RW,
137 &hammer2_iod_indr_read, 0, "");
138 SYSCTL_LONG(_vfs_hammer2, OID_AUTO, iod_fmap_read, CTLFLAG_RW,
139 &hammer2_iod_fmap_read, 0, "");
140 SYSCTL_LONG(_vfs_hammer2, OID_AUTO, iod_volu_read, CTLFLAG_RW,
141 &hammer2_iod_volu_read, 0, "");
143 SYSCTL_LONG(_vfs_hammer2, OID_AUTO, iod_file_write, CTLFLAG_RW,
144 &hammer2_iod_file_write, 0, "");
145 SYSCTL_LONG(_vfs_hammer2, OID_AUTO, iod_meta_write, CTLFLAG_RW,
146 &hammer2_iod_meta_write, 0, "");
147 SYSCTL_LONG(_vfs_hammer2, OID_AUTO, iod_indr_write, CTLFLAG_RW,
148 &hammer2_iod_indr_write, 0, "");
149 SYSCTL_LONG(_vfs_hammer2, OID_AUTO, iod_fmap_write, CTLFLAG_RW,
150 &hammer2_iod_fmap_write, 0, "");
151 SYSCTL_LONG(_vfs_hammer2, OID_AUTO, iod_volu_write, CTLFLAG_RW,
152 &hammer2_iod_volu_write, 0, "");
154 SYSCTL_LONG(_vfs_hammer2, OID_AUTO, ioa_file_read, CTLFLAG_RW,
155 &hammer2_ioa_file_read, 0, "");
156 SYSCTL_LONG(_vfs_hammer2, OID_AUTO, ioa_meta_read, CTLFLAG_RW,
157 &hammer2_ioa_meta_read, 0, "");
158 SYSCTL_LONG(_vfs_hammer2, OID_AUTO, ioa_indr_read, CTLFLAG_RW,
159 &hammer2_ioa_indr_read, 0, "");
160 SYSCTL_LONG(_vfs_hammer2, OID_AUTO, ioa_fmap_read, CTLFLAG_RW,
161 &hammer2_ioa_fmap_read, 0, "");
162 SYSCTL_LONG(_vfs_hammer2, OID_AUTO, ioa_volu_read, CTLFLAG_RW,
163 &hammer2_ioa_volu_read, 0, "");
165 SYSCTL_LONG(_vfs_hammer2, OID_AUTO, ioa_file_write, CTLFLAG_RW,
166 &hammer2_ioa_file_write, 0, "");
167 SYSCTL_LONG(_vfs_hammer2, OID_AUTO, ioa_meta_write, CTLFLAG_RW,
168 &hammer2_ioa_meta_write, 0, "");
169 SYSCTL_LONG(_vfs_hammer2, OID_AUTO, ioa_indr_write, CTLFLAG_RW,
170 &hammer2_ioa_indr_write, 0, "");
171 SYSCTL_LONG(_vfs_hammer2, OID_AUTO, ioa_fmap_write, CTLFLAG_RW,
172 &hammer2_ioa_fmap_write, 0, "");
173 SYSCTL_LONG(_vfs_hammer2, OID_AUTO, ioa_volu_write, CTLFLAG_RW,
174 &hammer2_ioa_volu_write, 0, "");
176 static int hammer2_vfs_init(struct vfsconf *conf);
177 static int hammer2_vfs_uninit(struct vfsconf *vfsp);
178 static int hammer2_vfs_mount(struct mount *mp, char *path, caddr_t data,
179 struct ucred *cred);
180 static int hammer2_remount(hammer2_mount_t *, struct mount *, char *,
181 struct vnode *, struct ucred *);
182 static int hammer2_recovery(hammer2_mount_t *hmp);
183 static int hammer2_vfs_unmount(struct mount *mp, int mntflags);
184 static int hammer2_vfs_root(struct mount *mp, struct vnode **vpp);
185 static int hammer2_vfs_statfs(struct mount *mp, struct statfs *sbp,
186 struct ucred *cred);
187 static int hammer2_vfs_statvfs(struct mount *mp, struct statvfs *sbp,
188 struct ucred *cred);
189 static int hammer2_vfs_vget(struct mount *mp, struct vnode *dvp,
190 ino_t ino, struct vnode **vpp);
191 static int hammer2_vfs_fhtovp(struct mount *mp, struct vnode *rootvp,
192 struct fid *fhp, struct vnode **vpp);
193 static int hammer2_vfs_vptofh(struct vnode *vp, struct fid *fhp);
194 static int hammer2_vfs_checkexp(struct mount *mp, struct sockaddr *nam,
195 int *exflagsp, struct ucred **credanonp);
197 static int hammer2_install_volume_header(hammer2_mount_t *hmp);
198 static int hammer2_sync_scan2(struct mount *mp, struct vnode *vp, void *data);
200 static void hammer2_write_thread(void *arg);
202 static void hammer2_vfs_unmount_hmp1(struct mount *mp, hammer2_mount_t *hmp);
203 static void hammer2_vfs_unmount_hmp2(struct mount *mp, hammer2_mount_t *hmp);
206 * Functions for compression in threads,
207 * from hammer2_vnops.c
209 static void hammer2_write_file_core(struct buf *bp, hammer2_trans_t *trans,
210 hammer2_inode_t *ip,
211 const hammer2_inode_data_t *ripdata,
212 hammer2_cluster_t *cparent,
213 hammer2_key_t lbase, int ioflag, int pblksize,
214 int *errorp);
215 static void hammer2_compress_and_write(struct buf *bp, hammer2_trans_t *trans,
216 hammer2_inode_t *ip,
217 const hammer2_inode_data_t *ripdata,
218 hammer2_cluster_t *cparent,
219 hammer2_key_t lbase, int ioflag,
220 int pblksize, int *errorp,
221 int comp_algo, int check_algo);
222 static void hammer2_zero_check_and_write(struct buf *bp,
223 hammer2_trans_t *trans, hammer2_inode_t *ip,
224 const hammer2_inode_data_t *ripdata,
225 hammer2_cluster_t *cparent,
226 hammer2_key_t lbase,
227 int ioflag, int pblksize, int *errorp,
228 int check_algo);
229 static int test_block_zeros(const char *buf, size_t bytes);
230 static void zero_write(struct buf *bp, hammer2_trans_t *trans,
231 hammer2_inode_t *ip,
232 const hammer2_inode_data_t *ripdata,
233 hammer2_cluster_t *cparent,
234 hammer2_key_t lbase,
235 int *errorp);
236 static void hammer2_write_bp(hammer2_cluster_t *cluster, struct buf *bp,
237 int ioflag, int pblksize, int *errorp,
238 int check_algo);
241 * HAMMER2 vfs operations.
243 static struct vfsops hammer2_vfsops = {
244 .vfs_init = hammer2_vfs_init,
245 .vfs_uninit = hammer2_vfs_uninit,
246 .vfs_sync = hammer2_vfs_sync,
247 .vfs_mount = hammer2_vfs_mount,
248 .vfs_unmount = hammer2_vfs_unmount,
249 .vfs_root = hammer2_vfs_root,
250 .vfs_statfs = hammer2_vfs_statfs,
251 .vfs_statvfs = hammer2_vfs_statvfs,
252 .vfs_vget = hammer2_vfs_vget,
253 .vfs_vptofh = hammer2_vfs_vptofh,
254 .vfs_fhtovp = hammer2_vfs_fhtovp,
255 .vfs_checkexp = hammer2_vfs_checkexp
258 MALLOC_DEFINE(M_HAMMER2, "HAMMER2-mount", "");
260 VFS_SET(hammer2_vfsops, hammer2, 0);
261 MODULE_VERSION(hammer2, 1);
263 static
265 hammer2_vfs_init(struct vfsconf *conf)
267 static struct objcache_malloc_args margs_read;
268 static struct objcache_malloc_args margs_write;
270 int error;
272 error = 0;
274 if (HAMMER2_BLOCKREF_BYTES != sizeof(struct hammer2_blockref))
275 error = EINVAL;
276 if (HAMMER2_INODE_BYTES != sizeof(struct hammer2_inode_data))
277 error = EINVAL;
278 if (HAMMER2_VOLUME_BYTES != sizeof(struct hammer2_volume_data))
279 error = EINVAL;
281 if (error)
282 kprintf("HAMMER2 structure size mismatch; cannot continue.\n");
284 margs_read.objsize = 65536;
285 margs_read.mtype = D_BUFFER;
287 margs_write.objsize = 32768;
288 margs_write.mtype = C_BUFFER;
290 cache_buffer_read = objcache_create(margs_read.mtype->ks_shortdesc,
291 0, 1, NULL, NULL, NULL, objcache_malloc_alloc,
292 objcache_malloc_free, &margs_read);
293 cache_buffer_write = objcache_create(margs_write.mtype->ks_shortdesc,
294 0, 1, NULL, NULL, NULL, objcache_malloc_alloc,
295 objcache_malloc_free, &margs_write);
297 lockinit(&hammer2_mntlk, "mntlk", 0, 0);
298 TAILQ_INIT(&hammer2_mntlist);
299 TAILQ_INIT(&hammer2_pfslist);
301 hammer2_limit_dirty_chains = desiredvnodes / 10;
303 hammer2_trans_manage_init();
305 return (error);
308 static
310 hammer2_vfs_uninit(struct vfsconf *vfsp __unused)
312 objcache_destroy(cache_buffer_read);
313 objcache_destroy(cache_buffer_write);
314 return 0;
318 * Core PFS allocator. Used to allocate the pmp structure for PFS cluster
319 * mounts and the spmp structure for media (hmp) structures.
321 static hammer2_pfsmount_t *
322 hammer2_pfsalloc(const hammer2_inode_data_t *ripdata, hammer2_tid_t alloc_tid)
324 hammer2_pfsmount_t *pmp;
326 pmp = kmalloc(sizeof(*pmp), M_HAMMER2, M_WAITOK | M_ZERO);
327 kmalloc_create(&pmp->minode, "HAMMER2-inodes");
328 kmalloc_create(&pmp->mmsg, "HAMMER2-pfsmsg");
329 lockinit(&pmp->lock, "pfslk", 0, 0);
330 spin_init(&pmp->inum_spin, "hm2pfsalloc_inum");
331 RB_INIT(&pmp->inum_tree);
332 TAILQ_INIT(&pmp->unlinkq);
333 spin_init(&pmp->list_spin, "hm2pfsalloc_list");
335 pmp->alloc_tid = alloc_tid + 1; /* our first media transaction id */
336 pmp->flush_tid = pmp->alloc_tid;
337 if (ripdata) {
338 pmp->inode_tid = ripdata->pfs_inum + 1;
339 pmp->pfs_clid = ripdata->pfs_clid;
341 mtx_init(&pmp->wthread_mtx);
342 bioq_init(&pmp->wthread_bioq);
344 return pmp;
348 * Mount or remount HAMMER2 fileystem from physical media
350 * mountroot
351 * mp mount point structure
352 * path NULL
353 * data <unused>
354 * cred <unused>
356 * mount
357 * mp mount point structure
358 * path path to mount point
359 * data pointer to argument structure in user space
360 * volume volume path (device@LABEL form)
361 * hflags user mount flags
362 * cred user credentials
364 * RETURNS: 0 Success
365 * !0 error number
367 static
369 hammer2_vfs_mount(struct mount *mp, char *path, caddr_t data,
370 struct ucred *cred)
372 struct hammer2_mount_info info;
373 hammer2_pfsmount_t *pmp;
374 hammer2_pfsmount_t *spmp;
375 hammer2_mount_t *hmp;
376 hammer2_key_t key_next;
377 hammer2_key_t key_dummy;
378 hammer2_key_t lhc;
379 struct vnode *devvp;
380 struct nlookupdata nd;
381 hammer2_chain_t *parent;
382 hammer2_chain_t *rchain;
383 hammer2_cluster_t *cluster;
384 hammer2_cluster_t *cparent;
385 const hammer2_inode_data_t *ripdata;
386 hammer2_blockref_t bref;
387 struct file *fp;
388 char devstr[MNAMELEN];
389 size_t size;
390 size_t done;
391 char *dev;
392 char *label;
393 int ronly = 1;
394 int error;
395 int cache_index;
396 int ddflag;
397 int i;
399 hmp = NULL;
400 pmp = NULL;
401 dev = NULL;
402 label = NULL;
403 devvp = NULL;
404 cache_index = -1;
406 kprintf("hammer2_mount\n");
408 if (path == NULL) {
410 * Root mount
412 bzero(&info, sizeof(info));
413 info.cluster_fd = -1;
414 return (EOPNOTSUPP);
415 } else {
417 * Non-root mount or updating a mount
419 error = copyin(data, &info, sizeof(info));
420 if (error)
421 return (error);
423 error = copyinstr(info.volume, devstr, MNAMELEN - 1, &done);
424 if (error)
425 return (error);
427 /* Extract device and label */
428 dev = devstr;
429 label = strchr(devstr, '@');
430 if (label == NULL ||
431 ((label + 1) - dev) > done) {
432 return (EINVAL);
434 *label = '\0';
435 label++;
436 if (*label == '\0')
437 return (EINVAL);
439 if (mp->mnt_flag & MNT_UPDATE) {
440 /* Update mount */
441 /* HAMMER2 implements NFS export via mountctl */
442 pmp = MPTOPMP(mp);
443 for (i = 0; i < pmp->iroot->cluster.nchains; ++i) {
444 hmp = pmp->iroot->cluster.array[i]->hmp;
445 devvp = hmp->devvp;
446 error = hammer2_remount(hmp, mp, path,
447 devvp, cred);
448 if (error)
449 break;
451 /*hammer2_inode_install_hidden(pmp);*/
453 return error;
458 * HMP device mount
460 * Lookup name and verify it refers to a block device.
462 error = nlookup_init(&nd, dev, UIO_SYSSPACE, NLC_FOLLOW);
463 if (error == 0)
464 error = nlookup(&nd);
465 if (error == 0)
466 error = cache_vref(&nd.nl_nch, nd.nl_cred, &devvp);
467 nlookup_done(&nd);
469 if (error == 0) {
470 if (vn_isdisk(devvp, &error))
471 error = vfs_mountedon(devvp);
475 * Determine if the device has already been mounted. After this
476 * check hmp will be non-NULL if we are doing the second or more
477 * hammer2 mounts from the same device.
479 lockmgr(&hammer2_mntlk, LK_EXCLUSIVE);
480 TAILQ_FOREACH(hmp, &hammer2_mntlist, mntentry) {
481 if (hmp->devvp == devvp)
482 break;
486 * Open the device if this isn't a secondary mount and construct
487 * the H2 device mount (hmp).
489 if (hmp == NULL) {
490 hammer2_chain_t *schain;
491 hammer2_xid_t xid;
493 if (error == 0 && vcount(devvp) > 0)
494 error = EBUSY;
497 * Now open the device
499 if (error == 0) {
500 ronly = ((mp->mnt_flag & MNT_RDONLY) != 0);
501 vn_lock(devvp, LK_EXCLUSIVE | LK_RETRY);
502 error = vinvalbuf(devvp, V_SAVE, 0, 0);
503 if (error == 0) {
504 error = VOP_OPEN(devvp,
505 ronly ? FREAD : FREAD | FWRITE,
506 FSCRED, NULL);
508 vn_unlock(devvp);
510 if (error && devvp) {
511 vrele(devvp);
512 devvp = NULL;
514 if (error) {
515 lockmgr(&hammer2_mntlk, LK_RELEASE);
516 return error;
518 hmp = kmalloc(sizeof(*hmp), M_HAMMER2, M_WAITOK | M_ZERO);
519 hmp->ronly = ronly;
520 hmp->devvp = devvp;
521 kmalloc_create(&hmp->mchain, "HAMMER2-chains");
522 TAILQ_INSERT_TAIL(&hammer2_mntlist, hmp, mntentry);
523 RB_INIT(&hmp->iotree);
524 spin_init(&hmp->io_spin, "hm2mount_io");
525 spin_init(&hmp->list_spin, "hm2mount_list");
526 TAILQ_INIT(&hmp->flushq);
528 lockinit(&hmp->vollk, "h2vol", 0, 0);
531 * vchain setup. vchain.data is embedded.
532 * vchain.refs is initialized and will never drop to 0.
534 * NOTE! voldata is not yet loaded.
536 hmp->vchain.hmp = hmp;
537 hmp->vchain.refs = 1;
538 hmp->vchain.data = (void *)&hmp->voldata;
539 hmp->vchain.bref.type = HAMMER2_BREF_TYPE_VOLUME;
540 hmp->vchain.bref.data_off = 0 | HAMMER2_PBUFRADIX;
541 hmp->vchain.bref.mirror_tid = hmp->voldata.mirror_tid;
543 hammer2_chain_core_alloc(NULL, &hmp->vchain);
544 /* hmp->vchain.u.xxx is left NULL */
547 * fchain setup. fchain.data is embedded.
548 * fchain.refs is initialized and will never drop to 0.
550 * The data is not used but needs to be initialized to
551 * pass assertion muster. We use this chain primarily
552 * as a placeholder for the freemap's top-level RBTREE
553 * so it does not interfere with the volume's topology
554 * RBTREE.
556 hmp->fchain.hmp = hmp;
557 hmp->fchain.refs = 1;
558 hmp->fchain.data = (void *)&hmp->voldata.freemap_blockset;
559 hmp->fchain.bref.type = HAMMER2_BREF_TYPE_FREEMAP;
560 hmp->fchain.bref.data_off = 0 | HAMMER2_PBUFRADIX;
561 hmp->fchain.bref.mirror_tid = hmp->voldata.freemap_tid;
562 hmp->fchain.bref.methods =
563 HAMMER2_ENC_CHECK(HAMMER2_CHECK_FREEMAP) |
564 HAMMER2_ENC_COMP(HAMMER2_COMP_NONE);
566 hammer2_chain_core_alloc(NULL, &hmp->fchain);
567 /* hmp->fchain.u.xxx is left NULL */
570 * Install the volume header and initialize fields from
571 * voldata.
573 error = hammer2_install_volume_header(hmp);
574 if (error) {
575 ++hmp->pmp_count;
576 hammer2_vfs_unmount_hmp1(mp, hmp);
577 hammer2_vfs_unmount_hmp2(mp, hmp);
578 lockmgr(&hammer2_mntlk, LK_RELEASE);
579 hammer2_vfs_unmount(mp, MNT_FORCE);
580 return error;
584 * Really important to get these right or flush will get
585 * confused.
587 hmp->spmp = hammer2_pfsalloc(NULL, hmp->voldata.mirror_tid);
588 kprintf("alloc spmp %p tid %016jx\n",
589 hmp->spmp, hmp->voldata.mirror_tid);
590 spmp = hmp->spmp;
591 spmp->inode_tid = 1;
593 xid = 0;
594 hmp->vchain.bref.mirror_tid = hmp->voldata.mirror_tid;
595 hmp->vchain.bref.modify_tid = hmp->vchain.bref.mirror_tid;
596 hmp->vchain.pmp = spmp;
597 hmp->fchain.bref.mirror_tid = hmp->voldata.freemap_tid;
598 hmp->fchain.bref.modify_tid = hmp->fchain.bref.mirror_tid;
599 hmp->fchain.pmp = spmp;
602 * First locate the super-root inode, which is key 0
603 * relative to the volume header's blockset.
605 * Then locate the root inode by scanning the directory keyspace
606 * represented by the label.
608 parent = hammer2_chain_lookup_init(&hmp->vchain, 0);
609 schain = hammer2_chain_lookup(&parent, &key_dummy,
610 HAMMER2_SROOT_KEY, HAMMER2_SROOT_KEY,
611 &cache_index, 0, &ddflag);
612 hammer2_chain_lookup_done(parent);
613 if (schain == NULL) {
614 kprintf("hammer2_mount: invalid super-root\n");
615 ++hmp->pmp_count;
616 hammer2_vfs_unmount_hmp1(mp, hmp);
617 hammer2_vfs_unmount_hmp2(mp, hmp);
618 lockmgr(&hammer2_mntlk, LK_RELEASE);
619 hammer2_vfs_unmount(mp, MNT_FORCE);
620 return EINVAL;
624 * Sanity-check schain's pmp, finish initializing spmp.
626 ripdata = &hammer2_chain_rdata(schain)->ipdata;
627 KKASSERT(schain->pmp == spmp);
628 spmp->pfs_clid = ripdata->pfs_clid;
631 * NOTE: inode_get sucks up schain's lock.
633 cluster = hammer2_cluster_from_chain(schain);
634 spmp->iroot = hammer2_inode_get(spmp, NULL, cluster);
635 spmp->spmp_hmp = hmp;
636 hammer2_inode_ref(spmp->iroot);
637 hammer2_inode_unlock_ex(spmp->iroot, cluster);
638 schain = NULL;
639 /* leave spmp->iroot with one ref */
641 if ((mp->mnt_flag & MNT_RDONLY) == 0) {
642 error = hammer2_recovery(hmp);
643 /* XXX do something with error */
645 ++hmp->pmp_count;
647 hammer2_iocom_init(hmp);
650 * Ref the cluster management messaging descriptor. The mount
651 * program deals with the other end of the communications pipe.
653 fp = holdfp(curproc->p_fd, info.cluster_fd, -1);
654 if (fp) {
655 hammer2_cluster_reconnect(hmp, fp);
656 } else {
657 kprintf("hammer2_mount: bad cluster_fd!\n");
659 } else {
660 spmp = hmp->spmp;
661 ++hmp->pmp_count;
665 * Lookup mount point under the media-localized super-root.
667 * cluster->pmp will incorrectly point to spmp and must be fixed
668 * up later on.
670 cparent = hammer2_inode_lock_ex(spmp->iroot);
671 lhc = hammer2_dirhash(label, strlen(label));
672 cluster = hammer2_cluster_lookup(cparent, &key_next,
673 lhc, lhc + HAMMER2_DIRHASH_LOMASK,
674 0, &ddflag);
675 while (cluster) {
676 if (hammer2_cluster_type(cluster) == HAMMER2_BREF_TYPE_INODE &&
677 strcmp(label,
678 hammer2_cluster_rdata(cluster)->ipdata.filename) == 0) {
679 break;
681 cluster = hammer2_cluster_next(cparent, cluster, &key_next,
682 key_next,
683 lhc + HAMMER2_DIRHASH_LOMASK, 0);
685 hammer2_inode_unlock_ex(spmp->iroot, cparent);
687 if (cluster == NULL) {
688 kprintf("hammer2_mount: PFS label not found\n");
689 hammer2_vfs_unmount_hmp1(mp, hmp);
690 hammer2_vfs_unmount_hmp2(mp, hmp);
691 lockmgr(&hammer2_mntlk, LK_RELEASE);
692 hammer2_vfs_unmount(mp, MNT_FORCE);
693 return EINVAL;
696 for (i = 0; i < cluster->nchains; ++i) {
697 rchain = cluster->array[i];
698 if (rchain->flags & HAMMER2_CHAIN_MOUNTED) {
699 kprintf("hammer2_mount: PFS label already mounted!\n");
700 hammer2_cluster_unlock(cluster);
701 hammer2_vfs_unmount_hmp1(mp, hmp);
702 hammer2_vfs_unmount_hmp2(mp, hmp);
703 lockmgr(&hammer2_mntlk, LK_RELEASE);
704 hammer2_vfs_unmount(mp, MNT_FORCE);
705 return EBUSY;
707 KKASSERT(rchain->pmp == NULL);
708 #if 0
709 if (rchain->flags & HAMMER2_CHAIN_RECYCLE) {
710 kprintf("hammer2_mount: PFS label is recycling\n");
711 hammer2_cluster_unlock(cluster);
712 hammer2_vfs_unmount_hmp1(mp, hmp);
713 hammer2_vfs_unmount_hmp2(mp, hmp);
714 lockmgr(&hammer2_mntlk, LK_RELEASE);
715 hammer2_vfs_unmount(mp, MNT_FORCE);
716 return EBUSY;
718 #endif
722 * Check to see if the cluster id is already mounted at the mount
723 * point. If it is, add us to the cluster.
725 ripdata = &hammer2_cluster_rdata(cluster)->ipdata;
726 hammer2_cluster_bref(cluster, &bref);
727 TAILQ_FOREACH(pmp, &hammer2_pfslist, mntentry) {
728 if (pmp->spmp_hmp == NULL &&
729 bcmp(&pmp->pfs_clid, &ripdata->pfs_clid,
730 sizeof(pmp->pfs_clid)) == 0) {
731 break;
735 if (pmp) {
736 int i;
737 int j;
739 hammer2_inode_ref(pmp->iroot);
740 ccms_thread_lock(&pmp->iroot->topo_cst, CCMS_STATE_EXCLUSIVE);
742 if (pmp->iroot->cluster.nchains + cluster->nchains >
743 HAMMER2_MAXCLUSTER) {
744 kprintf("hammer2_mount: cluster full!\n");
746 ccms_thread_unlock(&pmp->iroot->topo_cst);
747 hammer2_inode_drop(pmp->iroot);
749 hammer2_cluster_unlock(cluster);
750 hammer2_vfs_unmount_hmp1(mp, hmp);
751 hammer2_vfs_unmount_hmp2(mp, hmp);
752 lockmgr(&hammer2_mntlk, LK_RELEASE);
753 hammer2_vfs_unmount(mp, MNT_FORCE);
754 return EBUSY;
756 kprintf("hammer2_vfs_mount: Adding pfs to existing cluster\n");
757 j = pmp->iroot->cluster.nchains;
758 for (i = 0; i < cluster->nchains; ++i) {
759 rchain = cluster->array[i];
760 KKASSERT(rchain->pmp == NULL);
761 rchain->pmp = pmp;
762 hammer2_chain_ref(cluster->array[i]);
763 pmp->iroot->cluster.array[j] = cluster->array[i];
764 ++j;
766 pmp->iroot->cluster.nchains = j;
767 ccms_thread_unlock(&pmp->iroot->topo_cst);
768 hammer2_inode_drop(pmp->iroot);
769 hammer2_cluster_unlock(cluster);
770 lockmgr(&hammer2_mntlk, LK_RELEASE);
772 kprintf("ok\n");
773 hammer2_inode_install_hidden(pmp);
775 return ERANGE;
779 * Block device opened successfully, finish initializing the
780 * mount structure.
782 * From this point on we have to call hammer2_unmount() on failure.
784 pmp = hammer2_pfsalloc(ripdata, bref.mirror_tid);
785 kprintf("PMP mirror_tid is %016jx\n", bref.mirror_tid);
786 for (i = 0; i < cluster->nchains; ++i) {
787 rchain = cluster->array[i];
788 KKASSERT(rchain->pmp == NULL);
789 rchain->pmp = pmp;
790 atomic_set_int(&rchain->flags, HAMMER2_CHAIN_MOUNTED);
792 cluster->pmp = pmp;
794 ccms_domain_init(&pmp->ccms_dom);
795 TAILQ_INSERT_TAIL(&hammer2_pfslist, pmp, mntentry);
796 lockmgr(&hammer2_mntlk, LK_RELEASE);
798 kprintf("hammer2_mount hmp=%p pmp=%p pmpcnt=%d\n",
799 hmp, pmp, hmp->pmp_count);
801 mp->mnt_flag = MNT_LOCAL;
802 mp->mnt_kern_flag |= MNTK_ALL_MPSAFE; /* all entry pts are SMP */
803 mp->mnt_kern_flag |= MNTK_THR_SYNC; /* new vsyncscan semantics */
806 * required mount structure initializations
808 mp->mnt_stat.f_iosize = HAMMER2_PBUFSIZE;
809 mp->mnt_stat.f_bsize = HAMMER2_PBUFSIZE;
811 mp->mnt_vstat.f_frsize = HAMMER2_PBUFSIZE;
812 mp->mnt_vstat.f_bsize = HAMMER2_PBUFSIZE;
815 * Optional fields
817 mp->mnt_iosize_max = MAXPHYS;
818 mp->mnt_data = (qaddr_t)pmp;
819 pmp->mp = mp;
822 * After this point hammer2_vfs_unmount() has visibility on hmp
823 * and manual hmp1/hmp2 calls are not needed on fatal errors.
825 pmp->iroot = hammer2_inode_get(pmp, NULL, cluster);
826 hammer2_inode_ref(pmp->iroot); /* ref for pmp->iroot */
827 hammer2_inode_unlock_ex(pmp->iroot, cluster);
830 * The logical file buffer bio write thread handles things
831 * like physical block assignment and compression.
833 * (only applicable to pfs mounts, not applicable to spmp)
835 pmp->wthread_destroy = 0;
836 lwkt_create(hammer2_write_thread, pmp,
837 &pmp->wthread_td, NULL, 0, -1, "hwrite-%s", label);
840 * With the cluster operational install ihidden.
841 * (only applicable to pfs mounts, not applicable to spmp)
843 hammer2_inode_install_hidden(pmp);
846 * Finish setup
848 vfs_getnewfsid(mp);
849 vfs_add_vnodeops(mp, &hammer2_vnode_vops, &mp->mnt_vn_norm_ops);
850 vfs_add_vnodeops(mp, &hammer2_spec_vops, &mp->mnt_vn_spec_ops);
851 vfs_add_vnodeops(mp, &hammer2_fifo_vops, &mp->mnt_vn_fifo_ops);
853 copyinstr(info.volume, mp->mnt_stat.f_mntfromname, MNAMELEN - 1, &size);
854 bzero(mp->mnt_stat.f_mntfromname + size, MNAMELEN - size);
855 bzero(mp->mnt_stat.f_mntonname, sizeof(mp->mnt_stat.f_mntonname));
856 copyinstr(path, mp->mnt_stat.f_mntonname,
857 sizeof(mp->mnt_stat.f_mntonname) - 1,
858 &size);
861 * Initial statfs to prime mnt_stat.
863 hammer2_vfs_statfs(mp, &mp->mnt_stat, cred);
865 return 0;
869 * Handle bioq for strategy write
871 static
872 void
873 hammer2_write_thread(void *arg)
875 hammer2_pfsmount_t *pmp;
876 struct bio *bio;
877 struct buf *bp;
878 hammer2_trans_t trans;
879 struct vnode *vp;
880 hammer2_inode_t *ip;
881 hammer2_cluster_t *cparent;
882 hammer2_inode_data_t *wipdata;
883 hammer2_key_t lbase;
884 int lblksize;
885 int pblksize;
886 int error;
888 pmp = arg;
890 mtx_lock(&pmp->wthread_mtx);
891 while (pmp->wthread_destroy == 0) {
892 if (bioq_first(&pmp->wthread_bioq) == NULL) {
893 mtxsleep(&pmp->wthread_bioq, &pmp->wthread_mtx,
894 0, "h2bioqw", 0);
896 cparent = NULL;
898 hammer2_trans_init(&trans, pmp, HAMMER2_TRANS_BUFCACHE);
900 while ((bio = bioq_takefirst(&pmp->wthread_bioq)) != NULL) {
902 * dummy bio for synchronization. The transaction
903 * must be reinitialized.
905 if (bio->bio_buf == NULL) {
906 bio->bio_flags |= BIO_DONE;
907 wakeup(bio);
908 hammer2_trans_done(&trans);
909 hammer2_trans_init(&trans, pmp,
910 HAMMER2_TRANS_BUFCACHE);
911 continue;
915 * else normal bio processing
917 mtx_unlock(&pmp->wthread_mtx);
919 hammer2_lwinprog_drop(pmp);
921 error = 0;
922 bp = bio->bio_buf;
923 vp = bp->b_vp;
924 ip = VTOI(vp);
927 * Inode is modified, flush size and mtime changes
928 * to ensure that the file size remains consistent
929 * with the buffers being flushed.
931 * NOTE: The inode_fsync() call only flushes the
932 * inode's meta-data state, it doesn't try
933 * to flush underlying buffers or chains.
935 cparent = hammer2_inode_lock_ex(ip);
936 if (ip->flags & (HAMMER2_INODE_RESIZED |
937 HAMMER2_INODE_MTIME)) {
938 hammer2_inode_fsync(&trans, ip, cparent);
940 wipdata = hammer2_cluster_modify_ip(&trans, ip,
941 cparent, 0);
942 lblksize = hammer2_calc_logical(ip, bio->bio_offset,
943 &lbase, NULL);
944 pblksize = hammer2_calc_physical(ip, wipdata, lbase);
945 hammer2_write_file_core(bp, &trans, ip, wipdata,
946 cparent,
947 lbase, IO_ASYNC,
948 pblksize, &error);
949 hammer2_cluster_modsync(cparent);
950 hammer2_inode_unlock_ex(ip, cparent);
951 if (error) {
952 kprintf("hammer2: error in buffer write\n");
953 bp->b_flags |= B_ERROR;
954 bp->b_error = EIO;
956 biodone(bio);
957 mtx_lock(&pmp->wthread_mtx);
959 hammer2_trans_done(&trans);
961 pmp->wthread_destroy = -1;
962 wakeup(&pmp->wthread_destroy);
964 mtx_unlock(&pmp->wthread_mtx);
967 void
968 hammer2_bioq_sync(hammer2_pfsmount_t *pmp)
970 struct bio sync_bio;
972 bzero(&sync_bio, sizeof(sync_bio)); /* dummy with no bio_buf */
973 mtx_lock(&pmp->wthread_mtx);
974 if (pmp->wthread_destroy == 0 &&
975 TAILQ_FIRST(&pmp->wthread_bioq.queue)) {
976 bioq_insert_tail(&pmp->wthread_bioq, &sync_bio);
977 while ((sync_bio.bio_flags & BIO_DONE) == 0)
978 mtxsleep(&sync_bio, &pmp->wthread_mtx, 0, "h2bioq", 0);
980 mtx_unlock(&pmp->wthread_mtx);
984 * Return a chain suitable for I/O, creating the chain if necessary
985 * and assigning its physical block.
987 static
988 hammer2_cluster_t *
989 hammer2_assign_physical(hammer2_trans_t *trans,
990 hammer2_inode_t *ip, hammer2_cluster_t *cparent,
991 hammer2_key_t lbase, int pblksize, int *errorp)
993 hammer2_cluster_t *cluster;
994 hammer2_cluster_t *dparent;
995 hammer2_key_t key_dummy;
996 int pradix = hammer2_getradix(pblksize);
997 int ddflag;
1000 * Locate the chain associated with lbase, return a locked chain.
1001 * However, do not instantiate any data reference (which utilizes a
1002 * device buffer) because we will be using direct IO via the
1003 * logical buffer cache buffer.
1005 *errorp = 0;
1006 KKASSERT(pblksize >= HAMMER2_ALLOC_MIN);
1007 retry:
1008 dparent = hammer2_cluster_lookup_init(cparent, 0);
1009 cluster = hammer2_cluster_lookup(dparent, &key_dummy,
1010 lbase, lbase,
1011 HAMMER2_LOOKUP_NODATA, &ddflag);
1013 if (cluster == NULL) {
1015 * We found a hole, create a new chain entry.
1017 * NOTE: DATA chains are created without device backing
1018 * store (nor do we want any).
1020 *errorp = hammer2_cluster_create(trans, dparent, &cluster,
1021 lbase, HAMMER2_PBUFRADIX,
1022 HAMMER2_BREF_TYPE_DATA,
1023 pblksize, 0);
1024 if (cluster == NULL) {
1025 hammer2_cluster_lookup_done(dparent);
1026 panic("hammer2_cluster_create: par=%p error=%d\n",
1027 dparent->focus, *errorp);
1028 goto retry;
1030 /*ip->delta_dcount += pblksize;*/
1031 } else {
1032 switch (hammer2_cluster_type(cluster)) {
1033 case HAMMER2_BREF_TYPE_INODE:
1035 * The data is embedded in the inode. The
1036 * caller is responsible for marking the inode
1037 * modified and copying the data to the embedded
1038 * area.
1040 break;
1041 case HAMMER2_BREF_TYPE_DATA:
1042 if (hammer2_cluster_need_resize(cluster, pblksize)) {
1043 hammer2_cluster_resize(trans, ip,
1044 dparent, cluster,
1045 pradix,
1046 HAMMER2_MODIFY_OPTDATA);
1050 * DATA buffers must be marked modified whether the
1051 * data is in a logical buffer or not. We also have
1052 * to make this call to fixup the chain data pointers
1053 * after resizing in case this is an encrypted or
1054 * compressed buffer.
1056 hammer2_cluster_modify(trans, cluster,
1057 HAMMER2_MODIFY_OPTDATA);
1058 break;
1059 default:
1060 panic("hammer2_assign_physical: bad type");
1061 /* NOT REACHED */
1062 break;
1067 * Cleanup. If cluster wound up being the inode itself, i.e.
1068 * the DIRECTDATA case for offset 0, then we need to update cparent.
1069 * The caller expects cparent to not become stale.
1071 hammer2_cluster_lookup_done(dparent);
1072 /* dparent = NULL; safety */
1073 if (cluster && ddflag)
1074 hammer2_cluster_replace_locked(cparent, cluster);
1075 return (cluster);
1079 * bio queued from hammer2_vnops.c.
1081 * The core write function which determines which path to take
1082 * depending on compression settings. We also have to locate the
1083 * related clusters so we can calculate and set the check data for
1084 * the blockref.
1086 static
1087 void
1088 hammer2_write_file_core(struct buf *bp, hammer2_trans_t *trans,
1089 hammer2_inode_t *ip,
1090 const hammer2_inode_data_t *ripdata,
1091 hammer2_cluster_t *cparent,
1092 hammer2_key_t lbase, int ioflag, int pblksize,
1093 int *errorp)
1095 hammer2_cluster_t *cluster;
1097 switch(HAMMER2_DEC_ALGO(ripdata->comp_algo)) {
1098 case HAMMER2_COMP_NONE:
1100 * We have to assign physical storage to the buffer
1101 * we intend to dirty or write now to avoid deadlocks
1102 * in the strategy code later.
1104 * This can return NOOFFSET for inode-embedded data.
1105 * The strategy code will take care of it in that case.
1107 cluster = hammer2_assign_physical(trans, ip, cparent,
1108 lbase, pblksize,
1109 errorp);
1110 hammer2_write_bp(cluster, bp, ioflag, pblksize, errorp,
1111 ripdata->check_algo);
1112 if (cluster)
1113 hammer2_cluster_unlock(cluster);
1114 break;
1115 case HAMMER2_COMP_AUTOZERO:
1117 * Check for zero-fill only
1119 hammer2_zero_check_and_write(bp, trans, ip,
1120 ripdata, cparent, lbase,
1121 ioflag, pblksize, errorp,
1122 ripdata->check_algo);
1123 break;
1124 case HAMMER2_COMP_LZ4:
1125 case HAMMER2_COMP_ZLIB:
1126 default:
1128 * Check for zero-fill and attempt compression.
1130 hammer2_compress_and_write(bp, trans, ip,
1131 ripdata, cparent,
1132 lbase, ioflag,
1133 pblksize, errorp,
1134 ripdata->comp_algo,
1135 ripdata->check_algo);
1136 break;
1141 * Generic function that will perform the compression in compression
1142 * write path. The compression algorithm is determined by the settings
1143 * obtained from inode.
1145 static
1146 void
1147 hammer2_compress_and_write(struct buf *bp, hammer2_trans_t *trans,
1148 hammer2_inode_t *ip, const hammer2_inode_data_t *ripdata,
1149 hammer2_cluster_t *cparent,
1150 hammer2_key_t lbase, int ioflag, int pblksize,
1151 int *errorp, int comp_algo, int check_algo)
1153 hammer2_cluster_t *cluster;
1154 hammer2_chain_t *chain;
1155 int comp_size;
1156 int comp_block_size;
1157 int i;
1158 char *comp_buffer;
1160 if (test_block_zeros(bp->b_data, pblksize)) {
1161 zero_write(bp, trans, ip, ripdata, cparent, lbase, errorp);
1162 return;
1165 comp_size = 0;
1166 comp_buffer = NULL;
1168 KKASSERT(pblksize / 2 <= 32768);
1170 if (ip->comp_heuristic < 8 || (ip->comp_heuristic & 7) == 0) {
1171 z_stream strm_compress;
1172 int comp_level;
1173 int ret;
1175 switch(HAMMER2_DEC_ALGO(comp_algo)) {
1176 case HAMMER2_COMP_LZ4:
1177 comp_buffer = objcache_get(cache_buffer_write,
1178 M_INTWAIT);
1179 comp_size = LZ4_compress_limitedOutput(
1180 bp->b_data,
1181 &comp_buffer[sizeof(int)],
1182 pblksize,
1183 pblksize / 2 - sizeof(int));
1185 * We need to prefix with the size, LZ4
1186 * doesn't do it for us. Add the related
1187 * overhead.
1189 *(int *)comp_buffer = comp_size;
1190 if (comp_size)
1191 comp_size += sizeof(int);
1192 break;
1193 case HAMMER2_COMP_ZLIB:
1194 comp_level = HAMMER2_DEC_LEVEL(comp_algo);
1195 if (comp_level == 0)
1196 comp_level = 6; /* default zlib compression */
1197 else if (comp_level < 6)
1198 comp_level = 6;
1199 else if (comp_level > 9)
1200 comp_level = 9;
1201 ret = deflateInit(&strm_compress, comp_level);
1202 if (ret != Z_OK) {
1203 kprintf("HAMMER2 ZLIB: fatal error "
1204 "on deflateInit.\n");
1207 comp_buffer = objcache_get(cache_buffer_write,
1208 M_INTWAIT);
1209 strm_compress.next_in = bp->b_data;
1210 strm_compress.avail_in = pblksize;
1211 strm_compress.next_out = comp_buffer;
1212 strm_compress.avail_out = pblksize / 2;
1213 ret = deflate(&strm_compress, Z_FINISH);
1214 if (ret == Z_STREAM_END) {
1215 comp_size = pblksize / 2 -
1216 strm_compress.avail_out;
1217 } else {
1218 comp_size = 0;
1220 ret = deflateEnd(&strm_compress);
1221 break;
1222 default:
1223 kprintf("Error: Unknown compression method.\n");
1224 kprintf("Comp_method = %d.\n", comp_algo);
1225 break;
1229 if (comp_size == 0) {
1231 * compression failed or turned off
1233 comp_block_size = pblksize; /* safety */
1234 if (++ip->comp_heuristic > 128)
1235 ip->comp_heuristic = 8;
1236 } else {
1238 * compression succeeded
1240 ip->comp_heuristic = 0;
1241 if (comp_size <= 1024) {
1242 comp_block_size = 1024;
1243 } else if (comp_size <= 2048) {
1244 comp_block_size = 2048;
1245 } else if (comp_size <= 4096) {
1246 comp_block_size = 4096;
1247 } else if (comp_size <= 8192) {
1248 comp_block_size = 8192;
1249 } else if (comp_size <= 16384) {
1250 comp_block_size = 16384;
1251 } else if (comp_size <= 32768) {
1252 comp_block_size = 32768;
1253 } else {
1254 panic("hammer2: WRITE PATH: "
1255 "Weird comp_size value.");
1256 /* NOT REACHED */
1257 comp_block_size = pblksize;
1261 cluster = hammer2_assign_physical(trans, ip, cparent,
1262 lbase, comp_block_size,
1263 errorp);
1264 ripdata = NULL;
1266 if (*errorp) {
1267 kprintf("WRITE PATH: An error occurred while "
1268 "assigning physical space.\n");
1269 KKASSERT(cluster == NULL);
1270 goto done;
1273 for (i = 0; i < cluster->nchains; ++i) {
1274 hammer2_inode_data_t *wipdata;
1275 hammer2_io_t *dio;
1276 char *bdata;
1278 chain = cluster->array[i]; /* XXX */
1279 KKASSERT(chain->flags & HAMMER2_CHAIN_MODIFIED);
1281 switch(chain->bref.type) {
1282 case HAMMER2_BREF_TYPE_INODE:
1283 wipdata = &hammer2_chain_wdata(chain)->ipdata;
1284 KKASSERT(wipdata->op_flags & HAMMER2_OPFLAG_DIRECTDATA);
1285 KKASSERT(bp->b_loffset == 0);
1286 bcopy(bp->b_data, wipdata->u.data,
1287 HAMMER2_EMBEDDED_BYTES);
1288 break;
1289 case HAMMER2_BREF_TYPE_DATA:
1291 * Optimize out the read-before-write
1292 * if possible.
1294 *errorp = hammer2_io_newnz(chain->hmp,
1295 chain->bref.data_off,
1296 chain->bytes,
1297 &dio);
1298 if (*errorp) {
1299 hammer2_io_brelse(&dio);
1300 kprintf("hammer2: WRITE PATH: "
1301 "dbp bread error\n");
1302 break;
1304 bdata = hammer2_io_data(dio, chain->bref.data_off);
1307 * When loading the block make sure we don't
1308 * leave garbage after the compressed data.
1310 if (comp_size) {
1311 chain->bref.methods =
1312 HAMMER2_ENC_COMP(comp_algo) +
1313 HAMMER2_ENC_CHECK(check_algo);
1314 bcopy(comp_buffer, bdata, comp_size);
1315 if (comp_size != comp_block_size) {
1316 bzero(bdata + comp_size,
1317 comp_block_size - comp_size);
1319 } else {
1320 chain->bref.methods =
1321 HAMMER2_ENC_COMP(
1322 HAMMER2_COMP_NONE) +
1323 HAMMER2_ENC_CHECK(check_algo);
1324 bcopy(bp->b_data, bdata, pblksize);
1328 * The flush code doesn't calculate check codes for
1329 * file data (doing so can result in excessive I/O),
1330 * so we do it here.
1332 hammer2_chain_setcheck(chain, bdata);
1335 * Device buffer is now valid, chain is no longer in
1336 * the initial state.
1338 * (No blockref table worries with file data)
1340 atomic_clear_int(&chain->flags, HAMMER2_CHAIN_INITIAL);
1342 /* Now write the related bdp. */
1343 if (ioflag & IO_SYNC) {
1345 * Synchronous I/O requested.
1347 hammer2_io_bwrite(&dio);
1349 } else if ((ioflag & IO_DIRECT) &&
1350 loff + n == pblksize) {
1351 hammer2_io_bdwrite(&dio);
1353 } else if (ioflag & IO_ASYNC) {
1354 hammer2_io_bawrite(&dio);
1355 } else {
1356 hammer2_io_bdwrite(&dio);
1358 break;
1359 default:
1360 panic("hammer2_write_bp: bad chain type %d\n",
1361 chain->bref.type);
1362 /* NOT REACHED */
1363 break;
1366 done:
1367 if (cluster)
1368 hammer2_cluster_unlock(cluster);
1369 if (comp_buffer)
1370 objcache_put(cache_buffer_write, comp_buffer);
1374 * Function that performs zero-checking and writing without compression,
1375 * it corresponds to default zero-checking path.
1377 static
1378 void
1379 hammer2_zero_check_and_write(struct buf *bp, hammer2_trans_t *trans,
1380 hammer2_inode_t *ip, const hammer2_inode_data_t *ripdata,
1381 hammer2_cluster_t *cparent,
1382 hammer2_key_t lbase, int ioflag, int pblksize, int *errorp,
1383 int check_algo)
1385 hammer2_cluster_t *cluster;
1387 if (test_block_zeros(bp->b_data, pblksize)) {
1388 zero_write(bp, trans, ip, ripdata, cparent, lbase, errorp);
1389 } else {
1390 cluster = hammer2_assign_physical(trans, ip, cparent,
1391 lbase, pblksize, errorp);
1392 hammer2_write_bp(cluster, bp, ioflag, pblksize, errorp,
1393 check_algo);
1394 if (cluster)
1395 hammer2_cluster_unlock(cluster);
1400 * A function to test whether a block of data contains only zeros,
1401 * returns TRUE (non-zero) if the block is all zeros.
1403 static
1405 test_block_zeros(const char *buf, size_t bytes)
1407 size_t i;
1409 for (i = 0; i < bytes; i += sizeof(long)) {
1410 if (*(const long *)(buf + i) != 0)
1411 return (0);
1413 return (1);
1417 * Function to "write" a block that contains only zeros.
1419 static
1420 void
1421 zero_write(struct buf *bp, hammer2_trans_t *trans,
1422 hammer2_inode_t *ip, const hammer2_inode_data_t *ripdata,
1423 hammer2_cluster_t *cparent,
1424 hammer2_key_t lbase, int *errorp __unused)
1426 hammer2_cluster_t *cluster;
1427 hammer2_media_data_t *data;
1428 hammer2_key_t key_dummy;
1429 int ddflag;
1431 cparent = hammer2_cluster_lookup_init(cparent, 0);
1432 cluster = hammer2_cluster_lookup(cparent, &key_dummy, lbase, lbase,
1433 HAMMER2_LOOKUP_NODATA, &ddflag);
1434 if (cluster) {
1435 data = hammer2_cluster_wdata(cluster);
1437 if (ddflag) {
1438 KKASSERT(cluster->focus->flags &
1439 HAMMER2_CHAIN_MODIFIED);
1440 bzero(data->ipdata.u.data, HAMMER2_EMBEDDED_BYTES);
1441 hammer2_cluster_modsync(cluster);
1442 } else {
1443 hammer2_cluster_delete(trans, cparent, cluster,
1444 HAMMER2_DELETE_PERMANENT);
1446 hammer2_cluster_unlock(cluster);
1448 hammer2_cluster_lookup_done(cparent);
1452 * Function to write the data as it is, without performing any sort of
1453 * compression. This function is used in path without compression and
1454 * default zero-checking path.
1456 static
1457 void
1458 hammer2_write_bp(hammer2_cluster_t *cluster, struct buf *bp, int ioflag,
1459 int pblksize, int *errorp, int check_algo)
1461 hammer2_chain_t *chain;
1462 hammer2_inode_data_t *wipdata;
1463 hammer2_io_t *dio;
1464 char *bdata;
1465 int error;
1466 int i;
1468 error = 0; /* XXX TODO below */
1470 for (i = 0; i < cluster->nchains; ++i) {
1471 chain = cluster->array[i]; /* XXX */
1472 KKASSERT(chain->flags & HAMMER2_CHAIN_MODIFIED);
1474 switch(chain->bref.type) {
1475 case HAMMER2_BREF_TYPE_INODE:
1476 wipdata = &hammer2_chain_wdata(chain)->ipdata;
1477 KKASSERT(wipdata->op_flags & HAMMER2_OPFLAG_DIRECTDATA);
1478 KKASSERT(bp->b_loffset == 0);
1479 bcopy(bp->b_data, wipdata->u.data,
1480 HAMMER2_EMBEDDED_BYTES);
1481 error = 0;
1482 break;
1483 case HAMMER2_BREF_TYPE_DATA:
1484 error = hammer2_io_newnz(chain->hmp,
1485 chain->bref.data_off,
1486 chain->bytes, &dio);
1487 if (error) {
1488 hammer2_io_bqrelse(&dio);
1489 kprintf("hammer2: WRITE PATH: "
1490 "dbp bread error\n");
1491 break;
1493 bdata = hammer2_io_data(dio, chain->bref.data_off);
1495 chain->bref.methods = HAMMER2_ENC_COMP(
1496 HAMMER2_COMP_NONE) +
1497 HAMMER2_ENC_CHECK(check_algo);
1498 bcopy(bp->b_data, bdata, chain->bytes);
1501 * The flush code doesn't calculate check codes for
1502 * file data (doing so can result in excessive I/O),
1503 * so we do it here.
1505 hammer2_chain_setcheck(chain, bdata);
1508 * Device buffer is now valid, chain is no longer in
1509 * the initial state.
1511 * (No blockref table worries with file data)
1513 atomic_clear_int(&chain->flags, HAMMER2_CHAIN_INITIAL);
1515 if (ioflag & IO_SYNC) {
1517 * Synchronous I/O requested.
1519 hammer2_io_bwrite(&dio);
1521 } else if ((ioflag & IO_DIRECT) &&
1522 loff + n == pblksize) {
1523 hammer2_io_bdwrite(&dio);
1525 } else if (ioflag & IO_ASYNC) {
1526 hammer2_io_bawrite(&dio);
1527 } else {
1528 hammer2_io_bdwrite(&dio);
1530 break;
1531 default:
1532 panic("hammer2_write_bp: bad chain type %d\n",
1533 chain->bref.type);
1534 /* NOT REACHED */
1535 error = 0;
1536 break;
1538 KKASSERT(error == 0); /* XXX TODO */
1540 *errorp = error;
1543 static
1545 hammer2_remount(hammer2_mount_t *hmp, struct mount *mp, char *path,
1546 struct vnode *devvp, struct ucred *cred)
1548 int error;
1550 if (hmp->ronly && (mp->mnt_kern_flag & MNTK_WANTRDWR)) {
1551 error = hammer2_recovery(hmp);
1552 } else {
1553 error = 0;
1555 return error;
1558 static
1560 hammer2_vfs_unmount(struct mount *mp, int mntflags)
1562 hammer2_pfsmount_t *pmp;
1563 hammer2_mount_t *hmp;
1564 hammer2_chain_t *rchain;
1565 hammer2_cluster_t *cluster;
1566 int flags;
1567 int error = 0;
1568 int i;
1570 pmp = MPTOPMP(mp);
1572 if (pmp == NULL)
1573 return(0);
1575 lockmgr(&hammer2_mntlk, LK_EXCLUSIVE);
1576 TAILQ_REMOVE(&hammer2_pfslist, pmp, mntentry);
1579 * If mount initialization proceeded far enough we must flush
1580 * its vnodes.
1582 if (mntflags & MNT_FORCE)
1583 flags = FORCECLOSE;
1584 else
1585 flags = 0;
1586 if (pmp->iroot) {
1587 error = vflush(mp, 0, flags);
1588 if (error)
1589 goto failed;
1592 ccms_domain_uninit(&pmp->ccms_dom);
1594 if (pmp->wthread_td) {
1595 mtx_lock(&pmp->wthread_mtx);
1596 pmp->wthread_destroy = 1;
1597 wakeup(&pmp->wthread_bioq);
1598 while (pmp->wthread_destroy != -1) {
1599 mtxsleep(&pmp->wthread_destroy,
1600 &pmp->wthread_mtx, 0,
1601 "umount-sleep", 0);
1603 mtx_unlock(&pmp->wthread_mtx);
1604 pmp->wthread_td = NULL;
1608 * Cleanup our reference on ihidden.
1610 if (pmp->ihidden) {
1611 hammer2_inode_drop(pmp->ihidden);
1612 pmp->ihidden = NULL;
1616 * Cleanup our reference on iroot. iroot is (should) not be needed
1617 * by the flush code.
1619 if (pmp->iroot) {
1620 cluster = &pmp->iroot->cluster;
1621 for (i = 0; i < pmp->iroot->cluster.nchains; ++i) {
1622 rchain = pmp->iroot->cluster.array[i];
1623 if (rchain == NULL)
1624 continue;
1625 hmp = rchain->hmp;
1626 hammer2_vfs_unmount_hmp1(mp, hmp);
1628 atomic_clear_int(&rchain->flags, HAMMER2_CHAIN_MOUNTED);
1629 #if REPORT_REFS_ERRORS
1630 if (rchain->refs != 1)
1631 kprintf("PMP->RCHAIN %p REFS WRONG %d\n",
1632 rchain, rchain->refs);
1633 #else
1634 KKASSERT(rchain->refs == 1);
1635 #endif
1636 hammer2_chain_drop(rchain);
1637 cluster->array[i] = NULL;
1638 hammer2_vfs_unmount_hmp2(mp, hmp);
1640 cluster->focus = NULL;
1642 #if REPORT_REFS_ERRORS
1643 if (pmp->iroot->refs != 1)
1644 kprintf("PMP->IROOT %p REFS WRONG %d\n",
1645 pmp->iroot, pmp->iroot->refs);
1646 #else
1647 KKASSERT(pmp->iroot->refs == 1);
1648 #endif
1649 /* ref for pmp->iroot */
1650 hammer2_inode_drop(pmp->iroot);
1651 pmp->iroot = NULL;
1654 pmp->mp = NULL;
1655 mp->mnt_data = NULL;
1657 kmalloc_destroy(&pmp->mmsg);
1658 kmalloc_destroy(&pmp->minode);
1660 kfree(pmp, M_HAMMER2);
1661 error = 0;
1663 failed:
1664 lockmgr(&hammer2_mntlk, LK_RELEASE);
1666 return (error);
1669 static
1670 void
1671 hammer2_vfs_unmount_hmp1(struct mount *mp, hammer2_mount_t *hmp)
1673 hammer2_mount_exlock(hmp);
1674 --hmp->pmp_count;
1676 kprintf("hammer2_unmount hmp=%p pmpcnt=%d\n", hmp, hmp->pmp_count);
1679 * Cycle the volume data lock as a safety (probably not needed any
1680 * more). To ensure everything is out we need to flush at least
1681 * three times. (1) The running of the unlinkq can dirty the
1682 * filesystem, (2) A normal flush can dirty the freemap, and
1683 * (3) ensure that the freemap is fully synchronized.
1685 * The next mount's recovery scan can clean everything up but we want
1686 * to leave the filesystem in a 100% clean state on a normal unmount.
1688 hammer2_voldata_lock(hmp);
1689 hammer2_voldata_unlock(hmp);
1690 if (mp->mnt_data) {
1691 hammer2_vfs_sync(mp, MNT_WAIT);
1692 hammer2_vfs_sync(mp, MNT_WAIT);
1693 hammer2_vfs_sync(mp, MNT_WAIT);
1697 * XXX chain depend deadlock?
1699 hammer2_iocom_uninit(hmp);
1701 if (hmp->pmp_count == 0) {
1702 if ((hmp->vchain.flags | hmp->fchain.flags) &
1703 HAMMER2_CHAIN_FLUSH_MASK) {
1704 kprintf("hammer2_unmount: chains left over "
1705 "after final sync\n");
1706 kprintf(" vchain %08x\n", hmp->vchain.flags);
1707 kprintf(" fchain %08x\n", hmp->fchain.flags);
1709 if (hammer2_debug & 0x0010)
1710 Debugger("entered debugger");
1715 static
1716 void
1717 hammer2_vfs_unmount_hmp2(struct mount *mp, hammer2_mount_t *hmp)
1719 hammer2_pfsmount_t *spmp;
1720 struct vnode *devvp;
1721 int dumpcnt;
1722 int ronly = ((mp->mnt_flag & MNT_RDONLY) != 0);
1725 * If no PFS's left drop the master hammer2_mount for the
1726 * device.
1728 if (hmp->pmp_count == 0) {
1730 * Clean up SPMP and the super-root inode
1732 spmp = hmp->spmp;
1733 if (spmp) {
1734 if (spmp->iroot) {
1735 hammer2_inode_drop(spmp->iroot);
1736 spmp->iroot = NULL;
1738 hmp->spmp = NULL;
1739 kmalloc_destroy(&spmp->mmsg);
1740 kmalloc_destroy(&spmp->minode);
1741 kfree(spmp, M_HAMMER2);
1745 * Finish up with the device vnode
1747 if ((devvp = hmp->devvp) != NULL) {
1748 vn_lock(devvp, LK_EXCLUSIVE | LK_RETRY);
1749 vinvalbuf(devvp, (ronly ? 0 : V_SAVE), 0, 0);
1750 hmp->devvp = NULL;
1751 VOP_CLOSE(devvp, (ronly ? FREAD : FREAD|FWRITE), NULL);
1752 vn_unlock(devvp);
1753 vrele(devvp);
1754 devvp = NULL;
1758 * Clear vchain/fchain flags that might prevent final cleanup
1759 * of these chains.
1761 if (hmp->vchain.flags & HAMMER2_CHAIN_MODIFIED) {
1762 atomic_clear_int(&hmp->vchain.flags,
1763 HAMMER2_CHAIN_MODIFIED);
1764 hammer2_pfs_memory_wakeup(hmp->vchain.pmp);
1765 hammer2_chain_drop(&hmp->vchain);
1767 if (hmp->vchain.flags & HAMMER2_CHAIN_UPDATE) {
1768 atomic_clear_int(&hmp->vchain.flags,
1769 HAMMER2_CHAIN_UPDATE);
1770 hammer2_chain_drop(&hmp->vchain);
1773 if (hmp->fchain.flags & HAMMER2_CHAIN_MODIFIED) {
1774 atomic_clear_int(&hmp->fchain.flags,
1775 HAMMER2_CHAIN_MODIFIED);
1776 hammer2_pfs_memory_wakeup(hmp->fchain.pmp);
1777 hammer2_chain_drop(&hmp->fchain);
1779 if (hmp->fchain.flags & HAMMER2_CHAIN_UPDATE) {
1780 atomic_clear_int(&hmp->fchain.flags,
1781 HAMMER2_CHAIN_UPDATE);
1782 hammer2_chain_drop(&hmp->fchain);
1786 * Final drop of embedded freemap root chain to
1787 * clean up fchain.core (fchain structure is not
1788 * flagged ALLOCATED so it is cleaned out and then
1789 * left to rot).
1791 hammer2_chain_drop(&hmp->fchain);
1794 * Final drop of embedded volume root chain to clean
1795 * up vchain.core (vchain structure is not flagged
1796 * ALLOCATED so it is cleaned out and then left to
1797 * rot).
1799 dumpcnt = 50;
1800 hammer2_dump_chain(&hmp->vchain, 0, &dumpcnt, 'v');
1801 dumpcnt = 50;
1802 hammer2_dump_chain(&hmp->fchain, 0, &dumpcnt, 'f');
1803 hammer2_mount_unlock(hmp);
1804 hammer2_chain_drop(&hmp->vchain);
1806 hammer2_io_cleanup(hmp, &hmp->iotree);
1807 if (hmp->iofree_count) {
1808 kprintf("io_cleanup: %d I/O's left hanging\n",
1809 hmp->iofree_count);
1812 TAILQ_REMOVE(&hammer2_mntlist, hmp, mntentry);
1813 kmalloc_destroy(&hmp->mchain);
1814 kfree(hmp, M_HAMMER2);
1815 } else {
1816 hammer2_mount_unlock(hmp);
1820 static
1822 hammer2_vfs_vget(struct mount *mp, struct vnode *dvp,
1823 ino_t ino, struct vnode **vpp)
1825 kprintf("hammer2_vget\n");
1826 return (EOPNOTSUPP);
1829 static
1831 hammer2_vfs_root(struct mount *mp, struct vnode **vpp)
1833 hammer2_pfsmount_t *pmp;
1834 hammer2_cluster_t *cparent;
1835 int error;
1836 struct vnode *vp;
1838 pmp = MPTOPMP(mp);
1839 if (pmp->iroot == NULL) {
1840 *vpp = NULL;
1841 error = EINVAL;
1842 } else {
1843 cparent = hammer2_inode_lock_sh(pmp->iroot);
1844 vp = hammer2_igetv(pmp->iroot, cparent, &error);
1845 hammer2_inode_unlock_sh(pmp->iroot, cparent);
1846 *vpp = vp;
1847 if (vp == NULL)
1848 kprintf("vnodefail\n");
1851 return (error);
1855 * Filesystem status
1857 * XXX incorporate ipdata->inode_quota and data_quota
1859 static
1861 hammer2_vfs_statfs(struct mount *mp, struct statfs *sbp, struct ucred *cred)
1863 hammer2_pfsmount_t *pmp;
1864 hammer2_mount_t *hmp;
1866 pmp = MPTOPMP(mp);
1867 KKASSERT(pmp->iroot->cluster.nchains >= 1);
1868 hmp = pmp->iroot->cluster.focus->hmp; /* XXX */
1870 mp->mnt_stat.f_files = pmp->inode_count;
1871 mp->mnt_stat.f_ffree = 0;
1872 mp->mnt_stat.f_blocks = hmp->voldata.allocator_size / HAMMER2_PBUFSIZE;
1873 mp->mnt_stat.f_bfree = hmp->voldata.allocator_free / HAMMER2_PBUFSIZE;
1874 mp->mnt_stat.f_bavail = mp->mnt_stat.f_bfree;
1876 *sbp = mp->mnt_stat;
1877 return (0);
1880 static
1882 hammer2_vfs_statvfs(struct mount *mp, struct statvfs *sbp, struct ucred *cred)
1884 hammer2_pfsmount_t *pmp;
1885 hammer2_mount_t *hmp;
1887 pmp = MPTOPMP(mp);
1888 KKASSERT(pmp->iroot->cluster.nchains >= 1);
1889 hmp = pmp->iroot->cluster.focus->hmp; /* XXX */
1891 mp->mnt_vstat.f_bsize = HAMMER2_PBUFSIZE;
1892 mp->mnt_vstat.f_files = pmp->inode_count;
1893 mp->mnt_vstat.f_ffree = 0;
1894 mp->mnt_vstat.f_blocks = hmp->voldata.allocator_size / HAMMER2_PBUFSIZE;
1895 mp->mnt_vstat.f_bfree = hmp->voldata.allocator_free / HAMMER2_PBUFSIZE;
1896 mp->mnt_vstat.f_bavail = mp->mnt_vstat.f_bfree;
1898 *sbp = mp->mnt_vstat;
1899 return (0);
1903 * Mount-time recovery (RW mounts)
1905 * Updates to the free block table are allowed to lag flushes by one
1906 * transaction. In case of a crash, then on a fresh mount we must do an
1907 * incremental scan of the last committed transaction id and make sure that
1908 * all related blocks have been marked allocated.
1910 * The super-root topology and each PFS has its own transaction id domain,
1911 * so we must track PFS boundary transitions.
1913 struct hammer2_recovery_elm {
1914 TAILQ_ENTRY(hammer2_recovery_elm) entry;
1915 hammer2_chain_t *chain;
1916 hammer2_tid_t sync_tid;
1919 TAILQ_HEAD(hammer2_recovery_list, hammer2_recovery_elm);
1921 struct hammer2_recovery_info {
1922 struct hammer2_recovery_list list;
1923 int depth;
1926 static int hammer2_recovery_scan(hammer2_trans_t *trans, hammer2_mount_t *hmp,
1927 hammer2_chain_t *parent,
1928 struct hammer2_recovery_info *info,
1929 hammer2_tid_t sync_tid);
1931 #define HAMMER2_RECOVERY_MAXDEPTH 10
1933 static
1935 hammer2_recovery(hammer2_mount_t *hmp)
1937 hammer2_trans_t trans;
1938 struct hammer2_recovery_info info;
1939 struct hammer2_recovery_elm *elm;
1940 hammer2_chain_t *parent;
1941 hammer2_tid_t sync_tid;
1942 int error;
1943 int cumulative_error = 0;
1945 hammer2_trans_init(&trans, hmp->spmp, 0);
1947 sync_tid = 0;
1948 TAILQ_INIT(&info.list);
1949 info.depth = 0;
1950 parent = hammer2_chain_lookup_init(&hmp->vchain, 0);
1951 cumulative_error = hammer2_recovery_scan(&trans, hmp, parent,
1952 &info, sync_tid);
1953 hammer2_chain_lookup_done(parent);
1955 while ((elm = TAILQ_FIRST(&info.list)) != NULL) {
1956 TAILQ_REMOVE(&info.list, elm, entry);
1957 parent = elm->chain;
1958 sync_tid = elm->sync_tid;
1959 kfree(elm, M_HAMMER2);
1961 hammer2_chain_lock(parent, HAMMER2_RESOLVE_ALWAYS |
1962 HAMMER2_RESOLVE_NOREF);
1963 error = hammer2_recovery_scan(&trans, hmp, parent,
1964 &info, sync_tid);
1965 hammer2_chain_unlock(parent);
1966 if (error)
1967 cumulative_error = error;
1969 hammer2_trans_done(&trans);
1971 return cumulative_error;
1974 static
1976 hammer2_recovery_scan(hammer2_trans_t *trans, hammer2_mount_t *hmp,
1977 hammer2_chain_t *parent,
1978 struct hammer2_recovery_info *info,
1979 hammer2_tid_t sync_tid)
1981 const hammer2_inode_data_t *ripdata;
1982 hammer2_chain_t *chain;
1983 int cache_index;
1984 int cumulative_error = 0;
1985 int pfs_boundary = 0;
1986 int error;
1989 * Adjust freemap to ensure that the block(s) are marked allocated.
1991 if (parent->bref.type != HAMMER2_BREF_TYPE_VOLUME) {
1992 hammer2_freemap_adjust(trans, hmp, &parent->bref,
1993 HAMMER2_FREEMAP_DORECOVER);
1997 * Check type for recursive scan
1999 switch(parent->bref.type) {
2000 case HAMMER2_BREF_TYPE_VOLUME:
2001 /* data already instantiated */
2002 break;
2003 case HAMMER2_BREF_TYPE_INODE:
2005 * Must instantiate data for DIRECTDATA test and also
2006 * for recursion.
2008 hammer2_chain_lock(parent, HAMMER2_RESOLVE_ALWAYS);
2009 ripdata = &hammer2_chain_rdata(parent)->ipdata;
2010 if (ripdata->op_flags & HAMMER2_OPFLAG_DIRECTDATA) {
2011 /* not applicable to recovery scan */
2012 hammer2_chain_unlock(parent);
2013 return 0;
2015 if ((ripdata->op_flags & HAMMER2_OPFLAG_PFSROOT) &&
2016 info->depth != 0) {
2017 pfs_boundary = 1;
2018 sync_tid = parent->bref.mirror_tid - 1;
2020 hammer2_chain_unlock(parent);
2021 break;
2022 case HAMMER2_BREF_TYPE_INDIRECT:
2024 * Must instantiate data for recursion
2026 hammer2_chain_lock(parent, HAMMER2_RESOLVE_ALWAYS);
2027 hammer2_chain_unlock(parent);
2028 break;
2029 case HAMMER2_BREF_TYPE_DATA:
2030 case HAMMER2_BREF_TYPE_FREEMAP:
2031 case HAMMER2_BREF_TYPE_FREEMAP_NODE:
2032 case HAMMER2_BREF_TYPE_FREEMAP_LEAF:
2033 /* not applicable to recovery scan */
2034 return 0;
2035 break;
2036 default:
2037 return EDOM;
2041 * Defer operation if depth limit reached or if we are crossing a
2042 * PFS boundary.
2044 if (info->depth >= HAMMER2_RECOVERY_MAXDEPTH || pfs_boundary) {
2045 struct hammer2_recovery_elm *elm;
2047 elm = kmalloc(sizeof(*elm), M_HAMMER2, M_ZERO | M_WAITOK);
2048 elm->chain = parent;
2049 elm->sync_tid = sync_tid;
2050 hammer2_chain_ref(parent);
2051 TAILQ_INSERT_TAIL(&info->list, elm, entry);
2052 /* unlocked by caller */
2054 return(0);
2059 * Recursive scan of the last flushed transaction only. We are
2060 * doing this without pmp assignments so don't leave the chains
2061 * hanging around after we are done with them.
2063 cache_index = 0;
2064 chain = hammer2_chain_scan(parent, NULL, &cache_index,
2065 HAMMER2_LOOKUP_NODATA);
2066 while (chain) {
2067 atomic_set_int(&chain->flags, HAMMER2_CHAIN_RELEASE);
2068 if (chain->bref.mirror_tid >= sync_tid) {
2069 ++info->depth;
2070 error = hammer2_recovery_scan(trans, hmp, chain,
2071 info, sync_tid);
2072 --info->depth;
2073 if (error)
2074 cumulative_error = error;
2076 chain = hammer2_chain_scan(parent, chain, &cache_index,
2077 HAMMER2_LOOKUP_NODATA);
2080 return cumulative_error;
2084 * Sync the entire filesystem; this is called from the filesystem syncer
2085 * process periodically and whenever a user calls sync(1) on the hammer
2086 * mountpoint.
2088 * Currently is actually called from the syncer! \o/
2090 * This task will have to snapshot the state of the dirty inode chain.
2091 * From that, it will have to make sure all of the inodes on the dirty
2092 * chain have IO initiated. We make sure that io is initiated for the root
2093 * block.
2095 * If waitfor is set, we wait for media to acknowledge the new rootblock.
2097 * THINKS: side A vs side B, to have sync not stall all I/O?
2100 hammer2_vfs_sync(struct mount *mp, int waitfor)
2102 struct hammer2_sync_info info;
2103 hammer2_inode_t *iroot;
2104 hammer2_chain_t *chain;
2105 hammer2_chain_t *parent;
2106 hammer2_pfsmount_t *pmp;
2107 hammer2_mount_t *hmp;
2108 int flags;
2109 int error;
2110 int total_error;
2111 int force_fchain;
2112 int i;
2113 int j;
2115 pmp = MPTOPMP(mp);
2116 iroot = pmp->iroot;
2117 KKASSERT(iroot);
2118 KKASSERT(iroot->pmp == pmp);
2121 * We can't acquire locks on existing vnodes while in a transaction
2122 * without risking a deadlock. This assumes that vfsync() can be
2123 * called without the vnode locked (which it can in DragonFly).
2124 * Otherwise we'd have to implement a multi-pass or flag the lock
2125 * failures and retry.
2127 * The reclamation code interlocks with the sync list's token
2128 * (by removing the vnode from the scan list) before unlocking
2129 * the inode, giving us time to ref the inode.
2131 /*flags = VMSC_GETVP;*/
2132 flags = 0;
2133 if (waitfor & MNT_LAZY)
2134 flags |= VMSC_ONEPASS;
2137 * Start our flush transaction. This does not return until all
2138 * concurrent transactions have completed and will prevent any
2139 * new transactions from running concurrently, except for the
2140 * buffer cache transactions.
2142 * For efficiency do an async pass before making sure with a
2143 * synchronous pass on all related buffer cache buffers. It
2144 * should theoretically not be possible for any new file buffers
2145 * to be instantiated during this sequence.
2147 hammer2_trans_init(&info.trans, pmp, HAMMER2_TRANS_ISFLUSH |
2148 HAMMER2_TRANS_PREFLUSH);
2149 hammer2_run_unlinkq(&info.trans, pmp);
2151 info.error = 0;
2152 info.waitfor = MNT_NOWAIT;
2153 vsyncscan(mp, flags | VMSC_NOWAIT, hammer2_sync_scan2, &info);
2154 info.waitfor = MNT_WAIT;
2155 vsyncscan(mp, flags, hammer2_sync_scan2, &info);
2158 * Clear PREFLUSH. This prevents (or asserts on) any new logical
2159 * buffer cache flushes which occur during the flush. Device buffers
2160 * are not affected.
2163 #if 0
2164 if (info.error == 0 && (waitfor & MNT_WAIT)) {
2165 info.waitfor = waitfor;
2166 vsyncscan(mp, flags, hammer2_sync_scan2, &info);
2169 #endif
2170 hammer2_bioq_sync(info.trans.pmp);
2171 atomic_clear_int(&info.trans.flags, HAMMER2_TRANS_PREFLUSH);
2173 total_error = 0;
2176 * Flush all storage elements making up the cluster
2178 * We must also flush any deleted siblings because the super-root
2179 * flush won't do it for us. They all must be staged or the
2180 * super-root flush will not be able to update its block table
2181 * properly.
2183 * XXX currently done serially instead of concurrently
2185 for (i = 0; iroot && i < iroot->cluster.nchains; ++i) {
2186 chain = iroot->cluster.array[i];
2187 if (chain) {
2188 hammer2_chain_lock(chain, HAMMER2_RESOLVE_ALWAYS);
2189 hammer2_flush(&info.trans, chain);
2190 hammer2_chain_unlock(chain);
2193 #if 0
2194 hammer2_trans_done(&info.trans);
2195 #endif
2198 * Flush all volume roots to synchronize PFS flushes with the
2199 * storage media. Use a super-root transaction for each one.
2201 * The flush code will detect super-root -> pfs-root chain
2202 * transitions using the last pfs-root flush.
2204 for (i = 0; iroot && i < iroot->cluster.nchains; ++i) {
2205 chain = iroot->cluster.array[i];
2206 if (chain == NULL)
2207 continue;
2209 hmp = chain->hmp;
2212 * We only have to flush each hmp once
2214 for (j = i - 1; j >= 0; --j) {
2215 if (iroot->cluster.array[j] &&
2216 iroot->cluster.array[j]->hmp == hmp)
2217 break;
2219 if (j >= 0)
2220 continue;
2221 hammer2_trans_spmp(&info.trans, hmp->spmp);
2224 * Force an update of the XID from the PFS root to the
2225 * topology root. We couldn't do this from the PFS
2226 * transaction because a SPMP transaction is needed.
2227 * This does not modify blocks, instead what it does is
2228 * allow the flush code to find the transition point and
2229 * then update on the way back up.
2231 parent = chain->parent;
2232 KKASSERT(chain->pmp != parent->pmp);
2233 hammer2_chain_setflush(&info.trans, parent);
2236 * Media mounts have two 'roots', vchain for the topology
2237 * and fchain for the free block table. Flush both.
2239 * Note that the topology and free block table are handled
2240 * independently, so the free block table can wind up being
2241 * ahead of the topology. We depend on the bulk free scan
2242 * code to deal with any loose ends.
2244 hammer2_chain_lock(&hmp->vchain, HAMMER2_RESOLVE_ALWAYS);
2245 hammer2_chain_lock(&hmp->fchain, HAMMER2_RESOLVE_ALWAYS);
2246 if (hmp->fchain.flags & HAMMER2_CHAIN_FLUSH_MASK) {
2248 * This will also modify vchain as a side effect,
2249 * mark vchain as modified now.
2251 hammer2_voldata_modify(hmp);
2252 chain = &hmp->fchain;
2253 hammer2_flush(&info.trans, chain);
2254 KKASSERT(chain == &hmp->fchain);
2256 hammer2_chain_unlock(&hmp->fchain);
2257 hammer2_chain_unlock(&hmp->vchain);
2259 hammer2_chain_lock(&hmp->vchain, HAMMER2_RESOLVE_ALWAYS);
2260 if (hmp->vchain.flags & HAMMER2_CHAIN_FLUSH_MASK) {
2261 chain = &hmp->vchain;
2262 hammer2_flush(&info.trans, chain);
2263 KKASSERT(chain == &hmp->vchain);
2264 force_fchain = 1;
2265 } else {
2266 force_fchain = 0;
2268 hammer2_chain_unlock(&hmp->vchain);
2270 #if 0
2271 hammer2_chain_lock(&hmp->fchain, HAMMER2_RESOLVE_ALWAYS);
2272 if ((hmp->fchain.flags & HAMMER2_CHAIN_FLUSH_MASK) ||
2273 force_fchain) {
2274 /* this will also modify vchain as a side effect */
2275 chain = &hmp->fchain;
2276 hammer2_flush(&info.trans, chain);
2277 KKASSERT(chain == &hmp->fchain);
2279 hammer2_chain_unlock(&hmp->fchain);
2280 #endif
2282 error = 0;
2285 * We can't safely flush the volume header until we have
2286 * flushed any device buffers which have built up.
2288 * XXX this isn't being incremental
2290 vn_lock(hmp->devvp, LK_EXCLUSIVE | LK_RETRY);
2291 error = VOP_FSYNC(hmp->devvp, MNT_WAIT, 0);
2292 vn_unlock(hmp->devvp);
2295 * The flush code sets CHAIN_VOLUMESYNC to indicate that the
2296 * volume header needs synchronization via hmp->volsync.
2298 * XXX synchronize the flag & data with only this flush XXX
2300 if (error == 0 &&
2301 (hmp->vchain.flags & HAMMER2_CHAIN_VOLUMESYNC)) {
2302 struct buf *bp;
2305 * Synchronize the disk before flushing the volume
2306 * header.
2308 bp = getpbuf(NULL);
2309 bp->b_bio1.bio_offset = 0;
2310 bp->b_bufsize = 0;
2311 bp->b_bcount = 0;
2312 bp->b_cmd = BUF_CMD_FLUSH;
2313 bp->b_bio1.bio_done = biodone_sync;
2314 bp->b_bio1.bio_flags |= BIO_SYNC;
2315 vn_strategy(hmp->devvp, &bp->b_bio1);
2316 biowait(&bp->b_bio1, "h2vol");
2317 relpbuf(bp, NULL);
2320 * Then we can safely flush the version of the
2321 * volume header synchronized by the flush code.
2323 i = hmp->volhdrno + 1;
2324 if (i >= HAMMER2_NUM_VOLHDRS)
2325 i = 0;
2326 if (i * HAMMER2_ZONE_BYTES64 + HAMMER2_SEGSIZE >
2327 hmp->volsync.volu_size) {
2328 i = 0;
2330 kprintf("sync volhdr %d %jd\n",
2331 i, (intmax_t)hmp->volsync.volu_size);
2332 bp = getblk(hmp->devvp, i * HAMMER2_ZONE_BYTES64,
2333 HAMMER2_PBUFSIZE, 0, 0);
2334 atomic_clear_int(&hmp->vchain.flags,
2335 HAMMER2_CHAIN_VOLUMESYNC);
2336 bcopy(&hmp->volsync, bp->b_data, HAMMER2_PBUFSIZE);
2337 bawrite(bp);
2338 hmp->volhdrno = i;
2340 if (error)
2341 total_error = error;
2343 #if 0
2344 hammer2_trans_done(&info.trans);
2345 #endif
2347 hammer2_trans_done(&info.trans);
2349 return (total_error);
2353 * Sync passes.
2355 static int
2356 hammer2_sync_scan2(struct mount *mp, struct vnode *vp, void *data)
2358 struct hammer2_sync_info *info = data;
2359 hammer2_inode_t *ip;
2360 int error;
2365 ip = VTOI(vp);
2366 if (ip == NULL)
2367 return(0);
2368 if (vp->v_type == VNON || vp->v_type == VBAD) {
2369 vclrisdirty(vp);
2370 return(0);
2372 if ((ip->flags & HAMMER2_INODE_MODIFIED) == 0 &&
2373 RB_EMPTY(&vp->v_rbdirty_tree)) {
2374 vclrisdirty(vp);
2375 return(0);
2379 * VOP_FSYNC will start a new transaction so replicate some code
2380 * here to do it inline (see hammer2_vop_fsync()).
2382 * WARNING: The vfsync interacts with the buffer cache and might
2383 * block, we can't hold the inode lock at that time.
2384 * However, we MUST ref ip before blocking to ensure that
2385 * it isn't ripped out from under us (since we do not
2386 * hold a lock on the vnode).
2388 hammer2_inode_ref(ip);
2389 atomic_clear_int(&ip->flags, HAMMER2_INODE_MODIFIED);
2390 if (vp)
2391 vfsync(vp, MNT_NOWAIT, 1, NULL, NULL);
2393 hammer2_inode_drop(ip);
2394 #if 1
2395 error = 0;
2396 if (error)
2397 info->error = error;
2398 #endif
2399 return(0);
2402 static
2404 hammer2_vfs_vptofh(struct vnode *vp, struct fid *fhp)
2406 return (0);
2409 static
2411 hammer2_vfs_fhtovp(struct mount *mp, struct vnode *rootvp,
2412 struct fid *fhp, struct vnode **vpp)
2414 return (0);
2417 static
2419 hammer2_vfs_checkexp(struct mount *mp, struct sockaddr *nam,
2420 int *exflagsp, struct ucred **credanonp)
2422 return (0);
2426 * Support code for hammer2_vfs_mount(). Read, verify, and install the volume
2427 * header into the HMP
2429 * XXX read four volhdrs and use the one with the highest TID whos CRC
2430 * matches.
2432 * XXX check iCRCs.
2434 * XXX For filesystems w/ less than 4 volhdrs, make sure to not write to
2435 * nonexistant locations.
2437 * XXX Record selected volhdr and ring updates to each of 4 volhdrs
2439 static
2441 hammer2_install_volume_header(hammer2_mount_t *hmp)
2443 hammer2_volume_data_t *vd;
2444 struct buf *bp;
2445 hammer2_crc32_t crc0, crc, bcrc0, bcrc;
2446 int error_reported;
2447 int error;
2448 int valid;
2449 int i;
2451 error_reported = 0;
2452 error = 0;
2453 valid = 0;
2454 bp = NULL;
2457 * There are up to 4 copies of the volume header (syncs iterate
2458 * between them so there is no single master). We don't trust the
2459 * volu_size field so we don't know precisely how large the filesystem
2460 * is, so depend on the OS to return an error if we go beyond the
2461 * block device's EOF.
2463 for (i = 0; i < HAMMER2_NUM_VOLHDRS; i++) {
2464 error = bread(hmp->devvp, i * HAMMER2_ZONE_BYTES64,
2465 HAMMER2_VOLUME_BYTES, &bp);
2466 if (error) {
2467 brelse(bp);
2468 bp = NULL;
2469 continue;
2472 vd = (struct hammer2_volume_data *) bp->b_data;
2473 if ((vd->magic != HAMMER2_VOLUME_ID_HBO) &&
2474 (vd->magic != HAMMER2_VOLUME_ID_ABO)) {
2475 brelse(bp);
2476 bp = NULL;
2477 continue;
2480 if (vd->magic == HAMMER2_VOLUME_ID_ABO) {
2481 /* XXX: Reversed-endianness filesystem */
2482 kprintf("hammer2: reverse-endian filesystem detected");
2483 brelse(bp);
2484 bp = NULL;
2485 continue;
2488 crc = vd->icrc_sects[HAMMER2_VOL_ICRC_SECT0];
2489 crc0 = hammer2_icrc32(bp->b_data + HAMMER2_VOLUME_ICRC0_OFF,
2490 HAMMER2_VOLUME_ICRC0_SIZE);
2491 bcrc = vd->icrc_sects[HAMMER2_VOL_ICRC_SECT1];
2492 bcrc0 = hammer2_icrc32(bp->b_data + HAMMER2_VOLUME_ICRC1_OFF,
2493 HAMMER2_VOLUME_ICRC1_SIZE);
2494 if ((crc0 != crc) || (bcrc0 != bcrc)) {
2495 kprintf("hammer2 volume header crc "
2496 "mismatch copy #%d %08x/%08x\n",
2497 i, crc0, crc);
2498 error_reported = 1;
2499 brelse(bp);
2500 bp = NULL;
2501 continue;
2503 if (valid == 0 || hmp->voldata.mirror_tid < vd->mirror_tid) {
2504 valid = 1;
2505 hmp->voldata = *vd;
2506 hmp->volhdrno = i;
2508 brelse(bp);
2509 bp = NULL;
2511 if (valid) {
2512 hmp->volsync = hmp->voldata;
2513 error = 0;
2514 if (error_reported || bootverbose || 1) { /* 1/DEBUG */
2515 kprintf("hammer2: using volume header #%d\n",
2516 hmp->volhdrno);
2518 } else {
2519 error = EINVAL;
2520 kprintf("hammer2: no valid volume headers found!\n");
2522 return (error);
2526 * This handles hysteresis on regular file flushes. Because the BIOs are
2527 * routed to a thread it is possible for an excessive number to build up
2528 * and cause long front-end stalls long before the runningbuffspace limit
2529 * is hit, so we implement hammer2_flush_pipe to control the
2530 * hysteresis.
2532 * This is a particular problem when compression is used.
2534 void
2535 hammer2_lwinprog_ref(hammer2_pfsmount_t *pmp)
2537 atomic_add_int(&pmp->count_lwinprog, 1);
2540 void
2541 hammer2_lwinprog_drop(hammer2_pfsmount_t *pmp)
2543 int lwinprog;
2545 lwinprog = atomic_fetchadd_int(&pmp->count_lwinprog, -1);
2546 if ((lwinprog & HAMMER2_LWINPROG_WAITING) &&
2547 (lwinprog & HAMMER2_LWINPROG_MASK) <= hammer2_flush_pipe * 2 / 3) {
2548 atomic_clear_int(&pmp->count_lwinprog,
2549 HAMMER2_LWINPROG_WAITING);
2550 wakeup(&pmp->count_lwinprog);
2554 void
2555 hammer2_lwinprog_wait(hammer2_pfsmount_t *pmp)
2557 int lwinprog;
2559 for (;;) {
2560 lwinprog = pmp->count_lwinprog;
2561 cpu_ccfence();
2562 if ((lwinprog & HAMMER2_LWINPROG_MASK) < hammer2_flush_pipe)
2563 break;
2564 tsleep_interlock(&pmp->count_lwinprog, 0);
2565 atomic_set_int(&pmp->count_lwinprog, HAMMER2_LWINPROG_WAITING);
2566 lwinprog = pmp->count_lwinprog;
2567 if ((lwinprog & HAMMER2_LWINPROG_MASK) < hammer2_flush_pipe)
2568 break;
2569 tsleep(&pmp->count_lwinprog, PINTERLOCKED, "h2wpipe", hz);
2574 * Manage excessive memory resource use for chain and related
2575 * structures.
2577 void
2578 hammer2_pfs_memory_wait(hammer2_pfsmount_t *pmp)
2580 uint32_t waiting;
2581 uint32_t count;
2582 uint32_t limit;
2583 #if 0
2584 static int zzticks;
2585 #endif
2588 * Atomic check condition and wait. Also do an early speedup of
2589 * the syncer to try to avoid hitting the wait.
2591 for (;;) {
2592 waiting = pmp->inmem_dirty_chains;
2593 cpu_ccfence();
2594 count = waiting & HAMMER2_DIRTYCHAIN_MASK;
2596 limit = pmp->mp->mnt_nvnodelistsize / 10;
2597 if (limit < hammer2_limit_dirty_chains)
2598 limit = hammer2_limit_dirty_chains;
2599 if (limit < 1000)
2600 limit = 1000;
2602 #if 0
2603 if ((int)(ticks - zzticks) > hz) {
2604 zzticks = ticks;
2605 kprintf("count %ld %ld\n", count, limit);
2607 #endif
2610 * Block if there are too many dirty chains present, wait
2611 * for the flush to clean some out.
2613 if (count > limit) {
2614 tsleep_interlock(&pmp->inmem_dirty_chains, 0);
2615 if (atomic_cmpset_int(&pmp->inmem_dirty_chains,
2616 waiting,
2617 waiting | HAMMER2_DIRTYCHAIN_WAITING)) {
2618 speedup_syncer(pmp->mp);
2619 tsleep(&pmp->inmem_dirty_chains, PINTERLOCKED,
2620 "chnmem", hz);
2622 continue; /* loop on success or fail */
2626 * Try to start an early flush before we are forced to block.
2628 if (count > limit * 7 / 10)
2629 speedup_syncer(pmp->mp);
2630 break;
2634 void
2635 hammer2_pfs_memory_inc(hammer2_pfsmount_t *pmp)
2637 if (pmp) {
2638 atomic_add_int(&pmp->inmem_dirty_chains, 1);
2642 void
2643 hammer2_pfs_memory_wakeup(hammer2_pfsmount_t *pmp)
2645 uint32_t waiting;
2647 if (pmp == NULL)
2648 return;
2650 for (;;) {
2651 waiting = pmp->inmem_dirty_chains;
2652 cpu_ccfence();
2653 if (atomic_cmpset_int(&pmp->inmem_dirty_chains,
2654 waiting,
2655 (waiting - 1) &
2656 ~HAMMER2_DIRTYCHAIN_WAITING)) {
2657 break;
2661 if (waiting & HAMMER2_DIRTYCHAIN_WAITING)
2662 wakeup(&pmp->inmem_dirty_chains);
2666 * Debugging
2668 void
2669 hammer2_dump_chain(hammer2_chain_t *chain, int tab, int *countp, char pfx)
2671 hammer2_chain_t *scan;
2672 hammer2_chain_t *parent;
2674 --*countp;
2675 if (*countp == 0) {
2676 kprintf("%*.*s...\n", tab, tab, "");
2677 return;
2679 if (*countp < 0)
2680 return;
2681 kprintf("%*.*s%c-chain %p.%d %016jx/%d mir=%016jx\n",
2682 tab, tab, "", pfx,
2683 chain, chain->bref.type,
2684 chain->bref.key, chain->bref.keybits,
2685 chain->bref.mirror_tid);
2687 kprintf("%*.*s [%08x] (%s) refs=%d\n",
2688 tab, tab, "",
2689 chain->flags,
2690 ((chain->bref.type == HAMMER2_BREF_TYPE_INODE &&
2691 chain->data) ? (char *)chain->data->ipdata.filename : "?"),
2692 chain->refs);
2694 kprintf("%*.*s core [%08x]",
2695 tab, tab, "",
2696 chain->core.flags);
2698 parent = chain->parent;
2699 if (parent)
2700 kprintf("\n%*.*s p=%p [pflags %08x prefs %d",
2701 tab, tab, "",
2702 parent, parent->flags, parent->refs);
2703 if (RB_EMPTY(&chain->core.rbtree)) {
2704 kprintf("\n");
2705 } else {
2706 kprintf(" {\n");
2707 RB_FOREACH(scan, hammer2_chain_tree, &chain->core.rbtree)
2708 hammer2_dump_chain(scan, tab + 4, countp, 'a');
2709 if (chain->bref.type == HAMMER2_BREF_TYPE_INODE && chain->data)
2710 kprintf("%*.*s}(%s)\n", tab, tab, "",
2711 chain->data->ipdata.filename);
2712 else
2713 kprintf("%*.*s}\n", tab, tab, "");