2 * Implementation of the Common Access Method Transport (XPT) layer.
4 * Copyright (c) 1997, 1998, 1999 Justin T. Gibbs.
5 * Copyright (c) 1997, 1998, 1999 Kenneth D. Merry.
8 * Redistribution and use in source and binary forms, with or without
9 * modification, are permitted provided that the following conditions
11 * 1. Redistributions of source code must retain the above copyright
12 * notice, this list of conditions, and the following disclaimer,
13 * without modification, immediately at the beginning of the file.
14 * 2. The name of the author may not be used to endorse or promote products
15 * derived from this software without specific prior written permission.
17 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
18 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
19 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
20 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE FOR
21 * ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
22 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
23 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
24 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
25 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
26 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
29 * $FreeBSD: src/sys/cam/cam_xpt.c,v 1.80.2.18 2002/12/09 17:31:55 gibbs Exp $
30 * $DragonFly: src/sys/bus/cam/cam_xpt.c,v 1.43 2007/11/24 19:19:43 pavalos Exp $
32 #include <sys/param.h>
33 #include <sys/systm.h>
34 #include <sys/types.h>
35 #include <sys/malloc.h>
36 #include <sys/kernel.h>
39 #include <sys/device.h>
40 #include <sys/fcntl.h>
42 #include <sys/devicestat.h>
43 #include <sys/interrupt.h>
46 #include <sys/thread.h>
47 #include <sys/thread2.h>
49 #include <machine/clock.h>
53 #include "cam_periph.h"
56 #include "cam_xpt_sim.h"
57 #include "cam_xpt_periph.h"
58 #include "cam_debug.h"
60 #include "scsi/scsi_all.h"
61 #include "scsi/scsi_message.h"
62 #include "scsi/scsi_pass.h"
65 /* Datastructures internal to the xpt layer */
68 * Definition of an async handler callback block. These are used to add
69 * SIMs and peripherals to the async callback lists.
72 SLIST_ENTRY(async_node
) links
;
73 u_int32_t event_enable
; /* Async Event enables */
74 void (*callback
)(void *arg
, u_int32_t code
,
75 struct cam_path
*path
, void *args
);
79 SLIST_HEAD(async_list
, async_node
);
80 SLIST_HEAD(periph_list
, cam_periph
);
81 static STAILQ_HEAD(highpowerlist
, ccb_hdr
) highpowerq
;
84 * This is the maximum number of high powered commands (e.g. start unit)
85 * that can be outstanding at a particular time.
87 #ifndef CAM_MAX_HIGHPOWER
88 #define CAM_MAX_HIGHPOWER 4
91 /* number of high powered commands that can go through right now */
92 static int num_highpower
= CAM_MAX_HIGHPOWER
;
95 * Structure for queueing a device in a run queue.
96 * There is one run queue for allocating new ccbs,
97 * and another for sending ccbs to the controller.
101 struct cam_ed
*device
;
105 * The CAM EDT (Existing Device Table) contains the device information for
106 * all devices for all busses in the system. The table contains a
107 * cam_ed structure for each device on the bus.
110 TAILQ_ENTRY(cam_ed
) links
;
111 struct cam_ed_qinfo alloc_ccb_entry
;
112 struct cam_ed_qinfo send_ccb_entry
;
113 struct cam_et
*target
;
116 * Queue of type drivers wanting to do
117 * work on this device.
119 struct cam_ccbq ccbq
; /* Queue of pending ccbs */
120 struct async_list asyncs
; /* Async callback info for this B/T/L */
121 struct periph_list periphs
; /* All attached devices */
122 u_int generation
; /* Generation number */
123 struct cam_periph
*owner
; /* Peripheral driver's ownership tag */
124 struct xpt_quirk_entry
*quirk
; /* Oddities about this device */
125 /* Storage for the inquiry data */
126 #ifdef CAM_NEW_TRAN_CODE
128 u_int protocol_version
;
130 u_int transport_version
;
131 #endif /* CAM_NEW_TRAN_CODE */
132 struct scsi_inquiry_data inq_data
;
133 u_int8_t inq_flags
; /*
134 * Current settings for inquiry flags.
135 * This allows us to override settings
136 * like disconnection and tagged
137 * queuing for a device.
139 u_int8_t queue_flags
; /* Queue flags from the control page */
140 u_int8_t serial_num_len
;
141 u_int8_t
*serial_num
;
142 u_int32_t qfrozen_cnt
;
144 #define CAM_DEV_UNCONFIGURED 0x01
145 #define CAM_DEV_REL_TIMEOUT_PENDING 0x02
146 #define CAM_DEV_REL_ON_COMPLETE 0x04
147 #define CAM_DEV_REL_ON_QUEUE_EMPTY 0x08
148 #define CAM_DEV_RESIZE_QUEUE_NEEDED 0x10
149 #define CAM_DEV_TAG_AFTER_COUNT 0x20
150 #define CAM_DEV_INQUIRY_DATA_VALID 0x40
151 u_int32_t tag_delay_count
;
152 #define CAM_TAG_DELAY_COUNT 5
154 struct callout c_handle
;
158 * Each target is represented by an ET (Existing Target). These
159 * entries are created when a target is successfully probed with an
160 * identify, and removed when a device fails to respond after a number
161 * of retries, or a bus rescan finds the device missing.
164 TAILQ_HEAD(, cam_ed
) ed_entries
;
165 TAILQ_ENTRY(cam_et
) links
;
167 target_id_t target_id
;
170 struct timeval last_reset
; /* uptime of last reset */
174 * Each bus is represented by an EB (Existing Bus). These entries
175 * are created by calls to xpt_bus_register and deleted by calls to
176 * xpt_bus_deregister.
179 TAILQ_HEAD(, cam_et
) et_entries
;
180 TAILQ_ENTRY(cam_eb
) links
;
183 struct timeval last_reset
; /* uptime of last reset */
185 #define CAM_EB_RUNQ_SCHEDULED 0x01
191 struct cam_periph
*periph
;
193 struct cam_et
*target
;
194 struct cam_ed
*device
;
197 struct xpt_quirk_entry
{
198 struct scsi_inquiry_pattern inq_pat
;
200 #define CAM_QUIRK_NOLUNS 0x01
201 #define CAM_QUIRK_NOSERIAL 0x02
202 #define CAM_QUIRK_HILUNS 0x04
206 #define CAM_SCSI2_MAXLUN 8
214 u_int32_t generation
;
217 static const char quantum
[] = "QUANTUM";
218 static const char sony
[] = "SONY";
219 static const char west_digital
[] = "WDIGTL";
220 static const char samsung
[] = "SAMSUNG";
221 static const char seagate
[] = "SEAGATE";
222 static const char microp
[] = "MICROP";
224 static struct xpt_quirk_entry xpt_quirk_table
[] =
227 /* Reports QUEUE FULL for temporary resource shortages */
228 { T_DIRECT
, SIP_MEDIA_FIXED
, quantum
, "XP39100*", "*" },
229 /*quirks*/0, /*mintags*/24, /*maxtags*/32
232 /* Reports QUEUE FULL for temporary resource shortages */
233 { T_DIRECT
, SIP_MEDIA_FIXED
, quantum
, "XP34550*", "*" },
234 /*quirks*/0, /*mintags*/24, /*maxtags*/32
237 /* Reports QUEUE FULL for temporary resource shortages */
238 { T_DIRECT
, SIP_MEDIA_FIXED
, quantum
, "XP32275*", "*" },
239 /*quirks*/0, /*mintags*/24, /*maxtags*/32
242 /* Broken tagged queuing drive */
243 { T_DIRECT
, SIP_MEDIA_FIXED
, microp
, "4421-07*", "*" },
244 /*quirks*/0, /*mintags*/0, /*maxtags*/0
247 /* Broken tagged queuing drive */
248 { T_DIRECT
, SIP_MEDIA_FIXED
, "HP", "C372*", "*" },
249 /*quirks*/0, /*mintags*/0, /*maxtags*/0
252 /* Broken tagged queuing drive */
253 { T_DIRECT
, SIP_MEDIA_FIXED
, microp
, "3391*", "x43h" },
254 /*quirks*/0, /*mintags*/0, /*maxtags*/0
258 * Unfortunately, the Quantum Atlas III has the same
259 * problem as the Atlas II drives above.
260 * Reported by: "Johan Granlund" <johan@granlund.nu>
262 * For future reference, the drive with the problem was:
263 * QUANTUM QM39100TD-SW N1B0
265 * It's possible that Quantum will fix the problem in later
266 * firmware revisions. If that happens, the quirk entry
267 * will need to be made specific to the firmware revisions
271 /* Reports QUEUE FULL for temporary resource shortages */
272 { T_DIRECT
, SIP_MEDIA_FIXED
, quantum
, "QM39100*", "*" },
273 /*quirks*/0, /*mintags*/24, /*maxtags*/32
277 * 18 Gig Atlas III, same problem as the 9G version.
278 * Reported by: Andre Albsmeier
279 * <andre.albsmeier@mchp.siemens.de>
281 * For future reference, the drive with the problem was:
282 * QUANTUM QM318000TD-S N491
284 /* Reports QUEUE FULL for temporary resource shortages */
285 { T_DIRECT
, SIP_MEDIA_FIXED
, quantum
, "QM318000*", "*" },
286 /*quirks*/0, /*mintags*/24, /*maxtags*/32
290 * Broken tagged queuing drive
291 * Reported by: Bret Ford <bford@uop.cs.uop.edu>
292 * and: Martin Renters <martin@tdc.on.ca>
294 { T_DIRECT
, SIP_MEDIA_FIXED
, seagate
, "ST410800*", "71*" },
295 /*quirks*/0, /*mintags*/0, /*maxtags*/0
298 * The Seagate Medalist Pro drives have very poor write
299 * performance with anything more than 2 tags.
301 * Reported by: Paul van der Zwan <paulz@trantor.xs4all.nl>
302 * Drive: <SEAGATE ST36530N 1444>
304 * Reported by: Jeremy Lea <reg@shale.csir.co.za>
305 * Drive: <SEAGATE ST34520W 1281>
307 * No one has actually reported that the 9G version
308 * (ST39140*) of the Medalist Pro has the same problem, but
309 * we're assuming that it does because the 4G and 6.5G
310 * versions of the drive are broken.
313 { T_DIRECT
, SIP_MEDIA_FIXED
, seagate
, "ST34520*", "*"},
314 /*quirks*/0, /*mintags*/2, /*maxtags*/2
317 { T_DIRECT
, SIP_MEDIA_FIXED
, seagate
, "ST36530*", "*"},
318 /*quirks*/0, /*mintags*/2, /*maxtags*/2
321 { T_DIRECT
, SIP_MEDIA_FIXED
, seagate
, "ST39140*", "*"},
322 /*quirks*/0, /*mintags*/2, /*maxtags*/2
326 * Slow when tagged queueing is enabled. Write performance
327 * steadily drops off with more and more concurrent
328 * transactions. Best sequential write performance with
329 * tagged queueing turned off and write caching turned on.
332 * Submitted by: Hideaki Okada <hokada@isl.melco.co.jp>
333 * Drive: DCAS-34330 w/ "S65A" firmware.
335 * The drive with the problem had the "S65A" firmware
336 * revision, and has also been reported (by Stephen J.
337 * Roznowski <sjr@home.net>) for a drive with the "S61A"
340 * Although no one has reported problems with the 2 gig
341 * version of the DCAS drive, the assumption is that it
342 * has the same problems as the 4 gig version. Therefore
343 * this quirk entries disables tagged queueing for all
346 { T_DIRECT
, SIP_MEDIA_FIXED
, "IBM", "DCAS*", "*" },
347 /*quirks*/0, /*mintags*/0, /*maxtags*/0
350 /* Broken tagged queuing drive */
351 { T_DIRECT
, SIP_MEDIA_REMOVABLE
, "iomega", "jaz*", "*" },
352 /*quirks*/0, /*mintags*/0, /*maxtags*/0
355 /* Broken tagged queuing drive */
356 { T_DIRECT
, SIP_MEDIA_FIXED
, "CONNER", "CFP2107*", "*" },
357 /*quirks*/0, /*mintags*/0, /*maxtags*/0
361 * Broken tagged queuing drive.
363 * NAKAJI Hiroyuki <nakaji@zeisei.dpri.kyoto-u.ac.jp>
366 { T_DIRECT
, SIP_MEDIA_FIXED
, samsung
, "WN34324U*", "*" },
367 /*quirks*/0, /*mintags*/0, /*maxtags*/0
371 * Slow when tagged queueing is enabled. (1.5MB/sec versus
373 * Submitted by: Andrew Gallatin <gallatin@cs.duke.edu>
374 * Best performance with these drives is achieved with
375 * tagged queueing turned off, and write caching turned on.
377 { T_DIRECT
, SIP_MEDIA_FIXED
, west_digital
, "WDE*", "*" },
378 /*quirks*/0, /*mintags*/0, /*maxtags*/0
382 * Slow when tagged queueing is enabled. (1.5MB/sec versus
384 * Submitted by: Andrew Gallatin <gallatin@cs.duke.edu>
385 * Best performance with these drives is achieved with
386 * tagged queueing turned off, and write caching turned on.
388 { T_DIRECT
, SIP_MEDIA_FIXED
, west_digital
, "ENTERPRISE", "*" },
389 /*quirks*/0, /*mintags*/0, /*maxtags*/0
393 * Doesn't handle queue full condition correctly,
394 * so we need to limit maxtags to what the device
395 * can handle instead of determining this automatically.
397 { T_DIRECT
, SIP_MEDIA_FIXED
, samsung
, "WN321010S*", "*" },
398 /*quirks*/0, /*mintags*/2, /*maxtags*/32
401 /* Really only one LUN */
402 { T_ENCLOSURE
, SIP_MEDIA_FIXED
, "SUN", "SENA", "*" },
403 CAM_QUIRK_NOLUNS
, /*mintags*/0, /*maxtags*/0
406 /* I can't believe we need a quirk for DPT volumes. */
407 { T_ANY
, SIP_MEDIA_FIXED
|SIP_MEDIA_REMOVABLE
, "DPT", "*", "*" },
408 CAM_QUIRK_NOSERIAL
|CAM_QUIRK_NOLUNS
,
409 /*mintags*/0, /*maxtags*/255
413 * Many Sony CDROM drives don't like multi-LUN probing.
415 { T_CDROM
, SIP_MEDIA_REMOVABLE
, sony
, "CD-ROM CDU*", "*" },
416 CAM_QUIRK_NOLUNS
, /*mintags*/0, /*maxtags*/0
420 * This drive doesn't like multiple LUN probing.
421 * Submitted by: Parag Patel <parag@cgt.com>
423 { T_WORM
, SIP_MEDIA_REMOVABLE
, sony
, "CD-R CDU9*", "*" },
424 CAM_QUIRK_NOLUNS
, /*mintags*/0, /*maxtags*/0
427 { T_WORM
, SIP_MEDIA_REMOVABLE
, "YAMAHA", "CDR100*", "*" },
428 CAM_QUIRK_NOLUNS
, /*mintags*/0, /*maxtags*/0
432 * The 8200 doesn't like multi-lun probing, and probably
433 * don't like serial number requests either.
436 T_SEQUENTIAL
, SIP_MEDIA_REMOVABLE
, "EXABYTE",
439 CAM_QUIRK_NOSERIAL
|CAM_QUIRK_NOLUNS
, /*mintags*/0, /*maxtags*/0
443 * Let's try the same as above, but for a drive that says
444 * it's an IPL-6860 but is actually an EXB 8200.
447 T_SEQUENTIAL
, SIP_MEDIA_REMOVABLE
, "EXABYTE",
450 CAM_QUIRK_NOSERIAL
|CAM_QUIRK_NOLUNS
, /*mintags*/0, /*maxtags*/0
454 * These Hitachi drives don't like multi-lun probing.
455 * The PR submitter has a DK319H, but says that the Linux
456 * kernel has a similar work-around for the DK312 and DK314,
457 * so all DK31* drives are quirked here.
459 * Submitted by: Paul Haddad <paul@pth.com>
461 { T_DIRECT
, SIP_MEDIA_FIXED
, "HITACHI", "DK31*", "*" },
462 CAM_QUIRK_NOLUNS
, /*mintags*/2, /*maxtags*/255
466 * This old revision of the TDC3600 is also SCSI-1, and
467 * hangs upon serial number probing.
470 T_SEQUENTIAL
, SIP_MEDIA_REMOVABLE
, "TANDBERG",
473 CAM_QUIRK_NOSERIAL
, /*mintags*/0, /*maxtags*/0
477 * Would repond to all LUNs if asked for.
480 T_SEQUENTIAL
, SIP_MEDIA_REMOVABLE
, "CALIPER",
483 CAM_QUIRK_NOLUNS
, /*mintags*/0, /*maxtags*/0
487 * Would repond to all LUNs if asked for.
490 T_SEQUENTIAL
, SIP_MEDIA_REMOVABLE
, "KENNEDY",
493 CAM_QUIRK_NOLUNS
, /*mintags*/0, /*maxtags*/0
496 /* Submitted by: Matthew Dodd <winter@jurai.net> */
497 { T_PROCESSOR
, SIP_MEDIA_FIXED
, "Cabletrn", "EA41*", "*" },
498 CAM_QUIRK_NOLUNS
, /*mintags*/0, /*maxtags*/0
501 /* Submitted by: Matthew Dodd <winter@jurai.net> */
502 { T_PROCESSOR
, SIP_MEDIA_FIXED
, "CABLETRN", "EA41*", "*" },
503 CAM_QUIRK_NOLUNS
, /*mintags*/0, /*maxtags*/0
506 /* TeraSolutions special settings for TRC-22 RAID */
507 { T_DIRECT
, SIP_MEDIA_FIXED
, "TERASOLU", "TRC-22", "*" },
508 /*quirks*/0, /*mintags*/55, /*maxtags*/255
511 /* Veritas Storage Appliance */
512 { T_DIRECT
, SIP_MEDIA_FIXED
, "VERITAS", "*", "*" },
513 CAM_QUIRK_HILUNS
, /*mintags*/2, /*maxtags*/1024
517 * Would respond to all LUNs. Device type and removable
518 * flag are jumper-selectable.
520 { T_ANY
, SIP_MEDIA_REMOVABLE
|SIP_MEDIA_FIXED
, "MaxOptix",
523 CAM_QUIRK_NOLUNS
, /*mintags*/0, /*maxtags*/0
526 /* Default tagged queuing parameters for all devices */
528 T_ANY
, SIP_MEDIA_REMOVABLE
|SIP_MEDIA_FIXED
,
529 /*vendor*/"*", /*product*/"*", /*revision*/"*"
531 /*quirks*/0, /*mintags*/2, /*maxtags*/255
535 static const int xpt_quirk_table_size
=
536 sizeof(xpt_quirk_table
) / sizeof(*xpt_quirk_table
);
540 DM_RET_FLAG_MASK
= 0x0f,
543 DM_RET_DESCEND
= 0x20,
545 DM_RET_ACTION_MASK
= 0xf0
553 } xpt_traverse_depth
;
555 struct xpt_traverse_config
{
556 xpt_traverse_depth depth
;
561 typedef int xpt_busfunc_t (struct cam_eb
*bus
, void *arg
);
562 typedef int xpt_targetfunc_t (struct cam_et
*target
, void *arg
);
563 typedef int xpt_devicefunc_t (struct cam_ed
*device
, void *arg
);
564 typedef int xpt_periphfunc_t (struct cam_periph
*periph
, void *arg
);
565 typedef int xpt_pdrvfunc_t (struct periph_driver
**pdrv
, void *arg
);
567 /* Transport layer configuration information */
568 static struct xpt_softc xsoftc
;
570 /* Queues for our software interrupt handler */
571 typedef TAILQ_HEAD(cam_isrq
, ccb_hdr
) cam_isrq_t
;
572 static cam_isrq_t cam_bioq
;
573 static cam_isrq_t cam_netq
;
575 /* "Pool" of inactive ccbs managed by xpt_alloc_ccb and xpt_free_ccb */
576 static SLIST_HEAD(,ccb_hdr
) ccb_freeq
;
577 static u_int xpt_max_ccbs
; /*
578 * Maximum size of ccb pool. Modified as
579 * devices are added/removed or have their
580 * opening counts changed.
582 static u_int xpt_ccb_count
; /* Current count of allocated ccbs */
584 struct cam_periph
*xpt_periph
;
586 static periph_init_t xpt_periph_init
;
588 static periph_init_t probe_periph_init
;
590 static struct periph_driver xpt_driver
=
592 xpt_periph_init
, "xpt",
593 TAILQ_HEAD_INITIALIZER(xpt_driver
.units
)
596 static struct periph_driver probe_driver
=
598 probe_periph_init
, "probe",
599 TAILQ_HEAD_INITIALIZER(probe_driver
.units
)
602 PERIPHDRIVER_DECLARE(xpt
, xpt_driver
);
603 PERIPHDRIVER_DECLARE(probe
, probe_driver
);
605 #define XPT_CDEV_MAJOR 104
607 static d_open_t xptopen
;
608 static d_close_t xptclose
;
609 static d_ioctl_t xptioctl
;
611 static struct dev_ops xpt_ops
= {
612 { "xpt", XPT_CDEV_MAJOR
, 0 },
618 static struct intr_config_hook
*xpt_config_hook
;
620 /* Registered busses */
621 static TAILQ_HEAD(,cam_eb
) xpt_busses
;
622 static u_int bus_generation
;
624 /* Storage for debugging datastructures */
626 struct cam_path
*cam_dpath
;
627 u_int32_t cam_dflags
;
628 u_int32_t cam_debug_delay
;
631 #if defined(CAM_DEBUG_FLAGS) && !defined(CAMDEBUG)
632 #error "You must have options CAMDEBUG to use options CAM_DEBUG_FLAGS"
636 * In order to enable the CAM_DEBUG_* options, the user must have CAMDEBUG
637 * enabled. Also, the user must have either none, or all of CAM_DEBUG_BUS,
638 * CAM_DEBUG_TARGET, and CAM_DEBUG_LUN specified.
640 #if defined(CAM_DEBUG_BUS) || defined(CAM_DEBUG_TARGET) \
641 || defined(CAM_DEBUG_LUN)
643 #if !defined(CAM_DEBUG_BUS) || !defined(CAM_DEBUG_TARGET) \
644 || !defined(CAM_DEBUG_LUN)
645 #error "You must define all or none of CAM_DEBUG_BUS, CAM_DEBUG_TARGET \
647 #endif /* !CAM_DEBUG_BUS || !CAM_DEBUG_TARGET || !CAM_DEBUG_LUN */
648 #else /* !CAMDEBUG */
649 #error "You must use options CAMDEBUG if you use the CAM_DEBUG_* options"
650 #endif /* CAMDEBUG */
651 #endif /* CAM_DEBUG_BUS || CAM_DEBUG_TARGET || CAM_DEBUG_LUN */
653 /* Our boot-time initialization hook */
654 static int cam_module_event_handler(module_t
, int /*modeventtype_t*/, void *);
656 static moduledata_t cam_moduledata
= {
658 cam_module_event_handler
,
662 static void xpt_init(void *);
664 DECLARE_MODULE(cam
, cam_moduledata
, SI_SUB_CONFIGURE
, SI_ORDER_SECOND
);
665 MODULE_VERSION(cam
, 1);
668 static cam_status
xpt_compile_path(struct cam_path
*new_path
,
669 struct cam_periph
*perph
,
671 target_id_t target_id
,
674 static void xpt_release_path(struct cam_path
*path
);
676 static void xpt_async_bcast(struct async_list
*async_head
,
677 u_int32_t async_code
,
678 struct cam_path
*path
,
680 static void xpt_dev_async(u_int32_t async_code
,
682 struct cam_et
*target
,
683 struct cam_ed
*device
,
685 static path_id_t
xptnextfreepathid(void);
686 static path_id_t
xptpathid(const char *sim_name
, int sim_unit
, int sim_bus
);
687 static union ccb
*xpt_get_ccb(struct cam_ed
*device
);
688 static int xpt_schedule_dev(struct camq
*queue
, cam_pinfo
*dev_pinfo
,
689 u_int32_t new_priority
);
690 static void xpt_run_dev_allocq(struct cam_eb
*bus
);
691 static void xpt_run_dev_sendq(struct cam_eb
*bus
);
692 static timeout_t xpt_release_devq_timeout
;
693 static void xpt_release_bus(struct cam_eb
*bus
);
694 static void xpt_release_devq_device(struct cam_ed
*dev
, u_int count
,
696 static struct cam_et
*
697 xpt_alloc_target(struct cam_eb
*bus
, target_id_t target_id
);
698 static void xpt_release_target(struct cam_eb
*bus
, struct cam_et
*target
);
699 static struct cam_ed
*
700 xpt_alloc_device(struct cam_eb
*bus
, struct cam_et
*target
,
702 static void xpt_release_device(struct cam_eb
*bus
, struct cam_et
*target
,
703 struct cam_ed
*device
);
704 static u_int32_t
xpt_dev_ccbq_resize(struct cam_path
*path
, int newopenings
);
705 static struct cam_eb
*
706 xpt_find_bus(path_id_t path_id
);
707 static struct cam_et
*
708 xpt_find_target(struct cam_eb
*bus
, target_id_t target_id
);
709 static struct cam_ed
*
710 xpt_find_device(struct cam_et
*target
, lun_id_t lun_id
);
711 static void xpt_scan_bus(struct cam_periph
*periph
, union ccb
*ccb
);
712 static void xpt_scan_lun(struct cam_periph
*periph
,
713 struct cam_path
*path
, cam_flags flags
,
715 static void xptscandone(struct cam_periph
*periph
, union ccb
*done_ccb
);
716 static xpt_busfunc_t xptconfigbuscountfunc
;
717 static xpt_busfunc_t xptconfigfunc
;
718 static void xpt_config(void *arg
);
719 static xpt_devicefunc_t xptpassannouncefunc
;
720 static void xpt_finishconfig(struct cam_periph
*periph
, union ccb
*ccb
);
721 static void xptaction(struct cam_sim
*sim
, union ccb
*work_ccb
);
722 static void xptpoll(struct cam_sim
*sim
);
723 static inthand2_t swi_camnet
;
724 static inthand2_t swi_cambio
;
725 static void camisr(cam_isrq_t
*queue
);
727 static void xptstart(struct cam_periph
*periph
, union ccb
*work_ccb
);
728 static void xptasync(struct cam_periph
*periph
,
729 u_int32_t code
, cam_path
*path
);
731 static dev_match_ret
xptbusmatch(struct dev_match_pattern
*patterns
,
732 u_int num_patterns
, struct cam_eb
*bus
);
733 static dev_match_ret
xptdevicematch(struct dev_match_pattern
*patterns
,
735 struct cam_ed
*device
);
736 static dev_match_ret
xptperiphmatch(struct dev_match_pattern
*patterns
,
738 struct cam_periph
*periph
);
739 static xpt_busfunc_t xptedtbusfunc
;
740 static xpt_targetfunc_t xptedttargetfunc
;
741 static xpt_devicefunc_t xptedtdevicefunc
;
742 static xpt_periphfunc_t xptedtperiphfunc
;
743 static xpt_pdrvfunc_t xptplistpdrvfunc
;
744 static xpt_periphfunc_t xptplistperiphfunc
;
745 static int xptedtmatch(struct ccb_dev_match
*cdm
);
746 static int xptperiphlistmatch(struct ccb_dev_match
*cdm
);
747 static int xptbustraverse(struct cam_eb
*start_bus
,
748 xpt_busfunc_t
*tr_func
, void *arg
);
749 static int xpttargettraverse(struct cam_eb
*bus
,
750 struct cam_et
*start_target
,
751 xpt_targetfunc_t
*tr_func
, void *arg
);
752 static int xptdevicetraverse(struct cam_et
*target
,
753 struct cam_ed
*start_device
,
754 xpt_devicefunc_t
*tr_func
, void *arg
);
755 static int xptperiphtraverse(struct cam_ed
*device
,
756 struct cam_periph
*start_periph
,
757 xpt_periphfunc_t
*tr_func
, void *arg
);
758 static int xptpdrvtraverse(struct periph_driver
**start_pdrv
,
759 xpt_pdrvfunc_t
*tr_func
, void *arg
);
760 static int xptpdperiphtraverse(struct periph_driver
**pdrv
,
761 struct cam_periph
*start_periph
,
762 xpt_periphfunc_t
*tr_func
,
764 static xpt_busfunc_t xptdefbusfunc
;
765 static xpt_targetfunc_t xptdeftargetfunc
;
766 static xpt_devicefunc_t xptdefdevicefunc
;
767 static xpt_periphfunc_t xptdefperiphfunc
;
768 static int xpt_for_all_busses(xpt_busfunc_t
*tr_func
, void *arg
);
770 static int xpt_for_all_targets(xpt_targetfunc_t
*tr_func
,
773 static int xpt_for_all_devices(xpt_devicefunc_t
*tr_func
,
776 static int xpt_for_all_periphs(xpt_periphfunc_t
*tr_func
,
779 static xpt_devicefunc_t xptsetasyncfunc
;
780 static xpt_busfunc_t xptsetasyncbusfunc
;
781 static cam_status
xptregister(struct cam_periph
*periph
,
783 static cam_status
proberegister(struct cam_periph
*periph
,
785 static void probeschedule(struct cam_periph
*probe_periph
);
786 static void probestart(struct cam_periph
*periph
, union ccb
*start_ccb
);
787 static void proberequestdefaultnegotiation(struct cam_periph
*periph
);
788 static void probedone(struct cam_periph
*periph
, union ccb
*done_ccb
);
789 static void probecleanup(struct cam_periph
*periph
);
790 static void xpt_find_quirk(struct cam_ed
*device
);
791 #ifdef CAM_NEW_TRAN_CODE
792 static void xpt_devise_transport(struct cam_path
*path
);
793 #endif /* CAM_NEW_TRAN_CODE */
794 static void xpt_set_transfer_settings(struct ccb_trans_settings
*cts
,
795 struct cam_ed
*device
,
797 static void xpt_toggle_tags(struct cam_path
*path
);
798 static void xpt_start_tags(struct cam_path
*path
);
799 static __inline
int xpt_schedule_dev_allocq(struct cam_eb
*bus
,
801 static __inline
int xpt_schedule_dev_sendq(struct cam_eb
*bus
,
803 static __inline
int periph_is_queued(struct cam_periph
*periph
);
804 static __inline
int device_is_alloc_queued(struct cam_ed
*device
);
805 static __inline
int device_is_send_queued(struct cam_ed
*device
);
806 static __inline
int dev_allocq_is_runnable(struct cam_devq
*devq
);
809 xpt_schedule_dev_allocq(struct cam_eb
*bus
, struct cam_ed
*dev
)
813 if (bus
->sim
->devq
&& dev
->ccbq
.devq_openings
> 0) {
814 if ((dev
->flags
& CAM_DEV_RESIZE_QUEUE_NEEDED
) != 0) {
815 cam_ccbq_resize(&dev
->ccbq
,
816 dev
->ccbq
.dev_openings
817 + dev
->ccbq
.dev_active
);
818 dev
->flags
&= ~CAM_DEV_RESIZE_QUEUE_NEEDED
;
821 * The priority of a device waiting for CCB resources
822 * is that of the the highest priority peripheral driver
825 retval
= xpt_schedule_dev(&bus
->sim
->devq
->alloc_queue
,
826 &dev
->alloc_ccb_entry
.pinfo
,
827 CAMQ_GET_HEAD(&dev
->drvq
)->priority
);
836 xpt_schedule_dev_sendq(struct cam_eb
*bus
, struct cam_ed
*dev
)
840 if (bus
->sim
->devq
&& dev
->ccbq
.dev_openings
> 0) {
842 * The priority of a device waiting for controller
843 * resources is that of the the highest priority CCB
847 xpt_schedule_dev(&bus
->sim
->devq
->send_queue
,
848 &dev
->send_ccb_entry
.pinfo
,
849 CAMQ_GET_HEAD(&dev
->ccbq
.queue
)->priority
);
857 periph_is_queued(struct cam_periph
*periph
)
859 return (periph
->pinfo
.index
!= CAM_UNQUEUED_INDEX
);
863 device_is_alloc_queued(struct cam_ed
*device
)
865 return (device
->alloc_ccb_entry
.pinfo
.index
!= CAM_UNQUEUED_INDEX
);
869 device_is_send_queued(struct cam_ed
*device
)
871 return (device
->send_ccb_entry
.pinfo
.index
!= CAM_UNQUEUED_INDEX
);
875 dev_allocq_is_runnable(struct cam_devq
*devq
)
879 * Have space to do more work.
880 * Allowed to do work.
882 return ((devq
->alloc_queue
.qfrozen_cnt
== 0)
883 && (devq
->alloc_queue
.entries
> 0)
884 && (devq
->alloc_openings
> 0));
888 xpt_periph_init(void)
890 dev_ops_add(&xpt_ops
, 0, 0);
891 make_dev(&xpt_ops
, 0, UID_ROOT
, GID_OPERATOR
, 0600, "xpt0");
895 probe_periph_init(void)
901 xptdone(struct cam_periph
*periph
, union ccb
*done_ccb
)
903 /* Caller will release the CCB */
904 wakeup(&done_ccb
->ccb_h
.cbfcnp
);
908 xptopen(struct dev_open_args
*ap
)
910 cdev_t dev
= ap
->a_head
.a_dev
;
913 unit
= minor(dev
) & 0xff;
916 * Only allow read-write access.
918 if (((ap
->a_oflags
& FWRITE
) == 0) || ((ap
->a_oflags
& FREAD
) == 0))
922 * We don't allow nonblocking access.
924 if ((ap
->a_oflags
& O_NONBLOCK
) != 0) {
925 kprintf("xpt%d: can't do nonblocking access\n", unit
);
930 * We only have one transport layer right now. If someone accesses
931 * us via something other than minor number 1, point out their
935 kprintf("xptopen: got invalid xpt unit %d\n", unit
);
939 /* Mark ourselves open */
940 xsoftc
.flags
|= XPT_FLAG_OPEN
;
946 xptclose(struct dev_close_args
*ap
)
948 cdev_t dev
= ap
->a_head
.a_dev
;
951 unit
= minor(dev
) & 0xff;
954 * We only have one transport layer right now. If someone accesses
955 * us via something other than minor number 1, point out their
959 kprintf("xptclose: got invalid xpt unit %d\n", unit
);
963 /* Mark ourselves closed */
964 xsoftc
.flags
&= ~XPT_FLAG_OPEN
;
970 xptioctl(struct dev_ioctl_args
*ap
)
972 cdev_t dev
= ap
->a_head
.a_dev
;
976 unit
= minor(dev
) & 0xff;
979 * We only have one transport layer right now. If someone accesses
980 * us via something other than minor number 1, point out their
984 kprintf("xptioctl: got invalid xpt unit %d\n", unit
);
990 * For the transport layer CAMIOCOMMAND ioctl, we really only want
991 * to accept CCB types that don't quite make sense to send through a
992 * passthrough driver.
998 inccb
= (union ccb
*)ap
->a_data
;
1000 switch(inccb
->ccb_h
.func_code
) {
1003 if ((inccb
->ccb_h
.target_id
!= CAM_TARGET_WILDCARD
)
1004 || (inccb
->ccb_h
.target_lun
!= CAM_LUN_WILDCARD
)) {
1013 ccb
= xpt_alloc_ccb();
1016 * Create a path using the bus, target, and lun the
1019 if (xpt_create_path(&ccb
->ccb_h
.path
, xpt_periph
,
1020 inccb
->ccb_h
.path_id
,
1021 inccb
->ccb_h
.target_id
,
1022 inccb
->ccb_h
.target_lun
) !=
1028 /* Ensure all of our fields are correct */
1029 xpt_setup_ccb(&ccb
->ccb_h
, ccb
->ccb_h
.path
,
1030 inccb
->ccb_h
.pinfo
.priority
);
1031 xpt_merge_ccb(ccb
, inccb
);
1032 ccb
->ccb_h
.cbfcnp
= xptdone
;
1033 cam_periph_runccb(ccb
, NULL
, 0, 0, NULL
);
1034 bcopy(ccb
, inccb
, sizeof(union ccb
));
1035 xpt_free_path(ccb
->ccb_h
.path
);
1043 * This is an immediate CCB, so it's okay to
1044 * allocate it on the stack.
1048 * Create a path using the bus, target, and lun the
1051 if (xpt_create_path(&ccb
.ccb_h
.path
, xpt_periph
,
1052 inccb
->ccb_h
.path_id
,
1053 inccb
->ccb_h
.target_id
,
1054 inccb
->ccb_h
.target_lun
) !=
1059 /* Ensure all of our fields are correct */
1060 xpt_setup_ccb(&ccb
.ccb_h
, ccb
.ccb_h
.path
,
1061 inccb
->ccb_h
.pinfo
.priority
);
1062 xpt_merge_ccb(&ccb
, inccb
);
1063 ccb
.ccb_h
.cbfcnp
= xptdone
;
1065 bcopy(&ccb
, inccb
, sizeof(union ccb
));
1066 xpt_free_path(ccb
.ccb_h
.path
);
1070 case XPT_DEV_MATCH
: {
1071 struct cam_periph_map_info mapinfo
;
1072 struct cam_path
*old_path
;
1075 * We can't deal with physical addresses for this
1076 * type of transaction.
1078 if (inccb
->ccb_h
.flags
& CAM_DATA_PHYS
) {
1084 * Save this in case the caller had it set to
1085 * something in particular.
1087 old_path
= inccb
->ccb_h
.path
;
1090 * We really don't need a path for the matching
1091 * code. The path is needed because of the
1092 * debugging statements in xpt_action(). They
1093 * assume that the CCB has a valid path.
1095 inccb
->ccb_h
.path
= xpt_periph
->path
;
1097 bzero(&mapinfo
, sizeof(mapinfo
));
1100 * Map the pattern and match buffers into kernel
1101 * virtual address space.
1103 error
= cam_periph_mapmem(inccb
, &mapinfo
);
1106 inccb
->ccb_h
.path
= old_path
;
1111 * This is an immediate CCB, we can send it on directly.
1116 * Map the buffers back into user space.
1118 cam_periph_unmapmem(inccb
, &mapinfo
);
1120 inccb
->ccb_h
.path
= old_path
;
1132 * This is the getpassthru ioctl. It takes a XPT_GDEVLIST ccb as input,
1133 * with the periphal driver name and unit name filled in. The other
1134 * fields don't really matter as input. The passthrough driver name
1135 * ("pass"), and unit number are passed back in the ccb. The current
1136 * device generation number, and the index into the device peripheral
1137 * driver list, and the status are also passed back. Note that
1138 * since we do everything in one pass, unlike the XPT_GDEVLIST ccb,
1139 * we never return a status of CAM_GDEVLIST_LIST_CHANGED. It is
1140 * (or rather should be) impossible for the device peripheral driver
1141 * list to change since we look at the whole thing in one pass, and
1142 * we do it within a critical section.
1145 case CAMGETPASSTHRU
: {
1147 struct cam_periph
*periph
;
1148 struct periph_driver
**p_drv
;
1151 u_int cur_generation
;
1152 int base_periph_found
;
1155 ccb
= (union ccb
*)ap
->a_data
;
1156 unit
= ccb
->cgdl
.unit_number
;
1157 name
= ccb
->cgdl
.periph_name
;
1159 * Every 100 devices, we want to call splz() to check for
1160 * and allow the software interrupt handler a chance to run.
1162 * Most systems won't run into this check, but this should
1163 * avoid starvation in the software interrupt handler in
1168 ccb
= (union ccb
*)ap
->a_data
;
1170 base_periph_found
= 0;
1173 * Sanity check -- make sure we don't get a null peripheral
1176 if (*ccb
->cgdl
.periph_name
== '\0') {
1181 /* Keep the list from changing while we traverse it */
1184 cur_generation
= xsoftc
.generation
;
1186 /* first find our driver in the list of drivers */
1187 for (p_drv
= periph_drivers
; *p_drv
!= NULL
; p_drv
++) {
1188 if (strcmp((*p_drv
)->driver_name
, name
) == 0)
1192 if (*p_drv
== NULL
) {
1194 ccb
->ccb_h
.status
= CAM_REQ_CMP_ERR
;
1195 ccb
->cgdl
.status
= CAM_GDEVLIST_ERROR
;
1196 *ccb
->cgdl
.periph_name
= '\0';
1197 ccb
->cgdl
.unit_number
= 0;
1203 * Run through every peripheral instance of this driver
1204 * and check to see whether it matches the unit passed
1205 * in by the user. If it does, get out of the loops and
1206 * find the passthrough driver associated with that
1207 * peripheral driver.
1209 TAILQ_FOREACH(periph
, &(*p_drv
)->units
, unit_links
) {
1211 if (periph
->unit_number
== unit
) {
1213 } else if (--splbreaknum
== 0) {
1216 if (cur_generation
!= xsoftc
.generation
)
1221 * If we found the peripheral driver that the user passed
1222 * in, go through all of the peripheral drivers for that
1223 * particular device and look for a passthrough driver.
1225 if (periph
!= NULL
) {
1226 struct cam_ed
*device
;
1229 base_periph_found
= 1;
1230 device
= periph
->path
->device
;
1231 for (i
= 0, periph
= SLIST_FIRST(&device
->periphs
);
1233 periph
= SLIST_NEXT(periph
, periph_links
), i
++) {
1235 * Check to see whether we have a
1236 * passthrough device or not.
1238 if (strcmp(periph
->periph_name
, "pass") == 0) {
1240 * Fill in the getdevlist fields.
1242 strcpy(ccb
->cgdl
.periph_name
,
1243 periph
->periph_name
);
1244 ccb
->cgdl
.unit_number
=
1245 periph
->unit_number
;
1246 if (SLIST_NEXT(periph
, periph_links
))
1248 CAM_GDEVLIST_MORE_DEVS
;
1251 CAM_GDEVLIST_LAST_DEVICE
;
1252 ccb
->cgdl
.generation
=
1254 ccb
->cgdl
.index
= i
;
1256 * Fill in some CCB header fields
1257 * that the user may want.
1259 ccb
->ccb_h
.path_id
=
1260 periph
->path
->bus
->path_id
;
1261 ccb
->ccb_h
.target_id
=
1262 periph
->path
->target
->target_id
;
1263 ccb
->ccb_h
.target_lun
=
1264 periph
->path
->device
->lun_id
;
1265 ccb
->ccb_h
.status
= CAM_REQ_CMP
;
1272 * If the periph is null here, one of two things has
1273 * happened. The first possibility is that we couldn't
1274 * find the unit number of the particular peripheral driver
1275 * that the user is asking about. e.g. the user asks for
1276 * the passthrough driver for "da11". We find the list of
1277 * "da" peripherals all right, but there is no unit 11.
1278 * The other possibility is that we went through the list
1279 * of peripheral drivers attached to the device structure,
1280 * but didn't find one with the name "pass". Either way,
1281 * we return ENOENT, since we couldn't find something.
1283 if (periph
== NULL
) {
1284 ccb
->ccb_h
.status
= CAM_REQ_CMP_ERR
;
1285 ccb
->cgdl
.status
= CAM_GDEVLIST_ERROR
;
1286 *ccb
->cgdl
.periph_name
= '\0';
1287 ccb
->cgdl
.unit_number
= 0;
1290 * It is unfortunate that this is even necessary,
1291 * but there are many, many clueless users out there.
1292 * If this is true, the user is looking for the
1293 * passthrough driver, but doesn't have one in his
1296 if (base_periph_found
== 1) {
1297 kprintf("xptioctl: pass driver is not in the "
1299 kprintf("xptioctl: put \"device pass0\" in "
1300 "your kernel config file\n");
1315 cam_module_event_handler(module_t mod
, int what
, void *arg
)
1317 if (what
== MOD_LOAD
) {
1319 } else if (what
== MOD_UNLOAD
) {
1326 /* Functions accessed by the peripheral drivers */
1328 xpt_init(void *dummy
)
1330 struct cam_sim
*xpt_sim
;
1331 struct cam_path
*path
;
1332 struct cam_devq
*devq
;
1335 TAILQ_INIT(&xpt_busses
);
1336 TAILQ_INIT(&cam_bioq
);
1337 TAILQ_INIT(&cam_netq
);
1338 SLIST_INIT(&ccb_freeq
);
1339 STAILQ_INIT(&highpowerq
);
1342 * The xpt layer is, itself, the equivelent of a SIM.
1343 * Allow 16 ccbs in the ccb pool for it. This should
1344 * give decent parallelism when we probe busses and
1345 * perform other XPT functions.
1347 devq
= cam_simq_alloc(16);
1348 xpt_sim
= cam_sim_alloc(xptaction
,
1353 /*max_dev_transactions*/0,
1354 /*max_tagged_dev_transactions*/0,
1356 cam_simq_release(devq
);
1359 xpt_bus_register(xpt_sim
, /*bus #*/0);
1362 * Looking at the XPT from the SIM layer, the XPT is
1363 * the equivelent of a peripheral driver. Allocate
1364 * a peripheral driver entry for us.
1366 if ((status
= xpt_create_path(&path
, NULL
, CAM_XPT_PATH_ID
,
1367 CAM_TARGET_WILDCARD
,
1368 CAM_LUN_WILDCARD
)) != CAM_REQ_CMP
) {
1369 kprintf("xpt_init: xpt_create_path failed with status %#x,"
1370 " failing attach\n", status
);
1374 cam_periph_alloc(xptregister
, NULL
, NULL
, NULL
, "xpt", CAM_PERIPH_BIO
,
1375 path
, NULL
, 0, NULL
);
1376 xpt_free_path(path
);
1378 xpt_sim
->softc
= xpt_periph
;
1381 * Register a callback for when interrupts are enabled.
1383 xpt_config_hook
= kmalloc(sizeof(struct intr_config_hook
),
1384 M_TEMP
, M_INTWAIT
| M_ZERO
);
1385 xpt_config_hook
->ich_func
= xpt_config
;
1386 xpt_config_hook
->ich_desc
= "xpt";
1387 xpt_config_hook
->ich_order
= 1000;
1388 if (config_intrhook_establish(xpt_config_hook
) != 0) {
1389 kfree (xpt_config_hook
, M_TEMP
);
1390 kprintf("xpt_init: config_intrhook_establish failed "
1391 "- failing attach\n");
1394 /* Install our software interrupt handlers */
1395 register_swi(SWI_CAMNET
, swi_camnet
, NULL
, "swi_camnet", NULL
);
1396 register_swi(SWI_CAMBIO
, swi_cambio
, NULL
, "swi_cambio", NULL
);
1400 xptregister(struct cam_periph
*periph
, void *arg
)
1402 if (periph
== NULL
) {
1403 kprintf("xptregister: periph was NULL!!\n");
1404 return(CAM_REQ_CMP_ERR
);
1407 periph
->softc
= NULL
;
1409 xpt_periph
= periph
;
1411 return(CAM_REQ_CMP
);
1415 xpt_add_periph(struct cam_periph
*periph
)
1417 struct cam_ed
*device
;
1419 struct periph_list
*periph_head
;
1421 device
= periph
->path
->device
;
1423 periph_head
= &device
->periphs
;
1425 status
= CAM_REQ_CMP
;
1427 if (device
!= NULL
) {
1429 * Make room for this peripheral
1430 * so it will fit in the queue
1431 * when it's scheduled to run
1434 status
= camq_resize(&device
->drvq
,
1435 device
->drvq
.array_size
+ 1);
1437 device
->generation
++;
1439 SLIST_INSERT_HEAD(periph_head
, periph
, periph_links
);
1443 xsoftc
.generation
++;
1449 xpt_remove_periph(struct cam_periph
*periph
)
1451 struct cam_ed
*device
;
1453 device
= periph
->path
->device
;
1455 if (device
!= NULL
) {
1456 struct periph_list
*periph_head
;
1458 periph_head
= &device
->periphs
;
1460 /* Release the slot for this peripheral */
1462 camq_resize(&device
->drvq
, device
->drvq
.array_size
- 1);
1464 device
->generation
++;
1466 SLIST_REMOVE(periph_head
, periph
, cam_periph
, periph_links
);
1470 xsoftc
.generation
++;
1474 #ifdef CAM_NEW_TRAN_CODE
1477 xpt_announce_periph(struct cam_periph
*periph
, char *announce_string
)
1479 struct ccb_pathinq cpi
;
1480 struct ccb_trans_settings cts
;
1481 struct cam_path
*path
;
1486 path
= periph
->path
;
1488 * To ensure that this is printed in one piece,
1489 * mask out CAM interrupts.
1492 printf("%s%d at %s%d bus %d target %d lun %d\n",
1493 periph
->periph_name
, periph
->unit_number
,
1494 path
->bus
->sim
->sim_name
,
1495 path
->bus
->sim
->unit_number
,
1496 path
->bus
->sim
->bus_id
,
1497 path
->target
->target_id
,
1498 path
->device
->lun_id
);
1499 printf("%s%d: ", periph
->periph_name
, periph
->unit_number
);
1500 scsi_print_inquiry(&path
->device
->inq_data
);
1501 if (bootverbose
&& path
->device
->serial_num_len
> 0) {
1502 /* Don't wrap the screen - print only the first 60 chars */
1503 printf("%s%d: Serial Number %.60s\n", periph
->periph_name
,
1504 periph
->unit_number
, path
->device
->serial_num
);
1506 xpt_setup_ccb(&cts
.ccb_h
, path
, /*priority*/1);
1507 cts
.ccb_h
.func_code
= XPT_GET_TRAN_SETTINGS
;
1508 cts
.type
= CTS_TYPE_CURRENT_SETTINGS
;
1509 xpt_action((union ccb
*)&cts
);
1511 /* Ask the SIM for its base transfer speed */
1512 xpt_setup_ccb(&cpi
.ccb_h
, path
, /*priority*/1);
1513 cpi
.ccb_h
.func_code
= XPT_PATH_INQ
;
1514 xpt_action((union ccb
*)&cpi
);
1516 speed
= cpi
.base_transfer_speed
;
1518 if (cts
.ccb_h
.status
== CAM_REQ_CMP
&& cts
.transport
== XPORT_SPI
) {
1519 struct ccb_trans_settings_spi
*spi
;
1521 spi
= &cts
.xport_specific
.spi
;
1522 if ((spi
->valid
& CTS_SPI_VALID_SYNC_OFFSET
) != 0
1523 && spi
->sync_offset
!= 0) {
1524 freq
= scsi_calc_syncsrate(spi
->sync_period
);
1528 if ((spi
->valid
& CTS_SPI_VALID_BUS_WIDTH
) != 0)
1529 speed
*= (0x01 << spi
->bus_width
);
1531 if (cts
.ccb_h
.status
== CAM_REQ_CMP
&& cts
.transport
== XPORT_FC
) {
1532 struct ccb_trans_settings_fc
*fc
= &cts
.xport_specific
.fc
;
1533 if (fc
->valid
& CTS_FC_VALID_SPEED
) {
1534 speed
= fc
->bitrate
;
1540 printf("%s%d: %d.%03dMB/s transfers",
1541 periph
->periph_name
, periph
->unit_number
,
1544 printf("%s%d: %dKB/s transfers", periph
->periph_name
,
1545 periph
->unit_number
, speed
);
1546 /* Report additional information about SPI connections */
1547 if (cts
.ccb_h
.status
== CAM_REQ_CMP
&& cts
.transport
== XPORT_SPI
) {
1548 struct ccb_trans_settings_spi
*spi
;
1550 spi
= &cts
.xport_specific
.spi
;
1552 printf(" (%d.%03dMHz%s, offset %d", freq
/ 1000,
1554 (spi
->ppr_options
& MSG_EXT_PPR_DT_REQ
) != 0
1558 if ((spi
->valid
& CTS_SPI_VALID_BUS_WIDTH
) != 0
1559 && spi
->bus_width
> 0) {
1565 printf("%dbit)", 8 * (0x01 << spi
->bus_width
));
1566 } else if (freq
!= 0) {
1570 if (cts
.ccb_h
.status
== CAM_REQ_CMP
&& cts
.transport
== XPORT_FC
) {
1571 struct ccb_trans_settings_fc
*fc
;
1573 fc
= &cts
.xport_specific
.fc
;
1574 if (fc
->valid
& CTS_FC_VALID_WWNN
)
1575 printf(" WWNN 0x%llx", (long long) fc
->wwnn
);
1576 if (fc
->valid
& CTS_FC_VALID_WWPN
)
1577 printf(" WWPN 0x%llx", (long long) fc
->wwpn
);
1578 if (fc
->valid
& CTS_FC_VALID_PORT
)
1579 printf(" PortID 0x%x", fc
->port
);
1582 if (path
->device
->inq_flags
& SID_CmdQue
1583 || path
->device
->flags
& CAM_DEV_TAG_AFTER_COUNT
) {
1584 printf("\n%s%d: Tagged Queueing Enabled",
1585 periph
->periph_name
, periph
->unit_number
);
1590 * We only want to print the caller's announce string if they've
1593 if (announce_string
!= NULL
)
1594 printf("%s%d: %s\n", periph
->periph_name
,
1595 periph
->unit_number
, announce_string
);
1598 #else /* CAM_NEW_TRAN_CODE */
1600 xpt_announce_periph(struct cam_periph
*periph
, char *announce_string
)
1603 struct cam_path
*path
;
1604 struct ccb_trans_settings cts
;
1606 path
= periph
->path
;
1608 * To ensure that this is printed in one piece,
1609 * mask out CAM interrupts.
1612 kprintf("%s%d at %s%d bus %d target %d lun %d\n",
1613 periph
->periph_name
, periph
->unit_number
,
1614 path
->bus
->sim
->sim_name
,
1615 path
->bus
->sim
->unit_number
,
1616 path
->bus
->sim
->bus_id
,
1617 path
->target
->target_id
,
1618 path
->device
->lun_id
);
1619 kprintf("%s%d: ", periph
->periph_name
, periph
->unit_number
);
1620 scsi_print_inquiry(&path
->device
->inq_data
);
1622 && (path
->device
->serial_num_len
> 0)) {
1623 /* Don't wrap the screen - print only the first 60 chars */
1624 kprintf("%s%d: Serial Number %.60s\n", periph
->periph_name
,
1625 periph
->unit_number
, path
->device
->serial_num
);
1627 xpt_setup_ccb(&cts
.ccb_h
, path
, /*priority*/1);
1628 cts
.ccb_h
.func_code
= XPT_GET_TRAN_SETTINGS
;
1629 cts
.flags
= CCB_TRANS_CURRENT_SETTINGS
;
1630 xpt_action((union ccb
*)&cts
);
1631 if (cts
.ccb_h
.status
== CAM_REQ_CMP
) {
1635 if ((cts
.valid
& CCB_TRANS_SYNC_OFFSET_VALID
) != 0
1636 && cts
.sync_offset
!= 0) {
1637 freq
= scsi_calc_syncsrate(cts
.sync_period
);
1640 struct ccb_pathinq cpi
;
1642 /* Ask the SIM for its base transfer speed */
1643 xpt_setup_ccb(&cpi
.ccb_h
, path
, /*priority*/1);
1644 cpi
.ccb_h
.func_code
= XPT_PATH_INQ
;
1645 xpt_action((union ccb
*)&cpi
);
1647 speed
= cpi
.base_transfer_speed
;
1650 if ((cts
.valid
& CCB_TRANS_BUS_WIDTH_VALID
) != 0)
1651 speed
*= (0x01 << cts
.bus_width
);
1654 kprintf("%s%d: %d.%03dMB/s transfers",
1655 periph
->periph_name
, periph
->unit_number
,
1658 kprintf("%s%d: %dKB/s transfers", periph
->periph_name
,
1659 periph
->unit_number
, speed
);
1660 if ((cts
.valid
& CCB_TRANS_SYNC_OFFSET_VALID
) != 0
1661 && cts
.sync_offset
!= 0) {
1662 kprintf(" (%d.%03dMHz, offset %d", freq
/ 1000,
1663 freq
% 1000, cts
.sync_offset
);
1665 if ((cts
.valid
& CCB_TRANS_BUS_WIDTH_VALID
) != 0
1666 && cts
.bus_width
> 0) {
1667 if ((cts
.valid
& CCB_TRANS_SYNC_OFFSET_VALID
) != 0
1668 && cts
.sync_offset
!= 0) {
1673 kprintf("%dbit)", 8 * (0x01 << cts
.bus_width
));
1674 } else if ((cts
.valid
& CCB_TRANS_SYNC_OFFSET_VALID
) != 0
1675 && cts
.sync_offset
!= 0) {
1679 if (path
->device
->inq_flags
& SID_CmdQue
1680 || path
->device
->flags
& CAM_DEV_TAG_AFTER_COUNT
) {
1681 kprintf(", Tagged Queueing Enabled");
1685 } else if (path
->device
->inq_flags
& SID_CmdQue
1686 || path
->device
->flags
& CAM_DEV_TAG_AFTER_COUNT
) {
1687 kprintf("%s%d: Tagged Queueing Enabled\n",
1688 periph
->periph_name
, periph
->unit_number
);
1692 * We only want to print the caller's announce string if they've
1695 if (announce_string
!= NULL
)
1696 kprintf("%s%d: %s\n", periph
->periph_name
,
1697 periph
->unit_number
, announce_string
);
1701 #endif /* CAM_NEW_TRAN_CODE */
1703 static dev_match_ret
1704 xptbusmatch(struct dev_match_pattern
*patterns
, u_int num_patterns
,
1707 dev_match_ret retval
;
1710 retval
= DM_RET_NONE
;
1713 * If we aren't given something to match against, that's an error.
1716 return(DM_RET_ERROR
);
1719 * If there are no match entries, then this bus matches no
1722 if ((patterns
== NULL
) || (num_patterns
== 0))
1723 return(DM_RET_DESCEND
| DM_RET_COPY
);
1725 for (i
= 0; i
< num_patterns
; i
++) {
1726 struct bus_match_pattern
*cur_pattern
;
1729 * If the pattern in question isn't for a bus node, we
1730 * aren't interested. However, we do indicate to the
1731 * calling routine that we should continue descending the
1732 * tree, since the user wants to match against lower-level
1735 if (patterns
[i
].type
!= DEV_MATCH_BUS
) {
1736 if ((retval
& DM_RET_ACTION_MASK
) == DM_RET_NONE
)
1737 retval
|= DM_RET_DESCEND
;
1741 cur_pattern
= &patterns
[i
].pattern
.bus_pattern
;
1744 * If they want to match any bus node, we give them any
1747 if (cur_pattern
->flags
== BUS_MATCH_ANY
) {
1748 /* set the copy flag */
1749 retval
|= DM_RET_COPY
;
1752 * If we've already decided on an action, go ahead
1755 if ((retval
& DM_RET_ACTION_MASK
) != DM_RET_NONE
)
1760 * Not sure why someone would do this...
1762 if (cur_pattern
->flags
== BUS_MATCH_NONE
)
1765 if (((cur_pattern
->flags
& BUS_MATCH_PATH
) != 0)
1766 && (cur_pattern
->path_id
!= bus
->path_id
))
1769 if (((cur_pattern
->flags
& BUS_MATCH_BUS_ID
) != 0)
1770 && (cur_pattern
->bus_id
!= bus
->sim
->bus_id
))
1773 if (((cur_pattern
->flags
& BUS_MATCH_UNIT
) != 0)
1774 && (cur_pattern
->unit_number
!= bus
->sim
->unit_number
))
1777 if (((cur_pattern
->flags
& BUS_MATCH_NAME
) != 0)
1778 && (strncmp(cur_pattern
->dev_name
, bus
->sim
->sim_name
,
1783 * If we get to this point, the user definitely wants
1784 * information on this bus. So tell the caller to copy the
1787 retval
|= DM_RET_COPY
;
1790 * If the return action has been set to descend, then we
1791 * know that we've already seen a non-bus matching
1792 * expression, therefore we need to further descend the tree.
1793 * This won't change by continuing around the loop, so we
1794 * go ahead and return. If we haven't seen a non-bus
1795 * matching expression, we keep going around the loop until
1796 * we exhaust the matching expressions. We'll set the stop
1797 * flag once we fall out of the loop.
1799 if ((retval
& DM_RET_ACTION_MASK
) == DM_RET_DESCEND
)
1804 * If the return action hasn't been set to descend yet, that means
1805 * we haven't seen anything other than bus matching patterns. So
1806 * tell the caller to stop descending the tree -- the user doesn't
1807 * want to match against lower level tree elements.
1809 if ((retval
& DM_RET_ACTION_MASK
) == DM_RET_NONE
)
1810 retval
|= DM_RET_STOP
;
1815 static dev_match_ret
1816 xptdevicematch(struct dev_match_pattern
*patterns
, u_int num_patterns
,
1817 struct cam_ed
*device
)
1819 dev_match_ret retval
;
1822 retval
= DM_RET_NONE
;
1825 * If we aren't given something to match against, that's an error.
1828 return(DM_RET_ERROR
);
1831 * If there are no match entries, then this device matches no
1834 if ((patterns
== NULL
) || (patterns
== 0))
1835 return(DM_RET_DESCEND
| DM_RET_COPY
);
1837 for (i
= 0; i
< num_patterns
; i
++) {
1838 struct device_match_pattern
*cur_pattern
;
1841 * If the pattern in question isn't for a device node, we
1842 * aren't interested.
1844 if (patterns
[i
].type
!= DEV_MATCH_DEVICE
) {
1845 if ((patterns
[i
].type
== DEV_MATCH_PERIPH
)
1846 && ((retval
& DM_RET_ACTION_MASK
) == DM_RET_NONE
))
1847 retval
|= DM_RET_DESCEND
;
1851 cur_pattern
= &patterns
[i
].pattern
.device_pattern
;
1854 * If they want to match any device node, we give them any
1857 if (cur_pattern
->flags
== DEV_MATCH_ANY
) {
1858 /* set the copy flag */
1859 retval
|= DM_RET_COPY
;
1863 * If we've already decided on an action, go ahead
1866 if ((retval
& DM_RET_ACTION_MASK
) != DM_RET_NONE
)
1871 * Not sure why someone would do this...
1873 if (cur_pattern
->flags
== DEV_MATCH_NONE
)
1876 if (((cur_pattern
->flags
& DEV_MATCH_PATH
) != 0)
1877 && (cur_pattern
->path_id
!= device
->target
->bus
->path_id
))
1880 if (((cur_pattern
->flags
& DEV_MATCH_TARGET
) != 0)
1881 && (cur_pattern
->target_id
!= device
->target
->target_id
))
1884 if (((cur_pattern
->flags
& DEV_MATCH_LUN
) != 0)
1885 && (cur_pattern
->target_lun
!= device
->lun_id
))
1888 if (((cur_pattern
->flags
& DEV_MATCH_INQUIRY
) != 0)
1889 && (cam_quirkmatch((caddr_t
)&device
->inq_data
,
1890 (caddr_t
)&cur_pattern
->inq_pat
,
1891 1, sizeof(cur_pattern
->inq_pat
),
1892 scsi_static_inquiry_match
) == NULL
))
1896 * If we get to this point, the user definitely wants
1897 * information on this device. So tell the caller to copy
1900 retval
|= DM_RET_COPY
;
1903 * If the return action has been set to descend, then we
1904 * know that we've already seen a peripheral matching
1905 * expression, therefore we need to further descend the tree.
1906 * This won't change by continuing around the loop, so we
1907 * go ahead and return. If we haven't seen a peripheral
1908 * matching expression, we keep going around the loop until
1909 * we exhaust the matching expressions. We'll set the stop
1910 * flag once we fall out of the loop.
1912 if ((retval
& DM_RET_ACTION_MASK
) == DM_RET_DESCEND
)
1917 * If the return action hasn't been set to descend yet, that means
1918 * we haven't seen any peripheral matching patterns. So tell the
1919 * caller to stop descending the tree -- the user doesn't want to
1920 * match against lower level tree elements.
1922 if ((retval
& DM_RET_ACTION_MASK
) == DM_RET_NONE
)
1923 retval
|= DM_RET_STOP
;
1929 * Match a single peripheral against any number of match patterns.
1931 static dev_match_ret
1932 xptperiphmatch(struct dev_match_pattern
*patterns
, u_int num_patterns
,
1933 struct cam_periph
*periph
)
1935 dev_match_ret retval
;
1939 * If we aren't given something to match against, that's an error.
1942 return(DM_RET_ERROR
);
1945 * If there are no match entries, then this peripheral matches no
1948 if ((patterns
== NULL
) || (num_patterns
== 0))
1949 return(DM_RET_STOP
| DM_RET_COPY
);
1952 * There aren't any nodes below a peripheral node, so there's no
1953 * reason to descend the tree any further.
1955 retval
= DM_RET_STOP
;
1957 for (i
= 0; i
< num_patterns
; i
++) {
1958 struct periph_match_pattern
*cur_pattern
;
1961 * If the pattern in question isn't for a peripheral, we
1962 * aren't interested.
1964 if (patterns
[i
].type
!= DEV_MATCH_PERIPH
)
1967 cur_pattern
= &patterns
[i
].pattern
.periph_pattern
;
1970 * If they want to match on anything, then we will do so.
1972 if (cur_pattern
->flags
== PERIPH_MATCH_ANY
) {
1973 /* set the copy flag */
1974 retval
|= DM_RET_COPY
;
1977 * We've already set the return action to stop,
1978 * since there are no nodes below peripherals in
1985 * Not sure why someone would do this...
1987 if (cur_pattern
->flags
== PERIPH_MATCH_NONE
)
1990 if (((cur_pattern
->flags
& PERIPH_MATCH_PATH
) != 0)
1991 && (cur_pattern
->path_id
!= periph
->path
->bus
->path_id
))
1995 * For the target and lun id's, we have to make sure the
1996 * target and lun pointers aren't NULL. The xpt peripheral
1997 * has a wildcard target and device.
1999 if (((cur_pattern
->flags
& PERIPH_MATCH_TARGET
) != 0)
2000 && ((periph
->path
->target
== NULL
)
2001 ||(cur_pattern
->target_id
!= periph
->path
->target
->target_id
)))
2004 if (((cur_pattern
->flags
& PERIPH_MATCH_LUN
) != 0)
2005 && ((periph
->path
->device
== NULL
)
2006 || (cur_pattern
->target_lun
!= periph
->path
->device
->lun_id
)))
2009 if (((cur_pattern
->flags
& PERIPH_MATCH_UNIT
) != 0)
2010 && (cur_pattern
->unit_number
!= periph
->unit_number
))
2013 if (((cur_pattern
->flags
& PERIPH_MATCH_NAME
) != 0)
2014 && (strncmp(cur_pattern
->periph_name
, periph
->periph_name
,
2019 * If we get to this point, the user definitely wants
2020 * information on this peripheral. So tell the caller to
2021 * copy the data out.
2023 retval
|= DM_RET_COPY
;
2026 * The return action has already been set to stop, since
2027 * peripherals don't have any nodes below them in the EDT.
2033 * If we get to this point, the peripheral that was passed in
2034 * doesn't match any of the patterns.
2040 xptedtbusfunc(struct cam_eb
*bus
, void *arg
)
2042 struct ccb_dev_match
*cdm
;
2043 dev_match_ret retval
;
2045 cdm
= (struct ccb_dev_match
*)arg
;
2048 * If our position is for something deeper in the tree, that means
2049 * that we've already seen this node. So, we keep going down.
2051 if ((cdm
->pos
.position_type
& CAM_DEV_POS_BUS
)
2052 && (cdm
->pos
.cookie
.bus
== bus
)
2053 && (cdm
->pos
.position_type
& CAM_DEV_POS_TARGET
)
2054 && (cdm
->pos
.cookie
.target
!= NULL
))
2055 retval
= DM_RET_DESCEND
;
2057 retval
= xptbusmatch(cdm
->patterns
, cdm
->num_patterns
, bus
);
2060 * If we got an error, bail out of the search.
2062 if ((retval
& DM_RET_ACTION_MASK
) == DM_RET_ERROR
) {
2063 cdm
->status
= CAM_DEV_MATCH_ERROR
;
2068 * If the copy flag is set, copy this bus out.
2070 if (retval
& DM_RET_COPY
) {
2073 spaceleft
= cdm
->match_buf_len
- (cdm
->num_matches
*
2074 sizeof(struct dev_match_result
));
2077 * If we don't have enough space to put in another
2078 * match result, save our position and tell the
2079 * user there are more devices to check.
2081 if (spaceleft
< sizeof(struct dev_match_result
)) {
2082 bzero(&cdm
->pos
, sizeof(cdm
->pos
));
2083 cdm
->pos
.position_type
=
2084 CAM_DEV_POS_EDT
| CAM_DEV_POS_BUS
;
2086 cdm
->pos
.cookie
.bus
= bus
;
2087 cdm
->pos
.generations
[CAM_BUS_GENERATION
]=
2089 cdm
->status
= CAM_DEV_MATCH_MORE
;
2092 j
= cdm
->num_matches
;
2094 cdm
->matches
[j
].type
= DEV_MATCH_BUS
;
2095 cdm
->matches
[j
].result
.bus_result
.path_id
= bus
->path_id
;
2096 cdm
->matches
[j
].result
.bus_result
.bus_id
= bus
->sim
->bus_id
;
2097 cdm
->matches
[j
].result
.bus_result
.unit_number
=
2098 bus
->sim
->unit_number
;
2099 strncpy(cdm
->matches
[j
].result
.bus_result
.dev_name
,
2100 bus
->sim
->sim_name
, DEV_IDLEN
);
2104 * If the user is only interested in busses, there's no
2105 * reason to descend to the next level in the tree.
2107 if ((retval
& DM_RET_ACTION_MASK
) == DM_RET_STOP
)
2111 * If there is a target generation recorded, check it to
2112 * make sure the target list hasn't changed.
2114 if ((cdm
->pos
.position_type
& CAM_DEV_POS_BUS
)
2115 && (bus
== cdm
->pos
.cookie
.bus
)
2116 && (cdm
->pos
.position_type
& CAM_DEV_POS_TARGET
)
2117 && (cdm
->pos
.generations
[CAM_TARGET_GENERATION
] != 0)
2118 && (cdm
->pos
.generations
[CAM_TARGET_GENERATION
] !=
2120 cdm
->status
= CAM_DEV_MATCH_LIST_CHANGED
;
2124 if ((cdm
->pos
.position_type
& CAM_DEV_POS_BUS
)
2125 && (cdm
->pos
.cookie
.bus
== bus
)
2126 && (cdm
->pos
.position_type
& CAM_DEV_POS_TARGET
)
2127 && (cdm
->pos
.cookie
.target
!= NULL
))
2128 return(xpttargettraverse(bus
,
2129 (struct cam_et
*)cdm
->pos
.cookie
.target
,
2130 xptedttargetfunc
, arg
));
2132 return(xpttargettraverse(bus
, NULL
, xptedttargetfunc
, arg
));
2136 xptedttargetfunc(struct cam_et
*target
, void *arg
)
2138 struct ccb_dev_match
*cdm
;
2140 cdm
= (struct ccb_dev_match
*)arg
;
2143 * If there is a device list generation recorded, check it to
2144 * make sure the device list hasn't changed.
2146 if ((cdm
->pos
.position_type
& CAM_DEV_POS_BUS
)
2147 && (cdm
->pos
.cookie
.bus
== target
->bus
)
2148 && (cdm
->pos
.position_type
& CAM_DEV_POS_TARGET
)
2149 && (cdm
->pos
.cookie
.target
== target
)
2150 && (cdm
->pos
.position_type
& CAM_DEV_POS_DEVICE
)
2151 && (cdm
->pos
.generations
[CAM_DEV_GENERATION
] != 0)
2152 && (cdm
->pos
.generations
[CAM_DEV_GENERATION
] !=
2153 target
->generation
)) {
2154 cdm
->status
= CAM_DEV_MATCH_LIST_CHANGED
;
2158 if ((cdm
->pos
.position_type
& CAM_DEV_POS_BUS
)
2159 && (cdm
->pos
.cookie
.bus
== target
->bus
)
2160 && (cdm
->pos
.position_type
& CAM_DEV_POS_TARGET
)
2161 && (cdm
->pos
.cookie
.target
== target
)
2162 && (cdm
->pos
.position_type
& CAM_DEV_POS_DEVICE
)
2163 && (cdm
->pos
.cookie
.device
!= NULL
))
2164 return(xptdevicetraverse(target
,
2165 (struct cam_ed
*)cdm
->pos
.cookie
.device
,
2166 xptedtdevicefunc
, arg
));
2168 return(xptdevicetraverse(target
, NULL
, xptedtdevicefunc
, arg
));
2172 xptedtdevicefunc(struct cam_ed
*device
, void *arg
)
2175 struct ccb_dev_match
*cdm
;
2176 dev_match_ret retval
;
2178 cdm
= (struct ccb_dev_match
*)arg
;
2181 * If our position is for something deeper in the tree, that means
2182 * that we've already seen this node. So, we keep going down.
2184 if ((cdm
->pos
.position_type
& CAM_DEV_POS_DEVICE
)
2185 && (cdm
->pos
.cookie
.device
== device
)
2186 && (cdm
->pos
.position_type
& CAM_DEV_POS_PERIPH
)
2187 && (cdm
->pos
.cookie
.periph
!= NULL
))
2188 retval
= DM_RET_DESCEND
;
2190 retval
= xptdevicematch(cdm
->patterns
, cdm
->num_patterns
,
2193 if ((retval
& DM_RET_ACTION_MASK
) == DM_RET_ERROR
) {
2194 cdm
->status
= CAM_DEV_MATCH_ERROR
;
2199 * If the copy flag is set, copy this device out.
2201 if (retval
& DM_RET_COPY
) {
2204 spaceleft
= cdm
->match_buf_len
- (cdm
->num_matches
*
2205 sizeof(struct dev_match_result
));
2208 * If we don't have enough space to put in another
2209 * match result, save our position and tell the
2210 * user there are more devices to check.
2212 if (spaceleft
< sizeof(struct dev_match_result
)) {
2213 bzero(&cdm
->pos
, sizeof(cdm
->pos
));
2214 cdm
->pos
.position_type
=
2215 CAM_DEV_POS_EDT
| CAM_DEV_POS_BUS
|
2216 CAM_DEV_POS_TARGET
| CAM_DEV_POS_DEVICE
;
2218 cdm
->pos
.cookie
.bus
= device
->target
->bus
;
2219 cdm
->pos
.generations
[CAM_BUS_GENERATION
]=
2221 cdm
->pos
.cookie
.target
= device
->target
;
2222 cdm
->pos
.generations
[CAM_TARGET_GENERATION
] =
2223 device
->target
->bus
->generation
;
2224 cdm
->pos
.cookie
.device
= device
;
2225 cdm
->pos
.generations
[CAM_DEV_GENERATION
] =
2226 device
->target
->generation
;
2227 cdm
->status
= CAM_DEV_MATCH_MORE
;
2230 j
= cdm
->num_matches
;
2232 cdm
->matches
[j
].type
= DEV_MATCH_DEVICE
;
2233 cdm
->matches
[j
].result
.device_result
.path_id
=
2234 device
->target
->bus
->path_id
;
2235 cdm
->matches
[j
].result
.device_result
.target_id
=
2236 device
->target
->target_id
;
2237 cdm
->matches
[j
].result
.device_result
.target_lun
=
2239 bcopy(&device
->inq_data
,
2240 &cdm
->matches
[j
].result
.device_result
.inq_data
,
2241 sizeof(struct scsi_inquiry_data
));
2243 /* Let the user know whether this device is unconfigured */
2244 if (device
->flags
& CAM_DEV_UNCONFIGURED
)
2245 cdm
->matches
[j
].result
.device_result
.flags
=
2246 DEV_RESULT_UNCONFIGURED
;
2248 cdm
->matches
[j
].result
.device_result
.flags
=
2253 * If the user isn't interested in peripherals, don't descend
2254 * the tree any further.
2256 if ((retval
& DM_RET_ACTION_MASK
) == DM_RET_STOP
)
2260 * If there is a peripheral list generation recorded, make sure
2261 * it hasn't changed.
2263 if ((cdm
->pos
.position_type
& CAM_DEV_POS_BUS
)
2264 && (device
->target
->bus
== cdm
->pos
.cookie
.bus
)
2265 && (cdm
->pos
.position_type
& CAM_DEV_POS_TARGET
)
2266 && (device
->target
== cdm
->pos
.cookie
.target
)
2267 && (cdm
->pos
.position_type
& CAM_DEV_POS_DEVICE
)
2268 && (device
== cdm
->pos
.cookie
.device
)
2269 && (cdm
->pos
.position_type
& CAM_DEV_POS_PERIPH
)
2270 && (cdm
->pos
.generations
[CAM_PERIPH_GENERATION
] != 0)
2271 && (cdm
->pos
.generations
[CAM_PERIPH_GENERATION
] !=
2272 device
->generation
)){
2273 cdm
->status
= CAM_DEV_MATCH_LIST_CHANGED
;
2277 if ((cdm
->pos
.position_type
& CAM_DEV_POS_BUS
)
2278 && (cdm
->pos
.cookie
.bus
== device
->target
->bus
)
2279 && (cdm
->pos
.position_type
& CAM_DEV_POS_TARGET
)
2280 && (cdm
->pos
.cookie
.target
== device
->target
)
2281 && (cdm
->pos
.position_type
& CAM_DEV_POS_DEVICE
)
2282 && (cdm
->pos
.cookie
.device
== device
)
2283 && (cdm
->pos
.position_type
& CAM_DEV_POS_PERIPH
)
2284 && (cdm
->pos
.cookie
.periph
!= NULL
))
2285 return(xptperiphtraverse(device
,
2286 (struct cam_periph
*)cdm
->pos
.cookie
.periph
,
2287 xptedtperiphfunc
, arg
));
2289 return(xptperiphtraverse(device
, NULL
, xptedtperiphfunc
, arg
));
2293 xptedtperiphfunc(struct cam_periph
*periph
, void *arg
)
2295 struct ccb_dev_match
*cdm
;
2296 dev_match_ret retval
;
2298 cdm
= (struct ccb_dev_match
*)arg
;
2300 retval
= xptperiphmatch(cdm
->patterns
, cdm
->num_patterns
, periph
);
2302 if ((retval
& DM_RET_ACTION_MASK
) == DM_RET_ERROR
) {
2303 cdm
->status
= CAM_DEV_MATCH_ERROR
;
2308 * If the copy flag is set, copy this peripheral out.
2310 if (retval
& DM_RET_COPY
) {
2313 spaceleft
= cdm
->match_buf_len
- (cdm
->num_matches
*
2314 sizeof(struct dev_match_result
));
2317 * If we don't have enough space to put in another
2318 * match result, save our position and tell the
2319 * user there are more devices to check.
2321 if (spaceleft
< sizeof(struct dev_match_result
)) {
2322 bzero(&cdm
->pos
, sizeof(cdm
->pos
));
2323 cdm
->pos
.position_type
=
2324 CAM_DEV_POS_EDT
| CAM_DEV_POS_BUS
|
2325 CAM_DEV_POS_TARGET
| CAM_DEV_POS_DEVICE
|
2328 cdm
->pos
.cookie
.bus
= periph
->path
->bus
;
2329 cdm
->pos
.generations
[CAM_BUS_GENERATION
]=
2331 cdm
->pos
.cookie
.target
= periph
->path
->target
;
2332 cdm
->pos
.generations
[CAM_TARGET_GENERATION
] =
2333 periph
->path
->bus
->generation
;
2334 cdm
->pos
.cookie
.device
= periph
->path
->device
;
2335 cdm
->pos
.generations
[CAM_DEV_GENERATION
] =
2336 periph
->path
->target
->generation
;
2337 cdm
->pos
.cookie
.periph
= periph
;
2338 cdm
->pos
.generations
[CAM_PERIPH_GENERATION
] =
2339 periph
->path
->device
->generation
;
2340 cdm
->status
= CAM_DEV_MATCH_MORE
;
2344 j
= cdm
->num_matches
;
2346 cdm
->matches
[j
].type
= DEV_MATCH_PERIPH
;
2347 cdm
->matches
[j
].result
.periph_result
.path_id
=
2348 periph
->path
->bus
->path_id
;
2349 cdm
->matches
[j
].result
.periph_result
.target_id
=
2350 periph
->path
->target
->target_id
;
2351 cdm
->matches
[j
].result
.periph_result
.target_lun
=
2352 periph
->path
->device
->lun_id
;
2353 cdm
->matches
[j
].result
.periph_result
.unit_number
=
2354 periph
->unit_number
;
2355 strncpy(cdm
->matches
[j
].result
.periph_result
.periph_name
,
2356 periph
->periph_name
, DEV_IDLEN
);
2363 xptedtmatch(struct ccb_dev_match
*cdm
)
2367 cdm
->num_matches
= 0;
2370 * Check the bus list generation. If it has changed, the user
2371 * needs to reset everything and start over.
2373 if ((cdm
->pos
.position_type
& CAM_DEV_POS_BUS
)
2374 && (cdm
->pos
.generations
[CAM_BUS_GENERATION
] != 0)
2375 && (cdm
->pos
.generations
[CAM_BUS_GENERATION
] != bus_generation
)) {
2376 cdm
->status
= CAM_DEV_MATCH_LIST_CHANGED
;
2380 if ((cdm
->pos
.position_type
& CAM_DEV_POS_BUS
)
2381 && (cdm
->pos
.cookie
.bus
!= NULL
))
2382 ret
= xptbustraverse((struct cam_eb
*)cdm
->pos
.cookie
.bus
,
2383 xptedtbusfunc
, cdm
);
2385 ret
= xptbustraverse(NULL
, xptedtbusfunc
, cdm
);
2388 * If we get back 0, that means that we had to stop before fully
2389 * traversing the EDT. It also means that one of the subroutines
2390 * has set the status field to the proper value. If we get back 1,
2391 * we've fully traversed the EDT and copied out any matching entries.
2394 cdm
->status
= CAM_DEV_MATCH_LAST
;
2400 xptplistpdrvfunc(struct periph_driver
**pdrv
, void *arg
)
2402 struct ccb_dev_match
*cdm
;
2404 cdm
= (struct ccb_dev_match
*)arg
;
2406 if ((cdm
->pos
.position_type
& CAM_DEV_POS_PDPTR
)
2407 && (cdm
->pos
.cookie
.pdrv
== pdrv
)
2408 && (cdm
->pos
.position_type
& CAM_DEV_POS_PERIPH
)
2409 && (cdm
->pos
.generations
[CAM_PERIPH_GENERATION
] != 0)
2410 && (cdm
->pos
.generations
[CAM_PERIPH_GENERATION
] !=
2411 (*pdrv
)->generation
)) {
2412 cdm
->status
= CAM_DEV_MATCH_LIST_CHANGED
;
2416 if ((cdm
->pos
.position_type
& CAM_DEV_POS_PDPTR
)
2417 && (cdm
->pos
.cookie
.pdrv
== pdrv
)
2418 && (cdm
->pos
.position_type
& CAM_DEV_POS_PERIPH
)
2419 && (cdm
->pos
.cookie
.periph
!= NULL
))
2420 return(xptpdperiphtraverse(pdrv
,
2421 (struct cam_periph
*)cdm
->pos
.cookie
.periph
,
2422 xptplistperiphfunc
, arg
));
2424 return(xptpdperiphtraverse(pdrv
, NULL
,xptplistperiphfunc
, arg
));
2428 xptplistperiphfunc(struct cam_periph
*periph
, void *arg
)
2430 struct ccb_dev_match
*cdm
;
2431 dev_match_ret retval
;
2433 cdm
= (struct ccb_dev_match
*)arg
;
2435 retval
= xptperiphmatch(cdm
->patterns
, cdm
->num_patterns
, periph
);
2437 if ((retval
& DM_RET_ACTION_MASK
) == DM_RET_ERROR
) {
2438 cdm
->status
= CAM_DEV_MATCH_ERROR
;
2443 * If the copy flag is set, copy this peripheral out.
2445 if (retval
& DM_RET_COPY
) {
2448 spaceleft
= cdm
->match_buf_len
- (cdm
->num_matches
*
2449 sizeof(struct dev_match_result
));
2452 * If we don't have enough space to put in another
2453 * match result, save our position and tell the
2454 * user there are more devices to check.
2456 if (spaceleft
< sizeof(struct dev_match_result
)) {
2457 struct periph_driver
**pdrv
;
2460 bzero(&cdm
->pos
, sizeof(cdm
->pos
));
2461 cdm
->pos
.position_type
=
2462 CAM_DEV_POS_PDRV
| CAM_DEV_POS_PDPTR
|
2466 * This may look a bit non-sensical, but it is
2467 * actually quite logical. There are very few
2468 * peripheral drivers, and bloating every peripheral
2469 * structure with a pointer back to its parent
2470 * peripheral driver linker set entry would cost
2471 * more in the long run than doing this quick lookup.
2473 for (pdrv
= periph_drivers
; *pdrv
!= NULL
; pdrv
++) {
2474 if (strcmp((*pdrv
)->driver_name
,
2475 periph
->periph_name
) == 0)
2479 if (*pdrv
== NULL
) {
2480 cdm
->status
= CAM_DEV_MATCH_ERROR
;
2484 cdm
->pos
.cookie
.pdrv
= pdrv
;
2486 * The periph generation slot does double duty, as
2487 * does the periph pointer slot. They are used for
2488 * both edt and pdrv lookups and positioning.
2490 cdm
->pos
.cookie
.periph
= periph
;
2491 cdm
->pos
.generations
[CAM_PERIPH_GENERATION
] =
2492 (*pdrv
)->generation
;
2493 cdm
->status
= CAM_DEV_MATCH_MORE
;
2497 j
= cdm
->num_matches
;
2499 cdm
->matches
[j
].type
= DEV_MATCH_PERIPH
;
2500 cdm
->matches
[j
].result
.periph_result
.path_id
=
2501 periph
->path
->bus
->path_id
;
2504 * The transport layer peripheral doesn't have a target or
2507 if (periph
->path
->target
)
2508 cdm
->matches
[j
].result
.periph_result
.target_id
=
2509 periph
->path
->target
->target_id
;
2511 cdm
->matches
[j
].result
.periph_result
.target_id
= -1;
2513 if (periph
->path
->device
)
2514 cdm
->matches
[j
].result
.periph_result
.target_lun
=
2515 periph
->path
->device
->lun_id
;
2517 cdm
->matches
[j
].result
.periph_result
.target_lun
= -1;
2519 cdm
->matches
[j
].result
.periph_result
.unit_number
=
2520 periph
->unit_number
;
2521 strncpy(cdm
->matches
[j
].result
.periph_result
.periph_name
,
2522 periph
->periph_name
, DEV_IDLEN
);
2529 xptperiphlistmatch(struct ccb_dev_match
*cdm
)
2533 cdm
->num_matches
= 0;
2536 * At this point in the edt traversal function, we check the bus
2537 * list generation to make sure that no busses have been added or
2538 * removed since the user last sent a XPT_DEV_MATCH ccb through.
2539 * For the peripheral driver list traversal function, however, we
2540 * don't have to worry about new peripheral driver types coming or
2541 * going; they're in a linker set, and therefore can't change
2542 * without a recompile.
2545 if ((cdm
->pos
.position_type
& CAM_DEV_POS_PDPTR
)
2546 && (cdm
->pos
.cookie
.pdrv
!= NULL
))
2547 ret
= xptpdrvtraverse(
2548 (struct periph_driver
**)cdm
->pos
.cookie
.pdrv
,
2549 xptplistpdrvfunc
, cdm
);
2551 ret
= xptpdrvtraverse(NULL
, xptplistpdrvfunc
, cdm
);
2554 * If we get back 0, that means that we had to stop before fully
2555 * traversing the peripheral driver tree. It also means that one of
2556 * the subroutines has set the status field to the proper value. If
2557 * we get back 1, we've fully traversed the EDT and copied out any
2561 cdm
->status
= CAM_DEV_MATCH_LAST
;
2567 xptbustraverse(struct cam_eb
*start_bus
, xpt_busfunc_t
*tr_func
, void *arg
)
2569 struct cam_eb
*bus
, *next_bus
;
2574 for (bus
= (start_bus
? start_bus
: TAILQ_FIRST(&xpt_busses
));
2577 next_bus
= TAILQ_NEXT(bus
, links
);
2579 retval
= tr_func(bus
, arg
);
2588 xpttargettraverse(struct cam_eb
*bus
, struct cam_et
*start_target
,
2589 xpt_targetfunc_t
*tr_func
, void *arg
)
2591 struct cam_et
*target
, *next_target
;
2595 for (target
= (start_target
? start_target
:
2596 TAILQ_FIRST(&bus
->et_entries
));
2597 target
!= NULL
; target
= next_target
) {
2599 next_target
= TAILQ_NEXT(target
, links
);
2601 retval
= tr_func(target
, arg
);
2611 xptdevicetraverse(struct cam_et
*target
, struct cam_ed
*start_device
,
2612 xpt_devicefunc_t
*tr_func
, void *arg
)
2614 struct cam_ed
*device
, *next_device
;
2618 for (device
= (start_device
? start_device
:
2619 TAILQ_FIRST(&target
->ed_entries
));
2621 device
= next_device
) {
2623 next_device
= TAILQ_NEXT(device
, links
);
2625 retval
= tr_func(device
, arg
);
2635 xptperiphtraverse(struct cam_ed
*device
, struct cam_periph
*start_periph
,
2636 xpt_periphfunc_t
*tr_func
, void *arg
)
2638 struct cam_periph
*periph
, *next_periph
;
2643 for (periph
= (start_periph
? start_periph
:
2644 SLIST_FIRST(&device
->periphs
));
2646 periph
= next_periph
) {
2648 next_periph
= SLIST_NEXT(periph
, periph_links
);
2650 retval
= tr_func(periph
, arg
);
2659 xptpdrvtraverse(struct periph_driver
**start_pdrv
,
2660 xpt_pdrvfunc_t
*tr_func
, void *arg
)
2662 struct periph_driver
**pdrv
;
2668 * We don't traverse the peripheral driver list like we do the
2669 * other lists, because it is a linker set, and therefore cannot be
2670 * changed during runtime. If the peripheral driver list is ever
2671 * re-done to be something other than a linker set (i.e. it can
2672 * change while the system is running), the list traversal should
2673 * be modified to work like the other traversal functions.
2675 for (pdrv
= (start_pdrv
? start_pdrv
: periph_drivers
);
2676 *pdrv
!= NULL
; pdrv
++) {
2677 retval
= tr_func(pdrv
, arg
);
2687 xptpdperiphtraverse(struct periph_driver
**pdrv
,
2688 struct cam_periph
*start_periph
,
2689 xpt_periphfunc_t
*tr_func
, void *arg
)
2691 struct cam_periph
*periph
, *next_periph
;
2696 for (periph
= (start_periph
? start_periph
:
2697 TAILQ_FIRST(&(*pdrv
)->units
)); periph
!= NULL
;
2698 periph
= next_periph
) {
2700 next_periph
= TAILQ_NEXT(periph
, unit_links
);
2702 retval
= tr_func(periph
, arg
);
2710 xptdefbusfunc(struct cam_eb
*bus
, void *arg
)
2712 struct xpt_traverse_config
*tr_config
;
2714 tr_config
= (struct xpt_traverse_config
*)arg
;
2716 if (tr_config
->depth
== XPT_DEPTH_BUS
) {
2717 xpt_busfunc_t
*tr_func
;
2719 tr_func
= (xpt_busfunc_t
*)tr_config
->tr_func
;
2721 return(tr_func(bus
, tr_config
->tr_arg
));
2723 return(xpttargettraverse(bus
, NULL
, xptdeftargetfunc
, arg
));
2727 xptdeftargetfunc(struct cam_et
*target
, void *arg
)
2729 struct xpt_traverse_config
*tr_config
;
2731 tr_config
= (struct xpt_traverse_config
*)arg
;
2733 if (tr_config
->depth
== XPT_DEPTH_TARGET
) {
2734 xpt_targetfunc_t
*tr_func
;
2736 tr_func
= (xpt_targetfunc_t
*)tr_config
->tr_func
;
2738 return(tr_func(target
, tr_config
->tr_arg
));
2740 return(xptdevicetraverse(target
, NULL
, xptdefdevicefunc
, arg
));
2744 xptdefdevicefunc(struct cam_ed
*device
, void *arg
)
2746 struct xpt_traverse_config
*tr_config
;
2748 tr_config
= (struct xpt_traverse_config
*)arg
;
2750 if (tr_config
->depth
== XPT_DEPTH_DEVICE
) {
2751 xpt_devicefunc_t
*tr_func
;
2753 tr_func
= (xpt_devicefunc_t
*)tr_config
->tr_func
;
2755 return(tr_func(device
, tr_config
->tr_arg
));
2757 return(xptperiphtraverse(device
, NULL
, xptdefperiphfunc
, arg
));
2761 xptdefperiphfunc(struct cam_periph
*periph
, void *arg
)
2763 struct xpt_traverse_config
*tr_config
;
2764 xpt_periphfunc_t
*tr_func
;
2766 tr_config
= (struct xpt_traverse_config
*)arg
;
2768 tr_func
= (xpt_periphfunc_t
*)tr_config
->tr_func
;
2771 * Unlike the other default functions, we don't check for depth
2772 * here. The peripheral driver level is the last level in the EDT,
2773 * so if we're here, we should execute the function in question.
2775 return(tr_func(periph
, tr_config
->tr_arg
));
2779 * Execute the given function for every bus in the EDT.
2782 xpt_for_all_busses(xpt_busfunc_t
*tr_func
, void *arg
)
2784 struct xpt_traverse_config tr_config
;
2786 tr_config
.depth
= XPT_DEPTH_BUS
;
2787 tr_config
.tr_func
= tr_func
;
2788 tr_config
.tr_arg
= arg
;
2790 return(xptbustraverse(NULL
, xptdefbusfunc
, &tr_config
));
2795 * Execute the given function for every target in the EDT.
2798 xpt_for_all_targets(xpt_targetfunc_t
*tr_func
, void *arg
)
2800 struct xpt_traverse_config tr_config
;
2802 tr_config
.depth
= XPT_DEPTH_TARGET
;
2803 tr_config
.tr_func
= tr_func
;
2804 tr_config
.tr_arg
= arg
;
2806 return(xptbustraverse(NULL
, xptdefbusfunc
, &tr_config
));
2808 #endif /* notusedyet */
2811 * Execute the given function for every device in the EDT.
2814 xpt_for_all_devices(xpt_devicefunc_t
*tr_func
, void *arg
)
2816 struct xpt_traverse_config tr_config
;
2818 tr_config
.depth
= XPT_DEPTH_DEVICE
;
2819 tr_config
.tr_func
= tr_func
;
2820 tr_config
.tr_arg
= arg
;
2822 return(xptbustraverse(NULL
, xptdefbusfunc
, &tr_config
));
2827 * Execute the given function for every peripheral in the EDT.
2830 xpt_for_all_periphs(xpt_periphfunc_t
*tr_func
, void *arg
)
2832 struct xpt_traverse_config tr_config
;
2834 tr_config
.depth
= XPT_DEPTH_PERIPH
;
2835 tr_config
.tr_func
= tr_func
;
2836 tr_config
.tr_arg
= arg
;
2838 return(xptbustraverse(NULL
, xptdefbusfunc
, &tr_config
));
2840 #endif /* notusedyet */
2843 xptsetasyncfunc(struct cam_ed
*device
, void *arg
)
2845 struct cam_path path
;
2846 struct ccb_getdev cgd
;
2847 struct async_node
*cur_entry
;
2849 cur_entry
= (struct async_node
*)arg
;
2852 * Don't report unconfigured devices (Wildcard devs,
2853 * devices only for target mode, device instances
2854 * that have been invalidated but are waiting for
2855 * their last reference count to be released).
2857 if ((device
->flags
& CAM_DEV_UNCONFIGURED
) != 0)
2860 xpt_compile_path(&path
,
2862 device
->target
->bus
->path_id
,
2863 device
->target
->target_id
,
2865 xpt_setup_ccb(&cgd
.ccb_h
, &path
, /*priority*/1);
2866 cgd
.ccb_h
.func_code
= XPT_GDEV_TYPE
;
2867 xpt_action((union ccb
*)&cgd
);
2868 cur_entry
->callback(cur_entry
->callback_arg
,
2871 xpt_release_path(&path
);
2877 xptsetasyncbusfunc(struct cam_eb
*bus
, void *arg
)
2879 struct cam_path path
;
2880 struct ccb_pathinq cpi
;
2881 struct async_node
*cur_entry
;
2883 cur_entry
= (struct async_node
*)arg
;
2885 xpt_compile_path(&path
, /*periph*/NULL
,
2887 CAM_TARGET_WILDCARD
,
2889 xpt_setup_ccb(&cpi
.ccb_h
, &path
, /*priority*/1);
2890 cpi
.ccb_h
.func_code
= XPT_PATH_INQ
;
2891 xpt_action((union ccb
*)&cpi
);
2892 cur_entry
->callback(cur_entry
->callback_arg
,
2895 xpt_release_path(&path
);
2901 xpt_action(union ccb
*start_ccb
)
2903 CAM_DEBUG(start_ccb
->ccb_h
.path
, CAM_DEBUG_TRACE
, ("xpt_action\n"));
2905 start_ccb
->ccb_h
.status
= CAM_REQ_INPROG
;
2909 switch (start_ccb
->ccb_h
.func_code
) {
2912 #ifdef CAM_NEW_TRAN_CODE
2913 struct cam_ed
*device
;
2914 #endif /* CAM_NEW_TRAN_CODE */
2916 char cdb_str
[(SCSI_MAX_CDBLEN
* 3) + 1];
2917 struct cam_path
*path
;
2919 path
= start_ccb
->ccb_h
.path
;
2923 * For the sake of compatibility with SCSI-1
2924 * devices that may not understand the identify
2925 * message, we include lun information in the
2926 * second byte of all commands. SCSI-1 specifies
2927 * that luns are a 3 bit value and reserves only 3
2928 * bits for lun information in the CDB. Later
2929 * revisions of the SCSI spec allow for more than 8
2930 * luns, but have deprecated lun information in the
2931 * CDB. So, if the lun won't fit, we must omit.
2933 * Also be aware that during initial probing for devices,
2934 * the inquiry information is unknown but initialized to 0.
2935 * This means that this code will be exercised while probing
2936 * devices with an ANSI revision greater than 2.
2938 #ifdef CAM_NEW_TRAN_CODE
2939 device
= start_ccb
->ccb_h
.path
->device
;
2940 if (device
->protocol_version
<= SCSI_REV_2
2941 #else /* CAM_NEW_TRAN_CODE */
2942 if (SID_ANSI_REV(&start_ccb
->ccb_h
.path
->device
->inq_data
) <= 2
2943 #endif /* CAM_NEW_TRAN_CODE */
2944 && start_ccb
->ccb_h
.target_lun
< 8
2945 && (start_ccb
->ccb_h
.flags
& CAM_CDB_POINTER
) == 0) {
2947 start_ccb
->csio
.cdb_io
.cdb_bytes
[1] |=
2948 start_ccb
->ccb_h
.target_lun
<< 5;
2950 start_ccb
->csio
.scsi_status
= SCSI_STATUS_OK
;
2951 CAM_DEBUG(path
, CAM_DEBUG_CDB
,("%s. CDB: %s\n",
2952 scsi_op_desc(start_ccb
->csio
.cdb_io
.cdb_bytes
[0],
2953 &path
->device
->inq_data
),
2954 scsi_cdb_string(start_ccb
->csio
.cdb_io
.cdb_bytes
,
2955 cdb_str
, sizeof(cdb_str
))));
2959 case XPT_CONT_TARGET_IO
:
2960 start_ccb
->csio
.sense_resid
= 0;
2961 start_ccb
->csio
.resid
= 0;
2966 struct cam_path
*path
;
2969 path
= start_ccb
->ccb_h
.path
;
2971 cam_ccbq_insert_ccb(&path
->device
->ccbq
, start_ccb
);
2972 if (path
->device
->qfrozen_cnt
== 0)
2973 runq
= xpt_schedule_dev_sendq(path
->bus
, path
->device
);
2977 xpt_run_dev_sendq(path
->bus
);
2980 case XPT_SET_TRAN_SETTINGS
:
2982 xpt_set_transfer_settings(&start_ccb
->cts
,
2983 start_ccb
->ccb_h
.path
->device
,
2984 /*async_update*/FALSE
);
2987 case XPT_CALC_GEOMETRY
:
2989 struct cam_sim
*sim
;
2991 /* Filter out garbage */
2992 if (start_ccb
->ccg
.block_size
== 0
2993 || start_ccb
->ccg
.volume_size
== 0) {
2994 start_ccb
->ccg
.cylinders
= 0;
2995 start_ccb
->ccg
.heads
= 0;
2996 start_ccb
->ccg
.secs_per_track
= 0;
2997 start_ccb
->ccb_h
.status
= CAM_REQ_CMP
;
3000 sim
= start_ccb
->ccb_h
.path
->bus
->sim
;
3001 (*(sim
->sim_action
))(sim
, start_ccb
);
3006 union ccb
* abort_ccb
;
3008 abort_ccb
= start_ccb
->cab
.abort_ccb
;
3009 if (XPT_FC_IS_DEV_QUEUED(abort_ccb
)) {
3011 if (abort_ccb
->ccb_h
.pinfo
.index
>= 0) {
3012 struct cam_ccbq
*ccbq
;
3014 ccbq
= &abort_ccb
->ccb_h
.path
->device
->ccbq
;
3015 cam_ccbq_remove_ccb(ccbq
, abort_ccb
);
3016 abort_ccb
->ccb_h
.status
=
3017 CAM_REQ_ABORTED
|CAM_DEV_QFRZN
;
3018 xpt_freeze_devq(abort_ccb
->ccb_h
.path
, 1);
3019 xpt_done(abort_ccb
);
3020 start_ccb
->ccb_h
.status
= CAM_REQ_CMP
;
3023 if (abort_ccb
->ccb_h
.pinfo
.index
== CAM_UNQUEUED_INDEX
3024 && (abort_ccb
->ccb_h
.status
& CAM_SIM_QUEUED
) == 0) {
3026 * We've caught this ccb en route to
3027 * the SIM. Flag it for abort and the
3028 * SIM will do so just before starting
3029 * real work on the CCB.
3031 abort_ccb
->ccb_h
.status
=
3032 CAM_REQ_ABORTED
|CAM_DEV_QFRZN
;
3033 xpt_freeze_devq(abort_ccb
->ccb_h
.path
, 1);
3034 start_ccb
->ccb_h
.status
= CAM_REQ_CMP
;
3038 if (XPT_FC_IS_QUEUED(abort_ccb
)
3039 && (abort_ccb
->ccb_h
.pinfo
.index
== CAM_DONEQ_INDEX
)) {
3041 * It's already completed but waiting
3042 * for our SWI to get to it.
3044 start_ccb
->ccb_h
.status
= CAM_UA_ABORT
;
3048 * If we weren't able to take care of the abort request
3049 * in the XPT, pass the request down to the SIM for processing.
3053 case XPT_ACCEPT_TARGET_IO
:
3055 case XPT_IMMED_NOTIFY
:
3056 case XPT_NOTIFY_ACK
:
3057 case XPT_GET_TRAN_SETTINGS
:
3060 struct cam_sim
*sim
;
3062 sim
= start_ccb
->ccb_h
.path
->bus
->sim
;
3063 (*(sim
->sim_action
))(sim
, start_ccb
);
3068 struct cam_sim
*sim
;
3070 sim
= start_ccb
->ccb_h
.path
->bus
->sim
;
3071 (*(sim
->sim_action
))(sim
, start_ccb
);
3074 case XPT_PATH_STATS
:
3075 start_ccb
->cpis
.last_reset
=
3076 start_ccb
->ccb_h
.path
->bus
->last_reset
;
3077 start_ccb
->ccb_h
.status
= CAM_REQ_CMP
;
3083 dev
= start_ccb
->ccb_h
.path
->device
;
3084 if ((dev
->flags
& CAM_DEV_UNCONFIGURED
) != 0) {
3085 start_ccb
->ccb_h
.status
= CAM_DEV_NOT_THERE
;
3087 struct ccb_getdev
*cgd
;
3091 cgd
= &start_ccb
->cgd
;
3092 bus
= cgd
->ccb_h
.path
->bus
;
3093 tar
= cgd
->ccb_h
.path
->target
;
3094 cgd
->inq_data
= dev
->inq_data
;
3095 cgd
->ccb_h
.status
= CAM_REQ_CMP
;
3096 cgd
->serial_num_len
= dev
->serial_num_len
;
3097 if ((dev
->serial_num_len
> 0)
3098 && (dev
->serial_num
!= NULL
))
3099 bcopy(dev
->serial_num
, cgd
->serial_num
,
3100 dev
->serial_num_len
);
3104 case XPT_GDEV_STATS
:
3108 dev
= start_ccb
->ccb_h
.path
->device
;
3109 if ((dev
->flags
& CAM_DEV_UNCONFIGURED
) != 0) {
3110 start_ccb
->ccb_h
.status
= CAM_DEV_NOT_THERE
;
3112 struct ccb_getdevstats
*cgds
;
3116 cgds
= &start_ccb
->cgds
;
3117 bus
= cgds
->ccb_h
.path
->bus
;
3118 tar
= cgds
->ccb_h
.path
->target
;
3119 cgds
->dev_openings
= dev
->ccbq
.dev_openings
;
3120 cgds
->dev_active
= dev
->ccbq
.dev_active
;
3121 cgds
->devq_openings
= dev
->ccbq
.devq_openings
;
3122 cgds
->devq_queued
= dev
->ccbq
.queue
.entries
;
3123 cgds
->held
= dev
->ccbq
.held
;
3124 cgds
->last_reset
= tar
->last_reset
;
3125 cgds
->maxtags
= dev
->quirk
->maxtags
;
3126 cgds
->mintags
= dev
->quirk
->mintags
;
3127 if (timevalcmp(&tar
->last_reset
, &bus
->last_reset
, <))
3128 cgds
->last_reset
= bus
->last_reset
;
3129 cgds
->ccb_h
.status
= CAM_REQ_CMP
;
3135 struct cam_periph
*nperiph
;
3136 struct periph_list
*periph_head
;
3137 struct ccb_getdevlist
*cgdl
;
3139 struct cam_ed
*device
;
3146 * Don't want anyone mucking with our data.
3148 device
= start_ccb
->ccb_h
.path
->device
;
3149 periph_head
= &device
->periphs
;
3150 cgdl
= &start_ccb
->cgdl
;
3153 * Check and see if the list has changed since the user
3154 * last requested a list member. If so, tell them that the
3155 * list has changed, and therefore they need to start over
3156 * from the beginning.
3158 if ((cgdl
->index
!= 0) &&
3159 (cgdl
->generation
!= device
->generation
)) {
3160 cgdl
->status
= CAM_GDEVLIST_LIST_CHANGED
;
3165 * Traverse the list of peripherals and attempt to find
3166 * the requested peripheral.
3168 for (nperiph
= SLIST_FIRST(periph_head
), i
= 0;
3169 (nperiph
!= NULL
) && (i
<= cgdl
->index
);
3170 nperiph
= SLIST_NEXT(nperiph
, periph_links
), i
++) {
3171 if (i
== cgdl
->index
) {
3172 strncpy(cgdl
->periph_name
,
3173 nperiph
->periph_name
,
3175 cgdl
->unit_number
= nperiph
->unit_number
;
3180 cgdl
->status
= CAM_GDEVLIST_ERROR
;
3184 if (nperiph
== NULL
)
3185 cgdl
->status
= CAM_GDEVLIST_LAST_DEVICE
;
3187 cgdl
->status
= CAM_GDEVLIST_MORE_DEVS
;
3190 cgdl
->generation
= device
->generation
;
3192 cgdl
->ccb_h
.status
= CAM_REQ_CMP
;
3197 dev_pos_type position_type
;
3198 struct ccb_dev_match
*cdm
;
3201 cdm
= &start_ccb
->cdm
;
3204 * Prevent EDT changes while we traverse it.
3207 * There are two ways of getting at information in the EDT.
3208 * The first way is via the primary EDT tree. It starts
3209 * with a list of busses, then a list of targets on a bus,
3210 * then devices/luns on a target, and then peripherals on a
3211 * device/lun. The "other" way is by the peripheral driver
3212 * lists. The peripheral driver lists are organized by
3213 * peripheral driver. (obviously) So it makes sense to
3214 * use the peripheral driver list if the user is looking
3215 * for something like "da1", or all "da" devices. If the
3216 * user is looking for something on a particular bus/target
3217 * or lun, it's generally better to go through the EDT tree.
3220 if (cdm
->pos
.position_type
!= CAM_DEV_POS_NONE
)
3221 position_type
= cdm
->pos
.position_type
;
3225 position_type
= CAM_DEV_POS_NONE
;
3227 for (i
= 0; i
< cdm
->num_patterns
; i
++) {
3228 if ((cdm
->patterns
[i
].type
== DEV_MATCH_BUS
)
3229 ||(cdm
->patterns
[i
].type
== DEV_MATCH_DEVICE
)){
3230 position_type
= CAM_DEV_POS_EDT
;
3235 if (cdm
->num_patterns
== 0)
3236 position_type
= CAM_DEV_POS_EDT
;
3237 else if (position_type
== CAM_DEV_POS_NONE
)
3238 position_type
= CAM_DEV_POS_PDRV
;
3241 switch(position_type
& CAM_DEV_POS_TYPEMASK
) {
3242 case CAM_DEV_POS_EDT
:
3243 ret
= xptedtmatch(cdm
);
3245 case CAM_DEV_POS_PDRV
:
3246 ret
= xptperiphlistmatch(cdm
);
3249 cdm
->status
= CAM_DEV_MATCH_ERROR
;
3253 if (cdm
->status
== CAM_DEV_MATCH_ERROR
)
3254 start_ccb
->ccb_h
.status
= CAM_REQ_CMP_ERR
;
3256 start_ccb
->ccb_h
.status
= CAM_REQ_CMP
;
3262 struct ccb_setasync
*csa
;
3263 struct async_node
*cur_entry
;
3264 struct async_list
*async_head
;
3267 csa
= &start_ccb
->csa
;
3268 added
= csa
->event_enable
;
3269 async_head
= &csa
->ccb_h
.path
->device
->asyncs
;
3272 * If there is already an entry for us, simply
3275 cur_entry
= SLIST_FIRST(async_head
);
3276 while (cur_entry
!= NULL
) {
3277 if ((cur_entry
->callback_arg
== csa
->callback_arg
)
3278 && (cur_entry
->callback
== csa
->callback
))
3280 cur_entry
= SLIST_NEXT(cur_entry
, links
);
3283 if (cur_entry
!= NULL
) {
3285 * If the request has no flags set,
3288 added
&= ~cur_entry
->event_enable
;
3289 if (csa
->event_enable
== 0) {
3290 SLIST_REMOVE(async_head
, cur_entry
,
3292 csa
->ccb_h
.path
->device
->refcount
--;
3293 kfree(cur_entry
, M_DEVBUF
);
3295 cur_entry
->event_enable
= csa
->event_enable
;
3298 cur_entry
= kmalloc(sizeof(*cur_entry
),
3299 M_DEVBUF
, M_INTWAIT
);
3300 cur_entry
->event_enable
= csa
->event_enable
;
3301 cur_entry
->callback_arg
= csa
->callback_arg
;
3302 cur_entry
->callback
= csa
->callback
;
3303 SLIST_INSERT_HEAD(async_head
, cur_entry
, links
);
3304 csa
->ccb_h
.path
->device
->refcount
++;
3307 if ((added
& AC_FOUND_DEVICE
) != 0) {
3309 * Get this peripheral up to date with all
3310 * the currently existing devices.
3312 xpt_for_all_devices(xptsetasyncfunc
, cur_entry
);
3314 if ((added
& AC_PATH_REGISTERED
) != 0) {
3316 * Get this peripheral up to date with all
3317 * the currently existing busses.
3319 xpt_for_all_busses(xptsetasyncbusfunc
, cur_entry
);
3321 start_ccb
->ccb_h
.status
= CAM_REQ_CMP
;
3326 struct ccb_relsim
*crs
;
3329 crs
= &start_ccb
->crs
;
3330 dev
= crs
->ccb_h
.path
->device
;
3333 crs
->ccb_h
.status
= CAM_DEV_NOT_THERE
;
3337 if ((crs
->release_flags
& RELSIM_ADJUST_OPENINGS
) != 0) {
3339 if ((dev
->inq_data
.flags
& SID_CmdQue
) != 0) {
3341 /* Don't ever go below one opening */
3342 if (crs
->openings
> 0) {
3343 xpt_dev_ccbq_resize(crs
->ccb_h
.path
,
3347 xpt_print_path(crs
->ccb_h
.path
);
3348 kprintf("tagged openings "
3356 if ((crs
->release_flags
& RELSIM_RELEASE_AFTER_TIMEOUT
) != 0) {
3358 if ((dev
->flags
& CAM_DEV_REL_TIMEOUT_PENDING
) != 0) {
3361 * Just extend the old timeout and decrement
3362 * the freeze count so that a single timeout
3363 * is sufficient for releasing the queue.
3365 start_ccb
->ccb_h
.flags
&= ~CAM_DEV_QFREEZE
;
3366 callout_stop(&dev
->c_handle
);
3369 start_ccb
->ccb_h
.flags
|= CAM_DEV_QFREEZE
;
3372 callout_reset(&dev
->c_handle
,
3373 (crs
->release_timeout
* hz
) / 1000,
3374 xpt_release_devq_timeout
, dev
);
3376 dev
->flags
|= CAM_DEV_REL_TIMEOUT_PENDING
;
3380 if ((crs
->release_flags
& RELSIM_RELEASE_AFTER_CMDCMPLT
) != 0) {
3382 if ((dev
->flags
& CAM_DEV_REL_ON_COMPLETE
) != 0) {
3384 * Decrement the freeze count so that a single
3385 * completion is still sufficient to unfreeze
3388 start_ccb
->ccb_h
.flags
&= ~CAM_DEV_QFREEZE
;
3391 dev
->flags
|= CAM_DEV_REL_ON_COMPLETE
;
3392 start_ccb
->ccb_h
.flags
|= CAM_DEV_QFREEZE
;
3396 if ((crs
->release_flags
& RELSIM_RELEASE_AFTER_QEMPTY
) != 0) {
3398 if ((dev
->flags
& CAM_DEV_REL_ON_QUEUE_EMPTY
) != 0
3399 || (dev
->ccbq
.dev_active
== 0)) {
3401 start_ccb
->ccb_h
.flags
&= ~CAM_DEV_QFREEZE
;
3404 dev
->flags
|= CAM_DEV_REL_ON_QUEUE_EMPTY
;
3405 start_ccb
->ccb_h
.flags
|= CAM_DEV_QFREEZE
;
3409 if ((start_ccb
->ccb_h
.flags
& CAM_DEV_QFREEZE
) == 0) {
3411 xpt_release_devq(crs
->ccb_h
.path
, /*count*/1,
3414 start_ccb
->crs
.qfrozen_cnt
= dev
->qfrozen_cnt
;
3415 start_ccb
->ccb_h
.status
= CAM_REQ_CMP
;
3419 xpt_scan_bus(start_ccb
->ccb_h
.path
->periph
, start_ccb
);
3422 xpt_scan_lun(start_ccb
->ccb_h
.path
->periph
,
3423 start_ccb
->ccb_h
.path
, start_ccb
->crcn
.flags
,
3428 #ifdef CAM_DEBUG_DELAY
3429 cam_debug_delay
= CAM_DEBUG_DELAY
;
3431 cam_dflags
= start_ccb
->cdbg
.flags
;
3432 if (cam_dpath
!= NULL
) {
3433 xpt_free_path(cam_dpath
);
3437 if (cam_dflags
!= CAM_DEBUG_NONE
) {
3438 if (xpt_create_path(&cam_dpath
, xpt_periph
,
3439 start_ccb
->ccb_h
.path_id
,
3440 start_ccb
->ccb_h
.target_id
,
3441 start_ccb
->ccb_h
.target_lun
) !=
3443 start_ccb
->ccb_h
.status
= CAM_RESRC_UNAVAIL
;
3444 cam_dflags
= CAM_DEBUG_NONE
;
3446 start_ccb
->ccb_h
.status
= CAM_REQ_CMP
;
3447 xpt_print_path(cam_dpath
);
3448 kprintf("debugging flags now %x\n", cam_dflags
);
3452 start_ccb
->ccb_h
.status
= CAM_REQ_CMP
;
3454 #else /* !CAMDEBUG */
3455 start_ccb
->ccb_h
.status
= CAM_FUNC_NOTAVAIL
;
3456 #endif /* CAMDEBUG */
3460 if ((start_ccb
->ccb_h
.flags
& CAM_DEV_QFREEZE
) != 0)
3461 xpt_freeze_devq(start_ccb
->ccb_h
.path
, 1);
3462 start_ccb
->ccb_h
.status
= CAM_REQ_CMP
;
3469 start_ccb
->ccb_h
.status
= CAM_PROVIDE_FAIL
;
3476 xpt_polled_action(union ccb
*start_ccb
)
3479 struct cam_sim
*sim
;
3480 struct cam_devq
*devq
;
3483 timeout
= start_ccb
->ccb_h
.timeout
;
3484 sim
= start_ccb
->ccb_h
.path
->bus
->sim
;
3486 dev
= start_ccb
->ccb_h
.path
->device
;
3491 * Steal an opening so that no other queued requests
3492 * can get it before us while we simulate interrupts.
3494 dev
->ccbq
.devq_openings
--;
3495 dev
->ccbq
.dev_openings
--;
3497 while(((devq
&& devq
->send_openings
<= 0) || dev
->ccbq
.dev_openings
< 0)
3498 && (--timeout
> 0)) {
3500 (*(sim
->sim_poll
))(sim
);
3501 swi_camnet(NULL
, NULL
);
3502 swi_cambio(NULL
, NULL
);
3505 dev
->ccbq
.devq_openings
++;
3506 dev
->ccbq
.dev_openings
++;
3509 xpt_action(start_ccb
);
3510 while(--timeout
> 0) {
3511 (*(sim
->sim_poll
))(sim
);
3512 swi_camnet(NULL
, NULL
);
3513 swi_cambio(NULL
, NULL
);
3514 if ((start_ccb
->ccb_h
.status
& CAM_STATUS_MASK
)
3521 * XXX Is it worth adding a sim_timeout entry
3522 * point so we can attempt recovery? If
3523 * this is only used for dumps, I don't think
3526 start_ccb
->ccb_h
.status
= CAM_CMD_TIMEOUT
;
3529 start_ccb
->ccb_h
.status
= CAM_RESRC_UNAVAIL
;
3535 * Schedule a peripheral driver to receive a ccb when it's
3536 * target device has space for more transactions.
3539 xpt_schedule(struct cam_periph
*perph
, u_int32_t new_priority
)
3541 struct cam_ed
*device
;
3544 CAM_DEBUG(perph
->path
, CAM_DEBUG_TRACE
, ("xpt_schedule\n"));
3545 device
= perph
->path
->device
;
3547 if (periph_is_queued(perph
)) {
3548 /* Simply reorder based on new priority */
3549 CAM_DEBUG(perph
->path
, CAM_DEBUG_SUBTRACE
,
3550 (" change priority to %d\n", new_priority
));
3551 if (new_priority
< perph
->pinfo
.priority
) {
3552 camq_change_priority(&device
->drvq
,
3558 /* New entry on the queue */
3559 CAM_DEBUG(perph
->path
, CAM_DEBUG_SUBTRACE
,
3560 (" added periph to queue\n"));
3561 perph
->pinfo
.priority
= new_priority
;
3562 perph
->pinfo
.generation
= ++device
->drvq
.generation
;
3563 camq_insert(&device
->drvq
, &perph
->pinfo
);
3564 runq
= xpt_schedule_dev_allocq(perph
->path
->bus
, device
);
3568 CAM_DEBUG(perph
->path
, CAM_DEBUG_SUBTRACE
,
3569 (" calling xpt_run_devq\n"));
3570 xpt_run_dev_allocq(perph
->path
->bus
);
3576 * Schedule a device to run on a given queue.
3577 * If the device was inserted as a new entry on the queue,
3578 * return 1 meaning the device queue should be run. If we
3579 * were already queued, implying someone else has already
3580 * started the queue, return 0 so the caller doesn't attempt
3581 * to run the queue. Must be run in a critical section.
3584 xpt_schedule_dev(struct camq
*queue
, cam_pinfo
*pinfo
,
3585 u_int32_t new_priority
)
3588 u_int32_t old_priority
;
3590 CAM_DEBUG_PRINT(CAM_DEBUG_XPT
, ("xpt_schedule_dev\n"));
3592 old_priority
= pinfo
->priority
;
3595 * Are we already queued?
3597 if (pinfo
->index
!= CAM_UNQUEUED_INDEX
) {
3598 /* Simply reorder based on new priority */
3599 if (new_priority
< old_priority
) {
3600 camq_change_priority(queue
, pinfo
->index
,
3602 CAM_DEBUG_PRINT(CAM_DEBUG_XPT
,
3603 ("changed priority to %d\n",
3608 /* New entry on the queue */
3609 if (new_priority
< old_priority
)
3610 pinfo
->priority
= new_priority
;
3612 CAM_DEBUG_PRINT(CAM_DEBUG_XPT
,
3613 ("Inserting onto queue\n"));
3614 pinfo
->generation
= ++queue
->generation
;
3615 camq_insert(queue
, pinfo
);
3622 xpt_run_dev_allocq(struct cam_eb
*bus
)
3624 struct cam_devq
*devq
;
3626 if ((devq
= bus
->sim
->devq
) == NULL
) {
3627 CAM_DEBUG_PRINT(CAM_DEBUG_XPT
, ("xpt_run_dev_allocq: NULL devq\n"));
3630 CAM_DEBUG_PRINT(CAM_DEBUG_XPT
, ("xpt_run_dev_allocq\n"));
3632 CAM_DEBUG_PRINT(CAM_DEBUG_XPT
,
3633 (" qfrozen_cnt == 0x%x, entries == %d, "
3634 "openings == %d, active == %d\n",
3635 devq
->alloc_queue
.qfrozen_cnt
,
3636 devq
->alloc_queue
.entries
,
3637 devq
->alloc_openings
,
3638 devq
->alloc_active
));
3641 devq
->alloc_queue
.qfrozen_cnt
++;
3642 while ((devq
->alloc_queue
.entries
> 0)
3643 && (devq
->alloc_openings
> 0)
3644 && (devq
->alloc_queue
.qfrozen_cnt
<= 1)) {
3645 struct cam_ed_qinfo
*qinfo
;
3646 struct cam_ed
*device
;
3647 union ccb
*work_ccb
;
3648 struct cam_periph
*drv
;
3651 qinfo
= (struct cam_ed_qinfo
*)camq_remove(&devq
->alloc_queue
,
3653 device
= qinfo
->device
;
3655 CAM_DEBUG_PRINT(CAM_DEBUG_XPT
,
3656 ("running device %p\n", device
));
3658 drvq
= &device
->drvq
;
3661 if (drvq
->entries
<= 0) {
3662 panic("xpt_run_dev_allocq: "
3663 "Device on queue without any work to do");
3666 if ((work_ccb
= xpt_get_ccb(device
)) != NULL
) {
3667 devq
->alloc_openings
--;
3668 devq
->alloc_active
++;
3669 drv
= (struct cam_periph
*)camq_remove(drvq
, CAMQ_HEAD
);
3671 xpt_setup_ccb(&work_ccb
->ccb_h
, drv
->path
,
3672 drv
->pinfo
.priority
);
3673 CAM_DEBUG_PRINT(CAM_DEBUG_XPT
,
3674 ("calling periph start\n"));
3675 drv
->periph_start(drv
, work_ccb
);
3678 * Malloc failure in alloc_ccb
3681 * XXX add us to a list to be run from free_ccb
3682 * if we don't have any ccbs active on this
3683 * device queue otherwise we may never get run
3689 /* Raise IPL for possible insertion and test at top of loop */
3692 if (drvq
->entries
> 0) {
3693 /* We have more work. Attempt to reschedule */
3694 xpt_schedule_dev_allocq(bus
, device
);
3697 devq
->alloc_queue
.qfrozen_cnt
--;
3702 xpt_run_dev_sendq(struct cam_eb
*bus
)
3704 struct cam_devq
*devq
;
3706 if ((devq
= bus
->sim
->devq
) == NULL
) {
3707 CAM_DEBUG_PRINT(CAM_DEBUG_XPT
, ("xpt_run_dev_sendq: NULL devq\n"));
3710 CAM_DEBUG_PRINT(CAM_DEBUG_XPT
, ("xpt_run_dev_sendq\n"));
3713 devq
->send_queue
.qfrozen_cnt
++;
3714 while ((devq
->send_queue
.entries
> 0)
3715 && (devq
->send_openings
> 0)) {
3716 struct cam_ed_qinfo
*qinfo
;
3717 struct cam_ed
*device
;
3718 union ccb
*work_ccb
;
3719 struct cam_sim
*sim
;
3721 if (devq
->send_queue
.qfrozen_cnt
> 1) {
3725 qinfo
= (struct cam_ed_qinfo
*)camq_remove(&devq
->send_queue
,
3727 device
= qinfo
->device
;
3730 * If the device has been "frozen", don't attempt
3733 if (device
->qfrozen_cnt
> 0) {
3737 CAM_DEBUG_PRINT(CAM_DEBUG_XPT
,
3738 ("running device %p\n", device
));
3740 work_ccb
= cam_ccbq_peek_ccb(&device
->ccbq
, CAMQ_HEAD
);
3741 if (work_ccb
== NULL
) {
3742 kprintf("device on run queue with no ccbs???\n");
3746 if ((work_ccb
->ccb_h
.flags
& CAM_HIGH_POWER
) != 0) {
3748 if (num_highpower
<= 0) {
3750 * We got a high power command, but we
3751 * don't have any available slots. Freeze
3752 * the device queue until we have a slot
3755 device
->qfrozen_cnt
++;
3756 STAILQ_INSERT_TAIL(&highpowerq
,
3763 * Consume a high power slot while
3769 devq
->active_dev
= device
;
3770 cam_ccbq_remove_ccb(&device
->ccbq
, work_ccb
);
3772 cam_ccbq_send_ccb(&device
->ccbq
, work_ccb
);
3774 devq
->send_openings
--;
3775 devq
->send_active
++;
3777 if (device
->ccbq
.queue
.entries
> 0)
3778 xpt_schedule_dev_sendq(bus
, device
);
3780 if (work_ccb
&& (work_ccb
->ccb_h
.flags
& CAM_DEV_QFREEZE
) != 0){
3782 * The client wants to freeze the queue
3783 * after this CCB is sent.
3785 device
->qfrozen_cnt
++;
3788 /* In Target mode, the peripheral driver knows best... */
3789 if (work_ccb
->ccb_h
.func_code
== XPT_SCSI_IO
) {
3790 if ((device
->inq_flags
& SID_CmdQue
) != 0
3791 && work_ccb
->csio
.tag_action
!= CAM_TAG_ACTION_NONE
)
3792 work_ccb
->ccb_h
.flags
|= CAM_TAG_ACTION_VALID
;
3795 * Clear this in case of a retried CCB that
3796 * failed due to a rejected tag.
3798 work_ccb
->ccb_h
.flags
&= ~CAM_TAG_ACTION_VALID
;
3802 * Device queues can be shared among multiple sim instances
3803 * that reside on different busses. Use the SIM in the queue
3804 * CCB's path, rather than the one in the bus that was passed
3805 * into this function.
3807 sim
= work_ccb
->ccb_h
.path
->bus
->sim
;
3808 (*(sim
->sim_action
))(sim
, work_ccb
);
3810 devq
->active_dev
= NULL
;
3811 /* Raise IPL for possible insertion and test at top of loop */
3813 devq
->send_queue
.qfrozen_cnt
--;
3818 * This function merges stuff from the slave ccb into the master ccb, while
3819 * keeping important fields in the master ccb constant.
3822 xpt_merge_ccb(union ccb
*master_ccb
, union ccb
*slave_ccb
)
3825 * Pull fields that are valid for peripheral drivers to set
3826 * into the master CCB along with the CCB "payload".
3828 master_ccb
->ccb_h
.retry_count
= slave_ccb
->ccb_h
.retry_count
;
3829 master_ccb
->ccb_h
.func_code
= slave_ccb
->ccb_h
.func_code
;
3830 master_ccb
->ccb_h
.timeout
= slave_ccb
->ccb_h
.timeout
;
3831 master_ccb
->ccb_h
.flags
= slave_ccb
->ccb_h
.flags
;
3832 bcopy(&(&slave_ccb
->ccb_h
)[1], &(&master_ccb
->ccb_h
)[1],
3833 sizeof(union ccb
) - sizeof(struct ccb_hdr
));
3837 xpt_setup_ccb(struct ccb_hdr
*ccb_h
, struct cam_path
*path
, u_int32_t priority
)
3839 CAM_DEBUG(path
, CAM_DEBUG_TRACE
, ("xpt_setup_ccb\n"));
3840 callout_init(&ccb_h
->timeout_ch
);
3841 ccb_h
->pinfo
.priority
= priority
;
3843 ccb_h
->path_id
= path
->bus
->path_id
;
3845 ccb_h
->target_id
= path
->target
->target_id
;
3847 ccb_h
->target_id
= CAM_TARGET_WILDCARD
;
3849 ccb_h
->target_lun
= path
->device
->lun_id
;
3850 ccb_h
->pinfo
.generation
= ++path
->device
->ccbq
.queue
.generation
;
3852 ccb_h
->target_lun
= CAM_TARGET_WILDCARD
;
3854 ccb_h
->pinfo
.index
= CAM_UNQUEUED_INDEX
;
3858 /* Path manipulation functions */
3860 xpt_create_path(struct cam_path
**new_path_ptr
, struct cam_periph
*perph
,
3861 path_id_t path_id
, target_id_t target_id
, lun_id_t lun_id
)
3863 struct cam_path
*path
;
3866 path
= kmalloc(sizeof(*path
), M_DEVBUF
, M_INTWAIT
);
3867 status
= xpt_compile_path(path
, perph
, path_id
, target_id
, lun_id
);
3868 if (status
!= CAM_REQ_CMP
) {
3869 kfree(path
, M_DEVBUF
);
3872 *new_path_ptr
= path
;
3877 xpt_compile_path(struct cam_path
*new_path
, struct cam_periph
*perph
,
3878 path_id_t path_id
, target_id_t target_id
, lun_id_t lun_id
)
3881 struct cam_et
*target
;
3882 struct cam_ed
*device
;
3885 status
= CAM_REQ_CMP
; /* Completed without error */
3886 target
= NULL
; /* Wildcarded */
3887 device
= NULL
; /* Wildcarded */
3890 * We will potentially modify the EDT, so block interrupts
3891 * that may attempt to create cam paths.
3894 bus
= xpt_find_bus(path_id
);
3896 status
= CAM_PATH_INVALID
;
3898 target
= xpt_find_target(bus
, target_id
);
3899 if (target
== NULL
) {
3901 struct cam_et
*new_target
;
3903 new_target
= xpt_alloc_target(bus
, target_id
);
3904 if (new_target
== NULL
) {
3905 status
= CAM_RESRC_UNAVAIL
;
3907 target
= new_target
;
3910 if (target
!= NULL
) {
3911 device
= xpt_find_device(target
, lun_id
);
3912 if (device
== NULL
) {
3914 struct cam_ed
*new_device
;
3916 new_device
= xpt_alloc_device(bus
,
3919 if (new_device
== NULL
) {
3920 status
= CAM_RESRC_UNAVAIL
;
3922 device
= new_device
;
3930 * Only touch the user's data if we are successful.
3932 if (status
== CAM_REQ_CMP
) {
3933 new_path
->periph
= perph
;
3934 new_path
->bus
= bus
;
3935 new_path
->target
= target
;
3936 new_path
->device
= device
;
3937 CAM_DEBUG(new_path
, CAM_DEBUG_TRACE
, ("xpt_compile_path\n"));
3940 xpt_release_device(bus
, target
, device
);
3942 xpt_release_target(bus
, target
);
3944 xpt_release_bus(bus
);
3950 xpt_release_path(struct cam_path
*path
)
3952 CAM_DEBUG(path
, CAM_DEBUG_TRACE
, ("xpt_release_path\n"));
3953 if (path
->device
!= NULL
) {
3954 xpt_release_device(path
->bus
, path
->target
, path
->device
);
3955 path
->device
= NULL
;
3957 if (path
->target
!= NULL
) {
3958 xpt_release_target(path
->bus
, path
->target
);
3959 path
->target
= NULL
;
3961 if (path
->bus
!= NULL
) {
3962 xpt_release_bus(path
->bus
);
3968 xpt_free_path(struct cam_path
*path
)
3970 CAM_DEBUG(path
, CAM_DEBUG_TRACE
, ("xpt_free_path\n"));
3971 xpt_release_path(path
);
3972 kfree(path
, M_DEVBUF
);
3977 * Return -1 for failure, 0 for exact match, 1 for match with wildcards
3978 * in path1, 2 for match with wildcards in path2.
3981 xpt_path_comp(struct cam_path
*path1
, struct cam_path
*path2
)
3985 if (path1
->bus
!= path2
->bus
) {
3986 if (path1
->bus
->path_id
== CAM_BUS_WILDCARD
)
3988 else if (path2
->bus
->path_id
== CAM_BUS_WILDCARD
)
3993 if (path1
->target
!= path2
->target
) {
3994 if (path1
->target
->target_id
== CAM_TARGET_WILDCARD
) {
3997 } else if (path2
->target
->target_id
== CAM_TARGET_WILDCARD
)
4002 if (path1
->device
!= path2
->device
) {
4003 if (path1
->device
->lun_id
== CAM_LUN_WILDCARD
) {
4006 } else if (path2
->device
->lun_id
== CAM_LUN_WILDCARD
)
4015 xpt_print_path(struct cam_path
*path
)
4018 kprintf("(nopath): ");
4020 if (path
->periph
!= NULL
)
4021 kprintf("(%s%d:", path
->periph
->periph_name
,
4022 path
->periph
->unit_number
);
4024 kprintf("(noperiph:");
4026 if (path
->bus
!= NULL
)
4027 kprintf("%s%d:%d:", path
->bus
->sim
->sim_name
,
4028 path
->bus
->sim
->unit_number
,
4029 path
->bus
->sim
->bus_id
);
4033 if (path
->target
!= NULL
)
4034 kprintf("%d:", path
->target
->target_id
);
4038 if (path
->device
!= NULL
)
4039 kprintf("%d): ", path
->device
->lun_id
);
4046 xpt_path_string(struct cam_path
*path
, char *str
, size_t str_len
)
4050 sbuf_new(&sb
, str
, str_len
, 0);
4053 sbuf_printf(&sb
, "(nopath): ");
4055 if (path
->periph
!= NULL
)
4056 sbuf_printf(&sb
, "(%s%d:", path
->periph
->periph_name
,
4057 path
->periph
->unit_number
);
4059 sbuf_printf(&sb
, "(noperiph:");
4061 if (path
->bus
!= NULL
)
4062 sbuf_printf(&sb
, "%s%d:%d:", path
->bus
->sim
->sim_name
,
4063 path
->bus
->sim
->unit_number
,
4064 path
->bus
->sim
->bus_id
);
4066 sbuf_printf(&sb
, "nobus:");
4068 if (path
->target
!= NULL
)
4069 sbuf_printf(&sb
, "%d:", path
->target
->target_id
);
4071 sbuf_printf(&sb
, "X:");
4073 if (path
->device
!= NULL
)
4074 sbuf_printf(&sb
, "%d): ", path
->device
->lun_id
);
4076 sbuf_printf(&sb
, "X): ");
4080 return(sbuf_len(&sb
));
4084 xpt_path_path_id(struct cam_path
*path
)
4086 return(path
->bus
->path_id
);
4090 xpt_path_target_id(struct cam_path
*path
)
4092 if (path
->target
!= NULL
)
4093 return (path
->target
->target_id
);
4095 return (CAM_TARGET_WILDCARD
);
4099 xpt_path_lun_id(struct cam_path
*path
)
4101 if (path
->device
!= NULL
)
4102 return (path
->device
->lun_id
);
4104 return (CAM_LUN_WILDCARD
);
4108 xpt_path_sim(struct cam_path
*path
)
4110 return (path
->bus
->sim
);
4114 xpt_path_periph(struct cam_path
*path
)
4116 return (path
->periph
);
4120 * Release a CAM control block for the caller. Remit the cost of the structure
4121 * to the device referenced by the path. If the this device had no 'credits'
4122 * and peripheral drivers have registered async callbacks for this notification
4126 xpt_release_ccb(union ccb
*free_ccb
)
4128 struct cam_path
*path
;
4129 struct cam_ed
*device
;
4132 CAM_DEBUG_PRINT(CAM_DEBUG_XPT
, ("xpt_release_ccb\n"));
4133 path
= free_ccb
->ccb_h
.path
;
4134 device
= path
->device
;
4137 cam_ccbq_release_opening(&device
->ccbq
);
4138 if (xpt_ccb_count
> xpt_max_ccbs
) {
4139 xpt_free_ccb(free_ccb
);
4142 SLIST_INSERT_HEAD(&ccb_freeq
, &free_ccb
->ccb_h
, xpt_links
.sle
);
4144 if (bus
->sim
->devq
) {
4145 bus
->sim
->devq
->alloc_openings
++;
4146 bus
->sim
->devq
->alloc_active
--;
4148 /* XXX Turn this into an inline function - xpt_run_device?? */
4149 if ((device_is_alloc_queued(device
) == 0)
4150 && (device
->drvq
.entries
> 0)) {
4151 xpt_schedule_dev_allocq(bus
, device
);
4154 if (bus
->sim
->devq
&& dev_allocq_is_runnable(bus
->sim
->devq
))
4155 xpt_run_dev_allocq(bus
);
4158 /* Functions accessed by SIM drivers */
4161 * A sim structure, listing the SIM entry points and instance
4162 * identification info is passed to xpt_bus_register to hook the SIM
4163 * into the CAM framework. xpt_bus_register creates a cam_eb entry
4164 * for this new bus and places it in the array of busses and assigns
4165 * it a path_id. The path_id may be influenced by "hard wiring"
4166 * information specified by the user. Once interrupt services are
4167 * availible, the bus will be probed.
4170 xpt_bus_register(struct cam_sim
*sim
, u_int32_t bus
)
4172 struct cam_eb
*new_bus
;
4173 struct cam_eb
*old_bus
;
4174 struct ccb_pathinq cpi
;
4177 new_bus
= kmalloc(sizeof(*new_bus
), M_DEVBUF
, M_INTWAIT
);
4179 if (strcmp(sim
->sim_name
, "xpt") != 0) {
4181 xptpathid(sim
->sim_name
, sim
->unit_number
, sim
->bus_id
);
4184 TAILQ_INIT(&new_bus
->et_entries
);
4185 new_bus
->path_id
= sim
->path_id
;
4188 timevalclear(&new_bus
->last_reset
);
4190 new_bus
->refcount
= 1; /* Held until a bus_deregister event */
4191 new_bus
->generation
= 0;
4193 old_bus
= TAILQ_FIRST(&xpt_busses
);
4194 while (old_bus
!= NULL
4195 && old_bus
->path_id
< new_bus
->path_id
)
4196 old_bus
= TAILQ_NEXT(old_bus
, links
);
4197 if (old_bus
!= NULL
)
4198 TAILQ_INSERT_BEFORE(old_bus
, new_bus
, links
);
4200 TAILQ_INSERT_TAIL(&xpt_busses
, new_bus
, links
);
4204 /* Notify interested parties */
4205 if (sim
->path_id
!= CAM_XPT_PATH_ID
) {
4206 struct cam_path path
;
4208 xpt_compile_path(&path
, /*periph*/NULL
, sim
->path_id
,
4209 CAM_TARGET_WILDCARD
, CAM_LUN_WILDCARD
);
4210 xpt_setup_ccb(&cpi
.ccb_h
, &path
, /*priority*/1);
4211 cpi
.ccb_h
.func_code
= XPT_PATH_INQ
;
4212 xpt_action((union ccb
*)&cpi
);
4213 xpt_async(AC_PATH_REGISTERED
, &path
, &cpi
);
4214 xpt_release_path(&path
);
4216 return (CAM_SUCCESS
);
4220 * Deregister a bus. We must clean out all transactions pending on the bus.
4221 * This routine is typically called prior to cam_sim_free() (e.g. see
4222 * dev/usbmisc/umass/umass.c)
4225 xpt_bus_deregister(path_id_t pathid
)
4227 struct cam_path bus_path
;
4230 status
= xpt_compile_path(&bus_path
, NULL
, pathid
,
4231 CAM_TARGET_WILDCARD
, CAM_LUN_WILDCARD
);
4232 if (status
!= CAM_REQ_CMP
)
4236 * This should clear out all pending requests and timeouts, but
4237 * the ccb's may be queued to a software interrupt.
4239 * XXX AC_LOST_DEVICE does not precisely abort the pending requests,
4240 * and it really ought to.
4242 xpt_async(AC_LOST_DEVICE
, &bus_path
, NULL
);
4243 xpt_async(AC_PATH_DEREGISTERED
, &bus_path
, NULL
);
4245 /* make sure all responses have been processed */
4249 /* Release the reference count held while registered. */
4250 xpt_release_bus(bus_path
.bus
);
4251 xpt_release_path(&bus_path
);
4253 return (CAM_REQ_CMP
);
4257 xptnextfreepathid(void)
4264 bus
= TAILQ_FIRST(&xpt_busses
);
4266 /* Find an unoccupied pathid */
4268 && bus
->path_id
<= pathid
) {
4269 if (bus
->path_id
== pathid
)
4271 bus
= TAILQ_NEXT(bus
, links
);
4275 * Ensure that this pathid is not reserved for
4276 * a bus that may be registered in the future.
4278 if (resource_string_value("scbus", pathid
, "at", &strval
) == 0) {
4280 /* Start the search over */
4287 xptpathid(const char *sim_name
, int sim_unit
, int sim_bus
)
4293 pathid
= CAM_XPT_PATH_ID
;
4294 ksnprintf(buf
, sizeof(buf
), "%s%d", sim_name
, sim_unit
);
4296 while ((i
= resource_query_string(i
, "at", buf
)) != -1) {
4297 if (strcmp(resource_query_name(i
), "scbus")) {
4298 /* Avoid a bit of foot shooting. */
4301 dunit
= resource_query_unit(i
);
4302 if (dunit
< 0) /* unwired?! */
4304 if (resource_int_value("scbus", dunit
, "bus", &val
) == 0) {
4305 if (sim_bus
== val
) {
4309 } else if (sim_bus
== 0) {
4310 /* Unspecified matches bus 0 */
4314 kprintf("Ambiguous scbus configuration for %s%d "
4315 "bus %d, cannot wire down. The kernel "
4316 "config entry for scbus%d should "
4317 "specify a controller bus.\n"
4318 "Scbus will be assigned dynamically.\n",
4319 sim_name
, sim_unit
, sim_bus
, dunit
);
4324 if (pathid
== CAM_XPT_PATH_ID
)
4325 pathid
= xptnextfreepathid();
4330 xpt_async(u_int32_t async_code
, struct cam_path
*path
, void *async_arg
)
4333 struct cam_et
*target
, *next_target
;
4334 struct cam_ed
*device
, *next_device
;
4336 CAM_DEBUG(path
, CAM_DEBUG_TRACE
, ("xpt_async\n"));
4339 * Most async events come from a CAM interrupt context. In
4340 * a few cases, the error recovery code at the peripheral layer,
4341 * which may run from our SWI or a process context, may signal
4342 * deferred events with a call to xpt_async. Ensure async
4343 * notifications are serialized by blocking cam interrupts.
4349 if (async_code
== AC_BUS_RESET
) {
4350 /* Update our notion of when the last reset occurred */
4351 microuptime(&bus
->last_reset
);
4354 for (target
= TAILQ_FIRST(&bus
->et_entries
);
4356 target
= next_target
) {
4358 next_target
= TAILQ_NEXT(target
, links
);
4360 if (path
->target
!= target
4361 && path
->target
->target_id
!= CAM_TARGET_WILDCARD
4362 && target
->target_id
!= CAM_TARGET_WILDCARD
)
4365 if (async_code
== AC_SENT_BDR
) {
4366 /* Update our notion of when the last reset occurred */
4367 microuptime(&path
->target
->last_reset
);
4370 for (device
= TAILQ_FIRST(&target
->ed_entries
);
4372 device
= next_device
) {
4374 next_device
= TAILQ_NEXT(device
, links
);
4376 if (path
->device
!= device
4377 && path
->device
->lun_id
!= CAM_LUN_WILDCARD
4378 && device
->lun_id
!= CAM_LUN_WILDCARD
)
4381 xpt_dev_async(async_code
, bus
, target
,
4384 xpt_async_bcast(&device
->asyncs
, async_code
,
4390 * If this wasn't a fully wildcarded async, tell all
4391 * clients that want all async events.
4393 if (bus
!= xpt_periph
->path
->bus
)
4394 xpt_async_bcast(&xpt_periph
->path
->device
->asyncs
, async_code
,
4400 xpt_async_bcast(struct async_list
*async_head
,
4401 u_int32_t async_code
,
4402 struct cam_path
*path
, void *async_arg
)
4404 struct async_node
*cur_entry
;
4406 cur_entry
= SLIST_FIRST(async_head
);
4407 while (cur_entry
!= NULL
) {
4408 struct async_node
*next_entry
;
4410 * Grab the next list entry before we call the current
4411 * entry's callback. This is because the callback function
4412 * can delete its async callback entry.
4414 next_entry
= SLIST_NEXT(cur_entry
, links
);
4415 if ((cur_entry
->event_enable
& async_code
) != 0)
4416 cur_entry
->callback(cur_entry
->callback_arg
,
4419 cur_entry
= next_entry
;
4424 * Handle any per-device event notifications that require action by the XPT.
4427 xpt_dev_async(u_int32_t async_code
, struct cam_eb
*bus
, struct cam_et
*target
,
4428 struct cam_ed
*device
, void *async_arg
)
4431 struct cam_path newpath
;
4434 * We only need to handle events for real devices.
4436 if (target
->target_id
== CAM_TARGET_WILDCARD
4437 || device
->lun_id
== CAM_LUN_WILDCARD
)
4441 * We need our own path with wildcards expanded to
4442 * handle certain types of events.
4444 if ((async_code
== AC_SENT_BDR
)
4445 || (async_code
== AC_BUS_RESET
)
4446 || (async_code
== AC_INQ_CHANGED
))
4447 status
= xpt_compile_path(&newpath
, NULL
,
4452 status
= CAM_REQ_CMP_ERR
;
4454 if (status
== CAM_REQ_CMP
) {
4457 * Allow transfer negotiation to occur in a
4458 * tag free environment.
4460 if (async_code
== AC_SENT_BDR
4461 || async_code
== AC_BUS_RESET
)
4462 xpt_toggle_tags(&newpath
);
4464 if (async_code
== AC_INQ_CHANGED
) {
4466 * We've sent a start unit command, or
4467 * something similar to a device that
4468 * may have caused its inquiry data to
4469 * change. So we re-scan the device to
4470 * refresh the inquiry data for it.
4472 xpt_scan_lun(newpath
.periph
, &newpath
,
4473 CAM_EXPECT_INQ_CHANGE
, NULL
);
4475 xpt_release_path(&newpath
);
4476 } else if (async_code
== AC_LOST_DEVICE
) {
4478 * When we lose a device the device may be about to detach
4479 * the sim, we have to clear out all pending timeouts and
4480 * requests before that happens. XXX it would be nice if
4481 * we could abort the requests pertaining to the device.
4483 xpt_release_devq_timeout(device
);
4484 if ((device
->flags
& CAM_DEV_UNCONFIGURED
) == 0) {
4485 device
->flags
|= CAM_DEV_UNCONFIGURED
;
4486 xpt_release_device(bus
, target
, device
);
4488 } else if (async_code
== AC_TRANSFER_NEG
) {
4489 struct ccb_trans_settings
*settings
;
4491 settings
= (struct ccb_trans_settings
*)async_arg
;
4492 xpt_set_transfer_settings(settings
, device
,
4493 /*async_update*/TRUE
);
4498 xpt_freeze_devq(struct cam_path
*path
, u_int count
)
4500 struct ccb_hdr
*ccbh
;
4503 path
->device
->qfrozen_cnt
+= count
;
4506 * Mark the last CCB in the queue as needing
4507 * to be requeued if the driver hasn't
4508 * changed it's state yet. This fixes a race
4509 * where a ccb is just about to be queued to
4510 * a controller driver when it's interrupt routine
4511 * freezes the queue. To completly close the
4512 * hole, controller drives must check to see
4513 * if a ccb's status is still CAM_REQ_INPROG
4514 * under critical section protection just before they queue
4515 * the CCB. See ahc_action/ahc_freeze_devq for
4518 ccbh
= TAILQ_LAST(&path
->device
->ccbq
.active_ccbs
, ccb_hdr_tailq
);
4519 if (ccbh
&& ccbh
->status
== CAM_REQ_INPROG
)
4520 ccbh
->status
= CAM_REQUEUE_REQ
;
4522 return (path
->device
->qfrozen_cnt
);
4526 xpt_freeze_simq(struct cam_sim
*sim
, u_int count
)
4528 if (sim
->devq
== NULL
)
4530 sim
->devq
->send_queue
.qfrozen_cnt
+= count
;
4531 if (sim
->devq
->active_dev
!= NULL
) {
4532 struct ccb_hdr
*ccbh
;
4534 ccbh
= TAILQ_LAST(&sim
->devq
->active_dev
->ccbq
.active_ccbs
,
4536 if (ccbh
&& ccbh
->status
== CAM_REQ_INPROG
)
4537 ccbh
->status
= CAM_REQUEUE_REQ
;
4539 return (sim
->devq
->send_queue
.qfrozen_cnt
);
4543 * WARNING: most devices, especially USB/UMASS, may detach their sim early.
4544 * We ref-count the sim (and the bus only NULLs it out when the bus has been
4545 * freed, which is not the case here), but the device queue is also freed XXX
4546 * and we have to check that here.
4548 * XXX fixme: could we simply not null-out the device queue via
4552 xpt_release_devq_timeout(void *arg
)
4554 struct cam_ed
*device
;
4556 device
= (struct cam_ed
*)arg
;
4558 xpt_release_devq_device(device
, /*count*/1, /*run_queue*/TRUE
);
4562 xpt_release_devq(struct cam_path
*path
, u_int count
, int run_queue
)
4564 xpt_release_devq_device(path
->device
, count
, run_queue
);
4568 xpt_release_devq_device(struct cam_ed
*dev
, u_int count
, int run_queue
)
4575 if (dev
->qfrozen_cnt
> 0) {
4577 count
= (count
> dev
->qfrozen_cnt
) ? dev
->qfrozen_cnt
: count
;
4578 dev
->qfrozen_cnt
-= count
;
4579 if (dev
->qfrozen_cnt
== 0) {
4582 * No longer need to wait for a successful
4583 * command completion.
4585 dev
->flags
&= ~CAM_DEV_REL_ON_COMPLETE
;
4588 * Remove any timeouts that might be scheduled
4589 * to release this queue.
4591 if ((dev
->flags
& CAM_DEV_REL_TIMEOUT_PENDING
) != 0) {
4592 callout_stop(&dev
->c_handle
);
4593 dev
->flags
&= ~CAM_DEV_REL_TIMEOUT_PENDING
;
4597 * Now that we are unfrozen schedule the
4598 * device so any pending transactions are
4601 if ((dev
->ccbq
.queue
.entries
> 0)
4602 && (xpt_schedule_dev_sendq(dev
->target
->bus
, dev
))
4603 && (run_queue
!= 0)) {
4609 xpt_run_dev_sendq(dev
->target
->bus
);
4614 xpt_release_simq(struct cam_sim
*sim
, int run_queue
)
4618 if (sim
->devq
== NULL
)
4621 sendq
= &(sim
->devq
->send_queue
);
4624 if (sendq
->qfrozen_cnt
> 0) {
4625 sendq
->qfrozen_cnt
--;
4626 if (sendq
->qfrozen_cnt
== 0) {
4630 * If there is a timeout scheduled to release this
4631 * sim queue, remove it. The queue frozen count is
4634 if ((sim
->flags
& CAM_SIM_REL_TIMEOUT_PENDING
) != 0){
4635 callout_stop(&sim
->c_handle
);
4636 sim
->flags
&= ~CAM_SIM_REL_TIMEOUT_PENDING
;
4638 bus
= xpt_find_bus(sim
->path_id
);
4643 * Now that we are unfrozen run the send queue.
4645 xpt_run_dev_sendq(bus
);
4647 xpt_release_bus(bus
);
4657 xpt_done(union ccb
*done_ccb
)
4661 CAM_DEBUG(done_ccb
->ccb_h
.path
, CAM_DEBUG_TRACE
, ("xpt_done\n"));
4662 if ((done_ccb
->ccb_h
.func_code
& XPT_FC_QUEUED
) != 0) {
4664 * Queue up the request for handling by our SWI handler
4665 * any of the "non-immediate" type of ccbs.
4667 switch (done_ccb
->ccb_h
.path
->periph
->type
) {
4668 case CAM_PERIPH_BIO
:
4669 TAILQ_INSERT_TAIL(&cam_bioq
, &done_ccb
->ccb_h
,
4671 done_ccb
->ccb_h
.pinfo
.index
= CAM_DONEQ_INDEX
;
4674 case CAM_PERIPH_NET
:
4675 TAILQ_INSERT_TAIL(&cam_netq
, &done_ccb
->ccb_h
,
4677 done_ccb
->ccb_h
.pinfo
.index
= CAM_DONEQ_INDEX
;
4690 new_ccb
= kmalloc(sizeof(*new_ccb
), M_DEVBUF
, M_INTWAIT
);
4695 xpt_free_ccb(union ccb
*free_ccb
)
4697 kfree(free_ccb
, M_DEVBUF
);
4702 /* Private XPT functions */
4705 * Get a CAM control block for the caller. Charge the structure to the device
4706 * referenced by the path. If the this device has no 'credits' then the
4707 * device already has the maximum number of outstanding operations under way
4708 * and we return NULL. If we don't have sufficient resources to allocate more
4709 * ccbs, we also return NULL.
4712 xpt_get_ccb(struct cam_ed
*device
)
4717 if ((new_ccb
= (union ccb
*)SLIST_FIRST(&ccb_freeq
)) == NULL
) {
4718 new_ccb
= kmalloc(sizeof(*new_ccb
), M_DEVBUF
, M_INTWAIT
);
4719 SLIST_INSERT_HEAD(&ccb_freeq
, &new_ccb
->ccb_h
,
4723 cam_ccbq_take_opening(&device
->ccbq
);
4724 SLIST_REMOVE_HEAD(&ccb_freeq
, xpt_links
.sle
);
4730 xpt_release_bus(struct cam_eb
*bus
)
4734 if (bus
->refcount
== 1) {
4735 KKASSERT(TAILQ_FIRST(&bus
->et_entries
) == NULL
);
4736 TAILQ_REMOVE(&xpt_busses
, bus
, links
);
4738 cam_sim_release(bus
->sim
, 0);
4742 KKASSERT(bus
->refcount
== 1);
4743 kfree(bus
, M_DEVBUF
);
4750 static struct cam_et
*
4751 xpt_alloc_target(struct cam_eb
*bus
, target_id_t target_id
)
4753 struct cam_et
*target
;
4754 struct cam_et
*cur_target
;
4756 target
= kmalloc(sizeof(*target
), M_DEVBUF
, M_INTWAIT
);
4758 TAILQ_INIT(&target
->ed_entries
);
4760 target
->target_id
= target_id
;
4761 target
->refcount
= 1;
4762 target
->generation
= 0;
4763 timevalclear(&target
->last_reset
);
4765 * Hold a reference to our parent bus so it
4766 * will not go away before we do.
4770 /* Insertion sort into our bus's target list */
4771 cur_target
= TAILQ_FIRST(&bus
->et_entries
);
4772 while (cur_target
!= NULL
&& cur_target
->target_id
< target_id
)
4773 cur_target
= TAILQ_NEXT(cur_target
, links
);
4775 if (cur_target
!= NULL
) {
4776 TAILQ_INSERT_BEFORE(cur_target
, target
, links
);
4778 TAILQ_INSERT_TAIL(&bus
->et_entries
, target
, links
);
4785 xpt_release_target(struct cam_eb
*bus
, struct cam_et
*target
)
4788 if (target
->refcount
== 1) {
4789 KKASSERT(TAILQ_FIRST(&target
->ed_entries
) == NULL
);
4790 TAILQ_REMOVE(&bus
->et_entries
, target
, links
);
4792 xpt_release_bus(bus
);
4793 KKASSERT(target
->refcount
== 1);
4794 kfree(target
, M_DEVBUF
);
4801 static struct cam_ed
*
4802 xpt_alloc_device(struct cam_eb
*bus
, struct cam_et
*target
, lun_id_t lun_id
)
4804 #ifdef CAM_NEW_TRAN_CODE
4805 struct cam_path path
;
4806 #endif /* CAM_NEW_TRAN_CODE */
4807 struct cam_ed
*device
;
4808 struct cam_devq
*devq
;
4811 /* Make space for us in the device queue on our bus */
4812 if (bus
->sim
->devq
== NULL
)
4814 devq
= bus
->sim
->devq
;
4815 status
= cam_devq_resize(devq
, devq
->alloc_queue
.array_size
+ 1);
4817 if (status
!= CAM_REQ_CMP
) {
4820 device
= kmalloc(sizeof(*device
), M_DEVBUF
, M_INTWAIT
);
4823 if (device
!= NULL
) {
4824 struct cam_ed
*cur_device
;
4826 cam_init_pinfo(&device
->alloc_ccb_entry
.pinfo
);
4827 device
->alloc_ccb_entry
.device
= device
;
4828 cam_init_pinfo(&device
->send_ccb_entry
.pinfo
);
4829 device
->send_ccb_entry
.device
= device
;
4830 device
->target
= target
;
4831 device
->lun_id
= lun_id
;
4832 /* Initialize our queues */
4833 if (camq_init(&device
->drvq
, 0) != 0) {
4834 kfree(device
, M_DEVBUF
);
4837 if (cam_ccbq_init(&device
->ccbq
,
4838 bus
->sim
->max_dev_openings
) != 0) {
4839 camq_fini(&device
->drvq
);
4840 kfree(device
, M_DEVBUF
);
4843 SLIST_INIT(&device
->asyncs
);
4844 SLIST_INIT(&device
->periphs
);
4845 device
->generation
= 0;
4846 device
->owner
= NULL
;
4848 * Take the default quirk entry until we have inquiry
4849 * data and can determine a better quirk to use.
4851 device
->quirk
= &xpt_quirk_table
[xpt_quirk_table_size
- 1];
4852 bzero(&device
->inq_data
, sizeof(device
->inq_data
));
4853 device
->inq_flags
= 0;
4854 device
->queue_flags
= 0;
4855 device
->serial_num
= NULL
;
4856 device
->serial_num_len
= 0;
4857 device
->qfrozen_cnt
= 0;
4858 device
->flags
= CAM_DEV_UNCONFIGURED
;
4859 device
->tag_delay_count
= 0;
4860 device
->refcount
= 1;
4861 callout_init(&device
->c_handle
);
4864 * Hold a reference to our parent target so it
4865 * will not go away before we do.
4870 * XXX should be limited by number of CCBs this bus can
4873 xpt_max_ccbs
+= device
->ccbq
.devq_openings
;
4874 /* Insertion sort into our target's device list */
4875 cur_device
= TAILQ_FIRST(&target
->ed_entries
);
4876 while (cur_device
!= NULL
&& cur_device
->lun_id
< lun_id
)
4877 cur_device
= TAILQ_NEXT(cur_device
, links
);
4878 if (cur_device
!= NULL
) {
4879 TAILQ_INSERT_BEFORE(cur_device
, device
, links
);
4881 TAILQ_INSERT_TAIL(&target
->ed_entries
, device
, links
);
4883 target
->generation
++;
4884 #ifdef CAM_NEW_TRAN_CODE
4885 if (lun_id
!= CAM_LUN_WILDCARD
) {
4886 xpt_compile_path(&path
,
4891 xpt_devise_transport(&path
);
4892 xpt_release_path(&path
);
4894 #endif /* CAM_NEW_TRAN_CODE */
4900 xpt_reference_device(struct cam_ed
*device
)
4906 xpt_release_device(struct cam_eb
*bus
, struct cam_et
*target
,
4907 struct cam_ed
*device
)
4909 struct cam_devq
*devq
;
4912 if (device
->refcount
== 1) {
4913 KKASSERT(device
->flags
& CAM_DEV_UNCONFIGURED
);
4915 if (device
->alloc_ccb_entry
.pinfo
.index
!= CAM_UNQUEUED_INDEX
4916 || device
->send_ccb_entry
.pinfo
.index
!= CAM_UNQUEUED_INDEX
)
4917 panic("Removing device while still queued for ccbs");
4919 if ((device
->flags
& CAM_DEV_REL_TIMEOUT_PENDING
) != 0) {
4920 device
->flags
&= ~CAM_DEV_REL_TIMEOUT_PENDING
;
4921 callout_stop(&device
->c_handle
);
4924 TAILQ_REMOVE(&target
->ed_entries
, device
,links
);
4925 target
->generation
++;
4926 xpt_max_ccbs
-= device
->ccbq
.devq_openings
;
4927 /* Release our slot in the devq */
4928 devq
= bus
->sim
->devq
;
4929 cam_devq_resize(devq
, devq
->alloc_queue
.array_size
- 1);
4930 xpt_release_target(bus
, target
);
4931 KKASSERT(device
->refcount
== 1);
4932 kfree(device
, M_DEVBUF
);
4940 xpt_dev_ccbq_resize(struct cam_path
*path
, int newopenings
)
4950 diff
= newopenings
- (dev
->ccbq
.dev_active
+ dev
->ccbq
.dev_openings
);
4951 result
= cam_ccbq_resize(&dev
->ccbq
, newopenings
);
4952 if (result
== CAM_REQ_CMP
&& (diff
< 0)) {
4953 dev
->flags
|= CAM_DEV_RESIZE_QUEUE_NEEDED
;
4955 /* Adjust the global limit */
4956 xpt_max_ccbs
+= diff
;
4961 static struct cam_eb
*
4962 xpt_find_bus(path_id_t path_id
)
4966 TAILQ_FOREACH(bus
, &xpt_busses
, links
) {
4967 if (bus
->path_id
== path_id
) {
4975 static struct cam_et
*
4976 xpt_find_target(struct cam_eb
*bus
, target_id_t target_id
)
4978 struct cam_et
*target
;
4980 TAILQ_FOREACH(target
, &bus
->et_entries
, links
) {
4981 if (target
->target_id
== target_id
) {
4989 static struct cam_ed
*
4990 xpt_find_device(struct cam_et
*target
, lun_id_t lun_id
)
4992 struct cam_ed
*device
;
4994 TAILQ_FOREACH(device
, &target
->ed_entries
, links
) {
4995 if (device
->lun_id
== lun_id
) {
5004 union ccb
*request_ccb
;
5005 struct ccb_pathinq
*cpi
;
5007 } xpt_scan_bus_info
;
5010 * To start a scan, request_ccb is an XPT_SCAN_BUS ccb.
5011 * As the scan progresses, xpt_scan_bus is used as the
5012 * callback on completion function.
5015 xpt_scan_bus(struct cam_periph
*periph
, union ccb
*request_ccb
)
5017 CAM_DEBUG(request_ccb
->ccb_h
.path
, CAM_DEBUG_TRACE
,
5018 ("xpt_scan_bus\n"));
5019 switch (request_ccb
->ccb_h
.func_code
) {
5022 xpt_scan_bus_info
*scan_info
;
5023 union ccb
*work_ccb
;
5024 struct cam_path
*path
;
5029 /* Find out the characteristics of the bus */
5030 work_ccb
= xpt_alloc_ccb();
5031 xpt_setup_ccb(&work_ccb
->ccb_h
, request_ccb
->ccb_h
.path
,
5032 request_ccb
->ccb_h
.pinfo
.priority
);
5033 work_ccb
->ccb_h
.func_code
= XPT_PATH_INQ
;
5034 xpt_action(work_ccb
);
5035 if (work_ccb
->ccb_h
.status
!= CAM_REQ_CMP
) {
5036 request_ccb
->ccb_h
.status
= work_ccb
->ccb_h
.status
;
5037 xpt_free_ccb(work_ccb
);
5038 xpt_done(request_ccb
);
5042 if ((work_ccb
->cpi
.hba_misc
& PIM_NOINITIATOR
) != 0) {
5044 * Can't scan the bus on an adapter that
5045 * cannot perform the initiator role.
5047 request_ccb
->ccb_h
.status
= CAM_REQ_CMP
;
5048 xpt_free_ccb(work_ccb
);
5049 xpt_done(request_ccb
);
5053 /* Save some state for use while we probe for devices */
5054 scan_info
= (xpt_scan_bus_info
*)
5055 kmalloc(sizeof(xpt_scan_bus_info
), M_TEMP
, M_INTWAIT
);
5056 scan_info
->request_ccb
= request_ccb
;
5057 scan_info
->cpi
= &work_ccb
->cpi
;
5059 /* Cache on our stack so we can work asynchronously */
5060 max_target
= scan_info
->cpi
->max_target
;
5061 initiator_id
= scan_info
->cpi
->initiator_id
;
5064 * Don't count the initiator if the
5065 * initiator is addressable.
5067 scan_info
->pending_count
= max_target
+ 1;
5068 if (initiator_id
<= max_target
)
5069 scan_info
->pending_count
--;
5071 for (i
= 0; i
<= max_target
; i
++) {
5073 if (i
== initiator_id
)
5076 status
= xpt_create_path(&path
, xpt_periph
,
5077 request_ccb
->ccb_h
.path_id
,
5079 if (status
!= CAM_REQ_CMP
) {
5080 kprintf("xpt_scan_bus: xpt_create_path failed"
5081 " with status %#x, bus scan halted\n",
5085 work_ccb
= xpt_alloc_ccb();
5086 xpt_setup_ccb(&work_ccb
->ccb_h
, path
,
5087 request_ccb
->ccb_h
.pinfo
.priority
);
5088 work_ccb
->ccb_h
.func_code
= XPT_SCAN_LUN
;
5089 work_ccb
->ccb_h
.cbfcnp
= xpt_scan_bus
;
5090 work_ccb
->ccb_h
.ppriv_ptr0
= scan_info
;
5091 work_ccb
->crcn
.flags
= request_ccb
->crcn
.flags
;
5092 xpt_action(work_ccb
);
5098 xpt_scan_bus_info
*scan_info
;
5100 target_id_t target_id
;
5103 /* Reuse the same CCB to query if a device was really found */
5104 scan_info
= (xpt_scan_bus_info
*)request_ccb
->ccb_h
.ppriv_ptr0
;
5105 xpt_setup_ccb(&request_ccb
->ccb_h
, request_ccb
->ccb_h
.path
,
5106 request_ccb
->ccb_h
.pinfo
.priority
);
5107 request_ccb
->ccb_h
.func_code
= XPT_GDEV_TYPE
;
5109 path_id
= request_ccb
->ccb_h
.path_id
;
5110 target_id
= request_ccb
->ccb_h
.target_id
;
5111 lun_id
= request_ccb
->ccb_h
.target_lun
;
5112 xpt_action(request_ccb
);
5114 if (request_ccb
->ccb_h
.status
!= CAM_REQ_CMP
) {
5115 struct cam_ed
*device
;
5116 struct cam_et
*target
;
5120 * If we already probed lun 0 successfully, or
5121 * we have additional configured luns on this
5122 * target that might have "gone away", go onto
5125 target
= request_ccb
->ccb_h
.path
->target
;
5127 * We may touch devices that we don't
5128 * hold references too, so ensure they
5129 * don't disappear out from under us.
5130 * The target above is referenced by the
5131 * path in the request ccb.
5135 device
= TAILQ_FIRST(&target
->ed_entries
);
5136 if (device
!= NULL
) {
5137 phl
= device
->quirk
->quirks
& CAM_QUIRK_HILUNS
;
5138 if (device
->lun_id
== 0)
5139 device
= TAILQ_NEXT(device
, links
);
5142 if ((lun_id
!= 0) || (device
!= NULL
)) {
5143 if (lun_id
< (CAM_SCSI2_MAXLUN
-1) || phl
)
5147 struct cam_ed
*device
;
5149 device
= request_ccb
->ccb_h
.path
->device
;
5151 if ((device
->quirk
->quirks
& CAM_QUIRK_NOLUNS
) == 0) {
5152 /* Try the next lun */
5153 if (lun_id
< (CAM_SCSI2_MAXLUN
-1) ||
5154 (device
->quirk
->quirks
& CAM_QUIRK_HILUNS
))
5159 xpt_free_path(request_ccb
->ccb_h
.path
);
5162 if ((lun_id
== request_ccb
->ccb_h
.target_lun
)
5163 || lun_id
> scan_info
->cpi
->max_lun
) {
5166 xpt_free_ccb(request_ccb
);
5167 scan_info
->pending_count
--;
5168 if (scan_info
->pending_count
== 0) {
5169 xpt_free_ccb((union ccb
*)scan_info
->cpi
);
5170 request_ccb
= scan_info
->request_ccb
;
5171 kfree(scan_info
, M_TEMP
);
5172 request_ccb
->ccb_h
.status
= CAM_REQ_CMP
;
5173 xpt_done(request_ccb
);
5176 /* Try the next device */
5177 struct cam_path
*path
;
5180 path
= request_ccb
->ccb_h
.path
;
5181 status
= xpt_create_path(&path
, xpt_periph
,
5182 path_id
, target_id
, lun_id
);
5183 if (status
!= CAM_REQ_CMP
) {
5184 kprintf("xpt_scan_bus: xpt_create_path failed "
5185 "with status %#x, halting LUN scan\n",
5187 xpt_free_ccb(request_ccb
);
5188 scan_info
->pending_count
--;
5189 if (scan_info
->pending_count
== 0) {
5191 (union ccb
*)scan_info
->cpi
);
5192 request_ccb
= scan_info
->request_ccb
;
5193 kfree(scan_info
, M_TEMP
);
5194 request_ccb
->ccb_h
.status
= CAM_REQ_CMP
;
5195 xpt_done(request_ccb
);
5199 xpt_setup_ccb(&request_ccb
->ccb_h
, path
,
5200 request_ccb
->ccb_h
.pinfo
.priority
);
5201 request_ccb
->ccb_h
.func_code
= XPT_SCAN_LUN
;
5202 request_ccb
->ccb_h
.cbfcnp
= xpt_scan_bus
;
5203 request_ccb
->ccb_h
.ppriv_ptr0
= scan_info
;
5204 request_ccb
->crcn
.flags
=
5205 scan_info
->request_ccb
->crcn
.flags
;
5206 xpt_action(request_ccb
);
5221 PROBE_TUR_FOR_NEGOTIATION
5225 PROBE_INQUIRY_CKSUM
= 0x01,
5226 PROBE_SERIAL_CKSUM
= 0x02,
5227 PROBE_NO_ANNOUNCE
= 0x04
5231 TAILQ_HEAD(, ccb_hdr
) request_ccbs
;
5232 probe_action action
;
5233 union ccb saved_ccb
;
5236 u_int8_t digest
[16];
5240 xpt_scan_lun(struct cam_periph
*periph
, struct cam_path
*path
,
5241 cam_flags flags
, union ccb
*request_ccb
)
5243 struct ccb_pathinq cpi
;
5245 struct cam_path
*new_path
;
5246 struct cam_periph
*old_periph
;
5248 CAM_DEBUG(request_ccb
->ccb_h
.path
, CAM_DEBUG_TRACE
,
5249 ("xpt_scan_lun\n"));
5251 xpt_setup_ccb(&cpi
.ccb_h
, path
, /*priority*/1);
5252 cpi
.ccb_h
.func_code
= XPT_PATH_INQ
;
5253 xpt_action((union ccb
*)&cpi
);
5255 if (cpi
.ccb_h
.status
!= CAM_REQ_CMP
) {
5256 if (request_ccb
!= NULL
) {
5257 request_ccb
->ccb_h
.status
= cpi
.ccb_h
.status
;
5258 xpt_done(request_ccb
);
5263 if ((cpi
.hba_misc
& PIM_NOINITIATOR
) != 0) {
5265 * Can't scan the bus on an adapter that
5266 * cannot perform the initiator role.
5268 if (request_ccb
!= NULL
) {
5269 request_ccb
->ccb_h
.status
= CAM_REQ_CMP
;
5270 xpt_done(request_ccb
);
5275 if (request_ccb
== NULL
) {
5276 request_ccb
= kmalloc(sizeof(union ccb
), M_TEMP
, M_INTWAIT
);
5277 new_path
= kmalloc(sizeof(*new_path
), M_TEMP
, M_INTWAIT
);
5278 status
= xpt_compile_path(new_path
, xpt_periph
,
5280 path
->target
->target_id
,
5281 path
->device
->lun_id
);
5283 if (status
!= CAM_REQ_CMP
) {
5284 xpt_print_path(path
);
5285 kprintf("xpt_scan_lun: can't compile path, can't "
5287 kfree(request_ccb
, M_TEMP
);
5288 kfree(new_path
, M_TEMP
);
5291 xpt_setup_ccb(&request_ccb
->ccb_h
, new_path
, /*priority*/ 1);
5292 request_ccb
->ccb_h
.cbfcnp
= xptscandone
;
5293 request_ccb
->ccb_h
.func_code
= XPT_SCAN_LUN
;
5294 request_ccb
->crcn
.flags
= flags
;
5298 if ((old_periph
= cam_periph_find(path
, "probe")) != NULL
) {
5301 softc
= (probe_softc
*)old_periph
->softc
;
5302 TAILQ_INSERT_TAIL(&softc
->request_ccbs
, &request_ccb
->ccb_h
,
5305 status
= cam_periph_alloc(proberegister
, NULL
, probecleanup
,
5306 probestart
, "probe",
5308 request_ccb
->ccb_h
.path
, NULL
, 0,
5311 if (status
!= CAM_REQ_CMP
) {
5312 xpt_print_path(path
);
5313 kprintf("xpt_scan_lun: cam_alloc_periph returned an "
5314 "error, can't continue probe\n");
5315 request_ccb
->ccb_h
.status
= status
;
5316 xpt_done(request_ccb
);
5323 xptscandone(struct cam_periph
*periph
, union ccb
*done_ccb
)
5325 xpt_release_path(done_ccb
->ccb_h
.path
);
5326 kfree(done_ccb
->ccb_h
.path
, M_TEMP
);
5327 kfree(done_ccb
, M_TEMP
);
5331 proberegister(struct cam_periph
*periph
, void *arg
)
5333 union ccb
*request_ccb
; /* CCB representing the probe request */
5336 request_ccb
= (union ccb
*)arg
;
5337 if (periph
== NULL
) {
5338 kprintf("proberegister: periph was NULL!!\n");
5339 return(CAM_REQ_CMP_ERR
);
5342 if (request_ccb
== NULL
) {
5343 kprintf("proberegister: no probe CCB, "
5344 "can't register device\n");
5345 return(CAM_REQ_CMP_ERR
);
5348 softc
= kmalloc(sizeof(*softc
), M_TEMP
, M_INTWAIT
| M_ZERO
);
5349 TAILQ_INIT(&softc
->request_ccbs
);
5350 TAILQ_INSERT_TAIL(&softc
->request_ccbs
, &request_ccb
->ccb_h
,
5353 periph
->softc
= softc
;
5354 cam_periph_acquire(periph
);
5356 * Ensure we've waited at least a bus settle
5357 * delay before attempting to probe the device.
5358 * For HBAs that don't do bus resets, this won't make a difference.
5360 cam_periph_freeze_after_event(periph
, &periph
->path
->bus
->last_reset
,
5362 probeschedule(periph
);
5363 return(CAM_REQ_CMP
);
5367 probeschedule(struct cam_periph
*periph
)
5369 struct ccb_pathinq cpi
;
5373 softc
= (probe_softc
*)periph
->softc
;
5374 ccb
= (union ccb
*)TAILQ_FIRST(&softc
->request_ccbs
);
5376 xpt_setup_ccb(&cpi
.ccb_h
, periph
->path
, /*priority*/1);
5377 cpi
.ccb_h
.func_code
= XPT_PATH_INQ
;
5378 xpt_action((union ccb
*)&cpi
);
5381 * If a device has gone away and another device, or the same one,
5382 * is back in the same place, it should have a unit attention
5383 * condition pending. It will not report the unit attention in
5384 * response to an inquiry, which may leave invalid transfer
5385 * negotiations in effect. The TUR will reveal the unit attention
5386 * condition. Only send the TUR for lun 0, since some devices
5387 * will get confused by commands other than inquiry to non-existent
5388 * luns. If you think a device has gone away start your scan from
5389 * lun 0. This will insure that any bogus transfer settings are
5392 * If we haven't seen the device before and the controller supports
5393 * some kind of transfer negotiation, negotiate with the first
5394 * sent command if no bus reset was performed at startup. This
5395 * ensures that the device is not confused by transfer negotiation
5396 * settings left over by loader or BIOS action.
5398 if (((ccb
->ccb_h
.path
->device
->flags
& CAM_DEV_UNCONFIGURED
) == 0)
5399 && (ccb
->ccb_h
.target_lun
== 0)) {
5400 softc
->action
= PROBE_TUR
;
5401 } else if ((cpi
.hba_inquiry
& (PI_WIDE_32
|PI_WIDE_16
|PI_SDTR_ABLE
)) != 0
5402 && (cpi
.hba_misc
& PIM_NOBUSRESET
) != 0) {
5403 proberequestdefaultnegotiation(periph
);
5404 softc
->action
= PROBE_INQUIRY
;
5406 softc
->action
= PROBE_INQUIRY
;
5409 if (ccb
->crcn
.flags
& CAM_EXPECT_INQ_CHANGE
)
5410 softc
->flags
|= PROBE_NO_ANNOUNCE
;
5412 softc
->flags
&= ~PROBE_NO_ANNOUNCE
;
5414 xpt_schedule(periph
, ccb
->ccb_h
.pinfo
.priority
);
5418 probestart(struct cam_periph
*periph
, union ccb
*start_ccb
)
5420 /* Probe the device that our peripheral driver points to */
5421 struct ccb_scsiio
*csio
;
5424 CAM_DEBUG(start_ccb
->ccb_h
.path
, CAM_DEBUG_TRACE
, ("probestart\n"));
5426 softc
= (probe_softc
*)periph
->softc
;
5427 csio
= &start_ccb
->csio
;
5429 switch (softc
->action
) {
5431 case PROBE_TUR_FOR_NEGOTIATION
:
5433 scsi_test_unit_ready(csio
,
5442 case PROBE_FULL_INQUIRY
:
5445 struct scsi_inquiry_data
*inq_buf
;
5447 inq_buf
= &periph
->path
->device
->inq_data
;
5449 * If the device is currently configured, we calculate an
5450 * MD5 checksum of the inquiry data, and if the serial number
5451 * length is greater than 0, add the serial number data
5452 * into the checksum as well. Once the inquiry and the
5453 * serial number check finish, we attempt to figure out
5454 * whether we still have the same device.
5456 if ((periph
->path
->device
->flags
& CAM_DEV_UNCONFIGURED
) == 0) {
5458 MD5Init(&softc
->context
);
5459 MD5Update(&softc
->context
, (unsigned char *)inq_buf
,
5460 sizeof(struct scsi_inquiry_data
));
5461 softc
->flags
|= PROBE_INQUIRY_CKSUM
;
5462 if (periph
->path
->device
->serial_num_len
> 0) {
5463 MD5Update(&softc
->context
,
5464 periph
->path
->device
->serial_num
,
5465 periph
->path
->device
->serial_num_len
);
5466 softc
->flags
|= PROBE_SERIAL_CKSUM
;
5468 MD5Final(softc
->digest
, &softc
->context
);
5471 if (softc
->action
== PROBE_INQUIRY
)
5472 inquiry_len
= SHORT_INQUIRY_LENGTH
;
5474 inquiry_len
= inq_buf
->additional_length
+ 5;
5480 (u_int8_t
*)inq_buf
,
5485 /*timeout*/60 * 1000);
5488 case PROBE_MODE_SENSE
:
5493 mode_buf_len
= sizeof(struct scsi_mode_header_6
)
5494 + sizeof(struct scsi_mode_blk_desc
)
5495 + sizeof(struct scsi_control_page
);
5496 mode_buf
= kmalloc(mode_buf_len
, M_TEMP
, M_INTWAIT
);
5497 scsi_mode_sense(csio
,
5502 SMS_PAGE_CTRL_CURRENT
,
5503 SMS_CONTROL_MODE_PAGE
,
5510 case PROBE_SERIAL_NUM
:
5512 struct scsi_vpd_unit_serial_number
*serial_buf
;
5513 struct cam_ed
* device
;
5516 device
= periph
->path
->device
;
5517 device
->serial_num
= NULL
;
5518 device
->serial_num_len
= 0;
5520 if ((device
->quirk
->quirks
& CAM_QUIRK_NOSERIAL
) == 0) {
5521 serial_buf
= kmalloc(sizeof(*serial_buf
), M_TEMP
,
5522 M_INTWAIT
| M_ZERO
);
5527 (u_int8_t
*)serial_buf
,
5528 sizeof(*serial_buf
),
5530 SVPD_UNIT_SERIAL_NUMBER
,
5532 /*timeout*/60 * 1000);
5536 * We'll have to do without, let our probedone
5537 * routine finish up for us.
5539 start_ccb
->csio
.data_ptr
= NULL
;
5540 probedone(periph
, start_ccb
);
5544 xpt_action(start_ccb
);
5548 proberequestdefaultnegotiation(struct cam_periph
*periph
)
5550 struct ccb_trans_settings cts
;
5552 xpt_setup_ccb(&cts
.ccb_h
, periph
->path
, /*priority*/1);
5553 cts
.ccb_h
.func_code
= XPT_GET_TRAN_SETTINGS
;
5554 #ifdef CAM_NEW_TRAN_CODE
5555 cts
.type
= CTS_TYPE_USER_SETTINGS
;
5556 #else /* CAM_NEW_TRAN_CODE */
5557 cts
.flags
= CCB_TRANS_USER_SETTINGS
;
5558 #endif /* CAM_NEW_TRAN_CODE */
5559 xpt_action((union ccb
*)&cts
);
5560 cts
.ccb_h
.func_code
= XPT_SET_TRAN_SETTINGS
;
5561 #ifdef CAM_NEW_TRAN_CODE
5562 cts
.type
= CTS_TYPE_CURRENT_SETTINGS
;
5563 #else /* CAM_NEW_TRAN_CODE */
5564 cts
.flags
&= ~CCB_TRANS_USER_SETTINGS
;
5565 cts
.flags
|= CCB_TRANS_CURRENT_SETTINGS
;
5566 #endif /* CAM_NEW_TRAN_CODE */
5567 xpt_action((union ccb
*)&cts
);
5571 probedone(struct cam_periph
*periph
, union ccb
*done_ccb
)
5574 struct cam_path
*path
;
5577 CAM_DEBUG(done_ccb
->ccb_h
.path
, CAM_DEBUG_TRACE
, ("probedone\n"));
5579 softc
= (probe_softc
*)periph
->softc
;
5580 path
= done_ccb
->ccb_h
.path
;
5581 priority
= done_ccb
->ccb_h
.pinfo
.priority
;
5583 switch (softc
->action
) {
5586 if ((done_ccb
->ccb_h
.status
& CAM_STATUS_MASK
) != CAM_REQ_CMP
) {
5588 if (cam_periph_error(done_ccb
, 0,
5589 SF_NO_PRINT
, NULL
) == ERESTART
)
5591 else if ((done_ccb
->ccb_h
.status
& CAM_DEV_QFRZN
) != 0)
5592 /* Don't wedge the queue */
5593 xpt_release_devq(done_ccb
->ccb_h
.path
,
5597 softc
->action
= PROBE_INQUIRY
;
5598 xpt_release_ccb(done_ccb
);
5599 xpt_schedule(periph
, priority
);
5603 case PROBE_FULL_INQUIRY
:
5605 if ((done_ccb
->ccb_h
.status
& CAM_STATUS_MASK
) == CAM_REQ_CMP
) {
5606 struct scsi_inquiry_data
*inq_buf
;
5607 u_int8_t periph_qual
;
5609 path
->device
->flags
|= CAM_DEV_INQUIRY_DATA_VALID
;
5610 inq_buf
= &path
->device
->inq_data
;
5612 periph_qual
= SID_QUAL(inq_buf
);
5614 switch(periph_qual
) {
5615 case SID_QUAL_LU_CONNECTED
:
5620 * We conservatively request only
5621 * SHORT_INQUIRY_LEN bytes of inquiry
5622 * information during our first try
5623 * at sending an INQUIRY. If the device
5624 * has more information to give,
5625 * perform a second request specifying
5626 * the amount of information the device
5627 * is willing to give.
5629 alen
= inq_buf
->additional_length
;
5630 if (softc
->action
== PROBE_INQUIRY
5631 && alen
> (SHORT_INQUIRY_LENGTH
- 5)) {
5632 softc
->action
= PROBE_FULL_INQUIRY
;
5633 xpt_release_ccb(done_ccb
);
5634 xpt_schedule(periph
, priority
);
5638 xpt_find_quirk(path
->device
);
5640 #ifdef CAM_NEW_TRAN_CODE
5641 xpt_devise_transport(path
);
5642 #endif /* CAM_NEW_TRAN_CODE */
5643 if ((inq_buf
->flags
& SID_CmdQue
) != 0)
5644 softc
->action
= PROBE_MODE_SENSE
;
5646 softc
->action
= PROBE_SERIAL_NUM
;
5648 path
->device
->flags
&= ~CAM_DEV_UNCONFIGURED
;
5649 xpt_reference_device(path
->device
);
5651 xpt_release_ccb(done_ccb
);
5652 xpt_schedule(periph
, priority
);
5658 } else if (cam_periph_error(done_ccb
, 0,
5659 done_ccb
->ccb_h
.target_lun
> 0
5660 ? SF_RETRY_UA
|SF_QUIET_IR
5662 &softc
->saved_ccb
) == ERESTART
) {
5664 } else if ((done_ccb
->ccb_h
.status
& CAM_DEV_QFRZN
) != 0) {
5665 /* Don't wedge the queue */
5666 xpt_release_devq(done_ccb
->ccb_h
.path
, /*count*/1,
5670 * If we get to this point, we got an error status back
5671 * from the inquiry and the error status doesn't require
5672 * automatically retrying the command. Therefore, the
5673 * inquiry failed. If we had inquiry information before
5674 * for this device, but this latest inquiry command failed,
5675 * the device has probably gone away. If this device isn't
5676 * already marked unconfigured, notify the peripheral
5677 * drivers that this device is no more.
5679 if ((path
->device
->flags
& CAM_DEV_UNCONFIGURED
) == 0) {
5680 /* Send the async notification. */
5681 xpt_async(AC_LOST_DEVICE
, path
, NULL
);
5684 xpt_release_ccb(done_ccb
);
5687 case PROBE_MODE_SENSE
:
5689 struct ccb_scsiio
*csio
;
5690 struct scsi_mode_header_6
*mode_hdr
;
5692 csio
= &done_ccb
->csio
;
5693 mode_hdr
= (struct scsi_mode_header_6
*)csio
->data_ptr
;
5694 if ((csio
->ccb_h
.status
& CAM_STATUS_MASK
) == CAM_REQ_CMP
) {
5695 struct scsi_control_page
*page
;
5698 offset
= ((u_int8_t
*)&mode_hdr
[1])
5699 + mode_hdr
->blk_desc_len
;
5700 page
= (struct scsi_control_page
*)offset
;
5701 path
->device
->queue_flags
= page
->queue_flags
;
5702 } else if (cam_periph_error(done_ccb
, 0,
5703 SF_RETRY_UA
|SF_NO_PRINT
,
5704 &softc
->saved_ccb
) == ERESTART
) {
5706 } else if ((done_ccb
->ccb_h
.status
& CAM_DEV_QFRZN
) != 0) {
5707 /* Don't wedge the queue */
5708 xpt_release_devq(done_ccb
->ccb_h
.path
,
5709 /*count*/1, /*run_queue*/TRUE
);
5711 xpt_release_ccb(done_ccb
);
5712 kfree(mode_hdr
, M_TEMP
);
5713 softc
->action
= PROBE_SERIAL_NUM
;
5714 xpt_schedule(periph
, priority
);
5717 case PROBE_SERIAL_NUM
:
5719 struct ccb_scsiio
*csio
;
5720 struct scsi_vpd_unit_serial_number
*serial_buf
;
5727 csio
= &done_ccb
->csio
;
5728 priority
= done_ccb
->ccb_h
.pinfo
.priority
;
5730 (struct scsi_vpd_unit_serial_number
*)csio
->data_ptr
;
5732 /* Clean up from previous instance of this device */
5733 if (path
->device
->serial_num
!= NULL
) {
5734 kfree(path
->device
->serial_num
, M_DEVBUF
);
5735 path
->device
->serial_num
= NULL
;
5736 path
->device
->serial_num_len
= 0;
5739 if (serial_buf
== NULL
) {
5741 * Don't process the command as it was never sent
5743 } else if ((csio
->ccb_h
.status
& CAM_STATUS_MASK
) == CAM_REQ_CMP
5744 && (serial_buf
->length
> 0)) {
5747 path
->device
->serial_num
=
5748 kmalloc((serial_buf
->length
+ 1),
5749 M_DEVBUF
, M_INTWAIT
);
5750 bcopy(serial_buf
->serial_num
,
5751 path
->device
->serial_num
,
5752 serial_buf
->length
);
5753 path
->device
->serial_num_len
= serial_buf
->length
;
5754 path
->device
->serial_num
[serial_buf
->length
] = '\0';
5755 } else if (cam_periph_error(done_ccb
, 0,
5756 SF_RETRY_UA
|SF_NO_PRINT
,
5757 &softc
->saved_ccb
) == ERESTART
) {
5759 } else if ((done_ccb
->ccb_h
.status
& CAM_DEV_QFRZN
) != 0) {
5760 /* Don't wedge the queue */
5761 xpt_release_devq(done_ccb
->ccb_h
.path
, /*count*/1,
5766 * Let's see if we have seen this device before.
5768 if ((softc
->flags
& PROBE_INQUIRY_CKSUM
) != 0) {
5770 u_int8_t digest
[16];
5775 (unsigned char *)&path
->device
->inq_data
,
5776 sizeof(struct scsi_inquiry_data
));
5779 MD5Update(&context
, serial_buf
->serial_num
,
5780 serial_buf
->length
);
5782 MD5Final(digest
, &context
);
5783 if (bcmp(softc
->digest
, digest
, 16) == 0)
5787 * XXX Do we need to do a TUR in order to ensure
5788 * that the device really hasn't changed???
5791 && ((softc
->flags
& PROBE_NO_ANNOUNCE
) == 0))
5792 xpt_async(AC_LOST_DEVICE
, path
, NULL
);
5794 if (serial_buf
!= NULL
)
5795 kfree(serial_buf
, M_TEMP
);
5799 * Now that we have all the necessary
5800 * information to safely perform transfer
5801 * negotiations... Controllers don't perform
5802 * any negotiation or tagged queuing until
5803 * after the first XPT_SET_TRAN_SETTINGS ccb is
5804 * received. So, on a new device, just retreive
5805 * the user settings, and set them as the current
5806 * settings to set the device up.
5808 proberequestdefaultnegotiation(periph
);
5809 xpt_release_ccb(done_ccb
);
5812 * Perform a TUR to allow the controller to
5813 * perform any necessary transfer negotiation.
5815 softc
->action
= PROBE_TUR_FOR_NEGOTIATION
;
5816 xpt_schedule(periph
, priority
);
5819 xpt_release_ccb(done_ccb
);
5822 case PROBE_TUR_FOR_NEGOTIATION
:
5823 if ((done_ccb
->ccb_h
.status
& CAM_DEV_QFRZN
) != 0) {
5824 /* Don't wedge the queue */
5825 xpt_release_devq(done_ccb
->ccb_h
.path
, /*count*/1,
5829 path
->device
->flags
&= ~CAM_DEV_UNCONFIGURED
;
5830 xpt_reference_device(path
->device
);
5832 if ((softc
->flags
& PROBE_NO_ANNOUNCE
) == 0) {
5833 /* Inform the XPT that a new device has been found */
5834 done_ccb
->ccb_h
.func_code
= XPT_GDEV_TYPE
;
5835 xpt_action(done_ccb
);
5837 xpt_async(AC_FOUND_DEVICE
, xpt_periph
->path
, done_ccb
);
5839 xpt_release_ccb(done_ccb
);
5842 done_ccb
= (union ccb
*)TAILQ_FIRST(&softc
->request_ccbs
);
5843 TAILQ_REMOVE(&softc
->request_ccbs
, &done_ccb
->ccb_h
, periph_links
.tqe
);
5844 done_ccb
->ccb_h
.status
= CAM_REQ_CMP
;
5846 if (TAILQ_FIRST(&softc
->request_ccbs
) == NULL
) {
5847 cam_periph_invalidate(periph
);
5848 cam_periph_release(periph
);
5850 probeschedule(periph
);
5855 probecleanup(struct cam_periph
*periph
)
5857 kfree(periph
->softc
, M_TEMP
);
5861 xpt_find_quirk(struct cam_ed
*device
)
5865 match
= cam_quirkmatch((caddr_t
)&device
->inq_data
,
5866 (caddr_t
)xpt_quirk_table
,
5867 sizeof(xpt_quirk_table
)/sizeof(*xpt_quirk_table
),
5868 sizeof(*xpt_quirk_table
), scsi_inquiry_match
);
5871 panic("xpt_find_quirk: device didn't match wildcard entry!!");
5873 device
->quirk
= (struct xpt_quirk_entry
*)match
;
5876 #ifdef CAM_NEW_TRAN_CODE
5879 xpt_devise_transport(struct cam_path
*path
)
5881 struct ccb_pathinq cpi
;
5882 struct ccb_trans_settings cts
;
5883 struct scsi_inquiry_data
*inq_buf
;
5885 /* Get transport information from the SIM */
5886 xpt_setup_ccb(&cpi
.ccb_h
, path
, /*priority*/1);
5887 cpi
.ccb_h
.func_code
= XPT_PATH_INQ
;
5888 xpt_action((union ccb
*)&cpi
);
5891 if ((path
->device
->flags
& CAM_DEV_INQUIRY_DATA_VALID
) != 0)
5892 inq_buf
= &path
->device
->inq_data
;
5893 path
->device
->protocol
= PROTO_SCSI
;
5894 path
->device
->protocol_version
=
5895 inq_buf
!= NULL
? SID_ANSI_REV(inq_buf
) : cpi
.protocol_version
;
5896 path
->device
->transport
= cpi
.transport
;
5897 path
->device
->transport_version
= cpi
.transport_version
;
5900 * Any device not using SPI3 features should
5901 * be considered SPI2 or lower.
5903 if (inq_buf
!= NULL
) {
5904 if (path
->device
->transport
== XPORT_SPI
5905 && (inq_buf
->spi3data
& SID_SPI_MASK
) == 0
5906 && path
->device
->transport_version
> 2)
5907 path
->device
->transport_version
= 2;
5909 struct cam_ed
* otherdev
;
5911 for (otherdev
= TAILQ_FIRST(&path
->target
->ed_entries
);
5913 otherdev
= TAILQ_NEXT(otherdev
, links
)) {
5914 if (otherdev
!= path
->device
)
5918 if (otherdev
!= NULL
) {
5920 * Initially assume the same versioning as
5921 * prior luns for this target.
5923 path
->device
->protocol_version
=
5924 otherdev
->protocol_version
;
5925 path
->device
->transport_version
=
5926 otherdev
->transport_version
;
5928 /* Until we know better, opt for safty */
5929 path
->device
->protocol_version
= 2;
5930 if (path
->device
->transport
== XPORT_SPI
)
5931 path
->device
->transport_version
= 2;
5933 path
->device
->transport_version
= 0;
5939 * For a device compliant with SPC-2 we should be able
5940 * to determine the transport version supported by
5941 * scrutinizing the version descriptors in the
5945 /* Tell the controller what we think */
5946 xpt_setup_ccb(&cts
.ccb_h
, path
, /*priority*/1);
5947 cts
.ccb_h
.func_code
= XPT_SET_TRAN_SETTINGS
;
5948 cts
.type
= CTS_TYPE_CURRENT_SETTINGS
;
5949 cts
.transport
= path
->device
->transport
;
5950 cts
.transport_version
= path
->device
->transport_version
;
5951 cts
.protocol
= path
->device
->protocol
;
5952 cts
.protocol_version
= path
->device
->protocol_version
;
5953 cts
.proto_specific
.valid
= 0;
5954 cts
.xport_specific
.valid
= 0;
5955 xpt_action((union ccb
*)&cts
);
5959 xpt_set_transfer_settings(struct ccb_trans_settings
*cts
, struct cam_ed
*device
,
5962 struct ccb_pathinq cpi
;
5963 struct ccb_trans_settings cur_cts
;
5964 struct ccb_trans_settings_scsi
*scsi
;
5965 struct ccb_trans_settings_scsi
*cur_scsi
;
5966 struct cam_sim
*sim
;
5967 struct scsi_inquiry_data
*inq_data
;
5969 if (device
== NULL
) {
5970 cts
->ccb_h
.status
= CAM_PATH_INVALID
;
5971 xpt_done((union ccb
*)cts
);
5975 if (cts
->protocol
== PROTO_UNKNOWN
5976 || cts
->protocol
== PROTO_UNSPECIFIED
) {
5977 cts
->protocol
= device
->protocol
;
5978 cts
->protocol_version
= device
->protocol_version
;
5981 if (cts
->protocol_version
== PROTO_VERSION_UNKNOWN
5982 || cts
->protocol_version
== PROTO_VERSION_UNSPECIFIED
)
5983 cts
->protocol_version
= device
->protocol_version
;
5985 if (cts
->protocol
!= device
->protocol
) {
5986 xpt_print_path(cts
->ccb_h
.path
);
5987 printf("Uninitialized Protocol %x:%x?\n",
5988 cts
->protocol
, device
->protocol
);
5989 cts
->protocol
= device
->protocol
;
5992 if (cts
->protocol_version
> device
->protocol_version
) {
5994 xpt_print_path(cts
->ccb_h
.path
);
5995 printf("Down reving Protocol Version from %d to %d?\n",
5996 cts
->protocol_version
, device
->protocol_version
);
5998 cts
->protocol_version
= device
->protocol_version
;
6001 if (cts
->transport
== XPORT_UNKNOWN
6002 || cts
->transport
== XPORT_UNSPECIFIED
) {
6003 cts
->transport
= device
->transport
;
6004 cts
->transport_version
= device
->transport_version
;
6007 if (cts
->transport_version
== XPORT_VERSION_UNKNOWN
6008 || cts
->transport_version
== XPORT_VERSION_UNSPECIFIED
)
6009 cts
->transport_version
= device
->transport_version
;
6011 if (cts
->transport
!= device
->transport
) {
6012 xpt_print_path(cts
->ccb_h
.path
);
6013 printf("Uninitialized Transport %x:%x?\n",
6014 cts
->transport
, device
->transport
);
6015 cts
->transport
= device
->transport
;
6018 if (cts
->transport_version
> device
->transport_version
) {
6020 xpt_print_path(cts
->ccb_h
.path
);
6021 printf("Down reving Transport Version from %d to %d?\n",
6022 cts
->transport_version
,
6023 device
->transport_version
);
6025 cts
->transport_version
= device
->transport_version
;
6028 sim
= cts
->ccb_h
.path
->bus
->sim
;
6031 * Nothing more of interest to do unless
6032 * this is a device connected via the
6035 if (cts
->protocol
!= PROTO_SCSI
) {
6036 if (async_update
== FALSE
)
6037 (*(sim
->sim_action
))(sim
, (union ccb
*)cts
);
6041 inq_data
= &device
->inq_data
;
6042 scsi
= &cts
->proto_specific
.scsi
;
6043 xpt_setup_ccb(&cpi
.ccb_h
, cts
->ccb_h
.path
, /*priority*/1);
6044 cpi
.ccb_h
.func_code
= XPT_PATH_INQ
;
6045 xpt_action((union ccb
*)&cpi
);
6047 /* SCSI specific sanity checking */
6048 if ((cpi
.hba_inquiry
& PI_TAG_ABLE
) == 0
6049 || (inq_data
->flags
& SID_CmdQue
) == 0
6050 || (device
->queue_flags
& SCP_QUEUE_DQUE
) != 0
6051 || (device
->quirk
->mintags
== 0)) {
6053 * Can't tag on hardware that doesn't support tags,
6054 * doesn't have it enabled, or has broken tag support.
6056 scsi
->flags
&= ~CTS_SCSI_FLAGS_TAG_ENB
;
6059 if (async_update
== FALSE
) {
6061 * Perform sanity checking against what the
6062 * controller and device can do.
6064 xpt_setup_ccb(&cur_cts
.ccb_h
, cts
->ccb_h
.path
, /*priority*/1);
6065 cur_cts
.ccb_h
.func_code
= XPT_GET_TRAN_SETTINGS
;
6066 cur_cts
.type
= cts
->type
;
6067 xpt_action((union ccb
*)&cur_cts
);
6069 cur_scsi
= &cur_cts
.proto_specific
.scsi
;
6070 if ((scsi
->valid
& CTS_SCSI_VALID_TQ
) == 0) {
6071 scsi
->flags
&= ~CTS_SCSI_FLAGS_TAG_ENB
;
6072 scsi
->flags
|= cur_scsi
->flags
& CTS_SCSI_FLAGS_TAG_ENB
;
6074 if ((cur_scsi
->valid
& CTS_SCSI_VALID_TQ
) == 0)
6075 scsi
->flags
&= ~CTS_SCSI_FLAGS_TAG_ENB
;
6078 /* SPI specific sanity checking */
6079 if (cts
->transport
== XPORT_SPI
&& async_update
== FALSE
) {
6081 struct ccb_trans_settings_spi
*spi
;
6082 struct ccb_trans_settings_spi
*cur_spi
;
6084 spi
= &cts
->xport_specific
.spi
;
6086 cur_spi
= &cur_cts
.xport_specific
.spi
;
6088 /* Fill in any gaps in what the user gave us */
6089 if ((spi
->valid
& CTS_SPI_VALID_SYNC_RATE
) == 0)
6090 spi
->sync_period
= cur_spi
->sync_period
;
6091 if ((cur_spi
->valid
& CTS_SPI_VALID_SYNC_RATE
) == 0)
6092 spi
->sync_period
= 0;
6093 if ((spi
->valid
& CTS_SPI_VALID_SYNC_OFFSET
) == 0)
6094 spi
->sync_offset
= cur_spi
->sync_offset
;
6095 if ((cur_spi
->valid
& CTS_SPI_VALID_SYNC_OFFSET
) == 0)
6096 spi
->sync_offset
= 0;
6097 if ((spi
->valid
& CTS_SPI_VALID_PPR_OPTIONS
) == 0)
6098 spi
->ppr_options
= cur_spi
->ppr_options
;
6099 if ((cur_spi
->valid
& CTS_SPI_VALID_PPR_OPTIONS
) == 0)
6100 spi
->ppr_options
= 0;
6101 if ((spi
->valid
& CTS_SPI_VALID_BUS_WIDTH
) == 0)
6102 spi
->bus_width
= cur_spi
->bus_width
;
6103 if ((cur_spi
->valid
& CTS_SPI_VALID_BUS_WIDTH
) == 0)
6105 if ((spi
->valid
& CTS_SPI_VALID_DISC
) == 0) {
6106 spi
->flags
&= ~CTS_SPI_FLAGS_DISC_ENB
;
6107 spi
->flags
|= cur_spi
->flags
& CTS_SPI_FLAGS_DISC_ENB
;
6109 if ((cur_spi
->valid
& CTS_SPI_VALID_DISC
) == 0)
6110 spi
->flags
&= ~CTS_SPI_FLAGS_DISC_ENB
;
6111 if (((device
->flags
& CAM_DEV_INQUIRY_DATA_VALID
) != 0
6112 && (inq_data
->flags
& SID_Sync
) == 0
6113 && cts
->type
== CTS_TYPE_CURRENT_SETTINGS
)
6114 || ((cpi
.hba_inquiry
& PI_SDTR_ABLE
) == 0)
6115 || (cur_spi
->sync_offset
== 0)
6116 || (cur_spi
->sync_period
== 0)) {
6118 spi
->sync_period
= 0;
6119 spi
->sync_offset
= 0;
6122 switch (spi
->bus_width
) {
6123 case MSG_EXT_WDTR_BUS_32_BIT
:
6124 if (((device
->flags
& CAM_DEV_INQUIRY_DATA_VALID
) == 0
6125 || (inq_data
->flags
& SID_WBus32
) != 0
6126 || cts
->type
== CTS_TYPE_USER_SETTINGS
)
6127 && (cpi
.hba_inquiry
& PI_WIDE_32
) != 0)
6129 /* Fall Through to 16-bit */
6130 case MSG_EXT_WDTR_BUS_16_BIT
:
6131 if (((device
->flags
& CAM_DEV_INQUIRY_DATA_VALID
) == 0
6132 || (inq_data
->flags
& SID_WBus16
) != 0
6133 || cts
->type
== CTS_TYPE_USER_SETTINGS
)
6134 && (cpi
.hba_inquiry
& PI_WIDE_16
) != 0) {
6135 spi
->bus_width
= MSG_EXT_WDTR_BUS_16_BIT
;
6138 /* Fall Through to 8-bit */
6139 default: /* New bus width?? */
6140 case MSG_EXT_WDTR_BUS_8_BIT
:
6141 /* All targets can do this */
6142 spi
->bus_width
= MSG_EXT_WDTR_BUS_8_BIT
;
6146 spi3caps
= cpi
.xport_specific
.spi
.ppr_options
;
6147 if ((device
->flags
& CAM_DEV_INQUIRY_DATA_VALID
) != 0
6148 && cts
->type
== CTS_TYPE_CURRENT_SETTINGS
)
6149 spi3caps
&= inq_data
->spi3data
;
6151 if ((spi3caps
& SID_SPI_CLOCK_DT
) == 0)
6152 spi
->ppr_options
&= ~MSG_EXT_PPR_DT_REQ
;
6154 if ((spi3caps
& SID_SPI_IUS
) == 0)
6155 spi
->ppr_options
&= ~MSG_EXT_PPR_IU_REQ
;
6157 if ((spi3caps
& SID_SPI_QAS
) == 0)
6158 spi
->ppr_options
&= ~MSG_EXT_PPR_QAS_REQ
;
6160 /* No SPI Transfer settings are allowed unless we are wide */
6161 if (spi
->bus_width
== 0)
6162 spi
->ppr_options
= 0;
6164 if ((spi
->flags
& CTS_SPI_FLAGS_DISC_ENB
) == 0) {
6166 * Can't tag queue without disconnection.
6168 scsi
->flags
&= ~CTS_SCSI_FLAGS_TAG_ENB
;
6169 scsi
->valid
|= CTS_SCSI_VALID_TQ
;
6173 * If we are currently performing tagged transactions to
6174 * this device and want to change its negotiation parameters,
6175 * go non-tagged for a bit to give the controller a chance to
6176 * negotiate unhampered by tag messages.
6178 if (cts
->type
== CTS_TYPE_CURRENT_SETTINGS
6179 && (device
->inq_flags
& SID_CmdQue
) != 0
6180 && (scsi
->flags
& CTS_SCSI_FLAGS_TAG_ENB
) != 0
6181 && (spi
->flags
& (CTS_SPI_VALID_SYNC_RATE
|
6182 CTS_SPI_VALID_SYNC_OFFSET
|
6183 CTS_SPI_VALID_BUS_WIDTH
)) != 0)
6184 xpt_toggle_tags(cts
->ccb_h
.path
);
6187 if (cts
->type
== CTS_TYPE_CURRENT_SETTINGS
6188 && (scsi
->valid
& CTS_SCSI_VALID_TQ
) != 0) {
6192 * If we are transitioning from tags to no-tags or
6193 * vice-versa, we need to carefully freeze and restart
6194 * the queue so that we don't overlap tagged and non-tagged
6195 * commands. We also temporarily stop tags if there is
6196 * a change in transfer negotiation settings to allow
6197 * "tag-less" negotiation.
6199 if ((device
->flags
& CAM_DEV_TAG_AFTER_COUNT
) != 0
6200 || (device
->inq_flags
& SID_CmdQue
) != 0)
6201 device_tagenb
= TRUE
;
6203 device_tagenb
= FALSE
;
6205 if (((scsi
->flags
& CTS_SCSI_FLAGS_TAG_ENB
) != 0
6206 && device_tagenb
== FALSE
)
6207 || ((scsi
->flags
& CTS_SCSI_FLAGS_TAG_ENB
) == 0
6208 && device_tagenb
== TRUE
)) {
6210 if ((scsi
->flags
& CTS_SCSI_FLAGS_TAG_ENB
) != 0) {
6212 * Delay change to use tags until after a
6213 * few commands have gone to this device so
6214 * the controller has time to perform transfer
6215 * negotiations without tagged messages getting
6218 device
->tag_delay_count
= CAM_TAG_DELAY_COUNT
;
6219 device
->flags
|= CAM_DEV_TAG_AFTER_COUNT
;
6221 struct ccb_relsim crs
;
6223 xpt_freeze_devq(cts
->ccb_h
.path
, /*count*/1);
6224 device
->inq_flags
&= ~SID_CmdQue
;
6225 xpt_dev_ccbq_resize(cts
->ccb_h
.path
,
6226 sim
->max_dev_openings
);
6227 device
->flags
&= ~CAM_DEV_TAG_AFTER_COUNT
;
6228 device
->tag_delay_count
= 0;
6230 xpt_setup_ccb(&crs
.ccb_h
, cts
->ccb_h
.path
,
6232 crs
.ccb_h
.func_code
= XPT_REL_SIMQ
;
6233 crs
.release_flags
= RELSIM_RELEASE_AFTER_QEMPTY
;
6235 = crs
.release_timeout
6238 xpt_action((union ccb
*)&crs
);
6242 if (async_update
== FALSE
)
6243 (*(sim
->sim_action
))(sim
, (union ccb
*)cts
);
6246 #else /* CAM_NEW_TRAN_CODE */
6249 xpt_set_transfer_settings(struct ccb_trans_settings
*cts
, struct cam_ed
*device
,
6252 struct cam_sim
*sim
;
6255 sim
= cts
->ccb_h
.path
->bus
->sim
;
6256 if (async_update
== FALSE
) {
6257 struct scsi_inquiry_data
*inq_data
;
6258 struct ccb_pathinq cpi
;
6259 struct ccb_trans_settings cur_cts
;
6261 if (device
== NULL
) {
6262 cts
->ccb_h
.status
= CAM_PATH_INVALID
;
6263 xpt_done((union ccb
*)cts
);
6268 * Perform sanity checking against what the
6269 * controller and device can do.
6271 xpt_setup_ccb(&cpi
.ccb_h
, cts
->ccb_h
.path
, /*priority*/1);
6272 cpi
.ccb_h
.func_code
= XPT_PATH_INQ
;
6273 xpt_action((union ccb
*)&cpi
);
6274 xpt_setup_ccb(&cur_cts
.ccb_h
, cts
->ccb_h
.path
, /*priority*/1);
6275 cur_cts
.ccb_h
.func_code
= XPT_GET_TRAN_SETTINGS
;
6276 cur_cts
.flags
= CCB_TRANS_CURRENT_SETTINGS
;
6277 xpt_action((union ccb
*)&cur_cts
);
6278 inq_data
= &device
->inq_data
;
6280 /* Fill in any gaps in what the user gave us */
6281 if ((cts
->valid
& CCB_TRANS_SYNC_RATE_VALID
) == 0)
6282 cts
->sync_period
= cur_cts
.sync_period
;
6283 if ((cts
->valid
& CCB_TRANS_SYNC_OFFSET_VALID
) == 0)
6284 cts
->sync_offset
= cur_cts
.sync_offset
;
6285 if ((cts
->valid
& CCB_TRANS_BUS_WIDTH_VALID
) == 0)
6286 cts
->bus_width
= cur_cts
.bus_width
;
6287 if ((cts
->valid
& CCB_TRANS_DISC_VALID
) == 0) {
6288 cts
->flags
&= ~CCB_TRANS_DISC_ENB
;
6289 cts
->flags
|= cur_cts
.flags
& CCB_TRANS_DISC_ENB
;
6291 if ((cts
->valid
& CCB_TRANS_TQ_VALID
) == 0) {
6292 cts
->flags
&= ~CCB_TRANS_TAG_ENB
;
6293 cts
->flags
|= cur_cts
.flags
& CCB_TRANS_TAG_ENB
;
6296 if (((device
->flags
& CAM_DEV_INQUIRY_DATA_VALID
) != 0
6297 && (inq_data
->flags
& SID_Sync
) == 0)
6298 || ((cpi
.hba_inquiry
& PI_SDTR_ABLE
) == 0)
6299 || (cts
->sync_offset
== 0)
6300 || (cts
->sync_period
== 0)) {
6302 cts
->sync_period
= 0;
6303 cts
->sync_offset
= 0;
6304 } else if ((device
->flags
& CAM_DEV_INQUIRY_DATA_VALID
) != 0) {
6306 if ((inq_data
->spi3data
& SID_SPI_CLOCK_DT
) == 0
6307 && cts
->sync_period
<= 0x9) {
6309 * Don't allow DT transmission rates if the
6310 * device does not support it.
6312 cts
->sync_period
= 0xa;
6314 if ((inq_data
->spi3data
& SID_SPI_IUS
) == 0
6315 && cts
->sync_period
<= 0x8) {
6317 * Don't allow PACE transmission rates
6318 * if the device does support packetized
6321 cts
->sync_period
= 0x9;
6325 switch (cts
->bus_width
) {
6326 case MSG_EXT_WDTR_BUS_32_BIT
:
6327 if (((device
->flags
& CAM_DEV_INQUIRY_DATA_VALID
) == 0
6328 || (inq_data
->flags
& SID_WBus32
) != 0)
6329 && (cpi
.hba_inquiry
& PI_WIDE_32
) != 0)
6331 /* Fall Through to 16-bit */
6332 case MSG_EXT_WDTR_BUS_16_BIT
:
6333 if (((device
->flags
& CAM_DEV_INQUIRY_DATA_VALID
) == 0
6334 || (inq_data
->flags
& SID_WBus16
) != 0)
6335 && (cpi
.hba_inquiry
& PI_WIDE_16
) != 0) {
6336 cts
->bus_width
= MSG_EXT_WDTR_BUS_16_BIT
;
6339 /* Fall Through to 8-bit */
6340 default: /* New bus width?? */
6341 case MSG_EXT_WDTR_BUS_8_BIT
:
6342 /* All targets can do this */
6343 cts
->bus_width
= MSG_EXT_WDTR_BUS_8_BIT
;
6347 if ((cts
->flags
& CCB_TRANS_DISC_ENB
) == 0) {
6349 * Can't tag queue without disconnection.
6351 cts
->flags
&= ~CCB_TRANS_TAG_ENB
;
6352 cts
->valid
|= CCB_TRANS_TQ_VALID
;
6355 if ((cpi
.hba_inquiry
& PI_TAG_ABLE
) == 0
6356 || (inq_data
->flags
& SID_CmdQue
) == 0
6357 || (device
->queue_flags
& SCP_QUEUE_DQUE
) != 0
6358 || (device
->quirk
->mintags
== 0)) {
6360 * Can't tag on hardware that doesn't support,
6361 * doesn't have it enabled, or has broken tag support.
6363 cts
->flags
&= ~CCB_TRANS_TAG_ENB
;
6368 if ((cts
->valid
& CCB_TRANS_TQ_VALID
) != 0) {
6372 * If we are transitioning from tags to no-tags or
6373 * vice-versa, we need to carefully freeze and restart
6374 * the queue so that we don't overlap tagged and non-tagged
6375 * commands. We also temporarily stop tags if there is
6376 * a change in transfer negotiation settings to allow
6377 * "tag-less" negotiation.
6379 if ((device
->flags
& CAM_DEV_TAG_AFTER_COUNT
) != 0
6380 || (device
->inq_flags
& SID_CmdQue
) != 0)
6381 device_tagenb
= TRUE
;
6383 device_tagenb
= FALSE
;
6385 if (((cts
->flags
& CCB_TRANS_TAG_ENB
) != 0
6386 && device_tagenb
== FALSE
)
6387 || ((cts
->flags
& CCB_TRANS_TAG_ENB
) == 0
6388 && device_tagenb
== TRUE
)) {
6390 if ((cts
->flags
& CCB_TRANS_TAG_ENB
) != 0) {
6392 * Delay change to use tags until after a
6393 * few commands have gone to this device so
6394 * the controller has time to perform transfer
6395 * negotiations without tagged messages getting
6398 device
->tag_delay_count
= CAM_TAG_DELAY_COUNT
;
6399 device
->flags
|= CAM_DEV_TAG_AFTER_COUNT
;
6401 xpt_freeze_devq(cts
->ccb_h
.path
, /*count*/1);
6403 device
->inq_flags
&= ~SID_CmdQue
;
6404 xpt_dev_ccbq_resize(cts
->ccb_h
.path
,
6405 sim
->max_dev_openings
);
6406 device
->flags
&= ~CAM_DEV_TAG_AFTER_COUNT
;
6407 device
->tag_delay_count
= 0;
6412 if (async_update
== FALSE
) {
6414 * If we are currently performing tagged transactions to
6415 * this device and want to change its negotiation parameters,
6416 * go non-tagged for a bit to give the controller a chance to
6417 * negotiate unhampered by tag messages.
6419 if ((device
->inq_flags
& SID_CmdQue
) != 0
6420 && (cts
->flags
& (CCB_TRANS_SYNC_RATE_VALID
|
6421 CCB_TRANS_SYNC_OFFSET_VALID
|
6422 CCB_TRANS_BUS_WIDTH_VALID
)) != 0)
6423 xpt_toggle_tags(cts
->ccb_h
.path
);
6425 (*(sim
->sim_action
))(sim
, (union ccb
*)cts
);
6429 struct ccb_relsim crs
;
6431 xpt_setup_ccb(&crs
.ccb_h
, cts
->ccb_h
.path
,
6433 crs
.ccb_h
.func_code
= XPT_REL_SIMQ
;
6434 crs
.release_flags
= RELSIM_RELEASE_AFTER_QEMPTY
;
6436 = crs
.release_timeout
6439 xpt_action((union ccb
*)&crs
);
6444 #endif /* CAM_NEW_TRAN_CODE */
6447 xpt_toggle_tags(struct cam_path
*path
)
6452 * Give controllers a chance to renegotiate
6453 * before starting tag operations. We
6454 * "toggle" tagged queuing off then on
6455 * which causes the tag enable command delay
6456 * counter to come into effect.
6459 if ((dev
->flags
& CAM_DEV_TAG_AFTER_COUNT
) != 0
6460 || ((dev
->inq_flags
& SID_CmdQue
) != 0
6461 && (dev
->inq_flags
& (SID_Sync
|SID_WBus16
|SID_WBus32
)) != 0)) {
6462 struct ccb_trans_settings cts
;
6464 xpt_setup_ccb(&cts
.ccb_h
, path
, 1);
6465 #ifdef CAM_NEW_TRAN_CODE
6466 cts
.protocol
= PROTO_SCSI
;
6467 cts
.protocol_version
= PROTO_VERSION_UNSPECIFIED
;
6468 cts
.transport
= XPORT_UNSPECIFIED
;
6469 cts
.transport_version
= XPORT_VERSION_UNSPECIFIED
;
6470 cts
.proto_specific
.scsi
.flags
= 0;
6471 cts
.proto_specific
.scsi
.valid
= CTS_SCSI_VALID_TQ
;
6472 #else /* CAM_NEW_TRAN_CODE */
6474 cts
.valid
= CCB_TRANS_TQ_VALID
;
6475 #endif /* CAM_NEW_TRAN_CODE */
6476 xpt_set_transfer_settings(&cts
, path
->device
,
6477 /*async_update*/TRUE
);
6478 #ifdef CAM_NEW_TRAN_CODE
6479 cts
.proto_specific
.scsi
.flags
= CTS_SCSI_FLAGS_TAG_ENB
;
6480 #else /* CAM_NEW_TRAN_CODE */
6481 cts
.flags
= CCB_TRANS_TAG_ENB
;
6482 #endif /* CAM_NEW_TRAN_CODE */
6483 xpt_set_transfer_settings(&cts
, path
->device
,
6484 /*async_update*/TRUE
);
6489 xpt_start_tags(struct cam_path
*path
)
6491 struct ccb_relsim crs
;
6492 struct cam_ed
*device
;
6493 struct cam_sim
*sim
;
6496 device
= path
->device
;
6497 sim
= path
->bus
->sim
;
6498 device
->flags
&= ~CAM_DEV_TAG_AFTER_COUNT
;
6499 xpt_freeze_devq(path
, /*count*/1);
6500 device
->inq_flags
|= SID_CmdQue
;
6501 newopenings
= min(device
->quirk
->maxtags
, sim
->max_tagged_dev_openings
);
6502 xpt_dev_ccbq_resize(path
, newopenings
);
6503 xpt_setup_ccb(&crs
.ccb_h
, path
, /*priority*/1);
6504 crs
.ccb_h
.func_code
= XPT_REL_SIMQ
;
6505 crs
.release_flags
= RELSIM_RELEASE_AFTER_QEMPTY
;
6507 = crs
.release_timeout
6510 xpt_action((union ccb
*)&crs
);
6513 static int busses_to_config
;
6514 static int busses_to_reset
;
6517 xptconfigbuscountfunc(struct cam_eb
*bus
, void *arg
)
6519 if (bus
->path_id
!= CAM_XPT_PATH_ID
) {
6520 struct cam_path path
;
6521 struct ccb_pathinq cpi
;
6525 xpt_compile_path(&path
, NULL
, bus
->path_id
,
6526 CAM_TARGET_WILDCARD
, CAM_LUN_WILDCARD
);
6527 xpt_setup_ccb(&cpi
.ccb_h
, &path
, /*priority*/1);
6528 cpi
.ccb_h
.func_code
= XPT_PATH_INQ
;
6529 xpt_action((union ccb
*)&cpi
);
6530 can_negotiate
= cpi
.hba_inquiry
;
6531 can_negotiate
&= (PI_WIDE_32
|PI_WIDE_16
|PI_SDTR_ABLE
);
6532 if ((cpi
.hba_misc
& PIM_NOBUSRESET
) == 0
6535 xpt_release_path(&path
);
6542 xptconfigfunc(struct cam_eb
*bus
, void *arg
)
6544 struct cam_path
*path
;
6545 union ccb
*work_ccb
;
6547 if (bus
->path_id
!= CAM_XPT_PATH_ID
) {
6551 work_ccb
= xpt_alloc_ccb();
6552 if ((status
= xpt_create_path(&path
, xpt_periph
, bus
->path_id
,
6553 CAM_TARGET_WILDCARD
,
6554 CAM_LUN_WILDCARD
)) !=CAM_REQ_CMP
){
6555 kprintf("xptconfigfunc: xpt_create_path failed with "
6556 "status %#x for bus %d\n", status
, bus
->path_id
);
6557 kprintf("xptconfigfunc: halting bus configuration\n");
6558 xpt_free_ccb(work_ccb
);
6560 xpt_finishconfig(xpt_periph
, NULL
);
6563 xpt_setup_ccb(&work_ccb
->ccb_h
, path
, /*priority*/1);
6564 work_ccb
->ccb_h
.func_code
= XPT_PATH_INQ
;
6565 xpt_action(work_ccb
);
6566 if (work_ccb
->ccb_h
.status
!= CAM_REQ_CMP
) {
6567 kprintf("xptconfigfunc: CPI failed on bus %d "
6568 "with status %d\n", bus
->path_id
,
6569 work_ccb
->ccb_h
.status
);
6570 xpt_finishconfig(xpt_periph
, work_ccb
);
6574 can_negotiate
= work_ccb
->cpi
.hba_inquiry
;
6575 can_negotiate
&= (PI_WIDE_32
|PI_WIDE_16
|PI_SDTR_ABLE
);
6576 if ((work_ccb
->cpi
.hba_misc
& PIM_NOBUSRESET
) == 0
6577 && (can_negotiate
!= 0)) {
6578 xpt_setup_ccb(&work_ccb
->ccb_h
, path
, /*priority*/1);
6579 work_ccb
->ccb_h
.func_code
= XPT_RESET_BUS
;
6580 work_ccb
->ccb_h
.cbfcnp
= NULL
;
6581 CAM_DEBUG(path
, CAM_DEBUG_SUBTRACE
,
6582 ("Resetting Bus\n"));
6583 xpt_action(work_ccb
);
6584 xpt_finishconfig(xpt_periph
, work_ccb
);
6586 /* Act as though we performed a successful BUS RESET */
6587 work_ccb
->ccb_h
.func_code
= XPT_RESET_BUS
;
6588 xpt_finishconfig(xpt_periph
, work_ccb
);
6596 xpt_config(void *arg
)
6599 * Now that interrupts are enabled, go find our devices
6603 /* Setup debugging flags and path */
6604 #ifdef CAM_DEBUG_FLAGS
6605 cam_dflags
= CAM_DEBUG_FLAGS
;
6606 #else /* !CAM_DEBUG_FLAGS */
6607 cam_dflags
= CAM_DEBUG_NONE
;
6608 #endif /* CAM_DEBUG_FLAGS */
6609 #ifdef CAM_DEBUG_BUS
6610 if (cam_dflags
!= CAM_DEBUG_NONE
) {
6611 if (xpt_create_path(&cam_dpath
, xpt_periph
,
6612 CAM_DEBUG_BUS
, CAM_DEBUG_TARGET
,
6613 CAM_DEBUG_LUN
) != CAM_REQ_CMP
) {
6614 kprintf("xpt_config: xpt_create_path() failed for debug"
6615 " target %d:%d:%d, debugging disabled\n",
6616 CAM_DEBUG_BUS
, CAM_DEBUG_TARGET
, CAM_DEBUG_LUN
);
6617 cam_dflags
= CAM_DEBUG_NONE
;
6621 #else /* !CAM_DEBUG_BUS */
6623 #endif /* CAM_DEBUG_BUS */
6624 #endif /* CAMDEBUG */
6627 * Scan all installed busses.
6629 xpt_for_all_busses(xptconfigbuscountfunc
, NULL
);
6631 if (busses_to_config
== 0) {
6632 /* Call manually because we don't have any busses */
6633 xpt_finishconfig(xpt_periph
, NULL
);
6635 if (busses_to_reset
> 0 && scsi_delay
>= 2000) {
6636 kprintf("Waiting %d seconds for SCSI "
6637 "devices to settle\n", scsi_delay
/1000);
6639 xpt_for_all_busses(xptconfigfunc
, NULL
);
6644 * If the given device only has one peripheral attached to it, and if that
6645 * peripheral is the passthrough driver, announce it. This insures that the
6646 * user sees some sort of announcement for every peripheral in their system.
6649 xptpassannouncefunc(struct cam_ed
*device
, void *arg
)
6651 struct cam_periph
*periph
;
6654 for (periph
= SLIST_FIRST(&device
->periphs
), i
= 0; periph
!= NULL
;
6655 periph
= SLIST_NEXT(periph
, periph_links
), i
++);
6657 periph
= SLIST_FIRST(&device
->periphs
);
6659 && (strncmp(periph
->periph_name
, "pass", 4) == 0))
6660 xpt_announce_periph(periph
, NULL
);
6666 xpt_finishconfig(struct cam_periph
*periph
, union ccb
*done_ccb
)
6668 struct periph_driver
**p_drv
;
6671 if (done_ccb
!= NULL
) {
6672 CAM_DEBUG(done_ccb
->ccb_h
.path
, CAM_DEBUG_TRACE
,
6673 ("xpt_finishconfig\n"));
6674 switch(done_ccb
->ccb_h
.func_code
) {
6676 if (done_ccb
->ccb_h
.status
== CAM_REQ_CMP
) {
6677 done_ccb
->ccb_h
.func_code
= XPT_SCAN_BUS
;
6678 done_ccb
->ccb_h
.cbfcnp
= xpt_finishconfig
;
6679 xpt_action(done_ccb
);
6685 xpt_free_path(done_ccb
->ccb_h
.path
);
6691 if (busses_to_config
== 0) {
6692 /* Register all the peripheral drivers */
6693 /* XXX This will have to change when we have loadable modules */
6694 p_drv
= periph_drivers
;
6695 for (i
= 0; p_drv
[i
] != NULL
; i
++) {
6696 (*p_drv
[i
]->init
)();
6700 * Check for devices with no "standard" peripheral driver
6701 * attached. For any devices like that, announce the
6702 * passthrough driver so the user will see something.
6704 xpt_for_all_devices(xptpassannouncefunc
, NULL
);
6706 /* Release our hook so that the boot can continue. */
6707 config_intrhook_disestablish(xpt_config_hook
);
6708 kfree(xpt_config_hook
, M_TEMP
);
6709 xpt_config_hook
= NULL
;
6711 if (done_ccb
!= NULL
)
6712 xpt_free_ccb(done_ccb
);
6716 xptaction(struct cam_sim
*sim
, union ccb
*work_ccb
)
6718 CAM_DEBUG(work_ccb
->ccb_h
.path
, CAM_DEBUG_TRACE
, ("xptaction\n"));
6720 switch (work_ccb
->ccb_h
.func_code
) {
6721 /* Common cases first */
6722 case XPT_PATH_INQ
: /* Path routing inquiry */
6724 struct ccb_pathinq
*cpi
;
6726 cpi
= &work_ccb
->cpi
;
6727 cpi
->version_num
= 1; /* XXX??? */
6728 cpi
->hba_inquiry
= 0;
6729 cpi
->target_sprt
= 0;
6731 cpi
->hba_eng_cnt
= 0;
6732 cpi
->max_target
= 0;
6734 cpi
->initiator_id
= 0;
6735 strncpy(cpi
->sim_vid
, "FreeBSD", SIM_IDLEN
);
6736 strncpy(cpi
->hba_vid
, "", HBA_IDLEN
);
6737 strncpy(cpi
->dev_name
, sim
->sim_name
, DEV_IDLEN
);
6738 cpi
->unit_number
= sim
->unit_number
;
6739 cpi
->bus_id
= sim
->bus_id
;
6740 cpi
->base_transfer_speed
= 0;
6741 #ifdef CAM_NEW_TRAN_CODE
6742 cpi
->protocol
= PROTO_UNSPECIFIED
;
6743 cpi
->protocol_version
= PROTO_VERSION_UNSPECIFIED
;
6744 cpi
->transport
= XPORT_UNSPECIFIED
;
6745 cpi
->transport_version
= XPORT_VERSION_UNSPECIFIED
;
6746 #endif /* CAM_NEW_TRAN_CODE */
6747 cpi
->ccb_h
.status
= CAM_REQ_CMP
;
6752 work_ccb
->ccb_h
.status
= CAM_REQ_INVALID
;
6759 * The xpt as a "controller" has no interrupt sources, so polling
6763 xptpoll(struct cam_sim
*sim
)
6768 * Should only be called by the machine interrupt dispatch routines,
6769 * so put these prototypes here instead of in the header.
6773 swi_camnet(void *arg
, void *frame
)
6779 swi_cambio(void *arg
, void *frame
)
6785 camisr(cam_isrq_t
*queue
)
6787 struct ccb_hdr
*ccb_h
;
6790 while ((ccb_h
= TAILQ_FIRST(queue
)) != NULL
) {
6793 TAILQ_REMOVE(queue
, ccb_h
, sim_links
.tqe
);
6794 ccb_h
->pinfo
.index
= CAM_UNQUEUED_INDEX
;
6797 CAM_DEBUG(ccb_h
->path
, CAM_DEBUG_TRACE
,
6802 if (ccb_h
->flags
& CAM_HIGH_POWER
) {
6803 struct highpowerlist
*hphead
;
6804 struct cam_ed
*device
;
6805 union ccb
*send_ccb
;
6807 hphead
= &highpowerq
;
6809 send_ccb
= (union ccb
*)STAILQ_FIRST(hphead
);
6812 * Increment the count since this command is done.
6817 * Any high powered commands queued up?
6819 if (send_ccb
!= NULL
) {
6820 device
= send_ccb
->ccb_h
.path
->device
;
6822 STAILQ_REMOVE_HEAD(hphead
, xpt_links
.stqe
);
6824 xpt_release_devq(send_ccb
->ccb_h
.path
,
6825 /*count*/1, /*runqueue*/TRUE
);
6828 if ((ccb_h
->func_code
& XPT_FC_USER_CCB
) == 0) {
6831 dev
= ccb_h
->path
->device
;
6833 cam_ccbq_ccb_done(&dev
->ccbq
, (union ccb
*)ccb_h
);
6835 if (ccb_h
->path
->bus
->sim
->devq
) {
6836 ccb_h
->path
->bus
->sim
->devq
->send_active
--;
6837 ccb_h
->path
->bus
->sim
->devq
->send_openings
++;
6840 if (((dev
->flags
& CAM_DEV_REL_ON_COMPLETE
) != 0
6841 && (ccb_h
->status
&CAM_STATUS_MASK
) != CAM_REQUEUE_REQ
)
6842 || ((dev
->flags
& CAM_DEV_REL_ON_QUEUE_EMPTY
) != 0
6843 && (dev
->ccbq
.dev_active
== 0))) {
6845 xpt_release_devq(ccb_h
->path
, /*count*/1,
6849 if ((dev
->flags
& CAM_DEV_TAG_AFTER_COUNT
) != 0
6850 && (--dev
->tag_delay_count
== 0))
6851 xpt_start_tags(ccb_h
->path
);
6853 if ((dev
->ccbq
.queue
.entries
> 0)
6854 && (dev
->qfrozen_cnt
== 0)
6855 && (device_is_send_queued(dev
) == 0)) {
6856 runq
= xpt_schedule_dev_sendq(ccb_h
->path
->bus
,
6861 if (ccb_h
->status
& CAM_RELEASE_SIMQ
) {
6862 xpt_release_simq(ccb_h
->path
->bus
->sim
,
6864 ccb_h
->status
&= ~CAM_RELEASE_SIMQ
;
6868 if ((ccb_h
->flags
& CAM_DEV_QFRZDIS
)
6869 && (ccb_h
->status
& CAM_DEV_QFRZN
)) {
6870 xpt_release_devq(ccb_h
->path
, /*count*/1,
6872 ccb_h
->status
&= ~CAM_DEV_QFRZN
;
6874 xpt_run_dev_sendq(ccb_h
->path
->bus
);
6877 /* Call the peripheral driver's callback */
6878 (*ccb_h
->cbfcnp
)(ccb_h
->path
->periph
, (union ccb
*)ccb_h
);